Sample records for nanoporous anodic alumina

  1. Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications

    PubMed Central

    Ferré-Borrull, Josep; Pallarès, Josep; Macías, Gerard; Marsal, Lluis F.

    2014-01-01

    Modifying the diameter of the pores in nanoporous anodic alumina opens new possibilities in the application of this material. In this work, we review the different nanoengineering methods by classifying them into two kinds: in situ and ex situ. Ex situ methods imply the interruption of the anodization process and the addition of intermediate steps, while in situ methods aim at realizing the in-depth pore modulation by continuous changes in the anodization conditions. Ex situ methods permit a greater versatility in the pore geometry, while in situ methods are simpler and adequate for repeated cycles. As an example of ex situ methods, we analyze the effect of changing drastically one of the anodization parameters (anodization voltage, electrolyte composition or concentration). We also introduce in situ methods to obtain distributed Bragg reflectors or rugate filters in nanoporous anodic alumina with cyclic anodization voltage or current. This nanopore engineering permits us to propose new applications in the field of biosensing: using the unique reflectance or photoluminescence properties of the material to obtain photonic barcodes, applying a gold-coated double-layer nanoporous alumina to design a self-referencing protein sensor or giving a proof-of-concept of the refractive index sensing capabilities of nanoporous rugate filters. PMID:28788127

  2. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-01

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for

  3. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    PubMed

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism.

  4. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals.

    PubMed

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-21

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.

  5. Variation of nanopore diameter along porous anodic alumina channels by multi-step anodization.

    PubMed

    Lee, Kwang Hong; Lim, Xin Yuan; Wai, Kah Wing; Romanato, Filippo; Wong, Chee Cheong

    2011-02-01

    In order to form tapered nanocapillaries, we investigated a method to vary the nanopore diameter along the porous anodic alumina (PAA) channels using multi-step anodization. By anodizing the aluminum in either single acid (H3PO4) or multi-acid (H2SO4, oxalic acid and H3PO4) with increasing or decreasing voltage, the diameter of the nanopore along the PAA channel can be varied systematically corresponding to the applied voltages. The pore size along the channel can be enlarged or shrunken in the range of 20 nm to 200 nm. Structural engineering of the template along the film growth direction can be achieved by deliberately designing a suitable voltage and electrolyte together with anodization time.

  6. Rational engineering of nanoporous anodic alumina optical bandpass filters

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Pereira, Taj; Law, Cheryl Suwen; Losic, Dusan

    2016-08-01

    Herein, we present a rationally designed advanced nanofabrication approach aiming at producing a new type of optical bandpass filters based on nanoporous anodic alumina photonic crystals. The photonic stop band of nanoporous anodic alumina (NAA) is engineered in depth by means of a pseudo-stepwise pulse anodisation (PSPA) approach consisting of pseudo-stepwise asymmetric current density pulses. This nanofabrication method makes it possible to tune the transmission bands of NAA at specific wavelengths and bandwidths, which can be broadly modified across the UV-visible-NIR spectrum through the anodisation period (i.e. time between consecutive pulses). First, we establish the effect of the anodisation period as a means of tuning the position and width of the transmission bands of NAA across the UV-visible-NIR spectrum. To this end, a set of nanoporous anodic alumina bandpass filters (NAA-BPFs) are produced with different anodisation periods, ranging from 500 to 1200 s, and their optical properties (i.e. characteristic transmission bands and interferometric colours) are systematically assessed. Then, we demonstrate that the rational combination of stacked NAA-BPFs consisting of layers of NAA produced with different PSPA periods can be readily used to create a set of unique and highly selective optical bandpass filters with characteristic transmission bands, the position, width and number of which can be precisely engineered by this rational anodisation approach. Finally, as a proof-of-concept, we demonstrate that the superposition of stacked NAA-BPFs produced with slight modifications of the anodisation period enables the fabrication of NAA-BPFs with unprecedented broad transmission bands across the UV-visible-NIR spectrum. The results obtained from our study constitute the first comprehensive rationale towards advanced NAA-BPFs with fully controllable photonic properties. These photonic crystal structures could become a promising alternative to traditional optical

  7. Interferometric nanoporous anodic alumina photonic coatings for optical sensing

    NASA Astrophysics Data System (ADS)

    Chen, Yuting; Santos, Abel; Wang, Ye; Kumeria, Tushar; Wang, Changhai; Li, Junsheng; Losic, Dusan

    2015-04-01

    Herein, we present a systematic study on the development, optical optimization and sensing applicability of colored photonic coatings based on nanoporous anodic alumina films grown on aluminum substrates. These optical nanostructures, so-called distributed Bragg reflectors (NAA-DBRs), are fabricated by galvanostatic pulse anodization process, in which the current density is altered in a periodic manner in order to engineer the effective medium of the resulting photonic coatings. As-prepared NAA-DBR photonic coatings present brilliant interference colors on the surface of aluminum, which can be tuned at will within the UV-visible spectrum by means of the anodization profile. A broad library of NAA-DBR colors is produced by means of different anodization profiles. Then, the effective medium of these NAA-DBR photonic coatings is systematically assessed in terms of optical sensitivity, low limit of detection and linearity by reflectometric interference spectroscopy (RIfS) in order to optimize their nanoporous structure toward optical sensors with enhanced sensing performance. Finally, we demonstrate the applicability of these photonic nanostructures as optical platforms by selectively detecting gold(iii) ions in aqueous solutions. The obtained results reveal that optimized NAA-DBR photonic coatings can achieve an outstanding sensing performance for gold(iii) ions, with a sensitivity of 22.16 nm μM-1, a low limit of detection of 0.156 μM (i.e. 30.7 ppb) and excellent linearity within the working range (0.9983).Herein, we present a systematic study on the development, optical optimization and sensing applicability of colored photonic coatings based on nanoporous anodic alumina films grown on aluminum substrates. These optical nanostructures, so-called distributed Bragg reflectors (NAA-DBRs), are fabricated by galvanostatic pulse anodization process, in which the current density is altered in a periodic manner in order to engineer the effective medium of the resulting

  8. Understanding improved osteoblast behavior on select nanoporous anodic alumina

    PubMed Central

    Ni, Siyu; Li, Changyan; Ni, Shirong; Chen, Ting; Webster, Thomas J

    2014-01-01

    The aim of this study was to prepare different sized porous anodic alumina (PAA) and examine preosteoblast (MC3T3-E1) attachment and proliferation on such nanoporous surfaces. In this study, PAA with tunable pore sizes (25 nm, 50 nm, and 75 nm) were fabricated by a two-step anodizing procedure in oxalic acid. The surface morphology and elemental composition of PAA were characterized by field emission scanning electron microscopy and X-ray photoelectron spectroscopy analysis. The nanopore arrays on all of the PAA samples were highly regular. X-ray photoelectron spectroscopy analysis suggested that the chemistry of PAA and flat aluminum surfaces were similar. However, contact angles were significantly greater on all of the PAA compared to flat aluminum substrates, which consequently altered protein adsorption profiles. The attachment and proliferation of preosteoblasts were determined for up to 7 days in culture using field emission scanning electron microscopy and a Cell Counting Kit-8. Results showed that nanoporous surfaces did not enhance initial preosteoblast attachment, whereas preosteoblast proliferation dramatically increased when the PAA pore size was either 50 nm or 75 nm compared to all other samples (P<0.05). Thus, this study showed that one can alter surface energy of aluminum by modifying surface nano-roughness alone (and not changing chemistry) through an anodization process to improve osteoblast density, and, thus, should be further studied as a bioactive interface for orthopedic applications. PMID:25045263

  9. Engineering optical properties of gold-coated nanoporous anodic alumina for biosensing

    NASA Astrophysics Data System (ADS)

    Hernández-Eguía, Laura P.; Ferré-Borrull, Josep; Macias, Gerard; Pallarès, Josep; Marsal, Lluís F.

    2014-08-01

    The effect in the Fabry-Pérot optical interferences of nanoporous anodic alumina films coated with gold is studied as a function of the porosity and of the gold thickness by means of reflectance spectroscopy. Samples with porosities between 14 and 70% and gold thicknesses (10 and 20 nm) were considered. The sputtering of gold on the nanoporous anodic alumina (NAA) films results in an increase of the fringe intensity of the oscillations in the spectra resulting from Fabry-Pérot interferences in the porous layer, with a reduction in the maximum reflectance in the UV-visible region. For the thicker gold layer, sharp valleys appear in the near-infrared (IR) range that can be useful for accurate spectral shift measurements in optical biosensing. A theoretical model for the optical behavior has also been proposed. The model shows a very good agreement with the experimental measurements, what makes it useful for design and optimization of devices based on this material. This material capability is enormous for using it as an accurate and sensitive optical sensor, since gold owns a well-known surface chemistry with certain molecules, most of them biomolecules.

  10. Nanoporous Anodic Alumina: A Versatile Platform for Optical Biosensors

    PubMed Central

    Santos, Abel; Kumeria, Tushar; Losic, Dusan

    2014-01-01

    Nanoporous anodic alumina (NAA) has become one of the most promising nanomaterials in optical biosensing as a result of its unique physical and chemical properties. Many studies have demonstrated the outstanding capabilities of NAA for developing optical biosensors in combination with different optical techniques. These results reveal that NAA is a promising alternative to other widely explored nanoporous platforms, such as porous silicon. This review is aimed at reporting on the recent advances and current stage of development of NAA-based optical biosensing devices. The different optical detection techniques, principles and concepts are described in detail along with relevant examples of optical biosensing devices using NAA sensing platforms. Furthermore, we summarise the performance of these devices and provide a future perspective on this promising research field. PMID:28788678

  11. Analysis of nanopore arrangement and structural features of anodic alumina layers formed by two-step anodizing in oxalic acid using the dedicated executable software

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Stępniowski, Wojciech J.; Sulka, Grzegorz D.; Ciepiela, Eryk; Jaskuła, Marian

    2014-02-01

    Anodic porous alumina layers were fabricated by a two-step self-organized anodization in 0.3 M oxalic acid under various anodizing potentials ranging from 30 to 60 V at two different temperatures (10 and 17 ∘C). The effect of anodizing conditions on structural features and pore arrangement of AAO was investigated in detail by using the dedicated executable publication combined with ImageJ software. With increasing anodizing potential, a linear increase of the average pore diameter, interpore distance, wall thickness and barrier layer thickness, as well as a decrease of the pore density, were observed. In addition, the higher pore diameter and porosity values were obtained for samples anodized at the elevated temperature, independently of the anodizing potential. A degree of pore order was investigated on the basis of Delaunay triangulations (defect maps) and calculation of pair distribution or angle distribution functions (PDF or ADF), respectively. All methods confirmed that in order to obtain nanoporous alumina with the best, hexagonal pore arrangement, the potential of 40 V should be applied during anodization. It was confirmed that the dedicated executable publication can be used to a fast and complex analysis of nanopore arrangement and structural features of nanoporous oxide layers.

  12. Enhancing the platinum atomic layer deposition infiltration depth inside anodic alumina nanoporous membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaish, Amit, E-mail: anv@udel.edu; Krueger, Susan; Dimitriou, Michael

    Nanoporous platinum membranes can be straightforwardly fabricated by forming a Pt coating inside the nanopores of anodic alumina membranes (AAO) using atomic layer deposition (ALD). However, the high-aspect-ratio of AAO makes Pt ALD very challenging. By tuning the process deposition temperature and precursor exposure time, enhanced infiltration depth along with conformal coating was achieved for Pt ALD inside the AAO templates. Cross-sectional scanning electron microscopy/energy dispersive x-ray spectroscopy and small angle neutron scattering were employed to analyze the Pt coverage and thickness inside the AAO nanopores. Additionally, one application of platinum-coated membrane was demonstrated by creating a high-density protein-functionalized interface.

  13. Sustained, Controlled and Stimuli-Responsive Drug Release Systems Based on Nanoporous Anodic Alumina with Layer-by-Layer Polyelectrolyte

    NASA Astrophysics Data System (ADS)

    Porta-i-Batalla, Maria; Eckstein, Chris; Xifré-Pérez, Elisabet; Formentín, Pilar; Ferré-Borrull, J.; Marsal, Lluis F.

    2016-08-01

    Controlled drug delivery systems are an encouraging solution to some drug disadvantages such as reduced solubility, deprived biodistribution, tissue damage, fast breakdown of the drug, cytotoxicity, or side effects. Self-ordered nanoporous anodic alumina is an auspicious material for drug delivery due to its biocompatibility, stability, and controllable pore geometry. Its use in drug delivery applications has been explored in several fields, including therapeutic devices for bone and dental tissue engineering, coronary stent implants, and carriers for transplanted cells. In this work, we have created and analyzed a stimuli-responsive drug delivery system based on layer-by-layer pH-responsive polyelectrolyte and nanoporous anodic alumina. The results demonstrate that it is possible to control the drug release using a polyelectrolyte multilayer coating that will act as a gate.

  14. Structural tuning of photoluminescence in nanoporous anodic alumina by hard anodization in oxalic and malonic acids

    PubMed Central

    2012-01-01

    We report on an exhaustive and systematic study about the photoluminescent properties of nanoporous anodic alumina membranes fabricated by the one-step anodization process under hard conditions in oxalic and malonic acids. This optical property is analysed as a function of several parameters (i.e. hard anodization voltage, pore diameter, membrane thickness, annealing temperature and acid electrolyte). This analysis makes it possible to tune the photoluminescent behaviour at will simply by modifying the structural characteristics of these membranes. This structural tuning ability is of special interest in such fields as optoelectronics, in which an accurate design of the basic nanostructures (e.g. microcavities, resonators, filters, supports, etc.) yields the control over their optical properties and, thus, upon the performance of the nanodevices derived from them (biosensors, interferometers, selective filters, etc.) PMID:22515214

  15. Mechanical stability of heat-treated nanoporous anodic alumina subjected to repetitive mechanical deformation

    NASA Astrophysics Data System (ADS)

    Bankova, A.; Videkov, V.; Tzaneva, B.; Mitov, M.

    2018-03-01

    We report studies on the mechanical response and deformation behavior of heat-treated nanoporous anodic alumina using a micro-balance test and experimental test equipment especially designed for this purpose. AAO samples were characterized mechanically by a three-point bending test using a micro-analytical balance. The deformation behavior was studied by repetitive mechanical bending of the AAO membranes using an electronically controlled system. The nanoporous AAO structures were prepared electrochemically from Al sheet substrates using a two-step anodizing technique in oxalic acid followed by heat treatment at 700 °C in air. The morphological study of the aluminum oxide layer after the mechanical tests and mechanical deformation was conducted using scanning electron and optical microscopy, respectively. The experimental results showed that the techniques proposed are simple and accurate; they could, therefore, be combined to constitute a method for mechanical stability assessment of nanostructured AAO films, which are important structural components in the design of MEMS devices and sensors.

  16. Fabrication of Self-Ordered Nanoporous Alumina with 69-115 nm Interpore Distances in Sulfuric/Oxalic Acid Mixtures by Hard Anodization

    NASA Astrophysics Data System (ADS)

    Almasi Kashi, Mohammad; Ramazani, Abdolali; Mayamai, Yashar; Noormohammadi, Mohammad

    2010-01-01

    Well-ordered nanoporous arrays have been obtained using hard anodization of aluminium in oxalic/sulfuric mixture. Various ordered nanoporous alumina films with pore intervals from 69 to 115 nm were fabricated on aluminum by high current anodization approach with various sulfuric concentrations in the oxalic/sulfuric mixture electrolyte under 36-60 V. The sulfuric acid concentration was changed from 0.06 to 0.2 M. Different configurations of the current-time curve are seen to influence the self-ordering of the nanohole arrays. A current density-time curve with exponential oscillating decay configuration is seen to damage the self-ordered array of the nanopores while those with exponential decay under certain conditions cause ordered nanopore arrays. For each electrolyte mixture, the interpore distance was dependent upon the anodization voltages with proportionality constants of almost 2 nm V-1. The porosity of the samples (about 3.5%) follows the porosity rule of HA. Final anodization and increasing voltage rate (rin) as a function of sulfuric acid concentration are the main sources to influence the self-ordering of the samples.

  17. Nanoporous Anodic Alumina Platforms: Engineered Surface Chemistry and Structure for Optical Sensing Applications

    PubMed Central

    Kumeria, Tushar; Santos, Abel; Losic, Dusan

    2014-01-01

    Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices. PMID:25004150

  18. Analysis of effect of nanoporous alumina substrate coated with polypyrrole nanowire on cell morphology based on AFM topography.

    PubMed

    El-Said, Waleed Ahmed; Yea, Cheol-Heon; Jung, Mi; Kim, Hyuncheol; Choi, Jeong-Woo

    2010-05-01

    In this study, in situ electrochemical synthesis of polypyrrole nanowires with nanoporous alumina template was described. The formation of highly ordered porous alumina substrate was demonstrated with Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). In addition, Fourier transform infrared analysis confirmed that polypyrrole (PP) nanowires were synthesized by direct electrochemical oxidation of pyrrole. HeLa cancer cells and HMCF normal cells were immobilized on the polypyrrole nanowires/nanoporous alumina substrates to determine the effects of the substrate on the cell morphology, adhesion and proliferation as well as the biocompatibility of the substrate. Cell adhesion and proliferation were characterized using a standard MTT assay. The effects of the polypyrrole nanowires/nanoporous alumina substrate on the cell morphology were studied by AFM. The nanoporous alumina coated with polypyrrole nanowires was found to exhibit better cell adhesion and proliferation than polystyrene petridish, aluminum foil, 1st anodized and uncoated 2nd anodized alumina substrate. This study showed the potential of the polypyrrole nanowires/nanoporous alumina substrate as biocompatibility electroactive polymer substrate for both healthy and cancer cell cultures applications.

  19. A nanoporous alumina microelectrode array for functional cell-chip coupling.

    PubMed

    Wesche, Manuel; Hüske, Martin; Yakushenko, Alexey; Brüggemann, Dorothea; Mayer, Dirk; Offenhäusser, Andreas; Wolfrum, Bernhard

    2012-12-14

    The design of electrode interfaces has a strong impact on cell-based bioelectronic applications. We present a new type of microelectrode array chip featuring a nanoporous alumina interface. The chip is fabricated in a combination of top-down and bottom-up processes using state-of-the-art clean room technology and self-assembled generation of nanopores by aluminum anodization. The electrode characteristics are investigated in phosphate buffered saline as well as under cell culture conditions. We show that the modified microelectrodes exhibit decreased impedance compared to planar microelectrodes, which is caused by a nanostructuring effect of the underlying gold during anodization. The stability and biocompatibility of the device are demonstrated by measuring action potentials from cardiomyocyte-like cells growing on top of the chip. Cross sections of the cell-surface interface reveal that the cell membrane seals the nanoporous alumina layer without bending into the sub-50 nm apertures. The nanoporous microelectrode array device may be used as a platform for combining extracellular recording of cell activity with stimulating topographical cues.

  20. Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing

    PubMed Central

    Nishinaga, Osamu; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2013-01-01

    Anodic porous alumina has been widely investigated and used as a nanostructure template in various nanoapplications. The porous structure consists of numerous hexagonal cells perpendicular to the aluminum substrate and each cell has several tens or hundreds of nanoscale pores at its center. Because the nanomorphology of anodic porous alumina is limited by the electrolyte during anodizing, the discovery of additional electrolytes would expand the applicability of porous alumina. In this study, we report a new self-ordered nanoporous alumina formed by selenic acid (H2SeO4) anodizing. By optimizing the anodizing conditions, anodic alumina possessing 10-nm-scale pores was rapidly assembled (within 1 h) during selenic acid anodizing without any special electrochemical equipment. Novel sub-10-nm-scale spacing can also be achieved by selenic acid anodizing and metal sputter deposition. Our new nanoporous alumina can be used as a nanotemplate for various nanostructures in 10-/sub-10-nm-scale manufacturing. PMID:24067318

  1. Nanocarbon-Coated Porous Anodic Alumina for Bionic Devices

    PubMed Central

    Aramesh, Morteza; Tong, Wei; Fox, Kate; Turnley, Ann; Seo, Dong Han; Prawer, Steven; Ostrikov, Kostya (Ken)

    2015-01-01

    A highly-stable and biocompatible nanoporous electrode is demonstrated herein. The electrode is based on a porous anodic alumina which is conformally coated with an ultra-thin layer of diamond-like carbon. The nanocarbon coating plays an essential role for the chemical stability and biocompatibility of the electrodes; thus, the coated electrodes are ideally suited for biomedical applications. The corrosion resistance of the proposed electrodes was tested under extreme chemical conditions, such as in boiling acidic/alkali environments. The nanostructured morphology and the surface chemistry of the electrodes were maintained after wet/dry chemical corrosion tests. The non-cytotoxicity of the electrodes was tested by standard toxicity tests using mouse fibroblasts and cortical neurons. Furthermore, the cell–electrode interaction of cortical neurons with nanocarbon coated nanoporous anodic alumina was studied in vitro. Cortical neurons were found to attach and spread to the nanocarbon coated electrodes without using additional biomolecules, whilst no cell attachment was observed on the surface of the bare anodic alumina. Neurite growth appeared to be sensitive to nanotopographical features of the electrodes. The proposed electrodes show a great promise for practical applications such as retinal prostheses and bionic implants in general. PMID:28793486

  2. Self-ordered, controlled structure nanoporous membranes using constant current anodization.

    PubMed

    Lee, Kwan; Tang, Yun; Ouyang, Min

    2008-12-01

    We report a constant current (CC) based anodization technique to fabricate and control structure of mechanically stable anodic aluminum oxide (AAO) membranes with a long-range ordered hexagonal nanopore pattern. For the first time we show that interpore distance (Dint) of a self-ordered nanopore feature can be continuously tuned over a broad range with CC anodization and is uniquely defined by the conductivity of sulfuric acid as electrolyte. We further demonstrate that this technique can offer new degrees of freedom for engineering planar nanopore structures by fine tailoring the CC based anodization process. Our results not only facilitate further understanding of self-ordering mechanism of alumina membranes but also provide a fast, simple (without requirement of prepatterning or preoxide layer), and flexible methodology for controlling complex nanoporous structures, thus offering promising practical applications in nanotechnology.

  3. In situ characterization of N-carboxy anhydride polymerization in nanoporous anodic alumina.

    PubMed

    Lau, K H Aaron; Duran, Hatice; Knoll, Wolfgang

    2009-03-12

    Poly(gamma-benzyl-L-glutamate) (PBLG) has been a popular model polypeptide for a range of physicochemical studies, and its modifiable ester side chains make it an attractive platform for various potential applications. Thin films of Poly(gamma-benzyl-L-glutamate) PBLG were surface grafted within nanoporous anodic alumina (AAO) by surface-initiated polymerization of the N-carboxy anhydride of benzyl-L-glutamate (BLG-NCA). The grafting process was characterized by optical waveguide spectroscopy (OWS), infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). OWS was able to track the PBLG layer thickness increase in situ, and ex situ FT-IR gave complementary information on the PBLG chain's secondary structure. Transitions in the PBLG growth rate could be correlated with transitions in the polypeptide secondary structure. The emergence of a three-dimensional, anisotropic PBLG morphology within the cylindrical pores of the AAO membrane was also identified as the grafted PBLG average layer thickness increased. Comparison of the PBLG/AAO results with those on a planar silicon dioxide surface indicated that both the conformational transitions and the PBLG nanostructure development could be attributed to the confining geometry within the pores of the nanoporous AAO matrix. The use of a nanoporous AAO matrix, combined with the surface grafting of a thin film of PBLG chains with multiple modifiable side chains, could potentially offer a nanoporous platform with a very high density of functional sites.

  4. Structural evolution of self-ordered alumina tapered nanopores with 100 nm interpore distance

    NASA Astrophysics Data System (ADS)

    Li, Juan; Li, Congshan; Gao, Xuefeng

    2011-10-01

    We in-detail investigated the profile evolution processes of highly ordered alumina under the cyclic treatment of mild anodizing of aluminum foils in oxalic acid followed by etching in phosphoric acid. With the cyclic times increasing, the profiles of nanopores were gradually evolved into the parabola-like, trumpet-like and conical shape. Although the inserted etching itself nearly had no impact on the growth rate of the nanopores due to the rapid recovering of thinned barrier layer at the initial stage of next anodizing, overmuch etching could bring apparent side effects such as wall-breaking, thinning and taper-removing from the top down. The anodizing and etching kinetics and their synergetic effects in modulating different aspect ratios and open sizes of conical pores were studied systematically. These findings are helpful to tailor high-quality anodic alumina taper-pores with tunable profiles.

  5. 3D Nanoporous Anodic Alumina Structures for Sustained Drug Release

    PubMed Central

    Xifré-Pérez, Elisabet; Eckstein, Chris; Ferré-Borrull, Josep

    2017-01-01

    The use of nanoporous anodic alumina (NAA) for the development of drug delivery systems has gained much attention in recent years. The release of drugs loaded inside NAA pores is complex and depends on the morphology of the pores. In this study, NAA, with different three-dimensional (3D) pore structures (cylindrical pores with several pore diameters, multilayered nanofunnels, and multilayered inverted funnels) were fabricated, and their respective drug delivery rates were studied and modeled using doxorubicin as a model drug. The obtained results reveal optimal modeling of all 3D pore structures, differentiating two drug release stages. Thus, an initial short-term and a sustained long-term release were successfully modeled by the Higuchi and the Korsmeyer–Peppas equations, respectively. This study demonstrates the influence of pore geometries on drug release rates, and further presents a sustained long-term drug release that exceeds 60 days without an undesired initial burst. PMID:28825654

  6. Study the effect of striping in two-step anodizing process on pore arrangement of nano-porous alumina

    NASA Astrophysics Data System (ADS)

    Rahimi, M. H.; Saramad, S.; Tabaian, S. H.; Marashi, S. P.; Zolfaghari, A.; Mohammadalinezhad, M.

    2009-10-01

    Two-step anodic oxidation of aluminum is generally employed to produce the ordered porous anodized alumina (PAA). Dissolving away (striping) the oxide film after the first anodizing step plays a key role in the final arrangement of nano-pores. In this work, different striping durations between 1 and 6 h were applied to the sample that was initially anodized at a constant voltage of 40 V at 17 °C for 15 h. The striping duration of 3 h was realized as the optimum time for achieving the best ordering degree for the pores. Scanning electron microscopy (SEM) was used during and at the end of the process to examine the cross section and finishing surface of the specimens. Linear-angular fast Fourier transform (LA-FFT), an in-house technique based on MATLAB software, was employed to assess the ordering degree of the anodized samples.

  7. Fine tuning of optical signals in nanoporous anodic alumina photonic crystals by apodized sinusoidal pulse anodisation.

    PubMed

    Santos, Abel; Law, Cheryl Suwen; Chin Lei, Dominique Wong; Pereira, Taj; Losic, Dusan

    2016-11-03

    In this study, we present an advanced nanofabrication approach to produce gradient-index photonic crystal structures based on nanoporous anodic alumina. An apodization strategy is for the first time applied to a sinusoidal pulse anodisation process in order to engineer the photonic stop band of nanoporous anodic alumina (NAA) in depth. Four apodization functions are explored, including linear positive, linear negative, logarithmic positive and logarithmic negative, with the aim of finely tuning the characteristic photonic stop band of these photonic crystal structures. We systematically analyse the effect of the amplitude difference (from 0.105 to 0.840 mA cm -2 ), the pore widening time (from 0 to 6 min), the anodisation period (from 650 to 950 s) and the anodisation time (from 15 to 30 h) on the quality and the position of the characteristic photonic stop band and the interferometric colour of these photonic crystal structures using the aforementioned apodization functions. Our results reveal that a logarithmic negative apodisation function is the most optimal approach to obtain unprecedented well-resolved and narrow photonic stop bands across the UV-visible-NIR spectrum of NAA-based gradient-index photonic crystals. Our study establishes a fully comprehensive rationale towards the development of unique NAA-based photonic crystal structures with finely engineered optical properties for advanced photonic devices such as ultra-sensitive optical sensors, selective optical filters and all-optical platforms for quantum computing.

  8. Growth behavior of anodic porous alumina formed in malic acid solution

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Suzuki, Ryosuke O.

    2013-11-01

    The growth behavior of anodic porous alumina formed on aluminum by anodizing in malic acid solutions was investigated. High-purity aluminum plates were electropolished in CH3COOH/HClO4 solutions and then anodized in 0.5 M malic acid solutions at 293 K and constant cell voltages of 200-350 V. The anodic porous alumina grew on the aluminum substrate at voltages of 200-250 V, and a black, burned oxide film was formed at higher voltages. The nanopores of the anodic oxide were only formed at grain boundaries of the aluminum substrate during the initial stage of anodizing, and then the growth region extended to the entire aluminum surface as the anodizing time increased. The anodic porous alumina with several defects was formed by anodizing in malic acid solution at 250 V, and oxide cells were approximately 300-800 nm in diameter.

  9. Novel structure formation at the bottom surface of porous anodic alumina fabricated by single step anodization process.

    PubMed

    Ali, Ghafar; Ahmad, Maqsood; Akhter, Javed Iqbal; Maqbool, Muhammad; Cho, Sung Oh

    2010-08-01

    A simple approach for the growth of long-range highly ordered nanoporous anodic alumina film in H(2)SO(4) electrolyte through a single step anodization without any additional pre-anodizing procedure is reported. Free-standing porous anodic alumina film of 180 microm thickness with through hole morphology was obtained. A simple and single step process was used for the detachment of alumina from aluminum substrate. The effect of anodizing conditions, such as anodizing voltage and time on the pore diameter and pore ordering is discussed. The metal/oxide and oxide/electrolyte interfaces were examined by high resolution scanning transmission electron microscope. The arrangement of pores on metal/oxide interface was well ordered with smaller diameters than that of the oxide/electrolyte interface. The inter-pore distance was larger in metal/oxide interface as compared to the oxide/electrolyte interface. The size of the ordered domain was found to depend strongly upon anodizing voltage and time. (c) 2010 Elsevier Ltd. All rights reserved.

  10. Designing robust alumina nanowires-on-nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion.

    PubMed

    Peng, Shan; Tian, Dong; Miao, Xinrui; Yang, Xiaojun; Deng, Wenli

    2013-11-01

    Hierarchical alumina surfaces with different morphologies were fabricated by a simple one-step anodization method. These alumina films were fabricated by a new raw material: silica gel plate (aluminum foil with a low purity of 97.17%). The modulation of anodizing time enabled the formation of nanowires-on-nanopores hybrid nanostructures having controllable nanowires topographies through a self-assembly process. The resultant structures were demonstrated to be able to achieve superhydrophobicity without any hydrophobic coating layer. More interestingly, it is found that the as-prepared superhydrophobic alumina surfaces exhibited high contrast water adhesion. Hierarchical alumina film with nanowire bunches-on-nanopores (WBOP) morphology presents extremely slippery property which can obtain a sliding angle (SA) as low as 1°, nanowire pyramids-on-nanopores (WPOP) structure shows strongly sticky water adhesion with the adhesive ability to support 15 μL inverted water droplet at most. The obtained superhydrophobic alumina surfaces show remarkable mechanical durability even treated by crimping or pressing without impact on the water-repellent performance. Moreover, the created surfaces also show excellent resistivity to ice water, boiling water, high temperature, organic solvent and oil contamination, which could expand their usefulness and efficacy in harsh conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. [Effects of different annealing conditions on the photoluminescence of nanoporous alumina film].

    PubMed

    Xie, Ning; Ma, Kai-Di; Shen, Yi-Fan; Wang, Qian

    2013-12-01

    The nanoporous alumina films were prepared by two-step anodic oxidation in 0.5 mol L-1 oxalic acid electrolyte at 40 V. Photoluminescence (PL) of nanoporous alumina films was investigated under different annealing atmosphere and different temperature. The authors got three results about the PL measurements. In the same annealing atmosphere, when the annealling temperature T< or =600 degreeC, the intensity of the PL peak increases with elevated annealing temperature and reaches a maximum value at 500 degreeC, but the intensity decreases with a further increase in the annealing temperature, and the PL peak intensity of samples increases with the increase in the annealing temperature when the annealling temperature T> or =800 degreeC. In the different annealling atmosphere, the change in the photoluminescence peak position for nanoporous alumina films with the increase in the annealing temperature is different: With the increase in the annealling temperature, the PL peak position for the samples annealed in air atmosphere is blue shifted, while the PL peak position for the samples annealed in vacuum atmosphere will not change. The PL spectra of nanoporous alumina films annealed at 1100 degreeC in air atmosphere can be de-convoluted by three Gaussian components at an excitation wavelength of 350 nm, with bands centered at 387, 410 and 439 nm, respectively. These results suggest that there might be three luminescence centers for the PL of annealed alumina films. At the same annealling temperature, the PL peak intensity of samples annealed in air atmosphere is stronger than that annealed in the vacuum. Based on the experimental results and the X-ray dispersive energy spectrum (EDS) combined with infrared reflect spectra, the luminescence mechanisms of nanoporous alumina films are discussed. There are three luminescence centers in the annealed nanoporous alumina films, which originate from the F center, F+ center and the center associated with the oxalic impurities. The

  12. d -zero magnetism in nanoporous amorphous alumina membranes

    NASA Astrophysics Data System (ADS)

    Esmaeily, Amir Sajad; Venkatesan, M.; Sen, S.; Coey, J. M. D.

    2018-05-01

    Nanoporous alumina membranes produced by mild or hard anodization have a controllable pore surface area up to 400 times that of the membrane itself. They exhibit a temperature-independent and almost anhysteretic saturating response to a magnetic field up to temperatures of 300 K or more. The magnetism, which cannot be explained by the ˜1 ppm of transition-metal impurities present in the membranes, increases with the area of the open nanopores, reaching values of 0.6 Bohr magnetons per square nanometer for mild anodization and 8 Bohr magnetons per square nanometer for the faster hard anodization process. Crystallization of the membrane or treatment with salicylic acid can destroy 90% of the magnetism. The effect is therefore linked with the surfaces of the open pores in the amorphous A l2O3 . Possible explanations in terms of electrons associated with oxygen vacancies (F or F+ centers) are considered. It is concluded that the phenomenon involved is likely to be saturating giant orbital paramagnetism, rather than any sort of collective ferromagnetic spin order.

  13. Nanoporous Anodic Alumina 3D FDTD Modelling for a Broad Range of Inter-pore Distances

    NASA Astrophysics Data System (ADS)

    Bertó-Roselló, Francesc; Xifré-Pérez, Elisabet; Ferré-Borrull, Josep; Pallarès, Josep; Marsal, Lluis F.

    2016-08-01

    The capability of the finite difference time domain (FDTD) method for the numerical modelling of the optical properties of nanoporous anodic alumina (NAA) in a broad range of inter-pore distances is evaluated. FDTD permits taking into account in the same numerical framework all the structural features of NAA, such as the texturization of the interfaces or the incorporation of electrolyte anions in the aluminium oxide host. The evaluation is carried out by comparing reflectance measurements from two samples with two very different inter-pore distances with the simulation results. Results show that considering the texturization is crucial to obtain good agreement with the measurements. On the other hand, including the anionic layer in the model leads to a second-order contribution to the reflectance spectrum.

  14. Nanoporous Anodic Alumina 3D FDTD Modelling for a Broad Range of Inter-pore Distances.

    PubMed

    Bertó-Roselló, Francesc; Xifré-Pérez, Elisabet; Ferré-Borrull, Josep; Pallarès, Josep; Marsal, Lluis F

    2016-12-01

    The capability of the finite difference time domain (FDTD) method for the numerical modelling of the optical properties of nanoporous anodic alumina (NAA) in a broad range of inter-pore distances is evaluated. FDTD permits taking into account in the same numerical framework all the structural features of NAA, such as the texturization of the interfaces or the incorporation of electrolyte anions in the aluminium oxide host. The evaluation is carried out by comparing reflectance measurements from two samples with two very different inter-pore distances with the simulation results. Results show that considering the texturization is crucial to obtain good agreement with the measurements. On the other hand, including the anionic layer in the model leads to a second-order contribution to the reflectance spectrum.

  15. Rational Design of Photonic Dust from Nanoporous Anodic Alumina Films: A Versatile Photonic Nanotool for Visual Sensing

    PubMed Central

    Chen, Yuting; Santos, Abel; Wang, Ye; Kumeria, Tushar; Ho, Daena; Li, Junsheng; Wang, Changhai; Losic, Dusan

    2015-01-01

    Herein, we present a systematic study on the development, optimisation and applicability of interferometrically coloured distributed Bragg reflectors based on nanoporous anodic alumina (NAA-DBRs) in the form of films and nanoporous microparticles as visual/colorimetric analytical tools. Firstly, we synthesise a complete palette of NAA-DBRs by galvanostatic pulse anodisation approach, in which the current density is altered in a periodic fashion in order to engineer the effective medium of the resulting photonic films in depth. NAA-DBR photonic films feature vivid colours that can be tuned across the UV-visible-NIR spectrum by structural engineering. Secondly, the effective medium of the resulting photonic films is assessed systematically by visual analysis and reflectometric interference spectroscopy (RIfS) in order to establish the most optimal nanoporous platforms to develop visual/colorimetric tools. Then, we demonstrate the applicability of NAA-DBR photonic films as a chemically selective sensing platform for visual detection of mercury(II) ions. Finally, we generate a new nanomaterial, so-called photonic dust, by breaking down NAA-DBRs films into nanoporous microparticles. The resulting microparticles (μP-NAA-DBRs) display vivid colours and are sensitive towards changes in their effective medium, opening new opportunities for developing advanced photonic nanotools for a broad range of applications. PMID:26245759

  16. Rational Design of Photonic Dust from Nanoporous Anodic Alumina Films: A Versatile Photonic Nanotool for Visual Sensing

    NASA Astrophysics Data System (ADS)

    Chen, Yuting; Santos, Abel; Wang, Ye; Kumeria, Tushar; Ho, Daena; Li, Junsheng; Wang, Changhai; Losic, Dusan

    2015-08-01

    Herein, we present a systematic study on the development, optimisation and applicability of interferometrically coloured distributed Bragg reflectors based on nanoporous anodic alumina (NAA-DBRs) in the form of films and nanoporous microparticles as visual/colorimetric analytical tools. Firstly, we synthesise a complete palette of NAA-DBRs by galvanostatic pulse anodisation approach, in which the current density is altered in a periodic fashion in order to engineer the effective medium of the resulting photonic films in depth. NAA-DBR photonic films feature vivid colours that can be tuned across the UV-visible-NIR spectrum by structural engineering. Secondly, the effective medium of the resulting photonic films is assessed systematically by visual analysis and reflectometric interference spectroscopy (RIfS) in order to establish the most optimal nanoporous platforms to develop visual/colorimetric tools. Then, we demonstrate the applicability of NAA-DBR photonic films as a chemically selective sensing platform for visual detection of mercury(II) ions. Finally, we generate a new nanomaterial, so-called photonic dust, by breaking down NAA-DBRs films into nanoporous microparticles. The resulting microparticles (μP-NAA-DBRs) display vivid colours and are sensitive towards changes in their effective medium, opening new opportunities for developing advanced photonic nanotools for a broad range of applications.

  17. Molecular gated nanoporous anodic alumina for the detection of cocaine

    NASA Astrophysics Data System (ADS)

    Ribes, Àngela; Xifré-Pérez, Elisabet; Aznar, Elena; Sancenón, Félix; Pardo, Teresa; Marsal, Lluís F.; Martínez-Máñez, Ramόn

    2016-12-01

    We present herein the use of nanoporous anodic alumina (NAA) as a suitable support to implement “molecular gates” for sensing applications. In our design, a NAA support is loaded with a fluorescent reporter (rhodamine B) and functionalized with a short single-stranded DNA. Then pores are blocked by the subsequent hybridisation of a specific cocaine aptamer. The response of the gated material was studied in aqueous solution. In a typical experiment, the support was immersed in hybridisation buffer solution in the absence or presence of cocaine. At certain times, the release of rhodamine B from pore voids was measured by fluorescence spectroscopy. The capped NAA support showed poor cargo delivery, but presence of cocaine in the solution selectively induced rhodamine B release. By this simple procedure a limit of detection as low as 5 × 10-7 M was calculated for cocaine. The gated NAA was successfully applied to detect cocaine in saliva samples and the possible re-use of the nanostructures was assessed. Based on these results, we believe that NAA could be a suitable support to prepare optical gated probes with a synergic combination of the favourable features of selected gated sensing systems and NAA.

  18. Molecular gated nanoporous anodic alumina for the detection of cocaine

    PubMed Central

    Ribes, Àngela; Xifré -Pérez, Elisabet; Aznar, Elena; Sancenón, Félix; Pardo, Teresa; Marsal, Lluís F.; Martínez-Máñez, Ramόn

    2016-01-01

    We present herein the use of nanoporous anodic alumina (NAA) as a suitable support to implement “molecular gates” for sensing applications. In our design, a NAA support is loaded with a fluorescent reporter (rhodamine B) and functionalized with a short single-stranded DNA. Then pores are blocked by the subsequent hybridisation of a specific cocaine aptamer. The response of the gated material was studied in aqueous solution. In a typical experiment, the support was immersed in hybridisation buffer solution in the absence or presence of cocaine. At certain times, the release of rhodamine B from pore voids was measured by fluorescence spectroscopy. The capped NAA support showed poor cargo delivery, but presence of cocaine in the solution selectively induced rhodamine B release. By this simple procedure a limit of detection as low as 5 × 10−7 M was calculated for cocaine. The gated NAA was successfully applied to detect cocaine in saliva samples and the possible re-use of the nanostructures was assessed. Based on these results, we believe that NAA could be a suitable support to prepare optical gated probes with a synergic combination of the favourable features of selected gated sensing systems and NAA. PMID:27924950

  19. Molecular gated nanoporous anodic alumina for the detection of cocaine.

    PubMed

    Ribes, Àngela; Xifré-Pérez, Elisabet; Aznar, Elena; Sancenón, Félix; Pardo, Teresa; Marsal, Lluís F; Martínez-Máñez, Ramόn

    2016-12-07

    We present herein the use of nanoporous anodic alumina (NAA) as a suitable support to implement "molecular gates" for sensing applications. In our design, a NAA support is loaded with a fluorescent reporter (rhodamine B) and functionalized with a short single-stranded DNA. Then pores are blocked by the subsequent hybridisation of a specific cocaine aptamer. The response of the gated material was studied in aqueous solution. In a typical experiment, the support was immersed in hybridisation buffer solution in the absence or presence of cocaine. At certain times, the release of rhodamine B from pore voids was measured by fluorescence spectroscopy. The capped NAA support showed poor cargo delivery, but presence of cocaine in the solution selectively induced rhodamine B release. By this simple procedure a limit of detection as low as 5 × 10 -7  M was calculated for cocaine. The gated NAA was successfully applied to detect cocaine in saliva samples and the possible re-use of the nanostructures was assessed. Based on these results, we believe that NAA could be a suitable support to prepare optical gated probes with a synergic combination of the favourable features of selected gated sensing systems and NAA.

  20. Atomic layer deposition of nanoporous biomaterials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, R. J.; Adiga, S. P.; Pellin, M. J.

    2010-03-01

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.more » Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.« less

  1. Fine tuning of transmission features in nanoporous anodic alumina distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Lim, Siew Yee; Law, Cheryl Suwen; Santos, Abel

    2018-01-01

    This study introduces an innovative apodisation strategy to tune the filtering features of distributed Bragg reflectors based on nanoporous anodic alumina (NAA-DBRs). The effective medium of NAA-DBRs, which is modulated in a stepwise fashion by a pulse-like anodisation approach, is apodised following a logarithmic negative function to engineer the transmission features of NAA-DBRs. We investigate the effect of various apodisation parameters such as apodisation amplitude difference, anodisation period, current density offset and pore widening time, to tune and optimise the optical properties of NAA-DBRs in terms of central wavelength position, full width at half maximum and quality of photonic stop band. The transmission features of NAA-DBRs are shown to be fully controllable with precision across the spectral regions by means of the apodisation parameters. Our study demonstrates that an apodisation strategy can significantly narrow the width and enhance the quality of the characteristic photonic stop band of NAA-DBRs. This rationally designed anodisation approach based on the combination of apodisation and stepwise pulse anodisation enables the development of optical filters with tuneable filtering features to be integrated into optical technologies acting as essential photonic elements in devices such as optical sensors and biosensors.

  2. Realisation and optical engineering of linear variable bandpass filters in nanoporous anodic alumina photonic crystals.

    PubMed

    Sukarno; Law, Cheryl Suwen; Santos, Abel

    2017-06-08

    We present the first realisation of linear variable bandpass filters in nanoporous anodic alumina (NAA-LVBPFs) photonic crystal structures. NAA gradient-index filters (NAA-GIFs) are produced by sinusoidal pulse anodisation and used as photonic crystal platforms to generate NAA-LVBPFs. The anodisation period of NAA-GIFs is modified from 650 to 850 s to systematically tune the characteristic photonic stopband of these photonic crystals across the UV-visible-NIR spectrum. Then, the nanoporous structure of NAA-GIFs is gradually widened along the surface under controlled conditions by wet chemical etching using a dip coating approach aiming to create NAA-LVBPFs with finely engineered optical properties. We demonstrate that the characteristic photonic stopband and the iridescent interferometric colour displayed by these photonic crystals can be tuned with precision across the surface of NAA-LVBPFs by adjusting the fabrication and etching conditions. Here, we envisage for the first time the combination of the anodisation period and etching conditions as a cost-competitive, facile, and versatile nanofabrication approach that enables the generation of a broad range of unique LVBPFs covering the spectral regions. These photonic crystal structures open new opportunities for multiple applications, including adaptive optics, hyperspectral imaging, fluorescence diagnostics, spectroscopy, and sensing.

  3. Analysis of nanopore arrangement of porous alumina layers formed by anodizing in oxalic acid at relatively high temperatures

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Stępniowski, Wojciech J.; Jaskuła, Marian; Sulka, Grzegorz D.

    2014-06-01

    Anodic aluminum oxide (AAO) layers were formed by a simple two-step anodization in 0.3 M oxalic acid at relatively high temperatures (20-30 °C) and various anodizing potentials (30-65 V). The effect of anodizing conditions on structural features of as-obtained oxides was carefully investigated. A linear and exponential relationships between cell diameter, pore density and anodizing potential were confirmed, respectively. On the other hand, no effect of temperature and duration of anodization on pore spacing and pore density was found. Detailed quantitative and qualitative analyses of hexagonal arrangement of nanopore arrays were performed for all studied samples. The nanopore arrangement was evaluated using various methods based on the fast Fourier transform (FFT) images, Delaunay triangulations (defect maps), pair distribution functions (PDF), and angular distribution functions (ADF). It was found that for short anodizations performed at relatively high temperatures, the optimal anodizing potential that results in formation of nanostructures with the highest degree of pore order is 45 V. No direct effect of temperature and time of anodization on the nanopore arrangement was observed.

  4. Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature.

    PubMed

    Chung, C K; Zhou, R X; Liu, T Y; Chang, W T

    2009-02-04

    Most porous anodic alumina (PAA) or anodic aluminum oxide (AAO) films are fabricated using the potentiostatic method from high-purity (99.999%) aluminum films at a low temperature of approximately 0-10 degrees C to avoid dissolution effects at room temperature (RT). In this study, we have demonstrated the fabrication of PAA film from commercial purity (99%) aluminum at RT using a hybrid pulse technique which combines pulse reverse and pulse voltages for the two-step anodization. The reaction mechanism is investigated by the real-time monitoring of current. A possible mechanism of hybrid pulse anodization is proposed for the formation of pronounced nanoporous film at RT. The structure and morphology of the anodic films were greatly influenced by the duration of anodization and the type of voltage. The best result was obtained by first applying pulse reverse voltage and then pulse voltage. The first pulse reverse anodization step was used to form new small cells and pre-texture concave aluminum as a self-assembled mask while the second pulse anodization step was for the resulting PAA film. The diameter of the nanopores in the arrays could reach 30-60 nm.

  5. Nanoporous Anodic Alumina Surface Modification by Electrostatic, Covalent, and Immune Complexation Binding Investigated by Capillary Filling.

    PubMed

    Eckstein, Chris; Acosta, Laura K; Pol, Laura; Xifré-Pérez, Elisabet; Pallares, Josep; Ferré-Borrull, Josep; Marsal, Lluis F

    2018-03-28

    The fluid imbibition-coupled laser interferometry (FICLI) technique has been applied to detect and quantify surface changes and pore dimension variations in nanoporous anodic alumina (NAA) structures. FICLI is a noninvasive optical technique that permits the determination of the NAA average pore radius with high accuracy. In this work, the technique is applied after each step of different surface modification paths of the NAA pores: (i) electrostatic immobilization of bovine serum albumin (BSA), (ii) covalent attachment of streptavidin via (3-aminipropyl)-triethoxysilane and glutaraldehyde grafting, and (iii) immune complexation. Results show that BSA attachment can be detected as a reduction in estimated radius from FICLI with high accuracy and reproducibility. In the case of the covalent attachment of streptavidin, FICLI is able to recognize a multilayer formation of the silane and the protein. For immune complexation, the technique is able to detect different antibody-antigen bindings and distinguish different dynamics among different immune species.

  6. Formation of self-ordered porous anodized alumina template for growing tungsten trioxide nanowires

    NASA Astrophysics Data System (ADS)

    Hussain, Tajamal; Shah, Asma Tufail; Shehzad, Khurram; Mujahid, Adnan; Farooqi, Zahoor Hussain; Raza, Muhammad Hamid; Ahmed, Mirza Nadeem; Nisa, Zaib Un

    2015-12-01

    Uniform porous anodized aluminum oxide (AAO) membrane has been synthesized by two-step anodization for fabricating tungsten trioxide (WO3) nanowires. Under assayed conditions, uniform porous structure of alumina (Al2O3) membrane with long range ordered hexagonal arrangements of nanopores was achieved. The self-assembled template possesses pores of internal diameter of 50 nm and interpore distance ( d int) of 80 nm with a thickness of about 80 µm, i.e., used for fabrication of nanostructures. WO3 nanowires have been fabricated by simple electroless deposition method inside Al2O3 nanopores. SEM images show tungsten trioxide nanowire with internal diameter of about 50 nm, similar to porous diameter of AAO template. XRD results showed that nanowires exist in cubic crystalline state with minor proportion of monoclinic phase.

  7. Surface modification of nanoporous anodic alumina photonic crystals for photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Lim, Siew Yee; Law, Cheryl Suwen; Santos, Abel

    2018-01-01

    Herein, we report on the development of a rationally designed composite photocatalyst material by combining nanoporous anodic alumina-rugate filters (NAA-RFs) with photo-active layers of titanium dioxide (TiO2). NAA-RFs are synthesised by sinusoidal pulse anodisation and subsequently functionalised with TiO2 by sol-gel method to provide the photonic structures with photocatalytic properties. We demonstrate that the characteristic photonic stopband (PSB) of the surface-modified NAA-RFs can be precisely tuned across the UV-visible-NIR spectrum to enhance the photon-toelectron conversion of TiO2 by `slow photon effect'. We systematically investigate the effect of the anodisation parameters (i.e. anodisation period and pore widening time) on the position of the PSB of NAA-RFs as well as the photocatalytic performances displayed by these photonic crystal structures. When the edges of the PSB of surfacemodified NAA-RFs are positioned closely to the absorption peak of the model organic dye (i.e. methyl orange - MO), the photocatalytic performance of the system to degrade these molecules is enhanced under simulated solar light irradiation due to slow photon effect. Our investigation also reveals that the photocatalytic activity of surface-modified NAA-RFs is independent of slow photon effect and enhances with increasing period length (i.e. increasing anodisation period) of the photonic structures when there is no overlap between the PSB and the absorption peak of MO. This study therefore provides a rationale towards the photocatalytic enhancement of photonic crystals by a rational design of the PSB, creating new opportunities for the future development of high-performance photocatalysts.

  8. Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores.

    PubMed

    Li, Juan; Li, Congshan; Chen, Cheng; Hao, Qingli; Wang, Zhijia; Zhu, Jie; Gao, Xuefeng

    2012-10-24

    We report a facile nanofabrication method, one-step hard anodizing and etching peeling (OS-HA-EP) of aluminum foils followed by multistep mild anodizing and etching pore-widening (MS-MA-EW), for the controllable tailoring of hexagonally packed three-dimensional alumina taper-nanopores. Their profiles can be precisely tailored by the synergistic control of anodizing time, etching time and cyclic times at the MS-MA-EW stage, exemplified by linear cones, whorl-embedded cones, funnels, pencils, parabolas, and trumpets. Meantime, their periods can also be modulated in the range of 70-370 nm by choosing matched anodizing electrolytes (e.g., H(2)C(2)O(4), H(2)SO(4), H(2)C(2)O(4)-H(2)SO(4), and H(2)C(2)O(4)-C(2)H(5)OH mixture) and anodizing voltages at the OS-HA-EP stage. We also demonstrated that the long-range ordering of nanopits and the peak voltage of stable self-ordered HA, which are unachievable in a single H(2)C(2)O(4) electrolyte system, can be effectively tuned by simply adding tiny quantity of H(2)SO(4) and C(2)H(5)OH to keep an appropriate HA current density, respectively. This method of using the combination of simple pure chemical nanofabrication technologies is very facile and efficient in realizing the controllable tailoring of large-area alumina membranes containing self-ordered taper-nanopores. Our work opens a door for exploring the novel physical and chemical properties of different materials of nanotaper arrays.

  9. Self-Ordered Nanoporous Alumina Templates Formed by Anodization of Aluminum in Oxalic Acid

    NASA Astrophysics Data System (ADS)

    Vida-Simiti, Ioan; Nemes, Dorel; Jumate, Nicolaie; Thalmaier, Gyorgy; Sechel, Niculina

    2012-10-01

    Anodic aluminum oxide (AAO) membranes with highly ordered nanopores serve as ideal templates for the formation of various nanostructured materials. The procedure of the template preparation is based on a two-step self-organized anodization of aluminum. In the current study, AAO templates were fabricated in 0.3 M oxalic acid under the anodizing potential range of 30-60 V at an electrolyte temperature of ~5°C. The AAO templates were analyzed using scanning electron microscopy, x-ray diffraction, Fourier-transform infrared spectroscopy, and differential thermal analysis. The as obtained layers are amorphous; the mean pore size is between 40 nm and 75 nm and increases with the increase of the anodization potential. Well-defined pores across the whole aluminum template, a pore density of ~1010 pores/cm2, and a tendency to form a porous structure with hexagonal symmetry were observed.

  10. Superhydrophilicity of novel anodic alumina nanofibers films and their formation mechanism

    NASA Astrophysics Data System (ADS)

    Peng, Rong; Yang, Wulin; Fu, Licai; Zhu, Jiajun; Li, Deyi; Zhou, Lingping

    2017-06-01

    A novel anodic alumina nanofibers structure, which is different from the traditional porous anodic structure, has been quickly fabricated via anodizing in a new electrolyte, pyrophosphoric acid. The effects of the solution concentration and the anodizing time on the formation of the anodic alumina nanofibers were analyzed. The results show that the nanostructure of anodic alumina can change to the nanofiber oxide from the porous oxide by increasing the solution concentration. Prolonging the anodizing time is beneficial to obtain alumina nanofibers at high solution concentration. Growth behavior of the alumina nanofibers was also discussed by scanning electron microscopy observations. Owing to the unique hexagonal structure of anodic alumina as well as the preferential chemical dissolution between the porous anodic alumina and the anodic alumina nanotips, the slightly soluble anodic alumina nanotips could form novel alumina nanofibers during anodizing. The results show that the nanofibers-covered aluminum surface exhibits superhydrophilic property, with a near-zero water contact angle. Such alumina nanofibers with superhydrophilic property could be used for various potential applications.

  11. Optimization of Anodic Porous Alumina Fabricated from Commercial Aluminum Food Foils: A Statistical Approach

    PubMed Central

    Riccomagno, Eva; Shayganpour, Amirreza; Salerno, Marco

    2017-01-01

    Anodic porous alumina is a known material based on an old industry, yet with emerging applications in nanoscience and nanotechnology. This is promising, but the nanostructured alumina should be fabricated from inexpensive raw material. We fabricated porous alumina from commercial aluminum food plate in 0.4 M aqueous phosphoric acid, aiming to design an effective manufacturing protocol for the material used as nanoporous filler in dental restorative composites, an application demonstrated previously by our group. We identified the critical input parameters of anodization voltage, bath temperature and anodization time, and the main output parameters of pore diameter, pore spacing and oxide thickness. Scanning electron microscopy and grain analysis allowed us to assess the nanostructured material, and the statistical design of experiments was used to optimize its fabrication. We analyzed a preliminary dataset, designed a second dataset aimed at clarifying the correlations between input and output parameters, and ran a confirmation dataset. Anodization conditions close to 125 V, 20 °C, and 7 h were identified as the best for obtaining, in the shortest possible time, pore diameters and spacing of 100–150 nm and 150–275 nm respectively, and thickness of 6–8 µm, which are desirable for the selected application according to previously published results. Our analysis confirmed the linear dependence of pore size on anodization voltage and of thickness on anodization time. The importance of proper control on the experiment was highlighted, since batch effects emerge when the experimental conditions are not exactly reproduced. PMID:28772776

  12. Formation of self-organized nanoporous anodic oxide from metallic gallium.

    PubMed

    Pandey, Bipin; Thapa, Prem S; Higgins, Daniel A; Ito, Takashi

    2012-09-25

    This paper reports the formation of self-organized nanoporous gallium oxide by anodization of solid gallium metal. Because of its low melting point (ca. 30 °C), metallic gallium can be shaped into flexible structures, permitting the fabrication of nanoporous anodic oxide monoliths within confined spaces like the inside of a microchannel. Here, solid gallium films prepared on planar substrates were employed to investigate the effects of anodization voltage (1, 5, 10, 15 V) and H(2)SO(4) concentration (1, 2, 4, 6 M) on anodic oxide morphology. Self-organized nanopores aligned perpendicular to the film surface were obtained upon anodization of gallium films in ice-cooled 4 and 6 M aqueous H(2)SO(4) at 10 and 15 V. Nanopore formation could be recognized by an increase in anodic current after a current decrease reflecting barrier oxide formation. The average pore diameter was in the range of 18-40 nm with a narrow diameter distribution (relative standard deviation ca. 10-20%), and was larger at lower H(2)SO(4) concentration and higher applied voltage. The maximum thickness of nanoporous anodic oxide was ca. 2 μm. In addition, anodic formation of self-organized nanopores was demonstrated for a solid gallium monolith incorporated at the end of a glass capillary. Nanoporous anodic oxide monoliths formed from a fusible metal will lead to future development of unique devices for chemical sensing and catalysis.

  13. Gas adsorption and capillary condensation in nanoporous alumina films.

    PubMed

    Casanova, Fèlix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Ruminski, Anne M; Sailor, Michael J; Schuller, Ivan K

    2008-08-06

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation.

  14. In vitro proliferation and osteogenic differentiation of mesenchymal stem cells on nanoporous alumina

    PubMed Central

    Song, Yuanhui; Ju, Yang; Song, Guanbin; Morita, Yasuyuki

    2013-01-01

    Cell adhesion, migration, and proliferation are significantly affected by the surface topography of the substrates on which the cells are cultured. Alumina is one of the most popular implant materials used in orthopedics, but few data are available concerning the cellular responses of mesenchymal stem cells (MSCs) grown on nanoporous structures. MSCs were cultured on smooth alumina substrates and nanoporous alumina substrates to investigate the interaction between surface topographies of nanoporous alumina and cellular behavior. Nanoporous alumina substrates with pore sizes of 20 nm and 100 nm were used to evaluate the effect of pore size on MSCs as measured by proliferation, morphology, expression of integrin β1, and osteogenic differentiation. An MTT assay was used to measure cell viability of MSCs on different substrates, and determined that cell viability decreased with increasing pore size. Scanning electron microscopy was used to investigate the effect of pore size on cell morphology. Extremely elongated cells and prominent cell membrane protrusions were observed in cells cultured on alumina with the larger pore size. The expression of integrin β1 was enhanced in MSCs cultured on porous alumina, revealing that porous alumina substrates were more favorable for cell growth than smooth alumina substrates. Higher levels of osteoblastic differentiation markers such as alkaline phosphatase, osteocalcin, and mineralization were detected in cells cultured on alumina with 100 nm pores compared with cells cultured on alumina with either 20 nm pores or smooth alumina. This work demonstrates that cellular behavior is affected by variation in pore size, providing new insight into the potential application of this novel biocompatible material for the developing field of tissue engineering. PMID:23935364

  15. Protein-releasing conductive anodized alumina membranes for nerve-interface materials.

    PubMed

    Altuntas, Sevde; Buyukserin, Fatih; Haider, Ali; Altinok, Buket; Biyikli, Necmi; Aslim, Belma

    2016-10-01

    Nanoporous anodized alumina membranes (AAMs) have numerous biomedical applications spanning from biosensors to controlled drug delivery and implant coatings. Although the use of AAM as an alternative bone implant surface has been successful, its potential as a neural implant coating remains unclear. Here, we introduce conductive and nerve growth factor-releasing AAM substrates that not only provide the native nanoporous morphology for cell adhesion, but also induce neural differentiation. We recently reported the fabrication of such conductive membranes by coating AAMs with a thin C layer. In this study, we investigated the influence of electrical stimulus, surface topography, and chemistry on cell adhesion, neurite extension, and density by using PC 12 pheochromocytoma cells in a custom-made glass microwell setup. The conductive AAMs showed enhanced neurite extension and generation with the electrical stimulus, but cell adhesion on these substrates was poorer compared to the naked AAMs. The latter nanoporous material presents chemical and topographical features for superior neuronal cell adhesion, but, more importantly, when loaded with nerve growth factor, it can provide neurite extension similar to an electrically stimulated CAAM counterpart. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Atomic layer deposition of TIO{sub 2} thin films on nanoporous alumina templates : medical applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, R. J.; Monteiro-Riviere, N. A.; Brigmon, R. L.

