Science.gov

Sample records for nanoporous hydroxyapatite agglomerates

  1. Anisotropic diffusion of water molecules in hydroxyapatite nanopores

    NASA Astrophysics Data System (ADS)

    Prakash, Muthuramalingam; Lemaire, Thibault; Caruel, Matthieu; Lewerenz, Marius; de Leeuw, Nora H.; Di Tommaso, Devis; Naili, Salah

    2017-03-01

    New insights into the dynamical properties of water in hydroxyapatite (HAP) nanopores, a model system for the fluid flow within nanosize spaces inside the collagen-apatite structure of bone, were obtained from molecular dynamics simulations of liquid water confined between two parallel HAP surfaces of different sizes (20 Å ≤ H ≤ 240 Å). Calculations were conducted using a core-shell interatomic potential for HAP together with the extended simple point charge model for water. This force field gives an activation energy for water diffusion within HAP nanopores that is in excellent agreement with available experimental data. The dynamical properties of water within the HAP nanopores were quantified in terms of the second-order water diffusion tensor. Results indicate that water diffuses anisotropically within the HAP nanopores, with the solvent molecules moving parallel to the surface twice as fast as the perpendicular direction. This unusual dynamic behaviour is linked to the strong polarizing effect of calcium ions, and the synergic interactions between the water molecules in the first hydration layer of HAP with the calcium, hydroxyl, and phosphate ions, which facilitates the flow of water molecules in the directions parallel to the HAP surface.

  2. Synthesis and characterization of nanoporous hydroxyapatite using cationic surfactants as templates

    SciTech Connect

    Li Yanbao; Tjandra, Wiliana; Tam, Kam C.

    2008-08-04

    Nanoporous hydroxyapatite was synthesized utilizing cationic surfactants as templates. The effects of cetyltrimethylammonium bromide and reaction temperatures on the phase and morphology of HA were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The thermal stability of nanoporous structures was studied by XRD and thermal analyzers (TGA/DTA), while the pore structure of HA was observed using high resolution TEM. It was found that the pore size was about 1 nm, and the pore structure of HA was thermally stable up to 700 deg. C and the pore size did not change with reaction temperature and CTAB:PO{sub 4}{sup 3-} ratio. The possible formation mechanism of nanoporous structure was proposed.

  3. The effect of particle agglomeration on the formation of a surface-connected compartment induced by hydroxyapatite nanoparticles in human monocyte-derived macrophages☆

    PubMed Central

    Müller, Karin H.; Motskin, Michael; Philpott, Alistair J.; Routh, Alexander F.; Shanahan, Catherine M.; Duer, Melinda J.; Skepper, Jeremy N.

    2014-01-01

    Agglomeration dramatically affects many aspects of nanoparticle–cell interactions. Here we show that hydroxyapatite nanoparticles formed large agglomerates in biological medium resulting in extensive particle uptake and dose-dependent cytotoxicity in human macrophages. Particle citration and/or the addition of the dispersant Darvan 7 dramatically reduced mean agglomerate sizes, the amount of particle uptake and concomitantly cytotoxicity. More surprisingly, agglomeration governed the mode of particle uptake. Agglomerates were sequestered within an extensive, interconnected membrane labyrinth open to the extracellular space. In spite of not being truly intracellular, imaging studies suggest particle degradation occurred within this surface-connected compartment (SCC). Agglomerate dispersion prevented the SCC from forming, but did not completely inhibit nanoparticle uptake by other mechanisms. The results of this study could be relevant to understanding particle–cell interactions during developmental mineral deposition, in ectopic calcification in disease, and during application of hydroxyapatite nanoparticle vectors in biomedicine. PMID:24183166

  4. Surface phenomena of hydroxyapatite film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants.

    PubMed

    Kim, Eun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol

    2013-03-01

    In this study, surface phenomena of hydroxyapatite (HA) film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants have been investigated by electron beam physical vapor deposition (EB-PVD), field emission scanning electron microscope (FE-SEM), X-ray diffractometer (XRD), potentiostat and contact angle. The microstructure of Ti-29Nb-xZr alloys exhibited equiaxed structure and alpha" phase decreased, whereas beta phase increased as Zr content increased. The increment of Zr contents in HA coated nanotubular Ti-29Nb-xZr alloys showed good corrosion potential in 0.9% NaCI solution. The wettability of HA coated nanotubular surface was higher than that of non-coated samples.

  5. How the guest molecules in nanoporous Zn(II) metal-organic framework can prevent agglomeration of ZnO nanoparticles

    SciTech Connect

    Moeinian, Maryam; Akhbari, Kamran

    2015-05-15

    The host and the apohost framework of [Zn{sub 2}(BDC){sub 2}(H{sub 2}O){sub 2}·(DMF){sub 2}]{sub n} (1·2H{sub 2}O·2DMF), (BDC{sup 2−}=benzene-1,4-dicarboxylate and DMF=N,N-Dimethylformamide), were synthesized and subsequently used for preparation of ZnO nanomaterials. With calcination of the host framework of 1·2H{sub 2}O·2DMF, ZnO nanoparticles were obtained. By the same process on the apohost framework of 1, agglomerated nanoparticles of ZnO were formed. These nano-structures were characterized by X-ray powder diffraction (XRD) and Scanning electron microscopy (SEM). These results indicate that with removal of the guest DMF and coordinated H{sub 2}O molecules from the one-dimensional channels of 1·2H{sub 2}O·2DMF, the tendency of nanoparticles to agglomerate increases and the role of this MOF in preparation of ZnO nanoparticles from this precursor was reduced. - Graphical abstract: Nano-porous zinc(II) MOF with guest DMF and coordinated H{sub 2}O molecules has been synthesized and characterized. The host and the apohost framework of it were used for preparation of ZnO nanomaterials. The role of these species in preparation of ZnO nanoparticles from the host framework is probably similar to the role of polymeric stabilizers in formation of nanoparticles. - Highlights: • Nanoparticles of ZnO were fabricated from nanoporous metal-organic framework. • The effect of guest DMF and coordinated H{sub 2}O molecules on this process was studied. • The effect of them in formation nanoparticle is similar to polymeric stabilizers.

  6. Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods.

    PubMed

    Iyyappan, E; Wilson, P; Sheela, K; Ramya, R

    2016-06-01

    Hydroxyapatite (HA) particles were synthesized using Ca(NO3)2·4H2O and (NH4)2HPO4 as precursors with varying contents of non-ionic surfactant viz., triton X-100 (organic modifier) via co-precipitation method followed by hydrothermal treatment. The prepared HA particles have been characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Energy Dispersive X-ray Analysis (EDX), High Resolution Scanning Electron Microscopy (HRSEM), High Resolution Transmission Electron Microscopy (HRTEM) and Nitrogen adsorption-desorption experiments. The XRD and FTIR studies indicate the formation of HA phase in all the synthesized samples. The specific roles of triton X-100 and hydrothermal treatment in dispersing and in directing the crystal growth respectively have been discussed by comparing the observations from individual experiments using triton X-100 and hydrothermal treatment with that of combined protocol involving both. The plausible mechanism for the individual roles of both triton X-100 and hydrothermal treatment have been proposed.

  7. Fuel agglomerates and method of agglomeration

    DOEpatents

    Wen, Wu-Wey

    1986-01-01

    Solid fuel agglomerates are prepared of particulate coal or other carbonaceous material with a binder having a high humic acid or humate salt content. The humic acid is extracted from oxidized carbonaceous material with a mild aqueous alkali solution of, for instance, ammonia. The particulate material is blended with the extract which serves as the binder for the agglomerates. The water-resistant agglomerates are formed such as by pelletizing, followed by drying to remove moisture and solidify the humic acid binder throughout the agglomerate.

  8. Electron microscopy of biomaterials based on hydroxyapatite

    SciTech Connect

    Suvorova, E. I. Klechkovskaya, V. V.; Komarov, V. F.; Severin, A. V.; Melikhov, I. V.; Buffat, P. A.

    2006-10-15

    Three types of biomaterials based on hydroxyapatite are synthesized and investigated. Hydroxyapatite nanocrystals or microcrystals precipitated from low-temperature aqueous solutions serve as the initial material used for preparing spherical porous granules approximately 300-500 {mu}m in diameter. Sintering of hydroxyapatite crystals at a temperature of 870 deg. C for 2 h or at 1000 deg. C (for 3 h) + 1200 deg. C (for 2 h) brings about the formation of solid ceramics with different internal structures. According to the electron microscopic data, the ceramic material prepared at 870 deg. C is formed by agglomerated hydroxyapatite nanocrystals, whereas the ceramics sintered at 1200 deg. C (with a bending strength of the order of 100 MPa) are composed of crystal blocks as large as 2 {mu}m. It is established that all the biomaterials have a single-phase composition and consist of the hydroxyapatite with a structure retained up to a temperature of 1200 deg. C.

  9. Agglomeration of Dust

    SciTech Connect

    Annaratone, B. M.; Arnas, C.; Elskens, Y.

    2008-09-07

    The agglomeration of the matter in plasma, from the atomic level up to millimetre size particles, is here considered. In general we identify a continuous growth, due to deposition, and two agglomeration steps, the first at the level of tens of nanometres and the second above the micron. The agglomeration of nano-particles is attributed to electrostatic forces in presence of charge polarity fluctuations. Here we present a model based on discrete currents. With increasing grain size the positive charge permanence decreases, tending to zero. This effect is only important in the range of nanometre for dust of highly dispersed size. When the inter-particle distance is of the order of the screening length another agglomeration mechanism dominates. It is based on attractive forces, shadow forces or dipole-dipole interaction, overcoming the electrostatic repulsion. In bright plasma radiation pressure also plays a role.

  10. Backscattering of agglomerate particles

    NASA Astrophysics Data System (ADS)

    Zubko, Evgenij; Ovcharenko, Andrey; Bondarenko, Sergey; Shkuratov, Yuriy; Scotto, Cathy S.; Merritt, Charles; Hart, Matthew B.; Eversole, Jay D.; Videen, Gorden W.

    2004-12-01

    We examine how aggregation affects the light-scattering signatures, especially the polarization in the near-backward-scattering direction. We use the discrete dipole approximation (DDA) to study the backscatter of agglomerate particles consisting of oblong monomers. We examine the effects of monomer number and packing structure on the resulting negative polarization branch at small phase angle. We find large a dependence on the orientation of the monomers within the agglomerate and a smaller dependence on the number of monomers, suggesting that the mechanism producing the negative polarization minimum depends strongly on the interactions between the individual monomers. We also examine experimental measurements of substrates composed of biological cells. We find that the light-scattering signatures in the backward direction are not only different for different spore species, but for spores that have been prepared using different methodologies. These signatures are reproducible in different substrates composed of the spores from the same batches.

  11. In vitro dosimetry of agglomerates

    NASA Astrophysics Data System (ADS)

    Hirsch, V.; Kinnear, C.; Rodriguez-Lorenzo, L.; Monnier, C. A.; Rothen-Rutishauser, B.; Balog, S.; Petri-Fink, A.

    2014-06-01

    Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction.Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction. Electronic supplementary information (ESI) available: ITC data for tiopronin/Au-NP interactions, agglomeration kinetics at different pHs for tiopronin-coated Au-NPs, UV-Vis spectra in water, PBS and DMEM and temporal correlation functions for single Au-NPs and corresponding agglomerates, calculation of diffusion and sedimentation parameters, modelling of relative cell uptake based on the ISDD model and cytotoxicity of single Au-NPs and their agglomerates, and synthesis and cell uptake of large spherical Au-NPs. See DOI: 10.1039/c4nr00460d

  12. Selective oil agglomeration of lignite

    SciTech Connect

    Halime Abakay Temel; Volkan Bozkurt; Arun Kumar Majumder

    2009-01-15

    In this study, desulfurization and deashing of Adiyaman-Glbai lignite by the agglomeration method were studied. For this purpose, three groups of agglomeration experiments were made. The effects of solid concentration, bridging liquid type and dosage, pH, and screen size on the agglomeration after desliming were investigated in the first group of experiments. The effects of lake water and sea water (the Mediterranean Sea water, the Aegean Sea water, and the Black Sea water) on the agglomeration were investigated in the second group of experiments. The effects of different salts (NaCl, MgCl{sub 2}, and FeCl{sub 3}) on the agglomeration were investigated in the third group of experiments. Agglomeration results showed that the usage of sea waters and soda lake water in the agglomeration medium had a positive effect on the reduction of total sulfur content of agglomerates. In addition, the usage of NaCl, MgCl{sub 2}, and FeCl{sub 3} in the agglomeration medium had a positive effect on the ash content reduction of the agglomerates. 27 refs., 10 figs., 6 tabs.

  13. Synthesis and characterization of porous hydroxyapatite and hydroxyapatite coatings

    SciTech Connect

    Nieh, T G; Choi, B W; Jankowski, A F

    2000-10-25

    A technique is developed to construct bulk hydroxyapatite (HAp) with different cellular structures. The technique involves the initial synthesis of nanocrystalline hydroxyapatite powder from an aqueous solution using water-soluble compounds and then followed by spray drying into agglomerated granules. The granules were further cold pressed and sintered into bulks at elevated temperatures. The sintering behavior of the HAp granules was characterized and compared with those previously reported. Resulting from the fact that the starting HAp powders were extremely fine, a relatively low activation energy for sintering was obtained. In the present study, both porous and dense structures were produced by varying powder morphology and sintering parameters. Porous structures consisting of open cells were constructed. Sintered structures were characterized using scanning electron microscopy and x-ray tomography. In the present paper, hydroxyapatite coatings produced by magnetron sputtering on silicon and titanium substrates will also be presented. The mechanical properties of the coatings were measured using nanoindentation techniques and microstructures examined using transmission electron microscopy.

  14. Characterisation of Suspension Precipitated Nanocrystalline Hydroxyapatite Powders

    NASA Astrophysics Data System (ADS)

    Mallik, P. K.; Swain, P. K.; Patnaik, S. C.

    2016-02-01

    Hydroxyapatite (HA) is a well-known biomaterial for coating on femoral implants, filling of dental cavity and scaffold for tissue replacement. Hydroxyapatite possess limited load bearing capacity due to their brittleness. In this paper, the synthesis of nanocrystalline hydroxyapatite powders was prepared by dissolving calcium oxide in phosphoric acid, followed by addition of ammonia liquor in a beaker. The prepared solution was stirred by using magnetic stirrer operated at temperature of 80°C for an hour. This leads to the formation of hydroxyapatite precipitate. The precipitate was dried in oven for overnight at 100°C. The dried agglomerated precipitate was calcined at 800°C in conventional furnace for an hour. The influence of calcium oxide concentration and pH on the resulting precipitates was studied using BET, XRD and SEM. As result, a well-defined sub-rounded morphology of powders size of ∼41 nm was obtained with a salt concentration of 0.02 M. Finally, it can be concluded that small changes in the reaction conditions led to large changes in final size, shape and degree of aggregation of the hydroxyapatite particles.

  15. Particle Agglomeration in Bipolar Barb Agglomerator Under AC Electric Field

    NASA Astrophysics Data System (ADS)

    Huang, Chao; Ma, Xiuqin; Sun, Youshan; Wang, Meiyan; Zhang, Changping; Lou, Yueya

    2015-04-01

    The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious. To improve agglomeration effectiveness of fine particles, a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed. The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0 μm under applied AC electric field. An optimal condition for achieving better agglomeration effectiveness was found to be as follows: flue gas flow velocity of 3.00 m/s, particle concentration of 2.00 g/m3, output voltage of 35 kV and length of the barb of 16 mm. In addition, 4.0-6.0 μm particles have the best effectiveness with the variation of particle volume occupancy of -3.2. supported by the Key Technology R&D Program of Hebei, China (No. 13211207D)

  16. Recent Advances in Agglomerated Multigrid

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.; Hammond, Dana P.

    2013-01-01

    We report recent advancements of the agglomerated multigrid methodology for complex flow simulations on fully unstructured grids. An agglomerated multigrid solver is applied to a wide range of test problems from simple two-dimensional geometries to realistic three- dimensional configurations. The solver is evaluated against a single-grid solver and, in some cases, against a structured-grid multigrid solver. Grid and solver issues are identified and overcome, leading to significant improvements over single-grid solvers.

  17. MTCI acoustic agglomeration particulate control

    SciTech Connect

    Chandran, R.R.; Mansour, M.N.; Scaroni, A.W.; Koopmann, G.H.; Loth, J.L.

    1994-10-01

    The overall objective of this project is to demonstrate pulse combination induced acoustic enhancement of coal ash agglomeration and sulfur capture at conditions typical of direct coal-fired turbines and PFBC hot gas cleanup. MTCI has developed an advanced compact pulse combustor island for direct coal-firing in combustion gas turbines. This combustor island comprises a coal-fired pulse combustor, a combined ash agglomeration and sulfur capture chamber (CAASCC), and a hot cyclone. In the MTCI proprietary approach, the pulse combustion-induced high intensity sound waves improve sulfur capture efficiency and ash agglomeration. The resulting agglomerates allow the use of commercial cyclones and achieve very high particulate collection efficiency. In the MTCI proprietary approach, sorbent particles are injected into a gas stream subjected to an intense acoustic field. The acoustic field serves to improve sulfur capture efficiency by enhancing both gas film and intra-particle mass transfer rates. In addition, the sorbent particles act as dynamic filter foci, providing a high density of stagnant agglomerating centers for trapping the finer entrained (in the oscillating flow field) fly ash fractions. A team has been formed with MTCI as the prime contractor and Penn State University and West Virginia University as subcontractors to MTCI. MTCI is focusing on hardware development and system demonstration, PSU is investigating and modeling acoustic agglomeration and sulfur capture, and WVU is studying aerovalve fluid dynamics. Results are presented from all three studies.

  18. Microbial effects on colloidal agglomeration

    SciTech Connect

    Hersman, L.

    1995-11-01

    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared to sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs.

  19. Acoustic agglomeration methods and apparatus

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    Methods are described for using acoustic energy to agglomerate fine particles on the order of one micron diameter that are suspended in gas, to provide agglomerates large enough for efficient removal by other techniques. The gas with suspended particles, is passed through the length of a chamber while acoustic energy at a resonant chamber mode is applied to set up one or more acoustic standing wave patterns that vibrate the suspended particles to bring them together so they agglomerate. Several widely different frequencies can be applied to efficiently vibrate particles of widely differing sizes. The standing wave pattern can be applied along directions transversed to the flow of the gas. The particles can be made to move in circles by applying acoustic energy in perpendicular directions with the energy in both directions being of the same wavelength but 90 deg out of phase.

  20. Enhanced colloidal stability of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Borum, La Rhonda Terese

    Hydroxyapatite, Ca10(PO4)6(OH) 2 is the most thermodynamically stable calcium phosphate in physiological environments. Hence, it is the main inorganic mineral found in bone and teeth. Its colloidal stability, however, is poor because hydroxyapatite (HAp) particles exhibit sediment formation upon standing at short time periods, where agglomerates form and lead to non-homogeneous suspensions. Surface modification is a promising method to tailor the colloidal stability of hydroxyapatite for biomaterial applications. Three techniques to modify the HAp surface and enhance the colloidal stability of HAp were investigated. Modified particles were characterized by methods sensitive to surface chemistry changes, such as sedimentation studies, diffuse reflectance Fourier transform infrared spectroscopy (DRIFT), Brunauer-Emmett-Teller (BET) surface area, and electrophoresis. Sedimentation studies demonstrated how effective each technique was in improving the colloidal stability of hydroxyapatite particles. Electrophoresis provided information on electrostatic interactions within each system. The first technique entailed an esterification reaction of the HAp surface with dodecyl alcohol at elevated temperatures. DRIFT results showed that dodecyl groups from the alcohol replaced acidic hydroxyl and phosphate sites on the HAp surface, giving rise to enhanced colloidal stability through steric interactions in ethanol suspensions. TGA curves gave insight to the degree of esterification for the esterified particles. Higher reaction temperatures give rise to a higher degree of esterification resulting in better colloidal stability. The second technique applied a silica coating on the HAp surface by the hydrolysis of tetraethyl orthosilicate in ethanol. Silica was coated onto the HAp surface at 5--75 wt% loading amounts. A combination of acid dissolution and x-ray diffraction (XRD), along with BET showed that the silica coating is complete at 50 wt% silica loading. The silica coating

  1. Nanopores: Flossing with DNA

    NASA Astrophysics Data System (ADS)

    Kasianowicz, John J.

    2004-06-01

    Passing a DNA strand many times back-and-forth through a protein nanopore would enable the interaction between them to be studied more closely. This may now be possible, using a dumbbell-shaped DNA-polymer complex, which may lead to a more reliable analysis of DNA sequences using nanopores.

  2. Low-rank coal oil agglomeration

    DOEpatents

    Knudson, Curtis L.; Timpe, Ronald C.

    1991-01-01

    A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

  3. Coal beneficiation by gas agglomeration

    DOEpatents

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  4. Nanoporous polymer electrolyte

    SciTech Connect

    Elliott, Brian; Nguyen, Vinh

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  5. Agglomeration of food powder and applications.

    PubMed

    Dhanalakshmi, K; Ghosal, S; Bhattacharya, S

    2011-05-01

    Agglomeration has many applications in food processing and major applications include easy flow table salt, dispersible milk powder and soup mix, instant chocolate mix, beverage powder, compacted cubes for nutritional-intervention program, health bars using expanded/puffed cereals, etc. The main purpose of agglomeration is to improve certain physical properties of food powders such as bulk density, flowability, dispersability, and stability. Agglomerated products are easy to use by the consumers and hence are preferred over the traditional non-agglomerated products that are usually non-flowable in nature. The properties of food agglomerates and the process of agglomeration like employing pressure, extrusion, rewetting, spray-bed drying, steam jet, heat/sintering, and binders have been reviewed. The physical and instant properties of agglomerated food products have also been discussed.

  6. Agglomeration tendency in dry pharmaceutical granular systems.

    PubMed

    Lachiver, Emilie DesRosiers; Abatzoglou, Nicolas; Cartilier, Louis; Simard, Jean-Sébastien

    2006-10-01

    The agglomeration tendency of dry pharmaceutical mixtures containing various concentrations of Xylitab 100 (Xylitol), calcium carbonate precipitated (CCP) and magnesium stearate (MgSt) was evaluated statistically as a function of mixing time. A Ro-Tap tester was employed to mix the three pharmaceutical components, and the agglomerates formed were measured with respect to their weight and size. An experimental design was devised and applied to structure and then statistically analyze the results. Xylitab was found not to be influential in the formation of agglomerates, but aided in deagglomeration when mixed with other components. CCP and MgSt formed agglomerates over time and showed positive interactions favouring agglomeration. The agglomerates started to fracture when they reached a critical size, at which stage the particles' attraction forces (cohesion forces) were weaker than both gravity and inertia. It has been shown and quantitatively demonstrated that the mixing time and ingredient concentrations of a three-component pharmaceutical mixture can affect agglomeration tendency.

  7. Building a better nanopore

    NASA Astrophysics Data System (ADS)

    2016-02-01

    Sophisticated nanopores, which utilize electron tunnelling measurements, two-dimensional materials, or concepts from molecular self-assembly, could have applications in DNA and protein sequencing; the technical problems that must be solved to realize such technologies are considerable though.

  8. Mechanisms for selective agglomeration of coals

    SciTech Connect

    Wheelock, T.D.; Drzymala, J.; Allen, R.W.; Hu, Y.-C.; Tyson, D.; Xiaoping, Qiu; Lessa, A.

    1989-05-01

    Work continued on the basic mechanisms which underlie various processes for beneficiating aqueous suspensions of coal by selective agglomeration with oil. A new method was demonstrated for characterizing the agglomerability of coal suspensions. This method utilizes a photometric dispersion analyzer to monitor changes in the turbidity of a particle suspension as increasing amounts of oil are added to the suspension in a batch agglomeration test. Agglomeration of the particles leads to a marked decrease in the turbidity of the suspension. Another experimental technique was also demonstrated for characterizing oil agglomeration. This technique involves measuring the rate of growth of agglomerates in a continuous flow system operating under stead-state conditions. The data are analyzed by means of a population balance. The results of a preliminary set of experiments in which Indiana V seam coal was agglomerated with tetralin seemed to fit a particular growth model very well. Equipment was also constructed for studying the kinetics of agglomeration in a batch process. While earlier work showed that quebracho (a commercially available dispersant) is a strong agglomeration depressant for pyrite, recent experiments with mixtures of Upper Freeport coal and mineral pyrite showed that quebracho does not appear to be sufficiently selective. Further consideration was given to the separation of mixtures of coal and pyrite agglomeration with heptane. 2 refs., 17 figs., 1 tab.

  9. Effect of Graphene with Nanopores on Metal Clusters

    SciTech Connect

    Zhou, Hu; Chen, Xianlang; Wang, Lei; Zhong, Xing; Zhuang, Guilin; Li, Xiaonian; Mei, Donghai; Wang, Jianguo

    2015-10-07

    Porous graphene, which is a novel type of defective graphene, shows excellent potential as a support material for metal clusters. In this work, the stability and electronic structures of metal clusters (Pd, Ir, Rh) supported on pristine graphene and graphene with different sizes of nanopore were investigated by first-principle density functional theory (DFT) calculations. Thereafter, CO adsorption and oxidation reaction on the Pd-graphene system were chosen to evaluate its catalytic performance. Graphene with nanopore can strongly stabilize the metal clusters and cause a substantial downshift of the d-band center of the metal clusters, thus decreasing CO adsorption. All binding energies, d-band centers, and adsorption energies show a linear change with the size of the nanopore: a bigger size of nanopore corresponds to a stronger metal clusters bond to the graphene, lower downshift of the d-band center, and weaker CO adsorption. By using a suitable size nanopore, supported Pd clusters on the graphene will have similar CO and O2 adsorption ability, thus leading to superior CO tolerance. The DFT calculated reaction energy barriers show that graphene with nanopore is a superior catalyst for CO oxidation reaction. These properties can play an important role in instructing graphene-supported metal catalyst preparation to prevent the diffusion or agglomeration of metal clusters and enhance catalytic performance. This work was supported by National Basic Research Program of China (973Program) (2013CB733501), the National Natural Science Foundation of China (NSFC-21176221, 21136001, 21101137, 21306169, and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational

  10. Powder agglomeration in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Cawley, James D.

    1994-01-01

    This is the final report for NASA Grant NAG3-755 entitled 'Powder Agglomeration in a Microgravity Environment.' The research program included both two types of numerical models and two types of experiments. The numerical modeling included the use of Monte Carlo type simulations of agglomerate growth including hydrodynamic screening and molecular dynamics type simulations of the rearrangement of particles within an agglomerate under a gravitational field. Experiments included direct observation of the agglomeration of submicron alumina and indirect observation, using small angle light scattering, of the agglomeration of colloidal silica and aluminum monohydroxide. In the former class of experiments, the powders were constrained to move on a two-dimensional surface oriented to minimize the effect of gravity. In the latter, some experiments involved mixture of suspensions containing particles of opposite charge which resulted in agglomeration on a very short time scale relative to settling under gravity.

  11. Irradiation response and stability of nanoporous materials

    SciTech Connect

    Fu, Engang; Wang, Yongqiang; Serrano De Caro, Magdalena; Caro, Jose A.; Zepeda-Ruiz, L; Bringa, E.; Nastasi, Mike; Baldwin, Jon K.

    2012-08-28

    Nanoporous materials consist of a regular organic or inorganic framework supporting a regular, porous structure. Pores are by definition roughly in the nanometre range, that is between 0.2 nm and 100 nm. Nanoporous materials can be subdivided into 3 categories (IUPAC): (1) Microporous materials - 0.2-2 nm; (2) Mesoporous materials - 2-50 nm; and (3) Macroporous materials - 50-1000 nm. np-Au foams were successfully synthesized by de-alloying process. np-Au foams remain porous structure after Ne ion irradiation to 1 dpa. Stacking Fault Tetrahedra (SFTs) were observed in RT irradiated np-Au foams under the highest and intermediate fluxes, but not under the lowest flux. SFTs were not observed in LNT irradiated np-Au foams under all fluxes. The vacancy diffusivity in Au at RT is high enough so that the vacancies have enough time to agglomerate and then collapse to form SFTs. The high ion flux creates more damage per unit time; vacancies don't have enough time to diffuse or recombine. As a result, SFTs were formed at high ion fluxes.

  12. An improved theoretical model of acoustic agglomeration

    SciTech Connect

    Song, L. ); Koopmann, G.H. . Center for Acoustics and Vibration); Hoffmann, T.L. )

    1994-04-01

    An improved theoretical model is developed to describe the acoustic agglomeration of particles entrained in a gas medium. The improvements to the present theories are twofold: first, wave scattering is included in the orthokinetic interaction of particles and second, hydrodynamic interaction, shown to be an important agglomeration mechanism for certain operation conditions, is incorporated into the model. The influence of orthokinetic and hydrodynamic interactions introduce associated convergent velocities that cause particles to approach each other and collide. The convergent velocities are related with an acoustic agglomeration frequency function (AAFF) through a semi-statistical method. This function is the key parameter for the theoretical simulation of acoustic agglomeration.

  13. Low-rank coal oil agglomeration

    DOEpatents

    Knudson, C.L.; Timpe, R.C.

    1991-07-16

    A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

  14. Engineering development of selective agglomeration. Final report

    SciTech Connect

    Not Available

    1993-04-01

    This report presents the findings of the project entitled ``Engineering Development of Selective Agglomeration.`` The purpose is to develop selective agglomeration technology to a commercially acceptable level by 1993. Engineering development included bench-scale process development, component development adaptation or modification of existing unit operations, proof-of-concept (POC) module design, fabrication, testing, data evaluation, and conceptual design of a commercial facility. The information obtained during POC operation resulted in a technical and economic design base sufficient to support construction and operation of a commercial plant. Throughout this project performance targets for the engineering development of selective agglomeration process were to achieve 85% or greater Btu recovery at 85% or greater pyritic sulfur rejection (PSR). Additional objectives included producing a final clean-coal product with an ash content of 6% or less which is suitable for conventional coal handling systems. The selective agglomeration process, as applied to coal cleaning, is based on differences in the surface chemistry of coal and its associated impurities. Coal particles are hydrophobic (i.e., repel water) while the majority of its impurities are hydrophilic (i.e., stabilized in water). During selective agglomeration, a liquid (the agglomerant) that is immiscible with water is introduced into a coal-water slurry and agitated to disperse it in the slurry, thereby allowing it to come into contact with all particles in the slurry. The coal particles, due to their hydrophobic nature, are attracted to the agglomerant phase. The hydrophilic mineral impurities remain in the water phase. Continued agitation of the agglomerant-coated coal particles causes them to coalesce to form agglomerates. Once the agglomerates are formed, they are separated from the mineral matter-bearing aqueous phase by subsequent processing steps.

  15. Stabilization of graphene nanopore

    PubMed Central

    Lee, Jaekwang; Yang, Zhiqing; Zhou, Wu; Pennycook, Stephen J.; Pantelides, Sokrates T.; Chisholm, Matthew F.

    2014-01-01

    Graphene is an ultrathin, impervious membrane. The controlled introduction of nanoscale pores in graphene would lead to applications that involve water purification, chemical separation, and DNA sequencing. However, graphene nanopores are unstable against filling by carbon adatoms. Here, using aberration-corrected scanning transmission electron microscopy and density-functional calculations, we report that Si atoms stabilize graphene nanopores by bridging the dangling bonds around the perimeter of the hole. Si‐passivated pores remain intact even under intense electron beam irradiation, and they were observed several months after the sample fabrication, demonstrating that these structures are intrinsically robust and stable against carbon filling. Theoretical calculations reveal the underlying mechanism for this stabilization effect: Si atoms bond strongly to the graphene edge, and their preference for tetrahedral coordination forces C adatoms to form dendrites sticking out of the graphene plane, instead of filling the nanopore. Our results provide a novel way to develop stable nanopores, which is a major step toward reliable graphene-based molecular translocation devices. PMID:24821802

  16. Modeling of particle agglomeration in nanofluids

    NASA Astrophysics Data System (ADS)

    Krishna, K. Hari; Neti, S.; Oztekin, A.; Mohapatra, S.

    2015-03-01

    Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid was moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed.

  17. Modeling of particle agglomeration in nanofluids

    SciTech Connect

    Krishna, K. Hari; Neti, S.; Oztekin, A.; Mohapatra, S.

    2015-03-07

    Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid was moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed.

  18. Percolative fragmentation and spontaneous agglomeration

    SciTech Connect

    Hurt, R.; Davis, K.

    1999-03-01

    Captive particle imaging experiments were performed on over 200 coal and char particles in the pulverized size range from four coals of various rank at oxygen concentration from 3--19 mol% and at gas temperatures of about 1250 K. Despite wide variations in single-particle behavior, the data set reveals two clear trends that provide new information on the nature of char combustion. First, the low-rank coal chars are observed to maintain their high reactivity through the late stages of combustion, thus avoiding the near-extinction events and long burnout tails observed for bituminous coal chars. Secondly, percolative fragmentation in the late stages of combustion is a rare event under these conditions. Some particles reach a percolation threshold rate in combustion, but typically undergo spontaneous agglomeration rather than liberation of the incipient fragments. It is concluded that percolative fragmentation behavior in the pulverized size range is determined not only by solid-phase connectivity, but also by a real competition between disruptive and cohesive forces present at the time of formation of the colloidal-sized incipient fragments.

  19. Hydroxyapatite with environmental applications

    SciTech Connect

    Popa, C. L.; Ciobanu, C. S.; Predoi, D.; Petre, C. C.; Jiga, G.; Motelica-Heino, M.; Iconaru, S. L.

    2014-05-15

    The aim of this study was to synthetize new nanoparticles based on methyltrimethoxysilane coated hydroxyapatite (MTHAp) for lead removal in aqueous solutions. The morphological and compositional analysis of MTHAp was investigated by scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). Removal experiments of Pb{sup 2+} ions were carried out in aqueous solutions with controlled concentration of Pb{sup 2+} and at fixed pH of 5. After the removal experiment of Pb{sup 2+} ions from solutions, porous hydroxyapatite nanoparticles were transformed into PbMTHAp-5 via the adsorption of Pb{sup 2+} ions followed by a cation exchange reaction. Our results demonstrate that the porous hydroxyapatite nanoparticles can be used as an adsorbent for removing Pb{sup 2+} ions from aqueous solution.

  20. Voltage-Gated Hydrophobic Nanopores

    SciTech Connect

    Lavrik, Nickolay V

    2011-01-01

    Hydrophobicity is a fundamental property that is responsible for numerous physical and biophysical aspects of molecular interactions in water. Peculiar behavior is expected for water in the vicinity of hydrophobic structures, such as nanopores. Indeed, hydrophobic nanopores can be found in two distinct states, dry and wet, even though the latter is thermodynamically unstable. Transitions between these two states are kinetically hindered in long pores but can be much faster in shorter pores. As it is demonstrated for the first time in this paper, these transitions can be induced by applying a voltage across a membrane with a single hydrophobic nanopore. Such voltage-induced gating in single nanopores can be realized in a reversible manner through electrowetting of inner walls of the nanopores. The resulting I-V curves of such artificial hydrophobic nanopores mimic biological voltage-gated channels.

  1. Recent advances in nanopore sequencing

    PubMed Central

    Maitra, Raj D.; Kim, Jungsuk; Dunbar, William B.

    2013-01-01

    The prospect of nanopores as a next-generation sequencing (NGS) platform has been a topic of growing interest and considerable government-sponsored research for more than a decade. Oxford Nanopore Technologies recently announced the first commercial nanopore sequencing devices, to be made available by the end of 2012, while other companies (Life, Roche, IBM) are also pursuing nanopore sequencing approaches. In this paper, the state of the art in nanopore sequencing is reviewed, focusing on the most recent contributions that have or promise to have NGS commercial potential. We consider also the scalability of the circuitry to support multichannel arrays of nanopores in future sequencing devices, which is critical to commercial viability. PMID:23138639

  2. Hydroxyapatite synthesis using EDTA.

    PubMed

    Kang, Nak Heon; Kim, Soon Je; Song, Seung Han; Choi, Sang mun; Choi, Sik Young; Kim, Youn Jung

    2013-05-01

    Bone comprises structure of the body and consisted of inorganic substances. It exists in an organic structure in the body. Even though it is firm and has self-healing mechanism, it can be damaged by trauma, cancer, or bone diseases. Allograft can be an alternative solution for autologous bone graft. Hydroxyapatite (Ca10(PO4)6(OH)2), an excellent candidate for allograft, can be applied to bone defect area. There are several methods to produce hydroxyapatite; however, economical cost and being time consuming make the production difficult. In this study, we synthesized hydroxyapatite with EDTA. Freeze-dried bone allograft (Hans Biomed) was used as the control group. Synthesized hydroxyapatite was a rod-shaped, white powdery substance with 2- to 5-μm length and 0.5- to 1-μm width. X-ray diffraction showed the highest sharp peak at 32°C and high peaks at 25.8°C, 39.8°C, 46.8°C, 49.5°C, and 64.0°C, indicating a similar substance to the freeze-dried bone allograft. After 3 days, the cell growth of synthesized hydroxyapatite showed 1.5-fold more than did the bone allograft. Cellular and media alkaline phosphate activity increased similar to the bone allograft. In this study, we came up with a new method to produce the hydroxyapatite. It is a convenient method that can be held in room temperature and low pressure. Also, the product can be manufactured in large quantity. It can be also transformed into scaffold structure, which will perform a stronger configuration. The manufacturing method will help the bony defect patients and make future medical products.

  3. Bed material agglomeration during fluidized bed combustion

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  4. Agglomeration of microparticles in complex plasmas

    SciTech Connect

    Du, Cheng-Ran; Thomas, Hubertus M.; Ivlev, Alexei V.; Konopka, Uwe; Morfill, Gregor E.

    2010-11-15

    Agglomeration of highly charged microparticles was observed and studied in complex plasma experiments carried out in a capacitively coupled rf discharge. The agglomeration was caused by strong waves triggered in a particle cloud by decreasing neutral gas pressure. Using a high-speed camera during this unstable regime, it was possible to resolve the motion of individual microparticles and to show that the relative velocities of some particles were sufficiently high to overcome the mutual Coulomb repulsion and hence to result in agglomeration. After stabilizing the cloud again through the increase of the pressure, we were able to observe the aggregates directly with a long-distance microscope. We show that the agglomeration rate deduced from our experiments is in good agreement with theoretical estimates. In addition, we briefly discuss the mechanisms that can provide binding of highly charged microparticles in a plasma.

  5. Advances in food powder agglomeration engineering.

    PubMed

    Cuq, B; Gaiani, C; Turchiuli, C; Galet, L; Scher, J; Jeantet, R; Mandato, S; Petit, J; Murrieta-Pazos, I; Barkouti, A; Schuck, P; Rondet, E; Delalonde, M; Dumoulin, E; Delaplace, G; Ruiz, T

    2013-01-01

    Food powders are used in everyday life in many ways and offer technological solutions to the problem of food production. The natural origin of food powders, diversity in their chemical composition, variability of the raw materials, heterogeneity of the native structures, and physicochemical reactivity under hydrothermal stresses contribute to the complexity in their behavior. Food powder agglomeration has recently been considered according to a multiscale approach, which is followed in the chapter layout: (i) at the particle scale, by a presentation of particle properties and surface reactivity in connection with the agglomeration mechanisms, (ii) at the mechanisms scale, by describing the structuration dynamics of agglomerates, (iii) at the process scale, by a presentation of agglomeration technologies and sensors and by studying the stress transmission mode in the powder bed, and finally (iv) by an integration of the acquired knowledge, thanks to a dimensional analysis carried out at each scale.

  6. Optimized nanoporous materials.

    SciTech Connect

    Braun, Paul V.; Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J.; Pierson, Bonnie E.; Gittard, Shaun D.; Robinson, David B.; Ham, Sung-Kyoung; Chae, Weon-Sik; Gough, Dara V.; Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

    2009-09-01

    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

  7. Current oscillations in nanopores

    NASA Astrophysics Data System (ADS)

    Hyland, Brittany

    We develop a simple phenomenological model to describe current oscillations in single, conically shaped nanopores. The model utilizes aspects of reaction rate theory, electrochemical oscillators, and nonlinear dynamical systems. Time series of experimental data were analyzed and compared to time series simulated using the model equations. There is good qualitative agreement between experiment and simulation, though the model needs to be improved in order to obtain better quantitative agreement.

  8. Tetraethylorthosilicate (TEOS) applied in the surface modification of hydroxyapatite to develop polydimethylsiloxane/hydroxyapatite composites.

    PubMed

    Bareiro, O; Santos, L A

    2014-03-01

    Nanometric hydroxyapatite (HAp) particles were modified with 5 or 10 wt.% tetraethylorthosilicate (TEOS) solutions in order to prepare polydimethylsiloxane/hydroxyapatite (PDMS/HAp) composites. The surface modification of the HAp particles was studied by transmission electron spectroscopy (TEM) and by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) equipment. The dispersion state of the modified particles in the PDMS matrix was also assessed by SEM. The composite phase composition was characterized by X-ray diffraction (XRD). The composite thermodynamic parameters of cross-linking were analyzed by differential scanning calorimetry (DSC). TEM micrographs and EDS spectra indicated evidence of silica-coating formation on the surface of modified HAp particles. SEM results showed that the HAp particles formed agglomerates in the PDMS matrix. It was found that the introduction of HAp particles into the PDMS changed the enthalpy of cross-linking and the temperature of the beginning of the cross-linking reaction. EDS results indicated that the surface modification of HAp produced composites showing thermodynamic parameters that were more similar to those of unfilled PDMS.

  9. Diffusion and reaction in microbead agglomerates.

    PubMed

    Nunes Kirchner, Carolina; Träuble, Markus; Wittstock, Gunther

    2010-04-01

    Scanning electrochemical microscopy has been used to analyze the flux of p-aminonophenol (PAP) produced by agglomerates of polymeric microbeads modified with galactosidase as a model system for the bead-based heterogeneous immunoassays. With the use of mixtures of enzyme-modified and bare beads in defined ratio, agglomerates with different saturation levels of the enzyme modification were produced. The PAP flux depends on the intrinsic kinetics of the galactosidase, the local availability of the substrate p-aminophenyl-beta-D-galactopyranoside (PAPG), and the external mass transport conditions in the surrounding of the agglomerate and the internal mass transport within the bead agglomerate. The internal mass transport is influenced by the diffusional shielding of the modified beads by unmodified beads. SECM in combination with optical microscopy was used to determine experimentally the external flux. These data are in quantitative agreement with boundary element simulation considering the SECM microelectrode as an interacting probe and treating the Michaelis-Menten kinetics of the enzyme as nonlinear boundary conditions with two independent concentration variables [PAP] and [PAPG]. The PAPG concentration at the surface of the bead agglomerate was taken as a boundary condition for the analysis of the internal mass transport condition as a function of the enzyme saturation in the bead agglomerate. The results of this analysis are represented as PAP flux per contributing modified bead and the flux from freely suspended galactosidase-modified beads. These numbers are compared to the same number from the SECM experiments. It is shown that depending on the enzyme saturation level a different situation can arise where either beads located at the outer surface of the agglomerate dominate the contribution to the measured external flux or where the contribution of buried beads cannot be neglected for explaining the measured external flux.

  10. Preparation and characterization of carbonated barium-calcium hydroxyapatite solid solutions.

    PubMed

    Yasukawa, Akemi; Ueda, Eiichi; Kandori, Kazuhiko; Ishikawa, Tatsuo

    2005-08-15

    Particles of carbonated barium-calcium hydroxyapatite solid solutions (BaCaHap) with different Ba/(Ba+Ca) (X(Ba)) atomic ratios were prepared by a wet method at 100 degrees C and characterized by various means. The crystal phases and structures of the products strongly depended on the composition of the starting solution, that is, the Ba/(Ba+Ca) atomic ratio ([X(Ba)]) and H3PO4 concentration ([H3PO4]) in the solution. BaCaHap with X(Ba)0.43 could be prepared at [X(Ba)]0.7 by changing [H3PO4], but could never be obtained at [X(Ba)]=0.8-0.95 regardless of [H3PO4]. The carbonated calcium hydroxyapatite particles prepared at [X(Ba)]=0 were fine and short rod-shaped particles (ca. 14x84 nm). With increasing [X(Ba)] from 0 to 0.8, the particles obtained became large spherical agglomerates. The carbonated barium hydroxyapatite particles formed at [X(Ba)]=1 were long rod-shaped agglomerates (ca. 0.2x2 microm) of fine primary particles. The amount of CO2 adsorbed irreversibly on a series of BaCaHaps showed a minimum at (Ba+Ca)/(P+C) atomic ratio of around 1.56, which agreed well with the minimum cation/P ratio obtained for the other hydroxyapatites, as already reported.

  11. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.

    PubMed

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Tran, Thanh N; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-01-23

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity. Achieving sufficient blend uniformity requires that the blending conditions are able to break up agglomerates, which is often an abrasion process. This study was based on the assumption that the abrasion rate of agglomerates determines the required blending time. It is shown that the kinetic energy density of the moving powder bed is a relevant parameter which correlates with the abrasion rate of agglomerates. However, aspects related to the strength of agglomerates should also be considered. For this reason the Stokes abrasion number (St(Abr)) has been defined. This parameter describes the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. The St(Abr) number is shown to predict the abrasion potential of agglomerates in the dry-mixing process. It appeared possible to include effects of filler particle size and impeller rotational rate into this concept. A clear relationship between abrasion rate of agglomerates and the value of St(Abr) was demonstrated.

  12. Molecule-hugging graphene nanopores

    PubMed Central

    Garaj, Slaven; Liu, Song; Golovchenko, Jene A.; Branton, Daniel

    2013-01-01

    It has recently been recognized that solid-state nanopores in single-atomic-layer graphene membranes can be used to electronically detect and characterize single long charged polymer molecules. We have now fabricated nanopores in single-layer graphene that are closely matched to the diameter of a double-stranded DNA molecule. Ionic current signals during electrophoretically driven translocation of DNA through these nanopores were experimentally explored and theoretically modeled. Our experiments show that these nanopores have unusually high sensitivity (0.65 nA/Å) to extremely small changes in the translocating molecule’s outer diameter. Such atomically short graphene nanopores can also resolve nanoscale-spaced molecular structures along the length of a polymer, but do so with greatest sensitivity only when the pore and molecule diameters are closely matched. Modeling confirms that our most closely matched pores have an inherent resolution of ≤0.6 nm along the length of the molecule. PMID:23836648

  13. The evolution of nanopore sequencing

    PubMed Central

    Wang, Yue; Yang, Qiuping; Wang, Zhimin

    2014-01-01

    The “$1000 Genome” project has been drawing increasing attention since its launch a decade ago. Nanopore sequencing, the third-generation, is believed to be one of the most promising sequencing technologies to reach four gold standards set for the “$1000 Genome” while the second-generation sequencing technologies are bringing about a revolution in life sciences, particularly in genome sequencing-based personalized medicine. Both of protein and solid-state nanopores have been extensively investigated for a series of issues, from detection of ionic current blockage to field-effect-transistor (FET) sensors. A newly released protein nanopore sequencer has shown encouraging potential that nanopore sequencing will ultimately fulfill the gold standards. In this review, we address advances, challenges, and possible solutions of nanopore sequencing according to these standards. PMID:25610451

  14. Hydroxyapatite Deposition Disease

    DTIC Science & Technology

    2006-11-01

    calcific tendinitis or calcific periarthritis, is characterized by the deposition of calcium phosphate crystals (predominantly hydroxyapatite) in...site of HADD is the hip, where calcifications are usually found in the gluteus medius tendon or along the femur at various sites of tendinous ...posterolateral femoral diaphysis, as well as in various other tendinous attachments to the femur. Computed tomography is also helpful in the demonstration

  15. Protein conducting nanopores

    NASA Astrophysics Data System (ADS)

    Harsman, Anke; Krüger, Vivien; Bartsch, Philipp; Honigmann, Alf; Schmidt, Oliver; Rao, Sanjana; Meisinger, Christof; Wagner, Richard

    2010-11-01

    About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40SC as well as a mutant Tom40SC (\\mathrm {S}_{54} \\to E ) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40SC corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40SC S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with \\bar {t}_{\\mathrm {off}} \\cong 1.1 ms for the wildtype, whereas the mutant Tom40SC S54E displayed a biphasic dwelltime distribution (\\bar {t}_{\\mathrm {off}}^1 \\cong 0.4 ms \\bar {t}_{\\mathrm {off}}^2 \\cong 4.6 ms).

  16. Nanoporous plasmonic metamaterials

    SciTech Connect

    Biener, J; Nyce, G W; Hodge, A M; Biener, M M; Hamza, A V; Maier, S A

    2007-05-24

    We review different routes for the generation of nanoporous metallic foams and films exhibiting well-defined pore size and short-range order. Dealloying and templating allows the generation of both two- and three-dimensional structures which promise a well defined plasmonic response determined by material constituents and porosity. Viewed in the context of metamaterials, the ease of fabrication of samples covering macroscopic dimensions is highly promising, and suggests more in-depth investigations of the plasmonic and photonic properties of this material system for photonic applications.

  17. Modeling Transport Through Synthetic Nanopores

    PubMed Central

    Aksimentiev, Aleksei; Brunner, Robert K.; Cruz-Chú, Eduardo; Comer, Jeffrey; Schulten, Klaus

    2011-01-01

    Nanopores in thin synthetic membranes have emerged as convenient tools for high-throughput single-molecule manipulation and analysis. Because of their small sizes and their ability to selectively transport solutes through otherwise impermeable membranes, nanopores have numerous potential applications in nanobiotechnology. For most applications, properties of the nanopore systems have to be characterize at the atomic level, which is currently beyond the limit of experimental methods. Molecular dynamics (MD) simulations can provide the desired information, however several technical challenges have to be met before this method can be applied to synthetic nanopore systems. Here, we highlight our recent work on modeling synthetic nanopores of the most common types. First, we describe a novel graphical tool for setting up all-atom systems incorporating inorganic materials and biomolecules. Next, we illustrate the application of the MD method for silica, silicon nitride, and polyethylene terephthalate nanopores. Following that, we describe a method for modeling synthetic surfaces using a bias potential. Future directions for tool development and nanopore modeling are briefly discussed at the end of this article. PMID:21909347

  18. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J.; Hryn, John N.; Elam, Jeffrey W.

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  19. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  20. Efficient Fabrication of Nanoporous Si and Si/Ge Enabled by a Heat Scavenger in Magnesiothermic Reactions

    PubMed Central

    Luo, Wei; Wang, Xingfeng; Meyers, Colin; Wannenmacher, Nick; Sirisaksoontorn, Weekit; Lerner, Michael M.; Ji, Xiulei

    2013-01-01

    Magnesiothermic reduction can directly convert SiO2 into Si nanostructures. Despite intense efforts, efficient fabrication of highly nanoporous silicon by Mg still remains a significant challenge due to the exothermic reaction nature. By employing table salt (NaCl) as a heat scavenger for the magnesiothermic reduction, we demonstrate an effective route to convert diatom (SiO2) and SiO2/GeO2 into nanoporous Si and Si/Ge composite, respectively. Fusion of NaCl during the reaction consumes a large amount of heat that otherwise collapses the nano-porosity of products and agglomerates silicon domains into large crystals. Our methodology is potentially competitive for a practical production of nanoporous Si-based materials. PMID:23860418

  1. Nanocrystalline hydroxyapatite enriched in selenite and manganese ions: physicochemical and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Kolmas, Joanna; Groszyk, Ewa; Piotrowska, Urszula

    2015-07-01

    In this work, we used the co-precipitation method to synthesize hydroxyapatite (Mn-SeO3-HA) containing both selenium IV (approximately 3.60 wt.%) and manganese II (approximately 0.29 wt.%). Pure hydroxyapatite (HA), hydroxyapatite-containing manganese (II) ions (Mn-HA), and hydroxyapatite-containing selenite ions alone (SeO3-HA), prepared with the same method, were used as reference materials. The structures and physicochemical properties of all the obtained samples were investigated. PXRD studies showed that the obtained materials were homogeneous and consisted of apatite phase. Introducing selenites into the hydroxyapatite crystals considerably affects the size and degree of ordering. Experiments with transmission electron microscopy (TEM) showed that Mn-SeO3-HA crystals are very small, needle-like, and tend to form agglomerates. Fourier transform infrared spectroscopy (FT-IR) and solid-state nuclear magnetic resonance (ssNMR) were used to analyze the structure of the obtained material. Preliminary microbiological tests showed that the material demonstrated antibacterial activity against Staphylococcus aureus, yet such properties were not confirmed regarding Escherichia coli. PACS codes: 61, 76, 81

  2. Evaluation of Hydroxyapatite-Forsterite Glass Composite Nanopowder Prepared via Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Mazrooei Sebdani, Maryam; Fathi, Mohammadhossein

    In spite of attractive bioactivity of bioactive ceramics i.e. hydroxyapatite and bioactive glasses, their poor mechanical properties have restricted their clinical applications. To overcome these limitations, an alternative approach suggested is preparation a composite including these bioactive ceramics with others. It is expected that a ceramic reinforcement with reduced grain size below 100 nm promotes theirs. The aim of this work was fabrication and characterization of hydroxyapatite-forsterite-bioglass composite nanopowder. Novel hydroxyapatite-forsterite-bioglass composite nanopowder was synthesized by incorporation of the forsterite and bioactive glass in hydroxyapatite matrix via a sol-gel process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and fourier transform infrared (FTIR) spectroscopy techniques were utilized in order to evaluate the phase composition, agglomerates size distribution, morphology and particle size and functional groups of synthesized. The effects of sintering temperature and time were also investigated. Results showed that the appropriate temperature for calcination was 600°C and the particle size of composite nanopowder was about 60-70nm. The decomposition of hydroxyapatite was increased with the increase of the sintering temperature and sintering time. Obtained results indicate that prepared composite nanopowder could be a good candidate for medical applications.