    2009-06-01

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of a nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Neither the 20 nm nor the 100 nm TiO{sub 2}-coated nanoporous alumina membranes exhibited statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. Nanostructured materialsmore » prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.« less

  17. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  18. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    PubMed Central

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-01-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices. PMID:25491282

  19. Engineering of highly ordered TiO2 nanopore arrays by anodization

    NASA Astrophysics Data System (ADS)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  20. Fabrication and Optimization of Bilayered Nanoporous Anodic Alumina Structures as Multi-Point Interferometric Sensing Platform

    PubMed Central

    Nemati, Mahdieh; Santos, Abel

    2018-01-01

    Herein, we present an innovative strategy for optimizing hierarchical structures of nanoporous anodic alumina (NAA) to advance their optical sensing performance toward multi-analyte biosensing. This approach is based on the fabrication of multilayered NAA and the formation of differential effective medium of their structure by controlling three fabrication parameters (i.e., anodization steps, anodization time, and pore widening time). The rationale of the proposed concept is that interferometric bilayered NAA (BL-NAA), which features two layers of different pore diameters, can provide distinct reflectometric interference spectroscopy (RIfS) signatures for each layer within the NAA structure and can therefore potentially be used for multi-point biosensing. This paper presents the structural fabrication of layered NAA structures, and the optimization and evaluation of their RIfS optical sensing performance through changes in the effective optical thickness (EOT) using quercetin as a model molecule. The bilayered or funnel-like NAA structures were designed with the aim of characterizing the sensitivity of both layers of quercetin molecules using RIfS and exploring the potential of these photonic structures, featuring different pore diameters, for simultaneous size-exclusion and multi-analyte optical biosensing. The sensing performance of the prepared NAA platforms was examined by real-time screening of binding reactions between human serum albumin (HSA)-modified NAA (i.e., sensing element) and quercetin (i.e., analyte). BL-NAAs display a complex optical interference spectrum, which can be resolved by fast Fourier transform (FFT) to monitor the EOT changes, where three distinctive peaks were revealed corresponding to the top, bottom, and total layer within the BL-NAA structures. The spectral shifts of these three characteristic peaks were used as sensing signals to monitor the binding events in each NAA pore in real-time upon exposure to different concentrations of

  1. Fabrication of complete titania nanoporous structures via electrochemical anodization of Ti

    PubMed Central

    2011-01-01

    We present a novel method to fabricate complete and highly oriented anodic titanium oxide (ATO) nano-porous structures with uniform and parallel nanochannels. ATO nano-porous structures are fabricated by anodizing a Ti-foil in two different organic viscous electrolytes at room temperature using a two-step anodizing method. TiO2 nanotubes covered with a few nanometer thin nano-porous layer is produced when the first and the second anodization are carried out in the same electrolyte. However, a complete titania nano-porous (TNP) structures are obtained when the second anodization is conducted in a viscous electrolyte when compared to the first one. TNP structure was attributed to the suppression of F-rich layer dissolution between the cell boundaries in the viscous electrolyte. The structural morphologies were examined by field emission scanning electron microscope. The average pore diameter is approximately 70 nm, while the average inter-pore distance is approximately 130 nm. These TNP structures are useful to fabricate other nanostructure materials and nanodevices. PMID:21711844

  2. Fabrication of porous anodic alumina using normal anodization and pulse anodization

    NASA Astrophysics Data System (ADS)

    Chin, I. K.; Yam, F. K.; Hassan, Z.

    2015-05-01

    This article reports on the fabrication of porous anodic alumina (PAA) by two-step anodizing the low purity commercial aluminum sheets at room temperature. Different variations of the second-step anodization were conducted: normal anodization (NA) with direct current potential difference; pulse anodization (PA) alternate between potential differences of 10 V and 0 V; hybrid pulse anodization (HPA) alternate between potential differences of 10 V and -2 V. The method influenced the film homogeneity of the PAA and the most homogeneous structure was obtained via PA. The morphological properties are further elucidated using measured current-transient profiles. The absent of current rise profile in PA indicates the anodization temperature and dissolution of the PAA structure were greatly reduced by alternating potential differences.

  3. Two-dimensional porous anodic alumina for optoelectronics and photocatalytic application

    NASA Astrophysics Data System (ADS)

    Khoroshko, L. S.

    2015-11-01

    Fabrication of porous anodic alumina film structures using anodizing, sol-gel synthesis and photolithography is reported. The structures receive interest as planar waveguides due to strong photoluminescence of the embedded trivalent lanthanides. Mesoporous structures comprising sol-gel derived titania in porous anodic alumina play a role of effective catalyst for water purification.

  4. Alumina plate containing photosystem I reaction center complex oriented inside plate-penetrating silica nanopores.

    PubMed

    Kamidaki, Chihiro; Kondo, Toru; Noji, Tomoyasu; Itoh, Tetsuji; Yamaguchi, Akira; Itoh, Shigeru

    2013-08-22

    The photosynthetic photosystem I reaction center complex (PSI-RC), which has a molecular diameter of 21 nm with 100 pigments, was incorporated into silica nanopores with a 100-nm diameter that penetrates an alumina plate of 60-μm thickness to make up an inorganic-biological hybrid photocell. PSI-RCs, purified from a thermophilic cyanobacterium, were stable inside the nanopores and rapidly photoreduced a mediator dye methyl viologen. The reduced dye was more stable inside nanopores suggesting the decrease of dissolved oxygen. The analysis by a cryogenic electron spin paramagnetic resonance indicated the oriented arrangement of RCs inside the 100-nm nanopores, with their surface parallel to the silica wall and perpendicular to the plane of the alumina plate. PSI RC complex in the semicrystalline orientation inside silica nanopores can be a new type of light energy conversion unit to supply strong reducing power selectively to other molecules inside or outside nanopores.

  5. Enhanced light output from the nano-patterned InP semiconductor substrate through the nanoporous alumina mask.

    PubMed

    Jung, Mi; Kim, Jae Hun; Lee, Seok; Jang, Byung Jin; Lee, Woo Young; Oh, Yoo-Mi; Park, Sun-Woo; Woo, Deokha

    2012-07-01

    A significant enhancement in the light output from nano-patterned InP substrate covered with a nanoporous alumina mask was observed. A uniform nanohole array on an InP semiconductor substrate was fabricated by inductively coupled plasma reactive ion etching (ICP-RIE), using the nanoporous alumina mask as a shadow mask. The light output property of the semiconductor substrate was investigated via photoluminescence (PL) intensity measurement. The InP substrate with a nanohole array showed a more enhanced PL intensity compared with the raw InP substrate without a nanohole structure. After ICP-RIE etching, the light output from the nanoporous InP substrate covered with a nanoporous alumina mask showed fourfold enhanced PL intensity compared with the raw InP substrate. These results can be used as a prospective method for increasing the light output efficiency of optoelectronic devices.

  6. Pore spanning lipid bilayers on silanised nanoporous alumina membranes

    NASA Astrophysics Data System (ADS)

    Md Jani, Abdul M.; Zhou, Jinwen; Nussio, Matthew R.; Losic, Dusan; Shapter, Joe G.; Voelcker, Nicolas H.

    2008-12-01

    The preparation of bilayer lipid membranes (BLMs) on solid surfaces is important for many studies probing various important biological phenomena including the cell barrier properties, ion-channels, biosensing, drug discovery and protein/ligand interactions. In this work we present new membrane platforms based on suspended BLMs on nanoporous anodic aluminium oxide (AAO) membranes. AAO membranes were prepared by electrochemical anodisation of aluminium foil in 0.3 M oxalic acid using a custom-built etching cell and applying voltage of 40 V, at 1oC. AAO membranes with controlled diameter of pores from 30 - 40 nm (top of membrane) and 60 -70 nm (bottom of membrane) were fabricated. Pore dimensions have been confirmed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). AAO membranes were chemically functionalised with 3-aminopropyltriethoxysilane (APTES). Confirmation of the APTES attachment to the AAO membrane was achieved by means of infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements. The Fourier transform infrared (FTIR) spectra of functionalised membranes show several peaks from 2800 to 3000 cm-1 which were assigned to symmetric and antisymmetric CH2 bands. XPS data of the membrane showed a distinct increase in C1s (285 eV), N1s (402 eV) and Si2p (102 eV) peaks after silanisation. The water contact angle of the functionalised membrane was 80o as compared to 20o for the untreated membrane. The formation of BLMs comprising dioleoyl-phosphatidylserine (DOPS) on APTESmodified AAO membranes was carried using the vesicle spreading technique. AFM imaging and force spectroscopy was used to characterise the structural and nanomechanical properties of the suspended membrane. This technique also confirmed the stability of bilayers on the nanoporous alumina support for several days. Fabricated suspended BLMs on nanoporous AAO hold promise for the construction of biomimetic membrane architectures with embedded

  7. Fabrication of a novel aluminum surface covered by numerous high-aspect-ratio anodic alumina nanofibers

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2015-11-01

    The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The density of the anodic alumina nanofibers decreased as the applied voltage increased in the 10-75 V range. However, active electrochemical dissolution of the aluminum substrate occurred at a higher voltage of 90 V. Low temperature anodizing at 273 K resulted in the formation of long alumina nanofibers measuring several micrometers in length, even though a long processing time was required due to the low current density during the low temperature anodizing. In contrast, high temperature anodizing easily resulted in the formation and chemical dissolution of alumina nanofibers. The structural nanofeatures of the anodic alumina nanofibers were controlled by choosing of the appropriate electrochemical conditions, and numerous high-aspect-ratio alumina nanofibers (>100) can be successfully fabricated. The anodic alumina nanofibers consisted of a pure amorphous aluminum oxide without anions from the employed electrolyte.

  8. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition

    PubMed Central

    Zhan, Hualin; Garrett, David J.; Apollo, Nicholas V.; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri

    2016-01-01

    High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail. PMID:26805546

  9. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition.

    PubMed

    Zhan, Hualin; Garrett, David J; Apollo, Nicholas V; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri

    2016-01-25

    High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm(3), were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail.

  10. Mirror-backed Dark Alumina: A Nearly Perfect Absorber for Thermoelectronics and Thermophotovotaics

    PubMed Central

    Farhat, Mohamed; Cheng, Tsung-Chieh; Le, Khai. Q.; Cheng, Mark Ming-Cheng; Bağcı, Hakan; Chen, Pai-Yen

    2016-01-01

    We present here a broadband, wide-angle, and polarization-independent nearly perfect absorber consisting of mirror-backed nanoporous alumina. By electrochemically anodizing the disordered multicomponent aluminum and properly tailoring the thickness and air-filling fraction of nanoporous alumina, according to the Maxwell-Garnet mixture theory, a large-area dark alumina can be made with excellent photothermal properties and absorption larger than 93% over a wide wavelength range spanning from near-infrared to ultraviolet light, i.e. 250 nm–2500 nm. The measured absorption is orders of magnitude greater than other reported anodized porous alumina, typically semi-transparent at similar wavelengths. This simple yet effective approach, however, does not require any lithography, nano-mixture deposition, pre- and post-treatment. Here, we also envisage and theoretically investigate the practical use of proposed absorbers and/or photothermal converters in integrated thermoelectronic and/or thermophotovoltaic energy conversion devices, which make efficient use of the entire spectrum of ambient visible to near-infrared radiation. PMID:26817710

  11. Mirror-backed Dark Alumina: A Nearly Perfect Absorber for Thermoelectronics and Thermophotovotaics

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Cheng, Tsung-Chieh; Le, Khai. Q.; Cheng, Mark Ming-Cheng; Bağcı, Hakan; Chen, Pai-Yen

    2016-01-01

    We present here a broadband, wide-angle, and polarization-independent nearly perfect absorber consisting of mirror-backed nanoporous alumina. By electrochemically anodizing the disordered multicomponent aluminum and properly tailoring the thickness and air-filling fraction of nanoporous alumina, according to the Maxwell-Garnet mixture theory, a large-area dark alumina can be made with excellent photothermal properties and absorption larger than 93% over a wide wavelength range spanning from near-infrared to ultraviolet light, i.e. 250 nm-2500 nm. The measured absorption is orders of magnitude greater than other reported anodized porous alumina, typically semi-transparent at similar wavelengths. This simple yet effective approach, however, does not require any lithography, nano-mixture deposition, pre- and post-treatment. Here, we also envisage and theoretically investigate the practical use of proposed absorbers and/or photothermal converters in integrated thermoelectronic and/or thermophotovoltaic energy conversion devices, which make efficient use of the entire spectrum of ambient visible to near-infrared radiation.

  12. Matrix coatings based on anodic alumina with carbon nanostructures in the pores

    NASA Astrophysics Data System (ADS)

    Gorokh, G. G.; Pashechko, M. I.; Borc, J. T.; Lozovenko, A. A.; Kashko, I. A.; Latos, A. I.

    2018-03-01

    The nanoporous anodic alumina matrixes thickness of 1.5 mm and pore sizes of 45, 90 and 145 nm were formed on Si substrates. The tubular carbon nanostructures were synthesized into the matrixes pores by pyrolysis of fluid hydrocarbon xylene with 1% ferrocene. The structure and composition of the matrix coatings were examined by scanning electron microscopy, Auger analysis and Raman spectroscopy. The carbon nanostructures completely filled the pores of templates and uniformly covered the tops. The structure of carbon nanostructures corresponded to the structure of multiwall carbon nanotubes. Investigations of mechanical and tribological properties of nanostructured oxide-carbon composite performed by scratching and nanoindentation showed nonlinear dependencies of the frictional force, penetration depth of the cantilever, hardness and plane strain modulus on the load. It was found that the microhardness of the samples increases with reduced of alumina pore diameter, and the penetration depth of the cantilever into the film grows with carbon nanostructures size. The results showed the high mechanical strength of nanostructured oxide-carbon composite.

  13. Impedimetric DNA biosensor based on a nanoporous alumina membrane for the detection of the specific oligonucleotide sequence of dengue virus.

    PubMed

    Deng, Jiajia; Toh, Chee-Seng

    2013-06-17

    A novel and integrated membrane sensing platform for DNA detection is developed based on an anodic aluminum oxide (AAO) membrane. Platinum electrodes (~50-100 nm thick) are coated directly on both sides of the alumina membrane to eliminate the solution resistance outside the nanopores. The electrochemical impedance technique is employed to monitor the impedance changes within the nanopores upon DNA binding. Pore resistance (Rp) linearly increases in response towards the increasing concentration of the target DNA in the range of 1 × 10⁻¹² to 1 × 10⁻⁶ M. Moreover, the biosensor selectively differentiates the complementary sequence from single base mismatched (MM-1) strands and non-complementary strands. This study reveals a simple, selective and sensitive method to fabricate a label-free DNA biosensor.

  14. Fabrication and optical property of metal nanowire arrays embedded in anodic porous alumina membrane

    NASA Astrophysics Data System (ADS)

    Takase, Kouichi; Shimizu, Tomohiro; Sugawa, Kosuke; Aono, Takashige; Shirai, Yuma; Nishida, Tomohiko; Shingubara, Shoso

    2016-06-01

    Nanowires embedded in nanopores are potentially tough against surface scraping and agglomeration. In this study, we have fabricated Au and Ni nanowires embedded into anodic porous alumina (APA) and investigated their reflectance to study the effects of surface plasmon absorption properties and conversion from solar energy to thermal energy. Au nanowires embedded into APA show typical gold surface plasmon absorption at approximately 530 nm. On the other hand, Ni nanowires show quite a low reflectance under 600 nm. In the temperature elevation test, both Au and Ni nanowire samples present the same capability to warm up water. It means that Ni nanowires embedded into APA have almost the same photothermal activity as Au nanowires.

  15. Nanostructural characterization of large-scale porous alumina fabricated via anodizing in arsenic acid solution

    NASA Astrophysics Data System (ADS)

    Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2017-05-01

    Anodizing of aluminum in an arsenic acid solution is reported for the fabrication of anodic porous alumina. The highest potential difference (voltage) without oxide burning increased as the temperature and the concentration of the arsenic acid solution decreased, and a high anodizing potential difference of 340 V was achieved. An ordered porous alumina with several tens of cells was formed in 0.1-0.5 M arsenic acid solutions at 310-340 V for 20 h. However, the regularity of the porous alumina was not improved via anodizing for 72 h. No pore sealing behavior of the porous alumina was observed upon immersion in boiling distilled water, and it may be due to the formation of an insoluble complex on the oxide surface. The porous alumina consisted of two different layers: a hexagonal alumina layer that contained arsenic from the electrolyte and a pure alumina honeycomb skeleton. The porous alumina exhibited a white photoluminescence emission at approximately 515 nm under UV irradiation at 254 nm.

  16. Realisation and advanced engineering of true optical rugate filters based on nanoporous anodic alumina by sinusoidal pulse anodisation

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Yoo, Jeong Ha; Rohatgi, Charu Vashisth; Kumeria, Tushar; Wang, Ye; Losic, Dusan

    2016-01-01

    This study is the first realisation of true optical rugate filters (RFs) based on nanoporous anodic alumina (NAA) by sinusoidal waves. An innovative and rationally designed sinusoidal pulse anodisation (SPA) approach in galvanostatic mode is used with the aim of engineering the effective medium of NAA in a sinusoidal fashion. A precise control over the different anodisation parameters (i.e. anodisation period, anodisation amplitude, anodisation offset, number of pulses, anodisation temperature and pore widening time) makes it possible to engineer the characteristic reflection peaks and interferometric colours of NAA-RFs, which can be finely tuned across the UV-visible-NIR spectrum. The effect of the aforementioned anodisation parameters on the photonic properties of NAA-RFs (i.e. characteristic reflection peaks and interferometric colours) is systematically assessed in order to establish for the first time a comprehensive rationale towards NAA-RFs with fully controllable photonic properties. The experimental results are correlated with a theoretical model (Looyenga-Landau-Lifshitz - LLL), demonstrating that the effective medium of these photonic nanostructures can be precisely described by the effective medium approximation. NAA-RFs are also demonstrated as chemically selective photonic platforms combined with reflectometric interference spectroscopy (RIfS). The resulting optical sensing system is used to assess the reversible binding affinity between a model drug (i.e. indomethacin) and human serum albumin (HSA) in real-time. Our results demonstrate that this system can be used to determine the overall pharmacokinetic profile of drugs, which is a critical aspect to be considered for the implementation of efficient medical therapies.This study is the first realisation of true optical rugate filters (RFs) based on nanoporous anodic alumina (NAA) by sinusoidal waves. An innovative and rationally designed sinusoidal pulse anodisation (SPA) approach in galvanostatic

  17. Effect of various de-anodizing techniques on the surface stability of non-colored and colored nanoporous AAO films in acidic solution

    NASA Astrophysics Data System (ADS)

    Awad, Ahmed M.; Shehata, Omnia S.; Heakal, Fakiha El-Taib

    2015-12-01

    Anodic aluminum oxide (AAO) is well known as an important nanostructured material, and a useful template in the fabrication of nanostructures. Nanoporous anodic alumina (PAA) with high open porosity was prepared by adopting three de-anodizing regimes following the first anodizing step and preceding the second one. The de-anodizing methods include electrolytic etching (EE) and chemical etching using either phosphoric acid (PE) or sodium hydroxide (HE) solutions. Three of the obtained AAO samples were black colored by electrodeposition of copper nanoparticles in their pores. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques were used to characterize the electrochemical performance of the two sets of the prepared samples. In general, the data obtained in aggressive aerated 0.5 M HCl solution demonstrated dissimilar behavior for the three prepared samples despite that the second anodizing step was the same for all of them. The data indicated that the resistance and thickness of the inner barrier part of nano-PAA film, are the main controlling factors determining its stability. On the other hand, coloring the film decreased its stability due to the galvanic effect. The difference in the electrochemical behavior of the three colored samples was discussed based on the difference in both the pore size and thickness of the outer porous part of PAA film as supported by SEM, TEM and cross-sectional micrographs. These results can thus contribute for better engineering applications of nanoporous AAO.

  18. Liquid permeation and chemical stability of anodic alumina membranes

    PubMed Central

    Buldakov, Dmitrii A; Tishkin, Alexey A; Lukashin, Alexey V; Eliseev, Andrei A

    2017-01-01

    A study on the chemical stability of anodic alumina membranes and their performance in long-term water and organic solvent permeation experiments is reported. Anodic alumina possesses high stability for both protonic and aprotonic organic solvents. However, serious degradation of the membrane occurs in pure water, leading to a drastic decrease of permeance (over 20% of the initial value after the passing of 0.250 m3/m2 of pure water). The drying of the membrane induces further permeance drop-off. The rate of membrane degradation strongly depends on the pH of the penetrant solution and increases in basic media. According to 27Al NMR and thermogravimetry results, the degradation of the membranes is associated with the dissolution of water-soluble [Al13O4(OH)24(H2O)12]7+ polyhydroxocomplexes and their further redeposition in the form of [Al(OH)4]−, resulting in channels blocking. This process intensifies in basic pH due to the high positive charge of the anodic alumina surface. An approach for improving anodic aluminum oxide stability towards dissolution in water by carbon CVD coating of the membrane walls is suggested. PMID:28382245

  19. Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid

    PubMed Central

    2012-01-01

    The photoluminescence emission of nanoporous anodic aluminum oxide films formed in phosphoric acid is studied in order to explore their defect-based subband electronic structure. Different excitation wavelengths are used to identify most of the details of the subband states. The films are produced under different anodizing conditions to optimize their emission in the visible range. Scanning electron microscopy investigations confirm pore formation in the produced layers. Gaussian analysis of the emission data indicates that subband states change with anodizing parameters, and various point defects can be formed both in the bulk and on the surface of these nanoporous layers during anodizing. PMID:23272786

  20. A Nanoporous Alumina Membrane Based Electrochemical Biosensor for Histamine Determination with Biofunctionalized Magnetic Nanoparticles Concentration and Signal Amplification

    PubMed Central

    Ye, Weiwei; Xu, Yifan; Zheng, Lihao; Zhang, Yu; Yang, Mo; Sun, Peilong

    2016-01-01

    Histamine is an indicator of food quality and indispensable in the efficient functioning of various physiological systems. Rapid and sensitive determination of histamine is urgently needed in food analysis and clinical diagnostics. Traditional histamine detection methods require qualified personnel, need complex operation processes, and are time-consuming. In this study, a biofunctionalized nanoporous alumina membrane based electrochemical biosensor with magnetic nanoparticles (MNPs) concentration and signal amplification was developed for histamine determination. Nanoporous alumina membranes were modified by anti-histamine antibody and integrated into polydimethylsiloxane (PDMS) chambers. The specific antibody modified MNPs were used to concentrate histamine from samples and transferred to the antibody modified nanoporous membrane. The MNPs conjugated to histamine were captured in the nanopores via specific reaction between histamine and anti-histamine antibody, resulting in a blocking effect that was amplified by MNPs in the nanopores. The blockage signals could be measured by electrochemical impedance spectroscopy across the nanoporous alumina membrane. The sensing platform had great sensitivity and the limit of detection (LOD) reached as low as 3 nM. This biosensor could be successfully applied for histamine determination in saury that was stored in frozen conditions for different hours, presenting a potentially novel, sensitive, and specific sensing system for food quality assessment and safety support. PMID:27782087

  1. Realisation and advanced engineering of true optical rugate filters based on nanoporous anodic alumina by sinusoidal pulse anodisation.

    PubMed

    Santos, Abel; Yoo, Jeong Ha; Rohatgi, Charu Vashisth; Kumeria, Tushar; Wang, Ye; Losic, Dusan

    2016-01-21

    This study is the first realisation of true optical rugate filters (RFs) based on nanoporous anodic alumina (NAA) by sinusoidal waves. An innovative and rationally designed sinusoidal pulse anodisation (SPA) approach in galvanostatic mode is used with the aim of engineering the effective medium of NAA in a sinusoidal fashion. A precise control over the different anodisation parameters (i.e. anodisation period, anodisation amplitude, anodisation offset, number of pulses, anodisation temperature and pore widening time) makes it possible to engineer the characteristic reflection peaks and interferometric colours of NAA-RFs, which can be finely tuned across the UV-visible-NIR spectrum. The effect of the aforementioned anodisation parameters on the photonic properties of NAA-RFs (i.e. characteristic reflection peaks and interferometric colours) is systematically assessed in order to establish for the first time a comprehensive rationale towards NAA-RFs with fully controllable photonic properties. The experimental results are correlated with a theoretical model (Looyenga-Landau-Lifshitz - LLL), demonstrating that the effective medium of these photonic nanostructures can be precisely described by the effective medium approximation. NAA-RFs are also demonstrated as chemically selective photonic platforms combined with reflectometric interference spectroscopy (RIfS). The resulting optical sensing system is used to assess the reversible binding affinity between a model drug (i.e. indomethacin) and human serum albumin (HSA) in real-time. Our results demonstrate that this system can be used to determine the overall pharmacokinetic profile of drugs, which is a critical aspect to be considered for the implementation of efficient medical therapies.

  2. Mirror-finished superhydrophobic aluminum surfaces modified by anodic alumina nanofibers and self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2018-05-01

    We demonstrate mirror-finished superhydrophobic aluminum surfaces fabricated via the formation of anodic alumina nanofibers and subsequent modification with self-assembled monolayers (SAMs). High-density anodic alumina nanofibers were formed on the aluminum surface via anodizing in a pyrophosphoric acid solution. The alumina nanofibers became tangled and bundled by further anodizing at low temperature because of their own weight, and the aluminum surface was completely covered by the long falling nanofibers. The nanofiber-covered aluminum surface exhibited superhydrophilic behavior, with a contact angle measuring less than 10°. As the nanofiber-covered aluminum surface was modified with n-alkylphosphonic acid SAMs, the water contact angle drastically shifted to superhydrophobicity, measuring more than 150°. The contact angle increased with the applied voltage during pyrophosphoric acid anodizing, the anodizing time, and the number of carbon atoms contained in the SAM molecules modified on the alumina nanofibers. By optimizing the anodizing and SAM-modification conditions, superhydrophobic behavior could be achieved with only a brief pyrophosphoric acid anodizing period of 3 min and subsequent simple immersion in SAM solutions. The superhydrophobic aluminum surface exhibited a high reflectance, measuring approximately 99% across most of the visible spectrum, similar to that of an electropolished aluminum surface. Therefore, our mirror-finished superhydrophobic aluminum surface based on anodic alumina nanofibers and SAMs can be used as a reflective mirror in various optical applications such as concentrated solar power systems.

  3. Effects of Etching Time and NaOH Concentration on the Production of Alumina Nanowires Using Porous Anodic Alumina Template

    NASA Astrophysics Data System (ADS)

    Sadeghpour-Motlagh, M.; Mokhtari-Zonouzi, K.; Aghajani, H.; Kakroudi, M. Ghassemi

    2014-06-01

    In this work, two-step anodizing of commercial aluminum foil in acid oxalic solution was applied for producing alumina film. Then the anodic alumina film was etched in sodium hydroxide (NaOH) solution resulting dense and aligned alumina nanowires. This procedure leads to splitting of alumina nanotubes. Subsequently nanowires are produced. The effects of NaOH solution concentration (0.2-1 mol/L) and etching time (60-300 s) at constant temperature on characteristic of nanotubes and produced nanowires were investigated using scanning electron microscopy. The results show that an increase in NaOH solution concentration increases the rate of nanowires production and in turn the manipulation process will be more specific.

  4. Dynamics of Ice/Water Confined in Nanoporous Alumina.

    PubMed

    Suzuki, Yasuhito; Steinhart, Martin; Graf, Robert; Butt, Hans-Jürgen; Floudas, George

    2015-11-19

    Dielectric (DS), IR spectroscopy, and (1)H MAS NMR are employed in the study of ice/water confined in nanoporous alumina with pore diameters ranging from 400 nm down to 25 nm. Within nanoporous alumina there is a transformation from heterogeneous nucleation of hexagonal ice in the larger pores to homogeneous nucleation of cubic ice in the smaller pores. DS and IR show excellent agreement in the temperature interval and pore size dependence of the transformation. DS further revealed two dynamic processes under confinement. The "fast" and "slow" processes with an Arrhenius temperature dependence are attributed to ice and supercooled water relaxation, respectively. The main relaxation process of ice under confinement ("slow" process) has an activation energy of 44 ± 2 kJ/mol. The latter is in agreement with the reported relaxation times and activation energy of cubic ice prepared following a completely different route (by pressure). (1)H MAS NMR provided new insight in the state of ice structures as well as of supercooled water. Under confinement, a layer of liquid-like water coexists with ice structures. In addition, both ice structures under confinement appear to be more ordered than bulk hexagonal ice. Supercooled water in the smaller pores is different from bulk water. It shows a shift of the signal toward higher chemical shift values which may suggest stronger hydrogen bonding between the water molecules or increasing interactions with the AAO walls.

  5. The Influence of Nanopore Dimensions on the Electrochemical Properties of Nanopore Arrays Studied by Impedance Spectroscopy

    PubMed Central

    Kant, Krishna; Priest, Craig; Shapter, Joe G.; Losic, Dusan

    2014-01-01

    The understanding of the electrochemical properties of nanopores is the key factor for better understanding their performance and applications for nanopore-based sensing devices. In this study, the influence of pore dimensions of nanoporous alumina (NPA) membranes prepared by an anodization process and their electrochemical properties as a sensing platform using impedance spectroscopy was explored. NPA with four different pore diameters (25 nm, 45 nm and 65 nm) and lengths (5 μm to 20 μm) was used and their electrochemical properties were explored using different concentration of electrolyte solution (NaCl) ranging from 1 to 100 μM. Our results show that the impedance and resistance of nanopores are influenced by the concentration and ion species of electrolytes, while the capacitance is independent of them. It was found that nanopore diameters also have a significant influence on impedance due to changes in the thickness of the double layer inside the pores. PMID:25393785

  6. Optical properties of InP/ZnS quantum dots deposited into nanoporous anodic alumina

    NASA Astrophysics Data System (ADS)

    Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.

    2016-08-01

    Spectral characteristics of InP/ZnS core/shell colloidal quantum dots of two different sizes (QD-1 and QD-2) were investigated. Absorption and luminescence spectra were analyzed for a series of solutions with a concentration range from 0.04 to 40 g/l. Energies of the optical transitions are evaluated. The obtained values of 2.60 eV (QD-1) and 2.38 eV (QD-2) correspond to the InP first excitonic transitions while 4.06 (QD-2) and 4.70 eV (QD-1, QD-2) are assumed to be caused by the ZnS shell absorption. Structures based on nanoporous anodic aluminum oxide (AAO) with the QDs were synthesized via an electrochemical oxidation and ultrasonic-assisted deposition. Chromaticity coordinates and correlated color temperatures for all phosphors under study were calculated. The fabrication possibilities of InP/ZnS@AAO nanostructures with tunable emission color (including the border of white region) were shown.

  7. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes

    NASA Astrophysics Data System (ADS)

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  8. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes.

    PubMed

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  9. Niobium oxide nanocolumns formed via anodic alumina with modulated pore diameters

    NASA Astrophysics Data System (ADS)

    Pligovka, A.; Zakhlebayeva, A.; Lazavenka, A.

    2018-03-01

    Niobium oxide nanocolumns with modulated diameters were formed for the first time. An Al/Nb bilayer specimen was prepared by successive sputter-deposition of 300 nm niobium layer and 1200 nm aluminum layer onto silicon wafer. Regular anodic alumina matrix with modulated pore diameters was formed by sequential anodization of initial specimen in tartaric acid at 180 V, and in oxalic acid at 37 V. Further potentiodynamic reanodization of the specimen up to 400 V causes the simultaneous growth of 440 nm continuous niobium oxide layer beneath the alumina film and two types of an array of oxide nanocolumns (thick – with 100 nm width and 630 nm high and thin – with 25 nm width and 170 nm high), which are the filling of the alumina pores. The morphology of the formed anodic niobium oxide nanocolumns with modulated diameters was determined by field emission scanning electron microscopy. The formed nanostructures can be used for perspective devices of nano- and optoelectronics such as photonic crystals.

  10. Nanoporous Pirani sensor based on anodic aluminum oxide

    NASA Astrophysics Data System (ADS)

    Jeon, Gwang-Jae; Kim, Woo Young; Shim, Hyun Bin; Lee, Hee Chul

    2016-09-01

    A nanoporous Pirani sensor based on anodic aluminum oxide (AAO) is proposed, and the quantitative relationship between the performance of the sensor and the porosity of the AAO membrane is characterized with a theoretical model. The proposed Pirani sensor is composed of a metallic resistor on a suspended nanoporous membrane, which simultaneously serves as the sensing area and the supporting structure. The AAO membrane has numerous vertically-tufted nanopores, resulting in a lower measurable pressure limit due to both the increased effective sensing area and the decreased effective thermal loss through the supporting structure. Additionally, the suspended AAO membrane structure, with its outer periphery anchored to the substrate, known as a closed-type design, is demonstrated using nanopores of AAO as an etch hole without a bulk micromachining process used on the substrate. In a CMOS-compatible process, a 200 μm × 200 μm nanoporous Pirani sensor with porosity of 25% was capable of measuring the pressure from 0.1 mTorr to 760 Torr. With adjustment of the porosity of the AAO, the measurable range could be extended toward lower pressures of more than one decade compared to a non-porous membrane with an identical footprint.

  11. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    PubMed

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  12. Electrochemical fabrication of SrTiO3 nanowires with nanoporous alumina template.

    PubMed

    Kang, Jinwook; Ryu, Jaemin; Ko, Eunseong; Tak, Yongsug

    2007-11-01

    Strontium titanate nanowires were electrochemically synthesized with nanoporous alumina template. Both chemical and electrical variables such as electrolyte pH, temperature, and current waveform were modulated to investigate the synthesis process of SrTiO3 nanowires. Superimposed cathodic pulse and diffusion time accelerated the growth of SrTiO3 nanowires, which suggested that the concentration of H+ and Sr2+ ion inside alumina template had a strong influence on the formation of SrTiO3 nanowires. Morphology and crystallinity of SrTiO3 nanowires were investigated with scanning electron microscope, X-ray diffractometer and energy dispersive X-ray spectroscopy.

  13. Controlling the anodizing conditions in preparation of an nanoporous anodic aluminium oxide template

    NASA Astrophysics Data System (ADS)

    Nazemi, Azadeh; Abolfazl, Seyed; Sadjadi, Seyed

    2014-12-01

    Porous anodic aluminium oxide (AAO) template is commonly used in the synthesis of one-dimensional nanostructures, such as nanowires and nanorods, due to its simple fabrication process. Controlling the anodizing conditions is important because of their direct influence on the size of AAO template pores; it affects the size of nanostructures that are fabricated in AAO template. In present study, several alumina templates were fabricated by a two-step electrochemical anodization in different conditions, such as the time of first process, its voltage, and electrolyte concentration. The effect of these factors on pore diameters of AAO templates was investigated using scanning electron microscopy (SEM).

  14. Effects of nanoporous anodic titanium oxide on human adipose derived stem cells.

    PubMed

    Malec, Katarzyna; Góralska, Joanna; Hubalewska-Mazgaj, Magdalena; Głowacz, Paulina; Jarosz, Magdalena; Brzewski, Pawel; Sulka, Grzegorz D; Jaskuła, Marian; Wybrańska, Iwona

    The aim of current bone biomaterials research is to design implants that induce controlled, guided, successful, and rapid healing. Titanium implants are widely used in dental, orthopedic, and reconstructive surgery. A series of studies has indicated that cells can respond not only to the chemical properties of the biomaterial, but also, in particular, to the changes in surface topography. Nanoporous materials remain in focus of scientific queries due to their exclusive properties and broad applications. One such material is nanostructured titanium oxide with highly ordered, mutually perpendicular nanopores. Nanoporous anodic titanium dioxide (TiO 2 ) films were fabricated by a three-step anodization process in propan-1,2,3-triol-based electrolyte containing fluoride ions. Adipose-derived stem cells offer many interesting opportunities for regenerative medicine. The important goal of tissue engineering is to direct stem cell differentiation into a desired cell lineage. The influence of nanoporous TiO 2 with pore diameters of 80 and 108 nm on cell response, growth, viability, and ability to differentiate into osteoblastic lineage of human adipose-derived progenitors was explored. Cells were harvested from the subcutaneous abdominal fat tissue by a simple, minimally invasive, and inexpensive method. Our results indicate that anodic nanostructured TiO 2 is a safe and nontoxic biomaterial. In vitro studies demonstrated that the nanotopography induced and enhanced osteodifferentiation of human adipose-derived stem cells from the abdominal subcutaneous fat tissue.

  15. Photophysics and energy transfer studies of Alq3 confined in the voids of nanoporous anodic alumina.

    PubMed

    Mohammadpour, Arash; Utkin, Ilya; Bodepudi, Srikrishna Chanakya; Kar, Piyush; Fedosejevs, Robert; Pramanik, Sandipan; Shankar, Karthik

    2013-04-01

    We report on a hierarchical nanoarchitecture wherein distinct chromophores are deterministically placed at two different types of sites in a nanoporous metal oxide framework. One chromophore, namely Tris(8-hydroxyquinoline)aluminium(III) (Alq3), is embedded in the 1-2 nm sized nanovoids of anodic aluminum oxide (AAO) and another chromophore (carboxyfluorescein or pyrenebutyric acid) is anchored in the form of a monolayer to the surface of the walls of the cylindrical nanopores (- 20 nm in diameter) of AAO. We found the luminescence maximum to occur at 492 nm, blueshifted by at least 18 nm from the value in solutions and thin films. The excited state decay of Alq3 molecules in nanovoids was found to be biexponential with a fast component of 338 ps and a slower component of 2.26 ns, different from Alq3 thin films and solutions. Using a combination of steady state and time-resolved luminescence studies, we found that efficient Forster-type resonance energy transfer (FRET) from Alq3 in the nanovoids to the carboxyfluorescein monolayer could be used to pump the emission of surface-bound chromophores. Conversely, the emission of nanovoid-confined Alq3 could be pumped by energy transfer from a pyrenebutyric acid monolayer. Such intra-nanoarchitecture interactions between chromophores deterministically placed in different spatial locations are important in applications such as organic light emitting diodes, chemical sensors, energy transfer fluorescent labels, light harvesting antennas and organic spintronics.

  16. Advanced morphological analysis of patterns of thin anodic porous alumina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toccafondi, C.; Istituto Italiano di Tecnologia, Department of Nanostructures, Via Morego 30, Genova I 16163; Stępniowski, W.J.

    2014-08-15

    Different conditions of fabrication of thin anodic porous alumina on glass substrates have been explored, obtaining two sets of samples with varying pore density and porosity, respectively. The patterns of pores have been imaged by high resolution scanning electron microscopy and analyzed by innovative methods. The regularity ratio has been extracted from radial profiles of the fast Fourier transforms of the images. Additionally, the Minkowski measures have been calculated. It was first observed that the regularity ratio averaged across all directions is properly corrected by the coefficient previously determined in the literature. Furthermore, the angularly averaged regularity ratio for themore » thin porous alumina made during short single-step anodizations is lower than that of hexagonal patterns of pores as for thick porous alumina from aluminum electropolishing and two-step anodization. Therefore, the regularity ratio represents a reliable measure of pattern order. At the same time, the lower angular spread of the regularity ratio shows that disordered porous alumina is more isotropic. Within each set, when changing either pore density or porosity, both regularity and isotropy remain rather constant, showing consistent fabrication quality of the experimental patterns. Minor deviations are tentatively discussed with the aid of the Minkowski measures, and the slight decrease in both regularity and isotropy for the final data-points of the porosity set is ascribed to excess pore opening and consequent pore merging. - Highlights: • Thin porous alumina is partly self-ordered and pattern analysis is required. • Regularity ratio is often misused: we fix the averaging and consider its spread. • We also apply the mathematical tool of Minkowski measures, new in this field. • Regularity ratio shows pattern isotropy and Minkowski helps in assessment. • General agreement with perfect artificial patterns confirms the good manufacturing.« less

  17. Impedance nanopore biosensor: influence of pore dimensions on biosensing performance.

    PubMed

    Kant, Krishna; Yu, Jingxian; Priest, Craig; Shapter, Joe G; Losic, Dusan

    2014-03-07

    Knowledge about electrochemical and electrical properties of nanopore structures and the influence of pore dimensions on these properties is important for the development of nanopore biosensing devices. The aim of this study was to explore the influence of nanopore dimensions (diameter and length) on biosensing performance using non-faradic electrochemical impedance spectroscopy (EIS). Nanoporous alumina membranes (NPAMs) prepared by self-ordered electrochemical anodization of aluminium were used as model nanopore sensing platforms. NPAMs with different pore diameters (25-65 nm) and lengths (4-18 μm) were prepared and the internal pore surface chemistry was modified by covalently attaching streptavidin and biotin. The performance of this antibody nanopore biosensing platform was evaluated using various concentrations of biotin as a model analyte. EIS measurements of pore resistivity and conductivity were carried out for pores with different diameters and lengths. The results showed that smaller pore dimensions of 25 nm and pore lengths up to 10 μm provide better biosensing performance.

  18. Co-delivery of ibuprofen and gentamicin from nanoporous anodic titanium dioxide layers.

    PubMed

    Pawlik, Anna; Jarosz, Magdalena; Syrek, Karolina; Sulka, Grzegorz D

    2017-04-01

    Although single-drug therapy may prove insufficient in treating bacterial infections or inflammation after orthopaedic surgeries, complex therapy (using both an antibiotic and an anti-inflammatory drug) is thought to address the problem. Among drug delivery systems (DDSs) with prolonged drug release profiles, nanoporous anodic titanium dioxide (ATO) layers on Ti foil are very promising. In the discussed research, ATO samples were synthesized via a three-step anodization process in an ethylene glycol-based electrolyte with fluoride ions. The third step lasted 2, 5 and 10min in order to obtain different thicknesses of nanoporous layers. Annealing the as-prepared amorphous layers at the temperature of 400°C led to obtaining the anatase phase. In this study, water-insoluble ibuprofen and water-soluble gentamicin were used as model drugs. Three different drug loading procedures were applied. The desorption-desorption-diffusion (DDD) model of the drug release was fitted to the experimental data. The effects of crystalline structure, depth of TiO 2 nanopores and loading procedure on the drug release profiles were examined. The duration of the drug release process can be easily altered by changing the drug loading sequence. Water-soluble gentamicin is released for a long period of time if gentamicin is loaded in ATO as the first drug. Additionally, deeper nanopores and anatase phase suppress the initial burst release of drugs. These results confirm that factors such as morphological and crystalline structure of ATO layers, and the procedure of drug loading inside nanopores, allow to alter the drug release performance of nanoporous ATO layers. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Optical characterization of nanoporous AAO sensor substrate

    NASA Astrophysics Data System (ADS)

    Kassu, Aschalew; Farley, Carlton W.; Sharma, Anup

    2014-05-01

    Nanoporous anodic aluminum oxide (AAO) has been investigated as an ideal and cost-effective chemical and biosensing platform. In this paper, we report the optical properties of periodic 100 micron thick nanoporous anodic alumina membranes with uniform and high density cylindrical pores penetrating the entire thickness of the substrate, ranging in size from 18 nm to 150 nm in diameter and pore periods from 44 nm to 243 nm. The surface geometry of the top and bottom surface of each membrane is studied using atomic force microscopy. The optical properties including transmittance, reflectance, and absorbance spectra on both sides of each substrate are studied and found to be symmetrical. It is observed that, as the pore size increases, the peak resonance intensity in transmittance decreases and in absorbance increases. The effects of the pore sizes on the optical properties of the bare nanoporous membranes and the benefit of using arrays of nanohole arrays with varying hole size and periodicity as a chemical sensing platform is also discussed. To characterize the optical sensing technique, transmittance and reflectance measurements of various concentrations of a standard chemical adsorbed on the bare nanoporous substrates are investigated. The preliminary results presented here show variation in transmittance and reflectance spectra with the concentration of the chemical used or the amount of the material adsorbed on the surface of the substrate.

  20. Hyper-dendritic nanoporous zinc foam anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  1. Hyper-dendritic nanoporous zinc foam anodes

    DOE PAGES

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; ...

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  2. Porous Alumina Films with Width-Controllable Alumina Stripes

    PubMed Central

    2010-01-01

    Porous alumina films had been fabricated by anodizing from aluminum films after an electropolishing procedure. Alumina stripes without pores can be distinguished on the surface of the porous alumina films. The width of the alumina stripes increases proportionally with the anodizing voltage. And the pores tend to be initiated close to the alumina stripes. These phenomena can be ascribed to the electric field distribution in the alumina barrier layer caused by the geometric structure of the aluminum surface. PMID:21170406

  3. Effect of the local electric field on the formation of an ordered structure in porous anodic alumina

    NASA Astrophysics Data System (ADS)

    Lazarouk, S. K.; Katsuba, P. S.; Leshok, A. A.; Vysotskii, V. B.

    2015-09-01

    Experimental data and a model are presented, and the electric field that appears in porous alumina during electrochemical anodic oxidation of aluminum in electrolytes based on an aqueous solution of oxalic acid at a voltage of 90-250 V is calculated. It is found that the electric field in the layers with a porosity of 1-10% in growing alumina reaches 109-1010 V/m, which exceeds the electric strength of the material and causes microplasma patterns emitting visible light at the pore bottom, the self-organization of the structure of porous alumina, and the anisotropy of local porous anodizing. Moreover, other new effects are to be expected during aluminum anodizing under the conditions that ensure a high electric field inside the barrier layer of porous oxide.

  4. Length-dependent corrosion behavior, Ni2+ release, cytocompatibility, and antibacterial ability of Ni-Ti-O nanopores anodically grown on biomedical NiTi alloy.

    PubMed

    Hang, Ruiqiang; Liu, Yanlian; Bai, Long; Zhang, Xiangyu; Huang, Xiaobo; Jia, Husheng; Tang, Bin

    2018-08-01

    In the present work, nickel-titanium-oxygen nanopores with different length (0.55-114 μm) were anodically grown on nearly equiatomic nickel-titanium (NiTi) alloy. Length-dependent corrosion behavior, nickel ion (Ni 2+ ) release, cytocompatibility, and antibacterial ability were investigated by electrochemical, analytical chemistry, and biological methods. The results show constructing nanoporous structure on the NiTi alloy improve its corrosion resistance. However, the anodized samples release more Ni 2+ than that of the bare NiTi alloy, suggesting chemical dissolution of the nanopores rather than electrochemical corrosion governs the Ni 2+ release. In addition, the Ni 2+ release amount increases with nanopore length. The anodized samples show good cytocompatibility when the nanopore length is <11 μm. Encouragingly, the length scale covers the one (1-11 μm) that the nanopores showing favorable antibacterial ability. Consequently, the nanopores with length in the range of 1-11 μm are promising as coatings of biomedical NiTi alloy for anti-infection, drug delivery, and other desirable applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Controlling interferometric properties of nanoporous anodic aluminium oxide

    PubMed Central

    2012-01-01

    A study of reflective interference spectroscopy [RIfS] properties of nanoporous anodic aluminium oxide [AAO] with the aim to develop a reliable substrate for label-free optical biosensing is presented. The influence of structural parameters of AAO including pore diameters, inter-pore distance, pore length, and surface modification by deposition of Au, Ag, Cr, Pt, Ni, and TiO2 on the RIfS signal (Fabry-Perot fringe) was explored. AAO with controlled pore dimensions was prepared by electrochemical anodization of aluminium using 0.3 M oxalic acid at different voltages (30 to 70 V) and anodization times (10 to 60 min). Results show the strong influence of pore structures and surface modifications on the interference signal and indicate the importance of optimisation of AAO pore structures for RIfS sensing. The pore length/pore diameter aspect ratio of AAO was identified as a suitable parameter to tune interferometric properties of AAO. Finally, the application of AAO with optimised pore structures for sensing of a surface binding reaction of alkanethiols (mercaptoundecanoic acid) on gold surface is demonstrated. PMID:22280884

  6. Facile preparation of porous alumina through-hole masks for sputtering by two-layer anodization

    NASA Astrophysics Data System (ADS)

    Yanagishita, Takashi; Masuda, Hideki

    2016-08-01

    Highly ordered porous alumina through-hole masks were fabricated on a substrate by combining two-layer anodization with subsequent through-holing by selective etching. This process allowed the fabrication of porous alumina masks without an increase in pore size during the etching performed for through-holing. Additionally, the process contributed to improved operability in the setting of the masks on substrates because the second anodizing layer acts as a supporting layer for the handling of the mask. The fabrication of ordered Au nanodot arrays was demonstrated as an example application of the through-hole masks obtained by the present process.

  7. Nanoporous Mo2C functionalized 3D carbon architecture anode for boosting flavins mediated interfacial bioelectrocatalysis in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zou, Long; Lu, Zhisong; Huang, Yunhong; Long, Zhong-er; Qiao, Yan

    2017-08-01

    An efficient microbial electrocatalysis in microbial fuel cells (MFCs) needs both high loading of microbes (biocatalysts) and robust interfacial electron transfer from microbes to electrode. Herein a nanoporous molybdenum carbide (Mo2C) functionalized carbon felt electrode with rich 3D hierarchical porous architecture is applied as MFC anode to achieve superior electrocatalytic performance. The nanoporous Mo2C functionalized anode exhibits strikingly improved microbial electrocatalysis in MFCs with 5-fold higher power density and long-term stability of electricity production. The great enhancement is attributed to the introduction of rough Mo2C nanostructural interface into macroporous carbon architecture for promoting microbial growth with great excretion of endogenous electron shuttles (flavins) and rich available nanopores for enlarging electrochemically active surface area. Importantly, the nanoporous Mo2C functionalized anode is revealed for the first time to have unique electrocatalytic activity towards redox reaction of flavins with more negative redox potential, indicating a more favourable thermodynamic driving force for anodic electron transfer. This work not only provides a promising electrode for high performance MFCs but also brings up a new insight into the effect of nanostructured materials on interfacial bioelectrocatalysis.

  8. Leakage current and charging/discharging processes in barrier-type anodic alumina thin films for use in metal-insulator-metal capacitors

    NASA Astrophysics Data System (ADS)

    Hourdakis, E.; Koutsoureli, M.; Papaioannou, G.; Nassiopoulou, A. G.

    2018-06-01

    Barrier-type anodic alumina thin films are interesting for use in high capacitance density metal-insulator-metal capacitors due to their excellent dielectric properties at small thickness. This thickness is easily controlled by the anodization voltage. In previous papers we studied the main parameters of interest of the Al/barrier-type anodic alumina/Al structure for use in RF applications and showed the great potential of barrier-type anodic alumina in this respect. In this paper, we investigated in detail charging/discharging processes and leakage current of the above dielectric material. Two different sets of metal-insulator-metal capacitors were studied, namely, with the top Al electrode being either e-gun deposited or sputtered. The dielectric constant of the barrier-type anodic alumina was found at 9.3. Low leakage current was observed in all samples studied. Furthermore, depending on the film thickness, field emission following the Fowler-Nordheim mechanism was observed above an applied electric field. Charging of the anodic dielectric was observed, occurring in the bulk of the anodic layer. The stored charge was of the order of few μC/cm2 and the calculated trap density ˜2 × 1018 states/cm3, the most probable origin of charge traps being, in our opinion, positive electrolyte ions trapped in the dielectric during anodization. We do not think that oxygen vacancies play an important role, since their existence would have a more important impact on the leakage current characteristics, such as resistive memory effects or significant changes during annealing, which were not observed. Finally, discharging characteristic times as high as 5 × 109 s were measured.

  9. Micropatterning of a nanoporous alumina membrane with poly(ethylene glycol) hydrogel to create cellular micropatterns on nanotopographic substrates.

    PubMed

    Lee, Hyun Jong; Kim, Dae Nyun; Park, Saemi; Lee, Yeol; Koh, Won-Gun

    2011-03-01

    In this paper, we describe a simple method for fabricating micropatterned nanoporous substrates that are capable of controlling the spatial positioning of mammalian cells. Micropatterned substrates were prepared by fabricating poly(ethylene glycol) (PEG) hydrogel microstructures on alumina membranes with 200 nm nanopores using photolithography. Because hydrogel precursor solution could infiltrate and become crosslinked within the nanopores, the resultant hydrogel micropatterns were firmly anchored on the substrate without the use of adhesion-promoting monolayers, thereby allow tailoring of the surface properties of unpatterned nanoporous areas. For mammalian cell patterning, arrays of microwells of different dimensions were fabricated. These microwells were composed of hydrophilic PEG hydrogel walls surrounding nanoporous bottoms that were modified with cell-adhesive Arg-Gly-Asp (RGD) peptides. Because the PEG hydrogel was non-adhesive towards proteins and cells, cells adhered selectively and remained viable within the RGD-modified nanoporous regions, thereby creating cellular micropatterns. Although the morphology of cell clusters and the number of cells inside one microwell were dependent on the lateral dimension of the microwells, adhered cells that were in direct contact with nanopores were able to penetrate into the nanopores by small extensions (filopodia) for all the different sizes of microwells evaluated. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    PubMed Central

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  11. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    PubMed

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-03-24

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  12. Mathematical modeling of sustainability of porous Al2O3 growth during two-stage anodization process

    NASA Astrophysics Data System (ADS)

    Aryslanova, Elizaveta M.; Alfimov, Anton V.; Chivilikhin, Sergey A.

    2015-06-01

    Currently, due to the development of nanotechnology and metamaterials, it has become important to obtain regular nanoporous structures with different parameters, such as porous anodic alumina films that are used for synthesis of various nanocomposites. In this work we consider the motion of the interfaces between electrolyte and alumina layers, and between alumina and aluminum layers. We also took into account the dynamics of moving boundaries and the change of small perturbations of these boundaries. Each area under Laplace's equation is solved for the potential of the electric field. The growth of porous alumina is described with the theory of small perturbations. Small perturbations of the interface are considered, which lead to small changes in potential and current in the boundaries. As a result of the developed model we obtained the minimum distance between centers of aluminum oxide pores in the beginning of anodizing process and the wavelength of porous structure irregularities.

  13. Surface modification of nanoporous alumina layers by deposition of Ag nanoparticles. Effect of alumina pore diameter on the morphology of silver deposit and its influence on SERS activity

    NASA Astrophysics Data System (ADS)

    Pisarek, Marcin; Nowakowski, Robert; Kudelski, Andrzej; Holdynski, Marcin; Roguska, Agata; Janik-Czachor, Maria; Kurowska-Tabor, Elżbieta; Sulka, Grzegorz D.

    2015-12-01

    Self-organized Al2O3 nanoporous/nanotubular (Al2O3-NP) oxide layers decorated with silver nanoparticles (Ag-NPs) exhibiting specific properties may serve as attractive SERS substrates for investigating the interactions between an adsorbate and adsorbent, or as stable platforms for detecting various organic compounds. This article presents the influence of the size of the alumina nanopores with a deposit of silver nanoparticles obtained by the magnetron sputtering technique on the morphology of silver film. Moreover, the effect of pore diameter on the intensity of SERS spectra in Ag-NPs/Al2O3-NP/Al composites has also been estimated. For such investigations we used pyridine as a probe molecule, since it has a large cross-section for Raman scattering. To characterize the morphology of the composite oxide layer Ag-NPs/Al2O3-NP/Al, before and after deposition of Ag-NPs by PVD methods (Physical Vapor Deposition), we used scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface analytical technique of surface-enhanced Raman spectroscopy (SERS) was used to investigate the surface activity of the composite. The results obtained show that, for a carefully controlled amount of Ag (0.020 mg/cm2 - deposited on the top of alumina nanopores whose average size varies from ∼86 nm up to ∼320 nm) in the composites investigated, pore size significantly affects SERS enhancement. We obtained distinctly higher intensities of SERS spectra for substrates with an Ag-NPs deposit having a larger diameter of the alumina nanopores. AFM results suggest that both the lateral and perpendicular distribution of Ag-NPs within and on the top of the largest pores is responsible for the highest SERS activity of the resulting Ag-NPs/Al2O3-NP/Al composite layer, since it produces a variety of cavities and slits which function as resonators for the adsorbed molecules. The Ag-NPs/MeOx-NP/Me composite layers obtained ensure a good reproducibility of the SERS measurements.

  14. Nanoporous titanium niobium oxide and titanium tantalum oxide compositions and their use in anodes of lithium ion batteries

    DOEpatents

    Dai, Sheng; Guo, Bingkun; Sun, Xiao-Guang; Qiao, Zhenan

    2017-10-31

    Nanoporous metal oxide framework compositions useful as anodic materials in a lithium ion battery, the composition comprising metal oxide nanocrystals interconnected in a nanoporous framework and having interconnected channels, wherein the metal in said metal oxide comprises titanium and at least one metal selected from niobium and tantalum, e.g., TiNb.sub.2-x Ta.sub.xO.sub.y (wherein x is a value from 0 to 2, and y is a value from 7 to 10) and Ti.sub.2Nb.sub.10-vTa.sub.vO.sub.w (wherein v is a value from 0 to 2, and w is a value from 27 to 29). A novel sol gel method is also described in which sol gel reactive precursors are combined with a templating agent under sol gel reaction conditions to produce a hybrid precursor, and the precursor calcined to form the anodic composition. The invention is also directed to lithium ion batteries in which the nanoporous framework material is incorporated in an anode of the battery.

  15. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Zhengyuan; Zachman, Michael J.; Choudhury, Snehashis

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even atmore » a current density of 3 mA cm-2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.« less

  16. Hyper-dendritic nanoporous zinc foam anodes, methods of producing the same, and methods for their use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steingart, Daniel A.; Chamoun, Mylad; Hertzberg, Benjamin

    Disclosed are hyper-dendritic nanoporous zinc foam electrodes, viz., anodes, methods of producing the same, and methods for their use in electrochemical cells, especially in rechargeable electrical batteries.

  17. Fabrication of Self-Ordered Alumina Films with Large Interpore Distance by Janus Anodization in Citric Acid

    NASA Astrophysics Data System (ADS)

    Ma, Yingjun; Wen, Yihao; Li, Juan; Li, Yuxin; Zhang, Zhiying; Feng, Chenchen; Sun, Runguang

    2016-12-01

    Self-organized porous anodic alumina (PAA) formed by electrochemical anodization have become a fundamental tool to develop various functional nanomaterials. However, it is still a great challenge to break the interpore distance (Dint) limit (500 nm) by using current anodization technologies of mild anodization (MA) and hard anodization (HA). Here, we reported a new anodization mode named “Janus anodization” (JA) to controllably fabricate self-ordered PAA with large Dint at high voltage of 350-400 V. JA naturally occurs as anodizing Al foils in citric acid solution, which possessing both the characteristics of MA and HA. The process can be divided into two stages: I, slow pore nucleation stage similar to MA; II, unequilibrium self-organization process similar to HA. The as-prepared films had the highest modulus (7.0 GPa) and hardness (127.2 GPa) values compared with the alumina obtained by MA and HA. The optical studies showed that the black films have low reflectance (<10 %) in the wavelength range of 250-1500 nm and photoluminescence property. Dint can be tuned between 645-884 nm by controlling citric acid concentration or anodization voltage. JA is a potential technology to efficiently and controllably fabricate microstructured or hybrid micro- and nanostructured materials with novel properties.

  18. Fabrication of Self-Ordered Alumina Films with Large Interpore Distance by Janus Anodization in Citric Acid

    PubMed Central

    Ma, Yingjun; Wen, Yihao; Li, Juan; Li, Yuxin; Zhang, Zhiying; Feng, Chenchen; Sun, Runguang

    2016-01-01

    Self-organized porous anodic alumina (PAA) formed by electrochemical anodization have become a fundamental tool to develop various functional nanomaterials. However, it is still a great challenge to break the interpore distance (Dint) limit (500 nm) by using current anodization technologies of mild anodization (MA) and hard anodization (HA). Here, we reported a new anodization mode named “Janus anodization” (JA) to controllably fabricate self-ordered PAA with large Dint at high voltage of 350–400 V. JA naturally occurs as anodizing Al foils in citric acid solution, which possessing both the characteristics of MA and HA. The process can be divided into two stages: I, slow pore nucleation stage similar to MA; II, unequilibrium self-organization process similar to HA. The as-prepared films had the highest modulus (7.0 GPa) and hardness (127.2 GPa) values compared with the alumina obtained by MA and HA. The optical studies showed that the black films have low reflectance (<10 %) in the wavelength range of 250–1500 nm and photoluminescence property. Dint can be tuned between 645–884 nm by controlling citric acid concentration or anodization voltage. JA is a potential technology to efficiently and controllably fabricate microstructured or hybrid micro- and nanostructured materials with novel properties. PMID:27958365

  19. Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes

    PubMed Central

    Chernova, Ekaterina; Petukhov, Dmitrii; Boytsova, Olga; Alentiev, Alexander; Budd, Peter; Yampolskii, Yuri; Eliseev, Andrei

    2016-01-01

    New composite membranes based on porous anodic alumina films and polymer of intrinsic microporosity (PIM-1) have been prepared using a spin-coating technique. According to scanning electron microscopy, partial penetration of polymer into the pores of alumina supports takes place giving rise to selective polymeric layers with fiber-like microstructure. Geometric confinement of rigid PIM-1 in the channels of anodic alumina causes reduction of small-scale mobility in polymeric chains. As a result, transport of permanent gases, such as CH4, becomes significantly hindered across composite membranes. Contrary, the transport of condensable gases (CO2, С4H10), did not significantly suffer from the confinement due to high solubility in the polymer matrix. This strategy enables enhancement of selectivity towards CO2 and C4H10 without significant loss of the membrane performance and seems to be prospective for drain and sweetening of natural gas. PMID:27498607

  20. Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes

    NASA Astrophysics Data System (ADS)

    Chernova, Ekaterina; Petukhov, Dmitrii; Boytsova, Olga; Alentiev, Alexander; Budd, Peter; Yampolskii, Yuri; Eliseev, Andrei

    2016-08-01

    New composite membranes based on porous anodic alumina films and polymer of intrinsic microporosity (PIM-1) have been prepared using a spin-coating technique. According to scanning electron microscopy, partial penetration of polymer into the pores of alumina supports takes place giving rise to selective polymeric layers with fiber-like microstructure. Geometric confinement of rigid PIM-1 in the channels of anodic alumina causes reduction of small-scale mobility in polymeric chains. As a result, transport of permanent gases, such as CH4, becomes significantly hindered across composite membranes. Contrary, the transport of condensable gases (CO2, С4H10), did not significantly suffer from the confinement due to high solubility in the polymer matrix. This strategy enables enhancement of selectivity towards CO2 and C4H10 without significant loss of the membrane performance and seems to be prospective for drain and sweetening of natural gas.

  1. Electrical characterization of anodic alumina substrate with via-in-pad structure

    NASA Astrophysics Data System (ADS)

    Kim, Moonjung

    2013-10-01

    An anodic alumina substrate has been developed as a package substrate for dynamic random access memory devices. Unlike the conventional package substrates commonly made by laminating an epoxy-based core and cladding with copper, this substrate is fabricated using aluminum anodization technology. The anodization process produces a thick aluminum oxide layer on the aluminum substrate to be used as a dielectric layer. Placing copper patterns on the anodic aluminum oxide layer forms a new substrate structure that consists of a layered structure of aluminum, anodic aluminum oxide, and copper. Using selective anodization in the fabrication process, a via structure connecting the top copper layer and bottom aluminum layer is demonstrated. Additionally, by putting vias directly in the bond and ball pads in the substrate design, the via-in-pad structure is applied in this work. These two-layer metal structures and via-in-pad arrangements make routing easier and thus provide more design flexibility. Additionally, this new package substrate has improved the power distribution network impedance given the characteristics of these structures.

  2. Conductive super-hydrophobic surfaces of polyaniline modified porous anodic alumina membranes.

    PubMed

    Chen, Xinhua; Chen, Guangming; Ma, Yongmei; Li, Xinhong; Jiang, Lei; Wang, Fosong

    2006-03-01

    A conductive polymer polyaniline (PANI) was employed to achieve surfaces of both super-hydrophobic and conductive on NaOH etched porous anodic alumina (PAA) membranes. The surfaces exhibit micro- and nanostructures. In the PANI modified PAA membrane, PANI is mainly emeraldine. After the membrane was immersed in HCl, the content of the protonated nitrogen increased, which increased the conductivity.

  3. Simulator of Non-homogenous Alumina and Current Distribution in an Aluminum Electrolysis Cell to Predict Low-Voltage Anode Effects

    NASA Astrophysics Data System (ADS)

    Dion, Lukas; Kiss, László I.; Poncsák, Sándor; Lagacé, Charles-Luc

    2018-04-01

    Perfluorocarbons are important contributors to aluminum production greenhouse gas inventories. Tetrafluoromethane and hexafluoroethane are produced in the electrolysis process when a harmful event called anode effect occurs in the cell. This incident is strongly related to the lack of alumina and the current distribution in the cell and can be classified into two categories: high-voltage and low-voltage anode effects. The latter is hard to detect during the normal electrolysis process and, therefore, new tools are necessary to predict this event and minimize its occurrence. This paper discusses a new approach to model the alumina distribution behavior in an electrolysis cell by dividing the electrolytic bath into non-homogenous concentration zones using discrete elements. The different mechanisms related to the alumina distribution are discussed in detail. Moreover, with a detailed electrical model, it is possible to calculate the current distribution among the different anodic assemblies. With this information, the model can evaluate if low-voltage emissions are likely to be present under the simulated conditions. Using the simulator will help the understanding of the role of the alumina distribution which, in turn, will improve the cell energy consumption and stability while reducing the occurrence of high- and low-voltage anode effects.

  4. Fabrication of resistive switching memory structure using double-sided-anodized porous alumina

    NASA Astrophysics Data System (ADS)

    Morishita, Yoshitaka; Hosono, Takaya; Ogawa, Hiroto

    2017-05-01

    Double-sides of aluminum sheet were anodized; at first, one side (front-side) of aluminum sheet was anodized, and the pores were filled with nickel using electroplating technique. Next, the other side (back side) of aluminum sheet was anodized. After formation of electrodes on both sides of anodic porous alumina, the current-voltage characteristics were examined, and reversible change in the resistance between metallic and insulating states was measured during mono-polar operation. This switching behavior could be measured for the sample with the depth of backside pores of about 100 μm. The bias voltage, at which the resistance state changed into the lower-resistance state from the higher-resistance state, decreased with decreasing the depth of backside pores, and the bias voltage was about 1 V in the case of the backside pores of about 10 μm.

  5. Nanoporous alumina as templates for multifunctional applications

    NASA Astrophysics Data System (ADS)

    Sousa, C. T.; Leitao, D. C.; Proenca, M. P.; Ventura, J.; Pereira, A. M.; Araujo, J. P.

    2014-09-01

    Due to its manufacturing and size tailoring ease, porous anodic alumina (PAA) templates are an elegant physical-chemical nanopatterning approach and an emergent alternative to more sophisticated and expensive methods currently used in nanofabrication. In this review, we will describe the ground work on the fabrication methods of PAA membranes and PAA-based nanostructures. We will present the specificities of the electrochemical growth processes of multifunctional nanomaterials with diversified shapes (e.g., nanowires and nanotubes), and the fabrication techniques used to grow ordered nanohole arrays. We will then focus on the fabrication, properties and applications of magnetic nanostructures grown on PAA and illustrate their dependence on internal (diameter, interpore distance, length, composition) and external (temperature and applied magnetic field intensity and direction) parameters. Finally, the most outstanding experimental findings on PAA-grown nanostructures and their trends for technological applications (sensors, energy harvesting, metamaterials, and biotechnology) will be addressed.

  6. Effect of chain topology on crystallization within nanoporous alumina

    NASA Astrophysics Data System (ADS)

    Yao, Yang; Suzuki, Yasuhito; Sakai, Takamasa; Seiwert, Jan; Frey, Holger; Steinhart, Martin; Butt, Hans-Juergen; Floudas, George

    Polymer topology has inevitable influence on the structure, packing, and dynamic of chains. Herein, we investigate for the first time the impact of polymer architecture on crystallization under 2D confinement, the latter provided by nanoporous alumina (AAO). We employ two poly(ethylene oxide) (PEO) star polymers to study the effect of (i) end groups and (ii) molecular weight on polymer crystallization in the bulk and under confinement. Bulk end groups reduce the crystallization/melting temperatures and the corresponding equilibrium melting point. Under confinement, in the absence of catalyst, homogeneous nucleation prevails as with linear PEOs. The homogeneous nucleation temperatures for the star polymers agree with that of linear ones provided that the arm molecular weight is used instead. Long-range dynamics pertinent to star relaxation are affecting the homogeneous nucleation temperature. On the other hand, the segmental dynamics speed up on confinement. In addition to star PEO, we study the effect of another topology, i.e. hyperbranched PEO, on the nucleation mechanism.

  7. Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays

    DOE PAGES

    Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; ...

    2015-10-28

    We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D = 180 nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25 nm and 40 nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysismore » of the experimental data and calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D < 40 nm.« less

  8. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    PubMed

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-02

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  9. ATOMIC LAYER DEPOSITION OF TITANIUM OXIDE THIN FILMS ONNANOPOROUS ALUMINA TEMPLATES FOR MEDICAL APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brigmon, R.

    2009-05-05

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. Inmore » addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.« less

  10. High density group IV semiconductor nanowire arrays fabricated in nanoporous alumina templates

    NASA Astrophysics Data System (ADS)

    Redwing, Joan M.; Dilts, Sarah M.; Lew, Kok-Keong; Cranmer, Alexana E.; Mohney, Suzanne E.

    2005-11-01

    The fabrication of high density arrays of semiconductor nanowires is of interest for nanoscale electronics, chemical and biological sensing and energy conversion applications. We have investigated the synthesis, intentional doping and electrical characterization of Si and Ge nanowires grown by the vapor-liquid-solid (VLS) method in nanoporous alumina membranes. Nanoporous membranes provide a convenient platform for nanowire growth and processing, enabling control of wire diameter via pore size and the integration of contact metals for electrical testing. For VLS growth in nanoporous materials, reduced pressures and temperatures are required in order to promote the diffusion of reactants into the pore without premature decomposition on the membrane surface or pore walls. The effect of growth conditions on the growth rate of Si and Ge nanowires from SiH 4 and GeH 4 sources, respectively, was investigated and compared. In both cases, the measured activation energies for nanowire growth were substantially lower than activation energies typically reported for Si and Ge thin film deposition under similar growth conditions, suggesting that gold plays a catalytic role in the VLS growth process. Intentionally doped SiNW arrays were also prepared using trimethylboron (TMB) and phosphine (PH 3) as p-type and n-type dopant sources, respectively. Nanowire resistivities were calculated from plots of the array resistance as a function of nanowire length. A decrease in resistivity was observed for both n-type and p-type doped SiNW arrays compared to those grown without the addition of a dopant source.

  11. Method for Synthesizing Metal Nanowires in Anodic Alumina Membranes Using Solid State Reduction

    NASA Technical Reports Server (NTRS)

    Martinez-Inesta, Maria M (Inventor); Feliciano, Jennie (Inventor); Quinones-Fontalvo, Leonel (Inventor)

    2016-01-01

    The invention proposes a novel method for the fabrication of regular arrays of MNWs using solid-state reduction (SSR). Using this method copper (Cu), silver (Ag), and palladium (Pd) nanowire (NWs) arrays were synthesized using anodic alumina membranes (AAMs) as templates. Depending on the metal loading used the NWs reached different diameters.

  12. A nanoporous metal recuperated MnO2 anode for lithium ion batteries.

    PubMed

    Guo, Xianwei; Han, Jiuhui; Zhang, Ling; Liu, Pan; Hirata, Akihiko; Chen, Luyang; Fujita, Takeshi; Chen, Mingwei

    2015-10-07

    Lithium-ion batteries (LIBs) have been intensively studied to meet the increased demands for the high energy density of portable electronics and electric vehicles. The low specific capacity of the conventional graphite based anodes is one of the key factors that limit the capacity of LIBs. Transition metal oxides, such as NiO, MnO2 and Fe3O4, are known to be promising anode materials that are expected to improve the specific capacities of LIBs for several times. However, the poor electrical conductivity of these oxides significantly restricts the lithium ion storage and charge/discharge rate. Here we report that dealloyed nanoporous metals can realize the intrinsic lithium storage performance of the oxides by forming oxide/metal composites. Without any organic binder, conductive additive and additional current collector, the hybrid electrodes can be directly used as anodes and show highly reversible specific capacity with high-rate capability and long cyclic stability.

  13. Fabrication and Characterization of Single Phase α-Alumina Membranes with Tunable Pore Diameters

    PubMed Central

    Masuda, Tatsuya; Asoh, Hidetaka; Haraguchi, Satoshi; Ono, Sachiko

    2015-01-01

    Nanoporous and single phase α-alumina membranes with pore diameters tunable over a wide range of approximately 60–350 nm were successfully fabricated by optimizing the conditions for anodizing, subsequent detachment, and heat treatment. The pore diameter increased and the cell diameter shrunk upon crystallization to α-alumina by approximately 20% and 3%, respectively, in accordance with the 23% volume shrinkage resulting from the change in density associated with the transformation from the amorphous state to α-alumina. Nevertheless, flat α-alumina membranes, each with a diameter of 25 mm and a thickness of 50 μm, were obtained without thermal deformation. The α-alumina membranes exhibited high chemical resistance in various concentrated acidic and alkaline solutions as well as when exposed to high temperature steam under pressure. The Young’s modulus and hardness of the single phase α-alumina membranes formed by heat treatment at 1250 °C were notably decreased compared to the corresponding amorphous membranes, presumably because of the nodular crystallite structure of the cell walls and the substantial increase in porosity. Furthermore, when used for filtration, the α-alumina membrane exhibited a level of flux higher than that of the commercial ceramic membrane. PMID:28788005

  14. Nanoporous anodic titanium dioxide layers as potential drug delivery systems: Drug release kinetics and mechanism.

    PubMed

    Jarosz, Magdalena; Pawlik, Anna; Szuwarzyński, Michał; Jaskuła, Marian; Sulka, Grzegorz D

    2016-07-01

    Nanoporous anodic titanium dioxide (ATO) layers on Ti foil were prepared via a three step anodization process in an electrolyte based on an ethylene glycol solution with fluoride ions. Some of the ATO samples were heat-treated in order to achieve two different crystallographic structures - anatase (400°C) and a mixture of anatase and rutile (600°C). The structural and morphological characterizations of ATO layers were performed using a field emission scanning electron microscope (SEM). The hydrophilicity of ATO layers was determined with contact angle measurements using distilled water. Ibuprofen and gentamicin were loaded effectively inside the ATO nanopores. Afterwards, an in vitro drug release was conducted for 24h under a static and dynamic flow conditions in a phosphate buffer solution at 37°C. The drug concentrations were determined using UV-Vis spectrophotometry. The absorbance of ibuprofen was measured directly at 222nm, whether gentamicin was determined as a complex with silver nanoparticles (Ag NPs) at 394nm. Both compounds exhibited long term release profiles, despite the ATO structure. A new release model, based on the desorption of the drug from the ATO top surface followed by the desorption and diffusion of the drug from the nanopores, was derived. The proposed release model was fitted to the experimental drug release profiles, and kinetic parameters were calculated. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Giant increase in the metal-enhanced fluorescence of organic molecules in nanoporous alumina templates and large molecule-specific red/blue-shift of the fluorescence peak.

    PubMed

    Sarkar, S; Kanchibotla, B; Nelson, J D; Edwards, J D; Anderson, J; Tepper, G C; Bandyopadhyay, S

    2014-10-08

    The fluorescence of organic fluorophore molecules is enhanced when they are placed in contact with certain metals (Al, Ag, Cu, Au, etc.) whose surface plasmon waves couple into the radiative modes of the molecules and increase the radiative efficiency. Here, we report a hitherto unknown size dependence of this metal-enhanced fluorescence (MEF) effect in the nanoscale. When the molecules are deposited in nanoporous anodic alumina films with exposed aluminum at the bottom of the pores, they form organic nanowires standing on aluminum nanoparticles whose plasmon waves have much larger amplitudes. This increases the MEF strongly, resulting in several orders of magnitude increase in the fluorescence intensity of the organic fluorophores. The increase in intensity shows an inverse superlinear dependence on nanowire diameter because the nanowires also act as plasmonic "waveguides" that concentrate the plasmons and increase the coupling of the plasmons with the radiative modes of the molecules. Furthermore, if the nanoporous template housing the nanowires has built-in electric fields due to space charges, a strong molecule-specific red- or blue-shift is induced in the fluorescence peak owing to a renormalization of the dipole moment of the molecule. This can be exploited to detect minute amounts of target molecules in a mixture using their optical signature (fluorescence) despite the presence of confounding background signals. It can result in a unique new technology for biosensing and chemical sensing.

  16. Surface enhanced Raman scattering of biospecies on anodized aluminum oxide films

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Smirnov, A. I.; Hahn, D.; Grebel, H.

    2007-06-01

    Traditionally, aluminum and anodized aluminum oxide films (AAO) are not the platforms of choice for surface-enhanced raman scattering (SERS) experiments despite of the aluminum's large negative permittivity value. Here we examine the usefulness of aluminum and nanoporous alumina platforms for detecting soft biospecies ranging from bacterial spores to protein markers. We used these flat platforms to examine SERS of a model protein (cytochrome c from bovine heart tissue) and bacterial cells (spores of Bacillus subtilis ATCC13933 used as Anthrax simulant) and demonstrated clear Raman amplification.

  17. Biocompatibility of nanoporous alumina membranes for immunoisolation

    PubMed Central

    La Flamme, Kristen E.; Popat, Ketul C.; Leoni, Lara; Markiewicz, Erica; LaTempa, Thomas J.; Roman, Brian B.; Grimes, Craig A.; Desai, Tejal A.

    2011-01-01

    Cellular immunoisolation using semi-permeable barriers has been investigated over the past several decades as a promising treatment approach for diseases such as Parkinson’s, Alzheimer’s, and Type 1 diabetes. Typically, polymeric membranes are used for immunoisolation applications; however, recent advances in technology have led to the development of more robust membranes that are able to more completely meet the requirements for a successful immunoisolation device, including well controlled pore size, chemical and mechanical stability, non-biodegradability, and biocompatibility with both the graft tissue as well as the host. It has been shown previously that nanoporous alumina biocapsules can act effectively as immunoisolation devices, and support the viability and functionality of encapsulated β cells. The aim of this investigation was to assess the biocompatibility of the material with host tissue. The cytotoxicity of the capsule, as well as its ability to activate complement and inflammation was studied. Further, the effects of PEG-modification on the tissue response to implanted capsules were studied. Our results have shown that the device is non-toxic and does not induce significant complement activation. Further, in vivo work has demonstrated that implantation of these capsules into the peritoneal cavity of rats induces a transient inflammatory response, and that PEG is useful in minimizing the host response to the material. PMID:17335895

  18. Preparing nano-hole arrays by using porous anodic aluminum oxide nano-structural masks for the enhanced emission from InGaN/GaN blue light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoang-Duy; Nguyen, Hieu Pham Trung; Lee, Jae-jin; Mho, Sun-Il

    2012-12-01

    We report on the achievement of the enhanced cathodoluminescence (CL) from InGaN/GaN light-emitting diodes (LEDs) by using roughening surface. Nanoporous anodic aluminum oxide (AAO) mask was utilized to form nano-hole arrays on the surface of InGaN/GaN LEDs. AAO membranes with ordered hexagonal structures were fabricated from aluminum foils by a two-step anodization method. The average pore densities of ˜1.0 × 1010 cm-2 and 3.0 × 1010 cm-2 were fabricated with the constant anodization voltages of 25 and 40 V, respectively. Anodic porous alumina film with a thickness of ˜600 nm has been used as a mask for the induced couple plasma etching process to fabricate nano-hole arrays on the LED surface. Diameter and depth of nano-holes can be controlled by varying the etching duration and/or the diameter of AAO membranes. Due to the reduction of total internal reflection obtained in the patterned samples, we have observed that the cathodoluminescence intensity of LEDs with nanoporous structures is increased up to eight times compared to that of samples without using nanoporous structure.

  19. Luminescence characteristics of nanoporous anodic alumina annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Ilin, D. O.; Vokhmintsev, A. S.; Weinstein, I. A.

    2016-09-01

    Anodic aluminum oxide (AAO) membranes with 100 µm thickness were synthesized in oxalic acid solution under constant current density. Grown samples were annealed in 500-1250 °C range for 5 h in air. Average pore diameter was evaluated using quantitative analysis of SEM images and appeared to be within 78-86 nm diapason. It was found there was a broad emission band in the 350-620 nm region of photoluminescence (PL) spectra in amorphous membranes which is attributed to F-type oxygen deficient centers or oxalic ions. It was shown that intensive red emission caused by Cr3+ (696 nm) and Mn4+ (680 nm) impurities dominates in PL of AAO samples with crystalline α- and δ-phases after annealing at 1100-1250 °C temperatures.

  20. Synthesis and photocatalytic properties of graphitic carbon nitride nanofibers using porous anodic alumina templates

    NASA Astrophysics Data System (ADS)

    Suchitra, S. M.; Udayashankar, N. K.

    2017-12-01

    In the present study, we describe an effective method for the synthesis of Graphitic carbon nitride (GCN) nanostructures using porous anodic alumina (AAO) membrane as template by simple thermal condensation of cyanamide. Synthesized nanostructure was fully analysed by various techniques to detect its crystalline nature, morphology, luminescent properties followed by the evaluation of its photocatalytic activity in the degradation of Methylene blue dye. Structural analysis of synthesized GCNNF was systematically carried out using x-ray powder diffraction (XRD) and scanning electron microscope (SEM), and. The results confirmed the growth of GCN inside the nanochannels of anodic alumina templates. Luminescent properties of GCNNF were studied using photoluminescence (PL) spectroscopy. PL analysis showed the presence of a strong emission peak in the wavelength range of 350-600 nm in blue region. GCNNF displays higher photocatalytic performance in the photodegradation of methylene blue compare to the bulk GCN. Highlights 1. In the present paper, we report the synthesis of graphitic carbon nitride nanofibers (GCNNF) using porous anodic aluminium oxide membranes as templates through thermal condensation of cyanamide at 500 °C. 2. The synthesis of Graphitic carbon nitride nanofibers using porous andic alumina template is the efficient approach for increasing crystallinity and surface area. 3. The high surface area of graphitic carbon nitride nanofibers has a good impact on novel optical and photocatalytic properties of the bulkGCN. 4. AAO templating of GCN is one of the versatile method to produce tailorable GCN nanostructures with higher surface area and less number of structural defects. 5. Towards photocatalytic degradation of dyes, the tuning of physical properties is very essential thing hence we are succeeded in achieving better catalytic performance of GCN nanostructures by making use of AAO templates.

  1. Formation of multicomponent matrix metal oxide films in anodic alumina matrixes by chemical deposition

    NASA Astrophysics Data System (ADS)

    Gorokh, G. G.; Zakhlebayeva, A. I.; Metla, A. I.; Zhilinskiy, V. V.; Murashkevich, A. N.; Bogomazova, N. V.

    2017-11-01

    The metal oxide films of SnxZnyOz and SnxMoyOz systems deposited onto anodic alumina matrixes by chemical and ion layering from an aqueous solutions were characterized by scanning electron microscopy, Raman spectroscopy, electron probe X-ray microanalysis and IR spectroscopy. The obtained matrix films had reproducible composition and structure and possessed certain morphological characteristics and properties.

  2. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    PubMed Central

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  3. Morphological evolution of porous nanostructures grown from a single isolated anodic alumina nanochannel.

    PubMed

    Chen, Shih-Yung; Chang, Hsuan-Hao; Lai, Ming-Yu; Liu, Chih-Yi; Wang, Yuh-Lin

    2011-09-07

    Porous anodic aluminum oxide (AAO) membranes have been widely used as templates for growing nanomaterials because of their ordered nanochannel arrays with high aspect ratio and uniform pore diameter. However, the intrinsic growth behavior of an individual AAO nanochannel has never been carefully studied for the lack of a means to fabricate a single isolated anodic alumina nanochannel (SIAAN). In this study, we develop a lithographic method for fabricating a SIAAN, which grows into a porous hemispherical structure with its pores exhibiting fascinating morphological evolution during anodization. We also discover that the mechanical stress affects the growth rate and pore morphology of AAO porous structures. This study helps reveal the growth mechanism of arrayed AAO nanochannels grown on a flat aluminum surface and provides insights to help pave the way to altering the geometry of nanochannels on AAO templates for the fabrication of advanced nanocomposite materials.

  4. Morphological evolution of porous nanostructures grown from a single isolated anodic alumina nanochannel

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Yung; Chang, Hsuan-Hao; Lai, Ming-Yu; Liu, Chih-Yi; Wang, Yuh-Lin

    2011-09-01

    Porous anodic aluminum oxide (AAO) membranes have been widely used as templates for growing nanomaterials because of their ordered nanochannel arrays with high aspect ratio and uniform pore diameter. However, the intrinsic growth behavior of an individual AAO nanochannel has never been carefully studied for the lack of a means to fabricate a single isolated anodic alumina nanochannel (SIAAN). In this study, we develop a lithographic method for fabricating a SIAAN, which grows into a porous hemispherical structure with its pores exhibiting fascinating morphological evolution during anodization. We also discover that the mechanical stress affects the growth rate and pore morphology of AAO porous structures. This study helps reveal the growth mechanism of arrayed AAO nanochannels grown on a flat aluminum surface and provides insights to help pave the way to altering the geometry of nanochannels on AAO templates for the fabrication of advanced nanocomposite materials.

  5. Fabrication and Characterization of Nanoporous Niobia, and Nanotubular Tantala, Titania and Zirconia via Anodization

    PubMed Central

    Minagar, Sepideh; Berndt, Christopher C.; Wen, Cuie

    2015-01-01

    Valve metals such as titanium (Ti), zirconium (Zr), niobium (Nb) and tantalum (Ta) that confer a stable oxide layer on their surfaces are commonly used as implant materials or alloying elements for titanium-based implants, due to their exceptional high corrosion resistance and excellent biocompatibility. The aim of this study was to investigate the bioactivity of the nanostructures of tantala (Ta2O5), niobia (Nb2O5), zirconia (ZrO2) and titania (TiO2) in accordance to their roughness and wettability. Therefore, four kinds of metal oxide nanoporous and nanotubular Ta2O5, Nb2O5, ZrO2 and TiO2 were fabricated via anodization. The nanosize distribution, morphology and the physical and chemical properties of the nanolayers and their surface energies and bioactivities were investigated using SEM-EDS, X-ray diffraction (XRD) analysis and 3D profilometer. It was found that the nanoporous Ta2O5 exhibited an irregular porous structure, high roughness and high surface energy as compared to bare tantalum metal; and exhibited the most superior bioactivity after annealing among the four kinds of nanoporous structures. The nanoporous Nb2O5 showed a uniform porous structure and low roughness, but no bioactivity before annealing. Overall, the nanoporous and nanotubular layers of Ta2O5, Nb2O5, ZrO2 and TiO2 demonstrated promising potential for enhanced bioactivity to improve their biomedical application alone or to improve the usage in other biocompatible metal implants. PMID:25837724

  6. Redox behavior of uranium at the nanoporous aluminum oxide-water interface: implications for uranium remediation.

    PubMed

    Jung, Hun Bok; Boyanov, Maxim I; Konishi, Hiromi; Sun, Yubing; Mishra, Bhoopesh; Kemner, Kenneth M; Roden, Eric E; Xu, Huifang

    2012-07-03

    Sorption-desorption experiments show that the majority (ca. 80-90%) of U(VI) presorbed to mesoporous and nanoporous alumina could not be released by extended (2 week) extraction with 50 mM NaHCO(3) in contrast with non-nanoporous α alumina. The extent of reduction of U(VI) presorbed to aluminum oxides was semiquantitatively estimated by comparing the percentages of uranium desorbed by anoxic sodium bicarbonate between AH(2)DS-reacted and unreacted control samples. X-ray absorption spectroscopy confirmed that U(VI) presorbed to non-nanoporous alumina was rapidly and completely reduced to nanoparticulate uraninite by AH(2)DS, whereas reduction of U(VI) presorbed to nanoporous alumina was slow and incomplete (<5% reduction after 1 week). The observed nanopore size-dependent redox behavior of U has important implications in developing efficient remediation techniques for the subsurface uranium contamination because the efficiency of in situ bioremediation depends on how effectively and rapidly U(VI) bound to sediment or soil can be converted to an immobile phase.

  7. Wettability transition induced transformation and entrapment of polymer nanostructures in cylindrical nanopores.

    PubMed

    Feng, Xunda; Mei, Shilin; Jin, Zhaoxia

    2011-12-06

    We apply the concept of wettability transition to manipulate the morphology and entrapment of polymer nanostructures inside cylindrical nanopores of anodic aluminum oxide (AAO) membranes. When AAO/polystyrene (PS) hybrids, i.e., AAO/PS nanorods or AAO/PS nanotubes, are immersed into a polyethylene glycol (PEG) reservoir above the glass transition temperature of PS, a wettability transition from wetting to nonwetting of PS can be triggered due to the invasion of the more wettable PEG melt. The wettability transition enables us to develop a nondestructive method to entrap hemispherically capped nanorods inside nanopores. Moreover, we can obtain single nanorods with the desired aspect ratio by further dissolving the AAO template, in contrast to the drawbacks of nonuniformity or destructiveness from the conventional ultrasonication method. In the case of AAO/PS nanotubes, the wettability transition induced dewetting of PS nanotube walls results in the disconnection and entrapment of nonwetting PS domains (i.e., nanospheres, nanocapsules, or capped nanorods). Moreover, PEG is then washed to recover the pristine wettability of PS on the alumina surface; further annealing of the PS nanospheres inside AAO nanopores under vacuum can generate some unique nanostructures, particularly semicylindrical nanorods. © 2011 American Chemical Society

  8. Nanoporous palladium anode for direct ethanol solid oxide fuel cells with nanoscale proton-conducting ceramic electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Yong; Wong, Lai Mun; Xie, Hanlin; Wang, Shijie; Su, Pei-Chen

    2017-02-01

    In this work, we demonstrate the operation of micro-solid oxide fuel cells (μ-SOFCs) with nanoscale proton-conducting Y-BaZrO3 (BZY) electrolyte to avoid the fuel crossover problem for direct ethanol fuel cells (DEFCs). The μ-SOFCs are operated with the direct utilisation of ethanol vapour as a fuel and Pd as anode at the temperature range of 300-400 °C. The nanoporous Pd anode is achieved by DC sputtering at high Ar pressure of 80 mTorr. The Pd-anode/BYZ-electrolyte/Pt-cathode cell show peak power densities of 72.4 mW/cm2 using hydrogen and 15.3 mW/cm2 using ethanol at 400 °C. No obvious carbon deposition is seen from XPS analysis after fuel cell test with ethanol fuel.

  9. Formation of crack-free nanoporous tin oxide layers via simple one-step anodic oxidation in NaOH at low applied voltages

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Gilek, Dominika; Gawlak, Karolina; Jaskuła, Marian; Sulka, Grzegorz D.

    2016-12-01

    A simple anodic oxidation of metallic tin in fluoride-free alkaline electrolyte at low potentials was proposed as a new and effective strategy for fabrication of crack-free nanoporous tin oxide layers. A low-purity Sn foil (98.8%) was used as a starting material, and a series of anodizations were performed in 1 M NaOH at different conditions such as anodizing potential, and duration of the process. It was proved for the first time that nanostructured tin oxides with ultra-small nanochannels having diameters of <15 nm can be synthesized by simple anodization of metallic tin at a potential of 2 V in 1 M NaOH electrolyte. Increasing anodizing potential to 3 and 4 V allowed for formation of tin oxide layers with much larger pores (40-50 nm in diameter) which were still free from internal cracks and transversal pores. Applying such low potentials significantly reduces the oxide growth rate and suppresses vigorous oxygen evolution at the anode. As a result mechanical deterioration of the oxide structure is prevented while strongly alkaline electrolyte is responsible for formation of the porous layer with completely open pores even at such low potentials. On the contrary, when anodization was carried out at potentials of 5 and 6 V, much faster formation of anodic layer, accompanied by vigorous oxygen gas formation, was observed. In consequence, as grown oxide layers exhibited typical cracked or even stacked internal structure. Finally, we demonstrated for the first time that nanoporous tin oxide layers with segments of different channel sizes can be successfully obtained by simple altering potential during anodization.

  10. Two-Step Cycle for Producing Multiple Anodic Aluminum Oxide (AAO) Films with Increasing Long-Range Order

    PubMed Central

    2017-01-01

    Nanoporous anodic aluminum oxide (AAO) membranes are being used for an increasing number of applications. However, the original two-step anodization method in which the first anodization is sacrificial to pre-pattern the second is still widely used to produce them. This method provides relatively low throughput and material utilization as half of the films are discarded. An alternative scheme that relies on alternating anodization and cathodic delamination is demonstrated that allows for the fabrication of several AAO films with only one sacrificial layer thus greatly improving total aluminum to alumina yield. The thickness for which the cathodic delamination performs best to yield full, unbroken AAO sheets is around 85 μm. Additionally, an image analysis method is used to quantify the degree of long-range ordering of the unit cells in the AAO films which was found to increase with each successive iteration of the fabrication cycle. PMID:28630684

  11. Two-Step Cycle for Producing Multiple Anodic Aluminum Oxide (AAO) Films with Increasing Long-Range Order.

    PubMed

    Choudhary, Eric; Szalai, Veronika

    2016-01-01

    Nanoporous anodic aluminum oxide (AAO) membranes are being used for an increasing number of applications. However, the original two-step anodization method in which the first anodization is sacrificial to pre-pattern the second is still widely used to produce them. This method provides relatively low throughput and material utilization as half of the films are discarded. An alternative scheme that relies on alternating anodization and cathodic delamination is demonstrated that allows for the fabrication of several AAO films with only one sacrificial layer thus greatly improving total aluminum to alumina yield. The thickness for which the cathodic delamination performs best to yield full, unbroken AAO sheets is around 85 μm. Additionally, an image analysis method is used to quantify the degree of long-range ordering of the unit cells in the AAO films which was found to increase with each successive iteration of the fabrication cycle.

  12. Synthesis and characterization of nanoporous anodic oxide film on aluminum in H3PO4 + KMnO4 electrolyte mixture at different anodization conditions

    NASA Astrophysics Data System (ADS)

    Verma, Naveen; Jindal, Jitender; Singh, Krishan Chander; Mari, Bernabe

    2016-04-01

    The micro structural properties of nanoporous anodic oxide film formed in H3PO4 were highly influenced by addition of a low concentration of KMnO4 (0.0005 M) in 1 M H3PO4 solution. The KMnO4 as additive enhanced the growth rate of oxide film formation as well as thickness of pore walls. Furthermore the growth rate was found increased with increase in applied current density. The increase in temperature and lack of stirring during anodization causes the thinness of pore wall which leads to increase in pore volume. With the decrease in concentration of H3PO4 in anodizing electrolyte from 1M to 0.3 M, keeping all other conditions constant, the decrease in porosity was observed. This might be due to the dissolution of aluminium oxide film in highly concentrated acidic solution.

  13. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  14. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.

    PubMed

    Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan

    2013-03-07

    Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.

  15. Nanoporous Tin with a Granular Hierarchical Ligament Morphology as a Highly Stable Li-Ion Battery Anode

    DOE PAGES

    Cook, John B.; Detsi, Eric; Liu, Yijin; ...

    2016-12-07

    Next generation Li-ion batteries will require negative electrode materials with energy densities many-fold higher than that found in the graphitic carbon currently used in commercial Li-ion batteries. While various nanostructured alloying-type anode materials may satisfy that requirement, such materials do not always exhibit long cycle lifetimes and/or their processing routes are not always suitable for large-scale synthesis. Here, we report on a high-performance anode material for next generation Li-ion batteries made of nanoporous Sn powders with hierarchical ligament morphology. This material system combines both long cycle lifetimes (more than 72% capacity retention after 350 cycles), high capacity (693 mAh/g, nearlymore » twice that of commercial graphitic carbon), good charging/discharging capabilities (545 mAh/g at 1 A/g, 1.5C), and a scalable processing route that involves selective alloy corrosion. The good cycling performance of this system is attributed to its nanoporous architecture and its unique hierarchical ligament morphology, which accommodates the large volume changes taking place during lithiation, as confirmed by synchrotron-based ex-situ X-ray 3D tomography analysis. In conclusion, our findings are an important step for the development of high-performance Li-ion batteries.« less

  16. A dynamic inert metal anode.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hryn, J. N.

    1998-11-09

    A new concept for a stable anode for aluminum electrowinning is described. The anode consists of a cup-shaped metal alloy container filled with a molten salt that contains dissolved aluminum. The metal alloy can be any of a number of alloys, but it must contain aluminum as a secondary alloying metal. A possible alloy composition is copper with 5 to 15 weight percent aluminum. In the presence of oxygen, aluminum on the metal anode's exterior surface forms a continuous alumina film that is thick enough to protect the anode from chemical attack by cryolite during electrolysis and thin enough tomore » maintain electrical conductivity. However, the alumina film is soluble in cryolite, so it must be regenerated in situ. Film regeneration is achieved by the transport of aluminum metal from the anode's molten salt interior through the metal wall to the anode's exterior surface, where the transported aluminum oxidizes to alumina in the presence of evolving oxygen to maintain the protective alumina film. Periodic addition of aluminum metal to the anode's interior keeps the aluminum activity in the molten salt at the desired level. This concept for an inert anode is viable as long as the amount of aluminum produced at the cathode greatly exceeds the amount of aluminum required to maintain the anode's protective film.« less

  17. Based on Cu as framework constructed nanoporous CuO/Cu composites by a dealloy method for sodium-ion battery anode

    NASA Astrophysics Data System (ADS)

    Zheng, Tian; Li, Guangda; Li, Deming; Meng, Xiangeng

    2018-05-01

    Nanoporous CuO/Cu composites with a continuous channel structure were fabricated through a corroding Cu-Al alloy process. The width of the continuous channels was about 20 50 nm. Nanoporous structure could effectively sustain the volume expansion during the Na+ insertion/extraction process and shorten the Na+ diffusion length as well, which thus helps improve the Na+ storage performance. Moreover, the nanoporous structure can improve the contact area between the electrolyte and the electrode, leading to an increment in the number of Na+ insertion/extraction sites. When used as the anode for sodium-ion batteries, the CuO/Cu exhibited an initial capacity of 580 mAh g-1, and the capacity is maintained at 200 mAh g-1 after 200 cycles at a current density of 500 mA g-1.

  18. Confining metal-halide perovskites in nanoporous thin films

    PubMed Central

    Demchyshyn, Stepan; Roemer, Janina Melanie; Groiß, Heiko; Heilbrunner, Herwig; Ulbricht, Christoph; Apaydin, Dogukan; Böhm, Anton; Rütt, Uta; Bertram, Florian; Hesser, Günter; Scharber, Markus Clark; Sariciftci, Niyazi Serdar; Nickel, Bert; Bauer, Siegfried; Głowacki, Eric Daniel; Kaltenbrunner, Martin

    2017-01-01

    Controlling the size and shape of semiconducting nanocrystals advances nanoelectronics and photonics. Quantum-confined, inexpensive, solution-derived metal halide perovskites offer narrowband, color-pure emitters as integral parts of next-generation displays and optoelectronic devices. We use nanoporous silicon and alumina thin films as templates for the growth of perovskite nanocrystallites directly within device-relevant architectures without the use of colloidal stabilization. We find significantly blue-shifted photoluminescence emission by reducing the pore size; normally infrared-emitting materials become visibly red, and green-emitting materials become cyan and blue. Confining perovskite nanocrystals within porous oxide thin films drastically increases photoluminescence stability because the templates auspiciously serve as encapsulation. We quantify the template-induced size of the perovskite crystals in nanoporous silicon with microfocus high-energy x-ray depth profiling in transmission geometry, verifying the growth of perovskite nanocrystals throughout the entire thickness of the nanoporous films. Low-voltage electroluminescent diodes with narrow, blue-shifted emission fabricated from nanocrystalline perovskites grown in embedded nanoporous alumina thin films substantiate our general concept for next-generation photonic devices. PMID:28798959

  19. Branchy alumina nanotubes

    NASA Astrophysics Data System (ADS)

    Zou, Jianping; Pu, Lin; Bao, Ximao; Feng, Duan

    2002-02-01

    Branchy alumina nanotubes (bANTs) have been shown to exist in aluminum oxide. Electron-beam evaporated 400 nm Al film on Si substrate is stepwise anodized in dilute sulfuric acid under the constant dc voltage 40 V at 10.0 °C. This electrochemical-anodizing route resulted in the formation of individual bANTs. Transmission electron microscopy showed that the length of the bANTs was around 450 nm, and the inner diameter was around 10-20 nm. We deduced that the bANTs, the completely detached multibranchy cells of anodic porous alumina (APA) film, should be evolved from the stagnant cells of the APA mother film. The bANTs may be used as templates in fabrication of individual branchy nanoscale cables, jacks, and heterojunctions. The proposed formation mechanisms of the bANTs and the stagnant cells should give some insights into the long-standing problem of APA film, i.e., the self-ordering mechanism of the cells arrangement in porous anodization of aluminum.

  20. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials.

    PubMed

    Ni, Siyu; Li, Xiaohong; Yang, Pengan; Ni, Shirong; Hong, Feng; Webster, Thomas J

    2016-01-01

    In this study, to provide porous anodic alumina (PAA) with bioactivity and anti-bacterial properties, sol-gel derived bioactive CaO-SiO2-Ag2O materials were loaded onto and into PAA nano-pores (termed CaO-SiO2-Ag2O/PAA) by a sol-dipping method and subsequent calcination of the gel-glasses. The in vitro apatite-forming ability of the CaO-SiO2-Ag2O/PAA specimens was evaluated by soaking them in simulated body fluid (SBF). The surface microstructure and chemical property before and after soaking in SBF were characterized. Release of ions into the SBF was also measured. In addition, the antibacterial properties of the samples were tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results showed that CaO-SiO2-Ag2O bioactive materials were successfully decorated onto and into PAA nano-pores. In vitro SBF experiments revealed that the CaO-SiO2-Ag2O/PAA specimens dramatically enhanced the apatite-forming ability of PAA in SBF and Ca, Si and Ag ions were released from the samples in a sustained and slow manner. Importantly, E. coli and S. aureus were both killed on the CaO-SiO2-Ag2O/PAA (by 100%) samples compared to PAA controls after 3 days of culture. In summary, this study demonstrated that the CaO-SiO2-Ag2O/PAA samples possess good apatite-forming ability and high antibacterial activity causing it to be a promising bioactive coating candidate for implant materials for orthopedic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Formation and disruption of current paths of anodic porous alumina films by conducting atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Oyoshi, K.; Nigo, S.; Inoue, J.; Sakai, O.; Kitazawa, H.; Kido, G.

    2010-11-01

    Anodic porous alumina (APA) films have a honeycomb cell structure of pores and a voltage-induced bi-stable switching effect. We have applied conducting atomic force microscopy (CAFM) as a method to form and to disrupt current paths in the APA films. A bi-polar switching operation was confirmed. We have firstly observed terminals of current paths as spots or areas typically on the center of the triangle formed by three pores. In addition, though a part of the current path showed repetitive switching, most of them were not observed again at the same position after one cycle of switching operations in the present experiments. This suggests that a part of alumina structure and/or composition along the current paths is modified during the switching operations.

  2. Superhydrophilicity of a nanofiber-covered aluminum surface fabricated via pyrophosphoric acid anodizing

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2016-12-01

    A superhydrophilic aluminum surface covered by numerous alumina nanofibers was fabricated via pyrophosphoric acid anodizing. High-density anodic alumina nanofibers grow on the bottom of a honeycomb oxide via anodizing in concentrated pyrophosphoric acid. The water contact angle on the nanofiber-covered aluminum surface decreased with time after a 4 μL droplet was placed on the surface, and a superhydrophilic behavior with a contact angle measuring 2.2° was observed within 2 s; this contact angle is considerably lower than those observed for electropolished and porous alumina-covered aluminum surfaces. There was no dependence of the superhydrophilicity on the density of alumina nanofibers fabricated via different constant voltage anodizing conditions. The superhydrophilic property of the surface covered by anodic alumina nanofibers was maintained during an exposure test for 359 h. The quick-drying and snow-sliding behaviors of the superhydrophilic aluminum covered with anodic alumina nanofibers were demonstrated.

  3. Optical and magnetic properties of porous anodic alumina/Ni nanocomposite films

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-Jing; Li, Zi-Yue; Zhang, Zhi-Jun; Wu, Tian-Shan; Sun, Hui-Yuan

    2013-06-01

    A simple method to tune the optical properties of porous anodic alumina (PAA) films embedded with Ni is reported. The films display highly saturated colors after being synthesized by an ac electrodeposition method. The optical properties of the samples can be effectively tuned by varying the oxidation time of aluminum. The ultrashort Ni nanowires (100 nm long and 50 nm in diameter) present only fcc phase and show no apparent averaged effective magnetic anisotropy. The coercivity mechanism of the Ni nanowires in our case is consistent with fanning mechanism based on a chain-of-spheres model. PAA/Ni films with structural color and magnetic properties have friability-resistant feature and can be used in many areas, including decoration, display, and multifunctional anti-counterfeiting technology.

  4. Nanoporous TiNb2O7/C Composite Microspheres with Three-Dimensional Conductive Network for Long-Cycle-Life and High-Rate-Capability Anode Materials for Lithium-Ion Batteries.

    PubMed

    Zhu, Guozhen; Li, Qing; Zhao, Yunhao; Che, Renchao

    2017-11-29

    On the basis of the advantages of ideal cycling stability, high discharge voltage (1.65 V), and excellent reversibility, more and more attention has been focused on TiNb 2 O 7 (marked as TNO) as an anode material candidate for lithium-ion batteries. However, the poor electronic conductivity and low ionic diffusion rate intrinsically restrict its practical use. Herein, we first synthesize the TNO/C composite microspheres with three-dimensionally (marked as 3D) electro-conductive carbon network and abundant nanoporous structure by a simple spray-drying method. The microspheres are constructed by irregularly primary cubic nanoparticle units with size of 100-200 nm. The nanopores throughout the microspheres range from 1 to 50 nm. As an anode material, the prepared TNO/C composite microspheres demonstrate a prominent charge/discharge capacity of 323.2/326 mA h g -1 after 300 cycles at 0.25 C (1 C = 388 mA g -1 ) and 259.9/262.5 mA h g -1 after 1000 long cycles at a high current density of 5 C, revealing the ideal reversible capacity and long cycling life. Meanwhile, the TNO/C composite microspheres present ideal rate performance, showing the discharge capacity of 120 mA h g -1 at 30 C after 10 cycles. The super electrochemical performance could be attributed to the 3D electro-conductive carbon network and nanoporous structure. The nanopores facilitate the permeation of electrolyte into the intercontacting regions of the anode materials. Carbon layers disperse uniformly throughout the 3D microspheres, effectively improving the electrical conductivity of the electrode. Hence, the prepared TNO/C composite microspheres have great potential to be used as an anode material for lithium-ion batteries.

  5. Anode film formation and control

    DOEpatents

    Koski, Oscar; Marschman, Steven C.

    1990-01-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film function to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al.sub.2 O.sub.3 concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film.

  6. Anode film formation and control

    DOEpatents

    Koski, O.; Marschman, S.C.

    1990-05-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film functions to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al[sub 2]O[sub 3] concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film. 3 figs.

  7. Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on <100> silicon wafers

    PubMed Central

    2013-01-01

    In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>−oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm−2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors. PMID:23773702

  8. Fabrication of Pd Micro-Membrane Supported on Nano-Porous Anodized Aluminum Oxide for Hydrogen Separation.

    PubMed

    Kim, Taegyu

    2015-08-01

    In the present study, nano-porous anodized aluminum oxide (AAO) was used as a support of the Pd membrane. The AAO fabrication process consists of an electrochemical polishing, first/second anodizing, barrier layer dissolving and pores widening. The Pd membrane was deposited on the AAO support using an electroless plating with ethylenediaminetetraacetic acid (EDTA) as a plating agent. The AAO had the regular pore structure with the maximum pore diameter of ~100 nm so it had a large opening area but a small free standing area. The 2 µm-thick Pd layer was obtained by the electroless plating for 3 hours. The Pd layer thickness increased with increasing the plating time. However, the thickness was limited to ~5 µm in maximum. The H2 permeation flux was 0.454 mol/m2-s when the pressure difference of 66.36 kPa0.5 was applied at the Pd membrane under 400 °C.

  9. Modelling the growth of porous alumina matrix for creating hyperbolic media

    NASA Astrophysics Data System (ADS)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2016-08-01

    Porous aluminum oxide is a regular self-assembled structure. During anodization it is possible to control nano-parameters of the structure using macroscopic parameters of anodization. Porous alumina films can be used as a template for the creation of hyperbolic media. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. As a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process. We also present the results obtained by numerical modelling of hyperbolic media based on porous alumina film.

  10. Fabrication of Acrylonitrile-Butadiene-Styrene Nanostructures with Anodic Alumina Oxide Templates, Characterization and Biofilm Development Test for Staphylococcus epidermidis

    PubMed Central

    Desrousseaux, Camille; Cueff, Régis; Aumeran, Claire; Garrait, Ghislain; Mailhot-Jensen, Bénédicte; Traoré, Ousmane; Sautou, Valérie

    2015-01-01

    Medical devices can be contaminated by microbial biofilm which causes nosocomial infections. One of the strategies for the prevention of such microbial adhesion is to modify the biomaterials by creating micro or nanofeatures on their surface. This study aimed (1) to nanostructure acrylonitrile-butadiene-styrene (ABS), a polymer composing connectors in perfusion devices, using Anodic Alumina Oxide templates, and to control the reproducibility of this process; (2) to characterize the physico-chemical properties of the nanostructured surfaces such as wettability using captive-bubble contact angle measurement technique; (3) to test the impact of nanostructures on Staphylococcus epidermidis biofilm development. Fabrication of Anodic Alumina Oxide molds was realized by double anodization in oxalic acid. This process was reproducible. The obtained molds present hexagonally arranged 50 nm diameter pores, with a 100 nm interpore distance and a length of 100 nm. Acrylonitrile-butadiene-styrene nanostructures were successfully prepared using a polymer solution and two melt wetting methods. For all methods, the nanopicots were obtained but inside each sample their length was different. One method was selected essentially for industrial purposes and for better reproducibility results. The flat ABS surface presents a slightly hydrophilic character, which remains roughly unchanged after nanostructuration, the increasing apparent wettability observed in that case being explained by roughness effects. Also, the nanostructuration of the polymer surface does not induce any significant effect on Staphylococcus epidermidis adhesion. PMID:26284922

  11. Analysis of gene expression on anodic porous alumina microarrays

    PubMed Central

    Nicolini, Claudio; Singh, Manjul; Spera, Rosanna; Felli, Lamberto

    2013-01-01

    This paper investigates the application of anodic porous alumina as an advancement on chip laboratory for gene expressions. The surface was prepared by a suitable electrolytic process to obtain a regular distribution of deep micrometric holes and printed bypen robot tips under standard conditions. The gene expression within the Nucleic Acid Programmable Protein Array (NAPPA) is realized in a confined environment of 16 spots, containing circular DNA plasmids expressed using rabbit reticulocyte lysate. Authors demonstrated the usefulness of APA in withholding the protein expression by detecting with a CCD microscope the photoluminescence signal emitted from the complex secondary antibody anchored to Cy3 and confined in the pores. Friction experiments proved the mechanical resistance under external stresses by the robot tip pens printing. So far, no attempts have been made to directly compare APA with any other surface/substrate; the rationale for pursuing APA as a potential surface coating is that it provides advantages over the simple functionalization of a glass slide, overcoming concerns about printing and its ability to generate viable arrays. PMID:23783000

  12. Fabrication and characterisation of embedded metal nanostructures by ion implantation with nanoporous anodic alumina masks

    NASA Astrophysics Data System (ADS)

    Guan, Wei; Peng, Nianhua; Jeynes, Christopher; Ghatak, Jay; Peng, Yong; Ross, Ian M.; Bhatta, Umananda M.; Inkson, Beverley J.; Möbus, Günter

    2013-07-01

    Lateral ordered Co, Pt and Co/Pt nanostructures were fabricated in SiO2 and Si3N4 substrates by high fluence metal ion implantation through periodic nanochannel membrane masks based on anodic aluminium oxides (AAO). The quality of nanopatterning transfer defined by various AAO masks in different substrates was examined by transmission electron microscopy (TEM) in both imaging and spectroscopy modes.

  13. Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes.

    PubMed

    Belwalkar, A; Grasing, E; Van Geertruyden, W; Huang, Z; Misiolek, W Z

    2008-07-01

    Nanoporous anodic aluminum oxide (AAO) tubular membranes were fabricated from aluminum alloy tubes in sulfuric and oxalic acid electrolytes using a two-step anodization process. The membranes were investigated for characteristics such as pore size, interpore distance and thickness by varying applied voltage and electrolyte concentration. Morphology of the membranes was examined using light optical and scanning electron microscopy and characterized using ImageJ software. Results showed that membranes having narrow pore size and uniform pore distribution with parallel channel arrays were obtained. The pore sizes were ranging from 14 to 24 nm and the wall thicknesses as high as 76 microm. It was found that the pore size increased in direct proportion with the applied voltage and inversely with the electrolyte concentration while the interpore distance increased linearly with the applied voltage. It was also observed that increase in acid concentration increased tubular membrane wall thickness that improved mechanical handling. By using anodic alumina technology, robust ceramic tubes with uniformly distributed pore-structure and parallel nano-channels of lengths and sizes practical for industrial applications were reliably produced in quantity.

  14. Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes

    PubMed Central

    Belwalkar, A.; Grasing, E.; Huang, Z.; Misiolek, W.Z.

    2008-01-01

    Nanoporous anodic aluminum oxide (AAO) tubular membranes were fabricated from aluminum alloy tubes in sulfuric and oxalic acid electrolytes using a two-step anodization process. The membranes were investigated for characteristics such as pore size, interpore distance and thickness by varying applied voltage and electrolyte concentration. Morphology of the membranes was examined using light optical and scanning electron microscopy and characterized using ImageJ software. Results showed that membranes having narrow pore size and uniform pore distribution with parallel channel arrays were obtained. The pore sizes were ranging from 14 to 24 nm and the wall thicknesses as high as 76 µm. It was found that the pore size increased in direct proportion with the applied voltage and inversely with the electrolyte concentration while the interpore distance increased linearly with the applied voltage. It was also observed that increase in acid concentration increased tubular membrane wall thickness that improved mechanical handling. By using anodic alumina technology, robust ceramic tubes with uniformly distributed pore-structure and parallel nano-channels of lengths and sizes practical for industrial applications were reliably produced in quantity. PMID:19578471

  15. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2004-10-05

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  16. Investigation of the effect of Anodized Duration toward Photocatalytic Performance of Nb2O5

    NASA Astrophysics Data System (ADS)

    Sabirin Zoolfakar, Ahmad; Atiqah Mokhtar, Nurul; Rani, Rozina Abdul; Samihah Khairir, Nur; Aqma Abu Talip, Mahzaton; Hafiz Mamat, Mohamad; Kadir, Rosmalini Abdul; Rusop, M.

    2018-03-01

    Highly oriented Nb2O5 nanoporous network produced via anodization for photocatalytic activity of methyl orange (MO) is presented. The anodization duration was varies from 0.5 to 2 hours and the photocatalytic performance is observed by degradation of MO solution. The Nb2O5 nanoparticles were added in MO solution and were exposed to the solar simulator for 3 hours. The morphology of Nb2O5 nanoporous and the photocatalytic performance are characterized in Field Emission Scanning Electron Microscopy (FESEM) and UV-Vis spectrophotometer, respectively. The result shows that different duration of anodized produce different sizes of nanoporous diameter that will significantly affect the photocatalytic performance. The 1.5 hours of anodized has the largest diameter size of nanoporous and exhibited the best photocatalytic performance

  17. Fabrication of Gold-Coated Ultra-Thin Anodic Porous Alumina Substrates for Augmented SERS

    PubMed Central

    Toccafondi, Chiara; Proietti Zaccaria, Remo; Dante, Silvia; Salerno, Marco

    2016-01-01

    Anodic porous alumina (APA) is a nanostructured material used as a template in several nanotechnological applications. We propose the use of APA in ultra-thin form (<100 nm) for augmented surface-enhanced Raman scattering (SERS). Here, the effect of in-depth thinning of the APA nanostructures for possible maximization of SERS was addressed. Anodization was carried out on ultra-thin films of aluminum on glass and/or silicon, followed by pore-opening. Gold (Au) was overcoated and micro-Raman/SERS measurements were carried out on test target analytes. Finite integration technique simulations of the APA-Au substrate were used both for the experimental design and simulations. It was observed that, under optimized conditions of APA and Au thickness, the SERS enhancement is higher than on standard APA-Au substrates based on thin (~100 nm) APA by up to a factor of ~20 for test molecules of mercaptobenzoic acid. The agreement between model and experimental results confirms the current understanding of SERS as being mainly due to the physical origin of plasmon resonances. The reported results represent one step towards micro-technological, integrated, disposable, high-sensitivity SERS chemical sensors and biosensors based on similar substrates. PMID:28773525

  18. Microstructural and Optical Properties of Porous Alumina Elaborated on Glass Substrate

    NASA Astrophysics Data System (ADS)

    Zaghdoudi, W.; Gaidi, M.; Chtourou, R.

    2013-03-01

    A transparent porous anodized aluminum oxide (AAO) nanostructure was formed on a glass substrate using the anodization of a highly pure evaporated aluminum layer. A parametric study was carried out in order to achieve a fine control of the microstructural and optical properties of the elaborated films. The microstructural and surface morphologies of the porous alumina films were characterized by x-ray diffraction and atomic force microscopy. Pore diameter, inter-pore separation, and the porous structure as a function of anodization conditions were investigated. It was then found that the pores density decreases with increasing the anodization time. Regular cylindrical porous AAO films with a flat bottom structure were formed by chemical etching and anodization. A high transmittance in the 300-900 nm range is reported, indicating a fulfilled growth of the transparent sample (alumina) from the aluminum metal. The data showed typical interference oscillations as a result of the transparent characteristics of the film throughout the visible spectral range. The thickness and the optical constants ( n and k) of the porous anodic alumina films, as a function of anodizing time, were obtained using spectroscopic ellipsometry in the ultraviolet-visible-near infrared (UV-vis-NIR) regions.

  19. Cu-Ni-Fe anodes having improved microstructure

    DOEpatents

    Bergsma, S. Craig; Brown, Craig W.

    2004-04-20

    A method of producing aluminum in a low temperature electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten electrolyte having alumina dissolved therein in an electrolytic cell containing the electrolyte. A non-consumable anode and cathode is disposed in the electrolyte, the anode comprised of Cu--Ni--Fe alloys having single metallurgical phase. Electric current is passed from the anode, through the electrolyte to the cathode thereby depositing aluminum on the cathode, and molten aluminum is collected from the cathode.

  20. Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response.

    PubMed

    de Tacconi, N R; Chenthamarakshan, C R; Yogeeswaran, G; Watcharenwong, A; de Zoysa, R S; Basit, N A; Rajeshwar, K

    2006-12-21

    The photoelectrochemical response of nanoporous films, obtained by anodization of Ti and W substrates in a variety of corrosive media and at preselected voltages in the range from 10 to 60 V, was studied. The as-deposited films were subjected to thermal anneal and characterized by scanning electron microscopy and X-ray diffraction. Along with the anodization media developed by previous authors, the effect of poly(ethylene glycol) (PEG 400) or D-mannitol as a modifier to the NH4F electrolyte and glycerol addition to the oxalic acid electrolyte was studied for TiO2 and WO3, respectively. In general, intermediate anodization voltages and film growth times yielded excellent-quality photoelectrochemical response for both TiO2 and WO3 as assessed by linear-sweep photovoltammetry and photoaction spectra. The photooxidation of water and formate species was used as reaction probes to assess the photoresponse quality of the nanoporous oxide semiconductor films. In the presence of formate as an electron donor, the incident photon to electron conversion efficiency (IPCE) ranged from approximately 130% to approximately 200% for both TiO2 and WO3 depending on the film preparation protocol. The best photoactive films were obtained from poly(ethylene glycol) (PEG 400) containing NH4F for TiO2 and from aqueous NaF for WO3.