  3. Fabrication and simulation of nanopore optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Coleman, J. J.; Dias, N. L.; Reddy, U.; Garg, A.; Young, J. D.; Verma, V. B.; Elarde, V. C.

    2010-07-01

    Nanopores are a new class of low dimensional semiconductor nanostructures which have been recently proposed for use in lasers and other photonic applications. This paper provides an overview of patterned nanopore lattices with an emphasis on their electronic and optical properties. The ability to control nanopore properties by geometry and material composition are demonstrated. Two methods for controlled nanopore fabrication are presented and compared. Spectral characteristics of nanopore lasers are presented. Finite element numerical simulations are also performed to determine the band structure and emission properties of nanopores.

  4. Fabrication and simulation of nanopore optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Coleman, J. J.; Dias, N. L.; Reddy, U.; Garg, A.; Young, J. D.; Verma, V. B.; Elarde, V. C.

    2011-03-01

    Nanopores are a new class of low dimensional semiconductor nanostructures which have been recently proposed for use in lasers and other photonic applications. This paper provides an overview of patterned nanopore lattices with an emphasis on their electronic and optical properties. The ability to control nanopore properties by geometry and material composition are demonstrated. Two methods for controlled nanopore fabrication are presented and compared. Spectral characteristics of nanopore lasers are presented. Finite element numerical simulations are also performed to determine the band structure and emission properties of nanopores.

  5. Soft- and hard-agglomerate aerosols made at high temperatures.

    PubMed

    Tsantilis, Stavros; Pratsinis, Sotiris E

    2004-07-06

    Criteria for aerosol synthesis of soft-agglomerate, hard-agglomerate, or even nonagglomerate particles are developed on the basis of particle sintering and coalescence. Agglomerate (or aggregate) particles are held together by weak, physical van der Waals forces (soft agglomerates) or by stronger chemical or sintering bonds (hard agglomerates). Accounting for simultaneous gas phase chemical reaction, coagulation, and sintering during the formation and growth of silica (SiO2) nanoparticles by silicon tetrachloride (SiCl4) oxidation and neglecting the spread of particle size distribution, the onset of hard-agglomerate formation is identified at the end of full coalescence, while the onset of soft-agglomerate formation is identified at the end of sintering. Process conditions such as the precursor initial volume fraction, maximum temperature, residence time, and cooling rate are explored, identifying regions for the synthesis of particles with a controlled degree of agglomeration (ratio of collision to primary particle diameters).

  6. Noise Properties of Rectifying Nanopore

    SciTech Connect

    Vlassiouk, Ivan V

    2011-01-01

    Ion currents through three types of rectifying nanoporous structures are studied and compared: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by the power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit nonequilibrium 1/f noise; thus, the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics and formation of vortices and nonlinear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier-Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields, inducing secondary effects in the pore, such as enhanced water dissociation.

  7. Noise Properties of Rectifying Nanopores

    SciTech Connect

    Powell, M R; Sa, N; Davenport, M; Healy, K; Vlassiouk, I; Letant, S E; Baker, L A; Siwy, Z S

    2011-02-18

    Ion currents through three types of rectifying nanoporous structures are studied and compared for the first time: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit non-equilibrium 1/f noise, thus the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics, and formation of vortices and non-linear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields inducing secondary effects in the pore such as enhanced water dissociation.

  8. Method for providing improved solid fuels from agglomerated subbituminous coal

    DOEpatents

    Janiak, Jerzy S.; Turak, Ali A.; Pawlak, Wanda; Ignasiak, Boleslaw L.

    1989-01-01

    A method is provided for separating agglomerated subbituminous coal and the heavy bridging liquid used to form the agglomerates. The separation is performed by contacting the agglomerates with inert gas or steam at a temperature in the range of 250.degree. to 350.degree. C. at substantially atmospheric pressure.

  9. Applications of Nanoporous Materials in Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nanoporous materials possess organized pore distributions and increased surface areas. Advances in the systematic design of nanoporous materials enable incorporation of functionality for better sensitivity in detection methods, increased capacity of sorbents, and improved selectivity and yield in ca...

  10. Encapsulation of hazardous wastes into agglomerates

    SciTech Connect

    Guloy, A.

    1992-01-28

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

  11. Agglomeration and Sedimentation of MWCNTS in Chloroform

    NASA Astrophysics Data System (ADS)

    Eremin, Yu. S.; Kolesnikova, A. A.; Grekhov, A. M.

    The kinetics of agglomeration of multiwalled carbon nanotubes dispersed in chloroform has been studied by the methods of optical spectroscopy and dynamic light scattering. With the use of the models of the diffusion of cylindrical particles, the sizes of particles obtained by this method can be recalculated to the DLS data and the concentration at which the dispersion of individual МWCNTs occurs can be determined.

  12. Plasmonic devices and sensors built from ordered nanoporous materials.

    SciTech Connect

    Jacobs, Benjamin W.; Kobayashi, Yoji; Houk, Ronald J. T.; Allendorf, Mark D.; Long, Jeffrey R.; Robertson, Ian M.; House, Stephen D.; Graham, Dennis D.; Talin, Albert Alec; Chang, Noel N.; El Gabaly Marquez, Farid

    2009-09-01

    The objective of this project is to lay the foundation for using ordered nanoporous materials known as metal-organic frameworks (MOFs) to create devices and sensors whose properties are determined by the dimensions of the MOF lattice. Our hypothesis is that because of the very short (tens of angstroms) distances between pores within the unit cell of these materials, enhanced electro-optical properties will be obtained when the nanopores are infiltrated to create nanoclusters of metals and other materials. Synthetic methods used to produce metal nanoparticles in disordered templates or in solution typically lead to a distribution of particle sizes. In addition, creation of the smallest clusters, with sizes of a few to tens of atoms, remains very challenging. Nanoporous metal-organic frameworks (MOFs) are a promising solution to these problems, since their long-range crystalline order creates completely uniform pore sizes with potential for both steric and chemical stabilization. We report results of synthetic efforts. First, we describe a systematic investigation of silver nanocluster formation within MOFs using three representative MOF templates. The as-synthesized clusters are spectroscopically consistent with dimensions {le} 1 nm, with a significant fraction existing as Ag{sub 3} clusters, as shown by electron paramagnetic resonance. Importantly, we show conclusively that very rapid TEM-induced MOF degradation leads to agglomeration and stable, easily imaged particles, explaining prior reports of particles larger than MOF pores. These results solve an important riddle concerning MOF-based templates and suggest that heterostructures composed of highly uniform arrays of nanoparticles within MOFs are feasible. Second, a preliminary study of methods to incorporate fulleride (K{sub 3}C{sub 60}) guest molecules within MOF pores that will impart electrical conductivity is described.

  13. Multiplexed ionic current sensing with glass nanopores.

    PubMed

    Bell, Nicholas A W; Thacker, Vivek V; Hernández-Ainsa, Silvia; Fuentes-Perez, Maria E; Moreno-Herrero, Fernando; Liedl, Tim; Keyser, Ulrich F

    2013-05-21

    We report a method for simultaneous ionic current measurements of single molecules across up to 16 solid state nanopore channels. Each device, costing less than $20, contains 16 glass nanopores made by laser assisted capillary pulling. We demonstrate simultaneous multichannel detection of double stranded DNA and trapping of DNA origami nanostructures to form hybrid nanopores.

  14. Highly active thermally stable nanoporous gold catalyst

    SciTech Connect

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  15. Development of a Gas-Promoted Oil Agglomeration Process

    SciTech Connect

    C. Nelson; F. Zhang; J. Drzymala; M. Shen; R. Abbott; T. D. Wheelock

    1997-11-01

    The preliminary laboratory-scale development of a gas-promoted, oil agglomeration process for cleaning coal was carried out with scale model mixing systems in which aqueous suspensions of ultrafine coal particles were treated with a liquid hydrocarbon and a small amount of air. The resulting agglomerates were recovered by screening. During a batch agglomeration test the progress of agglomeration was monitored by observing changes in agitator torque in the case of concentrated suspensions or by observing changes in turbidity in the case of dilute suspensions. Dilute suspensions were employed for investigating the kinetics of agglomeration, whereas concentrated suspensions were used for determining parameters that characterize the process of agglomeration. A key parameter turned out to be the minimum time te required to produce compact spherical agglomerates. Other important parameters included the projected area mean particle diameter of the agglomerates recovered at the end of a test as well as the ash content and yield of agglomerates. Batch agglomeration tests were conducted with geometrically similar mixing tanks which ranged in volume from 0.346 to 11.07 liters. Each tank was enclosed to control the amount of air present. A variable speed agitator fitted with a six blade turbine impeller was used for agitation. Tests were conducted with moderately hydrophobic Pittsburgh No. 8 coal and with more hydrophobic Upper Freeport coal using either n-heptane, i-octane, or hexadecane as an agglomerant.

  16. Agglomeration rate and action forces between atomized particles of agglomerator and inhaled-particles from coal combustion.

    PubMed

    Wei, Feng; Zhang, Jun-ying; Zheng, Chu-guang

    2005-01-01

    In order to remove efficiently haled-particles emissions from coal combustions, a new way was used to put forward the process of agglomeration and the atomization was produced by the nozzle and then sprayed into the flue before precipitation devices of power station boiler in order to make inhaled-particles agglomerate into bigger particles, which can be easily removed but not change existing running conditions of boiler. According to this idea, a model is set up to study agglomeration rate and effect forces between fly ash inhaled-particles and atomized agglomerator particles. The developed agglomeration rate was expressed by relative particle number decreasing speed per unit volume. The result showed that viscosity force and flow resistance force give main influences on agglomeration effect of inhaled-particles, while springiness force and gravity have little effect on agglomeration effect of theirs. Factors influencing the agglomeration rate and effect forces are studied, including agglomerator concentration, agglomerator flux and agglomerator density, atomized-particles diameters and inhaled-particles diameter and so on.

  17. DNA nanowire translocation phenomena in nanopores.

    PubMed

    Chen, Lei; Conlisk, A T

    2010-04-01

    One recent application of nanopores is to use them as detectors and analyzers for fast DNA sequencing. To better understand the DNA electrokinetic transport through a nanopore, a hydrodynamic model is developed to investigate the flow field, the resistive forces acting on the DNA, the DNA velocity and the ionic current through the nanopore. The numerical results reveal the relation between the DNA velocity and various parameters such as nanopore surface charge and solution concentration. The model is validated by comparing the numerical results with the experimental data for both DNA velocity and ionic current through the nanopore.

  18. Nanopore-CMOS Interfaces for DNA Sequencing.

    PubMed

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-08-06

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces.

  19. Hydroxyapatite for Keratoprosthesis Biointegration

    PubMed Central

    Wang, Liqiang; Jeong, Kyung Jae; Chiang, Homer H.; Zurakowski, David; Behlau, Irmgard; Chodosh, James; Dohlman, Claes H.; Langer, Robert

    2011-01-01

    Purpose. Integration of keratoprosthesis with the surrounding cornea is very important in preventing bacterial invasion, which may cause ocular injury. Here the authors investigated whether hydroxyapatite (HAp) coating can improve keratoprosthesis (KPro) biointegration, using polymethyl methacrylate (PMMA)—the principal component of the Boston KPro—as a model polymer. Methods. HAp coatings were induced on PMMA discs after treatment with concentrated NaOH and coating with poly-dopamine (PDA) or polydopamine and then with 11-mercaptoundecanoic acid (11-MUA). Coatings were characterized chemically (Fourier transform infrared spectroscopy [FTIR], energy dispersive X-ray spectroscopy [EDX]) and morphologically (SEM) and were used as substrates for keratocyte growth in vitro. Cylinders of coated PMMA were implanted in porcine corneas ex vivo for 2 weeks, and the force required to pull them out was measured. The inflammatory reaction to coated discs was assessed in the rabbit cornea in vivo. Results. FTIR of the coatings showed absorption bands characteristic of phosphate groups, and EDX showed that the Ca/P ratios were close to those of HAp. By SEM, each method resulted in morphologically distinct HAp films; the 11-MUA group had the most uniform coating. The hydroxyapatite coatings caused comparable enhancement of keratocyte proliferation compared with unmodified PMMA surfaces. HAp coating significantly increased the force and work required to pull PMMA cylinders out of porcine corneas ex vivo. HAp coating of implants reduced the inflammatory response around the PMMA implants in vivo. Conclusions. These results are encouraging for the potential of HAp-coated surfaces for use in keratoprostheses. PMID:21849419

  20. Nanoporous silicon oxide memory.

    PubMed

    Wang, Gunuk; Yang, Yang; Lee, Jae-Hwang; Abramova, Vera; Fei, Huilong; Ruan, Gedeng; Thomas, Edwin L; Tour, James M

    2014-08-13

    Oxide-based two-terminal resistive random access memory (RRAM) is considered one of the most promising candidates for next-generation nonvolatile memory. We introduce here a new RRAM memory structure employing a nanoporous (NP) silicon oxide (SiOx) material which enables unipolar switching through its internal vertical nanogap. Through the control of the stochastic filament formation at low voltage, the NP SiOx memory exhibited an extremely low electroforming voltage (∼ 1.6 V) and outstanding performance metrics. These include multibit storage ability (up to 9-bits), a high ON-OFF ratio (up to 10(7) A), a long high-temperature lifetime (≥ 10(4) s at 100 °C), excellent cycling endurance (≥ 10(5)), sub-50 ns switching speeds, and low power consumption (∼ 6 × 10(-5) W/bit). Also provided is the room temperature processability for versatile fabrication without any compliance current being needed during electroforming or switching operations. Taken together, these metrics in NP SiOx RRAM provide a route toward easily accessed nonvolatile memory applications.

  1. Nanoporous microscale microbial incubators.

    PubMed

    Ge, Zhifei; Girguis, Peter R; Buie, Cullen R

    2016-02-07

    Reconstruction of phylogenetic trees based on 16S rRNA gene sequencing reveals abundant microbial diversity that has not been cultured in the laboratory. Many attribute this so-called 'great plate count anomaly' to traditional microbial cultivation techniques, which largely facilitate the growth of a single species. Yet, it is widely recognized that bacteria in nature exist in complex communities. One technique to increase the pool of cultivated bacterial species is to co-culture multiple species in a simulated natural environment. Here, we present nanoporous microscale microbial incubators (NMMI) that enable high-throughput screening and real-time observation of multi-species co-culture. The key innovation in NMMI is that they facilitate inter-species communication while maintaining physical isolation between species, which is ideal for genomic analysis. Co-culture of a quorum sensing pair demonstrates that the NMMI can be used to culture multiple species in chemical communication while monitoring the growth dynamics of individual species.

  2. Adsorption hysteresis in nanopores

    PubMed

    Neimark; Ravikovitch; Vishnyakov

    2000-08-01

    Capillary condensation hysteresis in nanopores is studied by Monte Carlo simulations and the nonlocal density functional theory. Comparing the theoretical results with the experimental data on low temperature sorption of nitrogen and argon in cylindrical channels of mesoporous siliceous molecular sieves of MCM-41 type, we have revealed four qualitatively different sorption regimes depending on the temperature and pore size. As the pore size increases at a given temperature, or as the temperature decreases at a given pore size, the following regimes are consequently observed: volume filling without phase separation, reversible stepwise capillary condensation, irreversible capillary condensation with developing hysteresis, and capillary condensation with developed hysteresis. We show that, in the regime of developed hysteresis (pores wider than 5 nm in the case of nitrogen sorption at 77 K), condensation occurs spontaneously at the vaporlike spinodal while desorption takes place at the equilibrium. A quantitative agreement is found between the modeling results and the experimental hysteresis loops formed by the adsorption-desorption isotherms. The results obtained provide a better understanding of the general behavior of confined fluids and the specifics of sorption and phase transitions in nanomaterials.

  3. Ion Beam Nanosculpting and Materials Science with Single Nanopores

    SciTech Connect

    Golovchenko, J A; Branton, D

    2009-10-03

    Work is reported in these areas: Nanopore studies; Ion sculpting of metals; High energy ion sculpting; Metrology of nanopores with single wall carbon nanotube probes; Capturing molecules in a nanopore; Strand separation in a nanopore; and DNA molecules and configurations in solid-state nanopores.

  4. Chemiluminescence in the Agglomeration of Metal Clusters

    PubMed

    König; Rabin; Schulze; Ertl

    1996-11-22

    The agglomeration of copper or silver atoms in a matrix of noble gas atoms to form small clusters may be accompanied by the emission of visible light. Spectral analysis reveals the intermediate formation of electronically excited atoms and dimers as the source of the chemiluminescence. A mechanism is proposed, according to which the gain in binding energy upon cluster formation may even lead to the ejection of excited fragments as a result of unstable intermediate configurations. A similar concept was introduced in the field of nuclear reactions by Niels Bohr 60 years ago.

  5. Apparatus and method for compacting, degassing and carbonizing carbonaceous agglomerates

    SciTech Connect

    Theodore, F.W.

    1980-08-19

    An apparatus for compacting, degassing and carbonizing carbonaceous agglomerates is described. The apparatus comprises a rotary kiln having an agglomerate inlet means for introducing green agglomerates into the kiln near the inlet of the kiln and a heating medium inlet for introducing a heating medium comprising a finely divided solid into the kiln at a preselected location intermediate the inlet end of the kiln and the outlet end of the kiln to produce a mixture at a temperature above the carbonizing temperature of the agglomerates and a sieve positioned to receive the products from the rotary kiln and separate the heating medium and the compacted, degassed, carbonized agglomerate product. A method for producing compacted, degassed, carbonized carbonaceous agglomerates by the use of the apparatus is also disclosed.

  6. Multifrequency scanning probe microscopy study of nanodiamond agglomerates

    NASA Astrophysics Data System (ADS)

    Aravind, Vasudeva; Lippold, Stephen; Li, Qian; Strelcov, Evgheny; Okatan, Baris; Legum, Benjamin; Kalinin, Sergei; Clarion University Team; Oak Ridge National Laboratory Team

    Due to their rich surface chemistry and excellent mechanical properties and non-toxic nature, nanodiamond particles have found applications such as biomedicine, tribology and lubrication, targeted drug delivery systems, tissue scaffolds and surgical implants. Although single nanodiamond particles have diameters about 4-5nm, they tend to form agglomerates. While these agglomerates can be useful for some purposes, many applications of nanodiamonds require single particle, disaggregated nanodiamonds. This work is oriented towards studying forces and interactions that contribute to agglomeration in nanodiamonds. In this work, using multifrequency scanning probe microscopy techniques, we show that agglomerate sizes can vary between 50-100nm in raw nanodiamonds. Extremeties of particles and Interfaces between agglomerates show dissipative forces with scanning probe microscope tip, indicating agglomerates could act as points of increased adhesion, thus reducing lubricating efficiency when nanodiamonds are used as lubricant additives. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  7. Analysis and synthesis of solutions for the agglomeration process modeling

    NASA Astrophysics Data System (ADS)

    Babuk, V. A.; Dolotkazin, I. N.; Nizyaev, A. A.

    2013-03-01

    The present work is devoted development of model of agglomerating process for propellants based on ammonium perchlorate (AP), ammonium dinitramide (ADN), HMX, inactive binder, and nanoaluminum. Generalization of experimental data, development of physical picture of agglomeration for listed propellants, development and analysis of mathematical models are carried out. Synthesis of models of various phenomena taking place at agglomeration implementation allows predicting of size and quantity, chemical composition, structure of forming agglomerates and its fraction in set of condensed combustion products. It became possible in many respects due to development of new model of agglomerating particle evolution on the surface of burning propellant. Obtained results correspond to available experimental data. It is supposed that analogical method based on analysis of mathematical models of particular phenomena and their synthesis will allow implementing of the agglomerating process modeling for other types of metalized solid propellants.

  8. Method for producing ceramic particles and agglomerates

    DOEpatents

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2001-01-01

    A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.

  9. Atomic layer deposition of nanoporous biomaterials.

    SciTech Connect

    Narayan, R. J.; Adiga, S. P.; Pellin, M. J.; Curtiss, L. A.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N. A.; Brigmon, R. L.; Elam, J. W.; Univ. of North Carolina; North Carolina State Univ.; Eastman Kodak Co.; North Dakota State Univ.; SRL

    2010-03-01

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials. Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.

  10. Rapid determination of plasmonic nanoparticle agglomeration status in blood.

    PubMed

    Jenkins, Samir V; Qu, Haiou; Mudalige, Thilak; Ingle, Taylor M; Wang, Rongrong; Wang, Feng; Howard, Paul C; Chen, Jingyi; Zhang, Yongbin

    2015-05-01

    Plasmonic nanomaterials as drug delivery or bio-imaging agents are typically introduced to biological systems through intravenous administration. However, the potential for agglomeration of nanoparticles in biological systems could dramatically affect their pharmacokinetic profile and toxic potential. Development of rapid screening methods to evaluate agglomeration is urgently needed to monitor the physical nature of nanoparticles as they are introduced into blood. Here, we establish novel methods using darkfield microscopy with hyperspectral detection (hsDFM), single particle inductively-coupled plasma mass spectrometry (spICP-MS), and confocal Raman microscopy (cRM) to discriminate gold nanoparticles (AuNPs) and their agglomerates in blood. Rich information about nanoparticle agglomeration in situ is provided by hsDFM monitoring of the plasmon resonance of primary nanoparticles and their agglomerates in whole blood; cRM is an effective complement to hsDFM to detect AuNP agglomerates in minimally manipulated samples. The AuNPs and the particle agglomerates were further distinguished in blood for the first time by quantification of particle mass using spICP-MS with excellent sensitivity and specificity. Furthermore, the agglomeration status of synthesized and commercial NPs incubated in blood was successfully assessed using the developed methods. Together, these complementary methods enable rapid determination of the agglomeration status of plasmonic nanomaterials in biological systems, specifically blood.

  11. Method for recovering light hydrocarbons from coal agglomerates

    DOEpatents

    Huettenhain, Horst; Benz, August D.; Getsoian, John

    1991-01-01

    A method and apparatus for removing light hydrocarbons, such as heptane, from coal agglomerates includes an enclosed chamber having a substantially horizontal perforate surface therein. The coal agglomerates are introduced into a water bath within the chamber. The agglomerates are advanced over the surface while steam is substantially continuously introduced through the surface into the water bath. Steam heats the water and causes volatilization of the light hydrocarbons, which may be collected from the overhead of the chamber. The resulting agglomerates may be collected at the opposite end from the surface and subjected to final draining processes prior to transportation or use.

  12. Modeling of crushed ore agglomeration for heap leach operations

    NASA Astrophysics Data System (ADS)

    Dhawan, Nikhil

    The focus of this dissertation is modeling of the evolution of size distribution in batch agglomeration drum. There has been no successful work on modeling of crushed ore agglomeration although the framework for population balance modeling of pelletization and granulation is readily available. In this study three different batch agglomeration drums were used to study the agglomeration kinetics of copper, gold and nickel ores. The agglomerate size distribution is inherently subject to random fluctuation due the very nature of the process. Yet, with careful experimentation and size analysis the evolution of size distribution can be followed. The population balance model employing the random coalesce model with a constant rate kernel was shown to work well in a micro and lab scale agglomerator experiments. In small drums agglomerates begin to break in a short time, whereas the growth is uniform in the lab scale drum. The experimental agglomerate size distributions exhibit self-preserving size spectra which confirms the applicability of coalescence rate based model. The same spectra became a useful fact for predicting the size distribution with an empirical model. Since moisture is a principal variable, the absolute deviation from optimum moisture was used as the primary variable in the empirical model. Having established a model for the size distribution, the next step was to delve into the internal constituents of each agglomerate size class. To this end, an experimental scheme known as dip test was devised. The outcome of the test was the size distribution of progeny particles which make up a given size class of agglomerate. The progeny size distribution was analyzed with a model that partitions the particles into a host and guest category. The ensuing partition coefficient is a valuable in determining how a particle in a size class participates in larger agglomerates. This dissertation lays out the fundamentals for applying the population balance concept to batch

  13. Development and Application of Agglomerated Multigrid Methods for Complex Geometries

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2010-01-01

    We report progress in the development of agglomerated multigrid techniques for fully un- structured grids in three dimensions, building upon two previous studies focused on efficiently solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated multigrid technique for 3D complex geometries, incorporating the following key developments: consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid regions. A signi cant speed-up in computer time is demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic complex geometries.

  14. Rapid Determination of Plasmonic Nanoparticle Agglomeration Status in Blood

    PubMed Central

    Jenkins, Samir V.; Qu, Haiou; Mudalige, Thilak; Ingle, Taylor; Wang, RongRong; Wang, Feng; Howard, Paul C.; Chen, Jingyi; Zhang, Yongbin

    2015-01-01

    Plasmonic nanomaterials as drug delivery or bio-imaging agents are typically introduced to biological systems through intravenous administration. However, the potential for agglomeration of nanoparticles in biological systems could dramatically affect their pharmacokinetic profile and toxic potential. Development of rapid screening methods to evaluate agglomeration is urgently needed to monitor the physical nature of nanoparticles as they are introduced into blood. Here, we establish novel methods using darkfield microscopy with hyperspectral detection (hsDFM), single particle inductively-coupled plasma mass spectrometry (spICP-MS), and confocal Raman microscopy (cRM) to discriminate gold nanoparticles (AuNPs) and their agglomerates in blood. Rich information about nanoparticle agglomeration in situ is provided by hsDFM monitoring of the plasmon resonance of primary nanoparticles and their agglomerates in whole blood; cRM is an effective complement to hsDFM to detect AuNP agglomerates in minimally manipulated samples. The AuNPs and the particle agglomerates were further distinguished in blood for the first time by quantification of particle mass using spICP-MS with excellent sensitivity and specificity. Furthermore, the agglomeration status of synthesized and commercial NPs incubated in blood was successfully assessed using the developed methods. Together, these complementary methods enable rapid determination of the agglomeration status of plasmonic nanomaterials in biological systems, specifically blood. PMID:25771013

  15. Superdiffusive gas recovery from nanopores

    NASA Astrophysics Data System (ADS)

    Wu, Haiyi; He, Yadong; Qiao, Rui

    2016-11-01

    Understanding the recovery of gas from reservoirs featuring pervasive nanopores is essential for effective shale gas extraction. Classical theories cannot accurately predict such gas recovery and many experimental observations are not well understood. Here we report molecular simulations of the recovery of gas from single nanopores, explicitly taking into account molecular gas-wall interactions. We show that, in very narrow pores, the strong gas-wall interactions are essential in determining the gas recovery behavior both quantitatively and qualitatively. These interactions cause the total diffusion coefficients of the gas molecules in nanopores to be smaller than those predicted by kinetic theories, hence slowing down the rate of gas recovery. These interactions also lead to significant adsorption of gas molecules on the pore walls. Because of the desorption of these gas molecules during gas recovery, the gas recovery from the nanopore does not exhibit the usual diffusive scaling law (i.e., the accumulative recovery scales as R ˜t1 /2 ) but follows a superdiffusive scaling law R ˜tn (n >0.5 ), which is similar to that observed in some field experiments. For the system studied here, the superdiffusive gas recovery scaling law can be captured well by continuum models in which the gas adsorption and desorption from pore walls are taken into account using the Langmuir model.

  16. Influence of excipients and processing conditions on the development of agglomerates of racecadotril by crystallo-co-agglomeration

    PubMed Central

    Garala, Kevin; Patel, Jaydeep; Patel, Anjali; Raval, Mihir; Dharamsi, Abhay

    2012-01-01

    Purpose: The purpose of the present investigation was to improve the flow and mechanical properties of racecadotril by a crystallo-co-agglomeration (CCA) technique. Direct tableting is a requirement of pharmaceutical industries. Poor mechanical properties of crystalline drug particles require wet granulation which is uneconomical, laborious, and tedious. Materials and Methods: The objective of this work was to study the influence of various polymers/excipients and processing conditions on the formation of directly compressible agglomerates of the water-insoluble drug, racecadotril, an antidiarrheal agent. The agglomerates of racecadotril were prepared using dichloromethane (DCM)–water as the crystallization system. DCM acted as a good solvent for racecadotril as well as a bridging liquid for the agglomeration of the crystallized drug and water as the nonsolvent. The prepared agglomerates were tested for micromeritic and mechanical properties. Results: The process yielded ~90 to 96% wt/ wt spherical agglomerates containing racecadotril with the diameter between 299 and 521 μ. A higher rotational speed of crystallization system reduces the size of the agglomerates and disturbs the sphericity. Spherical agglomerates were generated with a uniform dispersion of the crystallized drug. CCA showed excellent flowability and crushing strength. Conclusion: Excipients and processing conditions can play a key role in preparing spherical agglomerates of racecadotril by CCA, an excellent alternative to the wet granulation process to prepare intermediates for direct compression. PMID:23580935

  17. Pulse combusted acoustic agglomeration apparatus and process

    DOEpatents

    Mansour, Momtaz N.; Chandran, Ravi

    1994-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance agglomeration of particulates which may be collected and removed using a conventional separation apparatus. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, added particulates may include a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  18. Pulse combusted acoustic agglomeration apparatus and process

    DOEpatents

    Mansour, Momtaz N.

    1993-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance bimodal agglomeration of particulates which may be collected and removed using a conventional separation apparatus. A particulate having a size different from the size of the particulate in the gas stream to be cleaned is introduced into the system to effectuate the bimodal process. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, the added particulate may be a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  19. Agglomeration multigrid for viscous turbulent flows

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Venkatakrishnan, V.

    1994-01-01

    Agglomeration multigrid, which has been demonstrated as an efficient and automatic technique for the solution of the Euler equations on unstructured meshes, is extended to viscous turbulent flows. For diffusion terms, coarse grid discretizations are not possible, and more accurate grid transfer operators are required as well. A Galerkin coarse grid operator construction and an implicit prolongation operator are proposed. Their suitability is evaluated by examining their effect on the solution of Laplace's equation. The resulting strategy is employed to solve the Reynolds-averaged Navier-Stokes equations for aerodynamic flows. Convergence rates comparable to those obtained by a previously developed non-nested mesh multigrid approach are demonstrated, and suggestions for further improvements are given.

  20. Soot agglomeration in isolated, free droplet combustion

    NASA Technical Reports Server (NTRS)

    Choi, M. Y.; Dryer, F. L.; Green, G. J.; Sangiovanni, J. J.

    1993-01-01

    Under the conditions of an isolated, free droplet experiment, hollow, carbonaceous structures, called soot spheres, were observed to form during the atmospheric pressure, low Reynolds number combustion of 1-methylnaphthalene. These structures which are agglomerates composed of smaller spheroidal units result from both thermophoretic effects induced by the envelope flame surrounding each drop and aerodynamic effects caused by changes in the relative gas/drop velocities. A chemically reacting flow model was used to analyze the process of sootshell formation during microgravity droplet combustion. The time-dependent temperature and gas property field surrounding the droplet was determined, and the soot cloud location for microgravity combustion of n-heptane droplets was predicted. Experiments showed that the sooting propensity of n-alkane fuel droplets can be varied through diluent substitution, oxygen-index variations, and ambient pressure reductions.

  1. Understanding Energy Absorption Behaviors of Nanoporous Materials

    DTIC Science & Technology

    2008-05-23

    nanopore surface transfers from wettable to non- wettable . Under this condition, water molecules cannot enter the nanopores spontaneously. A...2 and the molecular weight of 106.17. Under ambient condition, the nanoporous carbon was non- wettable to p-Xylene, and thus the liquid cannot be...for nominally wettable nanochannel walls, would be dominant. F. Developing Solid-Like Energy Absorption Systems If the molecular size of the

  2. Overpopulated, Underdeveloped Urban Agglomerations: Tomorrow’s Unstable Operating Environment

    DTIC Science & Technology

    2012-05-08

    DATES COVERED (From - To) 4. TITLE AND SUBTITLE Overpopulated , Underdeveloped Urban Agglomerations: Tomorrow’s 5a. CONTRACT NUMBER...ABSTRACT This paper asserts that a unique future operational environment is developing: overpopulated , underdeveloped urban agglomerations. A...proposed definition for this operating environment is (or would be) an overpopulated urban area which is located within a developing or underdeveloped

  3. Solid state nanopores for gene expression profiling

    NASA Astrophysics Data System (ADS)

    Mussi, V.; Fanzio, P.; Repetto, L.; Firpo, G.; Valbusa, U.; Scaruffi, P.; Stigliani, S.; Tonini, G. P.

    2009-07-01

    Recently, nanopore technology has been introduced for genome analysis. Here we show results related to the possibility of preparing "engineered solid state nanopores". The nanopores were fabricated on a suspended Si 3N 4 membrane by Focused Ion Beam (FIB) drilling and chemically functionalized in order to covalently bind oligonucleotides (probes) on their surface. Our data show the stable effect of DNA attachment on the ionic current measured through the nanopore, making it possible to conceive and develop a selective biosensor for gene expression profiling.

  4. Threading DNA through nanopores for biosensing applications

    NASA Astrophysics Data System (ADS)

    Fyta, Maria

    2015-07-01

    This review outlines the recent achievements in the field of nanopore research. Nanopores are typically used in single-molecule experiments and are believed to have a high potential to realize an ultra-fast and very cheap genome sequencer. Here, the various types of nanopore materials, ranging from biological to 2D nanopores are discussed together with their advantages and disadvantages. These nanopores can utilize different protocols to read out the DNA nucleobases. Although, the first nanopore devices have reached the market, many still have issues which do not allow a full realization of a nanopore sequencer able to sequence the human genome in about a day. Ways to control the DNA, its dynamics and speed as the biomolecule translocates the nanopore in order to increase the signal-to-noise ratio in the reading-out process are examined in this review. Finally, the advantages, as well as the drawbacks in distinguishing the DNA nucleotides, i.e., the genetic information, are presented in view of their importance in the field of nanopore sequencing.

  5. Development of a Gas-Promoted Oil Agglomeration Process

    SciTech Connect

    M. Shen; T. D. Wheelock

    1998-10-30

    Further agglomeration tests were conducted in a series of tests designed to determine the effects of various parameters on the size and structure of the agglomerates formed, the rate of agglomeration, coal recovery, and ash rejection. For this series of tests, finely ground Pittsburgh No. 8 coal has been agglomerated with i-octane in a closed mixing system with a controlled amount of air present to promote particle agglomeration. The present results provide further evidence of the role played by air. As the concentration of air in the system was increased from 4.5 to 18 v/w% based on the weight of coal, coal recovery and ash rejection both increased. The results also show that coal recovery and ash rejection were improved by increasing agitator speed. On the other hand, coal recovery was not affected by a change in solids concentration from 20 to 30 w/w%.

  6. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-09-30

    Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operation agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of

  7. Bed material agglomeration during fluidized bed combustion. Final report

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    1996-01-01

    The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion of coal and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed combustors (FBCs) indicate that at least five boilers were experiencing some form of bed material agglomeration. Deposit formation was reported at nine sites with deposits most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Three general types of mineralogic reactions were observed to occur in the agglomerates and deposits. Although alkalies may play a role with some {open_quotes}high alkali{close_quotes} lignites, we found agglomeration was initiated due to fluxing reactions between iron (II) from pyrites and aluminosilicates from clays. This is indicated by the high amounts of iron, silica, and alumina in the agglomerates and the mineralogy of the agglomerates. Agglomeration likely originated in the dense phase of the FBC bed within the volatile plume which forms when coal is introduced to the boiler. Secondary mineral reactions appear to occur after the agglomerates have formed and tend to strengthen the agglomerates. When calcium is present in high amounts, most of the minerals in the resulting deposits are in the melilite group (gehlenite, melilite, and akermanite) and pyroxene group (diopside and augite). During these solid-phase reactions, the temperature of formation of the melilite minerals can be lowered by a reduction of the partial pressure of CO{sub 2} (Diopside + Calcite {r_arrow}Akermanite).

  8. Deformation Behavior of Nanoporous Metals

    SciTech Connect

    Biener, J; Hodge, A M; Hamza, A V

    2007-11-28

    Nanoporous open-cell foams are a rapidly growing class of high-porosity materials (porosity {ge} 70%). The research in this field is driven by the desire to create functional materials with unique physical, chemical and mechanical properties where the material properties emerge from both morphology and the material itself. An example is the development of nanoporous metallic materials for photonic and plasmonic applications which has recently attracted much interest. The general strategy is to take advantage of various size effects to introduce novel properties. These size effects arise from confinement of the material by pores and ligaments, and can range from electromagnetic resonances to length scale effects in plasticity. In this chapter we will focus on the mechanical properties of low density nanoporous metals and how these properties are affected by length scale effects and bonding characteristics. A thorough understanding of the mechanical behavior will open the door to further improve and fine-tune the mechanical properties of these sometimes very delicate materials, and thus will be crucial for integrating nanoporous metals into products. Cellular solids with pore sizes above 1 micron have been the subject of intense research for many years, and various scaling relations describing the mechanical properties have been developed.[4] In general, it has been found that the most important parameter in controlling their mechanical properties is the relative density, that is, the density of the foam divided by that of solid from which the foam is made. Other factors include the mechanical properties of the solid material and the foam morphology such as ligament shape and connectivity. The characteristic internal length scale of the structure as determined by pores and ligaments, on the other hand, usually has only little effect on the mechanical properties. This changes at the submicron length scale where the surface-to-volume ratio becomes large and the effect

  9. Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Klym, Halyna; Ingram, Adam; Shpotyuk, Oleh; Hadzaman, Ivan; Solntsev, Viacheslav

    2016-03-01

    The water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics are studied with positron annihilation lifetime (PAL) spectroscopy employing positron trapping and positronium (Ps)-decaying modes. It is demonstrated that the longest-lived components in the four-term reconstructed PAL spectra with characteristic lifetimes near 2 and 60-70 ns can be, respectively, attributed to ortho-positronium (o-Ps) traps in nanopores with 0.3- and 1.5-1.8-nm radii. The first o-Ps decaying process includes "pick-off" annihilation in the "bubbles" of liquid water, while the second is based on o-Ps interaction with physisorbed water molecules at the walls of the pores. In addition, the water vapor modifies structural defects located at the grain boundaries in a vicinity of pores, this process being accompanied by void fragmentation during water adsorption and agglomeration during water desorption after drying.

  10. Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study.

    PubMed

    Klym, Halyna; Ingram, Adam; Shpotyuk, Oleh; Hadzaman, Ivan; Solntsev, Viacheslav

    2016-12-01

    The water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics are studied with positron annihilation lifetime (PAL) spectroscopy employing positron trapping and positronium (Ps)-decaying modes. It is demonstrated that the longest-lived components in the four-term reconstructed PAL spectra with characteristic lifetimes near 2 and 60-70 ns can be, respectively, attributed to ortho-positronium (o-Ps) traps in nanopores with 0.3- and 1.5-1.8-nm radii. The first o-Ps decaying process includes "pick-off" annihilation in the "bubbles" of liquid water, while the second is based on o-Ps interaction with physisorbed water molecules at the walls of the pores. In addition, the water vapor modifies structural defects located at the grain boundaries in a vicinity of pores, this process being accompanied by void fragmentation during water adsorption and agglomeration during water desorption after drying.

  11. Switchable imbibition in nanoporous gold

    PubMed Central

    Xue, Yahui; Markmann, Jürgen; Duan, Huiling; Weissmüller, Jörg; Huber, Patrick

    2014-01-01

    Spontaneous imbibition enables the elegant propelling of nano-flows because of the dominance of capillarity at small length scales. The imbibition kinetics are, however, solely determined by the static host geometry, the capillarity, and the fluidity of the imbibed liquid. This makes active control particularly challenging. Here we show for aqueous electrolyte imbibition in nanoporous gold that the fluid flow can be reversibly switched on and off through electric potential control of the solid–liquid interfacial tension, that is, we can accelerate the imbibition front, stop it, and have it proceed at will. Simultaneous measurements of the mass flux and the electrical current allow us to document simple scaling laws for the imbibition kinetics, and to explore the charge transport in the metallic nanopores. Our findings demonstrate that the high electric conductivity along with the pathways for fluid/ionic transport render nanoporous gold a versatile, accurately controllable electrocapillary pump and flow sensor for minute amounts of liquids with exceptionally low operating voltages. PMID:24980062

  12. Hydroxyapatite degradation and biocompatibility

    NASA Astrophysics Data System (ADS)

    Wang, Haibo

    Hydroxyapatite (HA) is widely used as a bioactive ceramics since it forms a chemical bonding to bone. The disadvantage of this material is its poor mechanical properties. HA can be degraded in body, which is the reason for its bioactivity, but too fast degradation rate could cause negative effects, such as macrophage present, particle generation, and even implant clinical failure. HA degradation rate will be greatly changed under many conditions: purity, HA form (i.e. bulk form, porous form, coating, or HA/polymer composites), microstructure, implant site, body conditions, etc. Although much work has been done in HA properties and application areas, the HA degradation behavior and mechanism under these different conditions are still not clear. In this research, three aspects of HA degradation have been studied: (1) Two very common impurities---Tri-Calcium Phosphate (TCP) and Calcium Oxide and their influences on HA degradation in vitro and in vivo, (2) influence of HA/polymer composite form on HA degradation, (3) HA material particle generation and related mechanism. From the in vitro and in vivo tests on bulk HA disks with various Ca/P ratios, HA degradation can clearly be found. The degradation level is different in different Ca/P ratio samples as well as in different test environments. In same test environment, non-stoichiometric HA samples have higher degradation rate than stoichiometric HA. HA/PMMA composite design successfully intensifies HA degradation both in vitro and in vivo. Grain boundary damage can be found on in vivo test samples, which has not been clearly seen on bulk HA degraded surface. HA particle generation is found in in vitro and in vivo HA/PMMA composite surface and in vivo bulk HA surface. Sintering temperature and time does affect HA grain size, and this affect HA degradation rate. Intergranular fracture is found in a several micron zone close to the Ca/P ratio 1.62 and 1.67 sample degraded surfaces. At Ca/P ratio greater than 1.667, after

  13. Operational source receptor calculations for large agglomerations

    NASA Astrophysics Data System (ADS)

    Gauss, Michael; Shamsudheen, Semeena V.; Valdebenito, Alvaro; Pommier, Matthieu; Schulz, Michael

    2016-04-01

    For Air quality policy an important question is how much of the air pollution within an urbanized region can be attributed to local sources and how much of it is imported through long-range transport. This is critical information for a correct assessment of the effectiveness of potential emission measures. The ratio between indigenous and long-range transported air pollution for a given region depends on its geographic location, the size of its area, the strength and spatial distribution of emission sources, the time of the year, but also - very strongly - on the current meteorological conditions, which change from day to day and thus make it important to provide such calculations in near-real-time to support short-term legislation. Similarly, long-term analysis over longer periods (e.g. one year), or of specific air quality episodes in the past, can help to scientifically underpin multi-regional agreements and long-term legislation. Within the European MACC projects (Monitoring Atmospheric Composition and Climate) and the transition to the operational CAMS service (Copernicus Atmosphere Monitoring Service) the computationally efficient EMEP MSC-W air quality model has been applied with detailed emission data, comprehensive calculations of chemistry and microphysics, driven by high quality meteorological forecast data (up to 96-hour forecasts), to provide source-receptor calculations on a regular basis in forecast mode. In its current state, the product allows the user to choose among different regions and regulatory pollutants (e.g. ozone and PM) to assess the effectiveness of fictive emission reductions in air pollutant emissions that are implemented immediately, either within the agglomeration or outside. The effects are visualized as bar charts, showing resulting changes in air pollution levels within the agglomeration as a function of time (hourly resolution, 0 to 4 days into the future). The bar charts not only allow assessing the effects of emission

  14. Preliminary characterization of a gas-promoted oil agglomeration process

    SciTech Connect

    Drzymala, J.; Wheelock, T.D.

    1996-12-31

    The agglomeration of aqueous suspensions of Pittsburgh No. 8 coal particles with i-octane was studied by employing a scale model mixing system which measured both agitator speed and torque. The progress of agglomeration was monitored by observing changes in agitator torque and was confirmed by examining samples of the suspension with an optical microscope. When a suspension containing 30 w/w% solids was degassed and then conditioned with 20 v/w% i-octane (20 ml i-octane/100 g coal), no agglomeration took place until a small amount of air (e.g., 9 v/w%) was introduced. Subsequent changes in agitator torque indicated that the ensuing process of agglomeration was complex and consisted of several stages involving various interactions between coal particles, oil drops, and gas bubbles. The time required to produce spherical agglomerates was determined for different experimental conditions by conducting a number of agglomeration tests involving different mixing tank sizes and different impeller sizes and speeds. The results indicate that agglomeration time decreases with increasing power input per unit volume and increasing gas concentration.

  15. Development of a Gas-Promoted Oil Agglomeration Process

    SciTech Connect

    M. Shen; R. Abbott; T. D. Wheelock

    1998-10-30

    Two series of agglomeration tests were conducted as part of an effort to find a suitable basis for size scale-up of the mixing system used for a gas-promoted oil agglomeration process. In the first series of tests the agitator impeller diameter and speed were varied among runs so as to vary impeller tip speed and agitator power independently while keeping other conditions constant. In the second series of tests the mixing tank size and agitator speed were varied while the ratio of tank diameter to impeller diameter were held constant. All tests were conducted with finely ground Pittsburgh No. 8 coal and with i-octane as the agglomerant. The results of these tests showed that the minimum time te required to produce spherical agglomerates was predominantly a function of the agitator power input per unit volume. In addition, the size of the agglomerates produced in a given time was also strongly dependent on power input. At lower power input levels, the mean size rose as power input increased until a point was reached where agglomerate breakage became important and the mean size decreased. The results also showed that the ash content of the agglomerates produced in a given time tended to decrease with increasing power input. On the other hand, the recovery of clean coal on a dry, ash-free basis was not greatly affected by power input.

  16. Crystal growth and agglomeration of calcium sulfite hemihydrate crystals

    SciTech Connect

    Tai, C.Y.; Chen, P.C.

    1995-04-01

    Flue gas desulfurization (FGD) processes are most commonly utilized to remove sulfur dioxide from stack gases of coal- or oil-fired plants. In the simple slurry technology, SO{sub 2} is absorbed by a slurry of lime/limestone to form calcium sulfite crystals of acicular habit and its strong agglomeration, requiring large clarifiers and filters to dewater the sludge to make an acceptable landfill. Crystal growth and agglomeration of calcium sulfite hemihydrate crystals from solution were studied by reacting Ca(OH){sub 2} with NaHSO{sub 3} in a pH-stat semibatch crystallizer. Single platelet crystals and agglomerates of platelet crystals were produced in the pH range from 5.80 to 6.80. The crystallization mechanism changed from primary nucleation to crystal growth in the progressive precipitation. Using the titration curves, the growth rate was calculated from the titration rate at the final stage of operation. The crystal growth rates of calcium sulfate hemihydrate crystals were found to obey the parabolic rate law in the low supersaturation range. Another point to be noted is that the precipitates of calcium sulfite hemihydrate in agitated suspensions have a tendency to form agglomerates. It was found that the degree of agglomeration is a weak function of relative supersaturation and magma density, while the pH value is a key factor that affects the degree of agglomeration. Addition of EDTA also has an effect on the agglomeration of calcium sulfite hemihydrates.

  17. Method to fabricate functionalized conical nanopores

    DOEpatents

    Small, Leo J.; Spoerke, Erik David; Wheeler, David R.

    2016-07-12

    A pressure-based chemical etch method is used to shape polymer nanopores into cones. By varying the pressure, the pore tip diameter can be controlled, while the pore base diameter is largely unaffected. The method provides an easy, low-cost approach for conically etching high density nanopores.

  18. Nanoporous membranes for medical and biological applications

    PubMed Central

    Adiga, Shashishekar P; Jin, Chunmin; Curtiss, Larry A; Monteiro-Riviere, Nancy A.; Narayan, Roger J

    2013-01-01

    Synthetic nanoporous materials have numerous potential biological and medical applications that involve sorting, sensing, isolating and releasing biological molecules. Nanoporous systems engineered to mimic natural filtration systems are actively being developed for use in smart implantable drug delivery systems, bioartificial organs, and other novel nano-enabled medical devices. Recent advances in nanoscience have made it possible to precisely control the morphology as well as physical and chemical properties of the pores in nanoporous materials that make them increasingly attractive for regulating and sensing transport at the molecular level. In this work, an overview of nanoporous membranes for biomedical applications is given. Various in vivo and in vitro membrane applications, including biosensing, biosorting, immunoisolation and drug delivery, are presented. Different types of nanoporous materials and their fabrication techniques are discussed with an emphasis on membranes with ordered pores. Desirable properties of membranes used in implantable devices, including biocompatibility and antibiofouling behavior, are discussed. The use of surface modification techniques to improve the function of nanoporous membranes is reviewed. Despite the extensive research carried out in fabrication, characterization, and modeling of nanoporous materials, there are still several challenges that must be overcome in order to create synthetic nanoporous systems that behave similarly to their biological counterparts. PMID:20049818

  19. Reconstructing solid state nanopore shape from electrical measurements

    NASA Astrophysics Data System (ADS)

    Liebes, Yael; Drozdov, Maria; Avital, Yotam Y.; Kauffmann, Yaron; Rapaport, Hanna; Kaplan, Wayne D.; Ashkenasy, Nurit

    2010-11-01

    The dependence of nanopore biosensor conductance signal on the nanopore shape makes it important to decipher the latter with high precision. We show here that the three dimensional shape of a nanopore, extracted from electron microscopy analysis, allows for modeling the conductance of the nanopore over a wide range of ionic strengths. Furthermore, we demonstrate that the dependence of the nanopore conductance on ionic strength can be used to accurately extract the nanopore shape, eliminating the need for lengthy electron microscopy analysis. The suggested methodology can be used to monitor changes in the nanopore shape and evaluate them during electrical characterization.

  20. Physical properties of soils in Rostov agglomeration

    NASA Astrophysics Data System (ADS)

    Gorbov, S. N.; Bezuglova, O. S.; Abrosimov, K. N.; Skvortsova, E. B.; Tagiverdiev, S. S.; Morozov, I. V.

    2016-08-01

    Physical properties of natural and anthropogenically transformed soils of Rostov agglomeration were examined. The data obtained by conventional methods and new approaches to the study of soil physical properties (in particular, tomographic study of soil monoliths) were used for comparing the soils of different functional zones of the urban area. For urban territories in the steppe zone, a comparison of humus-accumulative horizons (A, Asod, Ap, and buried [A] horizons) made it possible to trace tendencies of changes in surface soils under different anthropogenic impacts and in the buried and sealed soils. The microtomographic study demonstrated differences in the bulk density and aggregation of urban soils from different functional zones. The A horizon in the forest-park zone is characterized by good aggregation and high porosity, whereas buried humus-accumulative horizons of anthropogenically transformed soils are characterized by poor aggregation and low porosity. The traditional parameters of soil structure and texture also proved to be informative for the identification of urban pedogenesis.