  1. Cu--Ni--Fe anode for use in aluminum producing electrolytic cell

    DOEpatents

    Bergsma, S. Craig; Brown, Craig W.; Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2006-07-18

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900.degree. C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu--Ni--Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.

  2. Reduced temperature aluminum production in an electrolytic cell having an inert anode

    DOEpatents

    Dawless, Robert K.; Ray, Siba P.; Hosler, Robert B.; Kozarek, Robert L.; LaCamera, Alfred F.

    2000-01-01

    Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900-950.degree. C. lowers corrosion on the inert anode constituents.

  3. Process for High-Rate Fabrication of Alumina Nanotemplates

    NASA Technical Reports Server (NTRS)

    Myung, Nosang; Fleurial, Jean-Pierre; Yun, Minhee; West, William; Choi, Daniel

    2007-01-01

    An anodizing process, at an early stage of development at the time of reporting the information for this article, has shown promise as a means of fabricating alumina nanotemplates integrated with silicon wafers. Alumina nanotemplates are basically layers of alumina, typically several microns thick, in which are formed approximately regular hexagonal arrays of holes having typical diameters of the order of 10 to 100 nm. Interest in alumina nanotemplates has grown in recent years because they have been found to be useful as templates in the fabrication of nanoscale magnetic, electronic, optoelectronic, and other devices. The present anodizing process is attractive for the fabrication of alumina nanotemplates integrated with silicon wafers in two respects: (1) the process involves self-ordering of the holes; that is, the holes as formed by the process are spontaneously arranged in approximately regular hexagonal arrays; and (2) the rates of growth (that is, elongation) of the holes are high enough to make the process compatible with other processes used in the mass production of integrated circuits. In preparation for fabrication of alumina nanotemplates in this process, one first uses electron-beam evaporation to deposit thin films of titanium, followed by thin films of aluminum, on silicon wafers. Then the alumina nanotemplates are formed by anodizing the aluminum layers, as described below. In experiments in which the process was partially developed, the titanium films were 200 A thick and the aluminum films were 5 m thick. The aluminum films were oxidized to alumina, and the arrays of holes were formed by anodizing the aluminum in aqueous solutions of sulfuric and/or oxalic acid at room temperature (see figure). The diameters, spacings, and rates of growth of the holes were found to depend, variously, on the composition of the anodizing solution, the applied current, or the applied potential, as follows: In galvanostatically controlled anodizing, regardless of the

  4. Sensing small neurotransmitter-enzyme interaction with nanoporous gated ion-sensitive field effect transistors.

    PubMed

    Kisner, Alexandre; Stockmann, Regina; Jansen, Michael; Yegin, Ugur; Offenhäusser, Andreas; Kubota, Lauro Tatsuo; Mourzina, Yulia

    2012-01-15

    Ion-sensitive field effect transistors with gates having a high density of nanopores were fabricated and employed to sense the neurotransmitter dopamine with high selectivity and detectability at micromolar range. The nanoporous structure of the gates was produced by applying a relatively simple anodizing process, which yielded a porous alumina layer with pores exhibiting a mean diameter ranging from 20 to 35 nm. Gate-source voltages of the transistors demonstrated a pH-dependence that was linear over a wide range and could be understood as changes in surface charges during protonation and deprotonation. The large surface area provided by the pores allowed the physical immobilization of tyrosinase, which is an enzyme that oxidizes dopamine, on the gates of the transistors, and thus, changes the acid-base behavior on their surfaces. Concentration-dependent dopamine interacting with immobilized tyrosinase showed a linear dependence into a physiological range of interest for dopamine concentration in the changes of gate-source voltages. In comparison with previous approaches, a response time relatively fast for detecting dopamine was obtained. Additionally, selectivity assays for other neurotransmitters that are abundantly found in the brain were examined. These results demonstrate that the nanoporous structure of ion-sensitive field effect transistors can easily be used to immobilize specific enzyme that can readily and selectively detect small neurotransmitter molecule based on its acid-base interaction with the receptor. Therefore, it could serve as a technology platform for molecular studies of neurotransmitter-enzyme binding and drugs screening. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Using X-ray Microscopy To Understand How Nanoporous Materials Can Be Used To Reduce the Large Volume Change in Alloy Anodes

    DOE PAGES

    Cook, John B.; Lin, Terri C.; Detsi, Eric; ...

    2017-01-05

    Tin metal is an attractive negative electrode material to replace graphite in Li-ion batteries due to its high energy density. However, tin undergoes a large volume change upon alloying with Li, which pulverizes the particles, and ultimately leads to short cycling lifetimes. Nevertheless, nanoporous materials have been shown to extend battery life well past what is observed in nonporous material. Despite the exciting potential of porous alloying anodes to significantly increase the energy density in Li-ion batteries, the fundamental physics of how nanoscale architectures accommodate the electrochemically induced volume changes are poorly understood. Here, operando transmission X-ray microscopy has beenmore » used to develop an understanding of the mechanisms that govern the enhanced cycling stability in nanoporous tin. We found that in comparison to dense tin, nanoporous tin undergoes a 6-fold smaller areal expansion after lithiation, as a result of the internal porosity and unique nanoscale architecture. The expansion is also more gradual in nanoporous tin compared to the dense material. The nanoscale resolution of the microscope used in this study is ~30 nm, which allowed us to directly observe the pore structure during lithiation and delithiation. We found that nanoporous tin remains porous during the first insertion and desinsertion cycle. This observation is key, as fully closed pores could lead to mechanical instability, electrolyte inaccessibility, and short lifetimes. Here, while tin was chosen for this study because of its high X-ray contrast, the results of this work should be general to other alloy-type systems, such as Si, that also suffer from volume change based cycling degradation.« less

  6. Using X-ray Microscopy To Understand How Nanoporous Materials Can Be Used To Reduce the Large Volume Change in Alloy Anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, John B.; Lin, Terri C.; Detsi, Eric

    Tin metal is an attractive negative electrode material to replace graphite in Li-ion batteries due to its high energy density. However, tin undergoes a large volume change upon alloying with Li, which pulverizes the particles, and ultimately leads to short cycling lifetimes. Nevertheless, nanoporous materials have been shown to extend battery life well past what is observed in nonporous material. Despite the exciting potential of porous alloying anodes to significantly increase the energy density in Li-ion batteries, the fundamental physics of how nanoscale architectures accommodate the electrochemically induced volume changes are poorly understood. Here, operando transmission X-ray microscopy has beenmore » used to develop an understanding of the mechanisms that govern the enhanced cycling stability in nanoporous tin. We found that in comparison to dense tin, nanoporous tin undergoes a 6-fold smaller areal expansion after lithiation, as a result of the internal porosity and unique nanoscale architecture. The expansion is also more gradual in nanoporous tin compared to the dense material. The nanoscale resolution of the microscope used in this study is ~30 nm, which allowed us to directly observe the pore structure during lithiation and delithiation. We found that nanoporous tin remains porous during the first insertion and desinsertion cycle. This observation is key, as fully closed pores could lead to mechanical instability, electrolyte inaccessibility, and short lifetimes. Here, while tin was chosen for this study because of its high X-ray contrast, the results of this work should be general to other alloy-type systems, such as Si, that also suffer from volume change based cycling degradation.« less

  7. Structural and wetting properties of porous anodic alumina templates prepared by different electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suchitra, S. M., E-mail: suchitra.ph14f03@nitk.edu.in; Reddy, P. Ramana; Udayashankar, N. K.

    2016-05-06

    Porous anodic alumina (PAA) has been extensively studied in recent years due to their unique properties and applications for manufacturing nanostructured materials. In this article, we report our studies on structural and wetting properties of PAA membranes prepared using different electrolytes such as sulphuric, oxalic and phosphoric acids. The morphological parameters such as pore diameter and porosity were measured using SEM and analysed using image-J software. The structural investigation of PAA membranes was carried out through X-ray diffraction analysis and it was confirmed that PAA membranes were amorphous in nature. The wetting behaviour of PAA membranes were measured using contactmore » angle measurement technique. The results show that PAA membranes were hydrophilic in nature with contact angles 26.03°, 35.21° and 42.0° for sulphuric, oxalic and phosphoric acids respectively.« less

  8. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids

    NASA Astrophysics Data System (ADS)

    Kao, Tzung-Ta; Chang, Yao-Chung

    2014-01-01

    The growth of anodic alumina oxide was conducted in the mixed solution of phosphoric and oxalic acids. The influence of anodizing voltage, electrolyte temperature, and concentration of phosphoric and oxalic acids on the volume expansion of anodic aluminum oxide has been investigated. Either anodizing parameter is chosen to its full extent of range that allows the anodization process to be conducted without electric breakdown and to explore the highest possible volume expansion factor. The volume expansion factors were found to vary between 1.25 and 1.9 depending on the anodizing parameters. The variation is explained in connection with electric field, ion transport number, temperature effect, concentration, and activity of acids. The formation of anodic porous alumina at anodizing voltage 160 V in 1.1 M phosphoric acid mixed with 0.14 M oxalic acid at 2 °C showed the peak volume expansion factor of 1.9 and the corresponding moderate growth rate of 168 nm/min.

  9. Engineering of Surface Chemistry for Enhanced Sensitivity in Nanoporous Interferometric Sensing Platforms.

    PubMed

    Law, Cheryl Suwen; Sylvia, Georgina M; Nemati, Madieh; Yu, Jingxian; Losic, Dusan; Abell, Andrew D; Santos, Abel

    2017-03-15

    We explore new approaches to engineering the surface chemistry of interferometric sensing platforms based on nanoporous anodic alumina (NAA) and reflectometric interference spectroscopy (RIfS). Two surface engineering strategies are presented, namely (i) selective chemical functionalization of the inner surface of NAA pores with amine-terminated thiol molecules and (ii) selective chemical functionalization of the top surface of NAA with dithiol molecules. The strong molecular interaction of Au 3+ ions with thiol-containing functional molecules of alkane chain or peptide character provides a model sensing system with which to assess the sensitivity of these NAA platforms by both molecular feature and surface engineering. Changes in the effective optical thickness of the functionalized NAA photonic films (i.e., sensing principle), in response to gold ions, are monitored in real-time by RIfS. 6-Amino-1-hexanethiol (inner surface) and 1,6-hexanedithiol (top surface), the most sensitive functional molecules from approaches i and ii, respectively, were combined into a third sensing strategy whereby the NAA platforms are functionalized on both the top and inner surfaces concurrently. Engineering of the surface according to this approach resulted in an additive enhancement in sensitivity of up to 5-fold compared to previously reported systems. This study advances the rational engineering of surface chemistry for interferometric sensing on nanoporous platforms with potential applications for real-time monitoring of multiple analytes in dynamic environments.

  10. Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation

    PubMed Central

    2011-01-01

    Background The soft tissue around dental implants forms a barrier between the oral environment and the peri-implant bone and a crucial factor for long-term success of therapy is development of a good abutment/soft-tissue seal. Sol-gel derived nanoporous TiO2 coatings have been shown to enhance soft-tissue attachment but their effect on adhesion and biofilm formation by oral bacteria is unknown. Methods We have investigated how the properties of surfaces that may be used on abutments: turned titanium, sol-gel nanoporous TiO2 coated surfaces and anodized Ca2+ modified surfaces, affect biofilm formation by two early colonizers of the oral cavity: Streptococcus sanguinis and Actinomyces naeslundii. The bacteria were detected using 16S rRNA fluorescence in situ hybridization together with confocal laser scanning microscopy. Results Interferometry and atomic force microscopy revealed all the surfaces to be smooth (Sa ≤ 0.22 μm). Incubation with a consortium of S. sanguinis and A. naeslundii showed no differences in adhesion between the surfaces over 2 hours. After 14 hours, the level of biofilm growth was low and again, no differences between the surfaces were seen. The presence of saliva increased the biofilm biovolume of S. sanguinis and A. naeslundii ten-fold compared to when saliva was absent and this was due to increased adhesion rather than biofilm growth. Conclusions Nano-topographical modification of smooth titanium surfaces had no effect on adhesion or early biofilm formation by S. sanguinis and A. naeslundii as compared to turned surfaces or those treated with anodic oxidation in the presence of Ca2+. The presence of saliva led to a significantly greater biofilm biovolume but no significant differences were seen between the test surfaces. These data thus suggest that modification with sol-gel derived nanoporous TiO2, which has been shown to improve osseointegration and soft-tissue healing in vivo, does not cause greater biofilm formation by the two oral

  11. Fabrication and structural characterization of highly ordered titania nanotube arrays

    NASA Astrophysics Data System (ADS)

    Shi, Hongtao; Ordonez, Rosita

    Titanium (Ti) dioxide nanotubes have drawn much attention in the past decade due to the fact that titania is an extremely versatile material with a variety of technological applications. Anodizing Ti in different electrolytes has proved to be quite successful so far in creating the nanotubes, however, their degree of order is still not nearly as good as nanoporous anodic alumina. In this work, we first deposit a thin layer of aluminum (Al) onto electropolished Ti substrates, using thermal evaporation. Such an Al layer is then anodized in 0.3 M oxalic acid, forming an ordered nanoporous alumina mask on top of Ti. Afterwards, the anodization of Ti is accomplished at 20 V in solutions containing 1 M NaH2PO4 and 0.5% HF or H2SO4, which results in the creation of ordered titania nanotube arrays. The inner pore diameter of the nanotubes can be tuned from ~50 nm to ~75 nm, depending on the anodization voltage applied to Al or Ti. X-ray diffractometry shows the as-grown titania nanotubes are amorphous. Samples annealed at different temperatures in ambient atmosphere will be also reported.

  12. Optimization of Aluminum Anodization Conditions for the Fabrication of Nanowires by Electrodeposition

    NASA Technical Reports Server (NTRS)

    Fucsko, Viola

    2005-01-01

    Anodized alumina nanotemplates have a variety of potential applications in the development of nanotechnology. Alumina nanotemplates are formed by oxidizing aluminum film in an electrolyte solution.During anodization, aluminum oxidizes, and, under the proper conditions, nanometer-sized pores develop. A series of experiments was conducted to determine the optimal conditions for anodization. Three-micrometer thick aluminum films on silicon and silicon oxide substrates were anodized using constant voltages of 13-25 V. 0.1-0.3M oxalic acid was used as the electrolyte. The anodization time was found to increase and the overshooting current decreased as both the voltage and the electrolyte concentrations were decreased. The samples were observed under a scanning electron microscope. Anodizing with 25V in 0.3M oxalic acid appears to be the best process conditions. The alumina nanotemplates are being used to fabricate nanowires by electrodeposition. The current-voltage characteristics of copper nanowires have also been studied.

  13. Failure Analysis of Alumina Reinforced Aluminum Microtruss and Tube Composites

    NASA Astrophysics Data System (ADS)

    Chien, Hsueh Fen (Karen)

    The energy absorption capacity of cellular materials can be dramatically increased by applying a structural coating. This thesis examined the failure mechanisms of alumina reinforced 3003 aluminum alloy microtrusses and tubes. Alumina coatings were produced by hard anodizing and by plasma electrolytic oxidation (PEO). The relatively thin and discontinuous oxide coating at the hinge acted as a localized weak spot which triggered a chain reaction of failure, including oxide fracture, oxide spallation, oxide penetration to the aluminum core and severe local plastic deformation of the core. For the PEO microtrusses, delamination occurred within the oxide coating resulting in a global strut buckling failure mode. A new failure mode for the anodized tubes was observed: (i) axisymmetric folding of the aluminum core, (ii) longitudinal fracture, and (iii) alumina pulverization. Overall, the alumina coating enhanced the buckling resistance of the composites, while the aluminum core supported the oxide during the damage propagation.

  14. Template-Growth of Highly Ordered Carbon Nanotube Arrays on Silicon POSTPRINT

    DTIC Science & Technology

    2006-09-01

    packed uni- form CNTs that are spatially isolated from each other is to use a growth template. Highly ordered anodic aluminum oxide ( AAO ) template can...process for evaporating thick aluminum of high quality and good adhesion. 15. SUBJECT TERMS Anodic Aluminum Oxide Template, Carbon Nanotubes (CNTs...within the highly ordered nanopores of an alumina oxide template, which is in turn formed on silicon through anodization of aluminum of unprecedented

  15. Nanopore thin film enabled optical platform for drug loading and release.

    PubMed

    Song, Chao; Che, Xiangchen; Que, Long

    2017-08-07

    In this paper, a drug loading and release device fabricated using nanopore thin film and layer-by-layer (LbL) nanoassembly is reported. The nanopore thin film is a layer of anodic aluminum oxide (AAO), consisting of honeycomb-shape nanopores. Using the LbL nanoassembly process, the drug, using gentamicin sulfate (GS) as the model, can be loaded into the nanopores and the stacked layers on the nanopore thin film surface. The drug release from the device is achieved by immersing it into flowing DI water. Both the loading and release processes can be monitored optically. The effect of the nanopore size/volume on drug loading and release has also been evaluated. Further, the neuron cells have been cultured and can grow normally on the nanopore thin film, verifying its bio-compatibility. The successful fabrication of nanopore thin film device on silicon membrane render it as a potential implantable controlled drug release device.

  16. Ultrafast excited state deactivation of doped porous anodic alumina membranes

    NASA Astrophysics Data System (ADS)

    Makhal, Abhinandan; Sarkar, Soumik; Pal, Samir Kumar; Yan, Hongdan; Wulferding, Dirk; Cetin, Fatih; Lemmens, Peter

    2012-08-01

    Free-standing, bi-directionally permeable and ultra-thin anodic aluminum oxide (AAO) membranes establish attractive templates (host) for the synthesis of nano-dots and rods of various materials (guest). This is due to their chemical and structural integrity and high periodicity on length scales of 5-150 nm which are often used to host photoactive nano-materials for various device applications including dye-sensitized solar cells. In the present study, AAO membranes are synthesized by using electrochemical methods and a detailed structural characterization using FEG-SEM, XRD and TGA confirms the porosity and purity of the material. Defect-mediated photoluminescence quenching of the porous AAO membrane in the presence of an electron accepting guest organic molecule (benzoquinone) is studied by means of steady-state and picosecond/femtosecond-resolved luminescence measurements. Using time-resolved luminescence transients, we have also revealed light harvesting of complexes of porous alumina impregnated with inorganic quantum dots (Maple Red) or gold nanowires. Both the Förster resonance energy transfer and the nano-surface energy transfer techniques are employed to examine the observed quenching behavior as a function of the characteristic donor-acceptor distances. The experimental results will find their relevance in light harvesting devices based on AAOs combined with other materials involving a decisive energy/charge transfer dynamics.

  17. Ultrafast excited state deactivation of doped porous anodic alumina membranes.

    PubMed

    Makhal, Abhinandan; Sarkar, Soumik; Pal, Samir Kumar; Yan, Hongdan; Wulferding, Dirk; Cetin, Fatih; Lemmens, Peter

    2012-08-03

    Free-standing, bi-directionally permeable and ultra-thin anodic aluminum oxide (AAO) membranes establish attractive templates (host) for the synthesis of nano-dots and rods of various materials (guest). This is due to their chemical and structural integrity and high periodicity on length scales of 5-150 nm which are often used to host photoactive nano-materials for various device applications including dye-sensitized solar cells. In the present study, AAO membranes are synthesized by using electrochemical methods and a detailed structural characterization using FEG-SEM, XRD and TGA confirms the porosity and purity of the material. Defect-mediated photoluminescence quenching of the porous AAO membrane in the presence of an electron accepting guest organic molecule (benzoquinone) is studied by means of steady-state and picosecond/femtosecond-resolved luminescence measurements. Using time-resolved luminescence transients, we have also revealed light harvesting of complexes of porous alumina impregnated with inorganic quantum dots (Maple Red) or gold nanowires. Both the Förster resonance energy transfer and the nano-surface energy transfer techniques are employed to examine the observed quenching behavior as a function of the characteristic donor-acceptor distances. The experimental results will find their relevance in light harvesting devices based on AAOs combined with other materials involving a decisive energy/charge transfer dynamics.

  18. Current-Voltage Characteristics of Nb2O5 nanoporous via light illumination

    NASA Astrophysics Data System (ADS)

    Samihah Khairir, Nur; Rani, Rozina Abdul; Fazlida Hanim Abdullah, Wan; Hafiz Mamat, Mohamad; Kadir, Rosmalini Abdul; Rusop, M.; Sabirin Zoolfakar, Ahmad

    2018-03-01

    This work discussed the effect of light on I-V characteristics of anodized niobium pentoxide (Nb2O5) which formed nanoporous structure film. The structure was synthesized by anodizing niobium foils in glycerol based solution with 10 wt% supplied by two different voltages, 5V and 10V. The anodized foils that contained Nb2O5 film were then annealed to obtain an orthorhombic phase for 30 minutes at 450°C. The metal contact used for I-V testing was platinum (Pt) and it was deposited using thermal evaporator at 30nm thickness. I-V tests were conducted under different condition; dark and illumination to study the effect of light on I-V characteristics of anodized nanoporous Nb2O5. Higher anodization voltage and longer anodization time resulted in higher pore dispersion and larger pore size causing the current to increase. The increase of conductivity in I-V behaviour of Nb2O5 device is also affected by the illumination test as higher light intensity caused space charge region width to increase, thus making it easier for electron transfer between energy band gap.

  19. Studies of porous anodic alumina using spin echo scattering angle measurement

    NASA Astrophysics Data System (ADS)

    Stonaha, Paul

    The properties of a neutron make it a useful tool for use in scattering experiments. We have developed a method, dubbed SESAME, in which specially designed magnetic fields encode the scattering signal of a neutron beam into the beam's average Larmor phase. A geometry is presented that delivers the correct Larmor phase (to first order), and it is shown that reasonable variations of the geometry do not significantly affect the net Larmor phase. The solenoids are designed using an analytic approximation. Comparison of this approximate function with finite element calculations and Hall probe measurements confirm its validity, allowing for fast computation of the magnetic fields. The coils were built and tested in-house on the NBL-4 instrument, a polarized neutron reflectometer whose construction is another major portion of this work. Neutron scattering experiments using the solenoids are presented, and the scattering signal from porous anodic alumina is investigated in detail. A model using the Born Approximation is developed and compared against the scattering measurements. Using the model, we define the necessary degree of alignment of such samples in a SESAME measurement, and we show how the signal retrieved using SESAME is sensitive to range of detectable momentum transfer.

  20. Nanoporous impedemetric biosensor for detection of trace atrazine from water samples.

    PubMed

    Pichetsurnthorn, Pie; Vattipalli, Krishna; Prasad, Shalini

    2012-02-15

    Trace contamination of ground water sources has been a problem ever since the introduction of high-soil-mobility pesticides, one such example is atrazine. In this paper we present a novel nanoporous portable bio-sensing device that can identify trace contamination of atrazine through a label-free assay. We have designed a pesticide sensor comprising of a nanoporous alumina membrane integrated with printed circuit board platform. Nanoporous alumina in the biosensor device generates a high density array of nanoscale confined spaces. By leveraging the size based immobilization of atrazine small molecules we have designed electrochemical impedance spectroscopy based biosensor to detect trace amounts of atrazine. We have calibrated the sensor using phosphate buffered saline and demonstrated trace detection from river and bottled drinking water samples. The limit of detection in all the three cases was in the femtogram/mL (fg/mL) (parts-per-trillion) regime with a dynamic range of detection spanning from 10 fg/mL to 1 ng/mL (0.01 ppt to 1 ppm). The selectivity of the device was tested using a competing pesticide; malathion and selectivity in detection was observed in the fg/mL regime in all the three cases. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Fabrication of one-dimensional alumina photonic crystals by anodization using a modified pulse-voltage method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shou-Yi; Wang, Jian, E-mail: wangjian@nwnu.edu.cn; Wang, Gang

    2015-08-15

    Highlights: • The alumina multilayer structure with alternating high and low refractive index is fabricated. • This multilayer shows a strong photonic band gap (PBG) and vivid film colors. • The first PBG could be modulated easily by varying the duration time of constant high or low voltages. • Fabrication of the photonic crystal is obtained by directly electrochemical anodization. • The formation mechanism of multilayer is also discussed. - Abstract: The alumina nanolayer structure with alternating high and low porosities is conveniently fabricated by applying a modified pulse voltage waveform with constant high and low voltage. This structure showsmore » the well-defined layer in a long-range structural periodicity leads to a strong photonic band gap (PBG) from visible to near infrared and brilliant film colors. Compared with the previous reported tuning method, this method is more simple and flexible in tuning the PBG of photonic crystals (PCs). The effect of duration time of high, low and 0 V voltages on PBG is discussed. The first PBG could be modulated easily from the visible to near infrared region by varying the duration time of constant high or low voltages. It is also found that the 0 V lasting for appropriate time is helpful to improve the quality of the PCs. The formation mechanism of multilayer is also discussed.« less

  2. Antibacterial Activity of Zinc Oxide-Coated Nanoporous Alumina

    DTIC Science & Technology

    2012-05-17

    microorganisms, including Bacillus subtilis, Enterococcus faecalis, E. coli, methicillin - sensitive S. aureus , methicillin - resistant S. aureus , S... Staphylococcus aureus , and Staphylococcus epidermidis. On the other hand, zinc 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY...alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus , and

  3. Prototyping Energy Storage Components for Hybrid Power Source

    DTIC Science & Technology

    2009-12-11

    from suitable nanoporous ceramic ( anodized aluminum oxide – AAO ) and polymer (polycarbonate - PC, polyethylene terephtalate - PET) membranes . Metal...of NUC technology: a) sketch of structure, b) SEM image of membrane . The alumina membranes can be easily and inexpensively fabricated via anodization ...of aluminum foil. The pores are formed by self-assembly via pitting and reprecipation of metal oxide . Motivation The work is motivated by the

  4. Surface phenomena of hydroxyapatite film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants.

    PubMed

    Kim, Eun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol

    2013-03-01

    In this study, surface phenomena of hydroxyapatite (HA) film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants have been investigated by electron beam physical vapor deposition (EB-PVD), field emission scanning electron microscope (FE-SEM), X-ray diffractometer (XRD), potentiostat and contact angle. The microstructure of Ti-29Nb-xZr alloys exhibited equiaxed structure and alpha" phase decreased, whereas beta phase increased as Zr content increased. The increment of Zr contents in HA coated nanotubular Ti-29Nb-xZr alloys showed good corrosion potential in 0.9% NaCI solution. The wettability of HA coated nanotubular surface was higher than that of non-coated samples.

  5. Electrochemical Generation of a Hydrogen Bubble at a Recessed Platinum Nanopore Electrode.

    PubMed

    Chen, Qianjin; Luo, Long; White, Henry S

    2015-04-21

    We report the electrochemical generation of a single hydrogen bubble within the cavity of a recessed Pt nanopore electrode. The recessed Pt electrode is a conical pore in glass that contains a micrometer-scale Pt disk (1-10 μm radius) at the nanopore base and a nanometer-scale orifice (10-100 nm radius) that restricts diffusion of electroactive molecules and dissolved gas between the nanopore cavity and bulk solution. The formation of a H2 bubble at the Pt disk electrode in voltammetric experiments results from the reduction of H(+) in a 0.25 M H2SO4 solution; the liquid-to-gas phase transformation is indicated in the voltammetric response by a precipitous decrease in the cathodic current due to rapid bubble nucleation and growth within the nanopore cavity. Finite element simulations of the concentration distribution of dissolved H2 within the nanopore cavity, as a function of the H(+) reduction current, indicate that H2 bubble nucleation at the recessed Pt electrode surface occurs at a critical supersaturation concentration of ∼0.22 M, in agreement with the value previously obtained at (nonrecessed) Pt disk electrodes (∼0.25 M). Because the nanopore orifice limits the diffusion of H2 out of the nanopore cavity, an anodic peak corresponding to the oxidation of gaseous and dissolved H2 trapped in the recessed cavity is readily observed on the reverse voltammetric scan. Integration of the charge associated with the H2 oxidation peak is found to approach that of the H(+) reduction peak at high scan rates, confirming the assignment of the anodic peak to H2 oxidation. Preliminary results for the electrochemical generation of O2 bubbles from water oxidation at a recessed nanopore electrode are consistent with the electrogeneration of H2 bubbles.

  6. Capture and alignment of phi29 viral particles in sub-40 nanometer porous alumina membranes.

    PubMed

    Moon, Jeong-Mi; Akin, Demir; Xuan, Yi; Ye, Peide D; Guo, Peixuan; Bashir, Rashid

    2009-02-01

    Bacteriophage phi29 virus nanoparticles and its associated DNA packaging nanomotor can provide for novel possibilities towards the development of hybrid bio-nano structures. Towards the goal of interfacing the phi29 viruses and nanomotors with artificial micro and nanostructures, we fabricated nanoporous Anodic Aluminum Oxide (AAO) membranes with pore size of 70 nm and shrunk the pores to sub 40 nm diameter using atomic layer deposition (ALD) of Aluminum Oxide. We were able to capture and align particles in the anodized nanopores using two methods. Firstly, a functionalization and polishing process to chemically attach the particles in the inner surface of the pores was developed. Secondly, centrifugation of the particles was utilized to align them in the pores of the nanoporous membranes. In addition, when a mixture of empty capsids and packaged particles was centrifuged at specific speeds, it was found that the empty capsids deform and pass through 40 nm diameter pores whereas the particles packaged with DNA were mainly retained at the top surface of the nanoporous membranes. Fluorescence microscopy was used to verify the selective filtration of empty capsids through the nanoporous membranes.

  7. Formation and Entrapment of Tris(8-hydroxyquinoline)aluminum from 8-Hydroxyquinoline in Anodic Porous Alumina

    PubMed Central

    Yamaguchi, Shohei; Matsui, Kazunori

    2016-01-01

    The formation and entrapment of tris(8-hydroxyquinoline)aluminum (Alq3) molecules on the surface of anodic porous alumina (APA) immersed in an ethanol solution of 8-hydroxyquinoline (HQ) were investigated by absorption, fluorescence, and Raman spectroscopies. The effects of the selected APA preparation conditions (galvanostatic or potentiostatic anodization method, anodizing current and voltage values, one- or two-step anodizing process, and sulfuric acid electrolyte concentration) on the adsorption and desorption of Alq3 species were examined. Among the listed parameters, sulfuric acid concentration was the most important factor in determining the Alq3 adsorption characteristics. The Alq3 content measured after desorption under galvanostatic conditions was 2.5 times larger than that obtained under potentiostatic ones, regardless of the adsorbed quantities. The obtained results suggest the existence of at least two types of adsorption sites on the APA surface characterized by different magnitudes of the Alq3 bonding strength. The related fluorescence spectra contained two peaks at wavelengths of 480 and 505 nm, which could be attributed to isolated Alq3 species inside nanovoids and aggregated Alq3 clusters in the pores of APA, respectively. The former species were attached to the adsorption sites with higher binding energies, whereas the latter ones were bound to the APA surface more weakly. Similar results were obtained for the Alq3 species formed from the HQ solution, which quantitatively exceeded the number of the Alq3 species adsorbed from the Alq3 solution. Alq3 molecules were formed in the HQ solution during the reaction of HQ molecules with the Al3+ ions in the oxide dissolution zone near the oxide/electrolyte interface through the cracks and the Al3+ ions adsorbed on surface of pore and cracks. In addition, it was suggested that HQ molecules could penetrate the nanovoids more easily than Alq3 species because of their smaller sizes, which resulted in higher

  8. Modelling the growth process of porous aluminum oxide film during anodization

    NASA Astrophysics Data System (ADS)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2015-11-01

    Currently it has become important for the development of metamaterials and nanotechnology to obtain regular self-assembled structures. One such structure is porous anodic alumina film that consists of hexagonally packed cylindrical pores. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. In present work we consider those effects. And as a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process.

  9. 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores.

    PubMed

    Chekmenev, Eduard Y; Hu, Jun; Gor'kov, Peter L; Brey, William W; Cross, Timothy A; Ruuge, Andres; Smirnov, Alex I

    2005-04-01

    This communication reports the first example of a high resolution solid-state 15N 2D PISEMA NMR spectrum of a transmembrane peptide aligned using hydrated cylindrical lipid bilayers formed inside nanoporous anodic aluminum oxide (AAO) substrates. The transmembrane domain SSDPLVVA(A-15N)SIIGILHLILWILDRL of M2 protein from influenza A virus was reconstituted in hydrated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine bilayers that were macroscopically aligned by a conventional micro slide glass support or by the AAO nanoporous substrate. 15N and 31P NMR spectra demonstrate that both the phospholipids and the protein transmembrane domain are uniformly aligned in the nanopores. Importantly, nanoporous AAO substrates may offer several advantages for membrane protein alignment in solid-state NMR studies compared to conventional methods. Specifically, higher thermal conductivity of aluminum oxide is expected to suppress thermal gradients associated with inhomogeneous radio frequency heating. Another important advantage of the nanoporous AAO substrate is its excellent accessibility to the bilayer surface for exposure to solute molecules. Such high accessibility achieved through the substrate nanochannel network could facilitate a wide range of structure-function studies of membrane proteins by solid-state NMR.

  10. Tuning ligament shape in dealloyed nanoporous tin and the impact of nanoscale morphology on its applications in Na-ion alloy battery anodes

    NASA Astrophysics Data System (ADS)

    Detsi, Eric; Petrissans, Xavier; Yan, Yan; Cook, John B.; Deng, Ziling; Liang, Yu-Lun; Dunn, Bruce; Tolbert, Sarah H.

    2018-05-01

    Control over the morphology of nanostructured materials is of primary importance in structure-property relationship studies. Although the size of ligaments and pores in dealloyed nanoporous metals can be controlled by thermal and/or (electro)chemical treatments, tuning the shape of those ligaments is much harder. In the present work, we use corroding media with different reactivity to effectively tailor the ligament shape in nanoporous tin (NP-Sn) during dealloying by free corrosion. NP-Sn architectures with nanowire and granular ligament shapes were made by controlling the pH of the corroding solution, and thus the rate of Sn oxidation relative to the etching rate of the sacrificial component. The standard nanowire structure was formed under acidic conditions where oxidation was slow, but a hierarchical granular structure was formed when fusion of the Sn nanocrystals was inhibited by surface oxidation. To demonstrate the advantages of this architectural control, these two materials systems were investigated as electrodes for Na-ion battery anodes. Similar initial Na storage capacities of ˜500 and 550 mAh/g were achieved in the nanowire and granular materials, respectively, but the cycle life of the two materials was quite different. NP-Sn with a granular ligament shape showed enhanced stability with a capacity retention of ˜55 % over 95 cycles at a specific current of 40 mA/g. By contrast, NP-Sn with a nanowire ligament shape showed very fast capacity fading within the first 10 cycles. This work thus demonstrates the dramatic impact of the nanoscale morphology on the electrochemical performance of nanoporous materials and highlights the need for both shape and size control in dealloyed nanoporous metals.

  11. Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane.

    PubMed

    Pai, Yi-Hao; Lin, Gong-Ru

    2011-01-17

    By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.

  12. On hydrophilicity improvement of the porous anodic alumina film by hybrid nano/micro structuring

    NASA Astrophysics Data System (ADS)

    Wang, Weichao; Zhao, Wei; Wang, Kaige; Wang, Lei; Wang, Xuewen; Wang, Shuang; Zhang, Chen; Bai, Jintao

    2017-09-01

    In both, laboratory and industry, tremendous attention is paid to discover an effective technique to produce uniform, controllable and (super) hydrophilic surfaces over large areas that are useful in a wide range of applications. In this investigation, by combing porous anodic alumina (PAA) film with nano-structures and microarray of aluminum, the hydrophilicity of hybrid nano-micro structure has been significantly improved. It is found some factors can affect the hydrophilicity of film, such as the size and aspect ratio of microarray, the thickness of nano-PAA film etc. Comparing with pure nano-PAA films and microarray, the hybrid nano-micro structure can provide uniform surface with significantly better hydrophilicity. The improvement can be up to 84%. Also, this technique exhibits good stability and repeatability for industrial production. By optimizing the thickness of nano-PAA film and aspect ratio of micro-structures, super-hydrophilicity can be reached. This study has obvious prospect in the fields of chemical industry, biomedical engineering and lab-on-a-chip applications.

  13. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J [Naperville, IL; Hryn, John N [Naperville, IL; Elam, Jeffrey W [Elmhurst, IL

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  14. Nanoporous metallic surface: Facile fabrication and enhancement of boiling heat transfer

    NASA Astrophysics Data System (ADS)

    Tang, Yong; Tang, Biao; Qing, Jianbo; Li, Qing; Lu, Longsheng

    2012-09-01

    The paper reports a flexible and low-cost approach, hot-dip galvanizing and dealloying, for the fabrication of enhanced nanoporous metallic surfaces. A Cu-Zn alloy layer mainly composed of γ-Cu5Zn8 and β'-CuZn was formed during the hot-dipping process. The multiple oxidation peaks recorded in the anodic liner sweep voltammetry measurements indicate different dezincification preferences of the alloy phases. A nanoporous copper surface with approximately 50-200 nm in pore size was obtained after a free corrosion process. The nanoporous structure improves the surface wettability and shows dramatic reduction of wall superheat compared to that of the plain surface in the pool-boiling experiments.

  15. Solar Cell Nanotechnology Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Biswajit

    2014-05-07

    The objective of this project is to develop a low cost nonlithographic nanofabrication technology for the fabrication of thin film porous templates as well as uniform arrays of semiconductor nanostructures for the implementation of high efficiency solar cells. Solar cells based on semiconductor nanostructures are expected to have very high energy conversion efficiencies due to the increased absorption coefficients of semiconductor nanostructures. In addition, the thin film porous template can be used for optimum surface texturing of solar cells leading to additional enhancement in energy conversion efficiency. An important requirement for these applications is the ability to synthesize nanostructure arraysmore » of different dimensions with good size control. This project employed nanoporous alumina templates created by the anodization of aluminum thin films deposited on glass substrates for the fabrication of the nanostructures and optimized the process parameters to obtain uniform pore diameters. An additional requirement is uniformity or regularity of the nanostructure arrays. While constant current anodization was observed to provide controlled pore diameters, constant voltage anodization was needed for regularity of the nanostructure arrays. Thus a two-step anodization process was investigated and developed in this project for improving the pore size distribution and pore periodicity of the nanoporous alumina templates. CdTe was selected to be the active material for the nanowires, and the process for the successful synthesis of CdTe nanowires was developed in this project. Two different synthesis approaches were investigated in this project, electrochemical and electrophoretic deposition. While electrochemical synthesis was successfully employed for the synthesis of nanowires inside the pores of the alumina templates, the technique was determined to be non-optimum due to the need of elevated temperature that is detrimental to the structural integrity of the

  16. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency.

    PubMed

    Jeong, Chanyoung; Choi, Chang-Hwan

    2012-02-01

    Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.

  17. High capacity and stable all-solid-state Li ion battery using SnO2-embedded nanoporous carbon.

    PubMed

    Notohara, Hiroo; Urita, Koki; Yamamura, Hideyuki; Moriguchi, Isamu

    2018-06-08

    Extensive research efforts are devoted to development of high performance all-solid-state lithium ion batteries owing to their potential in not only improving safety but also achieving high stability and high capacity. However, conventional approaches based on a fabrication of highly dense electrode and solid electrolyte layers and their close contact interface is not always applicable to high capacity alloy- and/or conversion-based active materials such as SnO 2 accompanied with large volume change in charging-discharging. The present work demonstrates that SnO 2 -embedded nanoporous carbons without solid electrolyte inside the nanopores are a promising candidate for high capacity and stable anode material of all-solid-state battery, in which the volume change reactions are restricted in the nanopores to keep the constant electrode volume. A prototype all-solid-state full cell consisting of the SnO 2 -based anode and a LiNi 1/3 Co 1 / 3 Mn 1/3 O 2 -based cathode shows a good performance of 2040 Wh/kg at 268.6 W/kg based on the anode material weight.

  18. Fabrication and magnetic properties of Fe nanostructures in anodic alumina membrane

    NASA Astrophysics Data System (ADS)

    Lim, J.-H.; Chae, W.-S.; Lee, H.-O.; Malkinski, L.; Min, S.-G.; Wiley, J. B.; Jun, J.-H.; Lee, S.-H.; Jung, J.-S.

    2010-05-01

    Several Fe nanostructures with different lengths, diameters, and separations of the constituting magnetic components have been synthesized using anodized alumina membranes (AAMs) to understand the influence of these parameters on their magnetic properties. Fe nanostructures with high crystallinity and (110) orientation were synthesized by electrodeposition at room temperature in regular AAMs and mild-hard AAM (Mi-Ha AAM). Fe nanostructures with different aspect ratios (1:1, 1:10, and 1:75) in the form of nanodots, nanorods, or nanowires were synthesized in regular AAMs with the 100 nm interpore distance. Mi-Ha AAMs with two different pore sizes (70 and 120 nm) and 250 nm interpore distances were used to investigate the effect of the interactions and of the diameter of the wires on their magnetic behavior. Nearly linear magnetization characteristics with small coercivity, observed for Fe nanowires, suggest the magnetization rotation to be the predominant magnetization process for the field applied transverse to the wires. The anisotropy of the arrays was governed by the shape anisotropy of the magnetic objects with different aspect ratios. Reduced interactions between the nanowires grown in Mi-Ha AAMs resulted in enhancement of the average anisotropy. It is believed that due to difference in spin configuration, the increased diameter of the nanowires led to reduction in the coercivity in the case of the field applied along the wires.

  19. Generation of highly stable and active strong base sites on organized nano-porous alumina by calcium oxide

    NASA Astrophysics Data System (ADS)

    Tarlani, Aliakbar; Zarabadi, Mir Pouyan

    2013-02-01

    In a new approach, strong basic sites has been successfully prepared by loading of calcium nitrate (Ca) on organized nano-porous alumina (ONPA). The prepared CaONPAs were characterized by low-angle X-ray diffraction (XRD), N2 adsorption-desorption isotherms (Brunauer-Emmett-Teller (BET)-Barret-Joyner-Halenda (BJH)), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). Measuring of the amount of the basic sites and the basicity was carried out by titration method, temperature-programmed desorption (TPD-CO2) and Hammett indicators. Resistance of the basic sites was also tested by washing with water. N2 sorption measurements showed that supporting of the calcium nitrate on ONPA can lead to the bimodal porosity at lower loading. BET surface area of the bare ONPA was 212 m2/g which decreased to 111 m2/g for the 25% of loading of Ca (25CaONPA). The results pointed out that CaONPA samples have basicity between 18.4 < H_ < 22 for 15 and 25% of loadings and well-preserved of the basicity after washing with water especially for 5 and 15% samples. Also no crystalline phase of CaO was observed for 25CaONPA which was calcined at 600 °C.

  20. Polyelectrolyte layer-by-layer deposition in cylindrical nanopores.

    PubMed

    Lazzara, Thomas D; Lau, K H Aaron; Abou-Kandil, Ahmed I; Caminade, Anne-Marie; Majoral, Jean-Pierre; Knoll, Wolfgang

    2010-07-27

    Layer-by-layer (LbL) deposition of polyelectrolytes within nanopores in terms of the pore size and the ionic strength was experimentally studied. Anodic aluminum oxide (AAO) membranes, which have aligned, cylindrical, nonintersecting pores, were used as a model nanoporous system. Furthermore, the AAO membranes were also employed as planar optical waveguides to enable in situ monitoring of the LbL process within the nanopores by optical waveguide spectroscopy (OWS). Structurally well-defined N,N-disubstituted hydrazine phosphorus-containing dendrimers of the fourth generation, with peripherally charged groups and diameters of approximately 7 nm, were used as the model polyelectrolytes. The pore diameter of the AAO was varied between 30-116 nm and the ionic strength was varied over 3 orders of magnitude. The dependence of the deposited layer thickness on ionic strength within the nanopores is found to be significantly stronger than LbL deposition on a planar surface. Furthermore, deposition within the nanopores can become inhibited even if the pore diameter is much larger than the diameter of the G4-polyelectrolyte, or if the screening length is insignificant relative to the dendrimer diameter at high ionic strengths. Our results will aid in the template preparation of polyelectrolyte multilayer nanotubes, and our experimental approach may be useful for investigating theories regarding the partitioning of nano-objects within nanopores where electrostatic interactions are dominant. Furthermore, we show that the enhanced ionic strength dependence of polyelectrolyte transport within the nanopores can be used to selectively deposit a LbL multilayer atop a nanoporous substrate.

  1. Hollow carbon nanospheres/silicon/alumina core-shell film as an anode for lithium-ion batteries

    PubMed Central

    Li, Bing; Yao, Fei; Bae, Jung Jun; Chang, Jian; Zamfir, Mihai Robert; Le, Duc Toan; Pham, Duy Tho; Yue, Hongyan; Lee, Young Hee

    2015-01-01

    Hollow carbon nanospheres/silicon/alumina (CNS/Si/Al2O3) core-shell films obtained by the deposition of Si and Al2O3 on hollow CNS interconnected films are used as the anode materials for lithium-ion batteries. The hollow CNS film acts as a three dimensional conductive substrate and provides void space for silicon volume expansion during electrochemical cycling. The Al2O3 thin layer is beneficial to the reduction of solid-electrolyte interphase (SEI) formation. Moreover, as-designed structure holds the robust surface-to-surface contact between Si and CNSs, which facilitates the fast electron transport. As a consequence, the electrode exhibits high specific capacity and remarkable capacity retention simultaneously: 1560 mA h g−1 after 100 cycles at a current density of 1 A g−1 with the capacity retention of 85% and an average decay rate of 0.16% per cycle. The superior battery properties are further confirmed by cyclic voltammetry (CV) and impedance measurement. PMID:25564245

  2. Additional Electrochemical Treatment Effects on the Switching Characteristics of Anodic Porous Alumina Resistive Switching Memory

    NASA Astrophysics Data System (ADS)

    Otsuka, Shintaro; Takeda, Ryouta; Furuya, Saeko; Shimizu, Tomohiro; Shingubara, Shouso; Iwata, Nobuyuki; Watanabe, Tadataka; Takano, Yoshiki; Takase, Kouichi

    2012-06-01

    We have investigated the current-voltage characteristics of a resistive switching memory (ReRAM), especially the reproducibility of the switching voltage between an insulating state and a metallic state. The poor reproducibility hinders the practical use of this memory. According to a filament model, the variation of the switching voltage may be understood in terms of the random choice of filaments with different conductivities and lengths at each switching. A limitation of the number of conductive paths is expected to lead to the suppression of the variation of switching voltage. In this study, two strategies for the limitation have been proposed using an anodic porous alumina (APA). The first is the reduction of the number of conductive paths by restriction of the contact area between the top electrodes and the insulator. The second is the lowering of the resistivity of the insulator, which makes it possible to grow filaments with the same characteristics by electrochemical treatments using a pulse-electroplating technique.

  3. Dependence of cell adhesion on extracellular matrix materials formed on pore bridge boundaries by nanopore opening and closing geometry.

    PubMed

    Kim, Sueon; Han, Dong Yeol; Chen, Zhenzhong; Lee, Won Gu

    2018-04-30

    In this study, we report experimental results for characterization of the growth and formation of pore bridge materials that modified the adhesion structures of cells cultured on nanomembranes with opening and closing geometry. To perform the proof-of-concept experiments, we fabricated two types of anodized alumina oxide substrates with single-sided opening (i.e., one side open, but closed at the other side) and double-sided opening (i.e., both sides open). In our experiment, we compared the densities of pores formed and of bridge materials which differently act as connective proteins depending on the size of pores. The results show that the pore opening geometry can be used to promote the net contact force between pores, resulting in the growth and formation of pore bridge materials before and after cell culture. The results also imply that the bridge materials can be used to attract the structural protrusion of filopodia that can promote the adhesion of cell-to-cell and cell-to-pore bridge. It is observed that the shape and size of cellular structures of filopodia depend on the presence of pore bridge materials. Overall, this observation brought us a significant clue that cells cultured on nanopore substrates would change the adhesion property depending on not only the formation of nanopores formed on the surface of topological substrates, but also that of pore bridge materials by its morphological growth.

  4. Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane.

    PubMed

    Liu, L; Lee, W; Huang, Z; Scholz, R; Gösele, U

    2008-08-20

    The fabrication of a composite membrane of nanoporous gold nanowires and anodic aluminum oxide (AAO) is demonstrated by the electrodeposition of Au-Ag alloy nanowires into an AAO membrane, followed by selective etching of silver from the alloy nanowires. This composite membrane is advantageous for flow-through type catalytic reactions. The morphology evolution of the nanoporous gold nanowires as a function of the diameter of the Au-Ag nanowire 'precursors' is also investigated.

  5. Properties of nanostructures obtained by anodization of aluminum in phosphoric acid at moderate potentials

    NASA Astrophysics Data System (ADS)

    Zaraska, L.; Sulka, G. D.; Jaskuła, M.

    2009-01-01

    The influence of the process duration, anodizing potential and methanol addition on the structural features of porous anodic alumina formed in a 0.3 M H3PO4 solutions by twostep self-organized anodizing was investigated for potentials ranging from 100 to 170 V. The structural features of porous structures including pore diameter and interpore distance were evaluated from FE-SEM top-view images for samples anodized in the presence and absence of methanol. For the highest studied anodizing time and methanol volume fraction, an excellent agreement between experimental values of the interpore distance and theoretical predictions was observed. The pore arrangement regularity was analyzed for various electrolyte compositions and anodizing potentials. It was found that the regularity ratio of porous alumina increases linearly with increasing anodizing potential and time. The addition of methanol improves the quality of nanostructures and especially better uniformity of pore sizes is observed in the presence of the highest studied methanol content.

  6. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication

    NASA Astrophysics Data System (ADS)

    Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan

    2015-08-01

    Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.

  7. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.

    PubMed

    Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan

    2015-08-07

    Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.

  8. Intercalation of biomolecules into NiAl-NO 3 layered double hydroxide films synthesized in situ on anodic alumina/aluminium support

    NASA Astrophysics Data System (ADS)

    Zhao, Hua-Zhang; Chang, Ying-Yue; Yang, Jing; Yang, Qin-Zheng

    2013-03-01

    Layered double hydroxide (LDH) films were synthesized in situ on anodic alumina/aluminium (AAO/Al). Glucose oxidase (GOD) and L-ascorbic acid (vitamin C, VC) were intercalated respectively into the in-situ grown LDH films by anion-exchange in aqueous solutions. Dodecylsulfate (SDS) was used to expand the lamellar structure before GOD intercalation into the LDH film. The resulting products were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis (TGA). The results showed that VC and GOD were successfully intercalated into the in-situ synthesized LDH film. These biomolecules loaded LDH films could have potential applications in electrode modification, safe storage and effective delivery of bioactive compounds.

  9. Iron films deposited on porous alumina substrates

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Tanabe, Kenichi; Nishida, Naoki; Kobayashi, Yoshio

    2016-12-01

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 - 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  10. Nano-assembly and Controlled Release Kinetics of Nanoelements from Nanoporous Templates

    NASA Astrophysics Data System (ADS)

    Gultepe, E.; Nagesha, D.; McNulty, J.; Sridhar, S.

    2008-03-01

    Nanotemplates and nanoparticles have potential for use in the area of nanomanufacturing and biomedical applications. We are using highly ordered nanoporous alumina as a template for drug delivery and to assemble nanoelements such as latex beads and single wall carbon nanotubes (SWNT) by the means of electrophoresis and/or dielectrophoresis. The results of 100% assembly of latex beads and controlled elution of drugs from nanoporous templates will be discussed. Vertically assembled SWNT and with the I-V characteristic as 3D interconnects, will also be presented. We have developed a variety of platforms incorporating superparamagnetic iron oxide nanoparticles for targeted delivery, magnetic hyperthermia and as a contrast agent for magnetic resonance imaging. The results of cell studies on these platforms will be discussed.

  11. Recycling rice husks for high-capacity lithium battery anodes

    PubMed Central

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-01-01

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 108 tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes. PMID:23836636

  12. Recycling rice husks for high-capacity lithium battery anodes.

    PubMed

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-07-23

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 10(8) tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes.

  13. Fabrication and characterization of nanostructured Mg-doped CdS/AAO nanoporous membrane for sensing applications

    NASA Astrophysics Data System (ADS)

    Shaban, Mohamed; Mustafa, Mona; Hamdy, Hany

    2016-04-01

    In this study, Mg-doped CdS nanostructure was deposited onto anodic aluminum oxide (AAO) membrane substrate using sol-gel spin coating method. The AAO membrane was prepared by a two-step anodization process combined with pore widening process. The morphology, chemical composition, and structure of the spin- coated CdS nanostructure have been studied. The morphology of the fabricated AAO membrane and the deposited Mg-doped CdS nanostructure was investigated using scanning electron microscopy (SEM). The SEM of AAO illustrates a typical hexagonal and smooth nanoporous alumina membrane with interpore distance of ~ 100 nm, the pore diameter of ~ 60 nm. SEM of Mgdoped CdS shows porous nanostructured film of CdS nanoparticles. This film well adherents and covers the AAO substrate. The energy dispersive X-ray (EDX) pattern exhibits the signals of Al, O from AAO membrane and Mg, Cd, and S from the deposited CdS. This indicates the high purity of the fabricated membrane and the deposited Mg-doped CdS nanostructure. Using X-ray diffraction (XRD) pattern, Scherrer equation was used to calculate the average crystallite size. Additionally, the texture coefficients and density of dislocations were calculated. The fabricated CdS/AAO was applied to detect glucose of different concentrations. The proposed method has some advantages such as simple technology, low cost of processing, and high throughput. All of these factors facilitate the use of the prepared films in sensing applications.

  14. Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors.

    PubMed

    Yang, Yang; Li, Lei; Ruan, Gedeng; Fei, Huilong; Xiang, Changsheng; Fan, Xiujun; Tour, James M

    2014-09-23

    A three-dimensional nanoporous Ni(OH)2 thin-film was hydrothermally converted from an anodically formed porous layer of nickel fluoride/oxide. The nanoporous Ni(OH)2 thin-films can be used as additive-free electrodes for energy storage. The nanoporous layer delivers a high capacitance of 1765 F g(-1) under three electrode testing. After assembly with porous activated carbon in asymmetric supercapacitor configurations, the devices deliver superior supercapacitive performances with capacitance of 192 F g(-1), energy density of 68 Wh kg(-1), and power density of 44 kW kg(-1). The wide working potential window (up to 1.6 V in 6 M aq KOH) and stable cyclability (∼90% capacitance retention over 10,000 cycles) make the thin-film ideal for practical supercapacitor devices.

  15. Effects of Anode Arc Root Fluctuation on Coating Quality During Plasma Spraying

    NASA Astrophysics Data System (ADS)

    An, Lian-Tong; Gao, Yang; Sun, Chengqi

    2011-06-01

    To obtain a coating of high quality, a new type of plasma torch was designed and constructed to increase the stability of the plasma arc and reduce the air entrainment into the plasma jet. The torch, called bi-anode torch, generates an elongated arc with comparatively high arc voltage and low arc fluctuation. Spraying experiments were carried out to compare the quality of coatings deposited by a conventional torch and a bi-anode torch. Alumina coatings and tungsten carbide coatings were prepared to appraise the heating of the sprayed particles in the plasma jets and the entrainment of the surrounding air into the plasma jets, respectively. The results show that anode arc root fluctuation has only a small effect on the melting rate of alumina particles. On the other hand, reduced air entrainment into the plasma jet of the bi-anode torch will drastically reduce the decarbonization of tungsten carbide coatings.

  16. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  17. Controlling the orientation of spin-correlated radical pairs by covalent linkage to nanoporous anodic aluminum oxide membranes.

    PubMed

    Chen, Hsiao-Fan; Gardner, Daniel M; Carmieli, Raanan; Wasielewski, Michael R

    2013-10-07

    Ordered multi-spin assemblies are required for developing solid-state molecule-based spintronics. A linear donor-chromophore-acceptor (D-C-A) molecule was covalently attached inside the 150 nm diam. nanopores of an anodic aluminum oxide (AAO) membrane. Photoexcitation of D-C-A in a 343 mT magnetic field results in sub-nanosecond, two-step electron transfer to yield the spin-correlated radical ion pair (SCRP) (1)(D(+)˙-C-A(-)˙), which then undergoes radical pair intersystem crossing (RP-ISC) to yield (3)(D(+)˙-C-A(-)˙). RP-ISC results in S-T0 mixing to selectively populate the coherent superposition states |S'> and |T'>. Microwave-induced transitions between these states and the unpopulated |T(+1)> and |T(-1)> states result in spin-polarized time-resolved EPR (TREPR) spectra. The dependence of the electron spin polarization (ESP) phase of the TREPR spectra on the orientation of the AAO membrane pores relative to the externally applied magnetic field is used to determine the overall orientation of the SCRPs within the pores at room temperature.

  18. Atomic layer deposition-based functionalization of materials for medical and environmental health applications

    PubMed Central

    Narayan, Roger J.; Adiga, Shashishekar P.; Pellin, Michael J.; Curtiss, Larry A.; Hryn, Alexander J.; Stafslien, Shane; Chisholm, Bret; Shih, Chun-Che; Shih, Chun-Ming; Lin, Shing-Jong; Su, Yea-Yang; Jin, Chunming; Zhang, Junping; Monteiro-Riviere, Nancy A.; Elam, Jeffrey W.

    2010-01-01

    Nanoporous alumina membranes exhibit high pore densities, well-controlled and uniform pore sizes, as well as straight pores. Owing to these unusual properties, nanoporous alumina membranes are currently being considered for use in implantable sensor membranes and water purification membranes. Atomic layer deposition is a thin-film growth process that may be used to modify the pore size in a nanoporous alumina membrane while retaining a narrow pore distribution. In addition, films deposited by means of atomic layer deposition may impart improved biological functionality to nanoporous alumina membranes. In this study, zinc oxide coatings and platinum coatings were deposited on nanoporous alumina membranes by means of atomic layer deposition. PEGylated nanoporous alumina membranes were prepared by self-assembly of 1-mercaptoundec-11-yl hexa(ethylene glycol) on platinum-coated nanoporous alumina membranes. The pores of the PEGylated nanoporous alumina membranes remained free of fouling after exposure to human platelet-rich plasma; protein adsorption, fibrin networks and platelet aggregation were not observed on the coated membrane surface. Zinc oxide-coated nanoporous alumina membranes demonstrated activity against two waterborne pathogens, Escherichia coli and Staphylococcus aureus. The results of this work indicate that nanoporous alumina membranes may be modified using atomic layer deposition for use in a variety of medical and environmental health applications. PMID:20308114

  19. A cost-effective nanoporous ultrathin film electrode based on nanoporous gold/IrO2 composite for proton exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Zeng, Yachao; Guo, Xiaoqian; Shao, Zhigang; Yu, Hongmei; Song, Wei; Wang, Zhiqiang; Zhang, Hongjie; Yi, Baolian

    2017-02-01

    A cost-effective nanoporous ultrathin film (NPUF) electrode based on nanoporous gold (NPG)/IrO2 composite has been constructed for proton exchange membrane (PEM) water electrolysis. The electrode was fabricated by integrating IrO2 nanoparticles into NPG through a facile dealloying and thermal decomposition method. The NPUF electrode is featured in its 3D interconnected nanoporosity and ultrathin thickness. The nanoporous ultrathin architecture is binder-free and beneficial for improving electrochemical active surface area, enhancing mass transport and facilitating releasing of oxygen produced during water electrolysis. Serving as anode, a single cell performance of 1.728 V (@ 2 A cm-2) has been achieved by NPUF electrode with a loading of IrO2 and Au at 86.43 and 100.0 μg cm-2 respectively, the electrolysis voltage is 58 mV lower than that of conventional electrode with an Ir loading an order of magnitude higher. The electrolysis voltage kept relatively constant up to 300 h (@250 mA cm-2) during the course of durability test, manifesting that NPUF electrode is promising for gas evolution.

  20. Nanoparticles in alumina: Microscopy and Theory

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan C.; Halabica, Andrej; Rashkeev, Sergey; Glazoff, Michael V.; Boatner, Lynn A.; Haglund, Richard F.; Pennycook, Stephen. J.; Pantelides, Sokrates T.

    2007-03-01

    Transition-metal nanoparticles formed by ion implantation in alumina can be used to modify the optical properties of naturally oxidized and anodized aluminum. Here, we report atomic-resolution Z-contrast images using a scanning transmission electron microscope (STEM) of CoFe and other metal nanoparticles in alumina. We also report electron energy loss spectra (EELS) and relate them to visual appearance and optical properties. Finally, we report first-principles density- functional calculations of nucleation mechanisms for these nanoparticles. This research was sponsored by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy, under contract DE-AC05- 00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, by NSF grant No. DMR-0513048, and by Alcoa Inc.