  1. Nanofiber generation of hydroxyapatite and fluor-hydroxyapatite bioceramics.

    PubMed

    Kim, Hae-Won; Kim, Hyoun-Ee

    2006-05-01

    In this study, we produced hydroxyapatite (HA) and fluor-hydroxyapatite (FHA) bioceramics as a novel geometrical form, the nanoscale fiber, for the biomedical applications. Based on the sol-gel precursors of the apatites, an electrospinning technique was introduced to generate nanoscale fibers. The diameter of the fibers was exploited in the range of a few micrometers to hundreds of nanometers (1.55 microm-240 nm) by means of adjusting the concentration of the sols. Through the fluoridation of apatite, the solubility of the fiber was tailored and the fluorine ions were well released from the FHA. The HA and FHA nanofibers produced in this study are considered to find potential applications in the biomaterials and tissue engineering fields.

  2. Nanopore-CMOS Interfaces for DNA Sequencing

    PubMed Central

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-01-01

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces. PMID:27509529

  3. Nanopore DNA sequencing using kinetic proofreading

    NASA Astrophysics Data System (ADS)

    Ling, Xinsheng

    We propose a method of DNA sequencing by combining the physical method of nanopore electrical measurements and Southern's sequencing-by-hybridization. The new key ingredient, essential to both lowering the costs and increasing the precision, is an asymmetric nanopore sandwich device capable of measuring the DNA hybridization probe twice separated by a designed waiting time. Those incorrect probes appearing only once in nanopore ionic current traces are discriminated from the correct ones that appear twice. This method of discrimination is similar to the principle of kinetic proofreading proposed by Hopfield and Ninio in gene transcription and translation processes. An error analysis is of this nanopore kinetic proofreading (nKP) technique for DNA sequencing is carried out in comparison with the most precise 3' dideoxy termination method developed by Sanger. Nanopore DNA sequencing using kinetic proofreading.

  4. Graphene nanopore devices for DNA sensing.

    PubMed

    Merchant, Chris A; Drndić, Marija

    2012-01-01

    We describe here a method for detecting the translocation of individual DNA molecules through nanopores created in graphene membranes. The devices consist of 1-5-nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, and the reduced electrical resistance, we observe larger blocked currents than for traditional solid-state nanopores. We also show how ionic current noise levels can be reduced with the atomic-layer deposition of a few nanometers of titanium dioxide over the graphene surface. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor, and its use opens the door to a new future class of nanopore devices in which electronic sensing and control is performed directly at the pore.

  5. Gravitational Agglomeration of Post-HCDA LMFBR Nonspherical Aerosols.

    DTIC Science & Technology

    1980-12-01

    AD-AIO6 766 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH F/B 13/7 GRAVITATIONAL AGGLOMERATION OF POST- HCDA LMF8R NONSPHFRICAL AER--ETC(U) DEC 80 R...OF REPORT & PERIOD COVERED i Gravitational Agglomeration of Post- HCDA TfIfM/DISSERTATION LMFBR Nonspherical Aerosols . ________O____O______________ S...it to: AFIT/NR Wright-Patterson AFB OH 45433 RESEARCH TITLE: Gravitational Agglomeration of Post- HCDA LMFBR Nonspherical Aerosols AUTHOR: Ronald

  6. Crystallization of modified hydroxyapatite on titanium implants

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Izmailov, R. R.; Ghyngazov, S. A.; Zaits, A. V.

    2016-02-01

    Carbonated-hydroxyapatite (CHA) and Si-hydroxyapatite (Si-HA) precipitation have been synthesized from the model bioliquid solutions (synovial fluid and SBF). It is found that all the samples synthesized from the model solutions are single-phase and represent hydroxyapatite. The crystallization of the modified hydroxyapatite on alloys of different composition, roughness and subjected to different treatment techniques was investigated. Irradiation of the titanium substrates with the deposited biomimetic coating can facilitate further growth of the crystal and regeneration of the surface.

  7. Cementless Hydroxyapatite Coated Hip Prostheses

    PubMed Central

    Herrera, Antonio; Mateo, Jesús; Gil-Albarova, Jorge; Lobo-Escolar, Antonio; Ibarz, Elena; Gabarre, Sergio; Más, Yolanda

    2015-01-01

    More than twenty years ago, hydroxyapatite (HA), calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality. PMID:25802848

  8. Leukocyte Agglomeration Reaction in Diagnosis of Allergy Reactions from Antibiotics,

    DTIC Science & Technology

    tested in a clinic on 80 patients with serious allergic anamnesis . The results of the studies indicate that the leukocyte agglomeration reaction is a highly sensitive immunological indicator of hypersensitivity to antibiotics.

  9. Acoustic agglomeration of power plant fly ash. Final report

    SciTech Connect

    Reethof, G.; McDaniel, O.H.

    1982-01-01

    The work has shown that acoustic agglomeration at practical acoustic intensities and frequencies is technically and most likely economically viable. The following studies were performed with the listed results: The physics of acoustic agglomeration is complex particularly at the needed high acoustic intensities in the range of 150 to 160 dB and frequencies in the 2500 Hz range. The analytical model which we developed, although not including nonlinear acoustic efforts, agreed with the trends observed. We concentrated our efforts on clarifying the impact of high acoustic intensities on the generation of turbulence. Results from a special set of tests show that although some acoustically generated turbulence of sorts exists in the 150 to 170 dB range with acoustic streaming present, such turbulence will not be a significant factor in acoustic agglomeration compared to the dominant effect of the acoustic velocities at the fundamental frequency and its harmonics. Studies of the robustness of the agglomerated particles using the Anderson Mark III impactor as the source of the shear stresses on the particles show that the agglomerates should be able to withstand the rigors of flow through commercial cyclones without significant break-up. We designed and developed a 700/sup 0/F tubular agglomerator of 8'' internal diameter. The electrically heated system functioned well and provided very encouraging agglomeration results at acoustic levels in the 150 to 160 dB and 2000 to 3000 Hz ranges. We confirmed earlier results that an optimum frequency exists at about 2500 Hz and that larger dust loadings will give better results. Studies of the absorption of acoustic energy by various common gases as a function of temperature and humidity showed the need to pursue such an investigation for flue gas constituents in order to provide necessary data for the design of agglomerators. 65 references, 56 figures, 4 tables.

  10. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler

    2004-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. A primary example of this is copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of acidic heap-leach facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of other agglomeration applications, particularly advanced primary ironmaking.

  11. Preparation of norfloxacin spherical agglomerates using the ammonia diffusion system.

    PubMed

    Puechagut, H G; Bianchotti, J; Chiale, C A

    1998-04-01

    Agglomerated crystals of norfloxacin were prepared by a spherical crystallization technique using the ammonia diffusion system (ADS). This technique makes it possible to agglomerate amphoteric drugs like norfloxacin, which cannot be agglomerated by conventional procedures. When an ammonia-water solution of norfloxacin is poured into an acetone dichloromethane mixture under agitation, a small amount of ammonia is liberated in the system. The ammonia-water solution plays a role both as a good solvent for norfloxacin and as a bridging liquid, allowing the crystals' collection to take place in one step. It has been proven that the agglomeration mechanism follows three steps: first acetone enters into the droplets of ammonia-water (this emulsion is formed because of the system characteristics); dissolved norfloxacin is consequently precipitated while the droplets collect the crystals; simultaneously, a part of the ammonia contained in the agglomerates diffuses to the outer organic solvent phase, thereby forming the norfloxacin spherical agglomerates. The correct selection of solvents has enabled us to obtain a suitable stable crystalline shape.

  12. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    SciTech Connect

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler; C.A. Hardison; K. Lewandowski

    2004-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.

  13. Micro-agglomerate flotation for deep cleaning of coal

    SciTech Connect

    Chander, S.; Hogg, R.

    1993-04-01

    We are investigating the use of a hybrid process, Micro-agglomerate flotation, which is a combination of oil-agglomeration and froth flotation. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates with minimal entrapment of water and mineral particles, and to use froth flotation to extract these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units are agglomerates (about 30--50 [mu]m in size) rather than individual coal particles (1--10 [mu]m) the problems of froth overload and water/mineral carryover should be significantly alleviated.Micro-agglomerate flotation has considerable potential for the practical deep cleaning of coal on a commercial scale. In principle, it should be possible to achieve both high selectivity and high yield at reasonable cost. The process requires only conventional, off-the-shelf equipment and reagent usage (oil, surfactants, etc.) should be small. There are, however, complications. The process involves at least five phases: two or more solids (coal and mineral), two liquids (oil and water) and one gas (air). It is necessary to maintain precise control over the chemistry of the liquid phases in order to promote the interfacial reactions and interactions between phases necessary to ensure selectivity. Kinetics as well as thermodynamic factors may be critical in determining overall system response.

  14. Micro-agglomerate flotation for deep cleaning of coal

    SciTech Connect

    Chander, S.; Hogg, R.

    1993-01-01

    We are investigating the use of a hybrid process - Micro-agglomerate flotation - which is a combination of oil-agglomeration and froth flotation. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates with minimal entrapment of water and mineral particles, and to use froth flotation to extract these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units are agglomerates (about 30--50 [mu]m in size) rather than individual coal particles (1--10 [mu]m) the problems of froth overload and water/mineral carryover should be significantly alleviated. Micro-agglomerate flotation has considerable potential for the practical deep cleaning of coal on a commercial scale. In principle, it should be possible to achieve both high selectivity and high yield at reasonable cost. The process requires only conventional, off-the-shelf equipment and reagent usage (oil, surfactants, etc.) should be small. There are, however, complications. The process involves at least five phases: two or more solids (coal and mineral), two liquids (oil and water) and one gas (air). It is necessary to maintain precise control over the chemistry of the liquid phases in order to promote the interfacial reactions and interactions between phases necessary to ensure selectivity. Kinetics as well as thermodynamic factors may be critical in determining overall system response.

  15. Low-rank coal oil agglomeration product and process

    DOEpatents

    Knudson, Curtis L.; Timpe, Ronald C.; Potas, Todd A.; DeWall, Raymond A.; Musich, Mark A.

    1992-01-01

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  16. Low-rank coal oil agglomeration product and process

    DOEpatents

    Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.

    1992-11-10

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  17. Sol-gel hydroxyapatite coatings on stainless steel substrates.

    PubMed

    Liu, Dean-Mo; Yang, Quanzu; Troczynski, Tom

    2002-02-01

    Thin film hydroxyapatite deposits onto sandblasted 316L stainless steel substrates were prepared using water-based sol-gel technique recently developed in our lab. The coatings were annealed in air at 375 degrees C, 400 degrees C, and 500 degrees C. Phase formation, surface morphology, interfacial microstructure, and interfacial bonding strength of the coatings were investigated. Apatitic structure developed within the coatings while annealing at temperatures > or = 400 degrees C, while those heat-treated at 375 degrees C showed poor crystallinity. The coatings were dense and firmly attached to the underlying substrates, reaching an average bonding strength (as determined through the pull-out test) of 44 MPa. Nano-porous structure was found for the coatings annealed at 500 degrees C, believed to result from grain growth, and causing a slight decrease in the bonding strength. Surface microcracking, although not extensive, occurred after annealing at temperatures > or = 400 degrees C, and was linked to non-uniform thickness of the coating due to roughness of the substrate. A contraction of the coatings as a result of sintering, and phase transition from amorphous (or poor crystalline) to reasonably good crystalline apatite, may be responsible for the loss of structural integrity of the thicker sections of the coatings. It seems quite promising that a dense and adhesive apatite coating can be achieved through water-based sol gel technology after short-term annealing at around 400 degrees C in air.

  18. Atomic observation of catalysis-induced nanopore coarsening of nanoporous gold.

    PubMed

    Fujita, Takeshi; Tokunaga, Tomoharu; Zhang, Ling; Li, Dongwei; Chen, Luyang; Arai, Shigeo; Yamamoto, Yuta; Hirata, Akihiko; Tanaka, Nobuo; Ding, Yi; Chen, Mingwei

    2014-03-12

    Dealloyed nanoporous metals have attracted much attention because of their excellent catalytic activities toward various chemical reactions. Nevertheless, coarsening mechanisms in these catalysts have not been experimentally studied. Here, we report in situ atomic-scale observations of the structural evolution of nanoporous gold during catalytic CO oxidation. The catalysis-induced nanopore coarsening is associated with the rapid diffusion of gold atoms at chemically active surface steps and the surface segregation of residual Ag atoms, both of which are stimulated by the chemical reaction. Our observations provide the first direct evidence that planar defects hinder nanopore coarsening, suggesting a new strategy for developing structurally stable and highly active heterogeneous catalysts.

  19. The breakage of nanopore in AAO template

    NASA Astrophysics Data System (ADS)

    Jia, X. R.; Wang, H.; Zhen, Y.

    2016-07-01

    In the present work, AAO template is fabricated in oxalic acid solution under a constant voltage by several steps. By the Bernoulli principle, the pressure on the wall of hole increases which lead to the breakage of nanopore as a result of the reducing effective migration rate of Al3+. The quantity of the breakage of nanopore rises with the increase of the concentration of Al3+. Further, nanopore is closed by oxide due to the decrease of effective migration rate of Al3+. Finally, a “nanoflower-like” shape can be observed in experiments.

  20. Template synthesis of ordered macroporous hydroxyapatite bioceramics.

    PubMed

    Ji, Lijun; Jell, Gavin; Dong, Yixiang; Jones, Julian R; Stevens, Molly M

    2011-08-28

    Hydroxyapatite has found wide application in bone tissue engineering. Here we use a macroporous carbon template to generate highly ordered macroporous hydroxyapatite bioceramics composed of close-packed hollow spherical pores with interconnected channels. The template has advantages for the preparation of ordered materials.

  1. Nanostructure of biocompatible titania/hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Rodionov, Igor V.; Steinhauer, Aleksey B.; Fomina, Marina A.; Petrova, Natalia V.; Zakharevich, Andrey M.; Skaptsov, Aleksandr A.; Gribov, Andrey N.; Atkin, Vsevolod S.

    2014-01-01

    The article describes prospective composite biocompatible titania coatings modified with hydroxyapatite nanoparticles and obtained on intraosseous implants fabricated from commercially pure titanium VT1-00. Consistency changes of morphological characteristics, crystalline structure, physical and mechanical properties and biocompatibility of experimental titanium implant coatings obtained by the combination of oxidation and surface modification with hydroxyapatite during induction heat treatment are defined.

  2. Structural analysis of hydroxyapatite coatings on titanium.

    PubMed

    Ducheyne, P; Van Raemdonck, W; Heughebaert, J C; Heughebaert, M

    1986-03-01

    Hydroxyapatite from two sources was electrophoretically deposited onto flat titanium plate material. Depending upon the deposition conditions various changes in the structure of the ceramic were identified. A well-adhering Ti-P compound was present at the interface. Hydroxyapatite oxygenated to various degrees and tetracalcium phosphate were reproducibly formed in the coating.

  3. Dynamics of nanoparticle agglomeration in a magnetic fluid in a varying magnetic field

    NASA Astrophysics Data System (ADS)

    Usanov, D. A.; Postel'ga, A. E.; Bochkova, T. S.; Gavrilin, V. N.

    2016-03-01

    It is found that the dependence of the magnetic nanoparticle agglomerate length in a magnetic fluid on the applied magnetic field has three characteristic segments: a substantial increase in the agglomerate length with the magnetic field in the range of weak fields, a segment with an insignificant increase in the average length of agglomerates upon an increase in the field, and a sharp increase in the agglomerate length with a further increase in the field. It is shown that the agglomerate length increases in the range of strong magnetic fields due to a decrease in the spacing between adjacent agglomerates down to their complete coalescence. The total number of agglomerates decreases thereby.

  4. Intersectant Microstructure of Hydroxyapatite Sheets of Shankbone

    NASA Astrophysics Data System (ADS)

    Chen, B.; Luo, J.; Wang, J. G.; Yuan, Q.; Fan, J. H.

    Bone possesses excellent mechanical properties, which are closely related to its favorable microstructures optimized by nature through millions of years. In this work, a scanning electron microscope (SEM) was used to observe the microstructures of a shankbone. It showed that the bone is a kind of bioceramic composite consisting of hydroxyapatite layers and collagen protein matrix. The hydroxyapatite layers are further composed of long and thin hydroxyapatite sheets. The hydroxyapatite sheets in different hydroxyapatite layers distribute along different orientations, which composes a kind of intersectant microstructure. The maximum pullout force of the intersectant microstructure was investigated and compared with that of 0° microstructure with their representative models. The result indicated that the maximum pullout force of the intersectant microstructure is markedly larger than that of the 0° microstructure, which was experimentally verified.

  5. Colloidal stability of coal-simulated suspensions in selective agglomeration

    SciTech Connect

    Schurger, M.L.

    1989-01-01

    A coal suspension was simulated by using graphite to simulate the carbonaceous fraction and kaolinite clay to simulate the ash fraction. Separate studies on each material established their response to additions of oxidized pyrite (ferrous sulfate) and a humic acid simulate (salicylic acid) in terms of zeta potentials profiles with pH and Ionic strength. Concentrations of iron and salicylic acid evaluated were 4.5 {times} 10{sup {minus}3} M and 2.0 {times} 10{sup {minus}4} M, respectively. The zeta potentials profiles of graphite, clay and hexadecane were negative throughout the pH ranges studied. The addition of iron lowered the zeta potentials all of the suspensions under all pH and ionic strength conditions. Salicylic acid decreased the graphite and hexadecane zeta potentials but had no effect on the clay zeta potential profiles. Agglomeration of graphite with bridging liquid shows distinct time dependent rate mechanisms, a initial growth of graphite agglomerates followed by consolidation phase. Graphite agglomeration was rapid with the maximum amount of agglomerate volume growth occurring in under 2-4 minutes. Agglomeration in the first two minutes was characterized by a 1st order rate mechanism. The presence of either Iron and salicylic acid generally improved the first order rates. The addition of clay also improved the first order rates except in the presence of salicylic acid. Heteroagglomeration of graphite with clay was found by hydrodynamic arguments to be unfavored. A multicomponent population balance model which had been developed for evaluating collision efficiencies of coal, ash and pyrite selective agglomeration was evaluated to explain these results. The growth and consolidation characteristics of graphite agglomeration for the experimental conditions examined herein revealed the limitations of such as model for this application.

  6. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-12-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore processing which are intended to improve the

  7. DNA nanopore translocation in glutamate solutions

    NASA Astrophysics Data System (ADS)

    Plesa, C.; van Loo, N.; Dekker, C.

    2015-08-01

    Nanopore experiments have traditionally been carried out with chloride-based solutions. Here we introduce silver/silver-glutamate-based electrochemistry as an alternative, and study the viscosity, conductivity, and nanopore translocation characteristics of potassium-, sodium-, and lithium-glutamate solutions. We show that it has a linear response at typical voltages and can be used to detect DNA translocations through a nanopore. The glutamate anion also acts as a redox-capable thickening agent, with high-viscosity solutions capable of slowing down the DNA translocation process by up to 11 times, with a corresponding 7 time reduction in signal. These results demonstrate that glutamate can replace chloride as the primary anion in nanopore resistive pulse sensing.

  8. DNA nanopore translocation in glutamate solutions.

    PubMed

    Plesa, C; van Loo, N; Dekker, C

    2015-08-28

    Nanopore experiments have traditionally been carried out with chloride-based solutions. Here we introduce silver/silver-glutamate-based electrochemistry as an alternative, and study the viscosity, conductivity, and nanopore translocation characteristics of potassium-, sodium-, and lithium-glutamate solutions. We show that it has a linear response at typical voltages and can be used to detect DNA translocations through a nanopore. The glutamate anion also acts as a redox-capable thickening agent, with high-viscosity solutions capable of slowing down the DNA translocation process by up to 11 times, with a corresponding 7 time reduction in signal. These results demonstrate that glutamate can replace chloride as the primary anion in nanopore resistive pulse sensing.

  9. DNA sequencing by nanopores: advances and challenges

    NASA Astrophysics Data System (ADS)

    Agah, Shaghayegh; Zheng, Ming; Pasquali, Matteo; Kolomeisky, Anatoly B.

    2016-10-01

    Developing inexpensive and simple DNA sequencing methods capable of detecting entire genomes in short periods of time could revolutionize the world of medicine and technology. It will also lead to major advances in our understanding of fundamental biological processes. It has been shown that nanopores have the ability of single-molecule sensing of various biological molecules rapidly and at a low cost. This has stimulated significant experimental efforts in developing DNA sequencing techniques by utilizing biological and artificial nanopores. In this review, we discuss recent progress in the nanopore sequencing field with a focus on the nature of nanopores and on sensing mechanisms during the translocation. Current challenges and alternative methods are also discussed.

  10. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  11. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  12. Effect of hydroxyapatite surface morphology on cell adhesion.

    PubMed

    Iwamoto, Takashi; Hieda, Yohki; Kogai, Yasumichi

    2016-12-01

    We obtained hydroxyapatite (HAp) materials as a block by mixing HAp nanoparticles and polymer, and then calcining the mixtures. The surface morphology of the HAp materials was tuned by varying heat treatment conditions. After calcining the mixtures at 1200 or 800°C for 4h, the surface morphology of the HAp materials was flat or convexo-concave, respectively. The flat surface morphology, which showed micrometer-ordered grain boundaries, was formed by the aggregation of HAp nanoparticles. On the other hand, the convexo-concave surface morphology resulted from the agglomeration of HAp nanoparticles after heat treatment at 800°C for 4h with nanometer-ordered particle size. We tested cell adhesion to HAp materials with flat or convexo-concave surface morphology and found that cells adhered well to the flat HAp materials but not to the convexo-concave HAp materials. This technique for selectively preparing HAp materials with flat or convexo-concave surface morphology was very easy because we merely mixed commercial HAp nanoparticles with polymer and then calcined the mixtures. As a result, the heat treatment temperature affected the surface morphology of our HAp materials, and their surface morphologies contributed to cell adhesion independently of other material properties.

  13. Synthesis and characterization of hydroxyapatite from fish bone waste

    SciTech Connect

    Marliana, Ana Fitriani, Eka; Ramadhan, Fauzan; Suhandono, Steven; Yuliani, Keti; Windarti, Tri

    2015-12-29

    Waste fish bones is a problem stemming from activities in the field of fisheries and it has not been used optimally. Fish bones contain calcium as natural source that used to synthesize hydroxyapatite (HA). In this research, HA synthesized from waste fish bones as local wisdom in Semarang. The goal are to produce HA with cheaper production costs and to reduce the environmental problems caused by waste bones. The novelty of this study was using of local fish bone as a source of calcium and simple method of synthesis. Synthesis process of HA can be done through a maceration process with firing temperatures of 1000°C or followed by a sol-gel method with firing at 550°C. The results are analyzed using FTIR (Fourier Transform Infrared), XRD (X-Ray Diffraction) and SEM-EDX (Scanning Electron Microscopy-Energy Dispersive X-Ray). FTIR spectra showed absorption of phosphate and OH group belonging to HA as evidenced by the results of XRD. The average grain size by maceration and synthesized results are not significant different, which is about 69 nm. The ratio of Ca/P of HA by maceration result is 0.89, then increase after continued in the sol-gel process to 1.41. Morphology of HA by maceration results are regular and uniform particle growth, while the morphology of HA after the sol-gel process are irregular and agglomerated.

  14. Adiabatic burst evaporation from bicontinuous nanoporous membranes.

    PubMed

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk; Steinhart, Martin; Xue, Longjian

    2015-05-28

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol-gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 10(7) μm(3) are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media.

  15. Nanopore Back Titration Analysis of Dipicolinic Acid

    PubMed Central

    Han, Yujing; Zhou, Shuo; Wang, Liang; Guan, Xiyun

    2015-01-01

    Here we report a novel label-free nanopore back titration method for the detection of dipicolinic acid, a marker molecule for bacterial spores. By competitive binding of the target analyte and a large ligand probe to metal ions, dipicolinic acid could be sensitively and selectively detected. This nanopore back titration approach should find useful applications in the detection of other species of medical, biological, or environmental importance if their direct detection is difficult to achieve. PMID:25074707

  16. Experimental Investigation on Liquid Behaviors in Nanopores

    NASA Astrophysics Data System (ADS)

    Lu, Weiyi

    Nanoporous materials are involved in many industrial processes such as catalysis, filtration, chromatography, etc. Recently, they are applied to absorb or capture the energy associated with blast, collision, and impact attacks. In such applications, the nanoporous materials are immersed in liquids or gels. The inner surfaces of nanopores are usually modified to increase the degree of hydrophobicity. When an external pressure is applied on the system, the liquid phase can be compressed into the nanoporous space. The liquid infiltration behavior in the nanopores becomes significantly different from that of untreated material. The effective interfacial tension and viscosity of the confined liquid are investigated. While the simple superposition principle can be employed for the analysis of interfacial tension, in a nanopore the effective liquid viscosity is no longer a material constant. It is highly dependent on the pore size and the loading rate, much smaller than its bulk counterpart. In addition, the influence of electrolyte concentration as well as its dependence on temperature are analyzed in detail. As the electrolyte concentration varies, the effective interfacial tension changes rapidly. The testing data show that, the pressure-induced infiltration behavior is not only determined by the cations, but also highly dependent on the anion species. The transport behaviors of solvated ions in nanopores can be field responsive, providing a novel method to develop interactive protection systems. As an external electric field is applied, the observed change in effective solid-liquid interfacial tension is contradictory to the prediction of classic electrochemistry theory. To simplify the materials handling, a polypropylene-matrix composite material is produced. When the temperature is relatively low, the matrix dominates the system behavior. When the temperature is relatively high, with a sufficiently large external pressure the polymer phase can be intruded into the

  17. A novel strategy for preparing nanoporous biphasic calcium phosphate of controlled composition via a modified nanoparticle-assembly method.

    PubMed

    Fujiwara, Keiko; Okada, Masahiro; Takeda, Shoji; Matsumoto, Naoyuki

    2014-02-01

    Biphasic calcium phosphate (BCP) consisting of hydroxyapatite (HAp) and β-tricalcium phosphate is usually prepared by thermal decomposition of calcium-deficient HAp (CDHAp). However, the calcium deficiency and morphology of CDHAp are difficult to manipulate in parallel. In this study, we report a novel strategy for controlling the composition of nanoporous BCP by using only CDHAp nanoparticles with specific properties (Ca/P molar ratio, 1.61; particle size, 50 nm) as a building block and by adjusting the calcium deficiency of the nanoparticle-assembled CDHAp (Ca/P molar ratio, 1.50-1.67; pore size, 8 nm) with the addition of water-soluble Ca(NO3)2 or (NH4)2HPO4. After thermal treatment at 1000 °C, the composition of BCP could be predictably controlled by adjusting the Ca/P ratio of the nanoparticle-assembled CDHAp. Changes in the Ca/P ratio did not significantly affect the surface morphology of BCP, but the grain size (210-300 nm) and pore size (140-170 nm) tended to increase slightly as the Ca/P ratio decreased. The porosity significantly decreased upon the addition of Ca salts (porosity, 20%) or PO4 salts (porosity, 14%) compared with that of the sample without additives (porosity, 53%). In vitro tests demonstrated enhanced cell adhesion on nanoporous BCP compared with densely sintered pure HAp, and cell differentiation was promoted on the nanoporous pure HAp.

  18. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2011-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Convergence rates of multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by their idealized counterparts.

  19. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    NASA Technical Reports Server (NTRS)

    Thomas, James L.; Nishikawa, Hiroaki; Diskin, Boris

    2009-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and highly stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Actual cycle results are verified using quantitative analysis methods in which parts of the cycle are replaced by their idealized counterparts.

  20. Advanced physical fine coal cleaning spherical agglomeration. Final report

    SciTech Connect

    Not Available

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  1. Designing a hydrophobic barrier within biomimetic nanopores.

    PubMed

    Trick, Jemma L; Wallace, E Jayne; Bayley, Hagan; Sansom, Mark S P

    2014-11-25

    Nanopores in membranes have a range of potential applications. Biomimetic design of nanopores aims to mimic key functions of biological pores within a stable template structure. Molecular dynamics simulations have been used to test whether a simple β-barrel protein nanopore can be modified to incorporate a hydrophobic barrier to permeation. Simulations have been used to evaluate functional properties of such nanopores, using water flux as a proxy for ionic conductance. The behavior of these model pores has been characterized as a function of pore size and of the hydrophobicity of the amino acid side chains lining the narrow central constriction of the pore. Potential of mean force calculations have been used to calculate free energy landscapes for water and for ion permeation in selected models. These studies demonstrate that a hydrophobic barrier can indeed be designed into a β-barrel protein nanopore, and that the height of the barrier can be adjusted by modifying the number of consecutive rings of hydrophobic side chains. A hydrophobic barrier prevents both water and ion permeation even though the pore is sterically unoccluded. These results both provide insights into the nature of hydrophobic gating in biological pores and channels, and furthermore demonstrate that simple design features may be computationally transplanted into β-barrel membrane proteins to generate functionally complex nanopores.

  2. Film Growth on Nanoporous Substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Joy, James; Zhao, Chenwei; Xu, J. M.; Valles, James

    Self-ordered nanoporous anodic aluminum oxide (AAO) provides an easy way to fabricate nano structured material, such as nano wires and nano particles. We employ AAO as substrates and focus on the thermally evaporated film growth on the surface of the substrate. With various materials deposited onto the substrate, we find the films show different structures, e,g. ordered array of nano particles for Lead and nanohoneycomb structure for Silver. We relate the differing behaviors to the difference of surface energy and diffusion constant. To verify this, the effect of substrate temperature on the film growth has been explored and the structure of the film has been successfully changed through the process. We are grateful for the support of NSF Grants No. DMR-1307290.

  3. Quantized ionic conductance in nanopores

    SciTech Connect

    Zwolak, Michael; Lagerqvist, Johan; Di Ventra, Massimilliano

    2009-01-01

    Ionic transport in nanopores is a fundamentally and technologically important problem in view of its ubiquitous occurrence in biological processes and its impact on DNA sequencing applications. Using microscopic calculations, we show that ion transport may exhibit strong non-liDearities as a function of the pore radius reminiscent of the conductance quantization steps as a function of the transverse cross section of quantum point contacts. In the present case, however, conductance steps originate from the break up of the hydration layers that form around ions in aqueous solution. Once in the pore, the water molecules form wavelike structures due to multiple scattering at the surface of the pore walls and interference with the radial waves around the ion. We discuss these effects as well as the conditions under which the step-like features in the ionic conductance should be experimentally observable.

  4. Ion selectivity of graphene nanopores

    DOE PAGES

    Rollings, Ryan C.; Kuan, Aaron T.; Golovchenko, Jene A.

    2016-04-22

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K+ cations over Cl- anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations.more » Furthermore, the observed K+/Cl- selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size.« less

  5. Ion selectivity of graphene nanopores

    SciTech Connect

    Rollings, Ryan C.; Kuan, Aaron T.; Golovchenko, Jene A.

    2016-04-22

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K+ cations over Cl- anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations. Furthermore, the observed K+/Cl- selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size.

  6. Ion selectivity of graphene nanopores.

    PubMed

    Rollings, Ryan C; Kuan, Aaron T; Golovchenko, Jene A

    2016-04-22

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K(+) cations over Cl(-) anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations. Surprisingly, the observed K(+)/Cl(-) selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size.

  7. In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au

    PubMed Central

    Li, Jin; Fan, C.; Ding, J.; Xue, S.; Chen, Y.; Li, Q.; Wang, H.; Zhang, X.

    2017-01-01

    High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. Here we show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studies show dose-rate-dependent diffusivity of defect clusters. This study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications. PMID:28045044

  8. The influence of nanopore dimensions on the electrochemical properties of nanopore arrays studied by impedance spectroscopy.

    PubMed

    Kant, Krishna; Priest, Craig; Shapter, Joe G; Losic, Dusan

    2014-11-11

    The understanding of the electrochemical properties of nanopores is the key factor for better understanding their performance and applications for nanopore-based sensing devices. In this study, the influence of pore dimensions of nanoporous alumina (NPA) membranes prepared by an anodization process and their electrochemical properties as a sensing platform using impedance spectroscopy was explored. NPA with four different pore diameters (25 nm, 45 nm and 65 nm) and lengths (5 μm to 20 μm) was used and their electrochemical properties were explored using different concentration of electrolyte solution (NaCl) ranging from 1 to 100 μM. Our results show that the impedance and resistance of nanopores are influenced by the concentration and ion species of electrolytes, while the capacitance is independent of them. It was found that nanopore diameters also have a significant influence on impedance due to changes in the thickness of the double layer inside the pores.

  9. In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au

    NASA Astrophysics Data System (ADS)

    Li, Jin; Fan, C.; Ding, J.; Xue, S.; Chen, Y.; Li, Q.; Wang, H.; Zhang, X.

    2017-01-01

    High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. Here we show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studies show dose-rate-dependent diffusivity of defect clusters. This study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications.

  10. Effects of crossover hydrogen on platinum dissolution and agglomeration

    NASA Astrophysics Data System (ADS)

    Cheng, Tommy T. H.; Rogers, Erin; Young, Alan P.; Ye, Siyu; Colbow, Vesna; Wessel, Silvia

    2011-10-01

    The durability of catalysts in the polymer-electrolyte membrane fuel cell (PEMFC) is identified as a critical limiting factor for wide commercialization of fuel cells. Even though much progress has been made in understanding the degradation mechanisms, the phenomena of Pt dissolution and agglomeration and their contributing factors are not fully understood. In the present investigation, the effects of crossover hydrogen on Pt degradation are studied using an accelerated stress test (AST). The end-of-test (EOT) membrane-electrode-assemblies (MEAs) were characterized by X-ray diffraction (XRD), scanning-electron microscopy (SEM), and energy-dispersive X-ray (EDX). The results provided mechanistic understanding of Pt dissolution and agglomeration: Pt growth and agglomeration were found to be less severe with more crossover hydrogen due likely to the chemical reduction of Pt oxides by crossover hydrogen and the subsequently decrease in the amount of Pt ions formed via the oxide pathway.

  11. Hierarchical agglomerates of carbon nanotubes as high-pressure cushions.

    PubMed

    Liu, Yi; Qian, Weizhong; Zhang, Qiang; Cao, Anyuan; Li, Zhifei; Zhou, Weiping; Ma, Yang; Wei, Fei

    2008-05-01

    We report the cushioning behavior of highly agglomerated carbon nanotubes. The nanotube agglomerates can be repeatedly compacted to achieve large volume reduction (>50%) and expanded to nearly original volume without structural failure, like a robust porous cushion. At a higher pressure range (10-125 MPa), the energy absorbed per unit volume is 1 order of magnitude higher than conventional cushion materials such as foamy polystyrene. The structure of hierarchical agglomerates can be controlled for tailoring the cushioning properties and obtaining a lower cushioning coefficient (higher energy absorption) over a wide range of pressures (1-100 MPa). The mechanism was studied in terms of morphology evolution of the nanotube aggregates and pore size distribution during compression.

  12. Basic principles and mechanisms of selective oil agglomeration

    SciTech Connect

    Wheelock, T.D.; Drzymala, J.; Allen, R.W.; Hu, Y.-C.; Tyson, D.; Xiaoping, Qiu; Lessa, A.

    1990-01-01

    Numerous measurements of the heat of immersion of coal were conducting using several different particle size fractions of No. 2 Gas Seam coal from Raleigh County, West Virginia. The heat of immersion was determined in water, methanol, heptane, hexadecane and neohexane (2,2-dimethybutane). A comparison of the results with those determined previously for Illinois No. 6 coal is discussed. A number of potential pyrite depressants for use in oil agglomeration of coal were screened by testing the response of sulfidized mineral pyrite to agglomeration with heptane in the presence of the potential depressant. The following were tested; sodium dithionite, sodium thiosulfate, ferrous sulfate, ferric sulfate, titanous chloride, hydrogen peroxide, Oxone (a form of potassium monopersulfate), pyrogallol, quebracho (colloidal dispersant derived from tree bark), milk whey, and several organic thiols. Ferric chloride was applied to mixtures of Upper Freeport coal and sulfidized mineral pyrite before subjecting the mixtures to agglomeration with heptane. 7 refs., 23 figs., 3 tabs.

  13. The Physics of Protoplanetesimal Dust Agglomerates. VIII. Microgravity Collisions between Porous SiO_2 Aggregates and Loosely Bound Agglomerates

    NASA Astrophysics Data System (ADS)

    Whizin, Akbar D.; Blum, Jürgen; Colwell, Joshua E.

    2017-02-01

    We performed laboratory experiments colliding 0.8–1.0 mm and 1.0–1.6 mm SiO2 dust aggregates with loosely bound centimeter-sized agglomerates of those aggregates in microgravity. This work builds on previous microgravity laboratory experiments examining the collisional properties of porous loosely bound dust aggregates. In centimeter-sized aggregates, surface forces dominate self-gravity and may play a large role in aggregate growth beyond this size range. We characterize the properties of protoplanetary aggregate analogs to help place constraints on initial formation mechanisms and environments. We determined several important physical characteristics of these aggregates in a large number of low-velocity collisions. We observed low coefficients of restitution and fragmentation thresholds near 1 m s‑1 for 1–2 cm agglomerates, which are in good agreement with previous findings in the literature. We find the accretion efficiency for agglomerates of loosely bound aggregates to be higher than that for just aggregates themselves. We find sticking thresholds of 6.6 ± 2 cm s‑1, somewhat higher than those in similar studies, which have observed few aggregates stick at speeds of under 3 cm s‑1. Even with highly dissipative collisions, loosely bound agglomerates have difficulty accreting beyond centimeter-sized bodies at typical collision speeds in the disk. Our results indicate agglomerates of porous aggregates have slightly higher sticking thresholds than previously thought, allowing possible growth to decimeter-sized bodies if velocities are low enough.

  14. Substituted Hydroxyapatites with Antibacterial Properties

    PubMed Central

    Kolmas, Joanna; Groszyk, Ewa; Kwiatkowska-Różycka, Dagmara

    2014-01-01

    Reconstructive surgery is presently struggling with the problem of infections located within implantation biomaterials. Of course, the best antibacterial protection is antibiotic therapy. However, oral antibiotic therapy is sometimes ineffective, while administering an antibiotic at the location of infection is often associated with an unfavourable ratio of dosage efficiency and toxic effect. Thus, the present study aims to find a new factor which may improve antibacterial activity while also presenting low toxicity to the human cells. Such factors are usually implemented along with the implant itself and may be an integral part of it. Many recent studies have focused on inorganic factors, such as metal nanoparticles, salts, and metal oxides. The advantages of inorganic factors include the ease with which they can be combined with ceramic and polymeric biomaterials. The following review focuses on hydroxyapatites substituted with ions with antibacterial properties. It considers materials that have already been applied in regenerative medicine (e.g., hydroxyapatites with silver ions) and those that are only at the preliminary stage of research and which could potentially be used in implantology or dentistry. We present methods for the synthesis of modified apatites and the antibacterial mechanisms of various ions as well as their antibacterial efficiency. PMID:24949423

  15. [Fracture of macroporous hydroxyapatite prosthesis].

    PubMed

    Adetchessi, A T; Pech-Gourg, G; Metellus, P; Fuentes, S

    2012-12-01

    Different prosthesis implants are offered to perform a cranioplasty after a decompressive craniectomy when autologous bone graft cannot be used. The authors report the case of a 25-year-old man who benefited a unilateral decompressive craniectomy after a severe head trauma. Seven months later, a cranioplasty using custom macroporous hydroxyapatite prosthesis was performed. The postoperative course was marked by a generalized seizure leading to a traumatic head injury. The CT-scan showed a comminutive fracture of the prosthesis and an extradural hematoma. The patient underwent a removal of the fractured prosthesis and an evacuation of the extradural clot. The postoperative course was uneventful with a Glasgow outcome scale score at 5. A second cranioplasty using a polyether ether ketone (PEEK) implant was performed. Among cranioplasty prosthesis solutions, hydroxyapatite implants seem to have similar property to the bone. However, its weak mechanic resistance is an actual problem in patients susceptible to present generalized seizures with consecutive head impact. Hence, in patients with decompressive craniectomy who are exposed to potential brain injury, we favor the use of more resistant implant as PEEK prosthesis.

  16. Metalated nucleotide chemisorption on hydroxyapatite.

    PubMed

    Benedetti, Michele; Antonucci, Daniela; De Castro, Federica; Girelli, Chiara R; Lelli, Marco; Roveri, Norberto; Fanizzi, Francesco P

    2015-12-01

    The experiments here reported evidence on the importance of the residual charge of a nucleotide derivative, for the adsorption on nHAP (hydroxyapatite nanocrystals), in water solution. We found that the simple presence of phosphates on the nucleotide derivative does not guarantee adsorption on nHAP. On the other hand, we demonstrated that a cationic or neutral charge on a nucleotide derivative produces a strongly reduced chemical adsorption (chemisorption) whereas, in the presence of a net negative charge, relevant adsorption on nHAP is observed. The number of phosphates can only modulate the adsorption efficiency of a molecule provided that this latter bears an overall negative charge. The neutral zwitterionic nucleotide Pt(II) complexes, bearing negatively charged phosphates, are unable to give stable chemisorption. Previous considerations are important to model the binding ability of phosphate bearing nucleotide derivatives or molecules on hydroxyapatite. The findings reported in the present paper could be relevant in bone tissue targeting or nHAP mediated drug delivery.

  17. Cement from magnesium substituted hydroxyapatite.

    PubMed

    Lilley, K J; Gbureck, U; Knowles, J C; Farrar, D F; Barralet, J E

    2005-05-01

    Brushite cement may be used as a bone graft material and is more soluble than apatite in physiological conditions. Consequently it is considerably more resorbable in vivo than apatite forming cements. Brushite cement formation has previously been reported by our group following the mixture of nanocrystalline hydroxyapatite and phosphoric acid. In this study, brushite cement was formed from the reaction of nanocrystalline magnesium-substituted hydroxyapatite with phosphoric acid in an attempt to produce a magnesium substituted brushite cement. The presence of magnesium was shown to have a strong effect on cement composition and strength. Additionally the presence of magnesium in brushite cement was found to reduce the extent of brushite hydrolysis resulting in the formation of HA. By incorporating magnesium ions in the apatite reactant structure the concentration of magnesium ions in the liquid phase of the cement was controlled by the dissolution rate of the apatite. This approach may be used to supply other ions to cement systems during setting as a means to manipulate the clinical performance and characteristics of brushite cements.

  18. Substituted hydroxyapatites with antibacterial properties.

    PubMed

    Kolmas, Joanna; Groszyk, Ewa; Kwiatkowska-Różycka, Dagmara

    2014-01-01

    Reconstructive surgery is presently struggling with the problem of infections located within implantation biomaterials. Of course, the best antibacterial protection is antibiotic therapy. However, oral antibiotic therapy is sometimes ineffective, while administering an antibiotic at the location of infection is often associated with an unfavourable ratio of dosage efficiency and toxic effect. Thus, the present study aims to find a new factor which may improve antibacterial activity while also presenting low toxicity to the human cells. Such factors are usually implemented along with the implant itself and may be an integral part of it. Many recent studies have focused on inorganic factors, such as metal nanoparticles, salts, and metal oxides. The advantages of inorganic factors include the ease with which they can be combined with ceramic and polymeric biomaterials. The following review focuses on hydroxyapatites substituted with ions with antibacterial properties. It considers materials that have already been applied in regenerative medicine (e.g., hydroxyapatites with silver ions) and those that are only at the preliminary stage of research and which could potentially be used in implantology or dentistry. We present methods for the synthesis of modified apatites and the antibacterial mechanisms of various ions as well as their antibacterial efficiency.

  19. Anti-reflective nanoporous silicon for efficient hydrogen production

    DOEpatents

    Oh, Jihun; Branz, Howard M

    2014-05-20

    Exemplary embodiments are disclosed of anti-reflective nanoporous silicon for efficient hydrogen production by photoelectrolysis of water. A nanoporous black Si is disclosed as an efficient photocathode for H.sub.2 production from water splitting half-reaction.

  20. Ion transport in a pH-regulated nanopore.

    PubMed

    Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi

    2013-08-06

    Fundamental understanding of ion transport phenomena in nanopores is crucial for designing the next-generation nanofluidic devices. Due to surface reactions of dissociable functional groups on the nanopore wall, the surface charge density highly depends upon the proton concentration on the nanopore wall, which in turn affects the electrokinetic transport of ions, fluid, and particles within the nanopore. Electrokinetic ion transport in a pH-regulated nanopore, taking into account both multiple ionic species and charge regulation on the nanopore wall, is theoretically investigated for the first time. The model is verified by the experimental data of nanopore conductance available in the literature. The results demonstrate that the spatial distribution of the surface charge density at the nanopore wall and the resulting ion transport phenomena, such as ion concentration polarization (ICP), ion selectivity, and conductance, are significantly affected by the background solution properties, such as the pH and salt concentration.

  1. Ice slurry cooling research: Storage tank ice agglomeration and extraction

    SciTech Connect

    Kasza, K.; Hayashi, Kanetoshi

    1999-08-01

    A new facility has been built to conduct research and development on important issues related to implementing ice slurry cooling technology. Ongoing studies are generating important information on the factors that influence ice particle agglomeration in ice slurry storage tanks. The studies are also addressing the development of methods to minimize and monitor agglomeration and improve the efficiency and controllability of tank extraction of slurry for distribution to cooling loads. These engineering issues impede the utilization of the ice slurry cooling concept that has been under development by various groups.

  2. Continuous air agglomeration method for high carbon fly ash beneficiation

    DOEpatents

    Gray, McMahon L.; Champagne, Kenneth J.; Finseth, Dennis H.

    2000-01-01

    The carbon and mineral components of fly ash are effectively separated by a continuous air agglomeration method, resulting in a substantially carboree mineral stream and a highly concentrated carbon product. The method involves mixing the fly ash comprised of carbon and inorganic mineral matter with a liquid hydrocarbon to form a slurry, contacting the slurry with an aqueous solution, dispersing the hydrocarbon slurry into small droplets within the aqueous solution by mechanical mixing and/or aeration, concentrating the inorganic mineral matter in the aqueous solution, agglomerating the carbon and hydrocarbon in the form of droplets, collecting the droplets, separating the hydrocarbon from the concentrated carbon product, and recycling the hydrocarbon.

  3. Nanoporous Polymeric Grating-Based Optical Biosensors (Preprint)

    DTIC Science & Technology

    2007-03-01

    biomolecules (biotin, steptavidin, biotinylated anti-rabbit IgG, and rabbit-IgG) onto the nanoporous regions and monitoring the changes in diffraction and...rabbit IgG, and rabbit-IgG) onto the nanoporous regions and monitoring the changes in diffraction and transmission intensity. We have observed that...line pattern of the nanoporous regions (air voids) alternating with polymer regions . The size of the nanopores ranges from 20 nm to 100 nm. The

  4. Scanning probe and nanopore DNA sequencing: core techniques and possibilities.

    PubMed

    Lund, John; Parviz, Babak A

    2009-01-01

    We provide an overview of the current state of research towards DNA sequencing using nanopore and scanning probe techniques. Additionally, we provide methods for the creation of two key experimental platforms for studies relating to nanopore and scanning probe DNA studies: a synthetic nanopore apparatus and an atomically flat conductive substrate with stretched DNA molecules.

  5. Enhanced osteoconductivity of sodium-substituted hydroxyapatite by system instability.

    PubMed

    Sang Cho, Jung; Um, Seung-Hoon; Su Yoo, Dong; Chung, Yong-Chae; Hye Chung, Shin; Lee, Jeong-Cheol; Rhee, Sang-Hoon

    2014-07-01

    The effect of substituting sodium for calcium on enhanced osteoconductivity of hydroxyapatite was newly investigated. Sodium-substituted hydroxyapatite was synthesized by reacting calcium hydroxide and phosphoric acid with sodium nitrate followed by sintering. As a control, pure hydroxyapatite was prepared under identical conditions, but without the addition of sodium nitrate. Substitution of calcium with sodium in hydroxyapatite produced the structural vacancies for carbonate ion from phosphate site and hydrogen ion from hydroxide site of hydroxyapatite after sintering. The total system energy of sodium-substituted hydroxyapatite with structural defects calculated by ab initio methods based on quantum mechanics was much higher than that of hydroxyapatite, suggesting that the sodium-substituted hydroxyapatite was energetically less stable compared with hydroxyapatite. Indeed, sodium-substituted hydroxyapatite exhibited higher dissolution behavior of constituent elements of hydroxyapatite in simulated body fluid (SBF) and Tris-buffered deionized water compared with hydroxyapatite, which directly affected low-crystalline hydroxyl-carbonate apatite forming capacity by increasing the degree of apatite supersaturation in SBF. Actually, sodium-substituted hydroxyapatite exhibited markedly improved low-crystalline hydroxyl-carbonate apatite forming capacity in SBF and noticeably higher osteoconductivity 4 weeks after implantation in calvarial defects of New Zealand white rabbits compared with hydroxyapatite. In addition, there were no statistically significant differences between hydroxyapatite and sodium-substituted hydroxyapatite on cytotoxicity as determined by BCA assay. Taken together, these results indicate that sodium-substituted hydroxyapatite with structural defects has promising potential for use as a bone grafting material due to its enhanced osteoconductivity compared with hydroxyapatite.

  6. Fabrication of nano-hydroxyapatite using a novel ultrasonic atomization precipitation method.

    PubMed

    Qiu, Yang; Xia, Haiping; Jiang, Haochuan

    2010-03-01

    A novel technique to synthesize hydroxyapatite (HAP) with nanocrystalline structure was developed in this study. Nanocrystalline HAP was prepared by a precipitation method with aid of ultrasonic atomization using Ca(NO3)2 x 4H2O and (NH4)2HPO4 as raw materials. The crystallization and the morphology of the prepared nanopowder were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The obtained powder was 30-40 nm in size and homogenous. The effect of some surfactants on the crystallization and morphology of HAP nanoparticles was also investigated. The results showed that the synthesis method used in this study can effectively shorten the reaction time while improving the homogeneity of the powder when compared to other published methods. It was also found that the addition of a small amount of surfactant glycine during the precipitation synthesis can reduce the agglomeration of the HAP nanoparticles.

  7. Spectral analysis of allogeneic hydroxyapatite powders

    NASA Astrophysics Data System (ADS)

    Timchenko, P. E.; Timchenko, E. V.; Pisareva, E. V.; Vlasov, M. Yu; Red’kin, N. A.; Frolov, O. O.

    2017-01-01

    In this paper we discuss the application of Raman spectroscopy to the in vitro analysis of the hydroxyapatite powder samples produced from different types of animal bone tissue during demineralization process at various acid concentrations and exposure durations. The derivation of the Raman spectrum of hydroxyapatite is attempted by the analysis of the pure powders of its known constituents. Were experimentally found spectral features of hydroxyapatite, based on analysis of the line amplitude at wave numbers 950-965 cm-1 ((PO4)3- (ν1) vibration) and 1065-1075 cm-1 ((CO3)2-(ν1) B-type replacement). Control of physicochemical properties of hydroxyapatite was carried out by Raman spectroscopy. Research results are compared with an infrared Fourier spectroscopy.

  8. Luminescence of Nanoporous Si and ALD-Deposited ZnO on Nanoporous Si Substrate

    NASA Astrophysics Data System (ADS)

    Pham, Vuong-Hung; Tam, Phuong Dinh; Dung, Nguyen Huu; Nguyen, Duy-Hung; Huy, Pham Thanh

    2017-03-01

    This paper reports the attempt at synthesizing nanoporous silicon (Si) with a dendritic-like structure and atomic layer deposition (ALD) of ZnO on nanoporous Si to control light emission intensity and emission center by applying an optimum voltage, etching time and thickness of ZnO layer. The dendritic-like structure of nanoporous Si was formed with low etching voltages of 5-10 V. Fourier transform infrared absorption spectra of the nanoporous Si reveals that the intensities of hydride stretching, SiH2 scissor mode and Si-O-Si vibration peak increase with the increasing of etching time. The formation of a thick dendritic-like structure with an increasing SiH2 bond resulted in significant enhancement of luminescence. In addition, the ALD-deposited ZnO layer on nanoporous Si resulted in light emission from both ZnO and nanoporous Si under a single excitation source. These results suggest the potential application of an ALD-deposited ZnO layer on nanoporous Si in designing materials for advanced optoelectronics.

  9. Self-supported metallic nanopore arrays with highly oriented nanoporous structures as ideally nanostructured electrodes for supercapacitor applications.

    PubMed

    Zhao, Huaping; Wang, Chengliang; Vellacheri, Ranjith; Zhou, Min; Xu, Yang; Fu, Qun; Wu, Minghong; Grote, Fabian; Lei, Yong

    2014-12-03

    Self-supported metallic nanopore arrays with highly oriented nanoporous structures are fabricated and applied as ideally nanostructured electrodes for supercapacitor applications. Their large specific surface area can ensure a high capacitance, and their highly oriented and stable nanoporous structure can facilitate ion transport.

  10. On the anisotropic elastic properties of hydroxyapatite.

    NASA Technical Reports Server (NTRS)

    Katz, J. L.; Ukraincik, K.

    1971-01-01

    Experimental measurements of the isotropic elastic moduli on polycrystalline specimens of hydroxyapatite and fluorapatite are compared with elastic constants measured directly from single crystals of fluorapatite in order to derive a set of pseudo single crystal elastic constants for hydroxyapatite. The stiffness coefficients thus derived are given. The anisotropic and isotropic elastic properties are then computed and compared with similar properties derived from experimental observations of the anisotropic behavior of bone.

  11. Universities' Entrepreneurial Performance: The Role of Agglomeration Economies

    ERIC Educational Resources Information Center

    Chen, Ping Penny

    2011-01-01

    In spite of the extensive research on universities' entrepreneurship, whether research strength fosters or dampens their entrepreneurial performance remains controversial. Much research claims an influential role of research universities in regional economy, however, little has been said about what a part that the agglomeration economies may play…

  12. Spherical agglomerates of lactose with enhanced mechanical properties.

    PubMed

    Lamešić, Dejan; Planinšek, Odon; Lavrič, Zoran; Ilić, Ilija

    2017-01-10

    The aim of this study was to prepare spherical agglomerates of lactose and to evaluate their physicochemical properties, flow properties, particle friability and compaction properties, and to compare them to commercially available types of lactose for direct compression (spray-dried, granulated and anhydrous β-lactose). Porous spherical agglomerates of α-lactose monohydrate with radially arranged prism-like primary particles were prepared exhibiting a high specific surface area. All types of lactose analysed had passable or better flow properties, except for anhydrous β-lactose, which had poor flowability. Particle friability was more pronounced in larger granulated lactose particles; however, particle structure was retained in all samples analysed. The mechanical properties of spherical agglomerates of lactose, in terms of compressibility, established with Walker analysis, and compactibility, established with a compactibility profile, were found to be superior to any commercially available types of lactose. Higher compactibility of spherical agglomerates of lactose is ascribed to significantly higher particle surface area due to a unique internal structure with higher susceptibility to fragmentation.

  13. Engineering development of selective agglomeration. Site closeout report

    SciTech Connect

    Not Available

    1993-04-01

    The Selective Agglomeration POC facility consisted of a coal crushing and grinding circuit, followed by an agglomeration circuit and product dewatering. (A plot plan of the facility is shown in Figure 1-2.) The coal crushing and grinding system consisted of a hammermill coal crusher, weigh-belt feeder, two ball mills (primary and secondary), and necessary hoppers, pumps, and conveyors. The mills were capable of providing coal over a range of grinds from a d{sub 50} of 125 to 25 microns. Slurry discharged from the ball mills was pumped to the agglomeration circuit. The agglomeration circuit began with a high-shear mixer, where diesel was added to the slurry to begin the formation of microagglomerates. The high-shear mixer was followed by two stages of conventional flotation cells for microagglomerate recovery. The second-stage-flotation-cell product was pumped to either a rotary-drum vacuum filter or a high-G centrifuge for dewatering. The dewatered product was then convoyed to the product pad from which dump trucks were used to transfer it to the utility plant located next to the facility. Plant tailings were pumped to the water clarifier for thickening and then dewatered in plate-and-frame filter presses. These dewatered tailings were also removed to the utility via dump truck. Clarified water (thickener overflow) was recycled to the process via a head tank.

  14. Frequency comparative study of coal-fired fly ash acoustic agglomeration.

    PubMed

    Liu, Jianzhong; Wang, Jie; Zhang, Guangxue; Zhou, Junhu; Cen, Kefa

    2011-01-01

    Particulate pollution is main kind of atmospheric pollution. The fine particles are seriously harmful to human health and environment. Acoustic agglomeration is considered as a promising pretreatment technology for fine particle agglomeration. The mechanisms of acoustic agglomeration are very complex and the agglomeration efficiency is affected by many factors. The most important and controversial factor is frequency. Comparative studies between high-frequency and low-frequency sound source to agglomerate coal-fired fly ash were carried out to investigate the influence of frequency on agglomeration efficiency. Acoustic agglomeration theoretical analysis, experimental particle size distributions (PSDs) and orthogonal design were examined. The results showed that the 20 kHz high-frequency sound source was not suitable to agglomerate coal-fired fly ash. Only within the size ranging from 0.2 to 0.25 microm the particles agglomerated to adhere together, and the agglomerated particles were smaller than 2.5 microm. The application of low-frequency (1000-1800 Hz) sound source was proved as an advisable pretreatment with the highest agglomeration efficiency of 75.3%, and all the number concentrations within the measuring range decreased. Orthogonal design L16 (4)3 was introduced to determine the optimum frequency and optimize acoustic agglomeration condition. According to the results of orthogonal analysis, frequency was the dominant factor of coal-fired fly ash acoustic agglomeration and the optimum frequency was 1400 Hz.

  15. Substituted hydroxyapatites for bone repair.

    PubMed

    Shepherd, Jennifer H; Shepherd, David V; Best, Serena M

    2012-10-01

    Calcium phosphates such as hydroxyapatite have a wide range of applications both in bone grafts and for the coating of metallic implants, largely as a result of their chemical similarity to the mineral component of bone. However, to more accurately mirror the chemistry, various substitutions, both cationic (substituting for the calcium) and anionic (substituting for the phosphate or hydroxyl groups) have been produced. Significant research has been carried out in the field of substituted apatites and this paper aims to summarise some of the key effect of substitutions including magnesium, zinc, strontium, silicon and carbonate on physical and biological characteristics. Even small substitutions have been shown to have very significant effects on thermal stability, solubility, osteoclastic and osteoblastic response in vitro and degradation and bone regeneration in vivo.

  16. Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates.

    PubMed

    Everett, W Neil; Chern, Christina; Sun, Dazhi; McMahon, Rebecca E; Zhang, Xi; Chen, Wei-Jung A; Hahn, Mariah S; Sue, H-J

    2014-02-10

    Zinc oxide (ZnO) nanoparticles (NPs) have been found to readily react with phosphate ions to form zinc phosphate (Zn3(PO4)2) crystallites. Because phosphates are ubiquitous in physiological fluids as well as waste water streams, it is important to examine the potential effects that the formation of Zn3(PO4)2 crystallites may have on cell viability. Thus, the cytotoxic response of NIH/3T3 fibroblast cells was assessed following 24h of exposure to ZnO NPs suspended in media with and without the standard phosphate salt supplement. Both particle dosage and size have been shown to impact the cytotoxic effects of ZnO NPs, so doses ranging from 5 to 50 μg/mL were examined and agglomerate size effects were investigated by using the bioinert amphiphilic polymer polyvinylpyrrolidone (PVP) to generate water-soluble ZnO ranging from individually dispersed 4 nm NPs up to micron-sized agglomerates. Cell metabolic activity measures indicated that the presence of phosphate in the suspension media can led to significantly reduced cell viability at all agglomerate sizes and at lower ZnO dosages. In addition, a reduction in cell viability was observed when agglomerate size was decreased, but only in the phosphate-containing media. These metabolic activity results were reflected in separate measures of cell death via the lactate dehydrogenase assay. Our results suggest that, while higher doses of water-soluble ZnO NPs are cytotoxic, the presence of phosphates in the surrounding fluid can lead to significantly elevated levels of cell death at lower ZnO NP doses. Moreover, the extent of this death can potentially be modulated or offset by tuning the agglomerate size. These findings underscore the importance of understanding how nanoscale materials can interact with the components of surrounding fluids so that potential adverse effects of such interactions can be controlled.

  17. USE OF ATOMIC LAYER DEPOSITION OF FUNCTIONALIZATION OF NANOPOROUS BIOMATERIALS

    SciTech Connect

    Brigmon, R.; Narayan, R.; Adiga, S.; Pellin, M.; Curtiss, L.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N.; Elam, J.

    2010-02-08

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.

  18. Single-Molecule Studies of Nucleic Acid Interactions Using Nanopores

    NASA Astrophysics Data System (ADS)

    Wanunu, Meni; Soni, Gautam V.; Meller, Amit

    This chapter presents biophysical studies of single biopolymers using nanopores. Starting from the fundamental process of voltage-driven biopolymer translocation, the understanding of which is a prerequisite for virtually all nanopore applications, the chapter describes recent experiments that resolve nucleic acid structure and its interaction with enzymes, such as exonucleases and polymerases. It then outlines progress made with solid-state nanopores fabricated in ultrathin membranes and discusses experiments describing biopolymer dynamics in synthetic pores. The chapter concludes with a discussion on some of the main challenges facing nanopore technology, as well as on some of the future prospects associated with nanopore-based tools.

  19. Improving the de-agglomeration and dissolution of a poorly water soluble drug by decreasing the agglomerate strength of the cohesive powder.

    PubMed

    Allahham, Ayman; Stewart, Peter J; Das, Shyamal C

    2013-11-30

    Influence of ternary, poorly water-soluble components on the agglomerate strength of cohesive indomethacin mixtures during dissolution was studied to explore the relationship between agglomerate strength and extent of de-agglomeration and dissolution of indomethacin (Ind). Dissolution profiles of Ind from 20% Ind-lactose binary mixtures, and ternary mixtures containing additional dibasic calcium phosphate (1% or 10%; DCP), calcium sulphate (10%) and talc (10%) were determined. Agglomerate strength distributions were estimated by Monte Carlo simulation of particle size, work of cohesion and packing fraction distributions. The agglomerate strength of Ind decreased from 1.19 MPa for the binary Ind mixture to 0.84 MPa for 1DCP:20Ind mixture and to 0.42 MPa for 1DCP:2Ind mixture. Both extent of de-agglomeration, demonstrated by the concentration of the dispersed indomethacin distribution, and extent of dispersion, demonstrated by the particle size of the dispersed indomethacin, were in descending order of 1DCP:2Ind>1DCP:20Ind>binary Ind. The addition of calcium sulphate dihydrate and talc also reduced the agglomerate strength and improved de-agglomeration and dispersion of indomethacin. While not definitively causal, the improved de-agglomeration and dispersion of a poorly water soluble drug by poorly water soluble components was related to the agglomerate strength of the cohesive matrix during dissolution.

  20. Vibrational spectra of molecular fluids in nanopores

    NASA Astrophysics Data System (ADS)

    Arakcheev, V. G.; Morozov, V. B.

    2012-12-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is applied for quantitative analysis of carbon dioxide phase composition in pores of nanoporous glass samples at nearcritical temperatures. Measurements of the 1388 1/cm Q-branch were made in a wide pressure range corresponding to coexistence of gas (gas-like), adsorbed and condensed phases within pores. At temperatures several degrees below the critical value, CARS spectra behavior is easy to interpret in terms of thermodynamic model of surface adsorption and capillary condensation. It allows estimating mass fractions of different phase components. Moreover, spectra measured at near critical temperatures 30.5 and 33°C have pronounced inhomogeneous shapes and indicate the presence of condensed phase in the volume of pores. The effect obviously reflects the fluid behaviour near the critical point in nanopores. Pores with smaller radii are filled with condensed phase at lower pressures. The analysis of the CARS spectra is informative for quantitative evaluation of phase composition in nanopores.

  1. Tailored nanoporous gold for ultrahigh fluorescence enhancement.

    PubMed

    Lang, X Y; Guan, P F; Fujita, T; Chen, M W

    2011-03-07

    We report molecular fluorescence enhancement of free-standing nanoporous gold in which the nanoporosity can be arbitrarily tailored by the combination of dealloying and electroless gold plating. The nanoporous gold fabricated by this facile method possesses unique porous structures with large gold ligaments and very small pores, and exhibits significant improvements in surface enhanced fluorescence as well as structure rigidity. It demonstrates that the confluence effect of improved quantum yield and excitation of fluorophores is responsible for the large fluorescence enhancement due to the near-field enhancement of nanoporous gold, which arises from the strong electromagnetic coupling between neighboring ligaments and the weakening of plasmon damping of the large ligaments because of the small pore size and large ligament size, respectively.

  2. Dynamic crack propagation through nanoporous media

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao; Wilkerson, Justin

    2015-06-01

    The deformation and failure of nanoporous metals may be considerably different than that of more traditional bulk porous metals. The length scales in traditional bulk porous metals are typically large enough for classic plasticity and buckling to be operative. However, the extremely small length scales associated with nanoporous metals may inhibit classic plasticity mechanisms. Here, we motivate an alternative nanovoid growth mechanism mediated by dislocation emission. Following an approach similar to Lubarda and co-workers, we make use of stability arguments applied to the analytic solutions of the elastic interactions of dislocations and voids to derive a simple stress-based criterion for emission activation. We then propose a dynamic nanovoid growth law that is motivated by the kinetics of dislocation emission. The resulting failure model is implemented into a commercial finite element software to simulate dynamic crack growth. The simulations reveal that crack propagation through a nanoporous media proceeds at somewhat faster velocities than through the more traditional bulk porous metal.

  3. Nanoporous polymers for hydrogen storage.

    PubMed

    Germain, Jonathan; Fréchet, Jean M J; Svec, Frantisek

    2009-05-01

    The design of hydrogen storage materials is one of the principal challenges that must be met before the development of a hydrogen economy. While hydrogen has a large specific energy, its volumetric energy density is so low as to require development of materials that can store and release it when needed. While much of the research on hydrogen storage focuses on metal hydrides, these materials are currently limited by slow kinetics and energy inefficiency. Nanostructured materials with high surface areas are actively being developed as another option. These materials avoid some of the kinetic and thermodynamic drawbacks of metal hydrides and other reactive methods of storing hydrogen. In this work, progress towards hydrogen storage with nanoporous materials in general and porous organic polymers in particular is critically reviewed. Mechanisms of formation for crosslinked polymers, hypercrosslinked polymers, polymers of intrinsic microporosity, and covalent organic frameworks are discussed. Strategies for controlling hydrogen storage capacity and adsorption enthalpy via manipulation of surface area, pore size, and pore volume are discussed in detail.

  4. DNA translocations through solid-state plasmonic nanopores.

    PubMed

    Nicoli, Francesca; Verschueren, Daniel; Klein, Misha; Dekker, Cees; Jonsson, Magnus P

    2014-12-10

    Nanopores enable label-free detection and analysis of single biomolecules. Here, we investigate DNA translocations through a novel type of plasmonic nanopore based on a gold bowtie nanoantenna with a solid-state nanopore at the plasmonic hot spot. Plasmonic excitation of the nanopore is found to influence both the sensor signal (nanopore ionic conductance blockade during DNA translocation) and the process that captures DNA into the nanopore, without affecting the duration time of the translocations. Most striking is a strong plasmon-induced enhancement of the rate of DNA translocation events in lithium chloride (LiCl, already 10-fold enhancement at a few mW of laser power). This provides a means to utilize the excellent spatiotemporal resolution of DNA interrogations with nanopores in LiCl buffers, which is known to suffer from low event rates. We propose a mechanism based on plasmon-induced local heating and thermophoresis as explanation of our observations.

  5. Nanopore sequencing detects structural variants in cancer.

    PubMed

    Norris, Alexis L; Workman, Rachael E; Fan, Yunfan; Eshleman, James R; Timp, Winston

    2016-01-01

    Despite advances in sequencing, structural variants (SVs) remain difficult to reliably detect due to the short read length (<300 bp) of 2nd generation sequencing. Not only do the reads (or paired-end reads) need to straddle a breakpoint, but repetitive elements often lead to ambiguities in the alignment of short reads. We propose to use the long-reads (up to 20 kb) possible with 3rd generation sequencing, specifically nanopore sequencing on the MinION. Nanopore sequencing relies on a similar concept to a Coulter counter, reading the DNA sequence from the change in electrical current resulting from a DNA strand being forced through a nanometer-sized pore embedded in a membrane. Though nanopore sequencing currently has a relatively high mismatch rate that precludes base substitution and small frameshift mutation detection, its accuracy is sufficient for SV detection because of its long reads. In fact, long reads in some cases may improve SV detection efficiency. We have tested nanopore sequencing to detect a series of well-characterized SVs, including large deletions, inversions, and translocations that inactivate the CDKN2A/p16 and SMAD4/DPC4 tumor suppressor genes in pancreatic cancer. Using PCR amplicon mixes, we have demonstrated that nanopore sequencing can detect large deletions, translocations and inversions at dilutions as low as 1:100, with as few as 500 reads per sample. Given the speed, small footprint, and low capital cost, nanopore sequencing could become the ideal tool for the low-level detection of cancer-associated SVs needed for molecular relapse, early detection, or therapeutic monitoring.

  6. Preparation of hydroxyapatite/zirconia bioceramic nanocomposites for orthopaedic and dental prosthesis applications

    NASA Astrophysics Data System (ADS)

    Sung, Yun-Mo; Shin, Young-Keun; Ryu, Jae-Jun

    2007-02-01

    Homogeneous mixtures of hydroxyapatite (HAp) and yttria-stabilized zirconia (YSZ) nanoparticles were successfully synthesized using chemical co-precipitation and subsequent calcination. For the synthesis of HAp/YSZ nanopowder, the Ca/P atomic ratio was 1.73 to obtain high-content stoichiometric hydroxyapatite phase and to suppress β-tricalcium phosphate (β-TCP) formation. The agglomerated crystalline powders were milled using YSZ ball media to obtain well-separated nanoparticles. The final particle size of the HAp and YSZ was ~50-70 and ~15-30 nm, respectively. The crystallinity and morphological feature of the nanopowder was analysed using x-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) analyses. The ball-milled nanopowder mixture was hot pressed at 1100 °C for 1 h under 20 MPa in vacuum atmosphere. The sintered HAp/YSZ nanocomposites exhibited approximately 99% of the theoretical density, due not only to the fine nanoscale of the particles, but also to the homogeneous distribution of the nanoparticle mixture. They also showed fine grain structures of the HAp phase due to the suppressed grain growth by YSZ particles. The nanocomposites showed improved mechanical properties, flexural strength of ~155 MPa and fracture toughness of ~2.1 MP m1/2, due to the YSZ contribution to the HAp matrix.

  7. Preparation of hydroxyapatite nanoparticles by sol-gel method with optimum processing parameters

    SciTech Connect

    Yusoff, Yusriha Mohd; Salimi, Midhat Nabil Ahmad; Anuar, Adilah

    2015-05-15

    Many studies have been carried out in order to prepare hydroxyapatite (HAp) by various methods. In this study, we focused on the preparation of HAp nanoparticles by using sol-gel technique in which few parameters are optimized which were stirring rate, aging time and sintering temperature. HAp nanoparticles were prepared by using precursors of calcium nitrate tetrahydrate, Ca(NO{sub 3}){sub 2}.4H{sub 2}O and phosphorous pentoxide, P{sub 2}O{sub 5}. Both precursors are mixed in ethanol respectively before they were mixed together in which it formed a stable sol. Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were used for its characterization in terms of functional group, phase composition, crystallite size and morphology of the nanoparticles produced. FTIR spectra showed that the functional groups that present in all five samples were corresponding to the formation of HAp. Besides, XRD shows that only one phase was formed which was hydroxyapatite. Meanwhile, SEM shows that the small particles combine together to form agglomeration.

  8. Method for making nanoporous hydrophobic coatings

    DOEpatents

    Fan, Hongyou; Sun, Zaicheng

    2013-04-23

    A simple coating method is used to form nanoporous hydrophobic films that can be used as optical coatings. The method uses evaporation-induced self-assembly of materials. The coating method starts with a homogeneous solution comprising a hydrophobic polymer and a surfactant polymer in a selective solvent. The solution is coated onto a substrate. The surfactant polymer forms micelles with the hydrophobic polymer residing in the particle core when the coating is dried. The surfactant polymer can be dissolved and selectively removed from the separated phases by washing with a polar solvent to form the nanoporous hydrophobic film.

  9. Scalable synthesis of nanoporous palladium powders.

    SciTech Connect

    Robinson, David B.; Tran, Kim L.; Clift, W. Miles; Arslan Ilke; Langham, Mary Elizabeth; Ong, Markus D.; Fares, Stephen James

    2009-03-01

    Nanoporous palladium powders are synthesized on milligram to gram scales by chemical reduction of tetrachloro complexes by ascorbate in a concentrated aqueous surfactant at temperatures between -20 and 30 C. Particle diameters are approximately 50 nm, and each particle is perforated by 3 nm pores, as determined by electron tomography. These materials are of potential value for storage of hydrogen isotopes and electrical charge; producing them at large scales in a safe and efficient manner will help realize this. A slightly modified procedure also results in nanoporous platinum.

  10. Observation of ionic Coulomb blockade in nanopores

    NASA Astrophysics Data System (ADS)

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.

  11. Fabrication of 10nm diameter carbon nanopores

    SciTech Connect

    Radenovic, Aleksandra; Trepagnier, Eliane; Csencsits, Roseann; Downing, Kenneth H; Liphardt, Jan

    2008-09-25

    The addition of carbon to samples, during imaging, presents a barrier to accurate TEM analysis, the controlled deposition of hydrocarbons by a focused electron beam can be a useful technique for local nanometer-scale sculpting of material. Here we use hydrocarbon deposition to form nanopores from larger focused ion beam (FIB) holes in silicon nitride membranes. Using this method, we close 100-200nm diameter holes to diameters of 10nm and below, with deposition rates of 0.6nm per minute. I-V characteristics of electrolytic flow through these nanopores agree quantitatively with a one dimensional model at all examined salt concentrations.

  12. Synthesis and Characterization of Hydroxyapatite/Fullerenol Nanocomposites.

    PubMed

    Djordjevic, Aleksandar; Ignjatovic, Nenad; Seke, Mariana; Jovic, Danica; Uskokovic, Dragan; Rakocevic, Zlatko

    2015-02-01

    Fullerenols are polyhydroxylated, water soluble derivatives of fullerene C60, with potential application in medicine as diagnostic agents, antioxidants or nano drug carriers. This paper describes synthesis and physical characterization of a new nanocomposite hydroxyapatite/fullerenol. Surface of the nanocomposite hydroxyapatite/fullerenol is inhomogeneous with the diameter of the particles in the range from 100 nm to 350 nm. The ζ potential of this nanocomposite is ten times lower when compared to hydroxyapatite. Surface phosphate groups of hydroxyapatite are prone to forming hydrogen bonds, when in close contact with hydroxyl groups, which could lead to formation of hydrogen bonds between hydroxyapatite and hydroxyl groups of fullerenol. The surface of hydroxyapatite particles (-2.5 mV) was modified by fullerenol particles, as confirmed by the obtained ζ potential value of the nanocomposite biomaterial hydroxyapatite/fullerenol (-25.0 mV). Keywords: Hydroxyapatite, Fullerenol, Nanocomposite, Surface Analysis.

  13. Comparison of nanoparticular hydroxyapatite pastes of different particle content and size in a novel scapula defect model

    PubMed Central

    Hruschka, Veronika; Tangl, Stefan; Ryabenkova, Yulia; Heimel, Patrick; Barnewitz, Dirk; Möbus, Günter; Keibl, Claudia; Ferguson, James; Quadros, Paulo; Miller, Cheryl; Goodchild, Rebecca; Austin, Wayne; Redl, Heinz; Nau, Thomas

    2017-01-01

    Nanocrystalline hydroxyapatite (HA) has good biocompatibility and the potential to support bone formation. It represents a promising alternative to autologous bone grafting, which is considered the current gold standard for the treatment of low weight bearing bone defects. The purpose of this study was to compare three bone substitute pastes of different HA content and particle size with autologous bone and empty defects, at two time points (6 and 12 months) in an ovine scapula drillhole model using micro-CT, histology and histomorphometry evaluation. The nHA-LC (38% HA content) paste supported bone formation with a high defect bridging-rate. Compared to nHA-LC, Ostim® (35% HA content) showed less and smaller particle agglomerates but also a reduced defect bridging-rate due to its fast degradation The highly concentrated nHA-HC paste (48% HA content) formed oversized particle agglomerates which supported the defect bridging but left little space for bone formation in the defect site. Interestingly, the gold standard treatment of the defect site with autologous bone tissue did not improve bone formation or defect bridging compared to the empty control. We concluded that the material resorption and bone formation was highly impacted by the particle-specific agglomeration behaviour in this study. PMID:28233833

  14. Expanding the functionality and applications of nanopore sensors

    NASA Astrophysics Data System (ADS)

    Venta, Kimberly E.

    Nanopore sensors have developed into powerful tools for single-molecule studies since their inception two decades ago. Nanopore sensors function as nanoscale Coulter counters, by monitoring ionic current modulations as particles pass through a nanopore. While nanopore sensors can be used to study any nanoscale particle, their most notable application is as a low cost, fast alternative to current DNA sequencing technologies. In recent years, signifcant progress has been made toward the goal of nanopore-based DNA sequencing, which requires an ambitious combination of a low-noise and high-bandwidth nanopore measurement system and spatial resolution. In this dissertation, nanopore sensors in thin membranes are developed to improve dimensional resolution, and these membranes are used in parallel with a high-bandwidth amplfier. Using this nanopore sensor system, the signals of three DNA homopolymers are differentiated for the first time in solid-state nanopores. The nanopore noise is also reduced through the addition of a layer of SU8, a spin-on polymer, to the supporting chip structure. By increasing the temporal and spatial resolution of nanopore sensors, studies of shorter molecules are now possible. Nanopore sensors are beginning to be used for the study and characterization of nanoparticles. Nanoparticles have found many uses from biomedical imaging to next-generation solar cells. However, further insights into the formation and characterization of nanoparticles would aid in developing improved synthesis methods leading to more effective and customizable nanoparticles. This dissertation presents two methods of employing nanopore sensors to benet nanoparticle characterization and fabrication. Nanopores were used to study the formation of individual nanoparticles and serve as nanoparticle growth templates that could be exploited to create custom nanoparticle arrays. Additionally, nanopore sensors were used to characterize the surface charge density of anisotropic

  15. Biomimetic synthesis of hybrid hydroxyapatite nanoparticles using nanogel template for controlled release of bovine serum albumin.

    PubMed

    Qin, Jinli; Zhong, Zhenyu; Ma, Jun

    2016-05-01

    A biomimetic method was used to prepare hybrid hydroxyapatite (HAP) nanoparticles with chitosan/polyacrylic acid (CS-PAA) nanogel. The morphology, structure, crystallinity, thermal properties and biocompatibility of the obtained hybrid nanogel-HAP nanoparticles have been characterized. In addition, bovine serum albumin (BSA) was used as a model protein to study the loading and release behaviors of the hybrid nanogel-HAP nanoparticles. The results indicated that the obtained HAP nanoparticles were agglomerated and the nanogel could regulate the formation of HAP. When the nanogel concentration decreased, different HAP crystal shapes and agglomerate structures were obtained. The loading amount of BSA reached 67.6 mg/g for the hybrid nanoparticles when the mineral content was 90.4%, which decreased when the nanogel concentration increased. The release profile of BSA was sustained in neutral buffer. Meanwhile, an initial burst release was found at pH 4.5 due to the desorption of BSA from the surface, followed by a slow release. The hemolysis percentage of the hybrid nanoparticles was close to the negative control, and these particles were non-toxic to bone marrow stromal stem cells. The results suggest that these hybrid nanogel-HAP nanoparticles are promising candidate materials for biocompatible drug delivery systems.

  16. Trap state spectroscopy studies and wettability modification of hydroxyapatite nanobioceramics

    NASA Astrophysics Data System (ADS)

    Aronov, Daniel; Rosenman, Gil

    2007-02-01

    Sintered hydroxyapatite coatings on titanium-based implants demonstrate beneficial biocompatibility and osteoconductivity. It has been shown that charged surface states and bulk traps located in the vicinity of the surface of the hydroxyapatite coatings strongly influence wettability properties of the hydroxyapatite and may modify biocompatibility of these nanostructured bioceramics. Combination of high-resolution electron state spectroscopy methods, thermostimulated exoelectron emission, and thermoluminescence methods, applied in this work, have allowed studying electron trap energy spectrum of the hydroxyapatite bioceramics.

  17. The impact of agglomeration economies on hospital input prices.

    PubMed

    Friedson, Andrew I; Li, Jing

    2015-12-01

    This paper examines the extent to which agglomeration of the hospital service industry enhances the productivity of producing health care. Specifically, we use a large set of private insurance claims from the FAIR Health database to show that an increasing spatial concentration of hospital services results in a decreased cost of obtaining intermediate medical services. We explicitly test whether the reduced cost at concentrated locations arises from the ability to share intermediate service providers. The identification relies on state variation in medical lab technician licensure requirements, which influence the cost of intermediate services only through the cost of running a lab. Our findings suggest that agglomeration of the hospital service industry attracts specialized medical labs, which in turn help to reduce the cost of producing laboratory tests.

  18. Engineering development of selective agglomeration: Trace element removal study

    SciTech Connect

    Not Available

    1993-09-01

    Southern Company Services, Inc., (SCS) was contracted in 1989 by the US Department of Energy (DOE) to develop a commercially acceptable selective agglomeration technology to enhance the use of high-sulfur coals by 1993. The project scope involved development of a bench-scale process and components, as well as the design, testing, and evaluation of a proof-of-concept (POC) facility. To that end, a two-ton-per-hour facility was constructed and tested near Wilsonville, Alabama. Although it was not the primary focus of the test program, SCS also measured the ability of selective agglomeration to remove trace elements from coal. This document describes the results of that program.

  19. Flocculation, hydrophobic agglomeration and filtration of ultrafine coal

    NASA Astrophysics Data System (ADS)

    Yu, Zhimin

    In coal preparation plant circuits, fine coal particles are aggregated either by oil agglomeration or by flocculation. In a new hydrophobic agglomeration process, recently developed hydrophobic latices are utilized. While the selectivity of such aggregation processes determines the beneficiation results, the degree of aggregation has a strong effect on fine coal filtration. The aim of this research was to study the fundamentals and analyze the common grounds for these processes, including the potential effect of the coal surface properties. The selective flocculation tests, in which three types of coal, which differed widely in surface wettability, and three additives (hydrophobic latices, a semi-hydrophobic flocculant and a typical hydrophilic polyelectrolyte) were utilized, showed that coal wettability plays a very important role in selective flocculation. The abstraction of a hydrophobic latex on coal and silica revealed that the latex had a much higher affinity towards hydrophobic coal than to hydrophilic mineral matter. As a result, the UBC-1 hydrophobic latex flocculated only hydrophobic coal particles while the polyelectrolyte (PAM) flocculated all the tested coal samples and minerals, showing no selectivity in the fine coal beneficiation. The oil agglomeration was tested using kerosene emulsified with various surfactants (e.g. cationic, anionic and non-ionic). Surfactants enhance not only oil emulsification, hence reducing oil consumption (down to 0.25--0.5%), but also entirely change the electrokinetic properties of the droplets and affect the interaction energy between oil droplets and coal particles. Consequently, the results found in the course of the experimental work strongly indicate that even oxidized coals can be agglomerated if cationic surfactants are used to emulsify the oil. Oil agglomeration of the Ford-4 ultrafine coal showed that even at extremely low oil consumption (0.25 to 0.5%), a clean coal product with an ash content around 5% at over

  20. Development of methods to predict agglomeration and disposition in FBCs

    SciTech Connect

    Mann, M.D.; Henderson, A.K.; Swanson, M.K.; Erickson, T.A.

    1995-11-01

    This 3-year, multiclient program is providing the information needed to determine the behavior of inorganic components in FBC units using advanced methods of analysis coupled with bench-scale combustion experiments. The major objectives of the program are as follows: (1) To develop further our advanced ash and deposit characterization techniques to quantify the effects of the liquid-phase components in terms of agglomerate formation and ash deposits, (2) To determine the mechanisms of inorganic transformations that lead to bed agglomeration and ash deposition in FBC systems, and (3) To develop a better means to predict the behavior of inorganic components as a function of coal composition, bed material characteristics, and combustion conditions.

  1. Liquid bridge agglomeration: A fundamental approach to toner deinking

    SciTech Connect

    Snyder, B.A.; Berg, J.C. . Chemical Engineering Dept.)

    1994-05-01

    An alternative agglomeration technique for deinking toner-printed furnishes has been investigated. This technique requires only the addition of an immiscible hydrocarbon oil dispersed in water at dosages of approximately 1% by weight on fiber. The addition is made during repulping: the process appears to be effective at all temperatures of interest (23 C and 70 C are tested) and requires no surfactants or additional chemicals. The result of the oil addition is the agglomeration of the toner particles into spheres of 1 mm to 1 cm in size. These spheres contain the added oil which acts as a binder, holding the toner particles together by liquid bridges. The process is ineffective when the furnish contains highly sized fibers or starched paper, and future work seeks to address these crucial problems.

  2. Preventing ash agglomeration during gasification of high-sodium lignite

    SciTech Connect

    Robert S. Dahlin; Johnny R. Dorminey; WanWang Peng; Roxann F. Leonard; Pannalal Vimalchand

    2009-01-15

    Various additives were evaluated to assess their ability to prevent ash agglomeration during the gasification of high-sodium lignite. Additives that showed promise in simple muffle furnace tests included meta-kaolin, vermiculite, two types of silica fume, and one type of bauxite. Additives that were tested and rejected included dolomite, calcite, sand flour, kaolinite, fine kaolin, and calcined bauxite. Based on the muffle furnace test results, the meta-kaolin was selected for a follow-on demonstration in a pilot-scale coal gasifier. Pilot-scale testing showed that the addition of coarse (minus 14-mesh, 920-{mu}m mean size) meta-kaolin at a feed rate roughly equivalent to the ash content of the lignite (10 wt %) successfully prevented agglomeration and deposition problems during gasification of high-sodium lignite at a maximum operating temperature of 927{sup o}C (1700{sup o}F). 13 refs., 24 figs., 1 tab.

  3. Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library

    SciTech Connect

    2015-02-19

    ParFELAG is a parallel distributed memory C++ library for numerical upscaling of finite element discretizations. It provides optimal complesity algorithms ro build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured mesh (under the assumption that the topology of the agglomerated entities is correct). Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.

  4. Development of a full scale selective oil agglomeration plant

    SciTech Connect

    Donnelly, J.C.; Cooney, B.; Hoare, I.; Waugh, B.; Robinson, R.

    1998-12-31

    A research and development program managed by Australian Mining Investments Limited (AMI) on behalf of an investment syndicate was conducted with the objective of improving the efficiency and economy of the Selective Oil Agglomeration Process (SOAP), and developing viable commercial sized operating plants. Fewer than half the coal preparation plants in Australia beneficiate fine coal by froth flotation, the only viable alternative to SOAP for the recovery of low ash, fine and ultra fine coal. Those plants without flotation generally dispose of the ultra fine material, approximately {minus}100{micro}m in size, as tailings to waste. In the majority of cases this ultra fine waste contains more than 50% relatively low ash coal of saleable quality. It is believed that this coal constitutes a loss of 8--10 million tonnes per annum and that the coal mining industry would welcome a recovery process which has low capital and operating costs and will function automatically with minimal operator attention. The authors carried out a comprehensive literature study of selective oil agglomeration in order to gain a full understanding of the process and to plan the research program. Extensive studies were then undertaken on oil dispersion in the water phase, formation of oil water emulsions with surfactants and the optimization of surfactant selection. Oil and emulsion properties were investigated including stability, viscosity, temperature, concentration of components, time of formation, and cost. This work was followed by characterization studies on coals from the Gunnedah Basin and agglomeration test work on these coals. These agglomeration studies were performed firstly at bench level and then by using a small, 200 kg/hr continuous process development unit. The results were sufficiently encouraging to justify the design and construction of a fully instrumented, PLC controlled, 2 tph pilot plant at Gunnedah Colliery Coal Preparation Plant. Extensive trials were carried out on

  5. Aluminum Agglomeration and Trajectory in Solid Rocket Motors

    DTIC Science & Technology

    2007-08-30

    cinematography data from China Lake. Task 2.2, Aluminum Agglomeration Model Selection (SEA/BYU/ATK Task) Part of the model selection task has already been... Manual . Software and Engineering Associates, Inc. 1802 N. Carson Street, Suite 200, Carson City, NV 89701. 2005. [DCF-2005b] S. S. Dunn, D. E. Coats, and J...C. French, SPP󈧈 Standard Stability Prediction Method for Solid Rocket Motors; Axial Mode Computer Program User’s Manual . Software and Engineering

  6. Electrochemical synthesis of nanosized hydroxyapatite by pulsed direct current method

    SciTech Connect

    Nur, Adrian; Rahmawati, Alifah; Ilmi, Noor Izzati; Affandi, Samsudin; Widjaja, Arief

    2014-02-24

    Synthesis of nanosized of hydroxyapatite (HA) by electrochemical pulsed direct current (PDC) method has been studied. The aim of this work is to study the influence of various PDC parameters (pH initial, electrode distance, duty cycle, frequency, and amplitude) on particle surface area of HA powders. The electrochemical synthesis was prepared in solution Ca{sup 2+}/EDTA{sup 4−}/PO{sub 4}{sup 3+} at concentration 0.25/0.25/0.15 M for 24 h. The electrochemical cell was consisted of two carbon rectangular electrodes connected to a function generator to produce PDC. There were two treatments for particles after electrosynthesized, namely without aging and aged for 2 days at 40 °C. For both cases, the particles were filtered and washed by demineralized water to eliminate the impurities and unreacted reactants. Then, the particles were dried at 100 °C for 2 days. The dried particles were characterized by X-ray diffraction, surface area analyzer, scanning electron microscopy (SEM), Fourier transform infrared spectra and thermogravimetric and differential thermal analysis. HA particles can be produced when the initial pH > 6. The aging process has significant effect on the produced HA particles. SEM images of HA particles showed that the powders consisted of agglomerates composed of fine crystallites and have morphology plate-like and sphere. The surface area of HA particles is in the range of 25 – 91 m{sup 2}/g. The largest particle surface area of HA was produced at 4 cm electrode distance, 80% cycle duty, frequency 0.1 Hz, amplitude 9 V and with aging process.

  7. Contact mechanics of highly porous oxide nanoparticle agglomerates

    NASA Astrophysics Data System (ADS)

    Fabre, Andrea; Salameh, Samir; Ciacchi, Lucio Colombi; Kreutzer, Michiel T.; van Ommen, J. Ruud

    2016-07-01

    Efficient nanopowder processing requires knowledge of the powder's mechanical properties. Due to the large surface area to volume ratio, nanoparticles experience relatively strong attractive interactions, leading to the formation of micron-size porous structures called agglomerates. Significant effort has been directed towards the development of models and experimental procedures to estimate the elasticity of porous objects such as nanoparticle agglomerates; however, none of the existing models has been validated for solid fractions below 0.1. Here, we measure the elasticity of titania (TiO_2, 22 nm), alumina (Al_2O_3, 8 nm), and silica (SiO_2, 16 nm) nanopowder agglomerates by Atomic Force Microscopy, using a 3.75 μm glass colloid for the stress-strain experiments. Three sample preparations with varying degree of powder manipulation are assessed. The measured Young's moduli are in the same order of magnitude as those predicted by the model of Kendall et al., thus validating it for the estimation of the Young's modulus of structures with porosity above 90 %.

  8. Computational modeling of ion transport through nanopores.

    PubMed

    Modi, Niraj; Winterhalter, Mathias; Kleinekathöfer, Ulrich

    2012-10-21

    Nanoscale pores are ubiquitous in biological systems while artificial nanopores are being fabricated for an increasing number of applications. Biological pores are responsible for the transport of various ions and substrates between the different compartments of biological systems separated by membranes while artificial pores are aimed at emulating such transport properties. As an experimental method, electrophysiology has proven to be an important nano-analytical tool for the study of substrate transport through nanopores utilizing ion current measurements as a probe for the detection. Independent of the pore type, i.e., biological or synthetic, and objective of the study, i.e., to model cellular processes of ion transport or electrophysiological experiments, it has become increasingly important to understand the dynamics of ions in nanoscale confinements. To this end, numerical simulations have established themselves as an indispensable tool to decipher ion transport processes through biological as well as artificial nanopores. This article provides an overview of different theoretical and computational methods to study ion transport in general and to calculate ion conductance in particular. Potential new improvements in the existing methods and their applications are highlighted wherever applicable. Moreover, representative examples are given describing the ion transport through biological and synthetic nanopores as well as the high selectivity of ion channels. Special emphasis is placed on the usage of molecular dynamics simulations which already have demonstrated their potential to unravel ion transport properties at an atomic level.

  9. 1/f noise in graphene nanopores

    NASA Astrophysics Data System (ADS)

    Heerema, S. J.; Schneider, G. F.; Rozemuller, M.; Vicarelli, L.; Zandbergen, H. W.; Dekker, C.

    2015-02-01

    Graphene nanopores are receiving great attention due to their atomically thin membranes and intrinsic electrical properties that appear greatly beneficial for biosensing and DNA sequencing. Here, we present an extensive study of the low-frequency 1/f noise in the ionic current through graphene nanopores and compare it to noise levels in silicon nitride pore currents. We find that the 1/f noise magnitude is very high for graphene nanopores: typically two orders of magnitude higher than for silicon nitride pores. This is a drawback as it significantly lowers the signal-to-noise ratio in DNA translocation experiments. We evaluate possible explanations for these exceptionally high noise levels in graphene pores. From examining the noise for pores of different diameters and at various salt concentrations, we find that in contrast to silicon nitride pores, the 1/f noise in graphene pores does not follow Hooge’s relation. In addition, from studying the dependence on the buffer pH, we show that the increased noise cannot be explained by charge fluctuations of chemical groups on the pore rim. Finally, we compare single and bilayer graphene to few-layer and multi-layer graphene and boron nitride (h-BN), and we find that the noise reduces with layer thickness for both materials, which suggests that mechanical fluctuations may be the underlying cause of the high 1/f noise levels in monolayer graphene nanopore devices.

  10. Nanopores: A journey towards DNA sequencing

    PubMed Central

    Wanunu, Meni

    2013-01-01

    Much more than ever, nucleic acids are recognized as key building blocks in many of life's processes, and the science of studying these molecular wonders at the single-molecule level is thriving. A new method of doing so has been introduced in the mid 1990's. This method is exceedingly simple: a nanoscale pore that spans across an impermeable thin membrane is placed between two chambers that contain an electrolyte, and voltage is applied across the membrane using two electrodes. These conditions lead to a steady stream of ion flow across the pore. Nucleic acid molecules in solution can be driven through the pore, and structural features of the biomolecules are observed as measurable changes in the trans-membrane ion current. In essence, a nanopore is a high-throughput ion microscope and a single-molecule force apparatus. Nanopores are taking center stage as a tool that promises to read a DNA sequence, and this promise has resulted in overwhelming academic, industrial, and national interest. Regardless of the fate of future nanopore applications, in the process of this 16-year-long exploration, many studies have validated the indispensability of nanopores in the toolkit of single-molecule biophysics. This review surveys past and current studies related to nucleic acid biophysics, and will hopefully provoke a discussion of immediate and future prospects for the field. PMID:22658507

  11. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  12. Ion transport through a graphene nanopore

    PubMed Central

    Hu, Guohui; Mao, Mao; Ghosal, Sandip

    2012-01-01

    Molecular dynamics simulation is utilized to investigate the ionic transport of NaCl in solution through a graphene nanopore under an applied electric field. Results show the formation of concentration polarization layers in the vicinity of the graphene sheet. The nonuniformity of the ion distribution gives rise to an electric pressure which drives vortical motions in the fluid if the electric field is sufficiently strong to overcome the influence of viscosity and thermal fluctuations. The relative importance of hydrodynamic transport and thermal fluctuations in determining the pore conductivity is investigated. A second important effect that is observed is the mass transport of water through the nanopore, with an average velocity proportional to the applied voltage and independent of the pore diameter. The flux arises as a consequence of the asymmetry in the ion distribution which can be attributed to differing mobilities of the sodium and chlorine ions, and, to the polarity of water molecules. The accumulation of liquid molecules in the vicinity of the nanopore due to reorientation of the water dipoles by the local electric field is seen to result in a local increase in the liquid density. Results confirm that the electric conductance is proportional to the nanopore diameter for the parameter regimes that we simulated. The occurrence of fluid vortices is found to result in an increase in the effective electrical conductance. PMID:22962262

  13. Hydrothermal synthesis of hydroxyapatite rods

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Vecchio, Kenneth S.

    2007-10-01

    Hydroxyapatite (HAP) rods were synthesized from dicalcium phosphate anhydrous (CaHPO 4, DCPA) and calcium carbonate (CaCO 3) by the hydrothermal method from 120 to 180 °C. Both cuttlebone (aragonite polymorph of CaCO 3) and CaCO 3 chemical (calcite polymorph of CaCO 3) were used as CaCO 3 sources. The nucleation and growth of HAP rods mainly occurred on DCPA particles, while some HAP rods also grew from aragonite particles. The nucleation and growth of β-tricalcium phosphate (β-TCP) particles on the surface of calcite particles were observed at the beginning of the reaction of DCPA and calcite, and some HAP rods were also found to grow out of β-TCP particles. After the hydrothermal reaction at 140 °C for 24 h, most products are HAP with a small amount of β-TCP synthesized as a byproduct. The HAP rods synthesized were ˜200 nm in width and several microns in length. The reaction mechanism and growth process of HAP rods are discussed.

  14. The role of agglomeration in the conductivity of carbon nanotube composites near percolation

    NASA Astrophysics Data System (ADS)

    Tarlton, Taylor; Sullivan, Ethan; Brown, Joshua; Derosa, Pedro A.

    2017-02-01

    A detailed study of agglomeration in composite materials containing carbon nanotubes (CNT) is presented. Three dimensional samples with different degrees of agglomeration were created in three different ways, leading to a wider range of geometries available to study. Virtual charges are injected into the computer-generated samples and move through these samples according to a Monte Carlo hopping algorithm. Results show that there is an optimal level of agglomeration that is actually beneficial for charge transport at low volume concentrations, lowering the percolation threshold. It is found that near percolation, a more uniform CNT distribution (less agglomeration) leads to more conductive paths, but with a lower mobility. The optimum level of agglomeration comes from a trade off between these two properties. Beyond this optimum agglomeration state, it is observed that conductivity tends to decrease as dispersion increases at all concentrations studied here. At high concentration (percolated samples), where CNT clumps merge, conductivity seems to be less sensitive to agglomeration.

  15. Finite Element Simulation of Diametral Strength Test of Hydroxyapatite

    SciTech Connect

    Ozturk, Fahrettin; Toros, Serkan; Evis, Zafer

    2011-01-17

    In this study, the diametral strength test of sintered hydroxyapatite was simulated by the finite element software, ABAQUS/Standard. Stress distributions on diametral test sample were determined. The effect of sintering temperature on stress distribution of hydroxyapatite was studied. It was concluded that high sintering temperatures did not reduce the stress on hydroxyapatite. It had a negative effect on stress distribution of hydroxyapatite after 1300 deg. C. In addition to the porosity, other factors (sintering temperature, presence of phases and the degree of crystallinity) affect the diametral strength of the hydroxyapatite.

  16. Chromosome aberration test for hydroxyapatite in sheep.

    PubMed

    Kannan, T P; Nik Ahmad Shah, N L; Azlina, A; Samsudin, A R; Narazah, M Y; Salleh, Ma'arof

    2004-05-01

    The present study is aimed at finding the mutagenicity and cytotoxicity of dense form of synthetic hydroxyapatite (Source: School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia) in the blood of sheep. The biomaterial was implanted in the tibia of Malin, an indigenous sheep breed of Malaysia. Blood was collected from the sheep before implantation of the biomaterial, cultured and a karyological study was made. Six weeks after implantation, blood was collected from the same animal, cultured and screened for chromosome aberrations. The mitotic indices and karyological analysis indicated that the implantation of synthetic hydroxyapatite (dense form) did not produce any cytotoxicity or chromosome aberrations in the blood of sheep.

  17. Recent patents of nanopore DNA sequencing technology: progress and challenges.

    PubMed

    Zhou, Jianfeng; Xu, Bingqian

    2010-11-01

    DNA sequencing techniques witnessed fast development in the last decades, primarily driven by the Human Genome Project. Among the proposed new techniques, Nanopore was considered as a suitable candidate for the single DNA sequencing with ultrahigh speed and very low cost. Several fabrication and modification techniques have been developed to produce robust and well-defined nanopore devices. Many efforts have also been done to apply nanopore to analyze the properties of DNA molecules. By comparing with traditional sequencing techniques, nanopore has demonstrated its distinctive superiorities in main practical issues, such as sample preparation, sequencing speed, cost-effective and read-length. Although challenges still remain, recent researches in improving the capabilities of nanopore have shed a light to achieve its ultimate goal: Sequence individual DNA strand at single nucleotide level. This patent review briefly highlights recent developments and technological achievements for DNA analysis and sequencing at single molecule level, focusing on nanopore based methods.

  18. Electron beam-assisted healing of nanopores in magnesium alloys

    PubMed Central

    Zheng, He; Liu, Yu; Cao, Fan; Wu, Shujing; Jia, Shuangfeng; Cao, Ajing; Zhao, Dongshan; Wang, Jianbo

    2013-01-01

    Nanopore-based sensing has emerged as a promising candidate for affordable and powerful DNA sequencing technologies. Herein, we demonstrate that nanopores can be successfully fabricated in Mg alloys via focused electron beam (e-beam) technology. Employing in situ high-resolution transmission electron microscopy techniques, we obtained unambiguous evidence that layer-by-layer growth of atomic planes at the nanopore periphery occurs when the e-beam is spread out, leading to the shrinkage and eventual disappearance of nanopores. The proposed healing process was attributed to the e-beam-induced anisotropic diffusion of Mg atoms in the vicinity of nanopore edges. A plausible diffusion mechanism that describes the observed phenomena is discussed. Our results constitute the first experimental investigation of nanopores in Mg alloys. Direct evidence of the healing process has advanced our fundamental understanding of surface science, which is of great practical importance for many technological applications, including thin film deposition and surface nanopatterning. PMID:23719630

  19. Ion-doping as a strategy to modulate hydroxyapatite nanoparticle internalization

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Espanol, M.; Guillem-Marti, J.; Kempf, D.; Diez-Escudero, A.; Ginebra, M.-P.