  1. Vertical Carbon Nanotube Device in Nanoporous Templates

    NASA Technical Reports Server (NTRS)

    Sands, Timothy (Inventor); Fisher, Timothy Scott (Inventor); Bashir, Rashid (Inventor); Maschmann, Matthew Ralph (Inventor)

    2014-01-01

    A modified porous anodic alumina template (PAA) containing a thin CNT catalyst layer directly embedded into the pore walls. CNT synthesis using the template selectively catalyzes SWNTs and DWNTs from the embedded catalyst layer to the top PAA surface, creating a vertical CNT channel within the pores. Subsequent processing allows for easy contact metallization and adaptable functionalization of the CNTs and template for a myriad of applications.

  2. Synthesis and characterization of polymeric V2O5/AlO(OH) with nanopores on alumina support.

    PubMed

    Ahmad, A L; Abd Shukor, S R; Leo, C P

    2006-12-01

    Polymeric vanadium pentoxide gel was formed via the reaction of V2O5 powder with hydrogen peroxide. The polymeric vanadium pentoxide gel was then dispersed in alumina gel. Different vanadium loading composites were coated on alumina support and calcined at 500 degrees C for 1 hr. These composite layers were characterized using TGA, FT-IR, XRD, SEM, and Autosorb. It was found that the lamellar structure of polymerized vanadium pentoxide was retained in the inorganic matrix. Crystalline alumina in gamma phase was formed after calcinations. However, the vanadium-alumina mixed oxides are lack of the well defined PXRD peaks for polycrystalline V2O5. This is possibly because the vanadia species are highly dispersed in the alumina matrix or the vanadia species are dispersed as crystalline which is smaller than 4 nm. In addition, the imbedded polymeric vanadium oxide improved the specific area and average pore diameter of the composite layer.

  3. Synthesis of Coral-Like Tantalum Oxide Films via Anodization in Mixed Organic-Inorganic Electrolytes

    PubMed Central

    Yu, Hongbin; Zhu, Suiyi; Yang, Xia; Wang, Xinhong; Sun, Hongwei; Huo, Mingxin

    2013-01-01

    We report a simple method to fabricate nano-porous tantalum oxide films via anodization with Ta foils as the anode at room temperature. A mixture of ethylene glycol, phosphoric acid, NH4F and H2O was used as the electrolyte where the nano-porous tantalum oxide could be synthesized by anodizing a tantalum foil for 1 h at 20 V in a two–electrode configuration. The as-prepared porous film exhibited a continuous, uniform and coral-like morphology. The diameters of pores ranged from 30 nm to 50 nm. The pores interlaced each other and the depth was about 150 nm. After calcination, the as-synthesized amorphous tantalum oxide could be crystallized to the orthorhombic crystal system. As observed in photocatalytic experiments, the coral-like tantalum oxide exhibited a higher photocatalytic activity for the degradation of phenol than that with a compact surface morphology, and the elimination rate of phenol increased by 66.7%. PMID:23799106

  4. Ultrasonic Welding of Thin Alumina and Aluminum Using Inserts

    NASA Astrophysics Data System (ADS)

    Ishikuro, Tomoaki; Matsuoka, Shin-Ichi

    This paper describes an experimental study of ultrasonic welding of thin ceramics and metals using inserts. Ultrasonic welding has enable the joining of various thick ceramics, such as Al2O3 and ZrO2, to aluminum at room temperature quickly and easily as compared to other welding methods. However, for thin ceramics, which are brittle, welding is difficult to perform without causing damage. In this study, aluminum anodized oxide with different anodizing time was used as thin alumina ceramic. Vapor deposition of aluminum alloys was used to create an effective binder layer for welding at a low pressure and within a short duration in order to prevent damage to the anodic oxide film formed with a short anodizing time. For example, ultrasonic welding of thin Al2O3/Al was accomplished under the following conditions: ultrasonic horn tip amplitude of 30µm, welding pressure of 5MPa, and required duration of 0.1s. However, since the vapor deposition film tends to exfoliate as observed in the anodic oxide film formed with a long anodizing time, welding was difficult.

  5. 8OCB and 8CB Liquid Crystals Confined in Nanoporous Alumina: Effect of Confinement on the Structure and Dynamics.

    PubMed

    Selevou, Aristoula; Papamokos, George; Steinhart, Martin; Floudas, George

    2017-08-03

    The effect of oxygen substitution is studied in two homologous compounds of n-cyanobiphenyls with n = 8 in the bulk and under confinement within self-ordered nanoporous alumina (AAO). Oxygen substitution in 8OCB increases the dipole moment and stabilizes the crystalline, smectic, and nematic phases to higher temperatures relative to 8CB. Within their smectic- A (SmA) phase both 8CB and 8OCB behave as weak viscoelastic solids with low shear moduli reflecting the underlying supramolecular defect structure. Dielectric spectroscopy assisted by DFT calculations identified strong dipolar associations within the isotropic phases characterized by a Kirkwood-Fröhlich interaction parameter, g ∼ 0.36. Dielectric spectroscopy further identified a slow process (∼ kHz) of low dielectric strength. The proximity of this process to the rheology time scale suggests as common origin a cooperative relaxation of the defect structure. Confinement alters the phase diagram by stabilizing certain crystalline phases and by reducing the N-I transition temperature in agreement with surface tension effects. However, the N-I transition seems to retain its first order character. Surface treatment with n-decyltrichlorosilane results in destabilization of the SmA phase at the expense of the N phase. This is consistent with a picture of surface anchored LC molecules at the pore walls that stabilize the nematic phase.

  6. Diversifying biological fuel cell designs by use of nanoporous filters.

    PubMed

    Biffinger, Justin C; Ray, Ricky; Little, Brenda; Ringeisen, Bradley R

    2007-02-15

    The use of proton exchange membranes (PEMs) in biological fuel cells limits the diversity of novel designs for increasing output power or enabling autonomous function in unique environments. Here we show that selected nanoporous polymer filters (nylon, cellulose, or polycarbonate) can be used effectively in place of PEMs in a miniature microbial fuel cell (mini-MFC, device cross-section 2 cm2), generating a power density of 16 W/m3 with an uncoated graphite felt oxygen reduction reaction (ORR) cathode. The incorporation of polycarbonate or nylon membranes into biological fuel cell designs produced comparable power and durability to Nafion-117 membranes. Also, high power densities for novel larger (5 cm3 anode volume, 0.6 W/m3) and smaller (0.025 cm3 projected geometric volume, average power density 10 W/m3) chamberless and pumpless microbial fuel cells were observed. As an additional benefit, the nanoporous membranes isolated the anode from invading natural bacteria, increasing the potential applications for MFCs beyond aquatic sediment environments. This work is a practical solution for decreasing the cost of biological fuel cells while incorporating new features for powering long-term autonomous devices.

  7. Boron Nitride Nanoporous Membranes with High Surface Charge by Atomic Layer Deposition.

    PubMed

    Weber, Matthieu; Koonkaew, Boonprakrong; Balme, Sebastien; Utke, Ivo; Picaud, Fabien; Iatsunskyi, Igor; Coy, Emerson; Miele, Philippe; Bechelany, Mikhael

    2017-05-17

    In this work, we report the design and the fine-tuning of boron nitride single nanopore and nanoporous membranes by atomic layer deposition (ALD). First, we developed an ALD process based on the use of BBr 3 and NH 3 as precursors in order to synthesize BN thin films. The deposited films were characterized in terms of thickness, composition, and microstructure. Next, we used the newly developed process to grow BN films on anodic aluminum oxide nanoporous templates, demonstrating the conformality benefit of BN prepared by ALD, and its scalability for the manufacturing of membranes. For the first time, the ALD process was then used to tune the diameter of fabricated single transmembrane nanopores by adjusting the BN thickness and to enable studies of the fundamental aspects of ionic transport on a single nanopore. At pH = 7, we estimated a surface charge density of 0.16 C·m -2 without slip and 0.07 C·m -2 considering a reasonable slip length of 3 nm. Molecular dynamics simulations performed with experimental conditions confirmed the conductivities and the sign of surface charges measured. The high ion transport results obtained and the ability to fine-tune nanoporous membranes by such a scalable method pave the way toward applications such as ionic separation, energy harvesting, and ultrafiltration devices.

  8. Fabrication of anodic aluminium oxide templates on curved surfaces.

    PubMed

    Yin, Aijun; Guico, Rodney S; Xu, Jimmy

    2007-01-24

    Aluminium anodization provides a simple and inexpensive way to obtain nanoporous templates with uniform and controllable pore diameters and periods over a wide range. Moreover, one of the interesting possibilities afforded by the anodization process is that the anodization can take place on arbitrary surfaces, such as curved surfaces, which has not yet been well studied or applied in nanofabrication. In this paper, we characterize the anodization of Al films on silicon substrates with a curved top surface. The structures of the resultant anodic aluminium oxide (AAO) films are examined by scanning electron microscopy. Unique features including cessation, bending, and branching of pore channels are observed in the curved area. Possible growth mechanisms are proposed, which can also contribute to the understanding of the self-organization mechanism in the formation of porous AAO membranes. The new structures may open new opportunities in optical, electronic and electrochemical applications.

  9. Sn Nanoparticles Encapsulated in 3D Nanoporous Carbon Derived from a Metal-Organic Framework for Anode Material in Lithium-Ion Batteries.

    PubMed

    Guo, Yuanyuan; Zeng, Xiaoqiao; Zhang, Yu; Dai, Zhengfei; Fan, Haosen; Huang, Ying; Zhang, Weina; Zhang, Hua; Lu, Jun; Huo, Fengwei; Yan, Qingyu

    2017-05-24

    Three-dimensional nanoporous carbon frameworks encapsulated Sn nanoparticles (Sn@3D-NPC) are developed by a facile method as an improved lithium ion battery anode. The Sn@3D-NPC delivers a reversible capacity of 740 mAh g -1 after 200 cycles at a current density of 200 mA g -1 , corresponding to a capacity retention of 85% (against the second capacity) and high rate capability (300 mAh g -1 at 5 A g -1 ). Compared to the Sn nanoparticles (SnNPs), such improvements are attributed to the 3D porous and conductive framework. The whole structure can provide not only the high electrical conductivity that facilities the electron transfer but also the elasticity that will suppress the volume expansion and aggregation of SnNPs during the charge and discharge process. This work opens a new application of metal-organic frameworks in energy storage.

  10. Atomic Layer Deposition for the Conformal Coating of Nanoporous Materials

    DOE PAGES

    Elam, Jeffrey W.; Xiong, Guang; Han, Catherine Y.; ...

    2006-01-01

    Amore » tomic layer deposition ( LD ) is ideal for applying precise and conformal coatings over nanoporous materials. We have recently used LD to coat two nanoporous solids: anodic aluminum oxide ( O ) and silica aerogels. O possesses hexagonally ordered pores with diameters d ∼ 40 nm and pore length L ∼ 70 microns. The O membranes were coated by LD to fabricate catalytic membranes that demonstrate remarkable selectivity in the oxidative dehydrogenation of cyclohexane. dditional O membranes coated with LD Pd films show promise as hydrogen sensors. Silica aerogels have the lowest density and highest surface area of any solid material. Consequently, these materials serve as an excellent substrate to fabricate novel catalytic materials and gas sensors by LD .« less

  11. Alumina Concentration Detection Based on the Kernel Extreme Learning Machine.

    PubMed

    Zhang, Sen; Zhang, Tao; Yin, Yixin; Xiao, Wendong

    2017-09-01

    The concentration of alumina in the electrolyte is of great significance during the production of aluminum. The amount of the alumina concentration may lead to unbalanced material distribution and low production efficiency and affect the stability of the aluminum reduction cell and current efficiency. The existing methods cannot meet the needs for online measurement because industrial aluminum electrolysis has the characteristics of high temperature, strong magnetic field, coupled parameters, and high nonlinearity. Currently, there are no sensors or equipment that can detect the alumina concentration on line. Most companies acquire the alumina concentration from the electrolyte samples which are analyzed through an X-ray fluorescence spectrometer. To solve the problem, the paper proposes a soft sensing model based on a kernel extreme learning machine algorithm that takes the kernel function into the extreme learning machine. K-fold cross validation is used to estimate the generalization error. The proposed soft sensing algorithm can detect alumina concentration by the electrical signals such as voltages and currents of the anode rods. The predicted results show that the proposed approach can give more accurate estimations of alumina concentration with faster learning speed compared with the other methods such as the basic ELM, BP, and SVM.

  12. Non-consumable anode and lining for aluminum electrolytic reduction cell

    DOEpatents

    Beck, Theodore R.; Brooks, Richard J.

    1994-01-01

    An oxidation resistant, non-consumable anode, for use in the electrolytic reduction of alumina to aluminum, has a composition comprising copper, nickel and iron. The anode is part of an electrolytic reduction cell comprising a vessel having an interior lined with metal which has the same composition as the anode. The electrolyte is preferably composed of a eutectic of AlF.sub.3 and either (a) NaF or (b) primarily NaF with some of the NaF replaced by an equivalent molar amount of KF or KF and LiF.

  13. Dispersion of Cobalt Nanoparticles on Nanowires Grown on Silicon Carbide-Alumina Nanocomposites.

    PubMed

    Kim, Inho; Seo, Kyeong Won; Ahn, Byoung Sung; Moon, Dong Ju; Kim, Sang Woo

    2017-04-01

    Silicon carbide-alumina nanocomposite supports including a nanowire architecture for a high dispersion of cobalt nanocatalysts were fabricated using a modified sol–gel process and paste extrusion process to form cylindrical shape beads, followed by thermal treatment. Well-developed aluminosilicate nanowires were formed on a nanoporous support, which are grown from a catalytic metal seed at the nanowire growth tips during heat treatment at 1,100 °C for 1 h under nitrogen gas flow. Cobalt oxide precursors were highly dispersed on the nanowires grown on the surface of the nanoporous bodies through a supercritical carbon dioxide fluid-assisted wet-impregnation process. The highly-dispersed Co nanoparticles with size of less than 10 nm were finally obtained on the nanowires via phase transitions from Co₃O₄ to CoO and from CoO to Co during the thermal reduction.

  14. One-Step to Prepare Self-Organized Nanoporous NiO/TiO2 Layers and its Use in Non-Enzymatic Glucose Sensing

    PubMed Central

    Gao, Zhi-Da; Han, Yuyao; Wang, Yongmei; Xu, Jingwen; Song, Yan-Yan

    2013-01-01

    A highly ordered nanoporous NiTi oxide layers were fabricated on Ti alloys with high Ni contents (50.6 at.%) by a combination of self-organizing anodization at 0°C and subsequent selective etching in H2O2. The key for successful formation of such layers is to sufficiently suppress the dissolve of NiO by applying lower temperature during anodization. The resulting nanoporous structure is connected and well-adhered, which exhibits a much higher electrochemical cycling stability in 0.1 M NaOH. Without further surface modification or the use of polymer binders, the layers can be behave as a low-cost, stable and sensitive platform in non-enzymatic glucose sensing. PMID:24270125

  15. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media

    NASA Astrophysics Data System (ADS)

    Huber, Patrick

    2015-03-01

    Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.

  16. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media.

    PubMed

    Huber, Patrick

    2015-03-18

    Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.

  17. Negative Pressure Vitrification of the Isochorically Confined Liquid in Nanopores.

    PubMed

    Adrjanowicz, K; Kaminski, K; Koperwas, K; Paluch, M

    2015-12-31

    Dielectric relaxation studies for model glass-forming liquids confined to nanoporous alumina matrices were examined together with high-pressure results. For confined liquids which show the deviation from bulk dynamics upon approaching the glass transition (the change from the Vogel-Fulcher-Tammann to the Arrhenius law), we have observed a striking agreement between the temperature dependence of the α-relaxation time in the Arrhenius-like region and the isochoric relaxation times extrapolated from the positive range of pressure to the negative pressure domain. Our finding provides strong evidence that glass-forming liquid confined to native nanopores enters the isochoric conditions once the mobility of the interfacial layer becomes frozen in. This results in the negative pressure effects on cooling. We also demonstrate that differences in the sensitivity of various glass-forming liquids to the "confinement effects" can be rationalized by considering the relative importance of thermal energy and density contributions in controlling the α-relaxation dynamics (the E(v)/E(p) ratio).

  18. Engineering of Nanoscale Antifouling and Hydrophobic Surfaces on Naval Structural Steel HY-80 by Anodizing

    DTIC Science & Technology

    2015-06-01

    examination of the morphologies of the nanoporous structures and the evaluation of the anodization parameters such as anodization potential, time... sponges , anemones, tunicates, and hydroids, whilst hard fouling comprises invertebrates such as barnacles, mussels, and tubeworms. The specific...of metals by making them more stable and highly resistant, but also to modify the surface by giving it a desired morphology . Ferrous alloys such as

  19. Sn Nanoparticles Encapsulated in 3D Nanoporous Carbon Derived from a Metal–Organic Framework for Anode Material in Lithium-Ion Batteries

    DOE PAGES

    Guo, Yuanyuan; Zeng, Xiaoqiao; Zhang, Yu; ...

    2017-05-04

    Three-dimensional nanoporous carbon frameworks encapsulated Sn nanoparticles (Sn@3D-NPC) are developed by a facile method as an improved lithium ion battery anode. The Sn@3D-NPC delivers a reversible capacity of 740 mAh g –1 after 200 cycles at a current density of 200 mA g –1, corresponding to a capacity retention of 85% (against the second capacity) and high rate capability (300 mAh g –1 at 5 A g –1). Compared to the Sn nanoparticles (SnNPs), such improvements are attributed to the 3D porous and conductive framework. The whole structure can provide not only the high electrical conductivity that facilities the electronmore » transfer but also the elasticity that will suppress the volume expansion and aggregation of SnNPs during the charge and discharge process. Lastly, this work opens a new application of metal–organic frameworks in energy storage.« less

  20. Effect of ultraviolet illumination and ambient gases on the photoluminescence and electrical properties of nanoporous silicon layer for organic vapor sensor.

    PubMed

    Atiwongsangthong, Narin

    2012-08-01

    The purpose of this research, the nanoporous silicon layer were fabricated and investigated the physical properties such as photoluminescence and the electrical properties in order to develop organic vapor sensor by using nanoporous silicon. The Changes in the photoluminescence intensity of nanoporous silicon samples are studied during ultraviolet illumination in various ambient gases such as nitrogen, oxigen and vacuum. In this paper, the nanoporous silicon layer was used as organic vapor adsorption and sensing element. The advantage of this device are simple process compatible in silicon technology and usable in room temperature. The structure of this device consists of nanoporous silicon layer which is formed by anodization of silicon wafer in hydrofluoric acid solution and aluminum electrode which deposited on the top of nanoporous silicon layer by evaporator. The nanoporous silicon sensors were placed in a gas chamber with various organic vapor such as ethanol, methanol and isopropyl alcohol. From studying on electrical characteristics of this device, it is found that the nanoporous silicon layer can detect the different organic vapor. Therefore, the nanoporous silicon is important material for organic vapor sensor and it can develop to other applications about gas sensors in the future.

  1. Nanoporous niobium nitride (Nb2N) with enhanced electrocatalytic performance for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhang, Jianli; Qian, Xingyue; Zhang, Yue; Wang, Yining; Hu, Rudan; Yao, Chao; Zhu, Junwu

    2018-01-01

    The transition metal nitrides (TMNs) with nanoporous structure have shown great promise as potential electrocatalysts for the hydrogen evolution reaction (HER). Herein, self-organized nanoporous Nb2N was first successfully synthesized through the anodization of niobium in mixed oxalic acid/HF electrolyte, followed by a simple annealing treatment in the ammonia atmosphere. Due to the highly ordered nanoporous structure with abundant active sites and the enhanced electrical conductivity, the Nb2N exhibits a high catalytic current (326.3 mA cm-2) and low onset potential (96.3 mV), which is almost 3.9 times and 4.2 times better than that of Nb2O5, respectively. Meanwhile, the Nb2N also presents low Tafel slope (92 mV dec-1), and excellent cycling durability. More importantly, this study will provide more opportunities for designing and fabricating niobium compounds as an innovative HER catalysts.

  2. Over-limiting Current and Control of Dendritic Growth by Surface Conduction in Nanopores

    PubMed Central

    Han, Ji-Hyung; Khoo, Edwin; Bai, Peng; Bazant, Martin Z.

    2014-01-01

    Understanding over-limiting current (faster than diffusion) is a long-standing challenge in electrochemistry with applications in desalination and energy storage. Known mechanisms involve either chemical or hydrodynamic instabilities in unconfined electrolytes. Here, it is shown that over-limiting current can be sustained by surface conduction in nanopores, without any such instabilities, and used to control dendritic growth during electrodeposition. Copper electrodeposits are grown in anodized aluminum oxide membranes with polyelectrolyte coatings to modify the surface charge. At low currents, uniform electroplating occurs, unaffected by surface modification due to thin electric double layers, but the morphology changes dramatically above the limiting current. With negative surface charge, growth is enhanced along the nanopore surfaces, forming surface dendrites and nanotubes behind a deionization shock. With positive surface charge, dendrites avoid the surfaces and are either guided along the nanopore centers or blocked from penetrating the membrane. PMID:25394685

  3. Copper-nickel superalloys as inert alloy anodes for aluminum electrolysis

    NASA Astrophysics Data System (ADS)

    Shi, Zhongning; Xu, Junli; Qiu, Zhuxian; Wang, Zhaowen; Gao, Bingliang

    2003-11-01

    The superalloys Cu-Ni-Al, Cu-Ni-Fe, and Cu-Ni-Cr were studied as anodes for aluminum electrolysis. The alloys were tested for corrosion in acidic electrolyte molten salt and for oxidation in both air and oxygen. The results showed that the Cu-Ni-Al anodes possess excellent resistance to oxidation and corrosion, and the oxidation rates of Cu-Ni-Fe and Cu-Ni-Al anodes were slower than those of pure copper or nickel. During electrolysis, the cell voltage of the Cu-Ni-Al anode was affected most by the concentration of alumina in cryolite molten salt. The Cu-Ni-Fe anode exhibited corrosion resistance in electrolyte molten salt. Comparatively, the Cu-Ni-Cr anode showed poor resistance to oxidation and corrosion. The testing found that further study is warranted on the use of Cu-Ni-Al and Cu-Ni-Fe as inert alloy anodes.

  4. Internal passivation of Al-based microchannel devices by electrochemical anodization

    NASA Astrophysics Data System (ADS)

    Hymel, Paul J.; Guan, D. S.; Mu, Yang; Meng, W. J.; Meng, Andrew C.

    2015-02-01

    Metal-based microchannel devices have wide-ranging applications. We report here a method to electrochemically anodize the internal surfaces of Al microchannels, with the purpose of forming a uniform and dense anodic aluminum oxide (AAO) layer on microchannel internal surfaces for chemical passivation and corrosion resistance. A pulsed electrolyte flow was utilized to emulate conventional anodization processes while replenishing depleted ionic species within Al microtubes and microchannels. After anodization, the AAO film was sealed in hot water to close the nanopores. Focused ion beam (FIB) sectioning, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were utilized to characterize the AAO morphology and composition. Potentiodynamic polarization corrosion testing of anodized Al microtube half-sections in a NaCl solution showed an order of magnitude decrease in anodic corrosion current when compared to an unanodized tube. The surface passivation process was repeated for Al-based microchannel heat exchangers. A corrosion testing method based on the anodization process showed higher resistance to ion transport through the anodized specimens than unanodized specimens, thus verifying the internal anodization and sealing process as a viable method for surface passivation of Al microchannel devices.

  5. A tunable sub-100 nm silicon nanopore array with an AAO membrane mask: reducing unwanted surface etching by introducing a PMMA interlayer

    NASA Astrophysics Data System (ADS)

    Lim, Namsoo; Pak, Yusin; Kim, Jin Tae; Hwang, Youngkyu; Lee, Ryeri; Kumaresan, Yogeenth; Myoung, Nosoung; Ko, Heung Cho; Jung, Gun Young

    2015-08-01

    Highly ordered silicon (Si) nanopores with a tunable sub-100 nm diameter were fabricated by a CF4 plasma etching process using an anodic aluminum oxide (AAO) membrane as an etching mask. To enhance the conformal contact of the AAO membrane mask to the underlying Si substrate, poly(methyl methacrylate) (PMMA) was spin-coated on top of the Si substrate prior to the transfer of the AAO membrane. The AAO membrane mask was fabricated by two-step anodization and subsequent removal of the aluminum support and the barrier layer, which was then transferred to the PMMA-coated Si substrate. Contact printing was performed on the sample with a pressure of 50 psi and a temperature of 120 °C to make a conformal contact of the AAO membrane mask to the Si substrate. The CF4 plasma etching was conducted to transfer nanopores onto the Si substrate through the PMMA interlayer. The introduced PMMA interlayer prevented unwanted surface etching of the Si substrate by eliminating the etching ions and radicals bouncing at the gap between the mask and the substrate, resulting in a smooth Si nanopore array.Highly ordered silicon (Si) nanopores with a tunable sub-100 nm diameter were fabricated by a CF4 plasma etching process using an anodic aluminum oxide (AAO) membrane as an etching mask. To enhance the conformal contact of the AAO membrane mask to the underlying Si substrate, poly(methyl methacrylate) (PMMA) was spin-coated on top of the Si substrate prior to the transfer of the AAO membrane. The AAO membrane mask was fabricated by two-step anodization and subsequent removal of the aluminum support and the barrier layer, which was then transferred to the PMMA-coated Si substrate. Contact printing was performed on the sample with a pressure of 50 psi and a temperature of 120 °C to make a conformal contact of the AAO membrane mask to the Si substrate. The CF4 plasma etching was conducted to transfer nanopores onto the Si substrate through the PMMA interlayer. The introduced PMMA interlayer

  6. Single Molecule Sensing by Nanopores and Nanopore Devices

    PubMed Central

    Gu, Li-Qun; Shim, Ji Wook

    2010-01-01

    Molecular-scale pore structures, called nanopores, can be assembled by protein ion channels through genetic engineering or be artificially fabricated on solid substrates using fashion nanotechnology. When target molecules interact with the functionalized lumen of a nanopore, they characteristically block the ion pathway. The resulting conductance changes allow for identification of single molecules and quantification of target species in the mixture. In this review, we first overview nanopore-based sensory techniques that have been created for the detection of myriad biomedical targets, from metal ions, drug compounds, and cellular second messengers to proteins and DNA. Then we introduce our recent discoveries in nanopore single molecule detection: (1) using the protein nanopore to study folding/unfolding of the G-quadruplex aptamer; (2) creating a portable and durable biochip that is integrated with a single-protein pore sensor (this chip is compared with recently developed protein pore sensors based on stabilized bilayers on glass nanopore membranes and droplet interface bilayer); and (3) creating a glass nanopore-terminated probe for single-molecule DNA detection, chiral enantiomer discrimination, and identification of the bioterrorist agent ricin with an aptamer-encoded nanopore. PMID:20174694

  7. Stresses in sulfuric acid anodized coatings on aluminum

    NASA Technical Reports Server (NTRS)

    Alwitt, R. S.; Xu, J.; Mcclung, R. C.

    1993-01-01

    Stresses in porous anodic alumina coatings have been measured for specimens stabilized in air at different temperatures and humidities. In ambient atmosphere the stress is tensile after anodic oxidation and is compressive after sealing. Exposure to dry atmosphere causes the stress to change to strongly tensile, up to 110 MPa. The stress increase is proportional to the loss of water from the coating. These changes are reversible with changes in humidity. Similar reversible effects occur upon moderate temperature changes. The biaxial modulus of the coating is about 100 GPa.

  8. How thermal stress alters the confinement of polymers vitrificated in nanopores

    NASA Astrophysics Data System (ADS)

    Teng, Chao; Li, Linling; Wang, Yong; Wang, Rong; Chen, Wei; Wang, Xiaoliang; Xue, Gi

    2017-05-01

    Understanding and controlling the glass transition temperature (Tg) and dynamics of polymers in confined geometries are of significance in both academia and industry. Here, we investigate how the thermal stress induced by a mismatch in the coefficient of thermal expansion affects the Tg behavior of polystyrene (PS) nanorods located inside cylindrical alumina nanopores. The size effects and molecular weight dependence of the Tg are also studied. A multi-step relaxation process was employed to study the relationship between thermal stress and cooling rate. At fast cooling rates, the imparted thermal stress would overcome the yield stress of PS and peel chains off the pore walls, while at slow cooling rates, chains are kept in contact with the pore walls due to timely dissipation of the produced thermal stress during vitrification. In smaller nanopores, more PS chains closely contact with pore walls, then stronger internal thermal stress would be generated between core and shell of PS nanorod, which results in a larger deviation between two Tgs. The core part of PS shows lower Tg than bulk value, which can induce faster dynamics in the center region. A complex and important role stress plays is supposed in complex confinement condition, e.g., in nanopores, during vitrification.

  9. Aging of coprecipitated Cu in alumina: changes in structural location, chemical form, and solubility

    NASA Astrophysics Data System (ADS)

    Martínez, Carmen Enid; McBride, Murray B.

    2000-05-01

    The longterm fate of metals in mineral solid phases is not well established, as aging effects can alter metal forms and solubility. We use a model system (Cu coprecipitation with alumina) to examine copper solubility, chemical form, and structural location during longterm aging (up to 2 y), and as a function of Cu concentration, suspension pH, and rate of coprecipitate formation. Electron spin resonance (ESR) spectroscopy and extractability with EDTA were used to determine the chemical form and structural location of Cu in coprecipitates with alumina. Soluble Cu was measured by differential pulse anodic stripping voltammetry (dpasv) and alumina transformation monitored by XRD. Decreased Cu solubility resulted after prolonged aging of the coprecipitates formed at pH 6 and pH 7.5. Longterm aging (up to 2 y at 23°C) induced the transformation of an initially noncrystalline alumina to more ordered products including gibbsite. Results obtained by ESR and EDTA extraction indicate Cu movement towards the surface of the coprecipitate at increased aging time. Copper was initially evenly distributed within the alumina, but segregated at or near the alumina surface forming CuO and/or clusters after longterm reaction (2 y) with alumina.

  10. Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Wildhaber, Fabien; Vazquez-Mena, Oscar; Bertsch, Arnaud; Brugger, Juergen; Renaud, Philippe

    2012-08-01

    Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al2O3/SiO2 (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al2O3 (positive) and SiO2 (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion.Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al2O3/SiO2 (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al2O3

  11. Combination for electrolytic reduction of alumina

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-04-30

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises molten electrolyte having the following ingredients: AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound is, a fluoride; oxide, or carbonate. The metal is nickel, iron, copper, cobalt, or molybdenum. The bath is employed in a combination including a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the instant bath during electrolytic reduction of alumina to aluminum improves the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  12. Comprehensive study of thin film evaporation from nanoporous membranes for enhanced thermal management

    NASA Astrophysics Data System (ADS)

    Wilke, Kyle; Barabadi, Banafsheh; Lu, Zhengmao; Zhang, Tiejun; Wang, Evelyn

    Performance of emerging electronics is often dictated by the ability to dissipate heat generated in the device. Thin film evaporation from nanopores promises enhanced thermal management by reducing the thermal transport resistance across the liquid film while providing capillary pumping. We present a study of the dependence of evaporation from nanopores on a variety of geometric parameters. Anodic aluminum oxide membranes were used as an experimental template. A biphilic treatment was also used to create a hydrophobic section of the pore to control meniscus location. We demonstrated different heat transfer regimes and observed more than an order of magnitude increase in dissipated heat flux by confining fluid within the nanopore. Pore diameter had little effect on evaporation performance at pore radii of this length scale due to the negligible conduction resistance from the pore wall to the evaporating interface. The dissipated heat flux scaled linearly with porosity as the evaporative area increased. Furthermore, it was demonstrated that moving the meniscus as little as 1 μm into the pore could decrease performance significantly. The results provide a better understanding of evaporation from nanopores and provide guidance in future device design.

  13. Tilted Liquid Crystal Alignment on Asymmetrically Grooved Porous Alumina Film

    NASA Astrophysics Data System (ADS)

    Maeda, Tsuyoshi; Hiroshima, Kohki

    2005-06-01

    This paper reports the achievement of tilted liquid crystal (LC) alignment on an anodic porous alumina (APA) film using microgrooves with asymmetric shapes and dozens of minute pores. The microgrooves with asymmetric shapes were formed by a rubbing technique. The minute pores were then produced by anodization. The LC pretilt angle was controlled by the shapes of the microgrooves and pores. The LC director was orientated in the same inclining direction as that of a rubbed polyimide (PI) film. The pretilt angle was in the range of 20 to 90°. This tilted LC alignment remains very stable against external forces such as thermal shock and intense light.

  14. Investigation of CuInSe2 nanowire arrays with core-shell structure electrodeposited at various duty cycles into anodic alumina templates

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Song; Wang, Na-Fu; Tsai, Yu-Zen; Lin, Jia-Jun; Houng, Mau-Phon

    2017-02-01

    Copper indium selenide (CuInSe2) nanowire (NW) arrays were prepared at various electrolyte duty cycles by filling anodic alumina templates through the pulsed electrodeposition technique. X-ray diffraction and scanning electron microscopy (SEM) images showed that the nucleation mechanism of CuInSe2 NW arrays was affected by the electrodeposition duty cycle. Moreover, SEM images showed that the diameter and length of the NWs were 80 nm and 2 μm, respectively. Furthermore, PEDOT/CuInSe2 NW core-shell arrays were fabricated using surfactant-modified CuInSe2 NW surfaces showing the lotus effect. Transmission electron microscopy images confirmed that a core-shell structure was achieved. Current-voltage plots revealed that the CuInSe2 NW arrays were p-type semiconductors; moreover, the core-shell structure improved the diode ideality factor from 3.91 to 2.63.

  15. Template-Free Synthesis of Nanoporous Nickel and Alloys as Binder-Free Current Collectors of Li Ion Batteries.

    PubMed

    Lu, Liqiang; Andela, Paul; De Hosson, Jeff Th M; Pei, Yutao

    2018-05-25

    This paper reports a versatile template-free method based on the hydrogen reduction of metallic salts for the synthesis of nanoporous Ni and alloys. The approach involves thermal decomposition and reduction of metallic precursors followed with metal cluster nucleation and ligament growth. Topological disordered porous architectures of metals with a controllable distribution of pore size and ligament size ranging from tens of nanometers to micrometers are synthesized. The reduction processes are scrutinized through X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The formation mechanism of the nanoporous metal is qualitatively explained. The as-prepared nanoporous Ni was tested as binder-free current collectors for nickel oxalate anodes of lithium ion batteries. The nanoporous Ni electrodes deliver enhanced reversible capacities and cyclic performances compared with commercial Ni foam. It is confirmed that this synthesis method has versatility not only because it is suitable for different types of metallic salts precursors but also for various other metals and alloys.

  16. Template-Free Synthesis of Nanoporous Nickel and Alloys as Binder-Free Current Collectors of Li Ion Batteries

    PubMed Central

    2018-01-01

    This paper reports a versatile template-free method based on the hydrogen reduction of metallic salts for the synthesis of nanoporous Ni and alloys. The approach involves thermal decomposition and reduction of metallic precursors followed with metal cluster nucleation and ligament growth. Topological disordered porous architectures of metals with a controllable distribution of pore size and ligament size ranging from tens of nanometers to micrometers are synthesized. The reduction processes are scrutinized through X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The formation mechanism of the nanoporous metal is qualitatively explained. The as-prepared nanoporous Ni was tested as binder-free current collectors for nickel oxalate anodes of lithium ion batteries. The nanoporous Ni electrodes deliver enhanced reversible capacities and cyclic performances compared with commercial Ni foam. It is confirmed that this synthesis method has versatility not only because it is suitable for different types of metallic salts precursors but also for various other metals and alloys. PMID:29911687

  17. The correlation of blue shift of photoluminescence and morphology of silicon nanoporous

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Jumaili, Batool E. B., E-mail: batooleneaze@gmail.com; Department of Physics, Anbar University; Talib, Zainal A.

    Porous silicon with diameters ranging from 6.41 to 7.12 nm were synthesized via electrochemical etching by varied anodization current density in ethanoic solutions containing aqueous hydrofluoric acid up to 65 mA/cm{sup 2}.The luminescence properties of the nanoporous at room temperature were analyzed via photoluminescence spectroscopy. Photoluminescence PL spectra exhibit a broad emission band in the range of 360-700 nm photon energy. The PL spectrum has a blue shift in varied anodization current density; the blue shift incremented as the existing of anodization although the intensity decreased. The current blue shift is owning to alteration of silicon nanocrystal structure at themore » superficies. The superficial morphology of the PS layers consists of unified and orderly distribution of nanocrystalline Si structures, have high porosity around (93.75%) and high thickness 39.52 µm.« less

  18. Effect of the layer of anodized 7075-T6 aluminium corrosion properties

    NASA Astrophysics Data System (ADS)

    Montoya Z, R. D.; L, E. Vera; Pineda T, Y.; Cedeño, M. L.

    2017-01-01

    Aluminium alloys are widely used in various sectors of industry. The 7075-T6 alloy corresponding to an Al-Zn T6, is mostly used as structural component in the aviation industry, due to the good relationship between weight and mechanical properties. However, the negative point of this alloys is the resistance to corrosion, which is why they need to be coated with an anodic film. Different surface treatments, such as anodizing, are used to improve corrosion resistance. Anodizing is an electrolytic process by which a protective layer on aluminium known as “alumina” is formed, this is formed by the passage of an electric current in an acidic electrolyte. This investigation presents a study of the effect of the thickness of layers of alumina deposited by anodized method, in the corrosion resistance of 7075-T6 aluminium. This study was performed by using in a solution of tartaric acid - sulfuric acid and an inorganic salt. To evaluate the influence alumina layer thickness on the corrosion properties some tests were carried out by using the electrochemical spectroscopy impedances (EIS) technique and Tafel polarization curves. It was found that the grown of the thickness of film favourably influences in the corrosion resistance.

  19. Effects of anodizing conditions and annealing temperature on the morphology and crystalline structure of anodic oxide layers grown on iron

    NASA Astrophysics Data System (ADS)

    Pawlik, Anna; Hnida, Katarzyna; Socha, Robert P.; Wiercigroch, Ewelina; Małek, Kamilla; Sulka, Grzegorz D.

    2017-12-01

    Anodic iron oxide layers were formed by anodization of the iron foil in an ethylene glycol-based electrolyte containing 0.2 M NH4F and 0.5 M H2O at 40 V for 1 h. The anodizing conditions such as electrolyte composition and applied potential were optimized. In order to examine the influence of electrolyte stirring and applied magnetic field, the anodic samples were prepared under the dynamic and static conditions in the presence or absence of magnetic field. It was shown that ordered iron oxide nanopore arrays could be obtained at lower anodizing temperatures (10 and 20 °C) at the static conditions without the magnetic field or at the dynamic conditions with the applied magnetic field. Since the as-prepared anodic layers are amorphous in nature, the samples were annealed in air at different temperatures (200-500 °C) for a fixed duration of time (1 h). The morphology and crystal phases developed after anodization and subsequent annealing were characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The results proved that the annealing process transforms the amorphous layer into magnetite and hematite phases. In addition, the heat treatment results in a substantial decrease in the fluorine content and increase in the oxygen content.

  20. Contact angle studies on anodic porous alumina.

    PubMed

    Redón, Rocío; Vázquez-Olmos, A; Mata-Zamora, M E; Ordóñez-Medrano, A; Rivera-Torres, F; Saniger, J M

    2005-07-15

    The preparation of nanostructures using porous anodic aluminum oxide (AAO) as templates involves the introduction of dissolved materials into the pores of the membranes; one way to determine which materials are preferred to fill the pores involves the measurement of the contact angles (theta) of different solvents or test liquids on the AAOs. Thus, we present measurements of contact angles of nine solvents on four different AAO sheets by tensiometric and goniometric methods. From the solvents tested, we found dimethyl sulfoxide (DMSO) and N,N(')-dimethylformamide (DMF) to interact with the AAOs, the polarity of the solvents and the surfaces being the driving force.

  1. Relationship between microstructure and optical properties of a novel perovskite C12PbI4 embedded in matrix of porous alumina

    NASA Astrophysics Data System (ADS)

    Zaghdoudi, W.; Bardaoui, A.; Khalifa, N.; Chtourou, R.

    2013-01-01

    In this study, organic-inorganic hybrid perovskite multiple quantum wells (PbI QWs) embedded in porous anodic alumina (PAA) thin films on glass and aluminum substrates are investigated in detail. The pore height and diameter of the nanoscale structure of porous anodic alumina (PAA) film produced by the anodization technique are controllable. The synthesized films are characterized morphologically using the atomic force microscopy (AFM). Scanning electron microscopy (SEM) study showed granular surface. The structural and optical properties were investigated by X-ray diffraction (XRD), photoluminescence (PL) and UV-Vis-NIR spectrophotometer. The effect of the two different substrates on the impregnation of the PbI QW in the PAA is presented. Both PL and AFM studies show a better penetration of the PbI QW in the case of the Al substrate providing a wider pore diameter. Remarkable enhancement of quantum confinement is demonstrated.

  2. Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores.

    PubMed

    Pardon, Gaspard; Gatty, Hithesh K; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas

    2013-01-11

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al(2)O(3)) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al(2)O(3) layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al(2)O(3) using ALD.

  3. Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores

    NASA Astrophysics Data System (ADS)

    Pardon, Gaspard; Gatty, Hithesh K.; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas

    2013-01-01

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al2O3) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al2O3 layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al2O3 using ALD.

  4. Parametric study of thin film evaporation from nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Wilke, Kyle L.; Barabadi, Banafsheh; Lu, Zhengmao; Zhang, TieJun; Wang, Evelyn N.

    2017-10-01

    The performance and lifetime of advanced electronics are often dictated by the ability to dissipate heat generated within the device. Thin film evaporation from nanoporous membranes is a promising thermal management approach, which reduces the thermal transport distance across the liquid film while also providing passive capillary pumping of liquid to the evaporating interface. In this work, we investigated the dependence of thin film evaporation from nanoporous membranes on a variety of geometric parameters. Anodic aluminum oxide membranes were used as experimental templates, where pore radii of 28-75 nm, porosities of 0.1-0.35, and meniscus locations down to 1 μm within the pore were tested. We demonstrated different heat transfer regimes and observed more than an order of magnitude increase in dissipated heat flux by operating in the pore-level evaporation regime. The pore diameter had little effect on pore-level evaporation performance due to the negligible conduction resistance from the pore wall to the evaporating interface. The dissipated heat flux scaled with porosity as the evaporative area increased. Furthermore, moving the meniscus as little as 1 μm into the pore decreased the dissipated heat flux by more than a factor of two due to the added resistance to vapor escaping the pore. The experimental results elucidate thin film evaporation from nanopores and confirm findings of recent modeling efforts. This work also provides guidance for the design of future thin film evaporation devices for advanced thermal management. Furthermore, evaporation from nanopores is relevant to water purification, chemical separations, microfluidics, and natural processes such as transpiration.

  5. Three-Dimensional Nanoporous Fe2O3/Fe3C-Graphene Heterogeneous Thin Films for Lithium-Ion Batteries

    PubMed Central

    2015-01-01

    Three-dimensional self-organized nanoporous thin films integrated into a heterogeneous Fe2O3/Fe3C-graphene structure were fabricated using chemical vapor deposition. Few-layer graphene coated on the nanoporous thin film was used as a conductive passivation layer, and Fe3C was introduced to improve capacity retention and stability of the nanoporous layer. A possible interfacial lithium storage effect was anticipated to provide additional charge storage in the electrode. These nanoporous layers, when used as an anode in lithium-ion batteries, deliver greatly enhanced cyclability and rate capacity compared with pristine Fe2O3: a specific capacity of 356 μAh cm–2 μm–1 (3560 mAh cm–3 or ∼1118 mAh g–1) obtained at a discharge current density of 50 μA cm–2 (∼0.17 C) with 88% retention after 100 cycles and 165 μAh cm–2 μm–1 (1650 mAh cm–3 or ∼518 mAh g–1) obtained at a discharge current density of 1000 μA cm–2 (∼6.6 C) for 1000 cycles were achieved. Meanwhile an energy density of 294 μWh cm–2 μm–1 (2.94 Wh cm–3 or ∼924 Wh kg–1) and power density of 584 μW cm–2 μm–1 (5.84 W cm–3 or ∼1834 W kg–1) were also obtained, which may make these thin film anodes promising as a power supply for micro- or even nanosized portable electronic devices. PMID:24669862

  6. Fabrication of cobalt-nickel binary nanowires in a highly ordered alumina template via AC electrodeposition

    PubMed Central

    2013-01-01

    Cobalt-nickel (Co-Ni) binary alloy nanowires of different compositions were co-deposited in the nanopores of highly ordered anodic aluminum oxide (AAO) templates from a single sulfate bath using alternating current (AC) electrodeposition. AC electrodeposition was accomplished without modifying or removing the barrier layer. Field emission scanning electron microscope was used to study the morphology of templates and alloy nanowires. Energy-dispersive X-ray analysis confirmed the deposition of Co-Ni alloy nanowires in the AAO templates. Average diameter of the alloy nanowires was approximately 40 nm which is equal to the diameter of nanopore. X-ray diffraction analysis showed that the alloy nanowires consisted of both hexagonal close-packed and face-centered cubic phases. Magnetic measurements showed that the easy x-axis of magnetization is parallel to the nanowires with coercivity of approximately 706 Oe. AC electrodeposition is very simple, fast, and is useful for the homogenous deposition of various secondary nanostuctured materials into the nanopores of AAO. PMID:23941234

  7. Long-term evaluation of solid oxide fuel cell candidate materials in a 3-cell generic stack test fixture, part III: Stability and microstructure of Ce-(Mn,Co)-spinel coating, AISI441 interconnect, alumina coating, cathode and anode

    NASA Astrophysics Data System (ADS)

    Chou, Yeong-Shyung; Stevenson, Jeffry W.; Choi, Jung-Pyung

    2014-07-01

    A generic solid oxide fuel cell stack test fixture was developed to evaluate candidate materials and processing under realistic conditions. Part III of the work investigated the stability of Ce-(Mn,Co) spinel coating, AISI441 metallic interconnect, alumina coating, and cell's degradation. After 6000 h test, the spinel coating showed densification with some diffusion of Cr. At the metal interface, segregation of Si and Ti was observed, however, no continuous layer formed. The alumina coating for perimeter sealing areas appeared more dense and thick at the air side than the fuel side. Both the spinel and alumina coatings remained bonded. EDS analysis of Cr within the metal showed small decrease in concentration near the coating interface and would expect to cause no issue of Cr depletion. Inter-diffusion of Ni, Fe, and Cr between spot-welded Ni wire and AISI441 interconnect was observed and Cr-oxide scale formed along the circumference of the weld. The microstructure of the anode and cathode was discussed relating to degradation of the top and middle cells. Overall, the Ce-(Mn,Co) spinel coating, alumina coating, and AISI441 steel showed the desired long-term stability and the developed generic stack fixture proved to be a useful tool to validate candidate materials for SOFC.

  8. Influence of anodizing conditions on generation of internal cracks in anodic porous tin oxide films grown in NaOH electrolyte

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Gawlak, Karolina; Gurgul, Magdalena; Dziurka, Magdalena; Nowak, Marlena; Gilek, Dominika; Sulka, Grzegorz D.

    2018-05-01

    Nanoporous tin oxide layers were synthesized via simple one-step anodic oxidation of a low-purity Sn foil (98.8%) in sodium hydroxide electrolyte. The process of pore formation at the early stage of anodization was discussed on the basis of concepts of oxygen bubble mould effect and viscous flow of oxide. The effect of anodizing conditions on the generation of internal cracks and fractures within the anodic film was investigated in detail. It was confirmed that crack-free tin oxide films can be obtained if the anodization is carried out at the potential of 4 V independently of the electrolyte concentration. On the other hand, the porous anodic film with a totally stacked internal morphology is obtained at the potential of 5 V in 0.1 M NaOH electrolyte. The generation of internal cracks and voids can be attributed to a much lower surface porosity and local trapping of O2 inside the pores of the oxide layer. However, increasing electrolyte concentration allows for obtaining less cracked porous films due to effective and uniform liberation of oxygen bubbles from the channels through completely open pore mouths. Furthermore, it was confirmed that uniformity of the anodic tin oxide layers can be significantly improved by vigorous electrolyte stirring. Finally, we observed that the addition of ethanol to the electrolyte can reduce anodic current density and the oxide growth rate. In consequence, less cracked anodic film can be formed even at the potential of 6 V. The generation of oxygen at the pore bottoms, together with the open pore mouths were found to be critical factors responsible for the anodic formation of crack-free porous tin oxide films.

  9. A tunable sub-100 nm silicon nanopore array with an AAO membrane mask: reducing unwanted surface etching by introducing a PMMA interlayer.

    PubMed

    Lim, Namsoo; Pak, Yusin; Kim, Jin Tae; Hwang, Youngkyu; Lee, Ryeri; Kumaresan, Yogeenth; Myoung, NoSoung; Ko, Heung Cho; Jung, Gun Young

    2015-08-28

    Highly ordered silicon (Si) nanopores with a tunable sub-100 nm diameter were fabricated by a CF4 plasma etching process using an anodic aluminum oxide (AAO) membrane as an etching mask. To enhance the conformal contact of the AAO membrane mask to the underlying Si substrate, poly(methyl methacrylate) (PMMA) was spin-coated on top of the Si substrate prior to the transfer of the AAO membrane. The AAO membrane mask was fabricated by two-step anodization and subsequent removal of the aluminum support and the barrier layer, which was then transferred to the PMMA-coated Si substrate. Contact printing was performed on the sample with a pressure of 50 psi and a temperature of 120 °C to make a conformal contact of the AAO membrane mask to the Si substrate. The CF4 plasma etching was conducted to transfer nanopores onto the Si substrate through the PMMA interlayer. The introduced PMMA interlayer prevented unwanted surface etching of the Si substrate by eliminating the etching ions and radicals bouncing at the gap between the mask and the substrate, resulting in a smooth Si nanopore array.

  10. Influence of Nanopore Shapes on Thermal Conductivity of Two-Dimensional Nanoporous Material.

    PubMed

    Huang, Cong-Liang; Huang, Zun; Lin, Zi-Zhen; Feng, Yan-Hui; Zhang, Xin-Xin; Wang, Ge

    2016-12-01

    The influence of nanopore shapes on the electronic thermal conductivity (ETC) was studied in this paper. It turns out that with same porosity, the ETC will be quite different for different nanopore shapes, caused by the different channel width for different nanopore shapes. With same channel width, the influence of different nanopore shapes can be approximately omitted if the nanopore is small enough (smaller than 0.5 times EMFP in this paper). The ETC anisotropy was discovered for triangle nanopores at a large porosity with a large nanopore size, while there is a similar ETC for small pore size. It confirmed that the structure difference for small pore size may not be seen by electrons in their moving.

  11. Anodized porous titanium coated with Ni-CeO2 deposits for enhancing surface toughness and wear resistance

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaowei; Ouyang, Chun

    2017-05-01

    In order to make large improvements of surface toughness and wear resistance for pure titanium (Ti) substrate, anodic titanium oxide (ATO) surface with nanoporous structure was coated with the Ni-CeO2 nanocomposite coatings. Regarding TiO2 barrier layer on Ti surface to inhibit its electrochemical activity, pre-treatments were successively processed with anodizing, sensitizing, activating, and then followed by electroless Ni-P film to be acted as an activated layer for electroplating Ni-CeO2 deposits. The existing Pd atoms around ATO nanopores were expected as the heterogeneous nucleation sites for supporting the growing locations of electroless Ni-P film. The innovative of interface design using porous structure was introduced for bonding pinholes to achieve a metallurgical adhesion interface between Ti substrate and surface coatings. Besides the objectives of this work were to elucidate how effects by the adding CeO2 nanoparticles on modifying microstructures and wear mechanisms of Ni-CeO2 nanocomposite coatings. Many efforts of XRD, FE-SEM, TEM and Nanoindentation tests were devoted to comparing different wear behaviors of Ni-CeO2 coatings relative to pure nickel. Results indicated that uniform-distributed Ti nanopores with an average diameter size of ∼200 nm was achieved using the Phosphate-type anodizing solution at DC 150 V. A worn surface without fatigue cracks was observed for TAO surface coated with Ni-CeO2 deposits, showing the existing Ce-rich worn products to be acted as a solid lubricant phase for making a self-healing effect on de-lamination failures. More important, this finding will be the guidelines for Ce-rich precipitations to be expected as the strengthening phase in anodized porous of Ti, Al and Mg alloys for intensifying their surface properties.

  12. Anode catalysts for direct ethanol fuel cells utilizing directly solar light illumination.

    PubMed

    Chu, Daobao; Wang, Shuxi; Zheng, Peng; Wang, Jian; Zha, Longwu; Hou, Yuanyuan; He, Jianguo; Xiao, Ying; Lin, Huashui; Tian, Zhaowu

    2009-01-01

    Shine a light: A PtNiRu/TiO(2) anode catalyst for direct ethanol fuel cells shows photocatalytic activity. The peak current density for ethanol oxidation under solar light illumination is 2-3 times greater than that in the absence of solar light. Ethanol is oxidized by light-generated holes, and the electrons are collected by the TiO(2) support to generate the oxidation current.Novel PtNiRu/TiO(2) anode catalysts for direct ethanol fuel cells (DEFCs) were prepared from PtNiRu nanoparticles (1:1:1 atomic ratios) and a nanoporous TiO(2) film by a sol-gel and electrodeposition method. The performances of the catalysts for ethanol oxidation were investigated by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results indicate a remarkable enhancement of activity for ethanol oxidation under solar light illumination. Under solar light illumination, the generated oxidation peak current density is 24.6 mA cm(-2), which is about 2.5 times higher than that observed without solar light (9.9 mA cm(-2)). The high catalytic activity of the PtNiRu/TiO(2) complex catalyst for the electrooxidation of ethanol may be attributed to the modified metal/nanoporous TiO(2) film, and the enhanced electrooxidation of ethanol under solar light may be due to the photogeneration of holes in the modified nanoporous TiO(2) film.

  13. Nanoporous polymeric nanofibers based on selectively etched PS-b-PDMS block copolymers.

    PubMed

    Demirel, Gokcen B; Buyukserin, Fatih; Morris, Michael A; Demirel, Gokhan

    2012-01-01

    One-dimensional nanoporous polymeric nanofibers have been fabricated within an anodic aluminum oxide (AAO) membrane by a facile approach based on selective etching of poly(dimethylsiloxane) (PDMS) domains in polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS) block copolymers that had been formed within the AAO template. It was observed that prior to etching, the well-ordered PS-b-PDMS nanofibers are solid and do not have any porosity. The postetched PS nanofibers, on the other hand, had a highly porous structure having about 20-50 nm pore size. The nanoporous polymeric fibers were also employed as a drug carrier for the native, continuous, and pulsatile drug release using Rhodamine B (RB) as a model drug. These studies showed that enhanced drug release and tunable drug dosage can be achieved by using ultrasound irradiation. © 2011 American Chemical Society

  14. Pt-Bi decorated nanoporous gold for high performance direct glucose fuel cell

    PubMed Central

    Guo, Hong; Yin, Huiming; Yan, Xiuling; Shi, Shuai; Yu, Qingyang; Cao, Zhen; Li, Jian

    2016-01-01

    Binary PtBi decorated nanoporous gold (NPG-PtBi) electrocatalyst is specially designed and prepared for the anode in direct glucose fuel cells (DGFCs). By using electroless and electrochemical plating methods, a dense Pt layer and scattered Bi particles are sequentially coated on NPG. A simple DGFC with NPG-PtBi as anode and commercial Pt/C as cathode is constructed and operated to study the effect of operating temperatures and concentrations of glucose and NaOH. With an anode noble metal loading of only 0.45 mg cm−2 (Au 0.3 mg and Pt 0.15 mg), an open circuit voltage (OCV) of 0.9 V is obtained with a maximum power density of 8 mW cm−2. Furthermore, the maximum gravimetric power density of NPG-PtBi is 18 mW mg−1, about 4.5 times higher than that of commercial Pt/C. PMID:27966629

  15. A Macroporous TiO2 Oxygen Sensor Fabricated Using Anodic Aluminium Oxide as an Etching Mask

    PubMed Central

    Lu, Chih-Cheng; Huang, Yong-Sheng; Huang, Jun-Wei; Chang, Chien-Kuo; Wu, Sheng-Po

    2010-01-01

    An innovative fabrication method to produce a macroporous Si surface by employing an anodic aluminium oxide (AAO) nanopore array layer as an etching template is presented. Combining AAO with a reactive ion etching (RIE) processes, a homogeneous and macroporous silicon surface can be effectively configured by modulating AAO process parameters and alumina film thickness, thus hopefully replacing conventional photolithography and electrochemical etch methods. The hybrid process integration is considered fully CMOS compatible thanks to the low-temperature AAO and CMOS processes. The gas-sensing characteristics of 50 nm TiO2 nanofilms deposited on the macroporous surface are compared with those of conventional plain (or non-porous) nanofilms to verify reduced response noise and improved sensitivity as a result of their macroporosity. Our experimental results reveal that macroporous geometry of the TiO2 chemoresistive gas sensor demonstrates 2-fold higher (∼33%) improved sensitivity than a non-porous sensor at different levels of oxygen exposure. In addition, the macroporous device exhibits excellent discrimination capability and significantly lessened response noise at 500 °C. Experimental results indicate that the hybrid process of such miniature and macroporous devices are compatible as well as applicable to integrated next generation bio-chemical sensors. PMID:22315561

  16. A macroporous TiO2 oxygen sensor fabricated using anodic aluminium oxide as an etching mask.

    PubMed

    Lu, Chih-Cheng; Huang, Yong-Sheng; Huang, Jun-Wei; Chang, Chien-Kuo; Wu, Sheng-Po

    2010-01-01

    An innovative fabrication method to produce a macroporous Si surface by employing an anodic aluminium oxide (AAO) nanopore array layer as an etching template is presented. Combining AAO with a reactive ion etching (RIE) processes, a homogeneous and macroporous silicon surface can be effectively configured by modulating AAO process parameters and alumina film thickness, thus hopefully replacing conventional photolithography and electrochemical etch methods. The hybrid process integration is considered fully CMOS compatible thanks to the low-temperature AAO and CMOS processes. The gas-sensing characteristics of 50 nm TiO(2) nanofilms deposited on the macroporous surface are compared with those of conventional plain (or non-porous) nanofilms to verify reduced response noise and improved sensitivity as a result of their macroporosity. Our experimental results reveal that macroporous geometry of the TiO(2) chemoresistive gas sensor demonstrates 2-fold higher (∼33%) improved sensitivity than a non-porous sensor at different levels of oxygen exposure. In addition, the macroporous device exhibits excellent discrimination capability and significantly lessened response noise at 500 °C. Experimental results indicate that the hybrid process of such miniature and macroporous devices are compatible as well as applicable to integrated next generation bio-chemical sensors.

  17. Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide.

    PubMed

    Wu, Songmei; Wildhaber, Fabien; Vazquez-Mena, Oscar; Bertsch, Arnaud; Brugger, Juergen; Renaud, Philippe

    2012-09-21

    Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al(2)O(3)/SiO(2) (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al(2)O(3) (positive) and SiO(2) (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion.

  18. Improved Analysis of Nanopore Sequence Data and Scanning Nanopore Techniques

    NASA Astrophysics Data System (ADS)

    Szalay, Tamas

    The field of nanopore research has been driven by the need to inexpensively and rapidly sequence DNA. In order to help realize this goal, this thesis describes the PoreSeq algorithm that identifies and corrects errors in real-world nanopore sequencing data and improves the accuracy of de novo genome assembly with increasing coverage depth. The approach relies on modeling the possible sources of uncertainty that occur as DNA advances through the nanopore and then using this model to find the sequence that best explains multiple reads of the same region of DNA. PoreSeq increases nanopore sequencing read accuracy of M13 bacteriophage DNA from 85% to 99% at 100X coverage. We also use the algorithm to assemble E. coli with 30X coverage and the lambda genome at a range of coverages from 3X to 50X. Additionally, we classify sequence variants at an order of magnitude lower coverage than is possible with existing methods. This thesis also reports preliminary progress towards controlling the motion of DNA using two nanopores instead of one. The speed at which the DNA travels through the nanopore needs to be carefully controlled to facilitate the detection of individual bases. A second nanopore in close proximity to the first could be used to slow or stop the motion of the DNA in order to enable a more accurate readout. The fabrication process for a new pyramidal nanopore geometry was developed in order to facilitate the positioning of the nanopores. This thesis demonstrates that two of them can be placed close enough to interact with a single molecule of DNA, which is a prerequisite for being able to use the driving force of the pores to exert fine control over the motion of the DNA. Another strategy for reading the DNA is to trap it completely with one pore and to move the second nanopore instead. To that end, this thesis also shows that a single strand of immobilized DNA can be captured in a scanning nanopore and examined for a full hour, with data from many scans at many

  19. Cavity-type hypersonic phononic crystals

    NASA Astrophysics Data System (ADS)

    Sato, A.; Pennec, Y.; Yanagishita, T.; Masuda, H.; Knoll, W.; Djafari-Rouhani, B.; Fytas, G.

    2012-11-01

    We report on the engineering of the phonon dispersion diagram in monodomain anodic porous alumina (APA) films through the porosity and physical state of the material residing in the nanopores. Lattice symmetry and inclusion materials are theoretically identified to be the main factors which control the hypersonic acoustic wave propagation. This involves the interaction between the longitudinal and the transverse modes in the effective medium and a flat band characteristic of the material residing in the cavities. Air and filled nanopores, therefore, display markedly different dispersion relations and the inclusion materials lead to a locally resonant structural behavior uniquely determining their properties under confinement. APA films emerge as a new platform to investigate the rich acoustic phenomena of structured composite matter.

  20. FITC-modified PPy nanotubes embedded in nanoporous AAO membrane can detect trace PCB20 via fluorescence ratiometric measurement.

    PubMed

    Wang, Meiling; Meng, Guowen; Huang, Qing; Xu, Qiaoling; Chu, Zhaoqin; Zhu, Chuhong

    2011-04-07

    A highly sensitive and selective fluorescence ratiometric sensor membrane for 2,3,3'-trichlorobiphenyl has been achieved, via depositing polypyrrole nanotubes (PPyNTs, the fluorescence indicator) in nano-porous anodic aluminium oxide (NPAAO) template and subsequently immobilizing fluorescein isothiocyanate (as an internal reference) onto the inner walls of the PPyNTs embedded in the NPAAO.

  1. Characterization of Localized Filament Corrosion Products at the Anodic Head on a Model Mg-Zn-Zr Alloy Surface

    DOE PAGES

    Rossouw, David; Fu, Dong; Leonard, Donovan N.; ...

    2017-02-15

    In this study, localized filament corrosion products at the anodic head on a model Mg-1%Zn-0.4%Zr alloy surface were characterized by electron microscopy techniques of site-specific lamella prepared by focused ion beam milling. It is revealed that the anodic head propagates underneath a largely intact thin and dense MgO surface film and comprises dense aggregates of nano-crystalline MgO within a nano-porous Mg(OH) 2 network. In conclusion, the findings contribute new supportive direct imaging insight into the source of the enhanced H 2 evolution that accompanies anodic dissolution of Mg and its alloys.

  2. Characterization of Localized Filament Corrosion Products at the Anodic Head on a Model Mg-Zn-Zr Alloy Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossouw, David; Fu, Dong; Leonard, Donovan N.

    In this study, localized filament corrosion products at the anodic head on a model Mg-1%Zn-0.4%Zr alloy surface were characterized by electron microscopy techniques of site-specific lamella prepared by focused ion beam milling. It is revealed that the anodic head propagates underneath a largely intact thin and dense MgO surface film and comprises dense aggregates of nano-crystalline MgO within a nano-porous Mg(OH) 2 network. In conclusion, the findings contribute new supportive direct imaging insight into the source of the enhanced H 2 evolution that accompanies anodic dissolution of Mg and its alloys.

  3. Kramers-Kronig method for determination of optical properties of PZT nanotubes fabricated by sol-gel method and porous anodic alumina with high aspect ratio

    NASA Astrophysics Data System (ADS)

    Pakizeh, Esmaeil; Moradi, Mahmood

    2018-03-01

    Ferroelectric Pb(ZrTi)O3 (PZT) nanotubes were prepared by sol-gel method and porous anodic alumina (PAA) membrane using spin-coating technique. This method is based on filling-pyrolysis-filling process and the use of one-stage alumina membranes. One of the advantages of this method is its rapidity, which takes only 1 h time before the calcination step. The effect of repeated pores filling was investigated to get the required size of nanotubes. The field emission scanning electron microscope (FE-SEM) images were shown that the PZT nanotubes have inner diameters in the range of 65-90 nm and length of about 50-60 μm. This means that the samples have a significant aspect ratio (700-800). Also the FE-SEM image confirmed that the highly ordered, hexagonally distributed PAA membranes with the pore diameter about 140-150 nm were formed. The X-ray diffraction (XRD) results showed that the PZT nanotubes have a tetragonal structure. The metal oxide bands like ZrO6 and TiO6 of the final PZT nanotubes were detected by Fourier transform infrared (FT-IR) analysis and confirmed the formation of perovskite structure. By using FT-IR spectroscopy and Kramers-Kronig transformation method, the optical constants like real 𝜀1(ω) and imaginary 𝜀2(ω) parts of dielectric function, extinction coefficient k(ω) and refractive index n(ω) were determined. It was shown that the optical constants of PZT nanotubes are different from PZT nanoparticles.

  4. Controlled growth of novel hyper-branched nanostructures in nanoporous alumina membrane.

    PubMed

    Zhang, Junping; Day, Cynthia S; Carroll, David L

    2009-12-07

    This paper proposes a novel approach to fabricate hyper-branched anodic aluminium oxide (AAO) nanostructures with different branches on the vertically-aligned trunk and at the trunk terminal. Silver nanowires with different dimensional and multifunctional complexity have been prepared from this hyper-branched AAO template by varying the electrodeposition time. These kinds of novel nanostructure may be used to build blocks for nanoelectronic and nanophotonic devices.

  5. Investigating the effect of sputtering conditions on the physical properties of aluminum thin film and the resulting alumina template

    NASA Astrophysics Data System (ADS)

    Taheriniya, Shabnam; Parhizgar, Sara Sadat; Sari, Amir Hossein

    2018-06-01

    To study the alumina template pore size distribution as a function of Al thin film grain size distribution, porous alumina templates were prepared by anodizing sputtered aluminum thin films. To control the grain size the aluminum samples were sputtered with the rate of 0.5, 1 and 2 Å/s and the substrate temperature was either 25, 75 or 125 °C. All samples were anodized for 120 s in 1 M sulfuric acid solution kept at 1 °C while a 15 V potential was being applied. The standard deviation value for samples deposited at room temperature but with different rates is roughly 2 nm in both thin film and porous template form but it rises to approximately 4 nm with substrate temperature. Samples with the average grain size of 13, 14, 18.5 and 21 nm respectively produce alumina templates with an average pore size of 8.5, 10, 15 and 16 nm in that order which shows the average grain size limits the average pore diameter in the resulting template. Lateral correlation length and grain boundary effect are other factors that affect the pore formation process and pore size distribution by limiting the initial current density.

  6. Single-molecule nanopore enzymology

    PubMed Central

    Wloka, Carsten; Maglia, Giovanni

    2017-01-01

    Biological nanopores are a class of membrane proteins that open nanoscale water-conduits in biological membranes. When they are reconstituted in artificial membranes and a bias voltage is applied across the membrane, the ionic current passing through individual nanopores can be used to monitor chemical reactions, to recognize individual molecules and, of most interest, to sequence DNA. More recently, proteins and enzymes have started being analysed with nanopores. Monitoring enzymatic reactions with nanopores, i.e. nanopore enzymology, has the unique advantage that it allows long-timescale observations of native proteins at the single-molecule level. Here we describe the approaches and challenges in nanopore enzymology. PMID:28630164

  7. Moisture-Induced Alumina Scale Spallation: The Hydrogen Factor

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2010-01-01

    For some time the oxidation community has been concerned with interfacial spallation of protective alumina scales, not just upon immediate cool down, but as a time-delayed phenomenon. Moisture-induced delayed spallation (MIDS) and desktop spallation (DTS) of thermal barrier coatings (TBCs) refer to this process. It is most apparent for relatively adherent alumina scales that have survived initial cool down in a dry environment, have built up considerable thickness and strain energy, and have been somewhat damaged, such as by cyclic oxidation cracking. Indeed, a "sensitive zone" can be described that maximizes the observed effect as a function of all the relevant factors. Moisture has been postulated to serve as a source of interfacial hydrogen embrittlement. Hydrogen is derived from reaction with aluminum in the alloy at an exposed interface. The purpose of this monograph is to trace the close analogy of this phenomenon to other hydrogen-induced effects, such as embrittlement of aluminides and blistering of alloys and anodic alumina films. A formalized, top-down, logic-tree structure is presented as a guide to this discussion. A theoretical basis for interfacial weakening by hydrogen is first cited, as are demonstrations of hydrogen detection as a reaction product or interfacial species. Further support is provided by critical experiments that recreate the moisture effect, but by isolating hydrogen from other potential causative factors. These experiments include tests in H 2-containing atmospheres or cathodic hydrogen charging. Accordingly, they strongly indicate that interfacial hydrogen, derived from moisture, is the key chemical species accounting for delayed alumina scale spallation.

  8. Preparation and electrochemical performances of nanoporous/cracked cobalt oxide layer for supercapacitors

    NASA Astrophysics Data System (ADS)

    Gobal, Fereydoon; Faraji, Masoud

    2014-12-01

    Nanoporous/cracked structures of cobalt oxide (Co3O4) electrodes were successfully fabricated by electroplating of zinc-cobalt onto previously formed TiO2 nanotubes by anodizing of titanium, leaching of zinc in a concentrated alkaline solution and followed by drying and annealing at 400 °C. The structure and morphology of the obtained Co3O4 electrodes were characterized by X-ray diffraction, EDX analysis and scanning electron microscopy. The results showed that the obtained Co3O4 electrodes were composed of the nanoporous/cracked structures with an average pore size of about 100 nm. The electrochemical capacitive behaviors of the nanoporous Co3O4 electrodes were investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 1 M NaOH solution. The electrochemical data demonstrated that the electrodes display good capacitive behavior with a specific capacitance of 430 F g-1 at a current density of 1.0 A g-1 and specific capacitance retention of ca. 80 % after 10 days of being used in electrochemical experiments, indicating to be promising electroactive materials for supercapacitors. Furthermore, in comparison with electrodes prepared by simple cathodic deposition of cobalt onto TiO2 nanotubes(without dealloying procedure), the impedance studies showed improved performances likely due to nanoporous/cracked structures of electrodes fabricated by dealloying of zinc, which provide fast ion and electron transfer routes and large reaction surface area with the ensued fast reaction kinetics.

  9. Model of porous aluminium oxide growth during initial stage of anodization

    NASA Astrophysics Data System (ADS)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2014-10-01

    Currently, the development of nanotechnology and metamaterials requires the ability to obtain regular self-assembled structures with different parameters. One such structure is porous alumina in which the pores grow perpendicular to the substrate and are hexagonally packed. Pore size and the distance between them can be varied depending on the anodization voltage, the electrolyte and the anodization time (pore diameter - from 2 to 350 nm, the distance between the pores - from 5 to 50 nm). At the moment, there are different models describing the process of anodizing aluminum, in this paper we propose a model that takes into account the effect of layers of aluminum, aluminum oxide, and the electrolyte, as well as the influence of the effect of surface diffusion.

  10. Estimation of the Friction Coefficient of a Nanostructured Composite Coating

    NASA Astrophysics Data System (ADS)

    Shil'ko, S. V.; Chernous, D. A.; Ryabchenko, T. V.; Hat'ko, V. V.

    2017-11-01

    The frictional-mechanical properties of a thin polymer-ceramic coating obtained by gas-phase impregnation of nanoporous anodic alumina with a fluoropolymer (octafluorocyclobutane) have been investigated. The coefficient of sliding friction of the coating is predicted based on an analysis of contact deformation within the framework of the Winkler elastic foundation hypothesis and a three-phase micromechanical model. It is shown that an acceptable prediction accuracy can be obtained considering the uniaxial strain state of the coating. It was found that, on impregnation by the method of plasmachemical treatment, the relative depth of penetration of the polymer increased almost in proportion to the processing time. The rate and maximum possible depth of penetration of the polymer into nanoscale pores grew with increasing porosity of the alumina substrate.

  11. Moisture-Induced Alumina Scale Spallation: The Hydrogen Factor

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2009-01-01

    For some time our community has been concerned with interfacial spallation of protective alumina scales, not just upon immediate cooldown, but as a time-delayed phenomenon. Moisture-induced delayed spallation (MIDS) and desktop spallation (DTS) of TBC's refer to this process. It is most apparent for relatively adherent alumina scales that have survived cool down in a dry environment, built up considerable thickness and strain energy, and have been somewhat damaged, such as by cyclic oxidation cracking. Indeed, a "sweet zone" can be defined that maximizes the observed effect as a function of all the relevant factors. Moisture has been postulated to serve as a source of interfacial hydrogen embrittlement derived from reaction with aluminum in the alloy at an exposed interface. The purpose of this monograph is to trace the close analogy of this phenomenon to other hydrogen effects, such as embrittlement of aluminides and blistering of alloys and anodic alumina films. A formalized, top-down, logic tree structure is presented as a guide to this discussion. A theoretical basis for interfacial weakening by hydrogen is first cited, as are demonstrations of hydrogen as a reaction product or detected interfacial species. Further support is provided by critical experiments that produce the same moisture effect, but by isolating hydrogen from other potential causative factors. These experiments include tests in H2-containing atmospheres or cathodic hydrogen charging.

  12. Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte

    NASA Astrophysics Data System (ADS)

    Yang, S.; Aoki, Y.; Habazaki, H.

    2011-07-01

    Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm -3 K 2HPO 4 and 0.2 mol dm -3 K 3PO 4 in a temperature range of 428-453 K. The microcones appeared after prolonged anodizing, but the required time was largely reduced by increasing electrolyte temperature. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodizing. The anodic oxide microcones, which were crystalline, appeared on surface as a consequence of preferential chemical dissolution of initially formed amorphous oxide. The chemical dissolution of an initially formed amorphous layer was accelerated by increasing the electrolyte temperature, with negligible influence of the temperature on the morphology of microcones up to 448 K.

  13. Overall Water Splitting with Room-Temperature Synthesized NiFe Oxyfluoride Nanoporous Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Kun; Guo, Limin; Marcus, Kyle

    Freestanding and lightweight thin-films were rationally designed to serve as robust electrodes for renewable energy applications. A facile and scalable nanomanufacturing process was developed to fabricate these transformative thin-film electrodes (iron group mixed oxides) that exhibit a nanoporous structure and controllable composition. More specifically, electrodeposition and anodic treatments were employed to produce freestanding and lightweight metal oxides nanoporous layers (NPL). These NPL can be directly used as flexible and additive-free electrodes for renewable energy generation (water splitting) and storage (supercapacitor) applications without requiring binders and current collector and other additives. Significantly enhanced electrochemical performance was achieved due to the uniquemore » merits of the NPL: i) highly porous structure considerably increases the electrode/electrolyte interface, which facilitate electrochemical reactions; ii) NPL substantially increase the number of active sites that are favorable in electrochemical reactions; iii) residual metal network within the NPL forms a conductive framework, drastically improving electrode strength, flexibility and conductivity.« less

  14. Unique Three-Dimensional InP Nanopore Arrays for Improved Photoelectrochemical Hydrogen Production.

    PubMed

    Li, Qiang; Zheng, Maojun; Ma, Liguo; Zhong, Miao; Zhu, Changqing; Zhang, Bin; Wang, Faze; Song, Jingnan; Ma, Li; Shen, Wenzhong

    2016-08-31

    Ordered three-dimensional (3D) nanostructure arrays hold promise for high-performance energy harvesting and storage devices. Here, we report the fabrication of InP nanopore arrays (NPs) in unique 3D architectures with excellent light trapping characteristic and large surface areas for use as highly active photoelectrodes in photoelectrochemical (PEC) hydrogen evolution devices. The ordered 3D NPs were scalably synthesized by a facile two-step etching process of (1) anodic etching of InP in neutral 3 M NaCl electrolytes to realize nanoporous structures and (2) wet chemical etching in HCl/H3PO4 (volume ratio of 1:3) solutions for removing the remaining top irregular layer. Importantly, we demonstrated that the use of neutral electrolyte of NaCl instead of other solutions, such as HCl, in anodic etching of InP can significantly passivate the surface states of 3D NPs. As a result, the maximum photoconversion efficiency obtained with ∼15.7 μm thick 3D NPs was 0.95%, which was 7.3 and 1.4 times higher than that of planar and 2D NPs. Electrochemical impedance spectroscopy and photoluminescence analyses further clarified that the improved PEC performance was attributed to the enhanced charge transfer across 3D NPs/electrolyte interfaces, the improved charge separation at 3D NPs/electrolyte junction, and the increased PEC active surface areas with our unique 3D NP arrays.

  15. Long cycle life microporous spherical carbon anodes for sodium-ion batteries derived from furfuryl alcohol

    DOE PAGES

    Zhou, Dehua; Peer, Maryam; Yang, Zhenzhen; ...

    2016-04-11

    Spherical micron-sized carbon powders were synthesized from feedstock furfuryl alcohol and tested as anodes in sodium ion batteries (SIBs). A long cycle life of 1000 cycles is achievable with this carbon at C rate (3–4 mg cm –2 loading and i = 200 mA g –1) yielding a steady capacity of ca. 115 mA h g –1. Furthermore, the results from solid-state 23Na MAS NMR analyses of cycled electrodes indicate no correlation in voltage profiles with sodium site nature (graphene or nanopores), which is a new observation in SIB carbon anodes.

  16. Fabrication of optical chemical ammonia sensors using anodized alumina supports and sol-gel method.

    PubMed

    Markovics, Akos; Kovács, Barna

    2013-05-15

    In this comparative study, the fabrication and the sensing properties of various reflectometric optical ammonia gas sensors are described. In the first set of experiments the role of the support material was investigated on four different sensor membranes. Two of them were prepared by the adsorption of bromocresol green indicator on anodized aluminum plates. The applied anodizing voltages were 12 V and 24 V, which resulted in different dynamic ranges and response times for gaseous ammonia. The sol-gel method was used for the preparation of the other batch of sensors. These layers were coated on anodized aluminum plates (24 V) and on standard microscope cover glasses. In spite of the identical sensing chemistry, slightly different response times were measured merely because of the aluminum surface porosity. Gas molecules can remain entrapped in the pores, which results in delayed recovery time. On the other hand, the porous oxide film provides excellent adhesion, making the anodized aluminum an attractive support for the sol-gel layer. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Synthesis and surface characterization of alumina-silica-zirconia nanocomposite ceramic fibres on aluminium at room temperature

    NASA Astrophysics Data System (ADS)

    Mubarak Ali, M.; Raj, V.

    2010-04-01

    Alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres were synthesized by conventional anodization route. Scanning Electron Microscopy (SEM), Atomic Force microscopy (AFM), X-Ray Diffraction (XRD) and Energy Dispersive X-Ray spectroscopy (EDAX) were used to characterize the morphology and crystalloid structure of ASZNC fibres. Current density (DC) is one of the important parameters to get the alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres by this route. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity. The root mean square roughness of the sample observed from atomic force microscopic analysis is about 71.5 nm which is comparable to the average grain size of the coatings which is about 72 nm obtained from X-Ray diffraction. The results indicate that, the ASZNC fibres are arranged well in the nanostructure. The thickness of the coating increased with the anodizing time, but the coatings turned rougher and more porous. At the initial stage the growth of ceramic coating increases inwards to the metal substrate and outwards to the coating surface simultaneously. Subsequently, it mainly grows towards the metal substrate and the density of the ceramic coating increases gradually, which results in the decrease of the total thickness as anodizing time increases. This new approach of preparing ASZNC ceramic fibres may be important in applications ranging from gas sensors to various engineering materials.

  18. Nanoporous thermosetting polymers.

    PubMed

    Raman, Vijay I; Palmese, Giuseppe R

    2005-02-15

    Potential applications of nanoporous thermosetting polymers include polyelectrolytes in fuel cells, separation membranes, adsorption media, and sensors. Design of nanoporous polymers for such applications entails controlling permeability by tailoring pore size, structure, and interface chemistry. Nanoporous thermosetting polymers are often synthesized via free radical mechanisms using solvents that phase separate during polymerization. In this work, a novel technique for the synthesis of nanoporous thermosets is presented that is based on the reactive encapsulation of an inert solvent using step-growth cross-linking polymerization without micro/macroscopic phase separation. The criteria for selecting such a monomer-polymer-solvent system are discussed based on FTIR analysis, observed micro/macroscopic phase separation, and thermodynamics of swelling. Investigation of resulting network pore structures by scanning electron microscopy (SEM) and small-angle X-ray scattering following extraction and supercritical drying using carbon dioxide showed that nanoporous polymeric materials with pore sizes ranging from 1 to 50 nm can be synthesized by varying the solvent content. The differences in the porous morphology of these materials compared to more common free radically polymerized analogues that exhibit phase separation were evident from SEM imaging. Furthermore, it was demonstrated that the chemical activity of the nanoporous materials obtained by our method could be tailored by grafting appropriate functional groups at the pore interface.

  19. Transformation of γ-alumina to θ-alumina

    NASA Astrophysics Data System (ADS)

    Cai, Shuhui; Sohlberg, Karl; Rashkeev, Sergey; Pantelides, Sokrates T.

    2002-03-01

    γ- and θ-alumina are two metastable phases of aluminum oxide observed along the dehydration sequence of boehmite upon thermal treatment before conversion to the final product α-alumina. The transformation from the γ to the θ phase can best be studied by using Al_16O_24 cells. Motion of eight Al atoms from their γ-alumina positions to new positions and no O motions result in an approximate structure that, upon relaxation by first-principles calculations, becomes the known θ-alumina structure. Total-energy calculations along the paths of atomic motions have been used to map out possible synergistic transformation pathways. This work was supported in part by the USDoE and a NSF GOALI Grant with Alcoa, Inc.

  20. Self-assembling synthesis of free-standing nanoporous graphene-transition-metal oxide flexible electrodes for high-performance lithium-ion batteries and supercapacitors.

    PubMed

    Huang, Xiaodan; Sun, Bing; Chen, Shuangqiang; Wang, Guoxiu

    2014-01-01

    The synthesis of nanoporous graphene by a convenient carbon nanofiber assisted self-assembly approach is reported. Porous structures with large pore volumes, high surface areas, and well-controlled pore sizes were achieved by employing spherical silica as hard templates with different diameters. Through a general wet-immersion method, transition-metal oxide (Fe3O4, Co3O4, NiO) nanocrystals can be easily loaded into nanoporous graphene papers to form three-dimensional flexible nanoarchitectures. When directly applied as electrodes in lithium-ion batteries and supercapacitors, the materials exhibited superior electrochemical performances, including an ultra-high specific capacity, an extended long cycle life, and a high rate capability. In particular, nanoporous Fe3O4-graphene composites can deliver a reversible specific capacity of 1427.5 mAh g(-1) at a high current density of 1000 mA g(-1) as anode materials in lithium-ion batteries. Furthermore, nanoporous Co3O4-graphene composites achieved a high supercapacitance of 424.2 F g(-1) . This work demonstrated that the as-developed freestanding nanoporous graphene papers could have significant potential for energy storage and conversion applications. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template

    NASA Astrophysics Data System (ADS)

    Wang, Y. D.; Zang, K. Y.; Chua, S. J.; Tripathy, S.; Chen, P.; Fonstad, C. G.

    2005-12-01

    We report the growth of high-quality GaN epilayers on an ordered nanoporous GaN template by metalorganic chemical vapor deposition. The nanopores in GaN template were created by inductively coupled plasma etching using anodic aluminum oxide film as an etch mask. The average pore diameter and interpore distance is about 65 and 110nm, respectively. Subsequent overgrowth of GaN first begins at the GaN crystallite surface between the pores, and then air-bridge-mediated lateral overgrowth leads to the formation of the continuous layer. Microphotoluminescence and micro-Raman measurements show improved optical properties and significant strain relaxation in the overgrown layer when compared to GaN layer of same thickness simultaneously grown on sapphire without any template. Similar to conventional epitaxial lateral overgrown GaN, such overgrown GaN on a nanopatterned surface would also serve as a template for the growth of ultraviolet-visible light-emitting III-nitride devices.

  2. The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes

    NASA Astrophysics Data System (ADS)

    Kwon, Chang-Woo; Lee, Jae-Il; Kim, Ki-Bum; Lee, Hae-Weon; Lee, Jong-Ho; Son, Ji-Won

    2012-07-01

    The thermomechanical stability of micro-solid oxide fuel cells (micro-SOFCs) fabricated on an anodized aluminum oxide (AAO) membrane template is investigated. The full structure consists of the following layers: AAO membrane (600 nm)/Pt anode/YSZ electrolyte (900 nm)/porous Pt cathode. The utilization of a 600-nm-thick AAO membrane significantly improves the thermomechanical stability due to its well-known honeycomb-shaped nanopore structure. Moreover, the Pt anode layer deposited in between the AAO membrane and the YSZ electrolyte preserves its integrity in terms of maintaining the triple-phase boundary (TPB) and electrical conductivity during high-temperature operation. Both of these results guarantee thermomechanical stability of the micro-SOFC and extend the cell lifetime, which is one of the most critical issues in the fabrication of freestanding membrane-type micro-SOFCs.

  3. Preparation and analysis of anodic aluminum oxide films with continuously tunable interpore distances

    NASA Astrophysics Data System (ADS)

    Qin, Xiufang; Zhang, Jinqiong; Meng, Xiaojuan; Deng, Chenhua; Zhang, Lifang; Ding, Guqiao; Zeng, Hao; Xu, Xiaohong

    2015-02-01

    Nanoporous anodic aluminum oxides are often used as templates for preparation of nanostructures such as nanodot, nanowire and nanotube arrays. The interpore distance of anodic aluminum oxide is the most important parameter in controlling the periodicity of these nanostructures. Herein we demonstrate a simple and yet powerful method to fabricate ordered anodic aluminum oxides with continuously tunable interpore distances. By using mixed solution of citric and oxalic acids with different molar ratio, the range of anodizing voltages within which self-ordered films can be formed were extended to between 40 and 300 V, resulting in the interpore distances change from 100 to 750 nm. Our work realized very broad range of interpore distances in a continuously tunable fashion and the experiment processes are easily controllable and reproducible. The dependence of the interpore distances on acid ratios in mixed solutions was discussed through analysis of anodizing current and it was found that the effective dissociation constant of the mixed acids is of great importance. The interpore distances achieved are comparable to wavelengths ranging from UV to near IR, and may have potential applications in optical meta-materials for photovoltaics and optical sensing.

  4. Bath for electrolytic reduction of alumina and method therefor

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2001-07-10

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  5. Microfluidic multiplexing of solid-state nanopores

    NASA Astrophysics Data System (ADS)

    Jain, Tarun; Rasera, Benjamin C.; Guerrero, Ricardo Jose S.; Lim, Jong-Min; Karnik, Rohit

    2017-12-01

    Although solid-state nanopores enable electronic analysis of many clinically and biologically relevant molecular structures, there are few existing device architectures that enable high-throughput measurement of solid-state nanopores. Herein, we report a method for microfluidic integration of multiple solid-state nanopores at a high density of one nanopore per (35 µm2). By configuring microfluidic devices with microfluidic valves, the nanopores can be rinsed from a single fluid input while retaining compatibility for multichannel electrical measurements. The microfluidic valves serve the dual purpose of fluidic switching and electric switching, enabling serial multiplexing of the eight nanopores with a single pair of electrodes. Furthermore, the device architecture exhibits low noise and is compatible with electroporation-based in situ nanopore fabrication, providing a scalable platform for automated electronic measurement of a large number of integrated solid-state nanopores.

  6. DNA translocation through graphene nanopores.

    PubMed

    Merchant, Christopher A; Healy, Ken; Wanunu, Meni; Ray, Vishva; Peterman, Neil; Bartel, John; Fischbein, Michael D; Venta, Kimberly; Luo, Zhengtang; Johnson, A T Charlie; Drndić, Marija

    2010-08-11

    We report on DNA translocations through nanopores created in graphene membranes. Devices consist of 1-5 nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, we observe larger blocked currents than for traditional solid-state nanopores. However, ionic current noise levels are several orders of magnitude larger than those for silicon nitride nanopores. These fluctuations are reduced with the atomic-layer deposition of 5 nm of titanium dioxide over the device. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor. Use of graphene as a membrane material opens the door to a new class of nanopore devices in which electronic sensing and control are performed directly at the pore.

  7. Nanoporous polymer electrolyte

    DOEpatents

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  8. Electrodeposition of bismuth:tellurium nanowire arrays into porous alumina templates for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Trahey, Lynn

    Bismuth telluride is a well-known thermoelectric material for refrigeration applications. Thermoelectrics possess several advantages over conventional refrigeration and power generation devices, yet are not widely-used due to low efficiencies. It has been predicted and shown experimentally that the efficiency of thermoelectric devices increases when the semiconducting materials have reduced dimensions. Therefore, the aim of this research was to show enhanced thermoelectric efficiency in one-dimensional nanowires. The nanowires were synthesized via electrochemical deposition into porous alumina templates. Electrodeposition is a versatile technique that ensures electrical continuity in the deposited material. The nanowire templates, porous alumina, were made by the double anodization of high-purity aluminum foil in oxalic acid solutions. This technique produces parallel, hexagonally packed, and nanometer-range diameter pores that can reach high aspect ratios (greater than 2000:1). The main anodization variables (electrolyte concentration, applied potential, 2nd anodization time, and temperature) were studied systematically in order to deconvolute their effects on the resulting pores and to obtain high aspect ratio pores. The porous alumina is of great importance because the pore dimensions determine the dimensions of the electrodeposited nanowires, which influence the thermoelectric performance of the nanowire arrays. Nanowire arrays were characterized in several ways. Powder X-ray diffraction was used to assess crystallinity and preferred orientation of the nanowires, revealing that the nanowires are highly crystalline and grow with strong preferred orientation such that the material is suited for optimal thermoelectric performance. Scanning electron microscopy was used to evaluate the nanowire nucleation percentage and growth-front uniformity, both of which were enhanced by pulsed-potential electrodeposition. Compositional analysis via electron microprobe indicates

  9. Interfacial Engineering of Nanoporous Architectures in Ga2O3 Film toward Self-Aligned Tubular Nanostructure with an Enhanced Photocatalytic Activity on Water Splitting.

    PubMed

    Shrestha, Nabeen K; Bui, Hoa Thi; Lee, Taegweon; Noh, Yong-Young

    2018-04-17

    The present work demonstrates the formation of self-aligned nanoporous architecture of gallium oxide by anodization of gallium metal film controlled at -15 °C in aqueous electrolyte consisting of phosphoric acid. SEM examination of the anodized film reveals that by adding ethylene glycol to the electrolyte and optimizing the ratio of phosphoric acid and water, chemical etching at the oxide/electrolyte interfaces can be controlled, leading to the formation of aligned nanotubular oxide structures with closed bottom. XPS analysis confirms the chemical composition of the oxide film as Ga 2 O 3 . Further, XRD and SAED examination reveals that the as-synthesized nanotubular structure is amorphous, and can be crystallized to β-Ga 2 O 3 phase by annealing the film at 600 °C. The nanotubular structured film, when used as photoanode for photoelectrochemical splitting of water, achieved a higher photocurrent of about two folds than that of the nanoporous film, demonstrating the rewarding effect of the nanotubular structure. In addition, the work also demonstrates the formation of highly organized nonporous Ga 2 O 3 structure on a nonconducting glass substrate coated with thin film of Ga-metal, highlighting that the current approach can be extended for the formation of self-organized nanoporous Ga 2 O 3 thin film even on nonconducting flexible substrates.

  10. Fabrication and characterization of conductive anodic aluminum oxide substrates

    NASA Astrophysics Data System (ADS)

    Altuntas, Sevde; Buyukserin, Fatih

    2014-11-01

    Biomaterials that allow the utilization of electrical, chemical and topographic cues for improved neuron-material interaction and neural regeneration hold great promise for nerve tissue engineering applications. The nature of anodic aluminum oxide (AAO) membranes intrinsically provides delicate control over topographic and chemical cues for enhanced cell interaction; however their use in nerve regeneration is still very limited. Herein, we report the fabrication and characterization of conductive AAO (CAAO) surfaces for the ultimate goal of integrating electrical cues for improved nerve tissue behavior on the nanoporous substrate material. Parafilm was used as a protecting polymer film, for the first time, in order to obtain large area (50 cm2) free-standing AAO membranes. Carbon (C) was then deposited on the AAO surface via sputtering. Morphological characterization of the CAAO surfaces revealed that the pores remain open after the deposition process. The presence of C on the material surface and inside the nanopores was confirmed by XPS and EDX studies. Furthermore, I-V curves of the surface were used to extract surface resistance values and conductive AFM demonstrated that current signals can only be achieved where conductive C layer is present. Finally, novel nanoporous C films with controllable pore diameters and one dimensional (1-D) C nanostructures were obtained by the dissolution of the template AAO substrate.

  11. The radiation gas detectors with novel nanoporous converter for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Zarei, H.; Saramad, S.

    2018-02-01

    For many reason it is tried to improve the quantum efficiency (QE) of position sensitive gas detectors. For energetic X-rays, the imaging systems usually consist of a bulk converter and gas amplification region. But the bulk converters have their own limitation. For X-rays, the converter thickness should be increased to achieve a greater detection efficiency, however in this case, the chance of escaping the photoelectrons is reduced. To overcome this limitation, a new type of converter, called a nanoporous converter such as Anodizing Aluminum Oxide (AAO) membrane with higher surface to volume ratio is proposed. According to simulation results with GATE code, for this nanoporous converter with the 1 mm thickness and inter pore distance of 627 nm, for 20-100 keV X-ray energies with a reasonable gas pressure and different pore diameters, the QE can be one order of magnitude greater than the bulk ones, which is a new approach for proposing high QE position sensitive gas detectors for medical imaging application and also high energy physics.

  12. Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes

    DOE PAGES

    Liu, Wei; Li, Weiyang; Zhuo, Denys; ...

    2017-02-08

    Lithium metal based batteries represent a major challenge and opportunity in enabling a variety of devices requiring high-energy-density storage. However, dendritic lithium growth has limited the practical application of lithium metal anodes. Here we report a nanoporous, flexible and electrochemically stable coating of silica@poly(methyl methacrylate) (SiO 2@PMMA) core–shell nanospheres as an interfacial layer on lithium metal anode. This interfacial layer is capable of inhibiting Li dendrite growth while sustaining ionic flux through it, which is attributed to the nanoscaled pores formed among the nanospheres. Lastly, enhanced Coulombic efficiencies during lithium charge/discharge cycles have been achieved at various current densities andmore » areal capacities.« less

  13. Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Li, Weiyang; Zhuo, Denys

    Lithium metal based batteries represent a major challenge and opportunity in enabling a variety of devices requiring high-energy-density storage. However, dendritic lithium growth has limited the practical application of lithium metal anodes. Here we report a nanoporous, flexible and electrochemically stable coating of silica@poly(methyl methacrylate) (SiO 2@PMMA) core–shell nanospheres as an interfacial layer on lithium metal anode. This interfacial layer is capable of inhibiting Li dendrite growth while sustaining ionic flux through it, which is attributed to the nanoscaled pores formed among the nanospheres. Lastly, enhanced Coulombic efficiencies during lithium charge/discharge cycles have been achieved at various current densities andmore » areal capacities.« less

  14. Effect of heat treatment on the structure of incorporated oxalate species and photoluminescent properties of porous alumina films formed in oxalic acid

    NASA Astrophysics Data System (ADS)

    Vrublevsky, I.; Jagminas, A.; Hemeltjen, S.; Goedel, W. A.

    2008-09-01

    The present work focuses on the use of IR spectroscopy and photoluminescence spectral measurements for studying the treatment temperature effect on the compositional and luminescent properties of oxalic acid alumina films. In line with the recent researches we have also found that heat treatment of porous alumina films formed in oxalic acid leads to considerable changes in their photoluminescence properties: upon annealing the intensity of photoluminescence (PL) increases reaching a maximum at the temperature of around 500 °C and then decreases. IR spectra of as-grown and heat-treated films have proved that PL emission in the anodic alumina films is related with the state of 'structural' oxalate species incorporated in the oxide lattice. These results allowed us to conclude that PL behavior of oxalic acid alumina films can be explained through the concept of variations in the bonding molecular orbitals of incorporated oxalate species including σ- and π-bonds.

  15. An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks

    PubMed Central

    2011-01-01

    Amorphous Si nanowires have been directly synthesized by a thermal processing of Si substrates. This method involves the deposition of an anodic aluminum oxide mask on a crystalline Si (100) substrate. Fe, Au, and Pt thin films with thicknesses of ca. 30 nm deposited on the anodic aluminum oxide-Si substrates have been used as catalysts. During the thermal treatment of the samples, thin films of the metal catalysts are transformed in small nanoparticles incorporated within the pore structure of the anodic aluminum oxide mask, directly in contact with the Si substrate. These homogeneously distributed metal nanoparticles are responsible for the growth of Si nanowires with regular diameter by a simple heating process at 800°C in an Ar-H2 atmosphere and without an additional Si source. The synthesized Si nanowires have been characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman. PMID:21849077

  16. Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1.

    PubMed

    Kipf, Elena; Koch, Julia; Geiger, Bettina; Erben, Johannes; Richter, Katrin; Gescher, Johannes; Zengerle, Roland; Kerzenmacher, Sven

    2013-10-01

    We present a systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Under anoxic conditions nanoporous activated carbon cloth is a superior anode material in terms of current density normalized to the projected anode area and anode volume (24.0±0.3 μA cm(-2) and 482±7 μA cm(-3) at -0.2 vs. SCE, respectively). The good performance can be attributed to the high specific surface area of the material, which is available for mediated electron transfer through self-secreted flavins. Under aerated conditions no influence of the specific surface area is observed, which we attribute to a shift from primary indirect electron transfer by mediators to direct electron transfer via adherent cells. Furthermore, we show that an aerated initial growth phase enhances the current density under subsequent anoxic conditions fivefold when compared to a similar experiment that was conducted under permanently anoxic conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Nanofluidic Device with Embedded Nanopore

    NASA Astrophysics Data System (ADS)

    Zhang, Yuning; Reisner, Walter

    2014-03-01

    Nanofluidic based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with nanpore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a nanopore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can detect - using fluorescent microscopy - successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. We also show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore until a certain voltage bias is added.

  18. Normal-incidence quantum cascade detector coupled by nanopore structure

    NASA Astrophysics Data System (ADS)

    Liu, Jianqi; Wang, Fengjiao; Zhai, Shenqiang; Zhang, Jinchuan; Liu, Shuman; Liu, Junqi; Wang, Lijun; Liu, Fengqi; Wang, Zhanguo

    2018-04-01

    A normal-incidence quantum cascade detector coupled by a nanopore array structure (NPS) is demonstrated. The NPS is fabricated on top of an In0.53Ga0.47As contact layer by inductively coupled plasma etching using anodic aluminum oxide as a mask. Because of the nonuniform volume fraction at different areas of the device mesa, the NPS acts as subwavelength random gratings. Normal-incidence light can be scattered into random oblique directions for inter-sub-band transition absorption. With normal incidence, the responsivities of the device reach 24 mA/W at 77 K and 15.7 mA/W at 300 K, which are enhanced 2.23 and 1.96 times, respectively, compared with that of the 45°-edge device.

  19. Depolarized haze of nano-porous AAO film via porosity and aspect control

    NASA Astrophysics Data System (ADS)

    Tseng, Chun-Wei; Lin, Yung-Hsiang; Cheng, Chih-Hsien; Lin, Gong-Ru

    2018-01-01

    Multiple scattering induced haze and depolarization effects of nano-porous AAO films controlled by detuning the porosity and aspect ratio of the nano holes are investigated. The nano-porous AAO film with its porosity increasing from 12.6% to 19.3% enhances the scattering of the incident laser beam with its maximal scattering angle enlarged from 5° to 8° under TM-mode incidence and from 6° to 10° under TE-mode incidence. Because of multiple scattering within the porous holes of the AAO, the depolarization on the reflected beam by transferring its electric field from horizontal to the vertical such that the polarization ratio is degraded with a randomized haze. The porosity of AAO surface broadens from 12.6% to 19.3% when increasing the bias voltage from 40 to 60 V during the second-step of the electro-chemical anodization process, which essentially adjusts the polarization ratio under TM-mode and TE-mode incidences raise from 0.31 to 0.35 and from 0.32 to 0.48, respectively. The depolarized haze of the nano-porous AAO film is correlated with its porosity and aspect ratio controlled by the pore size and etched depth of the AAO. Under TM-mode incidence, the simulated polarization ratio increases from 0.35 to 0.38, which correlates well with experimental results. In contrast, the experiment result slightly deviates from the theoretical prediction as the TE-mode field interacts more surface area than the TM-mode field does. Such a nano-porous AAO exhibits tunable depolarized haze via the control porosity and aspect ratio, which is particularly suitable to serve as the catalytic buffer for synthesizing the hydrophobic and hazed solar energy converters.

  20. Fabrication and Characterization of Magnetic Nanowires in Anodic Alumina

    NASA Astrophysics Data System (ADS)

    Xiao, Z. L.; Han, Y. R.; Wang, H. H.; Welp, U.; Kwok, W. K.; Crabtree, G. W.

    2002-03-01

    Magnetic nanowires (cobalt, iron and nickel) with diameters down to 20 nm have been fabricated by electrodeposition. Both commercial and home-made anodized aluminum oxide (AAO) membranes with nanochannel arrays were used as templates. The structure and magnetization hysteresis of the specimens with nanowires were investigated with scanning electron microscope (SEM) and superconducting quantum interference device (SQUID), respectively. Growth of nanowires with both aqueous and dimethylsulfoxide (DMSO) solutions was conducted and better quality nanowires were obtained with the organic DMSO solution. The influence of the diameter, the length and the separation of the nanochannels on the magnetization orientation was investigated in detail. Work supported by the US Department of Energy (DOE), BES-Materials Science, Contract No. W-31-109-ENG-38.

  1. Carbon nanotubes on nanoporous alumina: from surface mats to conformal pore filling

    PubMed Central

    2014-01-01

    Control over nucleation and growth of multi-walled carbon nanotubes in the nanochannels of porous alumina membranes by several combinations of posttreatments, namely exposing the membrane top surface to atmospheric plasma jet and application of standard S1813 photoresist as an additional carbon precursor, is demonstrated. The nanotubes grown after plasma treatment nucleated inside the channels and did not form fibrous mats on the surface. Thus, the nanotube growth mode can be controlled by surface treatment and application of additional precursor, and complex nanotube-based structures can be produced for various applications. A plausible mechanism of nanotube nucleation and growth in the channels is proposed, based on the estimated depth of ion flux penetration into the channels. PACS 63.22.Np Layered systems; 68. Surfaces and interfaces; Thin films and nanosystems (structure and non-electronic properties); 81.07.-b Nanoscale materials and structures: fabrication and characterization PMID:25177216

  2. Effect of crystallographic orientation on the anodic formation of nanoscale pores/tubes in TiO 2 films

    NASA Astrophysics Data System (ADS)

    Kalantar-zadeh, K.; Sadek, A. Z.; Zheng, H.; Partridge, J. G.; McCulloch, D. G.; Li, Y. X.; Yu, X. F.; Wlodarski, W.

    2009-10-01

    Self-organized nanopores and nanotubes have been produced in thin films of titanium (Ti) prepared using filtered cathodic vacuum arc (FCVA), DC- and RF-sputter deposition systems. The anodization process was performed using a neutral electrolyte containing fluoride ions with an applied potential between 2 and 20 V (for clarity the results are only presented for 5 V). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques were used to characterise the films. It was found that the crystallographic orientation of the Ti films played a significant role in determining whether pores or tubes were formed during the anodic etching process.

  3. Interfacial Reactivity Benchmarking of the Sodium Ion Conductors Na3PS4 and Sodium β-Alumina for Protected Sodium Metal Anodes and Sodium All-Solid-State Batteries.

    PubMed

    Wenzel, Sebastian; Leichtweiss, Thomas; Weber, Dominik A; Sann, Joachim; Zeier, Wolfgang G; Janek, Jürgen

    2016-10-05

    The interfacial stability of solid electrolytes at the electrodes is crucial for an application of all-solid-state batteries and protected electrodes. For instance, undesired reactions between sodium metal electrodes and the solid electrolyte form charge transfer hindering interphases. Due to the resulting large interfacial resistance, the charge transfer kinetics are altered and the overvoltage increases, making the interfacial stability of electrolytes the limiting factor in these systems. Driven by the promising ionic conductivities of Na 3 PS 4 , here we explore the stability and viability of Na 3 PS 4 as a solid electrolyte against metallic Na and compare it to that of Na-β″-Al 2 O 3 (sodium β-alumina). As expected, Na-β″-Al 2 O 3 is stable against sodium, whereas Na 3 PS 4 decomposes with an increasing overall resistance, making Na-β″-Al 2 O 3 the electrolyte of choice for protected sodium anodes and all-solid-state batteries.

  4. Three-dimensional block copolymer nanostructures by the solvent-annealing-induced wetting in anodic aluminum oxide templates.

    PubMed

    Chu, Chiang-Jui; Chung, Pei-Yun; Chi, Mu-Huan; Kao, Yi-Huei; Chen, Jiun-Tai

    2014-09-01

    Block copolymers have been extensively studied over the last few decades because they can self-assemble into well-ordered nanoscale structures. The morphologies of block copolymers in confined geometries, however, are still not fully understood. In this work, the fabrication and morphologies of three-dimensional polystyrene-block-polydimethylsiloxane (PS-b-PDMS) nanostructures confined in the nanopores of anodic aluminum oxide (AAO) templates are studied. It is discovered that the block copolymers can wet the nanopores using a novel solvent-annealing-induced nanowetting in templates (SAINT) method. The unique advantage of this method is that the problem of thermal degradation can be avoided. In addition, the morphologies of PS-b-PDMS nanostructures can be controlled by changing the wetting conditions. Different solvents are used as the annealing solvent, including toluene, hexane, and a co-solvent of toluene and hexane. When the block copolymer wets the nanopores in toluene vapors, a perpendicular morphology is observed. When the block copolymer wets the nanopores in co-solvent vapors (toluene/hexane = 3:2), unusual circular and helical morphologies are obtained. These three-dimensional nanostructures can serve as naontemplates for refilling with other functional materials, such as Au, Ag, ZnO, and TiO2 . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Noise Properties of Rectifying Nanopores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, M R; Sa, N; Davenport, M

    2011-02-18

    Ion currents through three types of rectifying nanoporous structures are studied and compared for the first time: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit non-equilibrium 1/f noise, thus the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, includingmore » intrinsic pore wall dynamics, and formation of vortices and non-linear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields inducing secondary effects in the pore such as enhanced water dissociation.« less

  6. Noise Properties of Rectifying Nanopore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlassiouk, Ivan V

    2011-01-01

    Ion currents through three types of rectifying nanoporous structures are studied and compared: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by the power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit nonequilibrium 1/f noise; thus, the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wallmore » dynamics and formation of vortices and nonlinear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier-Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields, inducing secondary effects in the pore, such as enhanced water dissociation.« less

  7. Expanding the functionality and applications of nanopore sensors

    NASA Astrophysics Data System (ADS)

    Venta, Kimberly E.

    Nanopore sensors have developed into powerful tools for single-molecule studies since their inception two decades ago. Nanopore sensors function as nanoscale Coulter counters, by monitoring ionic current modulations as particles pass through a nanopore. While nanopore sensors can be used to study any nanoscale particle, their most notable application is as a low cost, fast alternative to current DNA sequencing technologies. In recent years, signifcant progress has been made toward the goal of nanopore-based DNA sequencing, which requires an ambitious combination of a low-noise and high-bandwidth nanopore measurement system and spatial resolution. In this dissertation, nanopore sensors in thin membranes are developed to improve dimensional resolution, and these membranes are used in parallel with a high-bandwidth amplfier. Using this nanopore sensor system, the signals of three DNA homopolymers are differentiated for the first time in solid-state nanopores. The nanopore noise is also reduced through the addition of a layer of SU8, a spin-on polymer, to the supporting chip structure. By increasing the temporal and spatial resolution of nanopore sensors, studies of shorter molecules are now possible. Nanopore sensors are beginning to be used for the study and characterization of nanoparticles. Nanoparticles have found many uses from biomedical imaging to next-generation solar cells. However, further insights into the formation and characterization of nanoparticles would aid in developing improved synthesis methods leading to more effective and customizable nanoparticles. This dissertation presents two methods of employing nanopore sensors to benet nanoparticle characterization and fabrication. Nanopores were used to study the formation of individual nanoparticles and serve as nanoparticle growth templates that could be exploited to create custom nanoparticle arrays. Additionally, nanopore sensors were used to characterize the surface charge density of anisotropic

  8. Threading DNA through nanopores for biosensing applications

    NASA Astrophysics Data System (ADS)

    Fyta, Maria

    2015-07-01

    This review outlines the recent achievements in the field of nanopore research. Nanopores are typically used in single-molecule experiments and are believed to have a high potential to realize an ultra-fast and very cheap genome sequencer. Here, the various types of nanopore materials, ranging from biological to 2D nanopores are discussed together with their advantages and disadvantages. These nanopores can utilize different protocols to read out the DNA nucleobases. Although, the first nanopore devices have reached the market, many still have issues which do not allow a full realization of a nanopore sequencer able to sequence the human genome in about a day. Ways to control the DNA, its dynamics and speed as the biomolecule translocates the nanopore in order to increase the signal-to-noise ratio in the reading-out process are examined in this review. Finally, the advantages, as well as the drawbacks in distinguishing the DNA nucleotides, i.e., the genetic information, are presented in view of their importance in the field of nanopore sequencing.

  9. Color filters based on a nanoporous Al-AAO resonator featuring structure tolerant color saturation.

    PubMed

    Yue, Wenjing; Li, Yang; Wang, Cong; Yao, Zhao; Lee, Sang-Shin; Kim, Nam-Young

    2015-10-19

    Reflection type subtractive tri-color filters, enabling metal-thickness tolerant high color saturation, were proposed and demonstrated capitalizing on a nanoporous metal-dielectric-metal (MDM) resonant structure, which comprises a cavity made of self-assembled nanoporous anodic aluminum oxide (AAO), sandwiched between an Al film of the same nanoporous configuration and a highly reflective aluminum (Al) substrate. For the proposed filter, the output color was easily determined by controlling the resonance wavelength via the thickness of the porous AAO cavity. In particular, the spectral response was deemed to exhibit a near-zero resonant dip, thereby achieving enhanced color saturation, which was stably maintained irrespective of the thickness of the porous Al film, due to its reduced effective refractive index. In order to manufacture the proposed color filters on a large scale, a porous Al film of hexagonal lattice configuration was integrated with an identically porous self-assembled AAO layer, which has been grown on an Al substrate. For the realized tri-color filters for cyan, magenta, and yellow (CMY), having a 15-nm Al film, near-zero reflection dips were observed to be centered at the wavelengths of 436, 500, and 600 nm, respectively. The resulting enhanced color saturation was stably maintained even though the variations were as large as 10 nm in the metal thickness.

  10. Bath for electrolytic reduction of alumina and method therefor

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-11-26

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode. Removing sulfur from the bath can also minimize cathode deposits. Aluminum formed on the cathode can be removed directly from the cathode.

  11. Device properties of nanopore PN junction Si for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Jin, Hyunjong; Chang, Te Wei; Liu, Logan Gang

    2011-09-01

    Improvement of energy conversion efficiency of solar cells has led to innovative approaches, in particular the introduction of nanopillar photovoltaics [1]. Previous work on nanopillar Si photovoltaic has shown broadband reduction in optical reflection and enhancement of absorption [2]. Radial or axial PN junctions [3, 4] have been of high interest for improved photovoltaic devices. However, with the PN junction incorporated as part of the pillar, the discreteness of individual pillar requires additional conductive layer that would electrically short the top of each pillar for efficient carrier extraction. The fragile structure of the surface pillars would also require a protection layer for possible mechanical scratch to prevent pillars from breaking. Any additional layer that is applied, either for electrical contact or for mechanical properties may introduce additional recombination sites and also reduce the actual light absorption by the photovoltaic material. In this paper, nanopore Si photovoltaics that not only provides the advantages but also addresses the challenges of nanopillers is demonstrated. PN junction substrate of 250 nm thick N-type polycrystalline Si on P-type Si wafer is prepared. The nanopore structure is formed by using anodized aluminum oxide (AAO) as an etching mask against deep reactive ionic etching (DRIE). The device consists of semi-ordered pores of ~70 nm diameter.

  12. Nanoporous frameworks exhibiting multiple stimuli responsiveness

    NASA Astrophysics Data System (ADS)

    Kundu, Pintu K.; Olsen, Gregory L.; Kiss, Vladimir; Klajn, Rafal

    2014-04-01

    Nanoporous frameworks are polymeric materials built from rigid molecules, which give rise to their nanoporous structures with applications in gas sorption and storage, catalysis and others. Conceptually new applications could emerge, should these beneficial properties be manipulated by external stimuli in a reversible manner. One approach to render nanoporous frameworks responsive to external signals would be to immobilize molecular switches within their nanopores. Although the majority of molecular switches require conformational freedom to isomerize, and switching in the solid state is prohibited, the nanopores may provide enough room for the switches to efficiently isomerize. Here we describe two families of nanoporous materials incorporating the spiropyran molecular switch. These materials exhibit a variety of interesting properties, including reversible photochromism and acidochromism under solvent-free conditions, light-controlled capture and release of metal ions, as well reversible chromism induced by solvation/desolvation.

  13. Nanopore-CMOS Interfaces for DNA Sequencing

    PubMed Central

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-01-01

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces. PMID:27509529

  14. Nanopore-CMOS Interfaces for DNA Sequencing.

    PubMed

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-08-06

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces.

  15. Fabrication of pH sensitive nanovalves using smart surface coated nanopores

    NASA Astrophysics Data System (ADS)

    Nieto-Soto, A. M.; Diaz-Maldonado, D. K.; Rios Angarita, F. A.

    2017-01-01

    A pH sensitive nanovalve was fabricated using different smart surfaces covalently attached to an anodized aluminium oxide membrane (AAO). The smart surfaces were synthesized using a mixture of aliphatic and aminated silanes. Effect on the contact angle of the aliphatic silane chain length was evaluated. The smart surface, in conjunction with a nanoporous membrane, allowed the formation of a hydrophobic plug which controlled the transport of the molecule safranine depending on the pH of the solution. It was demonstrated that mixtures of butyl and methyl-trimethoxysilane with aminopropyl-trimethoxysilane were able to perform as effective nanovalves creating a plug that remained closed at pH>7 and opened up at pH<5.

  16. Transport of Proteins through Nanopores

    NASA Astrophysics Data System (ADS)

    Luan, Binquan

    In biological cells, a malfunctioned protein (such as misfolded or damaged) is degraded by a protease in which an unfoldase actively drags the protein into a nanopore-like structure and then a peptidase cuts the linearized protein into small fragments (i.e. a recycling process). Mimicking this biological process, many experimental studies have focused on the transport of proteins through a biological protein pore or a synthetic solid-state nanopore. Potentially, the nanopore-based sensors can provide a platform for interrogating proteins that might be disease-related or be targeted by a new drug molecule. The single-profile of a protein chain inside an extremely small nanopore might even permit the sequencing of the protein. Here, through all-atom molecular dynamics simulations, I will show various types of protein transport through a nanopore and reveal the nanoscale mechanics/energetics that plays an important role governing the protein transport.

  17. Nucleation and growth mechanism of Co-Pt alloy nanowires electrodeposited within alumina template

    NASA Astrophysics Data System (ADS)

    Srivastav, Ajeet K.; Shekhar, Rajiv

    2015-01-01

    Co-Pt alloy nanowires were electrodeposited by direct current electrodeposition within nanoporous alumina templates with varying deposition potentials. The effect of deposition potential on nucleation and growth mechanisms during electrodeposition of Co-Pt alloy nanowires was investigated. The less negative deposition potential (-0.9 V) favours the instantaneous nucleation mechanism. The positive deviation from theoretical instantaneous and progressive nucleation mechanisms occurs at higher negative deposition potentials. The hysteresis behaviour and magnetic properties of electrodeposited Co-Pt alloy nanowires altered with varying deposition potential. The easy magnetization direction was in direction perpendicular to the wire axis. The deposition potential dependent change in hysteresis behaviour with increased coercivity and scattered remanence ratio was observed. This is attributed to better crystallinity with reduced defect density and hydrogen evolution causing structural changes at more negative deposition potentials.

  18. Effects of the voltage and time of anodization on modulation of the pore dimensions of AAO films for nanomaterials synthesis

    NASA Astrophysics Data System (ADS)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Maryam, W.; Ahmad, M. A.; Bououdina, M.

    2015-12-01

    Highly-ordered and hexagonal-shaped nanoporous anodic aluminum oxide (AAO) of 1 μm thickness of Al pre-deposited onto Si substrate using two-step anodization was successfully fabricated. The growth mechanism of the porous AAO film was investigated by anodization current-time behavior for different anodizing voltages and by visualizing the microstructural procedure of the fabrication of AAO film by two-step anodization using cross-sectional and top view of FESEM imaging. Optimum conditions of the process variables such as annealing time of the as-deposited Al thin film and pore widening time of porous AAO film were experimentally determined to obtain AAO films with uniformly distributed and vertically aligned porous microstructure. Pores with diameter ranging from 50 nm to 110 nm and thicknesses between 250 nm and 1400 nm, were obtained by controlling two main influential anodization parameters: the anodizing voltage and time of the second-step anodization. X-ray diffraction analysis reveals amorphous-to-crystalline phase transformation after annealing at temperatures above 800 °C. AFM images show optimum ordering of the porous AAO film anodized under low voltage condition. AAO films may be exploited as templates with desired size distribution for the fabrication of CuO nanorod arrays. Such nanostructured materials exhibit unique properties and hold high potential for nanotechnology devices.

  19. Integrated Solid/Nanoporous Copper/Oxide Hybrid Bulk Electrodes for High-performance Lithium-Ion Batteries

    PubMed Central

    Hou, Chao; Lang, Xing-You; Han, Gao-Feng; Li, Ying-Qi; Zhao, Lei; Wen, Zi; Zhu, Yong-Fu; Zhao, Ming; Li, Jian-Chen; Lian, Jian-She; Jiang, Qing

    2013-01-01

    Nanoarchitectured electroactive materials can boost rates of Li insertion/extraction, showing genuine potential to increase power output of Li-ion batteries. However, electrodes assembled with low-dimensional nanostructured transition metal oxides by conventional approach suffer from dramatic reductions in energy capacities owing to sluggish ion and electron transport kinetics. Here we report that flexible bulk electrodes, made of three-dimensional bicontinuous nanoporous Cu/MnO2 hybrid and seamlessly integrated with Cu solid current collector, substantially optimizes Li storage behavior of the constituent MnO2. As a result of the unique integration of solid/nanoporous hybrid architecture that simultaneously enhances the electron transport of MnO2, facilitates fast ion diffusion and accommodates large volume changes on Li insertion/extraction of MnO2, the supported MnO2 exhibits a stable capacity of as high as ~1100 mA h g−1 for 1000 cycles, and ultrahigh charge/discharge rates. It makes the environmentally friendly and low-cost electrode as a promising anode for high-performance Li-ion battery applications. PMID:24096928

  20. A nanoporous gold membrane for sensing applications

    PubMed Central

    Oo, Swe Zin; Silva, Gloria; Carpignano, Francesca; Noual, Adnane; Pechstedt, Katrin; Mateos, Luis; Grant-Jacob, James A.; Brocklesby, Bill; Horak, Peter; Charlton, Martin; Boden, Stuart A.; Melvin, Tracy

    2016-01-01

    Design and fabrication of three-dimensionally structured, gold membranes containing hexagonally close-packed microcavities with nanopores in the base, are described. Our aim is to create a nanoporous structure with localized enhancement of the fluorescence or Raman scattering at, and in the nanopore when excited with light of approximately 600 nm, with a view to provide sensitive detection of biomolecules. A range of geometries of the nanopore integrated into hexagonally close-packed assemblies of gold micro-cavities was first evaluated theoretically. The optimal size and shape of the nanopore in a single microcavity were then considered to provide the highest localized plasmon enhancement (of fluorescence or Raman scattering) at the very center of the nanopore for a bioanalyte traversing through. The optimized design was established to be a 1200 nm diameter cavity of 600 nm depth with a 50 nm square nanopore with rounded corners in the base. A gold 3D-structured membrane containing these sized microcavities with the integrated nanopore was successfully fabricated and ‘proof of concept’ Raman scattering experiments are described. PMID:26973809

  1. Building membrane nanopores

    NASA Astrophysics Data System (ADS)

    Howorka, Stefan

    2017-07-01

    Membrane nanopores--hollow nanoscale barrels that puncture biological or synthetic membranes--have become powerful tools in chemical- and biosensing, and have achieved notable success in portable DNA sequencing. The pores can be self-assembled from a variety of materials, including proteins, peptides, synthetic organic compounds and, more recently, DNA. But which building material is best for which application, and what is the relationship between pore structure and function? In this Review, I critically compare the characteristics of the different building materials, and explore the influence of the building material on pore structure, dynamics and function. I also discuss the future challenges of developing nanopore technology, and consider what the next-generation of nanopore structures could be and where further practical applications might emerge.