    2016-01-01

    Although it is widely acknowledged that ionic substitutions on bulk hydroxyapatite substrates have a strong impact on their biological performance, little is known of their effect on nanoparticles (NPs) especially when used for gene transfection or drug delivery. The fact that NPs would be internalized poses many questions but also opens up many new possibilities. The objective of the present work is to synthesize and assess the effect of a series of hydroxyapatite-like (HA) NPs doped with various ions on cell behavior, i.e. carbonate, magnesium and co-addition. We synthesized NPs under similar conditions to allow comparison of results and different aspects in addition to assessing the effect of the doping ion(s) were investigated: (1) the effect of performing the cell culture study on citrate-dispersed NPs and on agglomerated NPs, (2) the effect of adding/excluding 10% of foetal bovine serum (FBS) in the cell culture media and (3) the type of cell, i.e. MG-63 versus rat mesenchymal stem cells (rMSCs). The results clearly demonstrated that Mg-doping had a major effect on MG-63 cells with high cytotoxicity but not to rMSCs. This was a very important finding because it proved that doping could be a tool to modify NP internalization. The results also suggest that NP surface charge had a large impact on MG-63 cells and prevents their internalization if it is too negative--this effect was less critical for rMSCs.Although it is widely acknowledged that ionic substitutions on bulk hydroxyapatite substrates have a strong impact on their biological performance, little is known of their effect on nanoparticles (NPs) especially when used for gene transfection or drug delivery. The fact that NPs would be internalized poses many questions but also opens up many new possibilities. The objective of the present work is to synthesize and assess the effect of a series of hydroxyapatite-like (HA) NPs doped with various ions on cell behavior, i.e. carbonate, magnesium and co

  20. Study of polymer molecules and conformations with a nanopore

    DOEpatents

    Golovchenko, Jene A; Li, Jiali; Stein, Derek; Gershow, Marc H

    2015-03-03

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  1. Laser Hybrid Fabrication of Nanoporous Structures on Metallic Material Surface

    DTIC Science & Technology

    2009-06-01

    catalysis properties. The Cu-Ni composite coatings with 20 minute Ni plating demonstrates the best catalysis properties,with oxidation peak current density...up to about 60 mA/cm2. Keywords: Nanoporous structure, laser deposition, electrochemical catalysis properties 1. Introduction Nanoporous metals...electrochemical catalysis , detecting, sensing and so on[1, 2]. Dealloying is considered an effective method to yield nanoporous metals, by which

  2. Study of polymer molecules and conformations with a nanopore

    DOEpatents

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2013-03-12

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  3. Study of polymer molecules and conformations with a nanopore

    DOEpatents

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2010-12-07

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  4. Electrical pulse fabrication of graphene nanopores in electrolyte solution

    SciTech Connect

    Kuan, Aaron T.; Szalay, Tamas; Lu, Bo; Xie, Ping; Golovchenko, Jene A.

    2015-05-18

    Nanopores in graphene membranes can potentially offer unprecedented spatial resolution for single molecule sensing, but their fabrication has thus far been difficult, poorly scalable, and prone to contamination. We demonstrate an in-situ fabrication method that nucleates and controllably enlarges nanopores in electrolyte solution by applying ultra-short, high-voltage pulses across the graphene membrane. This method can be used to rapidly produce graphene nanopores with subnanometer size accuracy in an apparatus free of nanoscale beams or tips.

  5. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  6. Giant enhancement of terahertz emission from nanoporous GaP

    SciTech Connect

    Atrashchenko, A. Korotchenkov, A.; Evtikhiev, V. P.; Arlauskas, A.; Adomavičius, R.; Krotkus, A.; Ulin, V. P.; Belov, P.

    2014-11-10

    In this paper, we have studied the emission of terahertz radiation from nanoporous semiconductor matrices of GaP excited by the femtosecond laser pulses. We observe 3–4 orders of magnitude increase of terahertz radiation emission from the nanoporous matrix compared to bulk material. The effect is mainly related to drastic increase of the sample surface and pinning of conducting electrons to surface states. This result opens up a promising way to create powerful sources of terahertz radiation using nanoporous semiconductors.

  7. Preparation of irregular mesoporous hydroxyapatite

    SciTech Connect

    Wang Hualin Zhai Linfeng; Li Yanhong; Shi Tiejun

    2008-06-03

    An irregular mesoporous hydroxyapatite (meso-HA), Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, is successfully prepared from Ca(NO{sub 3}){sub 2}.4H{sub 2}O and NH{sub 4}H{sub 2}PO{sub 4} using surfactant cetyltrimethyl ammonium bromide (CTAB) as template. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) results reveal that the positive head of CTAB is assembled on the surface precipitated HA and much NH{sub 4}{sup +} is enclosed in precipitated HA before calcination. Field scanning electron microscope (FSEM) reveals that there exist many interconnected pores throughout the HA reticular skeleton. Nitrogen adsorption-desorption experiment exhibits a mesoporous material type IV curve, and pore size distribution calculated from the desorption branch of the isotherms based on Barrett-Joyner-Halenda (BJH) model shows that most pores throughout the HA reticular skeleton are sized at about 40 nm, but the pores are not uniform on the whole, owning to decomposition of the 'organic' CTAB templating structures and ammonium salt enclosed in the precipitated HA. The specific surface area of irregular meso-HA is calculated to be 37.6 m{sup 2}/g according to the Brunauer-Emmett-Teller (BET) equation. Moreover, after polylactic acid/meso-HA (PLA/meso-HA) composites degraded 12 weeks in normal saline at 37 deg. C, the interconnected pores throughout the HA skeleton were enlarged and sized in micron degree, which resemble trabecular bone structure very much.

  8. Nanopore-based fourth-generation DNA sequencing technology.

    PubMed

    Feng, Yanxiao; Zhang, Yuechuan; Ying, Cuifeng; Wang, Deqiang; Du, Chunlei

    2015-02-01

    Nanopore-based sequencers, as the fourth-generation DNA sequencing technology, have the potential to quickly and reliably sequence the entire human genome for less than $1000, and possibly for even less than $100. The single-molecule techniques used by this technology allow us to further study the interaction between DNA and protein, as well as between protein and protein. Nanopore analysis opens a new door to molecular biology investigation at the single-molecule scale. In this article, we have reviewed academic achievements in nanopore technology from the past as well as the latest advances, including both biological and solid-state nanopores, and discussed their recent and potential applications.

  9. Nanoporous thin films with controllable nanopores processed from vertically aligned nanocomposites.

    PubMed

    Bi, Zhenxing; Anderoglu, Osman; Zhang, Xinghang; MacManus-Driscoll, Judith L; Yang, Hao; Jia, Quanxi; Wang, Haiyan

    2010-07-16

    Porous thin films with ordered nanopores have been processed by thermal treatment on vertically aligned nanocomposites (VAN), e.g., (BiFeO(3))(0.5):(Sm(2)O(3))(0.5) VAN thin films. Uniformly distributed nanopores with an average diameter of 60 nm and 150 nm were formed at the bottom and top of the nanoporous films, respectively. Controllable porosity can be achieved by adjusting the microstructure of VAN (BiFeO(3)):(Sm(2)O(3)) thin films and the annealing parameters. In situ heating experiments within a transmission electron microscope (TEM) column at temperatures from 25 to 850 degrees C, provides significant insights into the phase transformation, evaporation and structure reconstruction during the annealing. The in situ experiments also demonstrate the possibility of processing vertically aligned nanopores (VANP) with one phase stable in a columnar structure. These nanoporous thin films with controllable pore size and density could be promising candidates for thin film membranes and catalysis for fuel cell and gas sensor applications.

  10. Sulfonated nanoporous colloidal films and membranes

    NASA Astrophysics Data System (ADS)

    Smith, Joanna Jane

    The objective of this thesis is to describe the preparation and investigation of a new class of proton-conducting membrane materials, namely, nanoporous colloidal membranes whose proton conductivity results from the nanopore surface modification with organic molecules carrying acid functionalities. Both the proton transport and ion transport were studied in nanoporous silica colloidal crystals that were surface modified with sulfonic groups. First, the transport of ions was studied through sulfonated silica colloidal films that were supported on platinum electrodes using cyclic voltammetry. The surface of self-assembled nanoporous silica colloidal crystalline films was sulfonated using 1,3-propanesultone. We found that the flux of anions through the sulfonated colloidal films is reduced, while the flux of cations is increased, compared to the unmodified colloidal films. Second, the proton transport in free-standing assemblies of surface-sulfonated silica nanospheres, either randomly packed or self-assembled into a close-packed arrangement, were studied. It was demonstrated that colloidal assemblies prepared using surface-sulfonated silica nanospheres posses proton conductivity that depends on the ordering of the material, temperature and relative humidity. Based on the comparison between the close-packed and disordered assemblies made of the same spheres, we conclude that the increase in structural organization of the self-assembled colloidal materials leads to increased proton conductivity and better water retention. Next free-standing colloidal membranes with a relatively large area and no mechanical defects were prepared by sintering silica colloidal films. The sintered membranes were then surface rehydroxylated, which restores the surface silanol groups, and then can be chemically modified. Finally, sintered self-assembled nanoporous silica colloidal crystals were modified with poly(sulfopropyl-methacrylate) (pSPM) and poly(stryrenesulfonic acid) (pSSA) brushes

  11. Effect of Sr on the bioactivity and corrosion resistance of nanoporous niobium oxide coating for orthopaedic applications.

    PubMed

    Pauline, S Anne; Rajendran, N

    2014-03-01

    In this study, strontium incorporated Nb2O5 was synthesized in two different proportions by sol-gel methodology and was deposited on 316L SS by spin coating method. The synthesis conditions were optimized to obtain a nanoporous morphology. The prepared Sr-incorporated Nb2O5 coatings were uniform, smooth and well adherent on to the substrate 316L SS. The coatings were characterized by attenuated total reflectance-infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of Sr-incorporated Nb2O5 coatings with nanoporous morphology was confirmed. Static water contact angle measurements showed an enhancement in the wettability of the obtained coatings. In vitro bioactivity test of the coated substrates showed that 0.05M Sr-incorporated Nb2O5 coating had better bioactivity compared to 0.1M Sr-incorporated coating. Solution analysis studies confirmed the controlled release of Sr ions from the coating, which aid and enhance hydroxyapatite (HAp) growth. Electrochemical studies confirmed that the coatings provided excellent corrosion protection to the base material as increased charge transfer resistance and decreased double layer capacitance was observed for the coated substrates.

  12. Field observations of artificial sand and oil agglomerates

    USGS Publications Warehouse

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  13. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    PubMed

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution.

  14. Reconsidering remineralization strategies to include nanoparticle hydroxyapatite.

    PubMed

    Kutsch, V Kim; Chaiyabutr, Yada; Milicich, Graeme

    2013-03-01

    Dental caries is a transmissible biofilm-mediated disease of the teeth that is defined by prolonged periods of low pH resulting in net mineral loss from the teeth. Hydroxyapatite, fluorapatite, and the carbonated forms of calcium phosphate form the main mineral content of dental hard tissues: enamel, dentin, and cementum. Active dental caries results when the biofilm pH on the tooth surface drops below the dissolution threshold for hydroxyapatite and fluorapatite. The clinical evidence of this net mineral loss is porosity, whitespot lesions, caries lesions, and/or cavitation. The potential to reverse this mineral loss through remineralization has been well documented, although previous remineralization strategies for dental hard tissues have focused on the use of fluorides and forms of calcium phosphate. This in-vitro study documented the deposition of nanoparticle hydroxyapatite on demineralized enamel surfaces after treatment with an experimental remineralization gel. This finding supports consideration of an additional approach to remineralization that includes pH neutralization strategies and nanoparticle hydroxyapatite crystals.

  15. Surface chemistry driven actuation in nanoporous gold

    SciTech Connect

    Biener, J; Wittstock, A; Zepeda-Ruiz, L; Biener, M M; Zielasek, V; Kramer, D; Viswanath, R N; Weissmuller, J; Baumer, M; Hamza, A V

    2008-04-14

    Although actuation in biological systems is exclusively powered by chemical energy, this concept has not been realized in man-made actuator technologies, as these rely on generating heat or electricity first. Here, we demonstrate that surface-chemistry driven actuation can be realized in high surface area materials such as nanoporous gold. For example, we achieve reversible strain amplitudes in the order of a few tenths of a percent by alternating exposure of nanoporous Au to ozone and carbon monoxide. The effect can be explained by adsorbate-induced changes of the surface stress, and can be used to convert chemical energy directly into a mechanical response thus opening the door to surface-chemistry driven actuator and sensor technologies.

  16. Multilayer hexagonal silicon forming in slit nanopore.

    PubMed

    He, Yezeng; Li, Hui; Sui, Yanwei; Qi, Jiqiu; Wang, Yanqing; Chen, Zheng; Dong, Jichen; Li, Xiongying

    2015-10-05

    The solidification of two-dimensional liquid silicon confined to a slit nanopore has been studied using molecular dynamics simulations. The results clearly show that the system undergoes an obvious transition from liquid to multilayer hexagonal film with the decrease of temperature, accompanied by dramatic change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the cooling process, some hexagonal islands randomly appear in the liquid first, then grow up to grain nuclei, and finally connect together to form a complete polycrystalline film. Moreover, it is found that the quenching rate and slit size are of vital importance to the freezing structure of silicon film. The results also indicate that the slit nanopore induces the layering of liquid silicon, which further induces the slit size dependent solidification behavior of silicon film with different electrical properties.

  17. High Density Methane Storage in Nanoporous Carbon

    NASA Astrophysics Data System (ADS)

    Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team

    2014-03-01

    Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.

  18. Quantum Dots Confined in Nanoporous Alumina Membranes

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Xia, Jianfeng; Wang, Jun; Shinar, Joseph; Lin, Zhiqun

    2007-03-01

    Precise control over the dispersion and lateral distribution of quantum dots (QDs) within nanoscopic porous media provides a unique route to manipulate the optical and/or electronic properties of QDs in a very simple and controllable manner for applications related to light emitting, optoelectronic, and sensor devices. Here we filled nanoporous alumina membranes (PAMs) with CdSe/ZnS core/shell QDs by dip coating. The deposition of QDs induced changes in the refractive index of PAMs. The amount of absorbed QDs was quantified by fitting the reflection and transmission spectra observed experimentally with one side open and freestanding (i.e., with two sides open) PAMs employed, respectively. The fluorescence of the QDs was found to be retained within the cylindrical nanopores of PAMs.

  19. Ordered arrays of nanoporous silicon nanopillars and silicon nanopillars with nanoporous shells

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ji, Ran; Du, Song; Albrecht, Arne; Schaaf, Peter

    2013-01-01

    The fabrication of ordered arrays of nanoporous Si nanopillars with and without nanoporous base and ordered arrays of Si nanopillars with nanoporous shells are presented. The fabrication route is using a combination of substrate conformal imprint lithography and metal-assisted chemical etching. The metal-assisted chemical etching is performed in solutions with different [HF]/[H2O2 + HF] ratios. Both pore formation and polishing (marked by the vertical etching of the nanopillars) are observed in highly doped and lightly doped Si during metal-assisted chemical etching. Pore formation is more active in the highly doped Si, while the transition from polishing to pore formation is more obvious in the lightly doped Si. The etching rate is clearly higher in the highly doped Si. Oxidation occurs on the sidewalls of the pillars by etching in solutions with small [HF]/[H2O2 + HF] ratios, leading to thinning, bending, and bonding of pillars.

  20. Ordered arrays of nanoporous silicon nanopillars and silicon nanopillars with nanoporous shells

    PubMed Central

    2013-01-01

    The fabrication of ordered arrays of nanoporous Si nanopillars with and without nanoporous base and ordered arrays of Si nanopillars with nanoporous shells are presented. The fabrication route is using a combination of substrate conformal imprint lithography and metal-assisted chemical etching. The metal-assisted chemical etching is performed in solutions with different [HF]/[H2O2 + HF] ratios. Both pore formation and polishing (marked by the vertical etching of the nanopillars) are observed in highly doped and lightly doped Si during metal-assisted chemical etching. Pore formation is more active in the highly doped Si, while the transition from polishing to pore formation is more obvious in the lightly doped Si. The etching rate is clearly higher in the highly doped Si. Oxidation occurs on the sidewalls of the pillars by etching in solutions with small [HF]/[H2O2 + HF] ratios, leading to thinning, bending, and bonding of pillars. PMID:23336430

  1. [Adsorption of Congo red from aqueous solution on hydroxyapatite].

    PubMed

    Zhan, Yan-Hui; Lin, Jian-Wei

    2013-08-01

    The adsorption of Congo red (CR) from aqueous solution on hydroxyapatite was investigated using batch experiments. The hydroxyapatite was effective for CR removal from aqueous solution. The adsorption kinetics of CR on hydroxyapatite well followed a pseudo-second-order model. The equilibrium adsorption data of CR on hydroxyapatite could be described by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were calculated and showed that the adsorption of CR on hydroxyapatite was spontaneous and exothermic in nature. The CR adsorption capacity for hydroxyapatite decreased significantly with increasing pH from 8 to 10. Thermal regeneration showed that hydroxyapatite could be used for six desorption-adsorption cycles with high removal efficiency for CR in each cycle. The mechanisms for CR adsorption on hydroxyapatite with pH value below the pH at point of zero charge (pH(PZC)) include electrostatic attraction, hydrogen bonding and Lewis acid-base interaction. The mechanisms for CR adsorption on hydroxyapatite with pH value above its pH(PZC) include hydrogen bonding and Lewis acid-base interaction. Results of this work indicate that hydroxyapatite is a promising adsorbent for CR removal from aqueous solution.

  2. Nutrient-substituted hydroxyapatites: synthesis and characterization.

    PubMed

    Golden, D C; Ming, D W

    1999-01-01

    Incorporation of Mg, S, and plant-essential micronutrients into the structure of synthetic hydroxyapatite (HA) may be advantageous for closed-loop systems, such as will be required on Lunar and Martian outposts, because these apatites can be used as slow-release fertilizers. Our objective was to synthesize HA with Ca, P, Mg, S, Fe, Cu, Mn, Zn, Mo, B, and Cl incorporated into the structure, i.e., nutrient-substituted apatites. Hydroxyapatite, carbonate hydroxyapatite (CHA), nutrient-substituted hydroxyapatite (NHA), and nutrient-substituted carbonate hydroxyapatite (NCHA) were synthesized by precipitating from solution. Chemical and mineralogical analysis of precipitated samples indicated a considerable fraction of the added cations were incorporated into HA, without mineral impurities. Particle size of the HA was in the 1 to 40 nm range, and decreased with increased substitution of nutrient elements. The particle shape of HA was elongated in the c-direction in unsubstituted HA and NHA but more spherical in CHA and NCHA. The substitution of cations and anions in the HA structure was confirmed by the decrease of the d[002] spacing of HA with substitution of ions with an ionic radius less than that of Ca or P. The DTPA-extractable Cu ranged from 8 to 8429 mg kg-1, Zn ranged from 57 to 1279 mg kg-1, Fe from 211 to 2573 mg kg-1, and Mn from 190 to 1719 mg kg-1, depending on the substitution level of each element in HA. Nutrient-substituted HA has the potential to be used as a slow-release fertilizer to supply micronutrients, S, and Mg in addition to Ca and P.

  3. Nutrient-substituted hydroxyapatites: synthesis and characterization

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.

    1999-01-01

    Incorporation of Mg, S, and plant-essential micronutrients into the structure of synthetic hydroxyapatite (HA) may be advantageous for closed-loop systems, such as will be required on Lunar and Martian outposts, because these apatites can be used as slow-release fertilizers. Our objective was to synthesize HA with Ca, P, Mg, S, Fe, Cu, Mn, Zn, Mo, B, and Cl incorporated into the structure, i.e., nutrient-substituted apatites. Hydroxyapatite, carbonate hydroxyapatite (CHA), nutrient-substituted hydroxyapatite (NHA), and nutrient-substituted carbonate hydroxyapatite (NCHA) were synthesized by precipitating from solution. Chemical and mineralogical analysis of precipitated samples indicated a considerable fraction of the added cations were incorporated into HA, without mineral impurities. Particle size of the HA was in the 1 to 40 nm range, and decreased with increased substitution of nutrient elements. The particle shape of HA was elongated in the c-direction in unsubstituted HA and NHA but more spherical in CHA and NCHA. The substitution of cations and anions in the HA structure was confirmed by the decrease of the d[002] spacing of HA with substitution of ions with an ionic radius less than that of Ca or P. The DTPA-extractable Cu ranged from 8 to 8429 mg kg-1, Zn ranged from 57 to 1279 mg kg-1, Fe from 211 to 2573 mg kg-1, and Mn from 190 to 1719 mg kg-1, depending on the substitution level of each element in HA. Nutrient-substituted HA has the potential to be used as a slow-release fertilizer to supply micronutrients, S, and Mg in addition to Ca and P.

  4. Nanoporous Silicon Ignition of JA2 Propellant

    DTIC Science & Technology

    2014-06-01

    2 Figure 2. Photograph of the activated nanoporous silicon chip in the PVC container showing attached firing leads; JA2 propellant disk rests...chips, and each chip was placed singly in a transparent, flexible polyvinyl chloride ( PVC ) container. The PVC container (see figure 2) contained...room. The electrical leads on the outside of the PVC container were connected to the firing circuitry (an impressed voltage of 3 V across the chip

  5. Tuneable graphene nanopores for single biomolecule detection

    NASA Astrophysics Data System (ADS)

    Al-Dirini, Feras; Mohammed, Mahmood A.; Hossain, Md Sharafat; Hossain, Faruque M.; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2016-05-01

    Solid-state nanopores are promising candidates for next generation DNA and protein sequencing. However, once fabricated, such devices lack tuneability, which greatly restricts their biosensing capabilities. Here we propose a new class of solid-state graphene-based nanopore devices that exhibit a unique capability of self-tuneability, which is used to control their conductance, tuning it to levels comparable to the changes caused by the translocation of a single biomolecule, and hence, enabling high detection sensitivities. Our presented quantum simulation results suggest that the smallest amino acid, glycine, when present in water and in an aqueous saline solution can be detected with high sensitivity, up to a 90% change in conductance. Our results also suggest that passivating the device with nitrogen, making it an n-type device, greatly enhances its sensitivity, and makes it highly sensitive to not only the translocation of a single biomolecule, but more interestingly to intramolecular electrostatics within the biomolecule. Sensitive detection of the carboxyl group within the glycine molecule, which carries a charge equivalent to a single electron, is achieved with a conductance change that reaches as high as 99% when present in an aqueous saline solution. The presented findings suggest that tuneable graphene nanopores, with their capability of probing intramolecular electrostatics, could pave the way towards a new generation of single biomolecule detection devices.

  6. Solvated calcium ions in charged silica nanopores

    NASA Astrophysics Data System (ADS)

    Bonnaud, Patrick A.; Coasne, Benoît; Pellenq, Roland J.-M.

    2012-08-01

    Hydroxyl surface density in porous silica drops down to nearly zero when the pH of the confined aqueous solution is greater than 10.5. To study such extreme conditions, we developed a model of slit silica nanopores where all the hydrogen atoms of the hydroxylated surface are removed and the negative charge of the resulting oxygen dangling bonds is compensated by Ca2+ counterions. We employed grand canonical Monte Carlo and molecular dynamics simulations to address how the Ca2+ counterions affect the thermodynamics, structure, and dynamics of confined water. While most of the Ca2+ counterions arrange themselves according to the so-called "Stern layer," no diffuse layer is observed. The presence of Ca2+ counterions affects the pore filling for strong confinement where the surface effects are large. At full loading, no significant changes are observed in the layering of the first two adsorbed water layers compared to nanopores with fully hydroxylated surfaces. However, the water structure and water orientational ordering with respect to the surface is much more disturbed. Due to the super hydrophilicity of the Ca2+-silica nanopores, water dynamics is slowed down and vicinal water molecules stick to the pore surface over longer times than in the case of hydroxylated silica surfaces. These findings, which suggest the breakdown of the linear Poisson-Boltzmann theory, provide important information about the properties of nanoconfined electrolytes upon extreme conditions where the surface charge and ion concentration are large.

  7. Versatile ultrathin nanoporous silicon nitride membranes

    SciTech Connect

    Vlassiouk, Ivan V

    2009-01-01

    Single- and multiple-nanopore membranes are both highly interesting for biosensing and separation processes, as well as their ability to mimic biological membranes. The density of pores, their shape, and their surface chemistry are the key factors that determine membrane transport and separation capabilities. Here, we report silicon nitride (SiN) membranes with fully controlled porosity, pore geometry, and pore surface chemistry. An ultrathin freestanding SiN platform is described with conical or double-conical nanopores of diameters as small as several nanometers, prepared by the track-etching technique. This technique allows the membrane porosity to be tuned from one to billions of pores per square centimeter. We demonstrate the separation capabilities of these membranes by discrimination of dye and protein molecules based on their charge and size. This separation process is based on an electrostatic mechanism and operates in physiological electrolyte conditions. As we have also shown, the separation capabilities can be tuned by chemically modifying the pore walls. Compared with typical membranes with cylindrical pores, the conical and double-conical pores reported here allow for higher fluxes, a critical advantage in separation applications. In addition, the conical pore shape results in a shorter effective length, which gives advantages for single biomolecule detection applications such as nanopore-based DNA analysis.

  8. Filled nanoporous surfaces: controlled formation and wettability.

    PubMed

    Bittoun, Eyal; Marmur, Abraham; Ostblom, Mattias; Ederth, Thomas; Liedberg, Bo

    2009-10-20

    The controlled filling of hydrophobic nanoporous surfaces with hydrophilic molecules and their wetting properties are described and demonstrated by using thiocholesterol (TC) self-assembled monolayers (SAMs) on gold and mercaptoundecanoic acid (MUA) as the filling agent. A novel procedure was developed for filling the nanopores in the TC SAMs by immersing them into a "cocktail" solution of TC and MUA, with TC in huge excess. This procedure results in an increasing coverage of MUA with increasing immersion time up to an area fraction of approximately 23%, while the amount of TC remains almost constant. Our findings strongly support earlier observations where linear omega-substituted alkanethiols selectively fill defects (nanopores) in the TC SAM (Yang et al. Langmuir 1997, 12, 1704-1707). They also support the formation of a homogeneously mixed SAM, given by the distribution of TC on the gold surface, rather than of a phase-segregated overlayer structure with domains of varying size, shape, and composition. The wetting properties of the filled SAMs were investigated by measuring the most stable contact angle as well as contact angle hysteresis. It is shown that the most stable contact angle is very well described by the Cassie equation, since the drops are much larger than the scale of chemical heterogeneity of the SAM surfaces. In addition, it is demonstrated that contact angle hysteresis is sensitive to the chemical heterogeneity of the surface, even at the nanometric scale.

  9. Molecular Sensing by Nanoporous Crystalline Polymers

    PubMed Central

    Pilla, Pierluigi; Cusano, Andrea; Cutolo, Antonello; Giordano, Michele; Mensitieri, Giuseppe; Rizzo, Paola; Sanguigno, Luigi; Venditto, Vincenzo; Guerra, Gaetano

    2009-01-01

    Chemical sensors are generally based on the integration of suitable sensitive layers and transducing mechanisms. Although inorganic porous materials can be effective, there is significant interest in the use of polymeric materials because of their easy fabrication process, lower costs and mechanical flexibility. However, porous polymeric absorbents are generally amorphous and hence present poor molecular selectivity and undesired changes of mechanical properties as a consequence of large analyte uptake. In this contribution the structure, properties and some possible applications of sensing polymeric films based on nanoporous crystalline phases, which exhibit all identical nanopores, will be reviewed. The main advantages of crystalline nanoporous polymeric materials with respect to their amorphous counterparts are, besides a higher selectivity, the ability to maintain their physical state as well as geometry, even after large guest uptake (up to 10–15 wt%), and the possibility to control guest diffusivity by controlling the orientation of the host polymeric crystalline phase. The final section of the review also describes the ability of suitable polymeric films to act as chirality sensors, i.e., to sense and memorize the presence of non-racemic volatile organic compounds. PMID:22303150

  10. The Potential and Challenges of Nanopore Sequencing

    SciTech Connect

    Branton, Daniel; Deamer, D. W.; Marziali, A.; Bayley, H.; Benner, S. A.; Butler, Thomas; Di Ventra, Massimiliano; Garaj, S.; Hibbs, Andrew; Huang, Xiaohua; Jovanovich, Stevan B.; Krstic, Predrag S; Lindsay, Stuart; Ling, Xinsheng Sean; Mastrangelo, Carlos H.; Meller, Amit; Oliver, John S.; Pershin, Yuriy V.; Ramsey, Dr. John Michael; Riehn, Robert; Soni, Gautam; Tabard-Cossa, Vincent; Wanuunu, Meni; Wiggin, Matthew; Schloss, Jeffrey A

    2008-10-01

    A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nan-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for ~$1,000 in ~24 h.

  11. Tuneable graphene nanopores for single biomolecule detection.

    PubMed

    Al-Dirini, Feras; Mohammed, Mahmood A; Hossain, Md Sharafat; Hossain, Faruque M; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2016-05-21

    Solid-state nanopores are promising candidates for next generation DNA and protein sequencing. However, once fabricated, such devices lack tuneability, which greatly restricts their biosensing capabilities. Here we propose a new class of solid-state graphene-based nanopore devices that exhibit a unique capability of self-tuneability, which is used to control their conductance, tuning it to levels comparable to the changes caused by the translocation of a single biomolecule, and hence, enabling high detection sensitivities. Our presented quantum simulation results suggest that the smallest amino acid, glycine, when present in water and in an aqueous saline solution can be detected with high sensitivity, up to a 90% change in conductance. Our results also suggest that passivating the device with nitrogen, making it an n-type device, greatly enhances its sensitivity, and makes it highly sensitive to not only the translocation of a single biomolecule, but more interestingly to intramolecular electrostatics within the biomolecule. Sensitive detection of the carboxyl group within the glycine molecule, which carries a charge equivalent to a single electron, is achieved with a conductance change that reaches as high as 99% when present in an aqueous saline solution. The presented findings suggest that tuneable graphene nanopores, with their capability of probing intramolecular electrostatics, could pave the way towards a new generation of single biomolecule detection devices.

  12. Operation of dry-cleaned and agglomerated precompaction system (DAPS)

    SciTech Connect

    Tanaka, Shigemi; Okanishi, Kazuya; Kikuchi, Akio; Yamamura, Yuichi

    1997-12-31

    In order to reduce the manufacturing cost of coke, it is necessary to reduce mainly (1) the material cost and (2) operating cost. Both of these costs can be reduced by lowering the moisture of charging coal. Because dust generation increases with decreasing moisture of charging coal, however, the lower limit of charging coal moisture in the existing coke-oven equipment was about 5%, which yielded good results in coal moisture control (CMC) equipment. Nippon Steel has furthered the development of techniques for lowering the moisture of charging coal as far as possible in the existing coke ovens and has recently succeeded in developing a dry-cleaned and agglomerated precompaction system (DAPS) and incorporating this system in commercial production equipment. In this system, a coal preparation process is undertaken that involves separating coal fines, which cause dust generation, from dried charging coal and agglomerating them. The equipment incorporating this system was installed in the No. 3 and No. 4 coke batteries at Oita Works and brought into full-scale operation in September 1992. The equipment has since been operating smoothly.

  13. Agglomeration of Luminescent Porous Silicon Nanoparticles in Colloidal Solutions

    NASA Astrophysics Data System (ADS)

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-08-01

    We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visible luminescence in the orange-red spectral region (centred at 600-700 nm). Hydrophilic behaviour and good solubility of the nanoclusters in water and water-based solutions were obtained by adding hydrogen peroxide into the etching solution during preparation and 16 min long after-bath in hydrogen peroxide. By simple filtration of the solutions with syringe filters, we have extracted smaller nanoclusters with sizes of approx. 60-70 nm; however, these nanoclusters in water and PBS solution (pH neutral) are prone to agglomeration, as was confirmed by zeta potential measurements. When the samples were left at ambient conditions for several weeks, the typical nanocluster size increased to approx. 330-400 nm and then remained stable. However, both freshly filtered and aged samples (with agglomerated porous silicon nanoparticles) of porous silicon in water and PBS solutions can be further used for biological studies or as luminescent markers in living cells.

  14. Selective agglomeration of a Pittsburgh Seam coal with isooctane

    SciTech Connect

    Lai, R.; Killmeyer, R.; Utz, B.; Richardson, A.; Sinha, K.

    1992-01-01

    The Pittsburgh Energy Technology Center initiated a research program in 1989 to investigate the fundamentals of selective agglomeration as applied to the cleaning of coals. The results of the initial study with Bruceton mine, Pittsburgh seam coal, using isooctane as an agglomerant, have been published. Subsequent to the successful reduction of the ash content of Bruceton coal to less than 0.9% after two cleaning stages, the study was extended to compare a coal from the same seam, but from Ohio. In the previous parameter optimization tests with Bruceton coal, particle size and slurry pH were found to be important parameters governing coal cleanability. Other researchers have obtained similar conclusions of the effects of particle size and coal slurry pH on the cleanability of various coals. In this study, the effects of these parameters on the cleanability of Powhatan coal were examined. Particle size reduction kinetics was examined first. Effects of size reduction (degree of mineral matter liberation), oil (isooctane)-to-coal ratio, and slurry pH on mineral matter rejection and combustible recovery were also examined. A petrographic comparison was conducted on the Powhatan and Bruceton coals to examine the degree of pyrite liberation as a function of particle size to elucidate why one coal from the same seam can be cleaned significantly better than another. (VC)

  15. Synthesis and agglomeration of gold nanoparticles in reverse micelles

    NASA Astrophysics Data System (ADS)

    Herrera, Adriana P.; Resto, Oscar; Briano, Julio G.; Rinaldi, Carlos

    2005-07-01

    Reverse micelles prepared in the system water, sodium bis-(2-ethylhexyl) sulfoccinate (AOT), and isooctane were investigated as a templating system for the production of gold nanoparticles from Au(III) and the reducing agent sulfite. A core-shell Mie model was used to describe the optical properties of gold nanoparticles in the reverse micelles. Dynamic light scattering of gold colloids in aqueous media and in reverse micelle solution indicated agglomeration of micelles containing particles. This was verified theoretically with an analysis of the total interaction energy between pairs of particles as a function of particle size. The analysis indicated that particles larger than about 8 nm in diameter should reversibly flocculate. Transmission electron microscopy measurements of gold nanoparticles produced in our reverse micelles showed diameters of 8-10 nm. Evidence of cluster formation was also observed. Time-correlated UV-vis absorption measurements showed a red shift for the peak wavelength. This was interpreted as the result of multiple scattering and plasmon interaction between particles due to agglomeration of micelles with particles larger than 8 nm.

  16. Morphology and crystallinity of the nanosized hydroxyapatite synthesized by hydrolysis using cetyltrimethylammonium bromide (CTAB) as a surfactant

    NASA Astrophysics Data System (ADS)

    Shih, Wei-Jen; Wang, Moo-Chin; Hon, Min-Hsiung

    2005-02-01

    The biodegradable hydroxyapatite (HA) was synthesized by hydrolysis and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED). The HA synthesized from CaHPO 4·2H 2O(DCPD) in 2.5 M NaOH (aq) at 75 °C for 1 h had a size of 50 nm in width and 100 nm in length. However, the HA aggregates synthesized from DCPD in 2.5 M NaOH (aq) with cetyltrimethylammonium bromide (CTAB) as a surfactant were elongated. When the CTAB concentration was increased from 1×10 -4 to 1×10 -2 M, the synthesized HA became thinner to a size of 5-20 nm in width and 50 nm in length. For thinner HA aggregates, longer agglomerates were aligned in the synthesis without the CTAB surfactant.

  17. Hydrophobic Agglomeration of Mineral Fines in Aqueous Suspensions and its Application in Flotation: a Review

    NASA Astrophysics Data System (ADS)

    Yang, Bingqiao; Song, Shaoxian

    2014-05-01

    Hydrophobic agglomeration is originated from the hydrophobic attraction between particles, which is essentially different from electrolyte coagulation and polymer flocculation. It is applied to mineral processing in floc-flotation process to improve the recovery of mineral fines. In this paper, the applications of this phenomenon in mineral fines were summarized, including the origin of hydrophobic agglomeration, the main factors affect hydrophobic agglomeration (particle hydrophobicity, shear rate and duration, nonpolar oil and tank geometry), as well as hydrophobic agglomeration based separation processes (carrier flotation and floc-flotation).

  18. Synthesis and characterization of responsive nanoporous materials

    NASA Astrophysics Data System (ADS)

    Abelow, Alexis Elizabeth

    This thesis describes the synthesis and properties of polymer or oligonucleotide-modified nanoporous membranes and nanopores which exhibit a response to external stimuli, synthesized with the intention of mimicking biological protein channels. The responsiveness of these systems arises as a function of the polymer or oligonucleotide modifier, which exhibit a change in conformation with exposure to temperature, pH, introduction of a small molecule, or electric potential. First, the transport of ions through supported silica colloidal films modified with poly(L-alanine) on platinum electrodes was studied using cyclic voltammetry. By monitoring the flux of a redox species through the polymer-modified colloidal film it is demonstrated that the polymer expands and contracts when the temperature was increased and decreased, respectively. We also observed an expansion and contraction as the pH was increased and decreased, respectively. Transport of a neutral dye molecule through free-standing silica colloidal films modified with poly(L-alanine) was also studied. As noted previously, the polymer expands and contracts as the pH is increased and decreased, respectively. Next, the transport was monitored through both silica colloidal film-modified Pt microelectrodes and Pt single nanopore electrodes as an oligonucleotide-based binder, or aptamer, was attached. The aptamer is responsive to a small molecule, cocaine where, in the absence of cocaine, only one "arm" of the aptamer is folded in on itself, leaving the rest of the chain partially unfolded, blocking the nanopores. However, when the cocaine molecule is introduced into solution, the aptamer folds completely in on itself, forming a three-armed structure with the small molecule encapsulated in the middle. This change in conformation is monitored by observing the change in transport of a redox species through the pores as cocaine is introduced into the system. We observed an increase rate of transport as the aptamer bound

  19. Nanopore DNA sequencing and epigenetic detection with a MspA nanopore

    NASA Astrophysics Data System (ADS)

    Laszlo, Andrew H.

    DNA forms the molecular basis for all known life. Widespread DNA sequencing has the potential to revolutionize healthcare and our understanding of the life sciences. Sequencing has already had a profound effect on our understanding of the molecular basis of life and underpinnings of disease. Current DNA sequencing technologies require costly reagents, can sequence only short DNA strands, and take too long to complete entire genomes. Furthermore, the required DNA sample size limits the types of experiments that can be run. For instance sequencing single cells is extremely difficult. New technologies are key to making DNA sequencing as cheap and accessible as possible and for making new experiments possible. One such new technology is nanopore sequencing. In nanopore sequencing, a thin membrane is used to divide a salt solution into two wells: cis and trans. This membrane contains a single nanometer sized hole that forms the only electrical connection between the two wells. When a voltage is applied across the membrane, ion current flows through the nanopore. This ion current is the primary signal for nanopore sequencing. DNA is negatively charged and can be pulled into the pore. When DNA is pulled into the pore, it occludes the pore and reduces the ion current that can pass through the pore. Individual DNA nucleotides along the DNA strand block the pore to varying degrees. One can measure the degree to which the pore is blocked as DNA passes through the pore and use the ion current signal to read off the DNA sequence. This thesis chronicles recent advances in the Gundlach laboratory in which I have played a leading role. It describes our work testing the biological nanopore Mycobacterium smegmatis porin A (MspA) for nanopore sequencing. The thesis consists of five chapters and three appendices which contain supplemental information for Chapters 2, 3, and 4. Chapter 1 begins with some motivation and defines the current challenges in DNA sequencing. I also introduce

  20. Active current gating in electrically biased conical nanopores

    NASA Astrophysics Data System (ADS)

    Bearden, Samuel; Simpanen, Erik; Zhang, Guigen

    2015-05-01

    We observed that the ionic current through a gold/silicon nitride (Si3N4) nanopore could be modulated and gated by electrically biasing the gold layer. Rather than employing chemical modification to alter device behavior, we achieved control of conductance directly by electrically biasing the gold portion of the nanopore. By stepping through a range of bias potentials under a constant trans-pore electric field, we observed a gating phenomenon in the trans-pore current response in a variety of solutions including potassium chloride (KCl), sodium chloride (NaCl), and potassium iodide (KI). A computational model with a conical nanopore was developed to examine the effect of the Gouy-Chapman-Stern electrical double layer along with nanopore geometry, work function potentials, and applied electrical bias on the ionic current. The numerical results indicated that the observed modulation and gating behavior was due to dynamic reorganization of the electrical double layer in response to changes in the electrical bias. Specifically, in the conducting state, the nanopore conductance (both numerical and experimental) is linearly proportional to the applied bias due to accumulation of charge in the diffuse layer. The gating effect occurs due to the asymmetric charge distribution in the fluid induced by the distribution of potentials at the nanopore surface. Time dependent changes in current due to restructuring of the electrical double layer occur when the electrostatic bias is instantaneously changed. The nanopore device demonstrates direct external control over nanopore behavior via modulation of the electrical double layer by electrostatic biasing.

  1. Single Nanoparticle Translocation Through Chemically Modified Solid Nanopore

    NASA Astrophysics Data System (ADS)

    Tan, Shengwei; Wang, Lei; Liu, Hang; Wu, Hongwen; Liu, Quanjun

    2016-02-01

    The nanopore sensor as a high-throughput and low-cost technology can detect single nanoparticle in solution. In the present study, the silicon nitride nanopores were fabricated by focused Ga ion beam (FIB), and the surface was functionalized with 3-aminopropyltriethoxysilane to change its surface charge density. The positively charged nanopore surface attracted negatively charged nanoparticles when they were in the vicinity of the nanopore. And, nanoparticle translocation speed was slowed down to obtain a clear and deterministic signal. Compared with previous studied small nanoparticles, the electrophoretic translocation of negatively charged polystyrene (PS) nanoparticles (diameter ~100 nm) was investigated in solution using the Coulter counter principle in which the time-dependent nanopore current was recorded as the nanoparticles were driven across the nanopore. A linear dependence was found between current drop and biased voltage. An exponentially decaying function ( t d ~ e -v/v0 ) was found between the duration time and biased voltage. The interaction between the amine-functionalized nanopore wall and PS microspheres was discussed while translating PS microspheres. We explored also translocations of PS microspheres through amine-functionalized solid-state nanopores by varying the solution pH (5.4, 7.0, and 10.0) with 0.02 M potassium chloride (KCl). Surface functionalization showed to provide a useful step to fine-tune the surface property, which can selectively transport molecules or particles. This approach is likely to be applied to gene sequencing.

  2. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    NASA Astrophysics Data System (ADS)

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-07-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics.

  3. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    PubMed Central

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-01-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics. PMID:23884324

  4. Nanoparticle mechanics: deformation detection via nanopore resistive pulse sensing

    NASA Astrophysics Data System (ADS)

    Darvish, Armin; Goyal, Gaurav; Aneja, Rachna; Sundaram, Ramalingam V. K.; Lee, Kidan; Ahn, Chi Won; Kim, Ki-Bum; Vlahovska, Petia M.; Kim, Min Jun

    2016-07-01

    Solid-state nanopores have been widely used in the past for single-particle analysis of nanoparticles, liposomes, exosomes and viruses. The shape of soft particles, particularly liposomes with a bilayer membrane, can greatly differ inside the nanopore compared to bulk solution as the electric field inside the nanopores can cause liposome electrodeformation. Such deformations can compromise size measurement and characterization of particles, but are often neglected in nanopore resistive pulse sensing. In this paper, we investigated the deformation of various liposomes inside nanopores. We observed a significant difference in resistive pulse characteristics between soft liposomes and rigid polystyrene nanoparticles especially at higher applied voltages. We used theoretical simulations to demonstrate that the difference can be explained by shape deformation of liposomes as they translocate through the nanopores. Comparing our results with the findings from electrodeformation experiments, we demonstrated that the rigidity of liposomes can be qualitatively compared using resistive pulse characteristics. This application of nanopores can provide new opportunities to study the mechanics at the nanoscale, to investigate properties of great value in fundamental biophysics and cellular mechanobiology, such as virus deformability and fusogenicity, and in applied sciences for designing novel drug/gene delivery systems.Solid-state nanopores have been widely used in the past for single-particle analysis of nanoparticles, liposomes, exosomes and viruses. The shape of soft particles, particularly liposomes with a bilayer membrane, can greatly differ inside the nanopore compared to bulk solution as the electric field inside the nanopores can cause liposome electrodeformation. Such deformations can compromise size measurement and characterization of particles, but are often neglected in nanopore resistive pulse sensing. In this paper, we investigated the deformation of various

  5. Nanopore formation in neuroblastoma cells following ultrashort electric pulse exposure

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.

    2011-03-01

    Ultrashort or nanosecond electrical pulses (USEP) cause repairable damage to the plasma membranes of cells through formation of nanopores. These nanopores are able to pass small ions such as sodium, calcium, and potassium, but remain impermeable to larger molecules like trypan blue and propidium iodide. What remains uncertain is whether generation of nanopores by ultrashort electrical pulses can inhibit action potentials in excitable cells. In this paper, we explored the sensitivity of excitable cells to USEP using Calcium Green AM 1 ester fluorescence to measure calcium uptake indicative of nanopore formation in the plasma membrane. We determined the threshold for nanopore formation in neuroblastoma cells for three pulse parameters (amplitude, pulse width, and pulse number). Measurement of such thresholds will guide future studies to determine if USEP can inhibit action potentials without causing irreversible membrane damage.

  6. The role of nanopore shape in surface-induced crystallization

    NASA Astrophysics Data System (ADS)

    Diao, Ying; Harada, Takuya; Myerson, Allan S.; Alan Hatton, T.; Trout, Bernhardt L.

    2011-11-01

    Crystallization of a molecular liquid from solution often initiates at solid-liquid interfaces, and nucleation rates are generally believed to be enhanced by surface roughness. Here we show that, on a rough surface, the shape of surface nanopores can also alter nucleation kinetics. Using lithographic methods, we patterned polymer films with nanopores of various shapes and found that spherical nanopores 15-120 nm in diameter hindered nucleation of aspirin crystals, whereas angular nanopores of the same size promoted it. We also show that favourable surface-solute interactions are required for angular nanopores to promote nucleation, and propose that pore shape affects nucleation kinetics through the alteration of the orientational order of the crystallizing molecule near the angles of the pores. Our findings have clear technological implications, for instance in the control of pharmaceutical polymorphism and in the design of ‘seed’ particles for the regulation of crystallization of fine chemicals.

  7. Pulsed Laser Deposition of Nanoporous Cobalt Thin Films

    PubMed Central

    Jin, Chunming; Nori, Sudhakar; Wei, Wei; Aggarwal, Ravi; Kumar, Dhananjay; Narayan, Roger J.

    2013-01-01

    Nanoporous cobalt thin films were deposited on anodized aluminum oxide (AAO) membranes at room temperature using pulsed laser deposition. Scanning electron microscopy demonstrated that the nanoporous cobalt thin films retained the monodisperse pore size and high porosity of the anodized aluminum oxide substrates. Temperature- and field-dependent magnetic data obtained between 10 K and 350 K showed large hysteresis behavior in these materials. The increase of coercivity values was larger for nanoporous cobalt thin films than for multilayered cobalt/alumina thin films. The average diameter of the cobalt nanograins in the nanoporous cobalt thin films was estimated to be ~5 nm for blocking temperatures near room temperature. These results suggest that pulsed laser deposition may be used to fabricate nanoporous magnetic materials with unusual properties for biosensing, drug delivery, data storage, and other technological applications. PMID:19198344

  8. Hydrophilic and size-controlled graphene nanopores for protein detection.

    PubMed

    Goyal, Gaurav; Lee, Yong Bok; Darvish, Armin; Ahn, Chi Won; Kim, Min Jun

    2016-12-09

    This paper describes a general approach for transferring clean single-layer graphene onto silicon nitride nanopore devices and the use of the electron beam of a transmission electron microscope (TEM) to drill size-controlled nanopores in freely suspended graphene. Besides nanopore drilling, we also used the TEM to heal and completely close the unwanted secondary holes formed by electron beam damage during the drilling process. We demonstrate electron beam assisted shrinking of irregularly shaped 40-60 nm pores down to 2 nm, exhibiting an exquisite control of graphene nanopore diameter. Our fabrication workflow also rendered graphene nanopores hydrophilic, allowing easy wetting and use of the pores for studying protein translocation and protein-protein interaction with a high signal to noise ratio.

  9. Hydrophilic and size-controlled graphene nanopores for protein detection

    NASA Astrophysics Data System (ADS)

    Goyal, Gaurav; Bok Lee, Yong; Darvish, Armin; Ahn, Chi Won; Kim, Min Jun

    2016-12-01

    This paper describes a general approach for transferring clean single-layer graphene onto silicon nitride nanopore devices and the use of the electron beam of a transmission electron microscope (TEM) to drill size-controlled nanopores in freely suspended graphene. Besides nanopore drilling, we also used the TEM to heal and completely close the unwanted secondary holes formed by electron beam damage during the drilling process. We demonstrate electron beam assisted shrinking of irregularly shaped 40-60 nm pores down to 2 nm, exhibiting an exquisite control of graphene nanopore diameter. Our fabrication workflow also rendered graphene nanopores hydrophilic, allowing easy wetting and use of the pores for studying protein translocation and protein-protein interaction with a high signal to noise ratio.

  10. Trapping DNA near a Solid-State Nanopore

    PubMed Central

    Vlassarev, Dimitar M.; Golovchenko, Jene A.

    2012-01-01

    We demonstrate that voltage-biased solid-state nanopores can transiently localize DNA in an electrolyte solution. A double-stranded DNA (dsDNA) molecule is trapped when the electric field near the nanopore attracts and immobilizes a nonend segment of the molecule across the nanopore orifice without inducing a folded molecule translocation. In this demonstration of the phenomenon, the ionic current through the nanopore decreases when the dsDNA molecule is trapped by the nanopore. By contrast, a translocating dsDNA molecule under the same conditions causes an ionic current increase. We also present finite-element modeling results that predict this behavior for the conditions of the experiment. PMID:22853913

  11. A Protein Nanopore-Based Approach for Bacteria Sensing

    NASA Astrophysics Data System (ADS)

    Apetrei, Aurelia; Ciuca, Andrei; Lee, Jong-kook; Seo, Chang Ho; Park, Yoonkyung; Luchian, Tudor

    2016-11-01

    We present herein a first proof of concept demonstrating the potential of a protein nanopore-based technique for real-time detection of selected Gram-negative bacteria ( Pseudomonas aeruginosa or Escherichia coli) at a concentration of 1.2 × 108 cfu/mL. The anionic charge on the bacterial outer membrane promotes the electrophoretically driven migration of bacteria towards a single α-hemolysin nanopore isolated in a lipid bilayer, clamped at a negative electric potential, and followed by capture at the nanopore's mouth, which we found to be described according to the classical Kramers' theory. By using a specific antimicrobial peptide as a putative molecular biorecognition element for the bacteria used herein, we suggest that the detection system can combine the natural sensitivity of the nanopore-based sensing techniques with selective biological recognition, in aqueous samples, and highlight the feasibility of the nanopore-based platform to provide portable, sensitive analysis and monitoring of bacterial pathogens.

  12. Development of a gas-promoted oil agglomeration process. Quarterly technical progress report, July 1--September 30, 1996

    SciTech Connect

    Wheelock, T.D.

    1996-09-01

    The series of agglomeration tests designed to study the agglomeration characteristics of Pittsburgh No. 8 coal with i-octane was continued using a larger agitated tank. This series is designed to determine the effects of various parameters on the size and structure of the agglomerates formed, the rate of agglomeration, coal recovery, and ash rejection. The results reported here show that once spherical agglomerates are formed they continue to grow at almost a constant rate which is proportional to the concentration of i-octane. The constant growth rate is interrupted when spherical agglomerates combine to form large clusters. This only seems to occur with a large concentration of i-octane (e.g., 30 v/w%) and limited agitator power. The present results also show that coal recovery and ash rejection are highly dependent on agglomerate size when the mean agglomerate diameter is less than the size of the openings in the screen used for recovering the agglomerates.

  13. Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification

    SciTech Connect

    Aronov, D.; Rosenman, G.; Karlov, A.; Shashkin, A.

    2006-04-17

    Hydroxyapatite is known as a substrate for effective adhesion of various biological cells and bacteria as well implantable biomimetic material replacing defective bone tissues. It is found that low energy electron irradiation induces its strong surface potential variation and gives rise to pronounced wettability modification. The found electron-modulation method of the hydroxyapatite wettability enables both wettability switching and its microscopic patterning, which may be used for fabrication of spatially arrayed hydroxyapatite for biological cells immobilization, gene transfer, etc.

  14. Simple route for nano-hydroxyapatite properties expansion.

    PubMed

    Rojas, L; Olmedo, H; García-Piñeres, A J; Silveira, C; Tasic, L; Fraga, F; Montero, M L

    2015-10-20

    Simple surface modification of nano-hydroxyapatite, through acid-basic reactions, allows expanding the properties of this material. Introduction of organic groups such as hydrophobic alkyl chains, carboxylic acid, and amide or amine basic groups on the hydroxyapatite surface systematically change the polarity, surface area, and reactivity of hydroxyapatite without modifying its phase. Physical and chemical properties of the new derivative particles were analyzed. The biocompatibility of modified Nano-Hap on Raw 264.7 cells was also assessed.

  15. Molecular Sensing with Protein and Solid-State Nanopores

    NASA Astrophysics Data System (ADS)

    Niedzwiecki, David J.

    In the past 15 years nanopore sensing has proven to be a successful method for probing a variety of molecules of biological interest, such as DNA, RNA and proteins. Of particular appeal is this technique's ability to probe these molecules without the need for chemical modification or labeling, to do so at physiological conditions, and to probe single molecules at a time, allowing the possibility for results masked in bulk measurements to come to light. In this thesis these advantageous properties will be used in work on both a synthetic (solid-state) nanopore system and an engineered biological nanopore. I will describe the techniques for producing solid-state nanopores in thin membranes of silicon nitride and how these nanopores can be integrated into a fully functioning nanopore sensor system. I will then explore two applications of this system. First, a study of adsorption of bovine serum albumin (BSA), a protein found in blood serum, to the inorganic surface of nitride at the single molecule level. A simple physical model describing the behavior of this protein in the nanopore will be shown. Second, a study of the binding of the nucleocapsid protein of HIV-1 (NCp7) to three aptamers of different affinity, specifically three sequence 20mer mimics of the stem-loop 3 (SL3) RNA---the packaging domain of genomic RNA. Additionally, N-ethylmaleimide, which is known to inhibit the binding of NCp7 to a high-affinity SL3 RNA aptamer, will be used to demonstrate that the inhibition of the binding can be monitored in real time. Following these applications of the solid-state nanopore system, I will explore the geometry of a newly engineered biological nanopore, FhuA DeltaC/Delta4L, by using inert polymers to probe the nanopore interior.

  16. On minimal energy dipole moment distributions in regular polygonal agglomerates

    NASA Astrophysics Data System (ADS)

    Rosa, Adriano Possebon; Cunha, Francisco Ricardo; Ceniceros, Hector Daniel

    2017-01-01

    Static, regular polygonal and close-packed clusters of spherical magnetic particles and their energy-minimizing magnetic moments are investigated in a two-dimensional setting. This study focuses on a simple particle system which is solely described by the dipole-dipole interaction energy, both without and in the presence of an in-plane magnetic field. For a regular polygonal structure of n sides with n ≥ 3 , and in the absence of an external field, it is proved rigorously that the magnetic moments given by the roots of unity, i.e. tangential to the polygon, are a minimizer of the dipole-dipole interaction energy. Also, for zero external field, new multiple local minima are discovered for the regular polygonal agglomerates. The number of found local extrema is proportional to [ n / 2 ] and these critical points are characterized by the presence of a pair of magnetic moments with a large deviation from the tangential configuration and whose particles are at least three diameters apart. The changes induced by an in-plane external magnetic field on the minimal energy, tangential configurations are investigated numerically. The two critical fields, which correspond to a crossover with the linear chain minimal energy and with the break-up of the agglomerate, respectively are examined in detail. In particular, the numerical results are compared directly with the asymptotic formulas of Danilov et al. (2012) [23] and a remarkable agreement is found even for moderate to large fields. Finally, three examples of close-packed structures are investigated: a triangle, a centered hexagon, and a 19-particle close packed cluster. The numerical study reveals novel, illuminating characteristics of these compact clusters often seen in ferrofluids. The centered hexagon is energetically favorable to the regular hexagon and the minimal energy for the larger 19-particle cluster is even lower than that of the close packed hexagon. In addition, this larger close packed agglomerate has two

  17. Preparation and characterization of collagen-hydroxyapatite/pectin composite.

    PubMed

    Wenpo, Feng; Gaofeng, Liang; Shuying, Feng; Yuanming, Qi; Keyong, Tang

    2015-03-01

    Pectin, a kind of plant polysaccharide, was introduced into collagen-hydroxyapatite composite system, and prepared collagen-hydroxyapatite/pectin (Col-HA/pectin) composite in situ. The structure of the composite was investigated by XRD, SEM, and FT-IR. The mechanical properties, water absorption, enzyme degradation, and cytotoxicity of the composite were investigated as well. The results show that the inorganic substance in the composite materials is hydroxyapatite in relatively low crystallinity. A new interface appeared by the interaction among hydroxyapatite and collagen-pectin, and formed smooth fine particles. The mechanical properties, water absorption, enzyme degradation, and cytotoxicity indicate a potential use in bone replacement for the new composite.

  18. Mechanical properties and biocompatibility of the sputtered Ti doped hydroxyapatite.

    PubMed

    Vladescu, A; Padmanabhan, S C; Ak Azem, F; Braic, M; Titorencu, I; Birlik, I; Morris, M A; Braic, V

    2016-10-01

    The hydroxyapatite enriched with Ti were prepared as possible candidates for biomedical applications especially for implantable devices that are in direct contact to the bone. The hydroxyapatites with different Ti content were prepared by RF magnetron sputtering on Ti-6Al-4V alloy using pure hydroxyapatite and TiO2 targets. The content of Ti was modified by changing the RF power fed on TiO2 target. The XPS and FTIR analyses revealed the presence of hydroxyapatite structure. The hardness and elastic modulus of the hydroxyapatite were increased by Ti addition. After 5 days of culture, the cell viability of the Ti-6Al-4V was enhanced by depositing with undoped or doped hydroxyapatite. The Ti additions led to an increase in cell viability of hydroxyapatite, after 5 days of culture. The electron microscopy showed the presence of more cells on the surface of Ti-enriched hydroxyapatite than those observed on the surface of the uncoated alloys or undoped hydroxyapatite.

  19. Morphology and electronic structure of nanoscale powders of calcium hydroxyapatite.

    PubMed

    Kurgan, Nataly; Karbivskyy, Volodymyr; Kasyanenko, Vasyl

    2015-01-01

    Atomic force microscopy, infrared spectroscopy and NMR studied morphological and physicochemical properties of calcium hydroxyapatite powders produced by changing the temperature parameters of synthesis. Features of morphology formation of calcium hydroxyapatite nanoparticles with an annealing temperature within 200°C to 1,100°C were determined. It is shown that the particle size of the apatite obtained that annealed 700°C is 40 nm corresponding to the particle size of apatite in native bone. The effect of dimension factor on structural parameters of calcium hydroxyapatite is manifested in a more local symmetry of the PO4 (3-) tetrahedra at nanodispersed calcium hydroxyapatite.

  20. Macroporous hydroxyapatite as alloplastic material for dental applications.

    PubMed

    Carotenuto, G; Spagnuolo, G; Ambrosio, L; Nicolais, L

    1999-01-01

    In the dentistry field, synthetic hydroxyapatite can be conveniently used as semiabsorbable alloplastic material to solve a number of clinical problems. The hydroxyapatite structure influences bone ingrowth as well as its resorption. In particular, pore size must exceed 100 microm to allow new bone ingrowth. Because of its brittleness, highly porous hydroxyapatite is difficult to handle without causing damage, and, therefore, its mechanical performance has to be improved placing the material on a dense hydroxyapatite substrate. Dense/porous hydroxyapatite laminates can be obtained by slip casting technology. The method starts with the preparation of a ceramic powder-binder-solvent system. This slurry produces, after solvent evaporation, a soft green tape, that is successively baked at 300 degrees C to remove all organic component, and finally sintered at high temperature (1200 degrees C). The material porosity cannot be significantly modified by changes in the slurry composition and sintering temperature; therefore, the macroporous hydroxyapatite layer must be obtained using a porous hydroxyapatite powder. The powder is prepared by grinding of green tape pieces and the resulting coarse material is successively baked at 300 degrees C. Such material is mixed with a polymer solution and cast on a green tape substrate. Layer fractures are not observed in both film bulks and interface, because during sintering the consolidation of two layers happens simultaneously. In the resulting material, the first layer consisted of macroporous hydroxyapatite with high osteoconductive properties, and the second layer was a dense hydroxyapatite substrate able to improve the laminate mechanical properties.

  1. Effects on growth and osteogenic differentiation of mesenchymal stem cells by the strontium-added sol-gel hydroxyapatite gel materials.

    PubMed

    Raucci, Maria Grazia; Giugliano, Daniela; Alvarez-Perez, M A; Ambrosio, Luigi

    2015-02-01

    In the present study, strontium-modified hydroxyapatite gels (Sr-HA) at different concentrations were prepared using sol-gel approach and their effect on human-bone-marrow-derived mesenchymal stem cells, were evaluated. The effect of Strontium on physico-chemical and morphological properties of hydroxyapatite gel were evaluated. Morphological analyses (SEM and TEM) demonstrate that an increasing in the amount of Sr ions doped into HA made the agglomerated particles smaller. The substitution of large Sr2+ for small Ca2+ lead to denser atomic packing of the system causing retardation of crystals growth. The biological results demonstrated that hydroxyapatite gel containing from 0 to 20 mol% of Sr presented no cytotoxicity and promote the expression of osteogenesis related genes including an early marker for osteogenic differentiation ALP; a non-collagen protein OPN and a late marker for osteogenic differentiation OCN. Finally, the Sr-HA gels could have a great potential application as filler in bone repair and regeneration and used in especially in the osteoporotic disease.

  2. Synthesis and characterization of hydroxyapatite cement

    NASA Astrophysics Data System (ADS)

    Rabiee, S. M.; Moztarzadeh, F.; Solati-Hashjin, M.

    2010-04-01

    This study deals with synthesizing hydroxyapatite bone cement as a bone substitute for clinical applications. The powder part of the cement is using β-tricalcium phosphate, calcium carbonate, dicalcium phosphate and the liquid part contains NaH 2PO 4·2H 2O solution with different concentrations. The effects of liquid concentration on the setting times of the cement have been investigated. XRD analysis and FT-IR spectroscopy were used to study the phase composition of calcium phosphate cement. Morphology and chemical analysis of the synthesized cement was performed using a scanning electron microscope equipped with an energy dispersive X-ray analyser. In addition, the effect of soaking time of synthesized bone cement in simulated body fluid (SBF) on the final phase and strength has been studied. Soaking prepared cement in SBF solution for appropriate time resulted in transformation of the composition of the cement into hydroxyapatite and hence the strength of the cement has been increased.

  3. Synthesis and crystallization of macroporous hydroxyapatite

    SciTech Connect

    Madhavi, S. . E-mail: madhavi@ntu.edu.sg; Ferraris, C.; White, T.J.

    2005-09-15

    Macroporous hydroxyapatite Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} was synthesized using ordered polystyrene sphere templates that were impregnated with a calcium phosphate precursor solution which was allowed to solidify followed by sintering from 500 to 1000 deg. C in flowing oxygen to remove the polymer and crystallize the phosphates. Using a combination of diffraction and imaging the face-centered cubic macroporous framework was shown to have pore diameters of 0.8-0.9 {mu}m and to be composed of hydroxyapatite (80-98 wt%) and X-ray diffraction amorphous material (14-55%), the proportions dependent on the duration and temperature of heat treatment. At lower sintering temperatures the HAp is calcium deficient. Ion exchange of calcium by cadmium demonstrated the potential of this material for hazardous waste remediation.

  4. Mechanical properties of hydroxyapatite/mica composite.

    PubMed

    Nordström, E G; Herø, H; Jørgensen, R B

    1994-01-01

    Bend specimens of the inorganic synthetic materials hydroxyapatite (HA) and a composite of hydroxyapatite/muscovite mica have been prepared and tested mechanically. Sintering followed by hot isostatic pressing (HIP) without encapsulation gave an increased strength for HA alone, but no significant increase in strength compared with sintering alone for HA/mica composites. The bend strength of the HA/mica composite was inferior to that of HA alone, the reason being inadequate bonding between HA and mica. HIP in glass capsules and an increased cold compaction pressure tended to improve the bend strength of the composite. Corrosion in tris for 7 d did not affect the bend strength of the investigated materials significantly.

  5. Intensive drying and the related microstructure features in agglomerate spheres

    NASA Astrophysics Data System (ADS)

    Kudlyk, Rostyslav

    Most metal ore concentrates are fine particulates with a wide particle-size distribution. Industrially they are pelletized by tumbling in balling discs or drums into spheres, an operation which requires the addition of typically up to 10% by weight of water. Further processing of these agglomerates involves first drying and then induration by heating up to 1250°C. The main objective of this thesis was the study of the interrelationship between the microstructure of the agglomerates with, on the one hand, the mechanical and physical properties of the pellets and their behaviour during intensive drying, on the other. The previously developed model of the drying process identified the loss of capillarity, resulting from the vapour lock, to be a critical component of the mechanism of intense as opposed to 'classical' drying. It was shown that the absence of the constant-rate drying period is a natural consequence of this effect. Several significant shortcomings of the previous model have been identified. This model treats the period of transition between surface- and shrinking-core drying as an instantaneous event. The new extended model, which overcomes the original model limitations, was developed in this project. In its formalism, the new model includes the pore-size distribution and thus simulates a gradual surface/shrinking-core transition. It was shown that the nature of the transition between the surface- and shrinking-core drying regimes during intensive drying is fundamentally different from that of classical drying, i.e. carried out at mild temperatures. In the latter case, liquid is being delivered to the surface through the network of interconnected small pores reaching the surface. The transition occurs when the larger pores, also reaching the surface, are being drained. On the other hand, under intense-drying conditions, the rate-limiting factor is the vapour lock. The latter phenomenon will occur in the smaller pores first, as they have smaller liquid

  6. Agglomerating combustor-gasifier method and apparatus for coal gasification

    DOEpatents

    Chen, Joseph L. P.; Archer, David H.

    1976-09-21

    A method and apparatus for gasifying coal wherein the gasification takes place in a spout fluid bed at a pressure of about 10 to 30 atmospheres and a temperature of about 1800.degree. to 2200.degree.F and wherein the configuration of the apparatus and the manner of introduction of gases for combustion and fluidization is such that agglomerated ash can be withdrawn from the bottom of the apparatus and gas containing very low dust loading is produced. The gasification reaction is self-sustaining through the burning of a stoichiometric amount of coal with air in the lower part of the apparatus to form the spout within the fluid bed. The method and apparatus are particularly suitable for gasifying coarse coal particles.

  7. Remediation of Sucarnoochee soil by agglomeration with fine coal

    SciTech Connect

    Narayanan, P.S.; Arnold, D.W.; Rahnama, M.B. )

    1994-01-01

    Fine-sized Blue Creek coal was used to remove high molecular weight hydrocarbons from Sucarnoochee soil, a fine-sized high-organic soil. Fine coal in slurry form was blended with Sucarnoochee soil contaminated with 15.0% by wt of crude oil, and agglomerates were removed in a standard flotation cell. Crude oil in the remediated soil was reduced from the original 15.0% to less than a tenth of a wt% by a two-step process. Oil removal of approx. 99.3% was obtained. An added benefit was that the low-grade coal used in the process was simultaneously upgraded. The final level of cleaning was not affected by initial oil concentration. The process compared favorably with a hot water wash technique used to recovery oils from contaminated soil.

  8. Innovations in thermoelectric materials research: Compound agglomeration, testing and preselection

    NASA Astrophysics Data System (ADS)

    Lopez de Cardenas, Hugo Francisco Lopez

    Thermoelectric materials have the capacity to convert a temperature differential into electrical power and vice versa. They will represent the next revolution in alternative energies once their efficiencies are enhanced so they can complement other forms of green energies that depend on sources other than a temperature differential. Progress in materials science depends on the ability to discover new materials to eventually understand them and to finally improve their properties. The work presented here is aimed at dynamizing the screening of materials of thermoelectric interest. The results of this project will enable: theoretical preselection of thermoelectric compounds based on their bandgap and a rapid agglomeration method that does not require melting or sintering. A special interest will be given to Iodine-doped TiSe2 that generated extraordinary results and a new set of equations are proposed to accurately describe the dependence of the power factor and the figure of merit on the intrinsic properties of the materials.

  9. Molecular mechanisms responsible for hydrate anti-agglomerant performance.

    PubMed

    Phan, Anh; Bui, Tai; Acosta, Erick; Krishnamurthy, Pushkala; Striolo, Alberto

    2016-09-28

    Steered and equilibrium molecular dynamics simulations were employed to study the coalescence of a sI hydrate particle and a water droplet within a hydrocarbon mixture. The size of both the hydrate particle and the water droplet is comparable to that of the aqueous core in reverse micelles. The simulations were repeated in the presence of various quaternary ammonium chloride surfactants. We investigated the effects due to different groups on the quaternary head group (e.g. methyl vs. butyl groups), as well as different hydrophobic tail lengths (e.g. n-hexadecyl vs. n-dodecyl tails) on the surfactants' ability to prevent coalescence. Visual inspection of sequences of simulation snapshots indicates that when the water droplet is not covered by surfactants it is more likely to approach the hydrate particle, penetrate the protective surfactant film, reach the hydrate surface, and coalesce with the hydrate than when surfactants are present on both surfaces. Force-distance profiles obtained from steered molecular dynamics simulations and free energy profiles obtained from umbrella sampling suggest that surfactants with butyl tripods on the quaternary head group and hydrophobic tails with size similar to the solvent molecules can act as effective anti-agglomerants. These results qualitatively agree with macroscopic experimental observations. The simulation results provide additional insights, which could be useful in flow assurance applications: the butyl tripod provides adhesion between surfactants and hydrates; when the length of the surfactant tail is compatible with that of the hydrocarbon in the liquid phase a protective film can form on the hydrate; however, once a molecularly thin chain of water molecules forms through the anti-agglomerant film, connecting the water droplet and the hydrate, water flows to the hydrate and coalescence is inevitable.

  10. Slow crack growth behaviour of hydroxyapatite ceramics.

    PubMed

    Benaqqa, Chahid; Chevalier, Jerome; Saädaoui, Malika; Fantozzi, Gilbert

    2005-11-01

    Among materials for medical applications, hydroxyapatite is one of the best candidates in orthopedics, since it exhibits a composition similar to the mineral part of bone. Double torsion technique was here performed to investigate slow crack growth behaviour of dense hydroxyapatite materials. Crack rate, V, versus stress intensity factor, K(I), laws were obtained for different environments and processing conditions. Stress assisted corrosion by water molecules in oxide ceramics is generally responsible for slow crack growth. The different propagation stages obtained here could be analyzed in relation to this process. The presence of a threshold defining a safety range of use was also observed. Hydroxyapatite ceramics appear to be very sensitive to slow crack growth, crack propagation occurring even at very low K(I). This can be explained by the fact that they contain hydroxyl groups (HAP: Ca(10)(PO(4))(6)(OH)(2)), favouring water adsorption on the crack surface and thus a strong decrease of surface energy in the presence of water. This study demonstrates that processing conditions must be carefully controlled, specially sintering temperature, which plays a key role on V-K(I) laws. Sintering at 50 degrees C above or below the optimal temperature, for example, may shift the V-K(I) law towards very low stress intensity factors. The influence of ageing is finally discussed.

  11. [Generalized periarthritis calcarea (generalized hydroxyapatite disease)].

    PubMed

    Müller, W; Bahous, I

    1979-09-01

    The condition of generalized periarthritis calcarea (hydroxyapatite deposition disease) is characterised by multiple periarticular calcification which can be localised around practically any joint and also in proximity to the spine. This calcification consists of hydroxyapatite crystals which are responsible for the episodes of acute, subacute or chronic periarticular or articular inflammation so typical of the condition. Because of this one can classify periarthritis calcarea along with gout and chondrocalcinosis in the group of crystal deposition diseases. The actual cause of the calcification remains unknown but it is probable that, along with hereditary factors, disturbances in metabolism play an important role. The diagnosis of generalised periarthritis is made from the characteristic X-ray picture in conjunction with the clinical findings and, on occasion, the demonstration of hydroxyapatite crystals in the affected tissues. In the differential diagnosis gout, chondrocalcinosis, various inflammatory rheumatic conditions and septic arthritis must be excluded and various calcification processes, particularly interstitial calcinosis and lipocal cinogranulomatosis, must also be considered. Since the etiology of the calcification remains unknown to specific treatment is available. Symptomatic treatment with colchicine is mostly inadequate which is why one often has recourse to the use of non-steroid anti-inflammatory drugs and corticosteroids.

  12. A MODEL FOR FINE PARTICLE AGGLOMERATION IN CIRCULATING FLUIDIZED BED ABSORBERS

    EPA Science Inventory

    A model for fine particle agglomeration in circulating fluidized bed absorbers (CFBAS) has been developed. It can model the influence of different factors on agglomeration, such as the geometry of CFBAs, superficial gas velocity, initial particle size distribution, and type of ag...

  13. Surface functionalized amorphous nanosilica and microsilica with nanopores as promising tools in biomedicine

    NASA Astrophysics Data System (ADS)

    Rahman, Ayesha; Seth, Dipankar; Mukhopadhyaya, Sunit K.; Brahmachary, Ratan L.; Ulrichs, Christian; Goswami, Arunava

    2009-01-01

    Cellular interactions with engineered nanoparticles (NPs) are dependent on many properties, inherent to the nanoparticle (viz. size, shape, surface characteristics, degradation, agglomeration/dispersal, and charge, etc.). Modification of the surface reactivity via surface functionalization of the nanoparticles to be targeted seems to be important. Utilization of different surface functionalization methods of nanoparticles is an emerging field of basic and applied nanotechnology. It is well known that many disease-causing organisms induce host lipids and if deprived, their growth is inhibited in vivo. Amorphous nanosilica (ANS) and amorphous microsilica with nanopores (AMS) were prepared by a combination of wet chemistry and high-energy ball milling. Lipophilic moieties were attached to both ANS and AMS via chemical surface functionalization method. Lipophilic ANS and AMS were found to inhibit the growth of Bombyx mori nuclear polyhedrosis virus (BmNPV) and chicken malarial parasites via absorption of silkworm hemolymph and chicken serum lipids/lipoproteins, respectively, in vivo. Therefore, intelligent surface functionalization of NP is an important concept, and its application in curing chicken malaria and BmNPV is presented here. Surface functionalization method reported in this paper might serve as a valuable technology for treating many diseases where pathogens induce host lipid.

  14. Surface functionalized amorphous nanosilica and microsilica with nanopores as promising tools in biomedicine.

    PubMed

    Rahman, Ayesha; Seth, Dipankar; Mukhopadhyaya, Sunit K; Brahmachary, Ratan L; Ulrichs, Christian; Goswami, Arunava

    2009-01-01

    Cellular interactions with engineered nanoparticles (NPs) are dependent on many properties, inherent to the nanoparticle (viz. size, shape, surface characteristics, degradation, agglomeration/dispersal, and charge, etc.). Modification of the surface reactivity via surface functionalization of the nanoparticles to be targeted seems to be important. Utilization of different surface functionalization methods of nanoparticles is an emerging field of basic and applied nanotechnology. It is well known that many disease-causing organisms induce host lipids and if deprived, their growth is inhibited in vivo. Amorphous nanosilica (ANS) and amorphous microsilica with nanopores (AMS) were prepared by a combination of wet chemistry and high-energy ball milling. Lipophilic moieties were attached to both ANS and AMS via chemical surface functionalization method. Lipophilic ANS and AMS were found to inhibit the growth of Bombyx mori nuclear polyhedrosis virus (BmNPV) and chicken malarial parasites via absorption of silkworm hemolymph and chicken serum lipids/lipoproteins, respectively, in vivo. Therefore, intelligent surface functionalization of NP is an important concept, and its application in curing chicken malaria and BmNPV is presented here. Surface functionalization method reported in this paper might serve as a valuable technology for treating many diseases where pathogens induce host lipid.

  15. Influence of the pan pelletizer rotational velocity and the particles size on the agglomeration of alumina oxide granules

    NASA Astrophysics Data System (ADS)

    Radeva, Zheni; Müller, Peter; Tomas, Juergen

    2013-06-01

    High fraction of agglomerates and better agglomerate strength are main purpose for every agglomeration process. For optimizing the agglomeration process of industrial produced granules, using liquid binders, it is necessary to understand the microinteractions between primary particles and binder and the marcointeractions between the agglomerates themselves. In order to investigate the influence of the rotational velocity of the pan pelletizer and the primary particle size on the fraction of agglomerates and the mechanical properties of the produced agglomerates, the obtained structures have to be basically analyzed. Agglomeration of industrial produced Alumina Oxide (γ-Al2O3) granules is carried out in a rotating pan pelletizer. A 6 mass-% solution of viscoelastic polymer - hydroxypropyl methylcellulose (HPMC) is used as binder. The rotational velocity of the pelletizer pan is previously measured and calibrated. By changing the rotational velocity of the process chamber it was found that there are critical speed limits for the pan. The minimum critical velocity of the pelletizer plate does not provide enough contact collisions between the particles and the necessary kinetic level for agglomeration cannot be reached. The maximum critical velocity leads to higher rotational kinetic energy and this causes breakages of the agglomerates. It was also proven that the breakage strength of the agglomerates decreases with the reduction of the agglomerate size. The conclusions from the experimental work help us to understand the basics of agglomeration process and tend to develop and facilitate the operating with particle collectives in science and industry.

  16. Quantum dots confined in nanoporous alumina membranes

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Xia, Jianfeng; Wang, Jun; Shinar, Joseph; Lin, Zhiqun

    2006-09-01

    CdSe /ZnS core/shell quantum dots (QDs) were filled into porous alumina membranes (PAMs) by dip coating. The deposition of QDs induced changes in the refractive index of the PAMs. The amount of absorbed QDs was quantified by fitting the reflection and transmission spectra observed experimentally with one side open and freestanding (i.e., with two sides open) PAMs employed, respectively. The fluorescence of the QDs was found to be retained within the cylindrical nanopores of the PAMs.

  17. Nanoscale heat flux between nanoporous materials.

    PubMed

    Biehs, S-A; Ben-Abdallah, P; Rosa, F S S; Joulain, K; Greffet, J-J

    2011-09-12

    By combining stochastic electrodynamics and the Maxwell-Garnett description for effective media we study the radiative heat transfer between two nanoporous materials. We show that the heat flux can be significantly enhanced by air inclusions, which we explain by: (a) the presence of additional surface waves that give rise to supplementary channels for heat transfer throughout the gap, (b) an increase in the contribution given by the ordinary surface waves at resonance, (c) and the appearance of frustrated modes over a broad spectral range. We generalize the known expression for the nanoscale heat flux for anisotropic metamaterials.

  18. Electrochemical control of creep in nanoporous gold

    SciTech Connect

    Ye, Xing-Long; Jin, Hai-Jun

    2013-11-11

    We have investigated the mechanical stability of nanoporous gold (npg) in an electrochemical environment, using in situ dilatometry and compression experiments. It is demonstrated that the gold nano-ligaments creep under the action of surface stress which leads to spontaneous volume contractions in macroscopic npg samples. The creep of npg, under or without external forces, can be controlled electrochemically. The creep rate increases with increasing potential in double-layer potential region, and deceases to almost zero when the gold surface is adsorbed with oxygen. Surprisingly, we also noticed a correlation between creep and surface diffusivity, which links the deformation of nanocrystals to mobility of surface atoms.

  19. Morphological characterization of diesel soot agglomerates based on the Beer-Lambert law

    NASA Astrophysics Data System (ADS)

    Lapuerta, Magín; Martos, Francisco J.; José Expósito, Juan

    2013-03-01

    A new method is proposed for the determination of the number of primary particles composing soot agglomerates emitted from diesel engines as well as their individual fractal dimension. The method is based on the Beer-Lambert law and it is applied to micro-photographs taken in high resolution transmission electron microscopy. Differences in the grey levels of the images lead to a more accurate estimation of the geometry of the agglomerate (in this case radius of gyration) than other methods based exclusively on the planar projections of the agglomerates. The method was validated by applying it to different images of the same agglomerate observed from different angles of incidence, and proving that the effect of the angle of incidence is minor, contrary to other methods. Finally, the comparisons with other methods showed that the size, number of primary particles and fractal dimension (the latter depending on the particle size) are usually underestimated when only planar projections of the agglomerates are considered.

  20. Acoustic agglomeration of power-plant fly ash. A comprehensive semi-annual progress report

    SciTech Connect

    Reethof, G.

    1980-02-01

    Results obtained during the reporting period are presented. The agglomeration of submicron fly ash particles has been studied as a function of sound pressure level, sound frequency, loading, and exposure time. A second generation model of the agglomeration process is being developed. A high-frequency, high-intensity variable speed siren delivering at least 600 W at frequencies up to 4000 Hz has been developed and tested. Details on the design and operation are presented. The agglomeration chamber has been completely cleaned and the aerosol generating system has been rebuilt. A mathematical model of the acoustics of agglomeration is being developed. Preliminary results of computerized electron microscopic scanning of fly ash particles during agglomeration are presented. (DMC)

  1. Facilitated Translocation of Polypeptides Through A Single Nanopore

    PubMed Central

    Bikwemu, Robert; Wolfe, Aaron J.; Xing, Xiangjun; Movileanu, Liviu

    2011-01-01

    The transport of polypeptides through nanopores is a key process in biology and medical biotechnology. Despite its critical importance, the underlying kinetics of polypeptide translocation through protein nanopores is not yet comprehensively understood. Here, we present a simple two-barrier, one-well kinetic model for the translocation of short positively charged polypeptides through a single transmembrane protein nanopore that is equiped with negatively charged rings, simply called traps. We demonstrate that the presence of these traps within the interior of the nanopore dramatically alters the free energy landscape for the partitioning of the polypeptide into the nanopore interior, as revealed by significant modifications in the activation free energies required for the transitions of the polypeptide from one state to other. Our kinetic model permits the calculation of the relative and absolute exit frequencies of the short cationic polypeptides through either opening of the nanopore. Moreover, this approach enabled quantitative assessment of the kinetics of translocation of the polypeptides through a protein nanopore, which is strongly dependent on several factors, including the nature of the translocating polypeptide, the position of the traps, the strength of the polypeptide-attractive trap interactions and the applied transmembrane voltage. PMID:21339604

  2. Nanoparticle size and shape characterization with Solid State Nanopores

    NASA Astrophysics Data System (ADS)

    Nandivada, Santoshi; Benamara, Mourad; Li, Jiali

    2015-03-01

    Solid State Nanopores are widely used in a variety of single molecule studies including DNA and biomolecule detection based on the principle of Resistive Pulse technique. This technique is based on electrophoretically driving charged particles through 35-60 nm solid state nanopores. The translocation of these particles produces current blockage events that provide an insight to the properties of the translocation particles and the nanopore. In this work we study the current blockage events produced by ~ 30nm negatively charged PS nanoparticles through Silicon Nitride solid state nanopores. We show how the current blockage amplitudes and durations are related to the ratio of the volume of the particle to the volume of the pore, the shape of the particle, charge of the particle and the nanopore surface, salt concentration, solution pH, and applied voltage. The solid-state nanopores are fabricated by a combination of Focus Ion Beam and low energy Ion beams in silicon nitride membranes. High resolution TEM is used to measure the 3D geometry of the nanopores and a finite element analysis program (COMSOL) is used to simulate the experimental results.

  3. Electrophoretic deposition of composite hydroxyapatite-chitosan coatings

    SciTech Connect

    Pang Xin; Zhitomirsky, Igor . E-mail: zhitom@mcmaster.ca

    2007-04-15

    Cathodic electrophoretic deposition has been utilized for the fabrication of composite hydroxyapatite-chitosan coatings on 316L stainless steel substrates. The addition of chitosan to the hydroxyapatite suspensions promoted the electrophoretic deposition of the hydroxyapatite nanoparticles and resulted in the formation of composite coatings. The obtained coatings were investigated by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, potentiodynamic polarization measurements, and electrochemical impedance spectroscopy. It was shown that the deposit composition can be changed by a variation of the chitosan or hydroxyapatite concentration in the solutions. Experimental conditions were developed for the fabrication of hydroxyapatite-chitosan nanocomposites containing 40.9-89.8 wt.% hydroxyapatite. The method enabled the formation of adherent and uniform coatings of thicknesses up to 60 {mu}m. X-ray studies revealed that the preferred orientation of the hydroxyapatite nanoparticles in the chitosan matrix increases with decreasing hydroxyapatite content in the composite coatings. The obtained coatings provided the corrosion protection for the 316L stainless steel substrates00.

  4. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-01

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for

  5. Nanopores and nucleic acids: prospects for ultrarapid sequencing

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.; Akeson, M.

    2000-01-01

    DNA and RNA molecules can be detected as they are driven through a nanopore by an applied electric field at rates ranging from several hundred microseconds to a few milliseconds per molecule. The nanopore can rapidly discriminate between pyrimidine and purine segments along a single-stranded nucleic acid molecule. Nanopore detection and characterization of single molecules represents a new method for directly reading information encoded in linear polymers. If single-nucleotide resolution can be achieved, it is possible that nucleic acid sequences can be determined at rates exceeding a thousand bases per second.

  6. Nanoporous carbon actuator and methods of use thereof

    DOEpatents

    Biener, Juergen [San Leandro, CA; Baumann, Theodore F [Discovery Bay, CA; Shao, Lihua [Karlsruhe, DE; Weissmueller, Joerg [Stutensee, DE

    2012-07-31

    An electrochemically driveable actuator according to one embodiment includes a nanoporous carbon aerogel composition capable of exhibiting charge-induced reversible strain when wetted by an electrolyte and a voltage is applied thereto. An electrochemically driven actuator according to another embodiment includes a nanoporous carbon aerogel composition wetted by an electrolyte; and a mechanism for causing charge-induced reversible strain of the composition. A method for electrochemically actuating an object according to one embodiment includes causing charge-induced reversible strain of a nanoporous carbon aerogel composition wetted with an electrolyte to actuate the object by the strain.

  7. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.

    PubMed

    Lan, Wen-Jie; Edwards, Martin A; Luo, Long; Perera, Rukshan T; Wu, Xiaojian; Martin, Charles R; White, Henry S

    2016-11-15

    Ion current rectification (ICR) refers to the asymmetric potential-dependent rate of the passage of solution ions through a nanopore, giving rise to electrical current-voltage characteristics that mimic those of a solid-state electrical diode. Since the discovery of ICR in quartz nanopipettes two decades ago, synthetic nanopores and nanochannels of various geometries, fabricated in membranes and on wafers, have been extensively investigated to understand fundamental aspects of ion transport in highly confined geometries. It is now generally accepted that ICR requires an asymmetric electrical double layer within the nanopore, producing an accumulation or depletion of charge-carrying ions at opposite voltage polarities. Our research groups have recently explored how the voltage-dependent ion distributions and ICR within nanopores can induce novel nanoscale flow phenomena that have applications in understanding ionics in porous materials used in energy storage devices, chemical sensing, and low-cost electrical pumping of fluids. In this Account, we review our most recent investigations on this topic, based on experiments using conical nanopores (10-300 nm tip opening) fabricated in thin glass, mica, and polymer membranes. Measurable fluid flow in nanopores can be induced either using external pressure forces, electrically via electroosmotic forces, or by a combination of these two forces. We demonstrate that pressure-driven flow can greatly alter the electrical properties of nanopores and, vice versa, that the nonlinear electrical properties of conical nanopores can impart novel and useful flow phenomena. Electroosmotic flow (EOF), which depends on the magnitude of the ion fluxes within the double layer of the nanopore, is strongly coupled to the accumulation/depletion of ions. Thus, the same underlying cause of ICR also leads to EOF rectification, i.e., unequal flows occurring for the same voltage but opposite polarities. EOF rectification can be used to electrically

  8. Real-time selective sequencing using nanopore technology

    PubMed Central

    Loose, Matthew; Malla, Sunir; Stout, Michael

    2016-01-01

    The Oxford Nanopore MinION sequences DNA by sensing changes in electrical current flow in real-time as molecules traverse nanopores. Optionally, the voltage across specific nanopores can be reversed, ejecting the DNA molecule. This enables “Read Until”, the selection of specific DNA molecules for sequencing. We use dynamic time warping to match reads to reference, selecting regions of small genomes, individual amplicons, or normalization of the amplicon set. This first demonstration of direct selection of specific DNA molecules in real-time enables many novel future applications. PMID:27454285

  9. Slow DNA Transport through Nanopores in Hafnium Oxide Membranes

    PubMed Central

    Bell, David C.; Cohen-Karni, Tzahi; Rosenstein, Jacob K.; Wanunu, Meni

    2016-01-01

    We present a study of double- and single-stranded DNA transport through nanopores fabricated in ultrathin (2–7 nm thick) free-standing hafnium oxide (HfO2) membranes. The high chemical stability of ultrathin HfO2 enables long-lived experiments with <2 nm diameter pores that last several hours, in which we observe >50 000 DNA translocations with no detectable pore expansion. Mean DNA velocities are slower than velocities through comparable silicon nitride pores, providing evidence that HfO2 nanopores have favorable physicochemical interactions with nucleic acids that can be leveraged to slow down DNA in a nanopore. PMID:24083444

  10. Coating of nanoporous membranes: atomic layer deposition versus sputtering.

    PubMed

    Grigoras, K; Airaksinen, V M; Franssila, S

    2009-06-01

    Nanoporous anodic alumina membranes and silicon samples with plasma etched nanopores have been coated with zinc oxide or gold layer using atomic layer deposition (ALD) or sputtering, respectively. In the case of ALD process, the precursor pulses were extended, compared with planar substrate coating. Thick (60 microm) anodic alumina membranes have been conformally coated with zinc oxide ALD layer. Metal sputtering technique was used just for opposite purpose--to minimize the penetration of gold into the pores during gold-coating of the top and bottom surfaces of the membrane. Scanning electron microscopy (SEM) has been used to investigate the layer thickness, uniformity and conformality inside the nanopores.

  11. Nanopore in metal-dielectric sandwich for DNA position control

    NASA Astrophysics Data System (ADS)

    Polonsky, Stas; Rossnagel, Steve; Stolovitzky, Gustavo

    2007-10-01

    We present the concept of a nanoelectromechanical device capable of controlling the position of DNA inside a nanopore with a single nucleotide accuracy. The device utilizes the interaction of discrete charges along the backbone of a DNA molecule with the electric field inside the nanopore. In analogy to solid state transistors in which a small voltage controls the current between two electrodes, a voltage strategically located inside the nanopore can control the translocation of a single DNA molecule between a cis and a trans reservoirs. We propose an immediate application of the device as a replacement of capillary electrophoresis in DNA sequencing.

  12. Polymer translocation through nanopore into active bath

    NASA Astrophysics Data System (ADS)

    Pu, Mingfeng; Jiang, Huijun; Hou, Zhonghuai

    2016-11-01

    Polymer translocation through nanopores into a crowded environment is of ubiquitous importance in many biological processes. Here we investigate polymer translocation through a nanopore into an active bath of self-propelled particles in two-dimensional space using Langevin dynamics simulations. Interestingly, we find that the mean translocation time <" separators=" τ > can show a bell-shape dependence on the particle activity Fa at a fixed volume fraction ϕ, indicating that the translocation process may become slower for small activity compared to the case of the passive media, and only when the particle activity becomes large enough can the translocation process be accelerated. In addition, we also find that <" separators=" τ > can show a minimum as a function of ϕ if the particle activity is large enough, implying that an intermediate volume fraction of active particles is most favorable for the polymer translocation. Detailed analysis reveals that such nontrivial behaviors result from the two-fold effect of active bath: one that active particles tend to accumulate near the pore, providing an extra pressure hindering the translocation, and the other that they also aggregate along the polymer chain, generating an effective pulling force accelerating the translocation. Such results demonstrate that active bath plays rather subtle roles on the polymer translocation process.

  13. Capturing CO2 via reactions in nanopores.

    SciTech Connect

    Leung, Kevin; Nenoff, Tina Maria; Criscenti, Louise Jacqueline; Tang, Z; Dong, J. H.

    2008-10-01

    This one-year exploratory LDRD aims to provide fundamental understanding of the mechanism of CO2 scrubbing platforms that will reduce green house gas emission and mitigate the effect of climate change. The project builds on the team members expertise developed in previous LDRD projects to study the capture or preferential retention of CO2 in nanoporous membranes and on metal oxide surfaces. We apply Density Functional Theory and ab initio molecular dynamics techniques to model the binding of CO2 on MgO and CaO (100) surfaces and inside water-filled, amine group functionalized silica nanopores. The results elucidate the mechanisms of CO2 trapping and clarify some confusion in the literature. Our work identifies key future calculations that will have the greatest impact on CO2 capture technologies, and provides guidance to science-based design of platforms that can separate the green house gas CO2 from power plant exhaust or even from the atmosphere. Experimentally, we modify commercial MFI zeolite membranes and find that they preferentially transmit H2 over CO2 by a factor of 34. Since zeolite has potential catalytic capability to crack hydrocarbons into CO2 and H2, this finding paves the way for zeolite membranes that can convert biofuel into H2 and separate the products all in one step.

  14. Hyper-dendritic nanoporous zinc foam anodes

    DOE PAGES

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; ...

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  15. Hyper-dendritic nanoporous zinc foam anodes

    SciTech Connect

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; Davies, Daniel; Bhadra, Shoham; Van Tassell, Barry.; Erdonmez, Can; Steingart, Daniel A.

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrast to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.

  16. Gate manipulation of DNA capture into nanopores.

    PubMed

    He, Yuhui; Tsutsui, Makusu; Fan, Chun; Taniguchi, Masateru; Kawai, Tomoji

    2011-10-25

    Understanding biophysics governing DNA capture into a nanopore and establishing a manipulation system for the capture process are essential for nanopore-based genome sequencing. In this work, the functionality of extended electric field and electroosmotic flow (EOF) during the capture stage and their dependence on gate voltage, U(G), are investigated. We demonstrate that while both the electric field and EOF within a cis chamber make long-distance contributions to DNA capture around the pore mouth, the former effect is always capturing, while the latter causes trapping or blocking of the molecule depending on the magnitude of the gate voltage, U(G): an anionic EOF induced by high U(G) is capable of doubling the DNA trapping speed and thus the absorption radius in the cis chamber, whereas a cationic EOF by low U(G) would substantially offset the trapping effort by the electric field and even totally block DNA entrance into the pore. Based on the analysis, a gate regulation is proposed with the objective of achieving a high DNA capture rate while maintaining a low error rate.

  17. Water confinement in nanoporous silica materials

    SciTech Connect

    Renou, Richard; Szymczyk, Anthony; Ghoufi, Aziz

    2014-01-28

    The influence of the surface polarity of cylindrical silica nanopores and the presence of Na{sup +} ions as compensating charges on the structure and dynamics of confined water has been investigated by molecular dynamics simulations. A comparison between three different matrixes has been included: a protonated nanopore (PP, with SiOH groups), a deprotonated material (DP, with negatively charged surface groups), and a compensated-charge framework (CC, with sodium cations compensating the negative surface charge). The structure of water inside the different pores shows significant differences in terms of layer organization and hydrogen bonding network. Inside the CC pore the innermost layer is lost to be replaced by a quasi bulk phase. The electrostatic field generated by the DP pore is felt from the surface to the centre of pore leading to a strong orientation of water molecules even in the central part of the pore. Water dynamics inside both the PP and DP pores shows significant differences with respect to the CC pore in which the sub-diffusive regime of water is lost for a superdiffusive regime.

  18. Cavitation and pore blocking in nanoporous glasses.

    PubMed

    Reichenbach, C; Kalies, G; Enke, D; Klank, D

    2011-09-06

    In gas adsorption studies, porous glasses are frequently referred to as model materials for highly disordered mesopore systems. Numerous works suggest that an accurate interpretation of physisorption isotherms requires a complete understanding of network effects upon adsorption and desorption, respectively. The present article deals with nitrogen and argon adsorption at different temperatures (77 and 87 K) performed on a series of novel nanoporous glasses (NPG) with different mean pore widths. NPG samples contain smaller mesopores and significantly higher microporosity than porous Vycor glass or controlled pore glass. Since the mean pore width of NPG can be tuned sensitively, the evolution of adsorption characteristics with respect to a broadening pore network can be investigated starting from the narrowest nanopore width. With an increasing mean pore width, a H2-type hysteresis develops gradually which finally transforms into a H1-type. In this connection, a transition from a cavitation-induced desorption toward desorption controlled by pore blocking can be observed. Furthermore, we find concrete hints for a pore size dependence of the relative pressure of cavitation in highly disordered pore systems. By comparing nitrogen and argon adsorption, a comprehensive insight into adsorption mechanisms in novel disordered materials is provided.

  19. Nanoporous carbon films for gas microsensors.

    PubMed

    Siegal, M P; Yelton, W G; Overmyer, D L; Provencio, P P

    2004-02-17

    We study nanoporous carbon (NPC) as an adsorbent coating on surface acoustic wave (SAW) chemical microsensors for a wide range of analyte gases. By use of pulsed-laser deposition in a controlled inert gas ambient, NPC grows at room temperature with negligible residual stress and, hence, can coat most surfaces to any desired thickness. Acetone adsorption isotherms for NPC-coated SAW devices with mass density ranging from 0.18 to 1.08 g/cm3 indicate that the device frequency response relates to NPC density. Data analysis suggests the possibility of detecting acetone below parts-per-billion concentrations. We find NPC to be highly sensitive to a variety of other volatile organic and toxic industrial compounds. Transmission electron microscopy reveals that lower-density NPC has both larger and greater numbers of nanopores than higher-density NPC and that decreasing NPC density also increases the interplanar spacing between graphene sheet fragments within the ultrathin carbon wall structures. These physical differences effectively increase the available surface area for analyte gas adsorption with decreasing NPC density, with only the structural integrity of the internal NPC wall structures a limiting factor in determining the lowest useful density NPC coating.

  20. Nanopore-Based Target Sequence Detection

    PubMed Central

    Morin, Trevor J.; Shropshire, Tyler; Liu, Xu; Briggs, Kyle; Huynh, Cindy; Tabard-Cossa, Vincent; Wang, Hongyun; Dunbar, William B.

    2016-01-01

    The promise of portable diagnostic devices relies on three basic requirements: comparable sensitivity to established platforms, inexpensive manufacturing and cost of operations, and the ability to survive rugged field conditions. Solid state nanopores can meet all these requirements, but to achieve high manufacturing yields at low costs, assays must be tolerant to fabrication imperfections and to nanopore enlargement during operation. This paper presents a model for molecular engineering techniques that meets these goals with the aim of detecting target sequences within DNA. In contrast to methods that require precise geometries, we demonstrate detection using a range of pore geometries. As a result, our assay model tolerates any pore-forming method and in-situ pore enlargement. Using peptide nucleic acid (PNA) probes modified for conjugation with synthetic bulk-adding molecules, pores ranging 15-50 nm in diameter are shown to detect individual PNA-bound DNA. Detection of the CFTRΔF508 gene mutation, a codon deletion responsible for ∼66% of all cystic fibrosis chromosomes, is demonstrated with a 26-36 nm pore size range by using a size-enhanced PNA probe. A mathematical framework for assessing the statistical significance of detection is also presented. PMID:27149679

  1. Chain-like molecules confined in nanopores

    NASA Astrophysics Data System (ADS)

    Huber, Patrick; Soprunyuk, Viktor; Hofmann, Tommy; Knorr, Klaus

    2004-03-01

    We present an x-ray diffraction study on chain-like molecules, i.e. a selection of n-alkane molecules, embedded in the pores of nanoporous silica matrices. The lengths of the hydrocarbon chains are comparable to the mean diameter ( 7nm) of the tubular like nanopores which leads to drastic geometric restrictions. Diffraction patterns, recorded on heating and cooling between 200 K and 310 K, elucidate how the structure and phase behavior of the molecules is affected by the random substrate disorder and the confinement. The confined n-alkanes form close-packed structures by aligning parallel to the pore axis. In the case of the medium-length hydrocarbon chains one basic ordering principle known from the bulk crystalline state, i.e. the lamellar ordering of the molecules, is quenched[1], whereas for shorter n-alkanes this ordering principle survives[2]. The confined solids mimic the orientational order-disorder transitions known from the 3D unconfined crystals albeit in a modified fashion. 1. P. Huber, D. Wallacher, J. Albers, K. Knorr, Europhysics Letters, in press; 2. P. Huber, D. Wallacher, J. Albers, K. Knorr, Journal of Physics: Condensed Matter 15, 309 (2003).

  2. Thermal characterization of nanoporous 'black silicon' surfaces

    NASA Astrophysics Data System (ADS)

    Nichols, Logan; Duan, Wenqi; Toor, Fatima

    2016-09-01

    In this work we characterize the thermal conductivity properties of nanoprous `black silicon' (bSi). We fabricate the nanoporous bSi using the metal assisted chemical etching (MACE) process utilizing silver (Ag) metal as the etch catalyst. The MACE process steps include (i) electroless deposition of Ag nanoparticles on the Si surface using silver nitrate (AgNO3) and hydrofluoric acid (HF), and (ii) a wet etch in a solution of HF and hydrogen peroxide (H2O2). The resulting porosity of bSi is dependent on the ratio of the concentration of HF to (HF + H2O2); the ratio is denoted as rho (ρ). We find that as etch time of bSi increases the thermal conductivity of Si increases as well. We also analyze the absorption of the bSi samples by measuring the transmission and reflection using IR spectroscopy. This study enables improved understanding of nanoporous bSi surfaces and how they affect the solar cell performance due to the porous structures' thermal properties.

  3. Methods of synthesizing hydroxyapatite powders and bulk materials

    DOEpatents

    Luo, P.

    1999-01-12

    Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 {micro}m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogeneous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided. 26 figs.

  4. Methods of synthesizing hydroxyapatite powders and bulk materials

    DOEpatents

    Luo, Ping

    1999-01-12

    Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 .mu.m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogenous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided.

  5. Micro-agglomerate flotation for deep cleaning of coal. Quarterly progress report, October 1--December 30, 1995

    SciTech Connect

    Chandler, S.; Hogg, R.

    1996-04-01

    Goals are to demonstrate the technical and economic feasibility of a micro-agglomerate flotation process (combination of oil-agglomeration and froth flotation) and to establish the essential criteria for reagent selection and system design and operation. The research program was organized into the following tasks: interfacial studies, emulsification, agglomerate growth and structure, and agglomerate flotation. Work on the first two tasks has been completed.

  6. Evaluation of physico-mechanical properties of drug-excipients agglomerates obtained by crystallization.

    PubMed

    Maghsoodi, M; Tajalli Bakhsh, A S

    2011-06-01

    Spherical crystallization (SC) of carbamazepine (CBZ) was carried out for preparation of the agglomerates using the solvent change method. The potential of the intraagglomerate addition of sodium starch glycolate (SSG) as a disintegrant agent and povidone (PVP) as a hydrophilic polymer was also evaluated. The process of SC involved recrystallization of CBZ and its simultaneous agglomeration with additives. An ethanol:isopropyl acetate:water system was used where isopropyl acetate acted as a bridging liquid and ethanol and water as good and bad solvents, respectively. The agglomerates were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (XRPD), and Scanning electron microscopy and were evaluated for yield, flowability, disintegration time and drug release. CBZ agglomerates exhibited significantly improved micromeritic properties as well as dissolution behavior in comparison to conventional drug crystals. The dissolution rate of drug from agglomerates was enhanced by inclusion of SSG, while addition of PVP to CBZ/SSG agglomerates led to reduction in the release rate of CBZ even below that of the conventional drug crystals. SC process can be considered as a suitable alternative to conventional granulation process to obtain agglomerates of CBZ with excipients with improved micromeritic properties and modified dissolution rate.