  2. Third-generation pure alumina and alumina matrix composites in total hip arthroplasty

    PubMed Central

    Hannouche, Didier; Zingg, Matthieu; Miozzari, Hermes; Nizard, Remy; Lübbeke, Anne

    2018-01-01

    Wear, corrosion and periprosthetic osteolysis are important causes of failure in joint arthroplasty, especially in young patients. Ceramic bearings, developed 40 years ago, are an increasingly popular choice in hip arthroplasty. New manufacturing procedures have increased the strength and reliability of ceramic materials and reduced the risk of complications. In recent decades, ceramics made of pure alumina have continuously improved, resulting in a surgical-grade material that fulfills clinical requirements. Despite the track record of safety and long-term results, third-generation pure alumina ceramics are being replaced in clinical practice by alumina matrix composites, which are composed of alumina and zirconium. In this review, the characteristics of both materials are discussed, and the long-term results with third-generation alumina-on-alumina bearings and the associated complications are compared with those of other available ceramics. Cite this article: EFORT Open Rev 2018;3:7-14. DOI: 10.1302/2058-5241.3.170034 PMID:29657840

  3. Nanoscale Probing of Electrical Signals in Biological Systems

    DTIC Science & Technology

    2012-03-18

    Membranes Anodized aluminum oxide ( AAO ) is an ideal prototype substrate for studying ion transport through nanoporous membranes . For optimal...electrochemical microscopy, scanning ion conductance microscopy, nanoporous membranes , anodized aluminum oxide , atomic layer deposition, focused ion beam...capacity. This approach utilizes atomic layer deposition (ALD) of a thin conformal Ir film into a nanoporous anodized aluminum oxide (

  4. Understanding and Enhancing the Photostability of Nanoporous Metal Oxide Thin Films for Solar Hydrogen Generation

    NASA Astrophysics Data System (ADS)

    Chitrada, Kalyan Chakravarthi

    Solar water splitting is an environmentally benign process which has received wide attention in the recent years as an alternate method for a clean and safe production of hydrogen. This process employs a semiconductor based photocatalyst, water, and sunlight to produce hydrogen. Metal-oxide based semiconductors are considered to be ideal photocatalytic materials because of their stability against photo-corrosion combined with relatively narrow energy band-gap, appropriately placed band edge positions with reference to oxygen and hydrogen energy levels, less scattering of charges due to wider valence band, high dielectric constant, natural abundance, and non-toxicity. In this dissertation, two metal oxide based semiconductors viz., iron (III) oxide and bismuth (III) oxide were investigated to understand and enhance their photo activity as photoanodes for solar water splitting application. Iron (III) oxide has a well suited band gap to capture solar spectrum but it suffers from inappropriately positioned band edges, recombination losses due to low electron mobility, and a small minority carrier diffusion length. However, it was hypothesized that the Iron (III) oxide might show interesting photoelectrochemical properties by alloying with 4f elements and shifting the conduction band minimum of the iron oxide favorably to more negative potentials. In the present study, a nanoporous iron oxide layer incorporated with Nd3+ and B3+ was synthesized by electrochemical anodization of a FeNdB alloy. The photoelectrochemical behavior of this oxide was compared with thermally oxidized FeNdB alloy and the iron oxides obtained by anodization and thermal oxidation of pure iron foil. Incorporation of Nd3+ and B3+ in the iron oxide showed a direct bandgap of 2.05 eV, an indirect bandgap of 1.9 eV and shifted the flatband potentials to --0.8 VAg/AgCl in 1 M KOH solution. The FeNdB oxide showed marginally better catalytic activity for the oxygen evolution reaction than pure iron oxide

  5. Silica, Alumina and Clay Catalyzed Peptide Bond Formation: Enhanced Efficiency of Alumina Catalyst

    NASA Astrophysics Data System (ADS)

    Bujdák, Juraj; Rode, Bernd M.

    1999-10-01

    Catalytic efficiencies of clay (hectorite), silica and alumina were tested in peptide bond formation reactions of glycine (Gly), alanine (Ala), proline (Pro), valine (Val) and leucine (Leu). The reactions were performed as drying/wetting (hectorite) and temperature fluctuation (silica and alumina) experiments at 85 °C. The reactivity of amino acids decreased in order Gly > Ala > Pro ~ Val ~ Leu. The highest catalytic efficiency was observed for alumina, the only catalyst producing oligopeptides in all investigated reaction systems. The peptide bond formation on alumina is probably catalyzed by the same sites and via similar reaction mechanisms as some alumina-catalyzed dehydration reactions used in industrial chemistry.

  6. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy.

    PubMed

    Ferreira, Sonia C; Conde, Ana; Arenas, María A; Rocha, Luis A; Velhinho, Alexandre

    2014-12-19

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC np ) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC np on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiC np . The current peaks and the steady-state current density recorded at each voltage step increases with the SiC np volume fraction due to the oxidation of the SiC np . The formation mechanism of the anodic film on Al/SiC np composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiC np in the anodic film.

  7. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy

    PubMed Central

    Ferreira, Sonia C.; Conde, Ana; Arenas, María A.; Rocha, Luis A.; Velhinho, Alexandre

    2014-01-01

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film. PMID:28788295

  8. In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au

    DOE PAGES

    Li, Jin; Fan, Cuncai; Ding, Jie; ...

    2017-01-03

    High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. We show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studiesmore » show dose-rate-dependent diffusivity of defect clusters. Our study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications.« less

  9. Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands.

    PubMed

    Cho, Jeong-Hyun; Picraux, S Tom

    2013-01-01

    It is well-known that one-dimensional nanostructures reduce pulverization of silicon (Si)-based anode materials during Li ion cycling because they allow lateral relaxation. However, even with improved designs, Si nanowire-based structures still exhibit limited cycling stability for extended numbers of cycles, with the specific capacity retention with cycling not showing significant improvements over commercial carbon-based anode materials. We have found that one important reason for the lack of long cycling stability can be the presence of milli- and microscale Si islands which typically form under nanowire arrays during their growth. Stress buildup in these Si island underlayers with cycling results in cracking, and the loss of specific capacity for Si nanowire anodes, due to progressive loss of contact with current collectors. We show that the formation of these parasitic Si islands for Si nanowires grown directly on metal current collectors can be avoided by growth through anodized aluminum oxide templates containing a high density of sub-100 nm nanopores. Using this template approach we demonstrate significantly enhanced cycling stability for Si nanowire-based lithium-ion battery anodes, with retentions of more than ~1000 mA·h/g discharge capacity over 1100 cycles.

  10. Bauxite and alumina

    USGS Publications Warehouse

    Bray, E.L.

    2009-01-01

    The article provides information on bauxite and alumina mining. U.S. states like Alabama, Arkansas and Georgia produced small amounts of bauxite and bauxitic clays for nonmetallurgical uses. Total metallurgical-grade bauxite imports in 2008 is cited. The leading suppliers of bauxite to the U.S. are Jamaica, Guinea and Brazil. The estimated domestic production of alumina in 2008 is mentioned. It also discusses consumption and prices of both bauxite and alumina.

  11. Effect of sintering temperature on flexural properties of alumina fiber-reinforced, alumina-based ceramics prepared by tape casting technique.

    PubMed

    Tanimoto, Yasuhiro; Nemoto, Kimiya

    2006-01-01

    The purpose of this study was to investigate the effect of sintering temperature on flexural properties of an alumina fiber-reinforced, alumina-based ceramic (alumina-fiber/alumina composite) prepared by a tape casting technique. The alumina-based ceramic used a matrix consisting of 60 wt% Al(2)O(3) powder and 40 wt% SiO(2)-B(2)O(3) glass powder with the following composition in terms of wt%: 33 SiO(2), 32 B(2)O(3), 20 CaO, and 15 MgO. Prepreg sheets of alumina-fiber/alumina composite in which uniaxial aligned alumina fibers were infiltrated with the alumina-based matrix were fabricated continuously using a tape casting technique employing a doctor blade system. Four sintering temperatures were investigated: 900 degrees C, 1000 degrees C, 1100 degrees C, and 1200 degrees C, all for 4 hours under atmospheric pressure in a furnace. The surface of the alumina-fiber/alumina composite after sintering was observed with a field-emission scanning electron microscope (FE-SEM). A three-point bending test was carried out to measure the flexural strength and modulus of alumina-fiber/alumina composite specimens. In addition, sintered alumina fiber was characterized by X-ray diffraction (XRD). FE-SEM observation showed that alumina-fiber/alumina composite was confirmed to be densely sintered for all sintering temperatures. Three-point bending measurement revealed that alumina-fiber/alumina composite produced at sintering temperatures of 1100 degrees C and 1200 degrees C exhibit flexural strengths lower than those of alumina-fiber/alumina composite produced at sintering temperatures of 900 degrees C and 1000 degrees C; alumina-fiber/alumina composite produced at sintering temperatures of 1100 degrees C and 1200 degrees C exhibit flexural moduli lower than that of alumina-fiber/alumina composite produced at a sintering temperature of 1000 degrees C. Additional XRD pattern of alumina fiber indicated that with increasing sintering temperature, the crystallographic structure of gamma-alumina

  12. Graphene nanopore devices for DNA sensing.

    PubMed

    Merchant, Chris A; Drndić, Marija

    2012-01-01

    We describe here a method for detecting the translocation of individual DNA molecules through nanopores created in graphene membranes. The devices consist of 1-5-nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, and the reduced electrical resistance, we observe larger blocked currents than for traditional solid-state nanopores. We also show how ionic current noise levels can be reduced with the atomic-layer deposition of a few nanometers of titanium dioxide over the graphene surface. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor, and its use opens the door to a new future class of nanopore devices in which electronic sensing and control is performed directly at the pore.

  13. Ion transport in a pH-regulated nanopore.

    PubMed

    Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi

    2013-08-06

    Fundamental understanding of ion transport phenomena in nanopores is crucial for designing the next-generation nanofluidic devices. Due to surface reactions of dissociable functional groups on the nanopore wall, the surface charge density highly depends upon the proton concentration on the nanopore wall, which in turn affects the electrokinetic transport of ions, fluid, and particles within the nanopore. Electrokinetic ion transport in a pH-regulated nanopore, taking into account both multiple ionic species and charge regulation on the nanopore wall, is theoretically investigated for the first time. The model is verified by the experimental data of nanopore conductance available in the literature. The results demonstrate that the spatial distribution of the surface charge density at the nanopore wall and the resulting ion transport phenomena, such as ion concentration polarization (ICP), ion selectivity, and conductance, are significantly affected by the background solution properties, such as the pH and salt concentration.

  14. Ultrasensitive Detection of Ebola Virus Oligonucleotide Based on Upconversion Nanoprobe/Nanoporous Membrane System.

    PubMed

    Tsang, Ming-Kiu; Ye, WeiWei; Wang, Guojing; Li, Jingming; Yang, Mo; Hao, Jianhua

    2016-01-26

    Ebola outbreaks are currently of great concern, and therefore, development of effective diagnosis methods is urgently needed. The key for lethal virus detection is high sensitivity, since early-stage detection of virus may increase the probability of survival. Here, we propose a luminescence scheme of assay consisting of BaGdF5:Yb/Er upconversion nanoparticles (UCNPs) conjugated with oligonucleotide probe and gold nanoparticles (AuNPs) linked with target Ebola virus oligonucleotide. As a proof of concept, a homogeneous assay was fabricated and tested, yielding a detection limit at picomolar level. The luminescence resonance energy transfer is ascribed to the spectral overlapping of upconversion luminescence and the absorption characteristics of AuNPs. Moreover, we anchored the UCNPs and AuNPs on a nanoporous alumina (NAAO) membrane to form a heterogeneous assay. Importantly, the detection limit was greatly improved, exhibiting a remarkable value at the femtomolar level. The enhancement is attributed to the increased light-matter interaction throughout the nanopore walls of the NAAO membrane. The specificity test suggested that the nanoprobes were specific to Ebola virus oligonucleotides. The strategy combining UCNPs, AuNPs, and NAAO membrane provides new insight into low-cost, rapid, and ultrasensitive detection of different diseases. Furthermore, we explored the feasibility of clinical application by using inactivated Ebola virus samples. The detection results showed great potential of our heterogeneous design for practical application.

  15. Pt/Au nanoalloy supported on alumina and chlorided alumina: DFT and experimental analysis

    NASA Astrophysics Data System (ADS)

    Sharifi, N.; Falamaki, C.; Ghorbanzadeh Ahangari, M.

    2018-04-01

    Density functional theory (DFT) was used to explore the adsorption of Pt/Au nanoalloy onto a pure and chlorided γ-Al2O3(110) surface, which has been applied in numerous catalytic reactions. First, we considered the adsorption properties of Pt clusters (n ≤ 5) onto the Al2O3(110) surface to determine the most stable Pt cluster on alumina surface in reforming processes. After full structural relaxations of Pt clusters at various configurations on alumina, our computed results expressed that the minimum binding energy (‑5.67 eV) is accrued for Pt4 cluster and the distance between the nearest Pt atom in the cluster to the alumina surface is equal to 1.13 Å. Then, we investigated the binding energies, geometries, and electronic properties of adsorbed Aun clusters (n ≤ 6) on the γ-Al2O3(110) surface. Our studied showed that Au5 was the most thermodynamically stable structure on γ-Al2O3. Finally, we inspected these properties for adsorbed Au clusters onto the Pt4-decorated alumina (Aun/Pt4-alumina) system. The binding energy of the Au4/Pt4-alumina system was ‑5.01 eV, and the distance between Au4 cluster and Pt4-alumina was 1.33 Å. The Au4/Pt4alumina system was found to be the most stable nanometer-sized catalyst design. At last, our first-principles calculations predicted that the best position of embedment Cl on the Au4/Pt4-alumina.

  16. Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina

    PubMed Central

    Martín, Jaime; Martín-González, Marisol; Fernández, Jose Francisco; Caballero-Calero, Olga

    2014-01-01

    Three-dimensional nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties, or make a device. However, the amount of compounds with the ability to self-organize in ordered three-dimensional nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards three-dimensional nanostructures. Here we report the simple fabrication of a template based on anodic aluminum oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100 nm range. The three-dimensional templates are then employed to achieve three-dimensional, ordered nanowire-networks in Bi2Te3 and polystyrene. Lastly, we demonstrate the photonic crystal behavior of both the template and the polystyrene three-dimensional nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals, and semiconductors. PMID:25342247

  17. Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yong-Tae; Lopes, Pietro Papa; Park, Shin-Ae

    The selection of oxide materials for catalyzing the Oxygen Evolution Reaction in acid-based electrolyzers must be guided by the proper balance between activity, stability and conductivity – a challenging mission of great importance for delivering affordable and environmentally friendly hydrogen. Here we report that the highly conductive nanoporous architecture of an iridium oxide shell on a metallic iridium core, formed through the fast dealloying of osmium from an Ir25Os75 alloy, exhibits an exceptional balance between oxygen evolution activity and stability as quantified by the Activity-Stability FactorASF. Based on this metric, the nanoporous Ir/IrO2 morphology of dealloyed Ir25Os75 shows a factormore » of ~30 improvement ASFrelative to conventional Ir-based oxide materials and a ~8 times improvement over dealloyed Ir25Os75 nanoparticles due to optimized stability and conductivity, respectively. We propose that the Activity-Stability FactorASF is the key “metric” for determining the technological relevance of oxide-based anodic water electrolyzer catalysts.« less

  18. Polymer-modified opal nanopores.

    PubMed

    Schepelina, Olga; Zharov, Ilya

    2006-12-05

    The surface of nanopores in opal films, assembled from 205 nm silica spheres, was modified with poly(acrylamide) brushes using surface-initiated atom transfer radical polymerization. The colloidal crystal lattice remained unperturbed by the polymerization. The polymer brush thickness was controlled by polymerization time and was monitored by measuring the flux of redox species across the opal film using cyclic voltammetry. The nanopore size and polymer brush thickness were calculated on the basis of the limiting current change. Polymer brush thickness increased over the course of 26 h of polymerization in a logarithmic manner from 1.3 to 8.5 nm, leading to nanopores as small as 7.5 nm.

  19. WS2 nanopores for molecule analysis

    NASA Astrophysics Data System (ADS)

    Danda, Gopinath; Masih Das, Paul; Chou, Yung-Chien; Mlack, Jerome; Naylor, Carl; Perea-Lopez, Nestor; Lin, Zhong; Fulton, Laura Beth; Terrones, Mauricio; Johnson, A. T. Charlie; Drndic, Marija

    Atomically thin 2D materials like graphene and transition metal dichalcogenides (TMDs) are interesting as membranes in solid state nanopore sensors for DNA analysis as they may facilitate single base resolution sequencing. These materials also exhibit unique optical and electronic properties which may be exploited to enhance the functionality of nanopore sensors. Here, we report WS2 nanopores, fabricated using a focused TEM beam. We also report their controlled laser-induced expansion in ionic solution. This study demonstrates the possibility of dynamic control of nanopore characteristics optically. NIH Grant R21HG007856, NSF EFRI-1542707.

  20. Understanding and Shaping the Morphology of the Barrier Layer of Supported Porous Anodized Alumina on Gold Underlayers.

    PubMed

    Berger, Nele; Es-Souni, Mohammed

    2016-07-12

    Large-area ordered nanorod (NR) arrays of various functional materials can be easily and cost-effectively processed using on-substrate anodized porous aluminum oxide (PAO) films as templates. However, reproducibility in the processing of PAO films is still an issue because they are prone to delamination, and control of fabrication parameters such as electrolyte type and concentration and anodizing time is critical for making robust templates and subsequently mechanically reliable NR arrays. In the present work, we systematically investigate the effects of the fabrication parameters on pore base morphology, devise a method to avoid delamination, and control void formation under the barrier layer of PAO films on gold underlayers. Via systematic control of the anodization parameters, particularly the anodization current density and time, we follow the different stages of void development and discuss their formation mechanisms. The practical aspect of this work demonstrates how void size can be controlled and how void formation can be utilized to control the shape of NR bases for improving the mechanical stability of the NRs.

  1. Optofluidic devices with integrated solid-state nanopores

    PubMed Central

    Hawkins, Aaron R.; Schmidt, Holger

    2016-01-01

    This review (with 90 refs.) covers the state of the art in optofluidic devices with integrated solid-state nanopores for use in detection and sensing. Following an introduction into principles of optofluidics and solid-state nanopore technology, we discuss features of solid-state nanopore based assays using optofluidics. This includes the incorporation of solid-state nanopores into optofluidic platforms based on liquid-core anti-resonant reflecting optical waveguides (ARROWs), methods for their fabrication, aspects of single particle detection and particle manipulation. We then describe the new functionalities provided by solid-state nanopores integrated into optofluidic chips, in particular acting as smart gates for correlated electro-optical detection and discrimination of nanoparticles. This enables the identification of viruses and λ-DNA, particle trajectory simulations, enhancing sensitivity by tuning the shape of nanopores. The review concludes with a summary and an outlook. PMID:27046940

  2. Controlled formation of closed-edge nanopores in graphene

    NASA Astrophysics Data System (ADS)

    He, Kuang; Robertson, Alex W.; Gong, Chuncheng; Allen, Christopher S.; Xu, Qiang; Zandbergen, Henny; Grossman, Jeffrey C.; Kirkland, Angus I.; Warner, Jamie H.

    2015-07-01

    Dangling bonds at the edge of a nanopore in monolayer graphene make it susceptible to back-filling at low temperatures from atmospheric hydrocarbons, leading to potential instability for nanopore applications, such as DNA sequencing. We show that closed edge nanopores in bilayer graphene are robust to back-filling under atmospheric conditions for days. A controlled method for closed edge nanopore formation starting from monolayer graphene is reported using an in situ heating holder and electron beam irradiation within an aberration-corrected transmission electron microscopy. Tailoring of closed-edge nanopore sizes is demonstrated from 1.4-7.4 nm. These results should provide mechanisms for improving the stability of nanopores in graphene for a wide range of applications involving mass transport.Dangling bonds at the edge of a nanopore in monolayer graphene make it susceptible to back-filling at low temperatures from atmospheric hydrocarbons, leading to potential instability for nanopore applications, such as DNA sequencing. We show that closed edge nanopores in bilayer graphene are robust to back-filling under atmospheric conditions for days. A controlled method for closed edge nanopore formation starting from monolayer graphene is reported using an in situ heating holder and electron beam irradiation within an aberration-corrected transmission electron microscopy. Tailoring of closed-edge nanopore sizes is demonstrated from 1.4-7.4 nm. These results should provide mechanisms for improving the stability of nanopores in graphene for a wide range of applications involving mass transport. Electronic supplementary information (ESI) available: Low magnification images, image processing techniques employed, modelling and simulation of closed edge nanoribbon, comprehensive AC-TEM dataset, and supporting analysis. See DOI: 10.1039/c5nr02277k

  3. Nanoporous array anodic titanium-supported co-polymeric ionic liquids as high performance solid-phase microextraction sorbents for hydrogen bonding compounds.

    PubMed

    Jia, Jing; Liang, Xiaojing; Wang, Licheng; Guo, Yong; Liu, Xia; Jiang, Shengxiang

    2013-12-13

    A nanoporous array anodic titanium-supported co-polymeric ionic liquids (NAAT/PILs) solid-phase microextraction (SPME) fiber was prepared in situ on the titanium wire. NAAT was selected as the substrate, in view of its high surface-to-volume ratio, easy preparation, mechanical stability, and rich titanol groups on its surface which can anchor silica coupling agent containing vinyl and then introduce ionic liquid copolymers as sorbents. In this work, 1-vinyl-3-nonanol imidazolium bromide ([C9OHVIm]Br) and 1,4-di(3-vinylimidazolium) butane dibromide ([(VIM)2C4]2[Br]) were synthesized and used as monomer and crosslinker, respectively. Extraction properties of the NAAT/PILs fiber for polar alcohols and volatile fatty acids (VFAs) in aqueous matrix were examined using gaseous sampling-SPME (GS-SPME) and headspace SPME (HS-SPME) mode, respectively. Combining the superior properties of NAAT substrate and the strong hydrogen bond interaction of PILs to polar compounds, the NAAT/PILs SPME fiber showed much higher adsorption affinity to aliphatic alcohols than bare NAAT and pure PILs fibers. The detection limits (LOD) of established GS-SPME-GC-FID method are in the range of 0.35-17.30ngL(-1) with a linear range from 0.01 to 500ngmL(-1). Also, it showed high extraction performance toward volatile fatty acids (VFAs) compounds from aqueous matrix. Under the optimized SPME conditions, wide linear ranges were obtained with correlation coefficients (R(2)) greater than 0.99 and limits of detection were in the range of 0.85-8.74ngL(-1). Moreover, real-world samples were analyzed and good results were obtained. Copyright © 2013. Published by Elsevier B.V.

  4. Cold Spray Aluminum–Alumina Cermet Coatings: Effect of Alumina Content

    NASA Astrophysics Data System (ADS)

    Fernandez, Ruben; Jodoin, Bertrand

    2018-04-01

    Deposition behavior and deposition efficiency were investigated for several aluminum-alumina mixture compositions sprayed by cold spray. An increase in deposition efficiency was observed. Three theories postulated in the literature, explaining this increase in deposition efficiency, were investigated and assessed. Through finite element analysis, the interaction between a ceramic particle peening an impacting aluminum particle was found to be a possible mechanism to increase the deposition efficiency of the aluminum particle, but a probability analysis demonstrated that this peening event is too unlikely to contribute to the increment in deposition efficiency observed. The presence of asperities at the substrate and deposited layers was confirmed by a single-layer deposition efficiency measurement and proved to be a major mechanism in the increment of deposition efficiency of the studied mixtures. Finally, oxide removal produced by the impact of ceramic particles on substrate and deposited layers was evaluated as the complement of the other effects and found to also play a major role in increasing the deposition efficiency. It was found that the coatings retained approximately half of the feedstock powder alumina content. Hardness tests have shown a steady increase with the coating alumina content. Dry wear tests have revealed no improvement in wear resistance in samples with an alumina content lower than 22 wt.% compared to pure aluminum coatings. Adhesion strength showed a steady improvement with increasing alumina content in the feedstock powder from 18.5 MPa for pure aluminum coatings to values above 70 MPa for the ones sprayed with the highest feedstock powder alumina content.

  5. Inward Lithium-Ion Breathing of Hierarchically Porous Silicon Anodes

    DOE PAGES

    Xiao, Qiangfeng; Gu, Meng; Yang, Hui; ...

    2015-11-05

    Silicon has been identified as one of the most promising candidates as anode for high performance lithium-ion batteries. The key challenge for Si anodes is the large volume change induced chemomechanical fracture and subsequent rapid capacity fading upon cyclic charge and discharge. Improving capacity retention thus critically relies on smart accommodation of the volume changes through nanoscale structural design. In this work, we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a porous shell and a hollow core. Upon charge/discharge cycling, the hp-SiNSs accommodate the volume change through reversible inward expansion/contraction with negligible particle-levelmore » outward expansion. Our mechanics analysis revealed that such a unique volume-change accommodation mechanism is enabled by the much stiffer modulus of the lithiated layer than the unlithiated porous layer and the low flow stress of the porous structure. Such inward expansion shields the hp-SiNSs from fracture, opposite to the outward expansion in solid Si during lithiation. Lithium ion battery assembled with this new nanoporous material exhibits high capacity, high power, long cycle life and high coulombic efficiency, which is superior to the current commercial Si-based anode materials. We find the low cost synthesis approach reported here provides a new avenue for the rational design of hierarchically porous structures with unique materials properties.« less

  6. Influence of anode thickness on the power output of solid oxide fuel cells with (La,Sr)(Co,Fe)-type cathode

    NASA Astrophysics Data System (ADS)

    Menzler, Norbert H.; Haanappel, Vincent A. C.

    The influence of the thickness of the anode (functional layer) on the power output of anode-supported solid oxide fuel cells with a lanthanum-strontium-cobalt-ferrite cathode was investigated. The anode was applied by vacuum slip casting and the thickness varied between 1 and 22 μm. All other material and microstructural parameters were kept constant. Single cells with dimensions of 50 mm × 50 mm and with an active cathode area of 40 mm × 40 mm were manufactured and tested in an alumina housing with air as oxidant and hydrogen with 3% water vapour as the fuel gas. Results have shown that SOFCs with anodes between 1 and 13 μm have slightly better performance than those with thicker anodes (∼1.7 A cm -2 versus 1.5 A cm -2 at 800 °C and 0.7 V). The current densities were discussed with respect to cell area specific resistance, helium leak rate of the half-cell, and microstructure.

  7. Ultra-Thin Solid-State Nanopores: Fabrication and Applications

    NASA Astrophysics Data System (ADS)

    Kuan, Aaron Tzeyang

    Solid-state nanopores are a nanofluidic platform with unique advantages for single-molecule analysis and filtration applications. However, significant improvements in device performance and scalable fabrication methods are needed to make nanopore devices competitive with existing technologies. This dissertation investigates the potential advantages of ultra-thin nanopores in which the thickness of the membrane is significantly smaller than the nanopore diameter. Novel, scalable fabrication methods were first developed and then utilized to examine device performance for water filtration and single molecule sensing applications. Fabrication of nanometer-thin pores in silicon nitride membranes was achieved using a feedback-controlled ion beam method in which ion sputtering is arrested upon detection of the first few ions that drill through the membrane. Performing fabrication at liquid nitrogen temperatures prevents surface atom rearrangements that have previously complicated similar processes. A novel cross-sectional imaging method was also developed to allow careful examination of the full nanopore geometry. Atomically-thin graphene nanopores were fabricated via an electrical pulse method in which sub-microsecond electrical pulses applied across a graphene membrane in electrolyte solution are used to create a defect in the membrane and controllably enlarge it into a nanopore. This method dramatically increases the accuracy and reliability of graphene nanopore production, allowing consistent production of single nanopores down to subnanometer sizes. In filtration applications in which nanopores are used to selectively restrict the passage of dissolved contaminants, ultra-thin nanopores minimize the flow resistance, increasing throughput and energy-efficiency. The ability of graphene nanopores to separate different ions was characterized via ionic conductance and reversal potential measurements. Graphene nanopores were observed to conduct cations preferentially over

  8. Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.

    PubMed

    Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong

    2014-05-01

    Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively.

  9. Dielectric Performance of a High Purity HTCC Alumina at High Temperatures - a Comparison Study with Other Polycrystalline Alumina

    NASA Technical Reports Server (NTRS)

    Chen, Liangyu

    2014-01-01

    A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  10. Hierarchical ultrathin alumina membrane for the fabrication of unique nanodot arrays

    NASA Astrophysics Data System (ADS)

    Wang, Yuyang; Wang, Yi; Wang, Hailong; Wang, Xinnan; Cong, Ming; Xu, Weiqing; Xu, Shuping

    2016-01-01

    Ultrathin alumina membranes (UTAMs) as evaporation masks have been a powerful tool for the fabrication of high-density nanodot arrays and have received much attention in magnetic memory devices, photovoltaics, and nanoplasmonics. In this paper, we report the fabrication of a hierarchical ultrathin alumina membrane (HUTAM) with highly ordered submicro/nanoscale channels and its application as an evaporation mask for the realization of unique non-hexagonal nanodot arrays dependent on the geometrical features of the HUTAM. This is the first report of a UTAM with a hierarchical geometry, breaking the stereotype that only limited sets of nanopatterns can be realized using the UTAM method (with typical inter-pore distance of 100 nm). The fabrication of a HUTAM is discussed in detail. An improved, longer wet etching time than previously reported is found to effectively remove the barrier layer and widen the pores of a HUTAM. A growth sustainability issue brought about by pre-patterning is discussed. Spectral comparison was made to distinguish the UTAM nanodots and HUTAM nanodots. Our results can be an inspiration for more sophisticated applications of pre-patterned anodized aluminum oxide in photocatalysis, photovoltaics, and nanoplasmonics.

  11. Highly Reversible Water Oxidation at Ordered Nanoporous Iridium Electrodes Based on an Original Atomic Layer Deposition.

    PubMed

    Schlicht, Stefanie; Haschke, Sandra; Mikhailovskii, Vladimir; Manshina, Alina; Bachmann, Julien

    2018-05-01

    Nanoporous iridium electrodes are prepared and electrochemically investigated towards the water oxidation (oxygen evolution) reaction. The preparation is based on 'anodic' aluminum oxide templates, which provide straight, cylindrical nanopores. Their walls are coated using atomic layer deposition (ALD) with a newly developed reaction which results in a metallic iridium layer. The ALD film growth is quantified by spectroscopic ellipsometry and X-ray reflectometry. The morphology and composition of the electrodes are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Their catalytic activity is quantified for various pore geometries by cyclic voltammetry, steady-state electrolysis, and electrochemical impedance spectroscopy. With an optimal pore length of L ≈17-20 μm, we achieve current densities of J =0.28 mA cm -2 at pH 5 and J =2.4 mA cm -2 at pH 1. This platform is particularly competitive for achieving moderate current densities at very low overpotentials, that is, for a high degree of reversibility in energy storage.

  12. Recent Advances in Nanoporous Membranes for Water Purification

    PubMed Central

    Wang, Zhuqing; Colombi Ciacchi, Lucio

    2018-01-01

    Nanoporous materials exhibit wide applications in the fields of electrocatalysis, nanodevice fabrication, energy, and environmental science, as well as analytical science. In this review, we present a summary of recent studies on nanoporous membranes for water purification application. The types and fabrication strategies of various nanoporous membranes are first introduced, and then the fabricated nanoporous membranes for removing various water pollutants, such as salt, metallic ions, anions, nanoparticles, organic chemicals, and biological substrates, are demonstrated and discussed. This work will be valuable for readers to understand the design and fabrication of various nanoporous membranes, and their potential purification mechanisms towards different water pollutants. In addition, it will be helpful for developing new nanoporous materials for quick, economic, and high-performance water purification. PMID:29370128

  13. Dewetting of polymer thin films on modified curved surfaces: preparation of polymer nanoparticles with asymmetric shapes by anodic aluminum oxide templates.

    PubMed

    Liu, Chih-Ting; Tsai, Chia-Chan; Chu, Chien-Wei; Chi, Mu-Huan; Chung, Pei-Yun; Chen, Jiun-Tai

    2018-04-18

    We study the dewetting behaviors of poly(methyl methacrylate) (PMMA) thin films coated in the cylindrical nanopores of anodic aluminum oxide (AAO) templates by thermal annealing. Self-assembled monolayers (SAMs) of n-octadecyltrichlorosilane (ODTS) are introduced to modify the pore surfaces of the AAO templates to induce the dewetting process. By using scanning electron microscopy (SEM), the dewetting-induced morphology transformation from the PMMA thin films to PMMA nanoparticles with asymmetric shapes can be observed. The sizes of the PMMA nanoparticles can be controlled by the original PMMA solution concentrations. The dewetting phenomena on the modified nanopores are explained by taking into account the excess intermolecular interaction free energy (ΔG). This work opens a new possibility for creating polymer nanoparticles with asymmetric shapes in confined geometries.

  14. Nanopores formed by DNA origami: a review.

    PubMed

    Bell, Nicholas A W; Keyser, Ulrich F

    2014-10-01

    Nanopores have emerged over the past two decades to become an important technique in single molecule experimental physics and biomolecule sensing. Recently DNA nanotechnology, in particular DNA origami, has been used for the formation of nanopores in insulating materials. DNA origami is a very attractive technique for the formation of nanopores since it enables the construction of 3D shapes with precise control over geometry and surface functionality. DNA origami has been applied to nanopore research by forming hybrid architectures with solid state nanopores and by direct insertion into lipid bilayers. This review discusses recent experimental work in this area and provides an outlook for future avenues and challenges. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Solid-State Nanopore.

    PubMed

    Yuan, Zhishan; Wang, Chengyong; Yi, Xin; Ni, Zhonghua; Chen, Yunfei; Li, Tie

    2018-02-20

    Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: "top-down" etching technology and "bottom-up" shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  16. Solid-State Nanopore

    NASA Astrophysics Data System (ADS)

    Yuan, Zhishan; Wang, Chengyong; Yi, Xin; Ni, Zhonghua; Chen, Yunfei; Li, Tie

    2018-02-01

    Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: "top-down" etching technology and "bottom-up" shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  17. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

    PubMed Central

    Liu, Yayuan; Lin, Dingchang; Liang, Zheng; Zhao, Jie; Yan, Kai; Cui, Yi

    2016-01-01

    Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizing minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm−2 in both carbonate and ether electrolyte. The advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes. PMID:26987481

  18. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

    DOE PAGES

    Liu, Yayuan; Lin, Dingchang; Liang, Zheng; ...

    2016-03-18

    Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizingmore » minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm -2 in both carbonate and ether electrolyte. Furthermore, the advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes.« less

  19. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yayuan; Lin, Dingchang; Liang, Zheng

    Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizingmore » minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm -2 in both carbonate and ether electrolyte. Furthermore, the advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes.« less

  20. Fabricatable nanopore sensors with an atomic thickness

    NASA Astrophysics Data System (ADS)

    Luan, Binquan; Bai, Jingwei; Stolovitzky, Gustavo

    2013-10-01

    When analyzing biological molecules (such as DNA and proteins) transported through a nanopore sensor, the pore length limits both the sensitivity and the spatial resolution. Atomically thin as a graphene nanopore is, it is difficult to make graphene pores and the scalable-fabrication of those pores has not yet been possible. We theoretically studied a type of atomically thin nanopores that are formed by intersection of two perpendicular nano-slits. Based on theoretical analyses, we demonstrate that slit nanopores behave similarly to graphene pores and can be manufactured at a wafer scale.

  1. Thermal conductivity model for nanoporous thin films

    NASA Astrophysics Data System (ADS)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  2. An ordered array of hierarchical spheres for surface-enhanced Raman scattering detection of traces of pesticide

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoye; Zheng, Peng; Meng, Guowen; Huang, Qing; Zhu, Chuhong; Han, Fangming; Huang, Zhulin; Li, Zhongbo; Wang, Zhaoming; Wu, Nianqiang

    2016-09-01

    An ordered array of hierarchically-structured core-nanosphere@space-layer@shell-nanoparticles has been fabricated for surface-enhanced Raman scattering (SERS) detection. To fabricate this hierarchically-structured chip, a long-range ordered array of Au/Ag-nanospheres is first patterned in the nano-bowls on the planar surface of ordered nanoporous anodic titanium oxide template. A ultra-thin alumina middle space-layer is then conformally coated on the Au/Ag-nanospheres, and Ag-nanoparticles are finally deposited on the surface of the alumina space-layer to form an ordered array of Au/Ag-nanosphere@Al2O3-layer@Ag-nanoparticles. Finite-difference time-domain simulation shows that SERS hot spots are created between the neighboring Ag-nanoparticles. The ordered array of hierarchical nanostructures is used as the SERS-substrate for a trial detection of methyl parathion (a pesticide) in water and a limit of detection of 1 nM is reached, indicating its promising potential in rapid monitoring of organic pollutants in aquatic environment.

  3. Single Nanopore Investigations with Ion Conductance Microscopy

    PubMed Central

    Chen, Chiao-Chen; Zhou, Yi; Baker, Lane A.

    2011-01-01

    A three-electrode scanning ion conductance microscope (SICM) was used to investigate the local current-voltage properties of a single nanopore. In this experimental configuration, the response measured is a function of changes in the resistances involved in the pathways of ion migration. Single nanopore membranes utilized in this study were prepared with an epoxy painting procedure to isolate a single nanopore from a track-etch multi-pore membrane. Current-voltage responses measured with the SICM probe in the vicinity of a single nanopore were investigated in detail and agreed well with equivalent circuit models proposed in this study. With this modified SICM, the current-voltage responses characterized for the case of a single cylindrical pore and a single conical pore exhibit distinct conductance properties that originate from the geometry of nanopores. PMID:21923184

  4. Nanopore sequencing in microgravity

    PubMed Central

    McIntyre, Alexa B R; Rizzardi, Lindsay; Yu, Angela M; Alexander, Noah; Rosen, Gail L; Botkin, Douglas J; Stahl, Sarah E; John, Kristen K; Castro-Wallace, Sarah L; McGrath, Ken; Burton, Aaron S; Feinberg, Andrew P; Mason, Christopher E

    2016-01-01

    Rapid DNA sequencing and analysis has been a long-sought goal in remote research and point-of-care medicine. In microgravity, DNA sequencing can facilitate novel astrobiological research and close monitoring of crew health, but spaceflight places stringent restrictions on the mass and volume of instruments, crew operation time, and instrument functionality. The recent emergence of portable, nanopore-based tools with streamlined sample preparation protocols finally enables DNA sequencing on missions in microgravity. As a first step toward sequencing in space and aboard the International Space Station (ISS), we tested the Oxford Nanopore Technologies MinION during a parabolic flight to understand the effects of variable gravity on the instrument and data. In a successful proof-of-principle experiment, we found that the instrument generated DNA reads over the course of the flight, including the first ever sequenced in microgravity, and additional reads measured after the flight concluded its parabolas. Here we detail modifications to the sample-loading procedures to facilitate nanopore sequencing aboard the ISS and in other microgravity environments. We also evaluate existing analysis methods and outline two new approaches, the first based on a wave-fingerprint method and the second on entropy signal mapping. Computationally light analysis methods offer the potential for in situ species identification, but are limited by the error profiles (stays, skips, and mismatches) of older nanopore data. Higher accuracies attainable with modified sample processing methods and the latest version of flow cells will further enable the use of nanopore sequencers for diagnostics and research in space. PMID:28725742

  5. Nanotubular surface modification of metallic implants via electrochemical anodization technique.

    PubMed

    Wang, Lu-Ning; Jin, Ming; Zheng, Yudong; Guan, Yueping; Lu, Xin; Luo, Jing-Li

    2014-01-01

    Due to increased awareness and interest in the biomedical implant field as a result of an aging population, research in the field of implantable devices has grown rapidly in the last few decades. Among the biomedical implants, metallic implant materials have been widely used to replace disordered bony tissues in orthopedic and orthodontic surgeries. The clinical success of implants is closely related to their early osseointegration (ie, the direct structural and functional connection between living bone and the surface of a load-bearing artificial implant), which relies heavily on the surface condition of the implant. Electrochemical techniques for modifying biomedical implants are relatively simple, cost-effective, and appropriate for implants with complex shapes. Recently, metal oxide nanotubular arrays via electrochemical anodization have become an attractive technique to build up on metallic implants to enhance the biocompatibility and bioactivity. This article will thoroughly review the relevance of electrochemical anodization techniques for the modification of metallic implant surfaces in nanoscale, and cover the electrochemical anodization techniques used in the development of the types of nanotubular/nanoporous modification achievable via electrochemical approaches, which hold tremendous potential for bio-implant applications. In vitro and in vivo studies using metallic oxide nanotubes are also presented, revealing the potential of nanotubes in biomedical applications. Finally, an outlook of future growth of research in metallic oxide nanotubular arrays is provided. This article will therefore provide researchers with an in-depth understanding of electrochemical anodization modification and provide guidance regarding the design and tuning of new materials to achieve a desired performance and reliable biocompatibility.

  6. Nanotubular surface modification of metallic implants via electrochemical anodization technique

    PubMed Central

    Wang, Lu-Ning; Jin, Ming; Zheng, Yudong; Guan, Yueping; Lu, Xin; Luo, Jing-Li

    2014-01-01

    Due to increased awareness and interest in the biomedical implant field as a result of an aging population, research in the field of implantable devices has grown rapidly in the last few decades. Among the biomedical implants, metallic implant materials have been widely used to replace disordered bony tissues in orthopedic and orthodontic surgeries. The clinical success of implants is closely related to their early osseointegration (ie, the direct structural and functional connection between living bone and the surface of a load-bearing artificial implant), which relies heavily on the surface condition of the implant. Electrochemical techniques for modifying biomedical implants are relatively simple, cost-effective, and appropriate for implants with complex shapes. Recently, metal oxide nanotubular arrays via electrochemical anodization have become an attractive technique to build up on metallic implants to enhance the biocompatibility and bioactivity. This article will thoroughly review the relevance of electrochemical anodization techniques for the modification of metallic implant surfaces in nanoscale, and cover the electrochemical anodization techniques used in the development of the types of nanotubular/nanoporous modification achievable via electrochemical approaches, which hold tremendous potential for bio-implant applications. In vitro and in vivo studies using metallic oxide nanotubes are also presented, revealing the potential of nanotubes in biomedical applications. Finally, an outlook of future growth of research in metallic oxide nanotubular arrays is provided. This article will therefore provide researchers with an in-depth understanding of electrochemical anodization modification and provide guidance regarding the design and tuning of new materials to achieve a desired performance and reliable biocompatibility. PMID:25258532

  7. Highly active thermally stable nanoporous gold catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  8. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    PubMed Central

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  9. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes.

    PubMed

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang

    2011-01-01

    Lithium ion battery (LIB) is potentially one of the most attractive energy storage devices. To meet the demands of future high-power and high-energy density requirements in both thin-film microbatteries and conventional batteries, it is challenging to explore novel nanostructured anode materials instead of conventional graphite. Compared to traditional electrodes based on nanostructure powder paste, directly grown ordered nanostructure array electrodes not only simplify the electrode processing, but also offer remarkable advantages such as fast electron transport/collection and ion diffusion, sufficient electrochemical reaction of individual nanostructures, enhanced material-electrolyte contact area and facile accommodation of the strains caused by lithium intercalation and de-intercalation. This article provides a brief overview of the present status in the area of LIB anodes based on one-dimensional nanostructure arrays growing directly on conductive inert metal substrates, with particular attention to metal oxides synthesized by an anodized alumina membrane (AAM)-free solution-based or hydrothermal methods. Both the scientific developments and the techniques and challenges are critically analyzed.

  10. Signal and Noise in FET-Nanopore Devices.

    PubMed

    Parkin, William M; Drndić, Marija

    2018-02-23

    The combination of a nanopore with a local field-effect transistor (FET-nanopore), like a nanoribbon, nanotube, or nanowire, in order to sense single molecules translocating through the pore is promising for DNA sequencing at megahertz bandwidths. Previously, it was experimentally determined that the detection mechanism was due to local potential fluctuations that arise when an analyte enters a nanopore and constricts ion flow through it, rather than the theoretically proposed mechanism of direct charge coupling between the DNA and nanowire. However, there has been little discussion on the experimentally observed detection mechanism and its relation to the operation of real devices. We model the intrinsic signal and noise in such an FET-nanopore device and compare the results to the ionic current signal. The physical dimensions of DNA molecules limit the change in gate voltage on the FET to below 40 mV. We discuss the low-frequency flicker noise (<10 kHz), medium-frequency thermal noise (<100 kHz), and high-frequency capacitive noise (>100 kHz) in FET-nanopore devices. At bandwidths dominated by thermal noise, the signal-to-noise ratio in FET-nanopore devices is lower than in the ionic current signal. At high frequencies, where noise due to parasitic capacitances in the amplifier and chip is the dominant source of noise in ionic current measurements, high-transconductance FET-nanopore devices can outperform ionic current measurements.

  11. In situ monitoring of PTHLH secretion in neuroblastoma cells cultured onto nanoporous membranes.

    PubMed

    de la Escosura-Muñiz, Alfredo; Espinoza-Castañeda, Marisol; Chamorro-García, Alejandro; Rodríguez-Hernández, Carlos J; de Torres, Carmen; Merkoçi, Arben

    2018-06-01

    In this work, we propose for the first time the use of anodic aluminum oxide (AAO) nanoporous membranes for in situ monitoring of parathyroid hormone-like hormone (PTHLH) secretion in cultured human cells. The biosensing system is based on the nanochannels blockage upon immunocomplex formation, which is electrically monitored through the voltammetric oxidation of Prussian blue nanoparticles (PBNPs). Models evaluated include a neuroblastoma cell line (SK-N-AS) and immortalized keratinocytes (HaCaT) as a control of high PTHLH production. The effect of total number of seeded cells and incubation time on the secreted PTHLH levels is assessed, finding that secreted PTHLH levels range from approximately 60 to 400 ng/mL. Moreover, our methodology is also applied to analyse PTHLH production following PTHLH gene knockdown upon transient cell transfection with a specific silencing RNA (siRNA). Given that inhibition of PTHLH secretion reduces cell proliferation, survival and invasiveness in a number of tumors, our system provides a powerful tool for the preclinical evaluation of therapies that regulate PTHLH production. This nanoporous membrane - based sensing technology might be useful to monitor the active secretion of other proteins as well, thus contributing to characterize their regulation and function. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Alumina Handling Dustiness

    NASA Astrophysics Data System (ADS)

    Authier-Martin, Monique

    Dustiness of calcined alumina is a major concern, causing undesirable working conditions and serious alumina losses. These losses occur primarily during unloading and handling or pot loading and crust breaking. The handling side of the problem is first addressed. The Perra pulvimeter constitutes a simple and reproducible tool to quantify handling dustiness and yields results in agreement with plant experience. Attempts are made to correlate dustiness with bulk properties (particle size, attrition index, …) for a large number of diverse aluminas. The characterization of the dust generated with the Perra pulvimeter is most revealing. The effect of the addition of E.S.P. dust is also reported.

  13. One-step fabrication of nanostructure-covered microstructures using selective aluminum anodization based on non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Park, Yong Min; Kim, Byeong Hee; Seo, Young Ho

    2016-06-01

    This paper presents a selective aluminum anodization technique for the fabrication of microstructures covered by nanoscale dome structures. It is possible to fabricate bulging microstructures, utilizing the different growth rates of anodic aluminum oxide in non-uniform electric fields, because the growth rate of anodic aluminum oxide depends on the intensity of electric field, or current density. After anodizing under a non-uniform electric field, bulging microstructures covered by nanostructures were fabricated by removing the residual aluminum layer. The non-uniform electric field induced by insulative micropatterns was estimated by computational simulations and verified experimentally. Utilizing computational simulations, the intensity profile of the electric field was calculated according to the ratio of height and width of the insulative micropatterns. To compare computational simulation results and experimental results, insulative micropatterns were fabricated using SU-8 photoresist. The results verified that the shape of the bottom topology of anodic alumina was strongly dependent on the intensity profile of the applied electric field, or current density. The one-step fabrication of nanostructure-covered microstructures can be applied to various fields, such as nano-biochip and nano-optics, owing to its simplicity and cost effectiveness.

  14. The Integration of Nanoscale Techniques for an Improved Battery Technology

    DTIC Science & Technology

    2012-06-08

    anodized aluminum oxide ( AAO ) membranes that were 13...nanoporous anodized aluminum oxide ( AAO ) substrate [13]. During sputtering, thickened columnar growths form around the pores of the substrate...investigates an interpenetrating network structure where ―tubes‖ of polymer electrolyte are placed in the nanopores of anodic aluminum oxide ( AAO

  15. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.

    PubMed

    Barati Farimani, Amir; Dibaeinia, Payam; Aluru, Narayana R

    2017-01-11

    DNA origami nanostructures can be used to functionalize solid-state nanopores for single molecule studies. In this study, we characterized a nanopore in a DNA origami-graphene heterostructure for DNA detection. The DNA origami nanopore is functionalized with a specific nucleotide type at the edge of the pore. Using extensive molecular dynamics (MD) simulations, we computed and analyzed the ionic conductivity of nanopores in heterostructures carpeted with one or two layers of DNA origami on graphene. We demonstrate that a nanopore in DNA origami-graphene gives rise to distinguishable dwell times for the four DNA base types, whereas for a nanopore in bare graphene, the dwell time is almost the same for all types of bases. The specific interactions (hydrogen bonds) between DNA origami and the translocating DNA strand yield different residence times and ionic currents. We also conclude that the speed of DNA translocation decreases due to the friction between the dangling bases at the pore mouth and the sequencing DNA strands.

  16. Applications of Nanoporous Materials in Agriculture

    USDA-ARS?s Scientific Manuscript database

    Nanoporous materials possess organized pore distributions and increased surface areas. Advances in the systematic design of nanoporous materials enable incorporation of functionality for better sensitivity in detection methods, increased capacity of sorbents, and improved selectivity and yield in ca...

  17. Fabrication of Ordered Blue Nanostructure by Anodization of an Aluminum Plate

    NASA Astrophysics Data System (ADS)

    Kurashima, Yuichi; Yokota, Yoshihiko; Miyamoto, Iwao; Itatani, Taro

    2007-03-01

    Colors in organisms are created by chemical interactions of molecular pigments and by optical interactions of incident light with biological nanostructures. The latter classes are called structural colors and form an important component of the phenotypes of many animals and even some plants. In this paper, we report on the fabrication of an ordered blue nanostructure by the anodization of an Al plate. In the fabrication of such an ordered nanostructure by the anodization of an Al plate, ordered nanostructures with a pitch and an alumina thickness of approximately 100 nm were produced on the Al plate. The ordered nanostructures on the Al plate showed no colors. However, an ordered nanostructure deposited with a Pt thin film with a thickness of approximately 10 nm showed a blue reflection with a peak reflectivity of approximately 370 nm. We conclude that this blue nanostructure on the Al plate is caused by an interference between the Al surface and the Pt surface.

  18. Bauxite Mining and Alumina Refining

    PubMed Central

    Frisch, Neale; Olney, David

    2014-01-01

    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust, alumina dust, and caustic mist in contemporary best-practice bauxite mining and alumina refining operations have not been demonstrated to be associated with clinically significant decrements in lung function. Exposures to bauxite dust and alumina dust at such operations are also not associated with the incidence of cancer. Conclusions: A range of occupational health risks in bauxite mining and alumina refining require the maintenance of effective control measures. PMID:24806720

  19. Integrating Sub-3 nm Plasmonic Gaps into Solid-State Nanopores.

    PubMed

    Shi, Xin; Verschueren, Daniel; Pud, Sergii; Dekker, Cees

    2018-05-01

    Plasmonic nanopores combine the advantages of nanopore sensing and surface plasmon resonances by introducing confined electromagnetic fields to a solid-state nanopore. Ultrasmall nanogaps between metallic nanoantennas can generate the extremely enhanced localized electromagnetic fields necessary for single-molecule optical sensing and manipulation. Challenges in fabrication, however, hamper the integration of such nanogaps into nanopores. Here, a top-down approach for integrating a plasmonic antenna with an ultrasmall nanogap into a solid-state nanopore is reported. Employing a two-step e-beam lithography process, the reproducible fabrication of nanogaps down to a sub-1 nm scale is demonstrated. Subsequently, nanopores are drilled through the 20 nm SiN membrane at the center of the nanogap using focused-electron-beam sculpting with a transmission electron microscope, at the expense of a slight gap expansion for the smallest gaps. Using this approach, sub-3 nm nanogaps can be readily fabricated on solid-state nanopores. The functionality of these plasmonic nanopores for single-molecule detection is shown by performing DNA translocations. These integrated devices can generate intense electromagnetic fields at the entrance of the nanopore and can be expected to find applications in nanopore-based single-molecule trapping and optical sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Single Nanoparticle Translocation Through Chemically Modified Solid Nanopore

    NASA Astrophysics Data System (ADS)

    Tan, Shengwei; Wang, Lei; Liu, Hang; Wu, Hongwen; Liu, Quanjun

    2016-02-01

    The nanopore sensor as a high-throughput and low-cost technology can detect single nanoparticle in solution. In the present study, the silicon nitride nanopores were fabricated by focused Ga ion beam (FIB), and the surface was functionalized with 3-aminopropyltriethoxysilane to change its surface charge density. The positively charged nanopore surface attracted negatively charged nanoparticles when they were in the vicinity of the nanopore. And, nanoparticle translocation speed was slowed down to obtain a clear and deterministic signal. Compared with previous studied small nanoparticles, the electrophoretic translocation of negatively charged polystyrene (PS) nanoparticles (diameter ~100 nm) was investigated in solution using the Coulter counter principle in which the time-dependent nanopore current was recorded as the nanoparticles were driven across the nanopore. A linear dependence was found between current drop and biased voltage. An exponentially decaying function ( t d ~ e -v/v0 ) was found between the duration time and biased voltage. The interaction between the amine-functionalized nanopore wall and PS microspheres was discussed while translating PS microspheres. We explored also translocations of PS microspheres through amine-functionalized solid-state nanopores by varying the solution pH (5.4, 7.0, and 10.0) with 0.02 M potassium chloride (KCl). Surface functionalization showed to provide a useful step to fine-tune the surface property, which can selectively transport molecules or particles. This approach is likely to be applied to gene sequencing.

  1. Steady-state generation of hydrogen peroxide: kinetics and stability of alcohol oxidase immobilized on nanoporous alumina.

    PubMed

    Kjellander, Marcus; Götz, Kathrin; Liljeruhm, Josefine; Boman, Mats; Johansson, Gunnar

    2013-04-01

    Alcohol oxidase from Pichia pastoris was immobilized on nanoporous aluminium oxide membranes by silanization and activation by carbonyldiimidazole to create a flow-through enzyme reactor. Kinetic analysis of the hydrogen peroxide generation was carried out for a number of alcohols using a subsequent reaction with horseradish peroxidase and ABTS. The activity data for the immobilized enzyme showed a general similarity with literature data in solution, and the reactor could generate 80 mmol H2O2/h per litre reactor volume. Horseradish peroxidase was immobilized by the same technique to construct bienzymatic modular reactors. These were used in both single pass mode and circulating mode. Pulsed injections of methanol resulted in a linear relation between response and concentration, allowing quantitative concentration measurement. The immobilized alcohol oxidase retained 58 % of initial activity after 3 weeks of storage and repeated use.

  2. Boehmite nanostructures preparation by hydrothermal method from anodic aluminium oxide membrane.

    PubMed

    Yang, X; Wang, J Y; Pan, H Y

    2009-02-01

    Boehmite nanostructures were successfully synthesized from porous anodic aluminium oxide (AAO) membrane by a simple and efficient hydro-thermal method. The experiment used high purity alumina as raw material, and the whole reaction process avoided superfluous impurities to be introduced. Thus, the purity of Boehmite products was ensured. The examinations of the morphology and structure were carried out by atomic force microscope (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Composition of the specimens was analyzed using energy dispersive X-ray spectroscope (EDX) and X-ray diffraction (XRD). Based on these observations the growth process was analyzed.

  3. Studies of Plasma-Sprayed Alumina

    NASA Astrophysics Data System (ADS)

    Ilavsky, Jan

    1994-05-01

    Phase transformations and porosity of the plasma sprayed alumina deposits were examined. The dependence of the phase transformations on deposit chemistry was established. Porosity changes during heat treatment were studied and a model for the porosity is proposed. A novel technique in the field of plasma sprayed deposits--small-angle neutron scattering (SANS)--was successfully applied. Deposits were manufactured using the water-stabilized plasma spray system, PAL160, with an input of 160 kW. Phase transformations of the plasma sprayed alumina deposits were studied using XRD and DTA. The deposits were manufactured from 99.9% alumina, alumina-chromia (1.5% Cr_2O_3), gray alumina (3.7% TiO_2) and alumina -titania (17% TiO_2). The addition of chromia increases the temperature of the alpha phase formation by about 40^circ C and the addition of TiO_2 reduces this temperature by about 150^circ C for gray alumina and by about 175^ circC for alumina-titania. The amount of metastable theta phase was found to depend on the chemistry of the feedstock. Porosities of the deposits, made from alumina and gray alumina, were studied using mercury intrusion porosimetry, weighing method (Archimedean porosimetry), image analysis and SANS. Samples were studied in the as -sprayed condition and after heat treatment for 2 hours at 1300^circC and 1500 ^circC. Porosity depends on the deposit chemistry and on the heat treatment and varies from 5% to about 11%. Different porosity measurement techniques yield different results. Surface areas of 1.5 to 7.5 times 10^4 cm^2 /cm^3 (times 10^6 m^{ -1}) were measured using SANS and depend on heat treatment and on the deposit chemistry. The phase transformations can be associated with an increase in pore surface area and decrease in surface area at 1500 ^circC can be associated with sintering. The effective pore radius, R_{ rm eff}, as measured by SANS is a measure of the pore sizes in the 0.08 to 10 μm size range. The R_{rm eff} depends on deposit

  4. Reaching the Ionic Current Detection Limit in Silicon-Based Nanopores

    NASA Astrophysics Data System (ADS)

    Puster, Matthew; Rodriguez-Manzo, Julio Alejandro; Nicolai, Adrien; Meunier, Vincent; Drndic, Marija

    2015-03-01

    Solid-state nanopores act as single-molecule sensors whereby passage of an individual molecule in aqueous electrolyte through a nanopore is registered as a change in ionic conductance (ΔG). Future nanopore applications such as DNA sequencing at high bandwidth require high ΔG for optimal signal-to-noise ratio. Reducing the nanopore diameter and thickness increase ΔG. Molecule size limits the diameter, thus efforts concentrate on minimizing the thickness by thinning oxide/nitride films or using 2D materials. Weighted by electrolyte conductivity the highest ΔG reported to date for DNA translocations were obtained with nanopores made in oxide/nitride films. We present a controlled electron irradiation technique to thin such films to the limit of their stability, producing nanopores tailored to molecule size in amorphous Si with thicknesses less than 2 nm. We compare ΔG values with results found in the literature for DNA translocation through these nanopores, where access resistance becomes comparable to the resistance through the nanopore itself.

  5. Penetrating the oxide barrier in situ and separating freestanding porous anodic alumina films in one step.

    PubMed

    Tian, Mingliang; Xu, Shengyong; Wang, Jinguo; Kumar, Nitesh; Wertz, Eric; Li, Qi; Campbell, Paul M; Chan, Moses H W; Mallouk, Thomas E

    2005-04-01

    A simple method for penetrating the barrier layer of an anodic aluminum oxide (AAO) film and for detaching the AAO film from residual Al foil was developed by reversing the bias voltage in situ after the anodization process is completed. With this technique, we have been able to obtain large pieces of free-standing AAO membranes with regular pore sizes of sub-10 nm. By combining Ar ion milling and wetting enhancement processes, Au nanowires were grown in the sub-10 nm pores of the AAO films. Further scaling down of the pore size and extension to the deposition of nanowires and nanotubes of materials other than Au should be possible by further optimizing this procedure.