  7. Modifying drug release and tablet properties of starch acetate tablets by dry powder agglomeration.

    PubMed

    Mäki, Riikka; Suihko, Eero; Rost, Susanne; Heiskanen, Minna; Murtomaa, Matti; Lehto, Vesa-Pekka; Ketolainen, Jarkko

    2007-02-01

    In this study three model drugs (N-acetyl-D-glucosamine (NAG), anhydrous caffeine, and propranolol hydrochloride) were agglomerated with starch acetate (SA) by mixing the binary powders on a stainless steel (SS) plate. Agglomeration was induced by triboelectrification of the particles during mixing, and it was evaluated as a method to achieve controlled drug release rate. These agglomerates, mixed with different amounts of a disintegrant, were compressed into tablets whose dissolution characteristics were determined. Triboelectric measurements showed that when the drugs were in contact with SS, charges of the opposite polarity were generated to SA (+) and caffeine and NAG (-) promoting adhesion. Instead, propranolol HCl was charged with the same polarity as SA. SEM micrographs showed that smaller caffeine particles, in spite of their larger negative charge, agglomerated less efficiently with SA than larger NAG particles. This emphasizes the importance of particle size in the agglomeration process. Propranolol HCl did not form agglomerates with SA since their particle sizes and charges were identical. As a result, agglomeration of powders prior to tablet compression allows for modification and control of the release rate of the drugs from the SA matrix tablets as well as the tensile strength of the tablets.

  8. Osteogenic differentiation of cultured marrow stromal stem cells on surface of microporous hydroxyapatite based mica composite and macroporous synthetic hydroxyapatite.

    PubMed

    Nordström, E; Ohgushi, H; Yoshikawa, T; Yokobori, A T; Yokobori, T

    1999-01-01

    In order to investigate the significance of hydroxyapatite based microporous composite (HA/mica composite) surfaces and a macroporous synthetic hydroxyapatite, rat marrow cell culture, which shows osteogenic differentiation, was carried out on six different culture substrata (two control culture dishes, two identical HA/mica composites, and two identical macroporous synthetic hydroxyapatites). A culture period of two weeks in the presence of beta-glycerophosphate (BGP), ascorbic acid, and dexamethasone resulted in abundant mineralized nodule formations that were positive for alkaline phosphatase (ALP) stain. The stain on the macroporous synthetic hydroxyapatite and the HA/mica composites were intense, the enzyme activity being about double that of control culture dishes. These data indicate that the synthetic macroporous hydroxyapatite surface and the HA/mica composite surface promotes osteoblastic differentiation.

  9. Characterization of Multiwalled Carbon Nanotube-Reinforced Hydroxyapatite Composites Consolidated by Spark Plasma Sintering

    PubMed Central

    Kim, Duk-Yeon; Han, Young-Hwan; Lee, Jun Hee; Kang, Inn-Kyu; Jang, Byung-Koog; Kim, Sukyoung

    2014-01-01

    Pure HA and 1, 3, 5, and 10 vol% multiwalled carbon nanotube- (MWNT-) reinforced hydroxyapatite (HA) were consolidated using a spark plasma sintering (SPS) technique. The relative density of pure HA increased with increasing sintering temperature, but that of the MWNT/HA composite reached almost full density at 900°C, and then decreased with further increases in sintering temperature. The relative density of the MWNT/HA composites increased with increasing MWNT content due to the excellent thermal conductivity of MWNTs. The grain size of MWNT/HA composites decreased with increasing MWNT content and increased with increasing sintering temperature. Pull-out toughening of the MWNTs of the MWNT/HA composites was observed in the fractured surface, which can be used to predict the improvement of the mechanical properties. On the other hand, the existence of undispersed or agglomerate MWNTs in the MWNT/HA composites accompanied large pores. The formation of large pores increased with increasing sintering temperature and MWNT content. The addition of MWNT in HA increased the hardness and fracture toughness by approximately 3~4 times, despite the presence of large pores produced by un-dispersed MWNTs. This provides strong evidence as to why the MWNTs are good candidates as reinforcements for strengthening the ceramic matrix. The MWNT/HA composites did not decompose during SPS sintering. The MWNT-reinforced HA composites were non-toxic and showed a good cell affinity and morphology in vitro for 1 day. PMID:24724100

  10. Structure-property relationships of iron-hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method.

    PubMed

    Nordin, Jamillah Amer; Prajitno, Djoko Hadi; Saidin, Syafiqah; Nur, Hadi; Hermawan, Hendra

    2015-06-01

    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone-implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12h milling in the presence of HPO4(2-) ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis.

  11. Polydopamine as an intermediate layer for silver and hydroxyapatite immobilisation on metallic biomaterials surface.

    PubMed

    Saidin, Syafiqah; Chevallier, Pascale; Abdul Kadir, Mohammed Rafiq; Hermawan, Hendra; Mantovani, Diego

    2013-12-01

    Hydroxyapatite (HA) coated implant is more susceptible to bacterial infection as the micro-structure surface which is beneficial for osseointegration, could also become a reservoir for bacterial colonisation. The aim of this study was to introduce the antibacterial effect of silver (Ag) to the biomineralised HA by utilising a polydopamine film as an intermediate layer for Ag and HA immobilisation. Sufficient catechol groups in polydopamine were required to bind chemically stainless steel 316 L, Ag and HA elements. Different amounts of Ag nanoparticles were metallised on the polydopamine grafted stainless steel by varying the immersion time in silver nitrate solution from 12 to 24 h. Another polydopamine layer was then formed on the metallised film, followed by surface biomineralisation in 1.5 Simulated Body Fluid (SBF) solution for 3 days. Several characterisation techniques including X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy, Scanning Electron Microscopy and Contact Angle showed that Ag nanoparticles and HA agglomerations were successfully immobilised on the polydopamine film through an element reduction process. The Ag metallisation at 24 h has killed the viable bacteria with 97.88% of bactericidal ratio. The Ag was ionised up to 7 days which is crucial to prevent bacterial infection during the first stage of implant restoration. The aged functionalised films were considered stable due to less alteration of its chemical composition, surface roughness and wettability properties. The ability of the functionalised film to coat complex and micro scale metal make it suitable for dental and orthopaedic implants application.

  12. The synthesis and characterization of nanophase hydroxyapatite using a novel dispersant-aided precipitation method.

    PubMed

    Cunniffe, Gráinne M; O'Brien, Fergal J; Partap, Sonia; Levingstone, Tanya J; Stanton, Kenneth T; Dickson, Glenn R

    2010-12-15

    The synthesis of nanophase hydroxyapatite (nHA) is of importance in the field of biomaterials and bone tissue engineering. The bioactive and osteoconductive properties of nHA are of much benefit to a wide range of biomedical applications such as producing bone tissue engineered constructs, coating medical implants, or as a carrier for plasmid DNA in gene delivery. This study aimed to develop a novel low-temperature dispersant-aided precipitation reaction to produce nHA particles (<100 nm), which are regarded as being preferable to micron-sized agglomerates of nHA. The variables investigated and optimized include the reaction pH, the rate of reactant mixing, use of sonication, order of addition, and concentration of the primary reactants, in addition, the effect of using poly(vinyl alcohol) (PVA) surfactant and Darvan 821A® dispersing agent during the reaction was also examined. It was found that by fine-tuning the synthesis parameters and incorporating the dispersing agent, monodisperse, phase-pure nano-sized particles under 100 nm were attained, suitable for clinical applications in bone regeneration.

  13. Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering.

    PubMed

    Lao, Lihong; Wang, Yingjun; Zhu, Yang; Zhang, Yuying; Gao, Changyou

    2011-08-01

    Poly(lactide-co-glycolide) (PLGA) nanofibrous composite scaffolds having nano-hydroxyapatite particles (HAp) in the fibers were prepared by electrospinning of PLGA and HAp with an average diameter of 266.6 ± 7.3 nm. Microscopy and spectroscopy characterizations confirmed integration of the crystalline HAp in the scaffolds. Agglomerates gradually appeared and increased on the fiber surface along with increase of the HAp concentration. In vitro mineralization in a 5 × simulated body fluid (SBF) revealed that the PLGA/HAp nanofibrous scaffolds had a stronger biomineralization ability than the control PLGA scaffolds. Biological performance of the nanofibrous scaffolds of the control PLGA and PLGA with 5 wt% HAp (PLGA/5HAp) was assessed by in vitro culture of neonatal mouse calvaria-derived MC3T3-E1 osteoblasts. Both types of the scaffolds could support cell proliferation and showed sharp increase of viability until 7 days, but the cells cultured on the PLGA/5HAp nanofibers showed a more spreading morphology. Despite the similar level of the cell viability and cell number at each time interval, the alkaline phosphatase secretion was significantly enhanced on the PLGA/5HAp scaffolds, indicating the higher bioactivity of the as-prepared nano-HAp and the success of the present method for preparing biomimetic scaffold for bone regeneration.

  14. Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition.

    PubMed

    Lu, Xiong; Zhang, Bailin; Wang, Yingbo; Zhou, Xianli; Weng, Jie; Qu, Shuxin; Feng, Bo; Watari, Fumio; Ding, Yonghui; Leng, Yang

    2011-04-06

    Hydroxyapatite (HA) coatings on titanium (Ti) substrates have attracted much attention owing to the combination of good mechanical properties of Ti and superior biocompatibility of HA. Incorporating silver (Ag) into HA coatings is an effective method to impart the coatings with antibacterial properties. However, the uniform distribution of Ag is still a challenge and Ag particles in the coatings are easy to agglomerate, which in turn affects the applications of the coatings. In this study, we employed pulsed electrochemical deposition to co-deposit HA and Ag simultaneously, which realized the uniform distribution of Ag particles in the coatings. This method was based on the use of a well-designed electrolyte containing Ag ions, calcium ions and l-cysteine, in which cysteine acted as the coordination agent to stabilize Ag ions. The antibacterial and cell culture tests were used to evaluate the antibacterial properties and biocompatibility of HA/Ag composite coatings, respectively. The results indicated the as-prepared coatings had good antibacterial properties and biocompatibility. However, an appropriate silver content should be chosen to balance the biocompatibility and antibacterial properties. Heat treatments promoted the adhesive strength and enhanced the biocompatibility without sacrificing the antibacterial properties of the HA/Ag coatings. In summary, this study provided an alternative method to prepare bioactive surfaces with bactericidal ability for biomedical devices.

  15. Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol-gel method.

    PubMed

    Qu, Jie; Lu, Xiong; Li, Dan; Ding, Yonghui; Leng, Yang; Weng, Jie; Qu, Shuxin; Feng, Bo; Watari, Fumio

    2011-04-01

    Hydroxyapatite (HA) coatings loaded with nanosilver particles is an attractive method to impart the HA coating with antibacterial properties. Producing Ag/HA coatings on porous Ti substrates have been an arduous job since commonly used line-of-sight techniques are not able to deposit uniform coatings on the inner pore surfaces of the porous Ti. In this study, porous Ti scaffolds with high porosity and interconnected structures were prepared by polymer impregnating method. A sol-gel process was used to produce uniform Ag/HA composite coatings on the surfaces of porous Ti substrates. Ca(NO(3) )(2) ·4H(2) O and P(2) O(5) in an ethyl alcohol based system was selected to prepare the sol, which ensured the homogeneous distribution of Ag in the sol. The characterization revealed that silver particles uniformly distributed in the coatings without agglomeration. High antibacterial ratio (>95%), against E. coli and S. albus was expressed by the silver-containing coatings (Ag/HA 0.8 and 1.6 wt %). The biocompatibility of the Ag/HA 0.8 surfaces was as good as that of pure HA surface, as revealed by culturing osteoblasts on them. The results indicated that Ag/HA 0.8 had the good balance between the biocompatibility and antibacterial properties of the coatings.

  16. Characterization of multiwalled carbon nanotube-reinforced hydroxyapatite composites consolidated by spark plasma sintering.

    PubMed

    Kim, Duk-Yeon; Han, Young-Hwan; Lee, Jun Hee; Kang, Inn-Kyu; Jang, Byung-Koog; Kim, Sukyoung

    2014-01-01

    Pure HA and 1, 3, 5, and 10 vol% multiwalled carbon nanotube- (MWNT-) reinforced hydroxyapatite (HA) were consolidated using a spark plasma sintering (SPS) technique. The relative density of pure HA increased with increasing sintering temperature, but that of the MWNT/HA composite reached almost full density at 900°C, and then decreased with further increases in sintering temperature. The relative density of the MWNT/HA composites increased with increasing MWNT content due to the excellent thermal conductivity of MWNTs. The grain size of MWNT/HA composites decreased with increasing MWNT content and increased with increasing sintering temperature. Pull-out toughening of the MWNTs of the MWNT/HA composites was observed in the fractured surface, which can be used to predict the improvement of the mechanical properties. On the other hand, the existence of undispersed or agglomerate MWNTs in the MWNT/HA composites accompanied large pores. The formation of large pores increased with increasing sintering temperature and MWNT content. The addition of MWNT in HA increased the hardness and fracture toughness by approximately 3~4 times, despite the presence of large pores produced by un-dispersed MWNTs. This provides strong evidence as to why the MWNTs are good candidates as reinforcements for strengthening the ceramic matrix. The MWNT/HA composites did not decompose during SPS sintering. The MWNT-reinforced HA composites were non-toxic and showed a good cell affinity and morphology in vitro for 1 day.

  17. Thermal properties of natural nanostructured hydroxyapatite extracted from fish bone waste

    NASA Astrophysics Data System (ADS)

    Coelho, T. M.; Nogueira, E. S.; Weinand, W. R.; Lima, W. M.; Steimacher, A.; Medina, A. N.; Baesso, M. L.; Bento, A. C.

    2007-04-01

    In a previous study, natural hydroxyapatite (HAp) from the bones of Brazilian river fish was calcined at 900 °C (4-12 h), and optical characterization using the near infrared photoacoustic spectroscopy technique enabled the establishment of 8 h as the best calcination time for nanostructure stabilization when milled in a high-energy milling device [T. M. Coelho, E. S. Nogueira, W. R. Weinand, W. M. Lima, A. Steimacher, A. N. Medina, M. L. Baesso, and A. C. Bento, J. Appl. Phys. 100, 094312 (2006)]. The fish wastes used were from species such as pintado (Pseudoplatystoma corruscans), jaú (Paulicea lutkeni), and cachara (Pseudoplatystoma fasciatum). In this study, the characterization of the thermal properties of the same natural HAp is discussed for samples milled from 0 to 32 h, with nanostructures from 80 to 24 nm. The powders were pressed into disks at 350 MPa and sintered for 4 h at 1000 °C. Thermophysical parameters were obtained by thermal wave interferometry and nonadiabatic relaxation calorimetry. Results for thermal diffusivity and thermal conductivity showed that the parameters increase with milling time, although they present a transition (a plateau) in the interval from 8 to 16 h. Two different slopes were observed and this was interpreted as being due to the size of the crystallites, which fall rapidly, dropping from 80 nm to near 22 nm when milling time is increased from 0 to 16 h, and forming agglomerates up to 32 h.

  18. Focused ion beam lithography and anodization combined nanopore patterning.

    PubMed

    Lu, Kathy; Zhao, Jingzhong

    2010-10-01

    In this study, focused ion beam lithography and anodization are combined to create different nanopore patterns. Uniform-, alternating-, and gradient-sized shallow nanopore arrays are first made on high purity aluminum by focused ion beam lithography. These shallow pore arrays are then used as pore initiation sites during anodization by different electrolytes. Depending on the nature of the anodization electrolyte, the nanopore patterns by focused ion beam lithography play different roles in further pore development during anodization. The pore-to-pore distance by focused ion beam lithography should match with that by anodization for guided pore development to be effective. Ordered and heterogeneous nanopore arrays are obtained by the focused ion beam lithography and anodization combined approach.

  19. Growth of Zircone on Nanoporous Alumina Using Molecular Layer Deposition

    NASA Astrophysics Data System (ADS)

    Hall, Robert A.; George, Steven M.; Kim, Yeongae; Hwang, Woonbong; Samberg, Meghan E.; Monteiro-Riviere, Nancy A.; Narayan, Roger J.

    2014-04-01

    Molecular layer deposition (MLD) is a sequential and self-limiting process that may be used to create hybrid organic/inorganic thin films from organometallic precursors and organic alcohol precursors. In this study, films of a zirconium-containing hybrid organic/inorganic polymer known as zircone were grown on nanoporous alumina using MLD. Scanning electron microscopy data showed obliteration of the pores in zircone-coated nanoporous alumina. An in vitro cell viability study indicated that the growth of human epidermal keratinocytes was the greatest on zircone-coated nanoporous alumina than on uncoated nanoporous alumina. Our results suggest that MLD may be used to create biocompatible coatings for use in many types of medical devices.

  20. Nanoporous CuS with excellent photocatalytic property

    NASA Astrophysics Data System (ADS)

    Xu, Wence; Zhu, Shengli; Liang, Yanqin; Li, Zhaoyang; Cui, Zhenduo; Yang, Xianjin; Inoue, Akihisa

    2015-12-01

    We present the rational synthesis of nanoporous CuS for the first time by chemical dealloying method. The morphologies of the CuS catalysts are controlled by the composition of the original amorphous alloys. Nanoporous Cu2S is firstly formed during the chemical dealloying process, and then the Cu2S transforms into CuS. The nanoporous CuS exhibits excellent photocatalytic activity for the degradation of the methylene blue (MB), methyl orange (MO) and rhodamine B (RhB). The excellent photocatalytic activity of the nanoporous CuS is mainly attributed to the large specific surface area, high adsorbing capacity of dyes and low recombination of the photo generated electrons and holes. In the photo degradation process, both chemical and photo generated hydroxyl radicals are generated. The hydroxyl radicals are favor in the oxidation of the dye molecules. The present modified dealloying method may be extended for the preparation of other porous metal sulfide nanostructures.

  1. Nanopores in suspended WS2 membranes for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Danda, Gopinath; Masih Das, Paul; Chou, Yung-Chien; Mlack, Jerome; Naylor, Carl; Perea-Lopez, Nestor; Lin, Zhong; Fulton, Laura Beth; Terrones, Mauricio; Johnson, A. T. Charlie; Drndic, Marija

    Recent advances in solid-state nanopore sensor systems for DNA detection and analysis have been supported by using increasingly thinner materials to the point of utilizing atomically thin two-dimensional materials such as graphene and MoS2. However, these materials still have issues with pore wettability and signal-to-noise ratios displayed in DNA translocation measurements. Recently, the fabrication and operation of nanopores in MoS2 have been demonstrated, but the wetting properties and signal-to-noise ratios of transition metal dichalcogenides are yet to be understood and further improved. Here we fabricate suspended WS2 nanopore devices with sub-10 nm pore diameters using a novel nanomaterial transfer method and TEM nanosculpting to study and better understand nanopore wetting properties and performance in DNA translocation measurements.

  2. Temperature dependence of DNA translocations through solid-state nanopores.

    PubMed

    Verschueren, Daniel V; Jonsson, Magnus P; Dekker, Cees

    2015-06-12

    In order to gain a better physical understanding of DNA translocations through solid-state nanopores, we study the temperature dependence of λ-DNA translocations through 10 nm diameter silicon nitride nanopores, both experimentally and theoretically. The measured ionic conductance G, the DNA-induced ionic-conductance blockades [Formula: see text] and the event frequency Γ all increase with increasing temperature while the DNA translocation time τ decreases. G and [Formula: see text] are accurately described when bulk and surface conductances of the nanopore are considered and access resistance is incorporated appropriately. Viscous drag on the untranslocated part of the DNA coil is found to dominate the temperature dependence of the translocation times and the event rate is well described by a balance between diffusion and electrophoretic motion. The good fit between modeled and measured properties of DNA translocations through solid-state nanopores in this first comprehensive temperature study, suggest that our model captures the relevant physics of the process.

  3. Bivalent ion transport through graphene/PET nanopore

    NASA Astrophysics Data System (ADS)

    Yao, Huijun; Cheng, Yaxiong; Zeng, Jian; Mo, Dan; Duan, Jinglai; Liu, Jiande; Zhai, Pengfei; Sun, Youmei; Liu, Jie

    2016-05-01

    The PET suspended single graphene nanopore (G/PET) was produced by heavy ion irradiation and asymmetric chemical etching. The solutions of NiSO4, NiCl2, CuSO4 and CuCl2 with different concentration were adopted to study the transport properties of bivalent ion in single G/PET nanopore by measuring the I-V curves. The perfect "diode effect" and excellent rectification effect of G/PET nanopore were observed, and the huge rectification ratio up to 43.3 was obtained in NiSO4 solution. The great solution selectivity and ion current magnification effect of graphene/PET nanopore were also confirmed in our study.

  4. Shrinking of Solid-state Nanopores by Direct Thermal Heating.

    PubMed

    Asghar, Waseem; Ilyas, Azhar; Billo, Joseph Anthony; Iqbal, Samir Muzaffar

    2011-05-04

    Solid-state nanopores have emerged as useful single-molecule sensors for DNA and proteins. A novel and simple technique for solid-state nanopore fabrication is reported here. The process involves direct thermal heating of 100 to 300 nm nanopores, made by focused ion beam (FIB) milling in free-standing membranes. Direct heating results in shrinking of the silicon dioxide nanopores. The free-standing silicon dioxide membrane is softened and adatoms diffuse to a lower surface free energy. The model predicts the dynamics of the shrinking process as validated by experiments. The method described herein, can process many samples at one time. The inbuilt stress in the oxide film is also reduced due to annealing. The surface composition of the pore walls remains the same during the shrinking process. The linear shrinkage rate gives a reproducible way to control the diameter of a pore with nanometer precision.

  5. Molecular dynamics study of DNA translocation through graphene nanopores

    NASA Astrophysics Data System (ADS)

    Li, Jiapeng; Zhang, Yan; Yang, Juekuan; Bi, Kedong; Ni, Zhonghua; Li, Deyu; Chen, Yunfei

    2013-06-01

    A molecular dynamics simulation method is used to study the translocation of a single strand DNA through nanopores opened on graphene membranes. Simulation results uncover that the translocation time for four DNA strands (20G, 20A, 20T, and 20C) is proportional to the size of the four DNA bases. However, the change of the ionic current is caused not only by the physical blockade of the DNA, but also induced by the change of the ion distribution once the negatively charged DNA enters the nanopore. An electric double layer will be formed and causes higher cation and lower anion concentration near the DNA strand surface, which makes the ionic current blockade not sensitive to the base size for a single-layer graphene nanopore. Increasing the graphene membrane thickness can enhance the DNA physical blockage effect on ionic current and improve the nanopore sensitivity to the four DNA bases.

  6. Salinity gradient power: influences of temperature and nanopore size

    NASA Astrophysics Data System (ADS)

    Tseng, Shiojenn; Li, Yu-Ming; Lin, Chih-Yuan; Hsu, Jyh-Ping

    2016-01-01

    Salinity gradient power is a promising, challenging, and readily available renewable energy. Among various methods for harvesting this clean energy, nanofluidic reverse electrodialysis (NRED) is of great potential. Since ionic transport depends highly on the temperature, so is the efficiency of the associated power generated. Here, we conduct a theoretical analysis on the influences of temperature and nanopore size on NRED, focusing on the temperature and nanopore size. The results gathered reveal that the maximum power increases with increasing temperature, but the conversion efficiency depends weakly on temperature. In general, the smaller the nanopore radius or the longer the nanopore, the better the ion selectivity. These results provide desirable and necessary information for improving the performance of NRED as well as designing relevant units in renewable energy plants.

  7. Graphene nanopore with a self-integrated optical antenna.

    PubMed

    Nam, SungWoo; Choi, Inhee; Fu, Chi-cheng; Kim, Kwanpyo; Hong, SoonGweon; Choi, Yeonho; Zettl, Alex; Lee, Luke P

    2014-10-08

    We report graphene nanopores with integrated optical antennae. We demonstrate that a nanometer-sized heated spot created by photon-to-heat conversion of a gold nanorod resting on a graphene membrane forms a nanoscale pore with a self-integrated optical antenna in a single step. The distinct plasmonic traits of metal nanoparticles, which have a unique capability to concentrate light into nanoscale regions, yield the significant advantage of parallel nanopore fabrication compared to the conventional sequential process using an electron beam. Tunability of both the nanopore dimensions and the optical characteristics of plasmonic nanoantennae are further achieved. Finally, the key optical function of our self-integrated optical antenna on the vicinity of graphene nanopore is manifested by multifold fluorescent signal enhancement during DNA translocation.

  8. Forensic SNP Genotyping using Nanopore MinION Sequencing

    PubMed Central

    Cornelis, Senne; Gansemans, Yannick; Deleye, Lieselot; Deforce, Dieter; Van Nieuwerburgh, Filip

    2017-01-01

    One of the latest developments in next generation sequencing is the Oxford Nanopore Technologies’ (ONT) MinION nanopore sequencer. We studied the applicability of this system to perform forensic genotyping of the forensic female DNA standard 9947 A using the 52 SNP-plex assay developed by the SNPforID consortium. All but one of the loci were correctly genotyped. Several SNP loci were identified as problematic for correct and robust genotyping using nanopore sequencing. All these loci contained homopolymers in the sequence flanking the forensic SNP and most of them were already reported as problematic in studies using other sequencing technologies. When these problematic loci are avoided, correct forensic genotyping using nanopore sequencing is technically feasible. PMID:28155888

  9. Developing scaling relations for the yield strength of nanoporous gold

    NASA Astrophysics Data System (ADS)

    Briot, Nicolas J.; Balk, T. John

    2015-09-01

    In this work, the applicability of Gibson and Ashby's porous scaling relations to nanoporous metals is discussed, and an updated equation is proposed for relating the yield strength of nanoporous gold to the yield strength of individual gold ligaments that form the porous structure. This new relation is derived from experimental measurements obtained by small-scale tensile testing and by nanoindentation, and incorporates the average ligament diameter. Nanoindentation data, obtained experimentally by the authors as well as reported by others in the literature, are reconciled with tensile test measurements previously reported by the present authors. The values of ligament yield strength calculated with the new scaling relation are found to agree with data reported from mechanical testing of nanowires, and the scaling relation thus represents a bridge between nanowire and nanoporous metal behaviour. In addition, calculations of yield strength for nanoporous gold samples with various ligament size and relative density are consistent with the experimentally determined values.

  10. Forensic SNP Genotyping using Nanopore MinION Sequencing.

    PubMed

    Cornelis, Senne; Gansemans, Yannick; Deleye, Lieselot; Deforce, Dieter; Van Nieuwerburgh, Filip

    2017-02-03

    One of the latest developments in next generation sequencing is the Oxford Nanopore Technologies' (ONT) MinION nanopore sequencer. We studied the applicability of this system to perform forensic genotyping of the forensic female DNA standard 9947 A using the 52 SNP-plex assay developed by the SNPforID consortium. All but one of the loci were correctly genotyped. Several SNP loci were identified as problematic for correct and robust genotyping using nanopore sequencing. All these loci contained homopolymers in the sequence flanking the forensic SNP and most of them were already reported as problematic in studies using other sequencing technologies. When these problematic loci are avoided, correct forensic genotyping using nanopore sequencing is technically feasible.

  11. Formation and photopatterning of nanoporous titania thin films

    SciTech Connect

    Park, Oun-Ho; Cheng, Joy Y.; Kim, Hyun Suk; Rice, Philip M.; Topuria, Teya; Miller, Robert D.; Kim, Ho-Cheol

    2007-06-04

    Photopatternable nanoporous titania thin films were generated from mixtures of an organic diblock copolymer, poly(styrene-b-ethylene oxide) (PS-b-PEO), and an oligomeric titanate (OT) prepared from a chelated titanium isopropoxide. The PS-b-PEO templates well-defined microdomains in thin films of the mixtures, which upon thermal treatment at 450 deg. C, become nanopores in titania. Average pore size and porosity are controlled by the molecular weight and loading level of the PS-b-PEO, respectively. Patterns of nanoporous titania were created by selectively exposing UV light on the mixture films. The UV irradiation destroys the chelating bond and induces the cross-linking reaction of the OT. Subsequent wet development followed by thermal treatment gives patterned nanoporous films of anatase phase titania.

  12. Reducing adhesion and agglomeration within a cloud of combustible particles

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.

    1988-01-01

    The study of combustible particle clouds inside flame tubes is of fundamental scientific interest as well as a practical concern. Only the suspended concentration is important to the combustion process, so that assurances must be provided that a minimum of particles adheres to the tube wall. This paper demonstrates experimentally the ability to minimize adhesion and agglomeration of acoustically-mixed lycopodium particles within a 5-cm diameter lexan flame tube. The area density of particles (ADP) adhering to the wall of bare lexan tubes was measured at greater than 100 particles/sq mm. The nature of adhesion was found to be clearly electrostatic, with the ADP level aggravated by increased mixing time, vigor, and the concentration of particles. Increases in the conductivity of the air and the tube wall did not affect ADP levels substantially. However, the observed adhesion was reduced to less than 10 p/sq mm when the air was ionized by use of an alpha emitter mounted on the inner walls of the flame tube.

  13. Nearshore dynamics of artificial sand and oil agglomerates

    USGS Publications Warehouse

    Dalyander, P. Soupy; Plant, Nathaniel G.; Long, Joseph W.; McLaughlin, Molly R.

    2015-01-01

    Weathered oil can mix with sediment to form heavier-than-water sand and oil agglomerates (SOAs) that can cause beach re-oiling for years after a spill. Few studies have focused on the physical dynamics of SOAs. In this study, artificial SOAs (aSOAs) were created and deployed in the nearshore, and shear stress-based mobility formulations were assessed to predict SOA response. Prediction sensitivity to uncertainty in hydrodynamic conditions and shear stress parameterizations were explored. Critical stress estimates accounting for large particle exposure in a mixed bed gave the best predictions of mobility under shoaling and breaking waves. In the surf zone, the 10-cm aSOA was immobile and began to bury in the seafloor while smaller size classes dispersed alongshore. aSOAs up to 5 cm in diameter were frequently mobilized in the swash zone. The uncertainty in predicting aSOA dynamics reflects a broader uncertainty in applying mobility and transport formulations to cm-sized particles.

  14. Noise action plan of agglomerations: sustainable hypothesis or utopy?

    PubMed

    Magri, S L; Masera, S; Fogola, J

    2009-12-01

    European and Italian laws establish that agglomerations of more than 100 000 inhabitants must adopt an action plan in order to manage noise issues and effects. The plan aim is to reduce population exposure to environmental noise, which is defined as the outdoor sound created by human activities, including noise emitted by road traffic, rail traffic and air traffic, and noise from sites of industrial activity. Although acoustic pollution represents one of the main causes of annoyance for inhabitants of urban areas, the political agenda does not acknowledge it among the main environmental issues. Thus, acoustic reclamation is often considered a duty to be accomplished rather than a way to improve quality of life for citizens. Furthermore, financial resources are generally very poor while the acoustic critical situations are numerous and serious in terms of exceeding the limit. In this situation, what is the meaning of an urban area noise action plan? What are the concrete actions that municipalities can realise to reduce urban noise pollution? This study tries to answer these questions, starting from the analysis carried out for the action plan of the city of Turin.

  15. Agglomeration Multigrid for an Unstructured-Grid Flow Solver

    NASA Technical Reports Server (NTRS)

    Frink, Neal; Pandya, Mohagna J.

    2004-01-01

    An agglomeration multigrid scheme has been implemented into the sequential version of the NASA code USM3Dns, tetrahedral cell-centered finite volume Euler/Navier-Stokes flow solver. Efficiency and robustness of the multigrid-enhanced flow solver have been assessed for three configurations assuming an inviscid flow and one configuration assuming a viscous fully turbulent flow. The inviscid studies include a transonic flow over the ONERA M6 wing and a generic business jet with flow-through nacelles and a low subsonic flow over a high-lift trapezoidal wing. The viscous case includes a fully turbulent flow over the RAE 2822 rectangular wing. The multigrid solutions converged with 12%-33% of the Central Processing Unit (CPU) time required by the solutions obtained without multigrid. For all of the inviscid cases, multigrid in conjunction with an explicit time-stepping scheme performed the best with regard to the run time memory and CPU time requirements. However, for the viscous case multigrid had to be used with an implicit backward Euler time-stepping scheme that increased the run time memory requirement by 22% as compared to the run made without multigrid.

  16. Assessment of Traffic Noise on Highway Passing from Urban Agglomeration

    NASA Astrophysics Data System (ADS)

    Vijay, Ritesh; Kori, Chandan; Kumar, Manoj; Chakrabarti, T.; Gupta, Rajesh

    2014-09-01

    Assessment of traffic noise pollution in developing countries is complex due to heterogeneity in traffic conditions like traffic volume, road width, honking, etc. To analyze the impact of such variables, a research study was carried out on a national highway passing from an urban agglomeration. Traffic volume and noise levels (L10, Lmin, Lmax, Leq and L90) were measured during morning and evening peak hours. Contribution of noise by individual vehicle was estimated using passenger car noise unit. Extent of noise pollution and impact of noisy vehicles were estimated using noise pollution level and traffic noise index, respectively. Noise levels were observed to be above the prescribed Indian and International standards. As per audio spectrum analysis of traffic noise, honking contributed an additional 3-4 dB(A) noise. Based on data analysis, a positive relationship was observed between noise levels and honking while negative correlation was observed between noise levels and road width. The study suggests that proper monitoring and analysis of traffic data is required for better planning of noise abatement measures.

  17. Gravitational agglomeration of post-HCDA LMFBR nonspherical aerosols

    NASA Astrophysics Data System (ADS)

    Tuttle, R. F.

    1980-12-01

    A theoretical investigation of collisional dynamics of two particle interactions in a gravitational field is reported. This research is unique in that it is the first attempt at modeling the hydrodynamic interactions between a nonspherical particle and a spherical particle undergoing gravitational collisions in an LMFBR environment. Basic definitions and expressions are developed for nonspherical particles and related to spherical particles by means of shape factors. Using volume equivalent diameter as the defining length in the gravitational collision kernel, the aerodynamic shape factor, k, the density correction factor, alpha, and the gravitational collision shape factor, beta, are used to correct the collision kernel for the case of collisions between aerosol agglomerates. The Navier-Stokes equation in oblate spheroidal coordinates is solved to model a nonspherical particle and then the dynamic equations for two particle motions are developed. A computer program NGCEFF is constructed, the Navier-Stokes equation is solved by the finite difference method, and the dynamical equations are solved by Gear's method. It is concluded that the aerosol gravitational collision shape factor can be determined by further theoretical work based on the concepts and methods developed in this dissertation.

  18. Monitoring of odor nuisance in the tri-city agglomeration

    NASA Astrophysics Data System (ADS)

    Gebicki, Jacek; Dymerski, Tomasz; Namieśnik, Jacek

    2016-11-01

    The paper describes a principle of operation of odor nuisance monitoring network, which is being designed in the tri-city agglomeration. Moreover, it presents the preliminary results of an investigation on ambient air quality with respect to odour nuisance in a vicinity of the municipal landfill. The investigation was performed during spring-winter season using a prototype of electronic nose and the Nasal Ranger field olfactometers. The prototype was equipped with a set of six semiconductor sensors by FIGARO Co. and one PID-type sensor. The field olfactometers were used to determine mean concentration of odorants, which amounted from 2.2 to 30.2 ou/m3 depending on the place of measurement. In case of the investigation with the electronic nose prototype a classification of the ambient air samples with respect to the place of sampling was performed utilizing kNN algorithm supported with a cross-validation method. Correct classification of the ambient air samples was at the level of 66.7%. Performed investigation revealed that discrimination of the ambient air samples differing in concentration of odorants and place of origin was possible.

  19. Coal beneficiation kinetics of a gas-promoted oil agglomeration process

    SciTech Connect

    Zhang, F.; Wheelock, T.D.

    1996-12-31

    The kinetics of a gas-promoted oil agglomeration process were investigated by monitoring the change in the turbidity of an aqueous particle suspension as the particles were agglomerated with heptane in a closed tank fitted with baffles and an agitator. Measured amounts of air and heptane were added to a suspension of Pittsburgh No. 8 coal under vigorous agitation. The subsequent rate of change of particle concentration was taken to be an indication of the rate of agglomeration. The rate was found to be proportional to the particle number concentration raised to a power and dependent on agitator speed and the amounts of air and oil added.

  20. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    SciTech Connect

    Not Available

    1991-09-01

    Under the overall objectives of DOE Contract ``Engineering Development of Selective Agglomeration,`` there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  1. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    SciTech Connect

    Not Available

    1991-09-01

    Under the overall objectives of DOE Contract Engineering Development of Selective Agglomeration,'' there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  2. POC-Scale Testing of Oil Agglomeration Techniques and Equipment for Fine Coal Processing

    SciTech Connect

    1998-11-12

    The objective of this project is to develop and demonstrate a Proof-of-Concept (POC) scale oil agglomeration technology capable of increasing the recovery and improving the quality of fine coal strearrts. Two distinct agglomeration devices will be tested, namely, a conventional high shear mixer and a jet processor. To meet the overall objective an eleven task work plan has been designed. The work ranges from batch and continuous bench-scale testing through the design, commissioning and field testing of POC-scale agglomeration equipment.

  3. Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles

    DOEpatents

    Huber, Dale L.

    2011-07-05

    A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.

  4. Pyroelectric surface charge in hydroxyapatite ceramics

    NASA Astrophysics Data System (ADS)

    Tofail, S. A. M.; Baldisserri, C.; Haverty, D.; McMonagle, J. B.; Erhart, J.

    2009-11-01

    Surface charge of pyroelectric nature is measured in poled hydroxyapatite ceramics. The average pyroelectric constant can range from 0.1 to 40 nC cm-2 K-1 at temperatures of 300-500 °C, while at 27-60 °C the value ranges from 15 to 64 nC cm-2 K-1. The higher temperature values are comparable to conventional pyroelectric ceramics such as LiTaO3 or PZT. The lower temperature values are four orders higher than those observed in bone and tendon.

  5. Biomaterial aspects of Interpore-200 porous hydroxyapatite.

    PubMed

    White, E; Shors, E C

    1986-01-01

    Interpore-200 is the product of over 11 years of continuous research and development. It has been investigated at over 25 research centers in a wide variety of animal and human implant settings, including alveolar ridge augmentation, periodontics, and orthognathic reconstructions. The biomaterial aspects of Interpore-200 show the following: Interpore-200 has a highly interconnected, three-dimensional porosity that is uniform and consistent. The hydroxyapatite manufactured from marine corals is biocompatible and nontoxic. Interpore-200 is essentially pure hydroxyapatite, with the balance consisting of tricalcium phosphate. Interpore-200 is approximately 55 to 65 per cent porous with nominal pore diameters of 200 micron. Unlike nonporous materials, Interpore-200 is osteoconductive and results, when placed next to a viable bone, in an advancing front of bone into the implant. From 50 to 88 per cent of the porosity within the implant is filled with woven and lamellar bone within 3 months. Moreover, the surfaces of Interpore-200 are intimately bonded with the bone tissue. The biomechanical properties of Interpore-200 blocks are similar to those of a cancellous bone graft. Once ingrown with vascularized bone tissue, the defect site is, in effect, restored. Interpore-200 adequately matches the elastic properties of bone so that stresses necessary to maintain healthy bone are transmitted throughout the regenerated region. Extensive animal and clinical studies have shown that nonporous implants or implants without interconnected porosity can result in aberrant mineralization, stress shielding, low fatigue strength, and bulk displacement. Hydroxyapatite with interconnected porosity like Interpore-200 reacts differently than materials with limited or no porosity. In animals, Interpore-200 exhibits 0 to 5 per cent biodegradation per year. Moreover, this minimal biodegradation is compensated by regeneration of bone. These studies have now been extended for 4 years. Interpore

  6. Thermal effect on thermoluminescence response of hydroxyapatite.

    PubMed

    Zarate-Medina, J; Sandoval-Cedeño, K J; Barrera-Villatoro, A; Lemus-Ruiz, J; Rivera Montalvo, T

    2015-06-01

    This paper presents the experimental results of the thermoluminescence (TL) induced by gamma radiation in synthetic hydroxyapatite (HAp) obtained by the precipitation method, using Ca(NO3)2·4H2O and (NH4)2HPO4 and calcined at different temperatures. The structural and morphological characterization was carried out by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. TL response as a function of gamma radiation dose was in a wide range, where intensity was enhanced in the sample annealed at 900°C, which tricalcium diphosphate (TCP) phase appear. Fading of the TL was also studied.

  7. Nanopore formation by controlled electrical breakdown: Efficient molecular-sensors

    NASA Astrophysics Data System (ADS)

    Abdalla, S.; Al-Marzouki, F. M.; Abdel-Daiem, A. M.

    2016-08-01

    A controlled electrical breakdown is used to produce efficient nanopore (NP) sensors. This phenomenon can be used to precisely fabricate these nanopore (NP) sensors through the membranes of the polydimethylsiloxane microarrays. This can be carried out, when localizing the electrical potential through a suitable microfluidic channel. Organic molecules, and other different protein-molecules, can be easily and precisely detected using this procedure referred to as controlled electrical breakdown technique.

  8. Nanoporous titania films produced by pulsed interference lithography

    SciTech Connect

    Verevkin, Yu K; Petryakov, V N; Burenina, V N; Filatov, D O; Vorontsov, D A

    2010-12-09

    We describe a simple, inexpensive technique for producing deep nanopores on the surface of titania films using laser exposure in a four-beam interference configuration. In addition to producing nanopores, laser pulses convert amorphous titania films to a polycrystalline state. The effect of laser exposure on the TiO{sub 2} surface can be used to improve its biophotocatalytic properties, optimise solar cells, etc. (nanostructures)

  9. Highly magnetic nanoporous carbon/iron-oxide hybrid materials.

    PubMed

    Alam, Sher; Anand, Chokkalingam; Lakhi, Kripal Singh; Choy, Jin-Ho; Cha, Wang Soo; Elzhatry, Ahmed; Al-Deyab, Salem S; Ohya, Yutaka; Vinu, Ajayan

    2014-11-10

    The preparation of size-controllable Fe2O3 nanoparticles grown in nanoporous carbon with tuneable pore diameters is reported. These hybrid materials exhibit strong non-linear magnetic properties and a magnetic moment of approximately 229 emu g(-1), which is the highest value ever reported for nanoporous hybrids, and can be attributed to the nanosieve effect and the strong interaction between the nanoparticles and the carbon walls.

  10. The Physics of Protoplanetesimal Dust Agglomerates. V. Multiple Impacts of Dusty Agglomerates at Velocities Above the Fragmentation Threshold

    NASA Astrophysics Data System (ADS)

    Kothe, Stefan; Güttler, Carsten; Blum, Jürgen

    2010-12-01

    In recent years, a number of new experiments have advanced our knowledge on the early growth phases of protoplanetary dust aggregates. Some of these experiments have shown that collisions between porous and compacted agglomerates at velocities above the fragmentation threshold velocity can lead to growth of the compact body, when the porous collision partner fragments upon impact and transfers mass to the compact agglomerate. To obtain a deeper understanding of this potentially important growth process, we performed laboratory and drop tower experiments to study multiple impacts of small, highly porous dust-aggregate projectiles onto sintered dust targets. The projectile and target consisted of 1.5 μm monodisperse, spherical SiO2 monomers with volume filling factors of 0.15 ± 0.01 and 0.45 ± 0.05, respectively. The fragile projectiles were accelerated by a solenoid magnet and combined with a projectile magazine with which 25 impacts onto the same spot on the target could be performed in vacuum. We measured the mass-accretion efficiency and the volume filling factor for different impact velocities between 1.5 and 6.0 m s^{-1}. The experiments at the lowest impact speeds were performed in the Bremen drop tower under microgravity conditions to allow partial mass transfer also for the lowest adhesion case. Within this velocity range, we found a linear increase of the accretion efficiency with increasing velocity. In the laboratory experiments, the accretion efficiency increases from 0.12 to 0.21 in units of the projectile mass. The recorded images of the impacts showed that the mass transfer from the projectile to the target leads to the growth of a conical structure on the target after less than 100 impacts. From the images, we also measured the volume filling factors of the grown structures, which ranged from 0.15 (uncompacted) to 0.40 (significantly compacted) with increasing impact speed. The velocity dependency of the mass-transfer efficiency and the packing

  11. Biomolecular conjugation inside synthetic polymer nanopores viaglycoprotein-lectin interactions

    NASA Astrophysics Data System (ADS)

    Ali, Mubarak; Ramirez, Patricio; Tahir, Muhammad Nawaz; Mafe, Salvador; Siwy, Zuzanna; Neumann, Reinhard; Tremel, Wolfgang; Ensinger, Wolfgang

    2011-04-01

    We demonstrate the supramolecular bioconjugation of concanavalin A (Con A) protein with glycoenzymehorseradish peroxidase (HRP) inside single nanopores, fabricated in heavy ion tracked polymermembranes. Firstly, the HRP-enzyme was covalently immobilized on the inner wall of the pores using carbodiimide coupling chemistry. The immobilized HRP-enzyme molecules bear sugar (mannose) groups available for the binding of Con A protein. Secondly, the bioconjugation of Con A on the pore wall was achieved through its biospecific interactions with the mannose residues of the HRP enzyme. The immobilization of biomolecules inside the nanopore leads to the reduction of the available area for ionic transport, and this blocking effect can be exploited to tune the conductance and selectivity of the nanopore in aqueous solution. Both cylindrical and conical nanopores were used in the experiments. The possibility of obtaining two or more conductance states (output), dictated by the degree of nanopore blocking resulted from the different biomolecules in solution (input), as well as the current rectification properties obtained with the conical nanopore, could also allow implementing information processing at the nanometre scale. Model simulations based on the transport equations further verify the feasibility of the sensing procedure that involves concepts from supramolecular chemistry, molecular imprinting, recognition, and nanotechnology.

  12. Effects of adsorption and confinement on nanoporous electrochemistry.

    PubMed

    Bae, Je Hyun; Han, Ji-Hyung; Han, Donghyeop; Chung, Taek Dong

    2013-01-01

    Characteristic molecular dynamics of reactant molecules confined in the space of the nanometer scale augments the frequency of collisions with the electrified surface so that a given faradaic reaction can be enhanced at nanoporous electrodes, the so-called nano-confinement effect. Since this effect is grounded on diffusion inside nanopores, it is predicted that adsorption onto the surface will seriously affect the enhancement by nano-confinement. We experimentally explored the correlation between adsorption and the confinement effect by examining the oxidation of butanol isomers at platinum and gold nanoporous electrodes. The results showed that electrooxidation of 2-butanol, which is a non-adsorption reaction, was enhanced more than that of 1-butanol, which is an adsorption reaction, at nanoporous platinum in acidic media. In contrast, the nanoporous gold electrode, on which 1-butanol is less adsorptive than it is on platinum, enhanced the electrooxidation of 1-butanol greatly. Furthermore, the electrocatalytic activity of nanoporous gold for oxygen reduction reaction was improved so much as to be comparable with that of flat Pt. These findings show that the nano-confinement effect can be appreciable for electrocatalytic oxygen reduction as well as alcohol oxidation unless the adsorption is extensive, and suggests a new strategy in terms of material design for innovative non-noble metal electrocatalysts.

  13. Deciphering ionic current signatures of DNA transport through a nanopore

    PubMed Central

    Aksimentiev, Aleksei

    2010-01-01

    Within just a decade from the pioneering work demonstrating the utility of nanopores for molecular sensing, nanopores have emerged as versatile systems for single molecule manipulation and analysis. In a typical setup, a gradient of the electrostatic potential captures charged solutes from the solution and forces them to move through a single nanopore, across otherwise impermeable membrane. The ionic current blockades resulting from the presence of a solute in a nanopore can reveal the type of the solute, for example, the nucleotide makeup of a DNA strand. Despite great successes, the microscopic mechanisms underlying the functionality of such stochastic sensors remain largely unknown, as it is not currently possible to characterize the microscopic conformations of single biomolecules directly in a nanopore and thereby unequivocally establish the causal relationship between the observables and the microscopic events. Such a relationship can be determined using molecular dynamics—a computational method that can accurately predicts the time evolution of a molecular system starting from a given microscopic state. This article describes recent applications of this method to the process of DNA transport through biological and synthetic nanopores. PMID:20644747

  14. DNA Sequencing by Hexagonal Boron Nitride Nanopore: A Computational Study

    PubMed Central

    Zhang, Liuyang; Wang, Xianqiao

    2016-01-01

    The single molecule detection associated with DNA sequencing has motivated intensive efforts to identify single DNA bases. However, little research has been reported utilizing single-layer hexagonal boron nitride (hBN) for DNA sequencing. Here we employ molecular dynamics simulations to explore pathways for single-strand DNA (ssDNA) sequencing by nanopore on the hBN sheet. We first investigate the adhesive strength between nucleobases and the hBN sheet, which provides the foundation for the hBN-base interaction and nanopore sequencing mechanism. Simulation results show that the purine base has a more remarkable energy profile and affinity than the pyrimidine base on the hBN sheet. The threading of ssDNA through the hBN nanopore can be clearly identified due to their different energy profiles and conformations with circular nanopores on the hBN sheet. The sequencing process is orientation dependent when the shape of the hBN nanopore deviates from the circle. Our results open up a promising avenue to explore the capability of DNA sequencing by hBN nanopore.

  15. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.

    PubMed

    Barati Farimani, Amir; Dibaeinia, Payam; Aluru, Narayana R

    2017-01-11

    DNA origami nanostructures can be used to functionalize solid-state nanopores for single molecule studies. In this study, we characterized a nanopore in a DNA origami-graphene heterostructure for DNA detection. The DNA origami nanopore is functionalized with a specific nucleotide type at the edge of the pore. Using extensive molecular dynamics (MD) simulations, we computed and analyzed the ionic conductivity of nanopores in heterostructures carpeted with one or two layers of DNA origami on graphene. We demonstrate that a nanopore in DNA origami-graphene gives rise to distinguishable dwell times for the four DNA base types, whereas for a nanopore in bare graphene, the dwell time is almost the same for all types of bases. The specific interactions (hydrogen bonds) between DNA origami and the translocating DNA strand yield different residence times and ionic currents. We also conclude that the speed of DNA translocation decreases due to the friction between the dangling bases at the pore mouth and the sequencing DNA strands.

  16. Streaming current magnetic fields in a charged nanopore

    PubMed Central

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-01-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques. PMID:27833119

  17. Streaming current magnetic fields in a charged nanopore

    NASA Astrophysics Data System (ADS)

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-11-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques.

  18. Impedance nanopore biosensor: influence of pore dimensions on biosensing performance.

    PubMed

    Kant, Krishna; Yu, Jingxian; Priest, Craig; Shapter, Joe G; Losic, Dusan

    2014-03-07

    Knowledge about electrochemical and electrical properties of nanopore structures and the influence of pore dimensions on these properties is important for the development of nanopore biosensing devices. The aim of this study was to explore the influence of nanopore dimensions (diameter and length) on biosensing performance using non-faradic electrochemical impedance spectroscopy (EIS). Nanoporous alumina membranes (NPAMs) prepared by self-ordered electrochemical anodization of aluminium were used as model nanopore sensing platforms. NPAMs with different pore diameters (25-65 nm) and lengths (4-18 μm) were prepared and the internal pore surface chemistry was modified by covalently attaching streptavidin and biotin. The performance of this antibody nanopore biosensing platform was evaluated using various concentrations of biotin as a model analyte. EIS measurements of pore resistivity and conductivity were carried out for pores with different diameters and lengths. The results showed that smaller pore dimensions of 25 nm and pore lengths up to 10 μm provide better biosensing performance.

  19. Streaming current magnetic fields in a charged nanopore.

    PubMed

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W

    2016-11-11

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques.

  20. Weakened Flexural Strength of Nanocrystalline Nanoporous Gold by Grain Refinement.

    PubMed

    Gwak, Eun-Ji; Kim, Ju-Young

    2016-04-13

    High density of grain boundaries in solid materials generally leads to high strength because grain boundaries act as strong obstacles to dislocation activity. We find that the flexural strength of nanoporous gold of grain size 206 nm is 33.6% lower than that of grain size 238 μm. We prepared three gold-silver precursor alloys, well-annealed, prestrained, and high-energy ball-milled, from which nanoporous gold samples were obtained by the same free-corrosion dealloying process. Ligaments of the same size are formed regardless of precursor alloys, and microstructural aspects of precursor alloys such as crystallographic orientation and grain size is preserved in the dealloying process. While the nanoindentation hardness of three nanoporous golds is independent of microstructural variation, flexural strength of nanocrystalline nanoporous gold is significantly lower than that of nanoporous golds with much larger grain size. We investigate weakening mechanisms of grain boundaries in nanocrystalline nanoporous gold, leading to weakening of flexural strength.