  6. Alumina-Reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.

    2003-01-01

    Alumina-reinforced zirconia composites, used as electrolyte materials for solid oxide fuel cells, were fabricated by hot pressing 10 mol percent yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina particulates and platelets each containing 0 to 30 mol percent alumina. Major mechanical and physical properties of both particulate and platelet composites including flexure strength, fracture toughness, slow crack growth, elastic modulus, density, Vickers microhardness, thermal conductivity, and microstructures were determined as a function of alumina content either at 25 C or at both 25 and 1000 C. Flexure strength and fracture toughness at 1000 C were maximized with 30 particulate and 30 mol percent platelet composites, respectively, while resistance to slow crack growth at 1000 C in air was greater for 30 mol percent platelet composite than for 30 mol percent particulate composites.

  7. Third-generation pure alumina and alumina matrix composites in total hip arthroplasty: What is the evidence?

    PubMed

    Hannouche, Didier; Zingg, Matthieu; Miozzari, Hermes; Nizard, Remy; Lübbeke, Anne

    2018-01-01

    Wear, corrosion and periprosthetic osteolysis are important causes of failure in joint arthroplasty, especially in young patients.Ceramic bearings, developed 40 years ago, are an increasingly popular choice in hip arthroplasty. New manufacturing procedures have increased the strength and reliability of ceramic materials and reduced the risk of complications.In recent decades, ceramics made of pure alumina have continuously improved, resulting in a surgical-grade material that fulfills clinical requirements.Despite the track record of safety and long-term results, third-generation pure alumina ceramics are being replaced in clinical practice by alumina matrix composites, which are composed of alumina and zirconium.In this review, the characteristics of both materials are discussed, and the long-term results with third-generation alumina-on-alumina bearings and the associated complications are compared with those of other available ceramics. Cite this article: EFORT Open Rev 2018;3:7-14. DOI: 10.1302/2058-5241.3.170034.

  8. DC electrodeposition of NiGa alloy nanowires in AAO template

    NASA Astrophysics Data System (ADS)

    Maleki, K.; Sanjabi, S.; Alemipour, Z.

    2015-12-01

    NiGa alloy nanowires were electrodeposited from an acidic sulfate bath into nanoporous anodized alumina oxide (AAO). This template was fabricated by two-step anodizing. The effects of bath composition and current density were explored on the Ga content of electrodeposited nanowires. The Ga content in the deposits was increased by increasing both Ga in the bath composition and electrodepositing current density. The NiGa alloy nanowires were synthesized for Ga content up to 2-4% without significant improving the magnetic properties. Above this threshold Ga clusters were formed and decreased the magnetic properties of the nanowires. For Ga content of the alloy above 30%, the wires were too short and incomplete. X-ray diffraction patterns reveal that the significant increase of Ga content in the nanowires, changes the FCC crystal structure of Ni to an amorphous phase. It also causes a sizeable increase in the Ga cluster size; these both lead to a significant reduction in the coercivity and the magnetization respectively.

  9. Tailored nanoporous coatings fabricated on conformable polymer substrates.

    PubMed

    Poxson, David J; Mont, Frank W; Cho, Jaehee; Schubert, E Fred; Siegel, Richard W

    2012-11-01

    Nanoporous coatings have become the subject of intense investigation, in part because they have been shown to have unique and tailorable physical properties that can depart greatly from their dense or macroscopic counterparts. Nanoporous coatings are frequently fabricated utilizing oblique-angle or glancing-angle physical vapor-phase deposition techniques. However, a significant limitation for such coatings exists; they are almost always deposited on smooth and rigid planar substrates, such as silicon and glass. This limitation greatly constrains the applicability, tailorability, functionality and even the economic viability, of such nanoporous coatings. Here, we report our findings on nanoporous/polymer composite systems (NPCS) fabricated by utilizing oblique-angle electron-beam methodology. These unique composite systems exhibit several favorable characteristics, namely, (i) fine-tuned control over coating nanoporosity and thickness, (ii) excellent adhesion between the nanoporous coating and polymer substrate, (iii) the ability to withstand significant and repeated bending, and (iv) the ability to be molded conformably on two and three-dimensional surfaces while closely retaining the composite system's designed nanoporous film structure and, hence, properties.

  10. Moisture-Induced Spallation and Interfacial Hydrogen Embrittlement of Alumina Scales

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2005-01-01

    Thermal expansion mismatch stresses and interfacial sulfur activity are the major factors producing primary Al2O3 scale spallation on high temperature alloys. However, moisture-induced delayed spallation appears as a secondary, but often dramatic, illustration of an additional mechanistic detail. A historical review of delayed failure of alumina scales and TBC s on superalloys is presented herein. Similarities with metallic phenomena suggest that hydrogen embrittlement from ambient humidity, resulting from the reaction Al+3H2O=Al(OH)3+3H(+)+3e(-), is the operative mechanism. This proposal was tested by standard cathodic hydrogen charging in 1N H2SO4, applied to Rene N5 pre-oxidized at 1150 C for 1000 1-hr cycles, and monitored by weight change, induced current, and microstructure. Here cathodic polarization at -2.0 V abruptly stripped mature Al2O3 scales at the oxide-metal interface. Anodic polarization at +2.0 V, however, produced alloy dissolution. Finally, with no applied voltage, the electrolyte alone produced neither scale spallation nor alloy dissolution. These experiments thus highlight the detrimental effects of hydrogen charging on alumina scale adhesion. It is proposed that interfacial hydrogen embrittlement is produced by moist air and is the root cause of both moisture-induced, delayed scale spallation and desktop TBC failures.

  11. Nanopore-based fourth-generation DNA sequencing technology.

    PubMed

    Feng, Yanxiao; Zhang, Yuechuan; Ying, Cuifeng; Wang, Deqiang; Du, Chunlei

    2015-02-01

    Nanopore-based sequencers, as the fourth-generation DNA sequencing technology, have the potential to quickly and reliably sequence the entire human genome for less than $1000, and possibly for even less than $100. The single-molecule techniques used by this technology allow us to further study the interaction between DNA and protein, as well as between protein and protein. Nanopore analysis opens a new door to molecular biology investigation at the single-molecule scale. In this article, we have reviewed academic achievements in nanopore technology from the past as well as the latest advances, including both biological and solid-state nanopores, and discussed their recent and potential applications. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  12. Method to fabricate functionalized conical nanopores

    DOEpatents

    Small, Leo J.; Spoerke, Erik David; Wheeler, David R.

    2016-07-12

    A pressure-based chemical etch method is used to shape polymer nanopores into cones. By varying the pressure, the pore tip diameter can be controlled, while the pore base diameter is largely unaffected. The method provides an easy, low-cost approach for conically etching high density nanopores.

  13. Controlling Ionic Transport for Device Design in Synthetic Nanopores

    NASA Astrophysics Data System (ADS)

    Kalman, Eric Boyd

    Polymer nanopores present a number of behaviors not seen in microscale systems, such as ion current rectification, ionic selectivity, size exclusion and potential dependent ion concentrations in and near the pore. The existence of these effects stems from the small size of nanopores with respect to the characteristic length scales of surface interactions at the interface between the nanopore surface and the solution within it. The large surface-to-volume ratio due to the nanoscale geometry of a nanopore, as well as similarity in scale between geometry and interaction demands the solution interact with the nanopore walls. As surfaces in solution almost always carry residual charge, these surface forces are primarily the electrostatic interactions between the charge groups on the pore surface and the ions in solution. These interactions may be used by the experimentalist to control ionic transport through synthetic nanopores, and use them as a template for the construction of devices. In this research, we present our work on creating a number of ionic analogs to seminal electronic devices, specifically diodes, and transistors, by controlling ionic transport through the electrostatic interactions between a single synthetic nanopore and ions. Control is achieved by "doping" the effective charge carrier concentration in specific regions of the nanopore through manipulation of the pore's surface charge. This manipulation occurs through two mechanisms: chemical modification of the surface charge and electrostatic manipulation of the local internal nanopore potential using a gate electrode. Additionally, the innate selectivity of the charged nanopores walls allows for the separation of charges in solution. This well-known effect, which spawns measureable quantities, the streaming potential and current, has been used to create nanoscale water desalination membranes. We attempt to create a device using membranes with large nanopore densities for the desalination of water

  14. Design and fabrication of asymmetric nanopores using pulsed PECVD

    NASA Astrophysics Data System (ADS)

    Kelkar, Sanket S.

    demonstrate the capability of pulsed PECVD for precise pore size reduction of model supports. The efficacy of pulsed PECVD for nanopore fabrication was compared to both ALD and PVD. Flux and solute rejection measurements demonstrate that the pulsed PECVD-modified TE membranes exhibit higher selectivity without compromising on the flux due to their asymmetric structure. For example, the TiO2 modified supports were demonstrated to deliver high retention (˜ 75%) of bovine serum albumin (BSA) protein while maintaining 70% of their initial pure water flux. PVD also forms asymmetric membranes that enable high flux. But due to morphological instabilities, reproducibility and control were poor in the PVD-modified membranes, and it was not possible to optimize the flux and the selectivity of the membranes simultaneously. Excellent agreement between measured flux and model predictions based on feature scale simulations provided further validation of the tool's fidelity. Since surface energetics can often dominate hindered transport, the kinetics and thermodynamics of the octadecyltrichlorosilane (OTS) attachment was investigated in-depth as an approach to convert hydrophilic metal oxides into hydrophobic surfaces. It was shown that a simple ozone treatment was a satisfactory alternative to hazardous acids to create the highly hydroxylated surface required for OTS attachment, and that using heptane as the solvent enabled the process to be conducted under ambient conditions without the need of a glovebox. The kinetics of OTS self-assembled monolayer (SAM) formation and the saturation contact angle (˜100°) on alumina are comparable to what has been observed for OTS attachment on silicon. The OTS SAMs also demonstrated excellent thermal stability, and the modified surface showed a critical surface tension of 21.4 dyne/cm.

  15. Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference.

    PubMed

    Yeom, Se-Hyuk; Kim, Ok-Geun; Kang, Byoung-Ho; Kim, Kyu-Jin; Yuan, Heng; Kwon, Dae-Hyuk; Kim, Hak-Rin; Kang, Shin-Won

    2011-11-07

    We propose a design for a highly sensitive biosensor based on nanostructured anodized aluminum oxide (AAO) substrates. A gold-deposited AAO substrate exhibits both optical interference and localized surface plasmon resonance (LSPR). In our sensor, application of these disparate optical properties overcomes problems of limited sensitivity, selectivity, and dynamic range seen in similar biosensors. We fabricated uniform periodic nanopore lattice AAO templates by two-step anodizing and assessed their suitability for application in biosensors by characterizing the change in optical response on addition of biomolecules to the AAO template. To determine the suitability of such structures for biosensing applications, we immobilized a layer of C-reactive protein (CRP) antibody on a gold coating atop an AAO template. We then applied a CRP antigen (Ag) atop the immobilized antibody (Ab) layer. The shift in reflectance is interpreted as being caused by the change in refractive index with membrane thickness. Our results confirm that our proposed AAO-based biosensor is highly selective toward detection of CRP antigen, and can measure a change in CRP antigen concentration of 1 fg/ml. This method can provide a simple, fast, and sensitive analysis for protein detection in real-time.

  16. Attrition resistant gamma-alumina catalyst support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  17. Structural Effects of Lanthanide Dopants on Alumina

    PubMed Central

    Patel, Ketan; Blair, Victoria; Douglas, Justin; Dai, Qilin; Liu, Yaohua; Ren, Shenqiang; Brennan, Raymond

    2017-01-01

    Lanthanide (Ln3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (θ → α), and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications. PMID:28059121

  18. Structural Effects of Lanthanide Dopants on Alumina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Ketan; Blair, Victoria; Douglas, Justin

    Lanthanide (Ln 3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (θ → α), and alteration of powder morphology,more » particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.« less

  19. Microporous alumina ceramic membranes

    DOEpatents

    Anderson, M.A.; Guangyao Sheng.

    1993-05-04

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  20. Microporous alumina ceramic membranes

    DOEpatents

    Anderson, Marc A.; Sheng, Guangyao

    1993-01-01

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  1. 3-D simulation of nanopore structure for DNA sequencing.

    PubMed

    Park, Jun-Mo; Pak, Y Eugene; Chun, Honggu; Lee, Jong-Ho

    2012-07-01

    In this paper, we propose a method for simulating nanopore structure by using conventional 3-D simulation tool to mimic the I-V behavior of the nanopore structure. In the simulation, we use lightly doped silicon for ionic solution where some parameters like electron affinity and dielectric constant are fitted to consider the ionic solution. By using this method, we can simulate the I-V behavior of nanopore structure depending on the location and the size of the sphere shaped silicon oxide which is considered to be an indicator of a DNA base. In addition, we simulate an Ionic Field Effect Transistor (IFET) which has basically the nanopore structure, and show that the simulated curves follow sufficiently the I-V behavior of the measurement data. Therefore, we think it is reasonable to apply parameter modeling mentioned above to simulate nanopore structure. The key idea is to modify electron affinity of silicon which is used to mimic the KCl solution to avoid band bending and depletion inside the nanopore. We could efficiently utilize conventional 3-D simulation tool to simulate the I-V behavior of nanopore structures.

  2. Bauxite and alumina

    USGS Publications Warehouse

    Bray, E.L.

    2011-01-01

    The article discusses the latest developments in the bauxite and alumina industry, particularly in the U.S., as of June 2011. It claims that the U.S. mainly relies on imports for its bauxite consumption. Several states, including Alabama, Arkansas and Georgia, however, produce small amounts of bauxite and bauxitic clays for nonmetallurgical purposes. The major exporters of alumina to the U.S. include Australia, Brazil and Jamaica.

  3. Characterization of Nanoporous Materials with Atom Probe Tomography.

    PubMed

    Pfeiffer, Björn; Erichsen, Torben; Epler, Eike; Volkert, Cynthia A; Trompenaars, Piet; Nowak, Carsten

    2015-06-01

    A method to characterize open-cell nanoporous materials with atom probe tomography (APT) has been developed. For this, open-cell nanoporous gold with pore diameters of around 50 nm was used as a model system, and filled by electron beam-induced deposition (EBID) to obtain a compact material. Two different EBID precursors were successfully tested-dicobalt octacarbonyl [Co2(CO)8] and diiron nonacarbonyl [Fe2(CO)9]. Penetration and filling depth are sufficient for focused ion beam-based APT sample preparation. With this approach, stable APT analysis of the nanoporous material can be performed. Reconstruction reveals the composition of the deposited precursor and the nanoporous material, as well as chemical information of the interfaces between them. Thus, it is shown that, using an appropriate EBID process, local chemical information in three dimensions with sub-nanometer resolution can be obtained from nanoporous materials using APT.

  4. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

    PubMed

    Cao, Chan; Long, Yi-Tao

    2018-02-20

    Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis

  5. Structural Effects of Lanthanide Dopants on Alumina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Ketan; Blair, Victoria; Douglas, Justin

    Lanthanide (Ln 3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO 3, Ln 2O 3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. In addition, the delay in phase transition (θ → α),more » and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. Lastly, this study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.« less

  6. Structural Effects of Lanthanide Dopants on Alumina

    DOE PAGES

    Patel, Ketan; Blair, Victoria; Douglas, Justin; ...

    2017-01-06

    Lanthanide (Ln 3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO 3, Ln 2O 3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. In addition, the delay in phase transition (θ → α),more » and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. Lastly, this study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.« less

  7. Graphene Nanopores for Protein Sequencing.

    PubMed

    Wilson, James; Sloman, Leila; He, Zhiren; Aksimentiev, Aleksei

    2016-07-19

    An inexpensive, reliable method for protein sequencing is essential to unraveling the biological mechanisms governing cellular behavior and disease. Current protein sequencing methods suffer from limitations associated with the size of proteins that can be sequenced, the time, and the cost of the sequencing procedures. Here, we report the results of all-atom molecular dynamics simulations that investigated the feasibility of using graphene nanopores for protein sequencing. We focus our study on the biologically significant phenylalanine-glycine repeat peptides (FG-nups)-parts of the nuclear pore transport machinery. Surprisingly, we found FG-nups to behave similarly to single stranded DNA: the peptides adhere to graphene and exhibit step-wise translocation when subject to a transmembrane bias or a hydrostatic pressure gradient. Reducing the peptide's charge density or increasing the peptide's hydrophobicity was found to decrease the translocation speed. Yet, unidirectional and stepwise translocation driven by a transmembrane bias was observed even when the ratio of charged to hydrophobic amino acids was as low as 1:8. The nanopore transport of the peptides was found to produce stepwise modulations of the nanopore ionic current correlated with the type of amino acids present in the nanopore, suggesting that protein sequencing by measuring ionic current blockades may be possible.

  8. A Protein Nanopore-Based Approach for Bacteria Sensing

    NASA Astrophysics Data System (ADS)

    Apetrei, Aurelia; Ciuca, Andrei; Lee, Jong-kook; Seo, Chang Ho; Park, Yoonkyung; Luchian, Tudor

    2016-11-01

    We present herein a first proof of concept demonstrating the potential of a protein nanopore-based technique for real-time detection of selected Gram-negative bacteria ( Pseudomonas aeruginosa or Escherichia coli) at a concentration of 1.2 × 108 cfu/mL. The anionic charge on the bacterial outer membrane promotes the electrophoretically driven migration of bacteria towards a single α-hemolysin nanopore isolated in a lipid bilayer, clamped at a negative electric potential, and followed by capture at the nanopore's mouth, which we found to be described according to the classical Kramers' theory. By using a specific antimicrobial peptide as a putative molecular biorecognition element for the bacteria used herein, we suggest that the detection system can combine the natural sensitivity of the nanopore-based sensing techniques with selective biological recognition, in aqueous samples, and highlight the feasibility of the nanopore-based platform to provide portable, sensitive analysis and monitoring of bacterial pathogens.

  9. Nanopore Electrochemistry: A Nexus for Molecular Control of Electron Transfer Reactions

    PubMed Central

    2018-01-01

    Pore-based structures occur widely in living organisms. Ion channels embedded in cell membranes, for example, provide pathways, where electron and proton transfer are coupled to the exchange of vital molecules. Learning from mother nature, a recent surge in activity has focused on artificial nanopore architectures to effect electrochemical transformations not accessible in larger structures. Here, we highlight these exciting advances. Starting with a brief overview of nanopore electrodes, including the early history and development of nanopore sensing based on nanopore-confined electrochemistry, we address the core concepts and special characteristics of nanopores in electron transfer. We describe nanopore-based electrochemical sensing and processing, discuss performance limits and challenges, and conclude with an outlook for next-generation nanopore electrode sensing platforms and the opportunities they present. PMID:29392173

  10. Thermal Conductivity of Alumina-Toughened Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dong-Ming

    2003-01-01

    10-mol% yttria-stabilized zirconia (10YSZ)-alumina composites containing 0 to 30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity of the composites, determined at various temperatures using a steady-state laser heat flux technique, increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from simple rule of mixtures.

  11. Nanopore Kinetic Proofreading of DNA Sequences

    NASA Astrophysics Data System (ADS)

    Ling, Xinsheng Sean

    The concept of DNA sequencing using the time dependence of the nanopore ionic current was proposed in 1996 by Kasianowicz, Brandin, Branton, and Deamer (KBBD). The KBBD concept has generated tremendous amount interests in recent decade. In this talk, I will review the current understanding of the DNA ``translocation'' dynamics and how it can be described by Schrodinger's 1915 paper on first-passage-time distribution function. Schrodinger's distribution function can be used to give a rigorous criterion for achieving nanopore DNA sequencing which turns out to be identical to that of gel electrophoresis used by Sanger in the first-generation Sanger method. A nanopore DNA sequencing technology also requires discrimination of bases with high accuracies. I will describe a solid-state nanopore sandwich structure that can function as a proofreading device capable of discriminating between correct and incorrect hybridization probes with an accuracy rivaling that of high-fidelity DNA polymerases. The latest results from Nanjing will be presented. This work is supported by China 1000-Talent Program at Southeast University, Nanjing, China.

  12. Nanopore fabrication and characterization by helium ion microscopy

    NASA Astrophysics Data System (ADS)

    Emmrich, D.; Beyer, A.; Nadzeyka, A.; Bauerdick, S.; Meyer, J. C.; Kotakoski, J.; Gölzhäuser, A.

    2016-04-01

    The Helium Ion Microscope (HIM) has the capability to image small features with a resolution down to 0.35 nm due to its highly focused gas field ionization source and its small beam-sample interaction volume. In this work, the focused helium ion beam of a HIM is utilized to create nanopores with diameters down to 1.3 nm. It will be demonstrated that nanopores can be milled into silicon nitride, carbon nanomembranes, and graphene with well-defined aspect ratio. To image and characterize the produced nanopores, helium ion microscopy and high resolution scanning transmission electron microscopy were used. The analysis of the nanopores' growth behavior allows inferring on the profile of the helium ion beam.

  13. Synthesis and applications of nanoporous perovskite metal oxides

    PubMed Central

    Huang, Xiubing; Zhao, Guixia

    2018-01-01

    Perovskite-type metal oxides have been widely investigated and applied in various fields in the past several decades due to their extraordinary variability of compositions and structures with targeted physical and chemical properties (e.g., redox behaviour, oxygen mobility, electronic and ionic conductivity). Recently, nanoporous perovskite metal oxides have attracted extensive attention because of their special morphology and properties, as well as superior performance. This minireview aims at summarizing and reviewing the different synthesis methods of nanoporous perovskite metal oxides and their various applications comprehensively. The correlations between the nanoporous structures and the specific performance of perovskite oxides are summarized and highlighted. The future research directions of nanoporous perovskite metal oxides are also prospected. PMID:29862001

  14. Streaming current magnetic fields in a charged nanopore.

    PubMed

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W

    2016-11-11

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques.

  15. Streaming current magnetic fields in a charged nanopore

    NASA Astrophysics Data System (ADS)

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-11-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques.

  16. Streaming current magnetic fields in a charged nanopore

    PubMed Central

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-01-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques. PMID:27833119

  17. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-07-01

    The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm2) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.

  18. Facile fabrication of superhydrophobic hybrid nanotip and nanopore arrays as surface-enhanced Raman spectroscopy substrates

    NASA Astrophysics Data System (ADS)

    Li, Yuxin; Li, Juan; Wang, Tiankun; Zhang, Zhongyue; Bai, Yu; Hao, Changchun; Feng, Chenchen; Ma, Yingjun; Sun, Runguang

    2018-06-01

    We demonstrate the fabrication of superhydrophobic hybrid nanotip and nanopore arrays (NTNPAs) that can act as sensitive surface-enhanced Raman spectroscopy (SERS) substrates. The large-area substrates were fabricated by following a facile, low-cost process consisting of the one-step voltage-variation anodization of Al foil, followed by Ag nanoparticle deposition and fluorosilane (FS) modification. Uniformly distributed, large-area (5 × 5 cm2) NTNPAs can be obtained rapidly by anodizing Al foil for 1560 s followed by Ag deposition for 400 s, which showed good SERS reproducibility as using1 μM Rhodamine 6G (R6G) as analyte. SERS performances of superhydrophobic NTNPAs with different FS modification and Ag nanoparticle deposition orders were also studied. The nanosamples with FS modification followed by Ag nanoparticle deposition (FS-Ag) showed better SERS sensitivity than the nanosamples with Ag nanoparticle deposition followed by FS modification (Ag-FS). The detection limit of a directly dried R6G droplet can reach 10-8 M on the FS-Ag nanosamples. The results can help create practical high sensitive SERS substrates, which can be used in developing advanced bio- and chemical sensors.

  19. Mono or polycrystalline alumina-modified hybrid ceramics.

    PubMed

    Kaizer, Marina R; Gonçalves, Ana Paula R; Soares, Priscilla B F; Zhang, Yu; Cesar, Paulo F; Cava, Sergio S; Moraes, Rafael R

    2016-03-01

    This study evaluated the effect of addition of alumina particles (polycrystalline or monocrystalline), with or without silica coating, on the optical and mechanical properties of a porcelain. Groups tested were: control (C), polycrystalline alumina (PA), polycrystalline alumina-silica (PAS), monocrystalline alumina (MA), monocrystalline alumina-silica (MAS). Polycrystalline alumina powder was synthesized using a polymeric precursor method; a commercially available monocrystalline alumina powder (sapphire) was acquired. Silica coating was obtained by immersing alumina powders in a tetraethylorthosilicate solution, followed by heat-treatment. Electrostatic stable suspension method was used to ensure homogenous dispersion of the alumina particles within the porcelain powder. The ceramic specimens were obtained by heat-pressing. Microstructure, translucency parameter, contrast ratio, opalescence index, porosity, biaxial flexural strength, roughness, and elastic constants were characterized. A better interaction between glass matrix and silica coated crystalline particles is suggested in some analyses, yet further investigation is needed to confirm it. The materials did not present significant differences in biaxial flexural strength, due to the presence of higher porosity in the groups with alumina addition. Elastic modulus was higher for MA and MAS groups. Also, these were the groups with optical qualities and roughness closer to control. The PA and PAS groups were considerably more opaque as well as rougher. Porcelains with addition of monocrystalline particles presented superior esthetic qualities compared to those with polycrystalline particles. In order to eliminate the porosity in the ceramic materials investigated herein, processing parameters need to be optimized as well as different glass frites should be tested. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. PREFACE New developments in nanopore research—from fundamentals to applications New developments in nanopore research—from fundamentals to applications

    NASA Astrophysics Data System (ADS)

    Albrecht, Tim; Edel, Joshua B.; Winterhalter, Mathias

    2010-11-01

    Biological and solid-state nanopores are an exciting field of research, which has seen a rapid development over the last 10 to 20 years. Activities in this area range from theoretical and experimental work on the underlying fundamental (bio)physics to applications in single-molecule biosensing. And while the prospect of DNA sequencing continues to be a major driving force, other applications with potentially similar impact begin to emerge, for example the detection of small molecules, proteins, protein/protein and protein/DNA complexes, and RNA to name just a few. It has also become apparent that both classes of nanopore devices have intrinsic advantages and disadvantages; hybrid structures combining the better of the two worlds would be a logical consequence and are beginning to appear in the literature. Many other highly innovative ideas and concepts continue to emerge and the number of nanopore-related publications has increased drastically over recent years. We found that more than 100 research groups worldwide are active in this area; several commercial settings are in the process of translating fundamental research into real-life applications. We therefore felt that now is the right time to showcase these new developments in a special issue: to inspire researchers active in the field, to liberate inherent synergies, and not least, to demonstrate to the outside world the current state-of-the-art and future opportunities. The title 'New developments in nanopore research—from fundamentals to applications' in some way reflects these ambitions and, even though not everyone invited was able to contribute, we were able to assemble 34 high-quality research papers from all over the world. We would like to acknowledge and thank all the contributors for their submissions, which made this special issue possible in the first place. Moreover, we would like to thank the staff at IOP Publishing for helping us with the administrative aspects and for coordinating the

  1. Transport properties of alumina nanofluids.

    PubMed

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-08-27

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 °C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m(-1) K(-1) was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 °C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at

  2. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.

    PubMed

    Lan, Wen-Jie; Edwards, Martin A; Luo, Long; Perera, Rukshan T; Wu, Xiaojian; Martin, Charles R; White, Henry S

    2016-11-15

    Ion current rectification (ICR) refers to the asymmetric potential-dependent rate of the passage of solution ions through a nanopore, giving rise to electrical current-voltage characteristics that mimic those of a solid-state electrical diode. Since the discovery of ICR in quartz nanopipettes two decades ago, synthetic nanopores and nanochannels of various geometries, fabricated in membranes and on wafers, have been extensively investigated to understand fundamental aspects of ion transport in highly confined geometries. It is now generally accepted that ICR requires an asymmetric electrical double layer within the nanopore, producing an accumulation or depletion of charge-carrying ions at opposite voltage polarities. Our research groups have recently explored how the voltage-dependent ion distributions and ICR within nanopores can induce novel nanoscale flow phenomena that have applications in understanding ionics in porous materials used in energy storage devices, chemical sensing, and low-cost electrical pumping of fluids. In this Account, we review our most recent investigations on this topic, based on experiments using conical nanopores (10-300 nm tip opening) fabricated in thin glass, mica, and polymer membranes. Measurable fluid flow in nanopores can be induced either using external pressure forces, electrically via electroosmotic forces, or by a combination of these two forces. We demonstrate that pressure-driven flow can greatly alter the electrical properties of nanopores and, vice versa, that the nonlinear electrical properties of conical nanopores can impart novel and useful flow phenomena. Electroosmotic flow (EOF), which depends on the magnitude of the ion fluxes within the double layer of the nanopore, is strongly coupled to the accumulation/depletion of ions. Thus, the same underlying cause of ICR also leads to EOF rectification, i.e., unequal flows occurring for the same voltage but opposite polarities. EOF rectification can be used to electrically

  3. Rectification of nanopores in aprotic solvents - transport properties of nanopores with surface dipoles

    NASA Astrophysics Data System (ADS)

    Plett, Timothy; Shi, Wenqing; Zeng, Yuhan; Mann, William; Vlassiouk, Ivan; Baker, Lane A.; Siwy, Zuzanna S.

    2015-11-01

    Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li+ ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments.Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li+ ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06340j

  4. DNA origami nanopores: developments, challenges and perspectives

    NASA Astrophysics Data System (ADS)

    Hernández-Ainsa, Silvia; Keyser, Ulrich F.

    2014-11-01

    DNA nanotechnology has enabled the construction of DNA origami nanopores; synthetic nanopores that present improved capabilities for the area of single molecule detection. Their extraordinary versatility makes them a new and powerful tool in nanobiotechnology for a wide range of important applications beyond molecular sensing. In this review, we briefly present the recent developments in this emerging field of research. We discuss the current challenges and possible solutions that would enhance the sensing capabilities of DNA origami nanopores. Finally, we anticipate novel avenues for future research and highlight a range of exciting ideas and applications that could be explored in the near future.

  5. Novel Potassium-Ion Hybrid Capacitor Based on an Anode of K2Ti6O13 Microscaffolds.

    PubMed

    Dong, Shengyang; Li, Zhifei; Xing, Zhenyu; Wu, Xianyong; Ji, Xiulei; Zhang, Xiaogang

    2018-05-09

    To fill the gap between batteries and supercapacitors requires integration of the following features in a single system: energy density well above that of supercapacitors, cycle life much longer than Li-ion batteries, and low cost. Along this line, we report a novel nonaqueous potassium-ion hybrid capacitor (KIC) that employs an anode of K 2 Ti 6 O 13 (KTO) microscaffolds constructed by nanorods and a cathode of N-doped nanoporous graphenic carbon (NGC). K 2 Ti 6 O 13 microscaffolds are studied for potential applications as the anode material in potassium-ion storage for the first time. This material exhibits an excellent capacity retention of 85% after 1000 cycles. In addition, the NGC//KTO KIC delivers a high energy density of 58.2 Wh kg -1 based on the active mass in both electrodes, high power density of 7200 W kg -1 , and outstanding cycling stability over 5000 cycles. The usage of K ions as the anode charge carrier instead of Li ions and the amenable performance of this device suggest that hybrid capacitor devices may welcome a new era of beyond lithium.

  6. Symposium P: Three-Dimensional Architectures for Energy Generation and Storage

    DTIC Science & Technology

    2010-09-02

    anodic oxidation of aluminum to produce anodic aluminum oxide ( AAO ). The nanopores have diameters 15-100nm and depths 1-30um... aluminum oxide ( AAO ) template which can be successfully applied for fabrication of vertically aligned SiNWs. Then, we have investigated the electrical...performed in quiescent and rotating disc electrode (RDE) experiments. PSJfl Lateral Growth of Deep Nanopores in Anodic Aluminum Oxide as a Platform

  7. Effect of pH on ion current through conical nanopores

    NASA Astrophysics Data System (ADS)

    Chander, M.; Kumar, R.; Kumar, S.; Kumar, N.

    2018-05-01

    Here, we examined ionic current behavior of conical nanopores at different pH and a fixed ion concentration of potassium halide (KCl). Conical shaped nanopores have been developed by chemical etching technique in polyethylene terephthalate (PET) membrane/foil of thickness 12 micron. For this we employed a self-assembled electrochemical cell having two chambers and the foil was fitted in the centre of cell. The nanopores were produced in the foil using etching and stopping solutions. The experimental results show that ionic current rectification (ICR) occurs through synthesized conical nanopores. Further, ion current increases significantly with increase of voltage from the base side of nanopores to the tip side at fixed pH of electrolyte.

  8. Superdiffusive gas recovery from nanopores

    NASA Astrophysics Data System (ADS)

    Wu, Haiyi; He, Yadong; Qiao, Rui

    2016-11-01

    Understanding the recovery of gas from reservoirs featuring pervasive nanopores is essential for effective shale gas extraction. Classical theories cannot accurately predict such gas recovery and many experimental observations are not well understood. Here we report molecular simulations of the recovery of gas from single nanopores, explicitly taking into account molecular gas-wall interactions. We show that, in very narrow pores, the strong gas-wall interactions are essential in determining the gas recovery behavior both quantitatively and qualitatively. These interactions cause the total diffusion coefficients of the gas molecules in nanopores to be smaller than those predicted by kinetic theories, hence slowing down the rate of gas recovery. These interactions also lead to significant adsorption of gas molecules on the pore walls. Because of the desorption of these gas molecules during gas recovery, the gas recovery from the nanopore does not exhibit the usual diffusive scaling law (i.e., the accumulative recovery scales as R ˜t1 /2 ) but follows a superdiffusive scaling law R ˜tn (n >0.5 ), which is similar to that observed in some field experiments. For the system studied here, the superdiffusive gas recovery scaling law can be captured well by continuum models in which the gas adsorption and desorption from pore walls are taken into account using the Langmuir model.

  9. Thermal Conductivity of Alumina-reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    2005-01-01

    10-mol% yttria-stabilized zirconia (10SZ) - alumina composites containing 0-30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity was determined at various temperatures using a steady-state laser heat flux technique. Thermal conductivity of the composites increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from the Maxwell-Eucken model where one phase is uniformly dispersed within a second major continuous phase.

  10. Gassmann Theory Applies to Nanoporous Media

    NASA Astrophysics Data System (ADS)

    Gor, Gennady Y.; Gurevich, Boris

    2018-01-01

    Recent progress in extraction of unconventional hydrocarbon resources has ignited the interest in the studies of nanoporous media. Since many thermodynamic and mechanical properties of nanoscale solids and fluids differ from the analogous bulk materials, it is not obvious whether wave propagation in nanoporous media can be described using the same framework as in macroporous media. Here we test the validity of Gassmann equation using two published sets of ultrasonic measurements for a model nanoporous medium, Vycor glass, saturated with two different fluids, argon, and n-hexane. Predictions of the Gassmann theory depend on the bulk and shear moduli of the dry samples, which are known from ultrasonic measurements and the bulk moduli of the solid and fluid constituents. The solid bulk modulus can be estimated from adsorption-induced deformation or from elastic effective medium theory. The fluid modulus can be calculated according to the Tait-Murnaghan equation at the solvation pressure in the pore. Substitution of these parameters into the Gassmann equation provides predictions consistent with measured data. Our findings set up a theoretical framework for investigation of fluid-saturated nanoporous media using ultrasonic elastic wave propagation.

  11. Nanoporous-carbon as a potential host material for reversible Mg ion intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegal, Michael P.; Yelton, W. Graham; Perdue, Brian R.

    Here, we study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as an electrically conductive anode host material for Mg 2+ intercalation. NPC has high surface area, and an open, accessible pore structure tunable via mass density that can improve diffusion. We fabricate 2032 coin cells using NPC coated stainless-steel disk anodes, metallic Mg cathodes, and a Grignard-based electrolyte. NPC mass density is controlled during growth, ranging from 0.06–1.3 g/cm 3. The specific surface area of NPC increases linearly from 1,000 to 1,700 m 2/g as mass density decreases from 1.3 to 0.26 g/cm 3, however, the surface area fallsmore » off dramatically at lower mass densities, implying a lack of mechanical integrity in such nanostructures. These structural characterizations correlate directly with coin cell electrochemical measurements. In particular, cyclic voltammetry (CV) scans for NPC with density ~0.5 g/cm 3 and BET surface area ~1500 m 2/g infer the possibility of reversible Mg-ion intercalation. Higher density NPC yields capacitive behavior, most likely resulting from the smaller interplanar spacings between graphene sheet fragments and tighter domain boundaries; lower density NPC results in asymmetrical CV scans, consistent with the likely structural degradation resulting from mass transport through soft, low-density carbon materials.« less

  12. Nanoporous-carbon as a potential host material for reversible Mg ion intercalation

    DOE PAGES

    Siegal, Michael P.; Yelton, W. Graham; Perdue, Brian R.; ...

    2016-03-25

    Here, we study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as an electrically conductive anode host material for Mg 2+ intercalation. NPC has high surface area, and an open, accessible pore structure tunable via mass density that can improve diffusion. We fabricate 2032 coin cells using NPC coated stainless-steel disk anodes, metallic Mg cathodes, and a Grignard-based electrolyte. NPC mass density is controlled during growth, ranging from 0.06–1.3 g/cm 3. The specific surface area of NPC increases linearly from 1,000 to 1,700 m 2/g as mass density decreases from 1.3 to 0.26 g/cm 3, however, the surface area fallsmore » off dramatically at lower mass densities, implying a lack of mechanical integrity in such nanostructures. These structural characterizations correlate directly with coin cell electrochemical measurements. In particular, cyclic voltammetry (CV) scans for NPC with density ~0.5 g/cm 3 and BET surface area ~1500 m 2/g infer the possibility of reversible Mg-ion intercalation. Higher density NPC yields capacitive behavior, most likely resulting from the smaller interplanar spacings between graphene sheet fragments and tighter domain boundaries; lower density NPC results in asymmetrical CV scans, consistent with the likely structural degradation resulting from mass transport through soft, low-density carbon materials.« less

  13. Nanopore fabricated in pyramidal HfO2 film by dielectric breakdown method

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; Chen, Qi; Deng, Tao; Liu, Zewen

    2017-10-01

    The dielectric breakdown method provides an innovative solution to fabricate solid-state nanopores on insulating films. A nanopore generation event via this method is considered to be caused by random charged traps (i.e., structural defects) and high electric fields in the membrane. Thus, the position and number of nanopores on planar films prepared by the dielectric breakdown method is hard to control. In this paper, we propose to fabricate nanopores on pyramidal HfO2 films (10-nm and 15-nm-thick) to improve the ability to control the location and number during the fabrication process. Since the electric field intensity gets enhanced at the corners of the pyramid-shaped film, the probability of nanopore occurrence at vertex and edge areas increases. This priority of appearance provides us chance to control the location and number of nanopores by monitoring a sudden irreversible discrete increase in current. The experimental results showed that the probability of nanopore occurrence decreases in an order from the vertex area, the edge area to the side face area. The sizes of nanopores ranging from 30 nm to 10 nm were obtained. Nanopores fabricated on the pyramid-shaped HfO2 film also showed an obvious ion current rectification characteristic, which might improve the nanopore performance as a biomolecule sequencing platform.

  14. Probing the size of proteins with glass nanopores

    NASA Astrophysics Data System (ADS)

    Steinbock, L. J.; Krishnan, S.; Bulushev, R. D.; Borgeaud, S.; Blokesch, M.; Feletti, L.; Radenovic, A.

    2014-11-01

    Single molecule studies using nanopores have gained attention due to the ability to sense single molecules in aqueous solution without the need to label them. In this study, short DNA molecules and proteins were detected with glass nanopores, whose sensitivity was enhanced by electron reshaping which decreased the nanopore diameter and created geometries with a reduced sensing length. Further, proteins having molecular weights (MW) ranging from 12 kDa to 480 kDa were detected, which showed that their corresponding current peak amplitude changes according to their MW. In the case of the 12 kDa ComEA protein, its DNA-binding properties to an 800 bp long DNA molecule was investigated. Moreover, the influence of the pH on the charge of the protein was demonstrated by showing a change in the translocation direction. This work emphasizes the wide spectrum of detectable molecules using nanopores from glass nanocapillaries, which stand out because of their inexpensive, lithography-free, and rapid manufacturing process.Single molecule studies using nanopores have gained attention due to the ability to sense single molecules in aqueous solution without the need to label them. In this study, short DNA molecules and proteins were detected with glass nanopores, whose sensitivity was enhanced by electron reshaping which decreased the nanopore diameter and created geometries with a reduced sensing length. Further, proteins having molecular weights (MW) ranging from 12 kDa to 480 kDa were detected, which showed that their corresponding current peak amplitude changes according to their MW. In the case of the 12 kDa ComEA protein, its DNA-binding properties to an 800 bp long DNA molecule was investigated. Moreover, the influence of the pH on the charge of the protein was demonstrated by showing a change in the translocation direction. This work emphasizes the wide spectrum of detectable molecules using nanopores from glass nanocapillaries, which stand out because of their

  15. Recent patents of nanopore DNA sequencing technology: progress and challenges.

    PubMed

    Zhou, Jianfeng; Xu, Bingqian

    2010-11-01

    DNA sequencing techniques witnessed fast development in the last decades, primarily driven by the Human Genome Project. Among the proposed new techniques, Nanopore was considered as a suitable candidate for the single DNA sequencing with ultrahigh speed and very low cost. Several fabrication and modification techniques have been developed to produce robust and well-defined nanopore devices. Many efforts have also been done to apply nanopore to analyze the properties of DNA molecules. By comparing with traditional sequencing techniques, nanopore has demonstrated its distinctive superiorities in main practical issues, such as sample preparation, sequencing speed, cost-effective and read-length. Although challenges still remain, recent researches in improving the capabilities of nanopore have shed a light to achieve its ultimate goal: Sequence individual DNA strand at single nucleotide level. This patent review briefly highlights recent developments and technological achievements for DNA analysis and sequencing at single molecule level, focusing on nanopore based methods.

  16. Nanoporous Ag prepared from the melt-spun Cu-Ag alloys

    NASA Astrophysics Data System (ADS)

    Li, Guijing; Song, Xiaoping; Sun, Zhanbo; Yang, Shengchun; Ding, Bingjun; Yang, Sen; Yang, Zhimao; Wang, Fei

    2011-07-01

    Nanoporous Ag ribbons with different morphology and porosity were achieved by the electrochemical corrosion of the melt-spun Cu-Ag alloys. The Cu-rich phase in the alloys was removed, resulting in the formation of the nanopores distributed across the whole ribbon. It is found that the structures, morphology and porosity of the nanoporous Ag ribbons were dependent on the microstructures of the parent alloys. The most of ligaments presented a rod-like shape due to the formation of pseudoeutectic microstructure in the melt-spun Cu 55Ag 45 and Cu 70Ag 30 alloys. For nanoporous Ag prepared from Cu 85Ag 15 alloys, the ligaments were camber-like because of the appearance of the divorced microstructures. Especially, a novel bamboo-grove-like structure could be observed at the cross-section of the nanoporous Ag ribbons. The experiment reveals that nanoporous Ag ribbons exhibited excellent enhancement of surface-enhanced Raman scattering (SERS) effect, but a slight difference existed due to the discrepancy of their morphology.

  17. The role of nanopore shape in surface-induced crystallization

    NASA Astrophysics Data System (ADS)

    Diao, Ying; Harada, Takuya; Myerson, Allan S.; Alan Hatton, T.; Trout, Bernhardt L.

    2011-11-01

    Crystallization of a molecular liquid from solution often initiates at solid-liquid interfaces, and nucleation rates are generally believed to be enhanced by surface roughness. Here we show that, on a rough surface, the shape of surface nanopores can also alter nucleation kinetics. Using lithographic methods, we patterned polymer films with nanopores of various shapes and found that spherical nanopores 15-120 nm in diameter hindered nucleation of aspirin crystals, whereas angular nanopores of the same size promoted it. We also show that favourable surface-solute interactions are required for angular nanopores to promote nucleation, and propose that pore shape affects nucleation kinetics through the alteration of the orientational order of the crystallizing molecule near the angles of the pores. Our findings have clear technological implications, for instance in the control of pharmaceutical polymorphism and in the design of ‘seed’ particles for the regulation of crystallization of fine chemicals.

  18. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks.

    PubMed

    Li, Z P; Xu, Z M; Qu, X P; Wang, S B; Peng, J; Mei, L H

    2017-03-03

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  19. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks

    NASA Astrophysics Data System (ADS)

    Li, Z. P.; Xu, Z. M.; Qu, X. P.; Wang, S. B.; Peng, J.; Mei, L. H.

    2017-03-01

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  20. Formation and photopatterning of nanoporous titania thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Oun-Ho; Cheng, Joy Y.; Kim, Hyun Suk

    2007-06-04

    Photopatternable nanoporous titania thin films were generated from mixtures of an organic diblock copolymer, poly(styrene-b-ethylene oxide) (PS-b-PEO), and an oligomeric titanate (OT) prepared from a chelated titanium isopropoxide. The PS-b-PEO templates well-defined microdomains in thin films of the mixtures, which upon thermal treatment at 450 deg. C, become nanopores in titania. Average pore size and porosity are controlled by the molecular weight and loading level of the PS-b-PEO, respectively. Patterns of nanoporous titania were created by selectively exposing UV light on the mixture films. The UV irradiation destroys the chelating bond and induces the cross-linking reaction of the OT. Subsequentmore » wet development followed by thermal treatment gives patterned nanoporous films of anatase phase titania.« less

  1. Part I. Corrosion studies of continuous alumina fiber reinforced aluminum-matrix composites. Part II. Galvanic corrosion between continuous alumina fiber reinforced aluminum-matrix composites and 4340 steel

    NASA Astrophysics Data System (ADS)

    Zhu, Jun

    Part I. The corrosion performance of continuous alumina fiber reinforced aluminum-matrix composites (CF-AMCs) was investigated in both the laboratory and field environments by comparing them with their respective monolithic matrix alloys, i.e., pure Al, A1-2wt%Cu T6, and Al 6061 T6. The corrosion initiation sites were identified by monitoring the changes in the surface morphology. Corrosion current densities and pH profiles at localized corrosion sites were measured using the scanning-vibrating electrode technique and the scanning ion-selective electrode technique, respectively. The corrosion damage of the materials immersed in various electrolytes, as well as those exposed in a humidity chamber and outdoor environments, was evaluated. Potentiodynamic polarization behavior was also studied. The corrosion initiation for the composites in 3.15 wt% NaCl occurred primarily around the Fe-rich intermetallic particles, which preferentially existed around the fiber/matrix interface on the composites. The corrosion initiation sites were also caused by physical damage (e.g., localized deformation) to the composite surface. At localized corrosion sites, the buildup of acidity was enhanced by the formation of micro-crevices resulting from fibers left in relief as the matrix corroded. The composites that were tested in exposure experiments exhibited higher corrosion rates than their monolithic alloys. The composites and their monolithic alloys were subjected to pitting corrosion when anodically polarized in the 3.15 wt% NaCl, while they passivated when anodically polarized in 0.5 M Na2SO4. The experimental results indicated that the composites exhibited inferior corrosion resistance compared to their monolithic matrix alloys. Part II. Galvanic corrosion studies were conducted on CF-AMCs coupled to 4340 steel since CF-AMCs have low density and excellent mechanical properties and are being considered as potential jacketing materials for reinforcing steel gun barrels. Coupled and

  2. Study of polymer molecules and conformations with a nanopore

    DOEpatents

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2013-03-12

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  3. Study of polymer molecules and conformations with a nanopore

    DOEpatents

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2010-12-07

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  4. Study of polymer molecules and conformations with a nanopore

    DOEpatents

    Golovchenko, Jene A; Li, Jiali; Stein, Derek; Gershow, Marc H

    2015-03-03

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  5. Preparation of thin hexagonal highly-ordered anodic aluminum oxide (AAO) template onto silicon substrate and growth ZnO nanorod arrays by electrodeposition

    NASA Astrophysics Data System (ADS)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Qaeed, M. A.; Bououdina, M.

    2014-12-01

    In this study, anodic aluminum oxide (AAO) templates of Aluminum thin films onto Ti-coated silicon substrates were prepared for growth of nanostructure materials. Hexagonally highly ordered thin AAO templates were fabricated under controllable conditions by using a two-step anodization. The obtained thin AAO templates were approximately 70 nm in pore diameter and 250 nm in length with 110 nm interpore distances within an area of 3 cm2. The difference between first and second anodization was investigated in details by in situ monitoring of current-time curve. A bottom barrier layer of the AAO templates was removed during dropping the voltage in the last period of the anodization process followed by a wet etching using phosphoric acid (5 wt%) for several minutes at ambient temperature. As an application, Zn nanorod arrays embedded in anodic alumina (AAO) template were fabricated by electrodeposition. Oxygen was used to oxidize the electrodeposited Zn nanorods in the AAO template at 700 °C. The morphology, structure and photoluminescence properties of ZnO/AAO assembly were analyzed using Field-emission scanning electron microscope (FESEM), Energy dispersive X-ray spectroscopy (EDX), Atomic force microscope (AFM), X-ray diffraction (XRD) and photoluminescence (PL).

  6. Embedded CMOS basecalling for nanopore DNA sequencing.

    PubMed

    Chengjie Wang; Junli Zheng; Magierowski, Sebastian; Ghafar-Zadeh, Ebrahim

    2016-08-01

    DNA sequencing based on nanopore sensors is now entering the marketplace. The ability to interface this technology to established CMOS microelectronics promises significant improvements in functionality and miniaturization. Among the key functions to benefit from this interface will be basecalling, the conversion of raw electronic molecular signatures to nucleotide sequence predictions. This paper presents the design and performance potential of custom CMOS base-callers embedded alongside nanopore sensors. A basecalliing architecture implemented in 32-nm technology is discussed with the ability to process the equivalent of 20 human genomes per day in real-time at a power density of 5 W/cm2 assuming a 3-mer nanopore sensor.

  7. Sintering of beta-type alumina bodies using alpha-alumina encapsulation

    DOEpatents

    McEntire, Bryan J.; Virkar, Anil V.

    1981-01-01

    A method of sintering a shaped green, beta-type alumina body comprising: (A) inserting said body into an open chamber prepared by exposing the interior surface of a container consisting essentially of at least about 50 weight percent of alpha-alumina and a remainder of other refractory material to a sodium oxide or sodium oxide producing environment; (B) sealing the chamber; and heating the chamber with the shaped body encapsulated therein to a temperature and for a time necessary to sinter said body to the desired density. The encapsulation chamber prepared as described above is also claimed.

  8. Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.

    PubMed

    Shankla, Manish; Aksimentiev, Aleksei

    2017-04-20

    Modulation of ionic current flowing through nanoscale pores is one of the fundamental biological processes. Inspired by nature, nanopores in synthetic solid-state membranes are being developed to enable rapid analysis of biological macromolecules and to serve as elements of nanofludic circuits. Here, we theoretically investigate ion and water transport through a graphene-insulator-graphene membrane containing a single, electrolyte-filled nanopore. By means of all-atom molecular dynamics simulations, we show that the charge state of such a graphene nanopore capacitor can regulate both the selectivity and the magnitude of the nanopore ionic current. At a fixed transmembrane bias, the ionic current can be switched from being carried by an equal mixture of cations and anions to being carried almost exclusively by either cationic or anionic species, depending on the sign of the charge assigned to both plates of the capacitor. Assigning the plates of the capacitor opposite sign charges can either increase the nanopore current or reduce it substantially, depending on the polarity of the bias driving the transmembrane current. Facilitated by the changes of the nanopore surface charge, such ionic current modulations are found to occur despite the physical dimensions of the nanopore being an order of magnitude larger than the screening length of the electrolyte. The ionic current rectification is accompanied by a pronounced electro-osmotic effect that can transport neutral molecules such as proteins and drugs across the solid-state membrane and thereby serve as an interface between electronic and chemical signals.

  9. Anti-reflective nanoporous silicon for efficient hydrogen production

    DOEpatents

    Oh, Jihun; Branz, Howard M

    2014-05-20

    Exemplary embodiments are disclosed of anti-reflective nanoporous silicon for efficient hydrogen production by photoelectrolysis of water. A nanoporous black Si is disclosed as an efficient photocathode for H.sub.2 production from water splitting half-reaction.

  10. Balancing size exclusion and adsorption of polymers in nanopores

    NASA Astrophysics Data System (ADS)

    Kim, Won; Ryu, Chang Y.

    2006-03-01

    The liquid chromatography at critical condition (LCCC) presents the condition, at which the size exclusion and adsorption of polymer chains are balanced upon interactions with nanoporous substrates. In this study, we investigate how the polymer interactions with nanopores are affected by the solvent quality and nanopore size. Specifically, we measure the retention times of monodisperse polystyrenes in C18-bonded nanoporous silica column as a function of molecular weight, when a mixed solvent of methylene chloride and acetonitrile are used as elutent. C18-bonded silica particles with 70, 100, and 250 A pore size are used as a stationary phase to study how the transition from SEC-like to IC-like retention behavior depends on the condition of temperature and solvent composition. To locate the LCCC at various nanopore sizes, the temperature and solvent composition have been varied from 0 to 60 C and from 51 to 62 v/v% of methylene chloride, respectively.

  11. Integrated nanopore sensing platform with sub-microsecond temporal resolution

    PubMed Central

    Rosenstein, Jacob K; Wanunu, Meni; Merchant, Christopher A; Drndic, Marija; Shepard, Kenneth L

    2012-01-01

    Nanopore sensors have attracted considerable interest for high-throughput sensing of individual nucleic acids and proteins without the need for chemical labels or complex optics. A prevailing problem in nanopore applications is that the transport kinetics of single biomolecules are often faster than the measurement time resolution. Methods to slow down biomolecular transport can be troublesome and are at odds with the natural goal of high-throughput sensing. Here we introduce a low-noise measurement platform that integrates a complementary metal-oxide semiconductor (CMOS) preamplifier with solid-state nanopores in thin silicon nitride membranes. With this platform we achieved a signal-to-noise ratio exceeding five at a bandwidth of 1 MHz, which to our knowledge is the highest bandwidth nanopore recording to date. We demonstrate transient signals as brief as 1 μs from short DNA molecules as well as current signatures during molecular passage events that shed light on submolecular DNA configurations in small nanopores. PMID:22426489

  12. Single Protein Structural Analysis with a Solid-state Nanopore Sensor

    NASA Astrophysics Data System (ADS)

    Li, Jiali; Golovchenko, Jene; McNabb, David

    2005-03-01

    We report on the use of solid-state nanopore sensors to detect single polypeptides. These solid-state nanopores are fabricated in thin membranes of silicon nitride by ion beam sculpting...[1]. When an electrically biased nanopore is exposed to denatured proteins in ionic solution, discrete transient electronic signals: current blockages are observed. We demonstrate examples of such transient electronic signals for Bovine Serum Albumin (BSA) and human placental laminin M proteins in Guanidine hydrochloride solution, which suggest that these polypeptides are individually translocating through the nanopore during the detecting process. The amplitude of the current blockages is proportional to the bias voltage. No transient current blockages are observed when proteins are not present in the solution. To probe protein-folding state, pH and temperature dependence experiments are performed. The results demonstrate a solid-state nanopore sensor can be used to detect and analyze single polypeptide chains. Similarities and differences with signals obtained from double stranded DNA in a solid-state nanopore and single stranded DNA in a biological nanopore are discussed. [.1] Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166-169.

  13. The Utility of Nanopore Technology for Protein and Peptide Sensing.

    PubMed

    Robertson, Joseph W F; Reiner, Joseph E

    2018-06-28

    Resistive-pulse nanopore sensing enables label-free single-molecule analysis of a wide range of analytes. An increasing number of studies have demonstrated the feasibility and usefulness of nanopore sensing for protein and peptide characterization. Nanopores offer the potential to study a variety of protein-related phenomena that includes unfolding kinetics, differences in unfolding pathways, protein structure stability and free energy profiles of DNA-protein and RNA-protein binding. In addition to providing a tool for fundamental protein characterization, nanopores have also been used as highly selective protein detectors in various solution mixtures and conditions. This review highlights these and other developments in the area of nanopore-based protein and peptide detection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Effect of Impurities on O and Al Boundary Diffusion in Alumina: Application Alumina Scale Growth in Alloys

    DTIC Science & Technology

    2012-01-24

    of Ni alone enhances transport by approximately a factor of 2 relative to undoped alumina. The diffusive transport of chromium in both pure and Y...doped fine-grained alumina has been investigated over the temperature range 1250 -1650 C. From a quantitative assessment of the chromium diffusion...diffusion of chromium in both undoped and Y-doped fine-grained alumina has been investigated. In this work, Cr + was employed as a plausible substitute

  15. Nanopores and nucleic acids: prospects for ultrarapid sequencing

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.; Akeson, M.

    2000-01-01

    DNA and RNA molecules can be detected as they are driven through a nanopore by an applied electric field at rates ranging from several hundred microseconds to a few milliseconds per molecule. The nanopore can rapidly discriminate between pyrimidine and purine segments along a single-stranded nucleic acid molecule. Nanopore detection and characterization of single molecules represents a new method for directly reading information encoded in linear polymers. If single-nucleotide resolution can be achieved, it is possible that nucleic acid sequences can be determined at rates exceeding a thousand bases per second.

  16. Hydrogenation catalysts were derived from Mo(Co)/sub 6//alumina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, R.G.

    1979-01-01

    Alumina hydrogenation catalysts were derived from mo(CO)/sub 6//alumina with characteristics dependent upon the activation temperature, degree of alumina hydroxylation, and carrier gas used. Decomposition of Mo(CO)/sub 6/ at 100/sup 0/C on partially hydroxylated alumina in helium or hydrogen yielded Mo(CO)/sub 3//alumina, which catalyzed olefin metathesis in helium carrier and both metathesis and hydrogenation in hydrogen carrier. Decomposition of Mo(CO)/sub 6/ on dehydroxylated alumina at 100/sup 0/C in helium and in hydrogen resulted in complete decarbonylation and partial oxidation of molybdenum; this catalyst was 10 times as active as Mo(CO)/sub 3//alumina for hydrogenation. Decomposition of Mo(CO)/sub 6/ on dehydroxylated alumina atmore » 500/sup 0/C in helium gave essentially Mo(0)/alumina, which catalyzed hydrogenation, methanation, and hydrogenolysis in hydrogen. Catalysts activated on dehydroxylated alumina were ten times more active for methanation at 300/sup 0/C than catalyst activated on partially hydroxylated alumina and showed differences in selectivity for cyclopropane hydrogenolysis at 100/sup 0/C.« less

  17. Ion Current Rectification, Limiting and Overlimiting Conductances in Nanopores

    PubMed Central

    van Oeffelen, Liesbeth; Van Roy, Willem; Idrissi, Hosni; Charlier, Daniel; Lagae, Liesbet; Borghs, Gustaaf

    2015-01-01

    Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be. PMID:25978328

  18. Nanoporous Polymers Based on Liquid Crystals

    PubMed Central

    Mulder, Dirk Jan; Sijbesma, Rint; Schenning, Albert

    2018-01-01

    In the present review, we discuss recent advances in the field of nanoporous networks based on polymerisable liquid crystals. The field has matured in the last decade, yielding polymers having 1D, 2D, and 3D channels with pore sizes on the nanometer scale. Next to the current progress, some of the future challenges are presented, with the integration of nanoporous membranes in functional devices considered as the biggest challenge. PMID:29324669

  19. Nanopore formation in neuroblastoma cells following ultrashort electric pulse exposure

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.

    2011-03-01

    Ultrashort or nanosecond electrical pulses (USEP) cause repairable damage to the plasma membranes of cells through formation of nanopores. These nanopores are able to pass small ions such as sodium, calcium, and potassium, but remain impermeable to larger molecules like trypan blue and propidium iodide. What remains uncertain is whether generation of nanopores by ultrashort electrical pulses can inhibit action potentials in excitable cells. In this paper, we explored the sensitivity of excitable cells to USEP using Calcium Green AM 1 ester fluorescence to measure calcium uptake indicative of nanopore formation in the plasma membrane. We determined the threshold for nanopore formation in neuroblastoma cells for three pulse parameters (amplitude, pulse width, and pulse number). Measurement of such thresholds will guide future studies to determine if USEP can inhibit action potentials without causing irreversible membrane damage.

  20. Alcoa Pressure Calcination Process for Alumina

    NASA Astrophysics Data System (ADS)

    Sucech, S. W.; Misra, C.

    A new alumina calcination process developed at Alcoa Laboratories is described. Alumina is calcined in two stages. In the first stage, alumina hydrate is heated indirectly to 500°C in a decomposer vessel. Released water is recovered as process steam at 110 psig pressure. Partial transformation of gibbsite to boehmite occurs under hydrothermal conditions of the decomposer. The product from the decomposer containing about 5% LOI is then calcined by direct heating to 850°C to obtain smelting grade alumina. The final product is highly attrition resistant, has a surface area of 50-80 m2/g and a LOI of less than 1%. Accounting for the recovered steam, the effective fuel consumption for the new calcination process is only 1.6 GJ/t A12O3.