  1. Si-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sinterability

    SciTech Connect

    Bianco, Alessandra Cacciotti, Ilaria; Lombardi, Mariangela Montanaro, Laura

    2009-02-04

    Synthetic hydroxyapatites incorporating small amounts of Si have shown improved biological performances in terms of enhanced bone apposition, bone in-growth and cell-mediated degradation. This paper reports a systematic investigation on Si-substituted hydroxyapatite (Si 1.40 wt%) nanopowders produced following two different conventional wet methodologies: (a) precipitation of Ca(NO{sub 3}){sub 2}.4H{sub 2}O and (b) titration of Ca(OH){sub 2}. The influence of the synthesis process on composition, thermal behaviour and sinterability of the resulting nanopowders is studied. Samples were characterised by electron microscopy, induced coupled plasma atomic emission spectroscopy, thermal analysis, infrared spectroscopy, N{sub 2} adsorption measurements, X-ray diffraction and dilatometry. Semicrystalline Si-substituted hydroxyapatite powders made up of needle-like nanoparticles were obtained, the specific surface area ranged between 84 and 110 m{sup 2}/g. Pure and Si-substituted hydroxyapatite nanopowders derived from Ca(NO{sub 3}){sub 2}.4H{sub 2}O decomposed around 1000 deg. C. Si-substituted hydroxyapatite nanopowders obtained from Ca(OH){sub 2} were thermally stable up to 1200 deg. C and showed a distinct decreased thermal stability with respect to the homologous pure sample. Si-substituted hydroxyapatites exhibited higher sintering temperature and increased total shrinkage with respect to pure powders. Nanostructured dense ceramics were obtained by sintering at 1100 deg. C Si-substituted hydroxyapatites derived from Ca(OH){sub 2}.

  2. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.

    PubMed

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials.

  3. THE PHYSICS OF PROTOPLANETESIMAL DUST AGGLOMERATES. VII. THE LOW-VELOCITY COLLISION BEHAVIOR OF LARGE DUST AGGLOMERATES

    SciTech Connect

    Schraepler, Rainer; Blum, Juergen; Seizinger, Alexander; Kley, Wilhelm

    2012-10-10

    We performed micro-gravity collision experiments in our laboratory drop tower using 5 cm sized dust agglomerates with volume filling factors of 0.3 and 0.4, respectively. This work is an extension of our previous experiments reported in Beitz et al. to aggregates of more than one order of magnitude higher masses. The dust aggregates consisted of micrometer-sized silica particles and were macroscopically homogeneous. We measured the coefficient of restitution for collision velocities ranging from 1 cm s{sup -1} to 0.5 m s{sup -1}, and determined the fragmentation velocity. For low velocities, the coefficient of restitution decreases with increasing impact velocity, in contrast to findings by Beitz et al. At higher velocities, the value of the coefficient of restitution becomes constant, before the aggregates break at the onset of fragmentation. We interpret the qualitative change in the coefficient of restitution as the transition from a solid-body-dominated to a granular-medium-dominated behavior. We complement our experiments by molecular-dynamics simulations of porous aggregates and obtain a reasonable match to the experimental data. We discuss the importance of our experiments for protoplanetary disks, debris disks, and planetary rings. This work is an extension to the previous work of our group and gives new insight into the velocity dependency of the coefficient of restitution due to improved measurements, better statistics, and a theoretical approach.

  4. Block copolymer structures in nano-pores

    NASA Astrophysics Data System (ADS)

    Pinna, Marco; Guo, Xiaohu; Zvelindovsky, Andrei

    2010-03-01

    We present results of coarse-grained computer modelling of block copolymer systems in cylindrical and spherical nanopores on Cell Dynamics Simulation. We study both cylindrical and spherical pores and systematically investigate structures formed by lamellar, cylinders and spherical block copolymer systems for various pore radii and affinity of block copolymer blocks to the pore walls. The obtained structures include: standing lamellae and cylinders, ``onions,'' cylinder ``knitting balls,'' ``golf-ball,'' layered spherical, ``virus''-like and mixed morphologies with T-junctions and U-type defects [1]. Kinetics of the structure formation and the differences with planar films are discussed. Our simulations suggest that novel porous nano-containers can be formed by confining block copolymers in pores of different geometries [1,2]. [4pt] [1] M. Pinna, X. Guo, A.V. Zvelindovsky, Polymer 49, 2797 (2008).[0pt] [2] M. Pinna, X. Guo, A.V. Zvelindovsky, J. Chem. Phys. 131, 214902 (2009).

  5. Enzyme Reactions in Nanoporous, Picoliter Volume Containers

    SciTech Connect

    Siuti, Piro; Retterer, Scott T; Choi, Chang Kyoung; Doktycz, Mitchel John

    2012-01-01

    Advancements in nanoscale fabrication allow creation of small volume reaction containers that can facilitate the screening and characterization of enzymes. A porous, ~19 pL volume vessel has been used in this work to carry out enzyme reactions under varying substrate concentrations. Glucose oxidase and horseradish peroxidase can be contained in these structures and diffusively fed with a solution containing glucose and the fluorogenic substrate Amplex Red through the engineered nanoscale pore structure. Fluorescent microscopy was used to monitor the reaction, which was carried out under microfluidic control. Kinetic characteristics of the enzyme were evaluated and compared with results from conventional scale reactions. These picoliter, nanoporous containers can facilitate quick determination of enzyme kinetics in microfluidic systems without the requirement of surface tethering and can be used for applications in drug discovery, clinical diagnostics and high-throughput screening.

  6. Multilayer Nanoporous Graphene Membranes for Water Desalination.

    PubMed

    Cohen-Tanugi, David; Lin, Li-Chiang; Grossman, Jeffrey C

    2016-02-10

    While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical molecular dynamic simulations. We show that, while multilayer NPG exhibits similarly promising desalination properties to single-layer membranes, their separation performance can be designed by manipulating various configurational variables in the multilayer case. This work establishes an atomic-level understanding of the effects of additional NPG layers, layer separation, and pore alignment on desalination performance, providing useful guidelines for the design of multilayer NPG membranes.

  7. Nanoporous-carbon films for microsensor preconcentrators

    NASA Astrophysics Data System (ADS)

    Siegal, M. P.; Overmyer, D. L.; Kottenstette, R. J.; Tallant, D. R.; Yelton, W. G.

    2002-05-01

    Nanoporous-carbon (NPC) films are grown using physical processes such as low-power pulsed-laser deposition with attenuation of the ablated carbon species kinetic energy attained by using an inert background gas. With room-temperature growth and negligible residual stress, NPC can coat nearly any substrate to any desired thickness. Control of the deposition energetics yields precise morphology, density, and hence, porosity, with no discernable variation in chemical bonding. We produce NPC films 8 μm thick with density <0.2 g/cm3. The well-controlled porosity, i.e., available surface area, is demonstrated by using films with different thicknesses as a preconcentrator for a nerve-gas simulant.

  8. Shale nanopore reconstruction with compressive sensing

    NASA Astrophysics Data System (ADS)

    Guo, Long; Xiao, Lizhi

    2017-03-01

    With increasing global demand for energy resources, shale gas has been paid considerable attention in recent years. Nanopore geometry is the basis for all microscopic rock physics and petrophysical numerical experiments for shale. At present, nano digital cores can be acquired via thin section reconstruction, nanometer-scale x-ray computed tomography (nano-CT), and focused ion beam and scanning electron microscopy (FIB-SEM). FIB-SEM detects nanoscale pores in the xy-plane with a resolution of up to 0.8 nm voxel‑1, and it is usually provides higher resolution than nano-CT. The main workload associated with FIB-SEM is the need to recut the sample many times and scan every section, with these then being overlaid to create a three-dimensional (3D) pore model. Each cutting distance can be ascertained, but this cannot be controlled precisely because of the fundamental limits of focused ion beams. Many interpolation methods can be used to fit the anisotropy resolution. However, these methods can also alter the geometry of the pores. Nanopores that are close to the limiting resolution are particularly susceptible to stretching. Linear interpolation is likely to lengthen the pores in the low-resolution direction. The subsequent calculation of sensitive physical attributes will be affected by geometric alterations. Through foundational work in the compressive sensing (CS) method, we present a reconstruction workflow for maintaining the pore shape using prior knowledge and reliable information. The images are reassembled with equal distance, so the nanoscale structures can have a resolution of unity in three dimensions.

  9. Hydroxyapatite surface-induced peptide folding.

    PubMed

    Capriotti, Lisa A; Beebe, Thomas P; Schneider, Joel P

    2007-04-25

    Herein, we describe the design and surface-binding characterization of a de novo designed peptide, JAK1, which undergoes surface-induced folding at the hydroxyapatite (HA)-solution interface. JAK1 is designed to be unstructured in buffered saline solution, yet undergo HA-induced folding that is largely governed by the periodic positioning of gamma-carboxyglutamic acid (Gla) residues within the primary sequence of the peptide. Circular dichroism (CD) spectroscopy and analytical ultracentrifugation indicate that the peptide remains unfolded and monomeric in solution under normal physiological conditions; however, CD spectroscopy indicates that in the presence of hydroxyapatite, the peptide avidly binds to the mineral surface adopting a helical structure. Adsorption isotherms indicate nearly quantitative surface coverage and Kd = 310 nM for the peptide-surface binding event. X-ray photoelectron spectroscopy (XPS) coupled with the adsorption isotherm data suggests that JAK1 binds to HA, forming a self-limiting monolayer. This study demonstrates the feasibility of using HA surfaces to trigger the intramolecular folding of designed peptides and represents the initial stages of defining the design rules that allow HA-induced peptide folding.

  10. Evolving application of biomimetic nanostructured hydroxyapatite

    PubMed Central

    Roveri, Norberto; Iafisco, Michele

    2010-01-01

    By mimicking Nature, we can design and synthesize inorganic smart materials that are reactive to biological tissues. These smart materials can be utilized to design innovative third-generation biomaterials, which are able to not only optimize their interaction with biological tissues and environment, but also mimic biogenic materials in their functionalities. The biomedical applications involve increasing the biomimetic levels from chemical composition, structural organization, morphology, mechanical behavior, nanostructure, and bulk and surface chemical–physical properties until the surface becomes bioreactive and stimulates cellular materials. The chemical–physical characteristics of biogenic hydroxyapatites from bone and tooth have been described, in order to point out the elective sides, which are important to reproduce the design of a new biomimetic synthetic hydroxyapatite. This review outlines the evolving applications of biomimetic synthetic calcium phosphates, details the main characteristics of bone and tooth, where the calcium phosphates are present, and discusses the chemical–physical characteristics of biomimetic calcium phosphates, methods of synthesizing them, and some of their biomedical applications. PMID:24198477

  11. Hydroxyapatite formation from cuttlefish bones: kinetics.

    PubMed

    Ivankovic, H; Tkalcec, E; Orlic, S; Ferrer, G Gallego; Schauperl, Z

    2010-10-01

    Highly porous hydroxyapatite (Ca(10)(PO(4))(6)·(OH)(2), HA) was prepared through hydrothermal transformation of aragonitic cuttlefish bones (Sepia officinalis L. Adriatic Sea) in the temperature range from 140 to 220°C for 20 min to 48 h. The phase composition of converted hydroxyapatite was examined by quantitative X-ray diffraction (XRD) using Rietveld structure refinement and Fourier transform infrared spectroscopy (FTIR). Johnson-Mehl-Avrami (JMA) approach was used to follow the kinetics and mechanism of transformation. Diffusion controlled one dimensional growth of HA, predominantly along the a-axis, could be defined. FTIR spectroscopy determined B-type substitutions of CO(3) (2-) groups. The morphology and microstructure of converted HA was examined by scanning electron microscopy. The general architecture of cuttlefish bones was preserved after hydrothermal treatment and the cuttlefish bones retained its form with the same channel size (~80 × 300 μm). The formation of dandelion-like HA spheres with diameter from 3 to 8 μm were observed on the surface of lamellae, which further transformed into various radially oriented nanoplates and nanorods with an average diameter of about 200-300 nm and an average length of about 8-10 μm.

  12. Inflammatory response to nano- and microstructured hydroxyapatite.

    PubMed

    Mestres, Gemma; Espanol, Montserrat; Xia, Wei; Persson, Cecilia; Ginebra, Maria-Pau; Ott, Marjam Karlsson

    2015-01-01

    The proliferation and activation of leukocytes upon contact with a biomaterial play a crucial role in the degree of inflammatory response, which may then determine the clinical failure or success of an implanted biomaterial. The aim of this study was to evaluate whether nano- and microstructured biomimetic hydroxyapatite substrates can influence the growth and activation of macrophage-like cells. Hydroxyapatite substrates with different crystal morphologies consisting of an entangled network of plate-like and needle-like crystals were evaluated. Macrophage proliferation was evaluated on the material surface (direct contact) and also in extracts i.e. media modified by the material (indirect contact). Additionally, the effect of supplementing the extracts with calcium ions and/or proteins was investigated. Macrophage activation on the substrates was evaluated by quantifying the release of reactive oxygen species and by morphological observations. The results showed that differences in the substrate's microstructure play a major role in the activation of macrophages as there was a higher release of reactive oxygen species after culturing the macrophages on plate-like crystals substrates compared to the almost non-existent release on needle-like substrates. However, the difference in macrophage proliferation was ascribed to different ionic exchanges and protein adsorption/retention from the substrates rather than to the texture of materials.

  13. Biological reactivity of zirconia-hydroxyapatite composites.

    PubMed

    Silva, Viviane V; Lameiras, Fernando S; Lobato, Zélia I P

    2002-01-01

    Materials and devices intended for end-use applications as implants and medical devices must be evaluated to determine their biocompatibility potential in contact with physiological systems. The use of standard practices of biological testing provides a reasonable level of confidence concerning the response of a living organism to a given material or device, as well as guidance in selecting the proper procedures to be carried out for the screening of new or modified materials. This article presents results from cytotoxicity assays of cell culture, skin irritation, and acute toxicity by systemic and intracutaneous injections for powders, ceramic bodies, and extract liquids of hydroxyapatite (HA), calcia partially stabilized zirconia (ZO), and two types of zirconia-hydroxyapatite composites (Z4H6 and Z6H4) with potential for future use as orthopedic and dental implants. They indicate that these materials present potential for this type of application because they meet the requirements of the standard practices recommended for evaluating the biological reactivity of ATCC cell cultures (CCL1 NCTC clone 929 of mouse connective tissue and CCL 81 of monkey connective tissue) and animals (rabbit and mouse) with direct or indirect patient contact, or by the injection of specific extracts prepared from the material under test. In addition, studies involving short-term intramuscular and long-term implantation assays to estimate the reaction of living tissue to the composites studied, and investigations on long-term effects that these materials can cause on the cellular metabolism, are already in progress.

  14. Hydroxyapatite Nanoparticles as a Novel Gene Carrier

    NASA Astrophysics Data System (ADS)

    Zhu, S. H.; Huang, B. Y.; Zhou, K. C.; Huang, S. P.; Liu, F.; Li, Y. M.; Xue, Z. G.; Long, Z. G.

    2004-06-01

    Hydroxyapatite crystalline nanoparticles were created by a precipitation hydrothermal technique and the majority of crystal particles were in the size range of 40-60nm and exhibited a colloidal feature when suspended in water. The gastric cancer SGC-7901 cell line cells were cultivated in the presence of10-100 μg ml-1 hydroxyapatite nanoparticle suspension and verified by MTT evaluation for their biocompatibility in vitro. The agarose gel electrophoresis analysis demonstrated that the HA nanoparticles potentially adsorb the green fluorescence protein EGFP-N1 plasmid DNA at pH 2 and 7, but not at pH 12. The DNA-nanoparticle complexes transfected EGFP-N1 pDNA into SGC-7901 cells in vitro with the efficiency about 80% as referenced with Lipofectmine TM 2000. In vivo animal experiment revealed no acute toxic adverse effect 2weeks after tail vein injection into mice, and TEM examination demonstrated their biodistribution and expression within the cytoplasm and also a little in the nuclei of the liver, kidney and brain tissue cells. These results suggest that the HA nanoparticle is a promising material that can be used as gene carrier, vectors.

  15. Development of a gas-promoted oil agglomeration process. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Wheelock, T.D.

    1995-12-31

    The preliminary laboratory-scale development of a gas-promoted, oil agglomeration process for cleaning coal advanced in three major research areas. One area of research resulted in the development of a method for measuring the rate of agglomeration of dilute particle suspensions and using the method to relate the rate of agglomeration of coal particles to various key parameters. A second area of research led to the development of a method for monitoring a batch agglomeration process by measuring changes in agitator torque. With this method it was possible to show that the agglomeration of a concentrated coal particle suspension is triggered by the introduction of a small amount of gas. The method was also used in conjunction with optical microscopy to study the mechanism of agglomeration. A third area of research led to the discovery that highly hydrophobic particles in an aqueous suspension can be agglomerated by air alone.

  16. Zirconia nanoceramic via redispersion of highly agglomerated nanopowder and spark plasma sintering.

    PubMed

    Suárez, Gustavo; Borodianska, Hanna; Sakka, Yoshio; Aglietti, Esteban F; Vasylkiv, Oleg

    2010-10-01

    A 2.7 mol% yttria stabilizing tetragonal zirconia (2.7Y-TZP) nanopowder was synthesized and stored for five years. Humidity and unsatisfactory storage conditions gradually caused heavy agglomeration. Within a few months, 2.7Y-TZP nanopowder became useless for any technological application. A bead-milling deagglomeration technique was applied to recover the heavily agglomerated yttria-stabilized zirconia nanopowder. Low-temperature sintering and spark plasma sintering (SPS) were performed, resulting in fully dense nanostructured ceramics. Compacts formed with heavily agglomerated powder present low sinterability and poor mechanical properties. Bead-milling suspension formed compacts exhibit mechanical properties in the range of the values reported for nanostructured zirconia. This observation confirms the effectiveness of bead-milling in the deagglomeration of highly agglomerated nanopowders. The high value of Vickers hardness of 13.6 GPa demonstrates the success of the processing technique for recovering long-time-stored oxide nanopowders.

  17. Bed material agglomeration during fluidized bed combustion. Technical progress report, September 30, 1992--December 31, 1992

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  18. Dynamic forces on agglomerated particles caused by high-intensity ultrasound.

    PubMed

    Knoop, Claas; Fritsching, Udo

    2014-03-01

    In this paper the acoustic forces on particles and agglomerates caused by high-intensity ultrasound in gaseous atmosphere are derived by means of computational fluid dynamics (CFD). Sound induced forces cause an oscillating stress scenario where the primary particles of an agglomerate are alternatingly pressed together and torn apart with the frequency of the applied wave. A comparison of the calculated acoustic forces with respect to the inter particle adhesion forces from Van-der-Waals and liquid bridge interactions reveals that the separation forces may reach the same order of magnitude for 80 μm sized SiO2-particles. Hence, with finite probability acoustically agitated gases may de-agglomerate/disperse solid agglomerate structures. This effect is confirmed by dispersion experiments in an acoustic particle levitation setup.

  19. A uHPLC-MS mathematical modeling approach to dry powder inhaler single agglomerate analysis.

    PubMed

    Pennington, Justin; Lena, John; Medendorp, Joseph; Ewing, Gary

    2011-10-01

    Demonstration of content uniformity (CU) is critical toward the successful development of dry powder inhalers (DPIs). Methods for unit dose CU determination for DPI products are well-established within the field of respiratory science. Recent advances in the area include a uHPLC-MS method for high-throughput uniformity analysis, which allows for a greater understanding of blending operations as the industry transitions to a quality-by-design approach to development. Further enhancements to this uHPLC-MS method now enable it to determine CU and sample weight at the single agglomerate level, which is roughly 50× smaller than a unit dose. When coupled with optical microscopy-based agglomerate sizing, the enhanced uHPLC-MS method can also predict the density and porosity of individual agglomerates. Expanding analytical capabilities to the single agglomerate level provides greater insights and confidence in the DPI manufacturing process.

  20. Hydroxyapatite Reinforced Coatings with Incorporated Detonationally Generated Nanodiamonds

    SciTech Connect

    Pramatarova, L.; Pecheva, E.; Hikov, T.; Fingarova, D.; Dimitrova, R.; Spassov, T.; Krasteva, N.; Mitev, D.

    2010-01-21

    We studied the effect of the substrate chemistry on the morphology of hydroxyapatite-detonational nanodiamond composite coatings grown by a biomimetic approach (immersion in a supersaturated simulated body fluid). When detonational nanodiamond particles were added to the solution, the morphology of the grown for 2 h composite particles was porous but more compact then that of pure hydroxyapatite particles. The nanodiamond particles stimulated the hydroxyapatite growth with different morphology on the various substrates (Ti, Ti alloys, glasses, Si, opal). Biocompatibility assay with MG63 osteoblast cells revealed that the detonational nanodiamond water suspension with low and average concentration of the detonational nanodiamond powder is not toxic to living cells.

  1. Mechanical, thermal and bioactive behaviors of polyamide 6/hydroxyapatite nanocomposites.

    PubMed

    Li, Kai; Tjong, Sie Chin

    2011-12-01

    Polyamide-6 nanocomposites filled with different hydroxyapatite nanorod contents were injection molded. The thermal and tensile properties as well as bioactivity of such nanocomposties were investigated. The results showed that the thermal stabilities of polyamide-6 improve considerably by adding hydroxyapatite nanorods. Tensile measurements demonstrated that nanorods reinforce polyamide-6 effectively but reduce its tensile elongation and impact strength. Cell cultivation and viability tests showed that mouse osteoblasts adhere and proliferate readily on the nanocomposites containing high filler contents. Therefore, polyamide-6/hydroxyapatite nanocomposites show potential application in orthopedics for bone tissue replacements.

  2. Sonic enhanced ash agglomeration and sulfur capture. Technical progress report, January 1992--March 1992

    SciTech Connect

    Not Available

    1992-12-31

    This program will demonstrate the effectiveness of a unique approach which uses a bimodal distribution composed of large sorbent particles and fine fly ash particles to enhance ash agglomeration and sulfur capture at conditions found in direct coal-fired turbines. Under the impact of high-intensity sound waves, sorbent reactivity and utilization, it is theorized, will increase while agglomerates of fly ash and sorbents are formed which are readily collected in commercial cyclones.

  3. Reduced bed agglomeration by co-combustion biomass with peat fuels in a fluidized bed

    SciTech Connect

    Karin Lundholm; Anders Nordin; Marcus Oehman; Dan Bostroem

    2005-12-01

    Fluidized bed combustion is an energy conversion technology that is very suitable for biomass combustion because of its fuel flexibility and low process temperatures. However, agglomeration of bed material may cause severe operating problems. To prevent or at least reduce this, peat has been suggested as an additive to the main fuels. Nevertheless, the characteristics of peat fuels vary and there is limited information of the effect of different peat fuels and of the mechanisms behind the agglomeration prevention. The objectives of the present work were therefore to: (I) quantify the potential positive effect by co-combustion peat with forest fuels in terms of initial agglomeration temperatures; (ii) determine the amount of peat fuel that is needed to significantly reduce the agglomeration tendencies; and, if possible, (iii) elucidate the governing mechanisms. The results showed that all peat fuels prevented agglomeration in the studied interval of 760-1020{sup o}C and even as little as 5% peat fuel was found to have significant effects. The results also indicated that the mechanism of the agglomeration prevention varies between different peat fuels. Possible mechanisms are the minerals in the peat fuel retain alkali, which then is either elutriated up from the bed or captured in the bed; calcium and other refractory elements increase the melting temperature and thereby counteract the melting of alkali; and sulfur reacts with alkali metals and the alkali sulfates is either elutriated up from the bed or prevents agglomeration by increased melting temperature and lowered viscosity. Results from elemental analysis of the coating on bed particles showed that all mixtures with peat fuel resulted in a decreased or unchanged fraction of potassium and an increased fraction of aluminum in the coatings. The results also indicated a complex relationship between the fuel inorganic contents and the agglomeration process. 21 refs., 6 figs., 5 tabs.

  4. Cell agglomeration in the wells of a 24-well plate using acoustic streaming.

    PubMed

    Kurashina, Yuta; Takemura, Kenjiro; Friend, James

    2017-02-28

    Cell agglomeration is essential both to the success of drug testing and to the development of tissue engineering. Here, a MHz-order acoustic wave is used to generate acoustic streaming in the wells of a 24-well plate to drive particle and cell agglomeration. Acoustic streaming is known to manipulate particles in microfluidic devices, and even provide concentration in sessile droplets, but concentration of particles or cells in individual wells has never been shown, principally due to the drag present along the periphery of the fluid in such a well. The agglomeration time for a range of particle sizes suggests that shear-induced migration plays an important role in the agglomeration process. Particles with a diameter of 45 μm agglomerated into a suspended pellet under exposure to 2.134 MHz acoustic waves at 1.5 W in 30 s. Additionally, BT-474 cells also agglomerated as adherent masses at the center bottom of the wells of tissue-culture treated 24-well plates. By switching to low cell binding 24-well plates, the BT-474 cells formed suspended agglomerations that appeared to be spheroids, fully fifteen times larger than any cell agglomerates without the acoustic streaming. In either case, the viability and proliferation of the cells were maintained despite acoustic irradiation and streaming. Intermittent excitation was effective in avoiding temperature excursions, consuming only 75 mW per well on average, presenting a convenient means to form fully three-dimensional cellular masses potentially useful for tissue, cancer, and drug research.

  5. Combined deterministic-stochastic framework for modeling the agglomeration of colloidal particles

    NASA Astrophysics Data System (ADS)

    Mortuza, S. M.; Kariyawasam, Lahiru K.; Banerjee, Soumik

    2015-07-01

    We present a multiscale model, based on molecular dynamics (MD) and kinetic Monte Carlo (kMC), to study the aggregation driven growth of colloidal particles. Coarse-grained molecular dynamics (CGMD) simulations are employed to detect key agglomeration events and calculate the corresponding rate constants. The kMC simulations employ these rate constants in a stochastic framework to track the growth of the agglomerates over longer time scales and length scales. One of the hallmarks of the model is a unique methodology to detect and characterize agglomeration events. The model accounts for individual cluster-scale effects such as change in size due to aggregation as well as local molecular-scale effects such as changes in the number of neighbors of each molecule in a colloidal cluster. Such definition of agglomeration events allows us to grow the cluster to sizes that are inaccessible to molecular simulations as well as track the shape of the growing cluster. A well-studied system, comprising fullerenes in NaCl electrolyte solution, was simulated to validate the model. Under the simulated conditions, the agglomeration process evolves from a diffusion limited cluster aggregation (DLCA) regime to percolating cluster in transition and finally to a gelation regime. Overall the data from the multiscale numerical model shows good agreement with existing theory of colloidal particle growth. Although in the present study we validated our model by specifically simulating fullerene agglomeration in electrolyte solution, the model is versatile and can be applied to a wide range of colloidal systems.

  6. Preparation of submicron-sized gold particles using laser-induced agglomeration-fusion process

    NASA Astrophysics Data System (ADS)

    Tsuji, T.; Higashi, Y.; Tsuji, M.; Ishikawa, Y.; Koshizaki, N.

    2014-03-01

    Recently, laser irradiation (LI) of colloidal nanoparticles (NPs) using a non-focused laser beam at moderate fluence attracts much attention as a novel and simple technique to obtain submicron-sized spherical particles. In the present study, we applied this technique to prepare gold SMPs. It was revealed that agglomeration of the source nanoparticles prior to laser irradiation is necessary to produce SMPs. However, when the agglomeration occurred in too much extent, significant amount of the source particles remained as the sediment after LI, leading to the lowering of the formation efficiency of SMPs. Therefore, the control of the agglomeration conditions of the source NPs is necessary to obtain SMPs efficiently. In the present study, we tried to adjust the agglomeration conditions of the source NPs by adjusting the concentration of citrate that was used as the stabilizing reagent of the source NPs. It was revealed that SMPs were obtained efficiently while the sedimentation of the source NPs were suppressed when the concentration of citrate was adjusted around 0.01-0.005 mM. In addition, observation of the temporal change in the shape of the colloidal particles during LI revealed that there is an induction period in which no formation of SMPs is brought about by LI. This finding suggested that LI removes the citrate ligands from the source NPs and induces the agglomeration of the source NPs, i.e. the agglomeration condition of the source NPs is also controlled by LI.

  7. Quantitative characterization of agglomerate abrasion in a tumbling blender by using the Stokes number approach.

    PubMed

    Willemsz, Tofan A; Nguyen, Tien Thanh; Hooijmaijers, Ricardo; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2013-03-01

    Removal of microcrystalline cellulose agglomerates in a dry-mixing system (lactose, 100 M) predominantly occurs via abrasion. The agglomerate abrasion rate potential is estimated by the Stokes abrasion (StAbr) number of the system. The StAbr number equals the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. Basically, the StAbr number concept describes the blending condition of the dry-mixing system. The concept has been applied to investigate the relevance of process parameters on agglomerate abrasion in tumbling blenders. Here, process parameters such as blender rotational speed and relative fill volumes were investigated. In this study, the StAbr approach revealed a transition point between abrasion rate behaviors. Below this transition point, a blending condition exists where agglomerate abrasion is dominated by the kinetic energy density of the powder blend. Above this transition point, a blending condition exists where agglomerates show (undesirable) slow abrasion rates. In this situation, the blending condition is mainly determined by the high fill volume of the filler.

  8. Effect of the Additives on the Desulphurization Rate of Flash Hydrated and Agglomerated CFB Fly Ash

    NASA Astrophysics Data System (ADS)

    Li, D. X.; Li, H. L.; Xu, M.; Lu, J. F.; Liu, Q.; Zhang, J. S.; Yue, G. X.

    CFB fly ash from separators was mixed with water or the mixture of water and additives under the temperature of 363K by use of a blender. Then, this compound of fly ash and water or additives was pumped into a CFB combustion chamber by a sludge pump. Because the temperature of flue gas was high in CFB, the fly ash was hydrated fast and agglomerated in the same time. Through this process, the size of agglomerating fly ash is larger than the original particle and the relative residence time of agglomerated fly ash in CFB becomes longer. Therefore, the rate of utility of calcium in fly ash improves and the content of carbon in fly ash decreases. This results in a low Ca/S and low operational cost for CFB boiler. The additive is one key factor, which affects the rate of desulfurization of agglomerated fly ash. Effect of different additives on rate of desulfurization is not same. Cement and limestone are beneficiated to sulfur removal of agglomerated fly ash, but sodium silicate does not devote to the rate of sulfur removal of agglomerated fly ash.

  9. Factors affecting the oil agglomeration of Sivas-Divrigi Ulucayir lignite

    SciTech Connect

    Unal, I.; Gorgun Ersan, M.

    2007-07-01

    In the coal industry, the coal particles need to be decreased to a very fine size because of the need of removing inorganic materials from coal. Oil agglomeration is a kind of coal cleaning technique that is used for separation of organic and inorganic parts of fine sized coal. In this study, the oil agglomeration of Sivas-Divrigi (S-D) Ulucayir lignite was carried out by using kerosene, diesel oil, fuel oil, poppy oil, and sunflower oil. The amount of bridging oil was varied from 5% to 25% of the amount of lignite. The effect of oil amount, oil type, solid content, agitation rate and time, pH on agglomeration performance was investigated. Maximum recovery value of 98.18% was observed by using poppy oil. In order to investigate the effect of pH on agglomeration NaOH and HCl is added to the slurry in various amounts. It is decided that the best agglomeration condition is obtained at low pH values. The effect of nonionic surface active agent (Igepal-CA 630) on agglomeration is investigated by adding to the slurry and it is observed that the grade is increased with the amount of surface active agent.

  10. Centrifugal air-assisted melt agglomeration for fast-release "granulet" design.

    PubMed

    Wong, Tin Wui; Musa, Nafisah

    2012-07-01

    Conventional melt pelletization and granulation processes produce round and dense, and irregularly shaped but porous agglomerates respectively. This study aimed to design centrifugal air-assisted melt agglomeration technology for manufacture of spherical and yet porous "granulets" for ease of downstream manufacturing and enhancing drug release. A bladeless agglomerator, which utilized shear-free air stream to mass the powder mixture of lactose filler, polyethylene glycol binder and poorly water-soluble tolbutamide drug into "granulets", was developed. The inclination angle and number of vane, air-impermeable surface area of air guide, processing temperature, binder content and molecular weight were investigated with reference to "granulet" size, shape, texture and drug release properties. Unlike fluid-bed melt agglomeration with vertical processing air flow, the air stream in the present technology moved centrifugally to roll the processing mass into spherical but porous "granulets" with a drug release propensity higher than physical powder mixture, unprocessed drug and dense pellets prepared using high shear mixer. The fast-release attribute of "granulets" was ascribed to porous matrix formed with a high level of polyethylene glycol as solubilizer. The agglomeration and drug release outcomes of centrifugal air-assisted technology are unmet by the existing high shear and fluid-bed melt agglomeration techniques.

  11. Experimental validation of light scattering and absorption theories of fractal-like carbonaceous aerosol agglomerates

    NASA Astrophysics Data System (ADS)

    Chakrabarty, R.; Moosmuller, H.; Arnott, W. P.; Garro, M.; Slowik, J.; Cross, E.; Han, J.; Davidovits, P.; Onasch, T.; Worsnop, D.

    2007-12-01

    The optical coefficients of size-selected carbonaceous aerosol agglomerates measured at a wavelength of 870 nm are compared with those predicted by three theories, namely Rayleigh-Debye-Gans (RDG) approximation, volume-equivalent Mie theory, and integral equation formulation for scattering (IEFS). Carbonaceous agglomerates, produced via flame synthesis, were size-selected using two differential mobility analyzers (DMAs) in series, and their scattering and absorption coefficients were measured with nephelometry and photoacoustic spectroscopy. Scanning electron microscopy, along with image processing techniques, were used for the parameterization of the structural properties of the fractal-like agglomerates. The agglomerate structural parameters were used to evaluate the predictions of the optical coefficients based on the three light scattering and absorption theories. The results indicate that the RDG approximation agrees within 10% of the experimental results and the exact electromagnetic calculations of the IEFS theory. The experimental scattering coefficient is over predicted by the volume-equivalent Mie theory by a factor of ~3.2. Also, the RDG approximation-predicted optical coefficients showed pronounced sensitivity to changes in monomer mean diameter, the count median diameter of the agglomerates, and the geometric standard deviation of the agglomerate number size distribution.

  12. Cytotoxicity of hydroxyapatite, fluorapatite and fluor-hydroxyapatite: a comparative in vitro study.

    PubMed

    Theiszova, M; Jantova, S; Letasiova, S; Palou, M; Cipak, L

    2008-01-01

    The purpose of this study was to evaluate the cytotoxicity of two formulations of hydroxyapatite (HA), namely fluorapatite (FA) and fluor-hydroxyapatite (FHA). HA is used as carrier material for antibiotics or anticancer drugs during treatment of bone metastasis. Negative control, represented by HA, was included for comparative purposes. Leukemia cells were used as a model cell line, and the effect of eluates of tested biomaterials on cell proliferation/viability and mechanism of antiproliferative activity were assessed. Study design attempted to reveal the toxicity of tested biomaterials with an emphasis to decide if tested biomaterials have promise for further studies in vivo. Results showed that eluates of FA and FHA inhibit the growth of leukemia cells and induce programmed cell death through mitochondrial/caspase-9/caspase-3-dependent pathway. Due to these differences compare to HA, it is concluded that FA and FHA have promise for evaluation of their behaviour in vivo.

  13. Pressure-controlled motion of single polymers through solid-state nanopores

    PubMed Central

    Lu, Bo; Hoogerheide, David P.; Zhao, Qing; Zhang, Hengbin; Tang, Zhipeng; Yu, Dapeng; Golovchenko, Jene A.

    2013-01-01

    Voltage-biased solid-state nanopores are well established in their ability to detect and characterize single polymers, such as DNA, in electrolytes. The addition of a pressure gradient across the nanopore yields a second molecular driving force that provides new freedom for studying molecules in nanopores. In this work, we show that opposing pressure and voltage bias enables nanopores to detect and resolve very short DNA molecules, as well as to detect near-neutral polymers. PMID:23802688

  14. Ion Current Rectification, Limiting and Overlimiting Conductances in Nanopores

    PubMed Central

    van Oeffelen, Liesbeth; Van Roy, Willem; Idrissi, Hosni; Charlier, Daniel; Lagae, Liesbet; Borghs, Gustaaf

    2015-01-01

    Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be. PMID:25978328

  15. Fluid Behavior and Fluid-Solid Interactions in Nanoporous Media

    NASA Astrophysics Data System (ADS)

    Xu, H.

    2015-12-01

    Although shale oil/gas production in the US has increased exponentially, the low energy recovery is a daunting problem needed to be solved for its sustainability and continued growth, especially in light of the recent oil/gas price decline. This is apparently related to the small porosity (a few to a few hundred nm) and low permeability (10-16-10-20 m2) of tight shale formations. The fundamental question lies in the anomalous behavior of fluids in nanopores due to confinement effects, which, however, remains poorly understood. In this study, we combined experimental characterization and observations, particularly using small-angle neutron scattering (SANS), with pore-scale modeling using lattice Boltzmann method (LBM), to examine the fluid behavior and fluid-solid interactions in nanopores at reservoir conditions. Experimentally, we characterized the compositions and microstructures of a shale sample from Wolfcamp, Texas, using a variety of analytical techniques. Our analyses reveal that the shale sample is made of organic-matter (OM)-lean and OM-rich layers that exhibit different chemical and mineral compositions, and microstructural characteristics. Using the hydrostatic pressure system and gas-mixing setup we developed, in-situ SANS measurements were conducted at pressures up to 20 kpsi on shale samples imbibed with water or water-methane solutions. The obtained results indicate that capillary effect plays a significant role in fluid-nanopore interactions and the associated changes in nanopore structures vary with pore size and pressure. Computationally, we performed LBM modeling to simulate the flow behavior of methane in kerogen nanoporous structure. The correction factor, which is the ratio of apparent permeability to intrinsic permeability, was calculated. Our results show that the correction factor is always greater than one (non-continuum/non-Darcy effects) and increases with decreasing nanopore size, intrinsic permeability and pressure. Hence, the

  16. Ion current rectification, limiting and overlimiting conductances in nanopores.

    PubMed

    van Oeffelen, Liesbeth; Van Roy, Willem; Idrissi, Hosni; Charlier, Daniel; Lagae, Liesbet; Borghs, Gustaaf

    2015-01-01

    Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.

  17. Carbonate Hydroxyapatite and Silicon-Substituted Carbonate Hydroxyapatite: Synthesis, Mechanical Properties, and Solubility Evaluations

    PubMed Central

    Bang, L. T.; Long, B. D.; Othman, R.

    2014-01-01

    The present study investigates the chemical composition, solubility, and physical and mechanical properties of carbonate hydroxyapatite (CO3Ap) and silicon-substituted carbonate hydroxyapatite (Si-CO3Ap) which have been prepared by a simple precipitation method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF) spectroscopy, and inductively coupled plasma (ICP) techniques were used to characterize the formation of CO3Ap and Si-CO3Ap. The results revealed that the silicate (SiO44−) and carbonate (CO32−) ions competed to occupy the phosphate (PO43−) site and also entered simultaneously into the hydroxyapatite structure. The Si-substituted CO3Ap reduced the powder crystallinity and promoted ion release which resulted in a better solubility compared to that of Si-free CO3Ap. The mean particle size of Si-CO3Ap was much finer than that of CO3Ap. At 750°C heat-treatment temperature, the diametral tensile strengths (DTS) of Si-CO3Ap and CO3Ap were about 10.8 ± 0.3 and 11.8 ± 0.4 MPa, respectively. PMID:24723840

  18. Formation of pyrophosphate on hydroxyapatite with thioesters as condensing agents

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1982-01-01

    'Energy-rich' thioesters are shown to act as condensing agents in the formation of pyrophosphate on hydroxyapatite in the presence of water at ambient temperature. The yield of pyrophosphate based on thioester ranges from 2.5% to 11.4% and depends upon the pH and concentration of reactants. Reaction of 0.130 M hydroxyapatite suspended in a solution of 0.08 M sodium phosphate and 0.20 M imidazole hydrochloride (pH 7.0) with 0.10 M N,S-diacetylcysteamine for 6 days gives the highest yield of pyrophosphate (11.4%). Pyrophosphate formation requires the presence of hydroxyapatite, sodium phosphate and the thioester, N,S-diacetylcysteamine. The related thioester, N,S-diacetylcysteine, also yields pyrophosphate in reactions on hydroxyapatite.

  19. Synthesis of mesoporous nano-hydroxyapatite by using zwitterions surfactant

    EPA Science Inventory

    Mesoporous nano-hydroxyapatite (mn-HAP) was successfully synthesized via a novel micelle-templating method using lauryl dimethylaminoacetic acid as zwitterionic surfactant. The systematic use of such a surfactant in combination with microwave energy inputenables the precise contr...

  20. Room Temperature Crystallization of Hydroxyapatite in Porous Silicon Structures.

    PubMed

    Santana, M; Estevez, J O; Agarwal, V; Herrera-Becerra, R

    2016-12-01

    Porous silicon (PS) substrates, with different pore sizes and morphology, have been used to crystallize hydroxyapatite (HA) nano-fibers by an easy and economical procedure using a co-precipitation method at room temperature. In situ formation of HA nanoparticles, within the meso- and macroporous silicon structure, resulted in the formation of nanometer-sized hydroxyapatite crystals on/within the porous structure. The X-ray diffraction technique was used to determine the tetragonal structure of the crystals. Analysis/characterization demonstrates that under certain synthesis conditions, growth and crystallization of hydroxyapatite layer on/inside PS can be achieved at room temperature. Such composite structures expand the possibility of designing a new bio-composite material based on the hydroxyapatite and silicon synthesized at room temperature.

  1. Formation of hydroxyapatite in various aqueous solutions

    NASA Astrophysics Data System (ADS)

    Sturgeon, Jacqueline Lee

    Hydroxyapatite (HAp), Ca10(PO4)6(OH) 2, is important in the field of biomaterials as it is the mineral component of bones and teeth. Biological apatites do not maintain an exact composition and are usually calcium-deficient, represented as Ca(10- x)(HPO 4)x(PO4)(6-x)(OH)(2-x), where x ranges from 0 to 1, with various ion substitutions. Formation of calcium-deficient hydroxyapatites (CDHAp) from solid calcium phosphate precursor materials was performed at physiologic temperature (37°C) in a variety of aqueous solutions. Two cement systems were utilized in these experiments: tetralcium phosphate (TetCP) with dicalcium phosphate anhydrous (DCPA) and beta-tricalcium phosphate (beta-TCP). The kinetics, solution chemistry, phase evolution, and microstructure of the developed apatites were analyzed as appropriate. Reaction of beta-TCP in ammonium fluoride solutions formed HAp substituted with fluoride and calculated to be deficient in calcium. A new ratio of TetCP to DCPA was used with solutions of sodium bicarbonate to form a calcium-deficient carbonate hydroxyapatite. The capacity for sodium dihydrogen phosphate to buffer pH increases and enhance reaction kinetics in this system was also explored. Formation of a highly crystalline CDHAp was achieved by hydrolyzing beta-TCP in water for extended time periods. Lattice parameters were among the features characterized for this apatite. The hydrolysis of beta-TCP in phosphate buffered saline (PBS) and simulated body fluids (SBF) was also investigated; use of SBF was found to completely inhibit formation of HAp in this system while reaction in PBS was slow in comparison to water. The effects of filler materials on the mechanical properties of a calcium phosphate cement were examined using the TetCP/DCPA system. Dense aggregates were not found to decrease compressive strength in comparison to the cement alone. The use of aggregates was found to improve the compressive strength of cement formed using NaHCO3 solution as a

  2. Synthesis of Nanoporous Metals, Oxides, Carbides, and Sulfides: Beyond Nanocasting.

    PubMed

    Luc, Wesley; Jiao, Feng

    2016-07-19

    Nanoporous metal-based solids are of particular interest because they combine a large quantity of surface metal sites, interconnected porous networks, and nanosized crystalline walls, thus exhibiting unique physical and chemical properties compared to other nanostructures and bulk counterparts. Among all of the synthetic approaches, nanocasting has proven to be a highly effective method for the syntheses of metal oxides with three-dimensionally ordered porous structures and crystalline walls. A typical procedure involves a thermal annealing process of a porous silica template filled with an inorganic precursor (often a metal nitrate salt), which converts the precursor into a desired phase within the silica pores. The final step is the selective removal of the silica template in either a strong base or a hydrofluoric acid solution. In the past decade, nanocasting has become a popular synthetic approach and has enabled the syntheses of a variety of nanoporous metal oxides. However, there is still a lack of synthetic methods to fabricate nanoporous materials beyond simple metal oxides. Therefore, the development of new synthetic strategies beyond nanocasting has become an important direction. This Account describes new progress in the preparation of novel nanoporous metal-based solids for heterogeneous catalysis. The discussion begins with a method called dealloying, an effective method to synthesize nanoporous metals. The starting material is a metallic alloy containing two or more elements followed by a selective chemical or electrochemical leaching process that removes one of the preferential elements, resulting in a highly porous structure. Nanoporous metals, such as Cu, Ag, and CuTi, exhibit remarkable electrocatalytic properties in carbon dioxide reduction, oxygen reduction, and hydrogen evolution reactions. In addition, the syntheses of metal oxides with hierarchical porous structures are also discussed. On the basis of the choice of hard template, nanoporous

  3. Fabrication and Modification of Nanoporous Silicon Particles

    NASA Technical Reports Server (NTRS)

    Ferrari, Mauro; Liu, Xuewu

    2010-01-01

    Silicon-based nanoporous particles as biodegradable drug carriers are advantageous in permeation, controlled release, and targeting. The use of biodegradable nanoporous silicon and silicon dioxide, with proper surface treatments, allows sustained drug release within the target site over a period of days, or even weeks, due to selective surface coating. A variety of surface treatment protocols are available for silicon-based particles to be stabilized, functionalized, or modified as required. Coated polyethylene glycol (PEG) chains showed the effective depression of both plasma protein adsorption and cell attachment to the modified surfaces, as well as the advantage of long circulating. Porous silicon particles are micromachined by lithography. Compared to the synthesis route of the nanomaterials, the advantages include: (1) the capability to make different shapes, not only spherical particles but also square, rectangular, or ellipse cross sections, etc.; (2) the capability for very precise dimension control; (3) the capacity for porosity and pore profile control; and (4) allowance of complex surface modification. The particle patterns as small as 60 nm can be fabricated using the state-of-the-art photolithography. The pores in silicon can be fabricated by exposing the silicon in an HF/ethanol solution and then subjecting the pores to an electrical current. The size and shape of the pores inside silicon can be adjusted by the doping of the silicon, electrical current application, the composition of the electrolyte solution, and etching time. The surface of the silicon particles can be modified by many means to provide targeted delivery and on-site permanence for extended release. Multiple active agents can be co-loaded into the particles. Because the surface modification of particles can be done on wafers before the mechanical release, asymmetrical surface modification is feasible. Starting from silicon wafers, a treatment, such as KOH dipping or reactive ion

  4. Impact behavior of hydroxyapatite reinforced polyethylene composites.

    PubMed

    Zhang, Y; Tanner, K E

    2003-01-01

    Hydroxyapatite particulate reinforced high density polyethylene composite (HA-HDPE) has been developed as a bone replacement material. The impact behavior of the composites at 37 degrees C has been investigated using an instrumented falling weight impact testing machine. The fracture surfaces were examined using SEM and the fracture mechanisms are discussed. It was found that the fracture toughness of HA-HDPE composites increased with HDPE molecular weight, but decreased with increasing HA volume fraction. Examination of fracture surfaces revealed weak filler/matrix interfaces which can debond easily to enable crack initiation and propagation. Increasing HA volume fraction increases the interface area, and more cracks can form and develop, thus decreasing the impact resistance of the composites. Another important factor for the impact behavior of the composites is the matrix. At higher molecular weight, HDPE is able to sustain more plastic deformation and dissipates more impact energy, hence improving the impact property.

  5. Thermal Diffusivity in Bone and Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Calderón, A.; Peña Rodríguez, G.; Muñoz Hernández, R. A.; Díaz Gongora, J. A. I.; Mejia Barradas, C. M.

    2004-09-01

    We report thermal diffusivity measurements in bull bone and commercial hydroxyapatite (HA), both in powder form, in order to determinate the thermal compatibility between these materials. Besides this, we report a comparison between these measured values and those of metallic samples frequently used in implants, as high purity titanium and stainless steel. Our results show a good thermal compatibility (74%) between HA and bone, both in powder form. Finally, it was obtained a one order of magnitude difference between the thermal diffusivity values of metallic samples and those corresponding values to bone and HA being this difference greater in titanium than in stainless steel, which is important to consider in some biomedical and dental applications.

  6. Novel hydroxyapatite biomaterial covalently linked to raloxifene.

    PubMed

    Meme, L; Santarelli, A; Marzo, G; Emanuelli, M; Nocini, P F; Bertossi, D; Putignano, A; Dioguardi, M; Lo Muzio, L; Bambini, F

    2014-01-01

    Since raloxifene, a drug used in osteoporosis therapy, inhibits osteoclast, but not osteoblast functions, it has been suggested to improve recovery during implant surgery. The present paper describes an effective method to link raloxifene, through a covalent bond, to a nano-Hydroxyapatite-based biomaterial by interfacing with (3-aminopropyl)-Triethoxysilane as assessed by Infra Red-Fourier Transformed (IR-FT) spectroscopy and Scanning Electron Microscope (SEM). To evaluate the safety of this modified new material, the vitality of osteoblast-like cells cultured with the new biomaterial was then investigated. Raloxifene-conjugated HAbiomaterial has been shown to be a safe material easy to obtain which could be an interesting starting point for the use of a new functional biomaterial suitable in bone regeneration procedures.

  7. First principles study of hydroxyapatite surface

    NASA Astrophysics Data System (ADS)

    Slepko, Alexander; Demkov, Alexander A.

    2013-07-01

    The biomineral hydroxyapatite (HA) [Ca10(PO4)6(OH)2] is the main mineral constituent of mammal bone. We report a theoretical investigation of the HA surface. We identify the low energy surface orientations and stoichiometry under a variety of chemical environments. The surface most stable in the physiologically relevant OH-rich environment is the OH-terminated (1000) surface. We calculate the work function of HA and relate it to the surface composition. For the lowest energy OH-terminated surface we find the work function of 5.1 eV, in close agreement with the experimentally reported range of 4.7 eV-5.1 eV [V. S. Bystrov, E. Paramonova, Y. Dekhtyar, A. Katashev, A. Karlov, N. Polyaka, A. V. Bystrova, A. Patmalnieks, and A. L. Kholkin, J. Phys.: Condens. Matter 23, 065302 (2011), 10.1088/0953-8984/23/6/065302].

  8. First principles study of hydroxyapatite surface.

    PubMed

    Slepko, Alexander; Demkov, Alexander A

    2013-07-28

    The biomineral hydroxyapatite (HA) [Ca10(PO4)6(OH)2] is the main mineral constituent of mammal bone. We report a theoretical investigation of the HA surface. We identify the low energy surface orientations and stoichiometry under a variety of chemical environments. The surface most stable in the physiologically relevant OH-rich environment is the OH-terminated (1000) surface. We calculate the work function of HA and relate it to the surface composition. For the lowest energy OH-terminated surface we find the work function of 5.1 eV, in close agreement with the experimentally reported range of 4.7 eV-5.1 eV [V. S. Bystrov, E. Paramonova, Y. Dekhtyar, A. Katashev, A. Karlov, N. Polyaka, A. V. Bystrova, A. Patmalnieks, and A. L. Kholkin, J. Phys.: Condens. Matter 23, 065302 (2011)].

  9. Injectable polydimethylsiloxane-hydroxyapatite composite cement.

    PubMed

    Ignjatović, Nenad; Jovanović, Jelena; Suljovrujić, Edin; Uskoković, Dragan

    2003-01-01

    An injectable polydimethylsiloxane/hydroxyapatite (PDMS/HAp) composite cement was synthesised using linear PDMS and HAp (particles of about 100 nm in size) of different mass fractions. The effect of HAp mass fraction (5-60 mass%) on the hardness of PDMS/HAp composite cement was investigated. The hardness achieved is 25-49 degrees ShA. Differential scanning calorimetry (DSC) was used to study the cross-linking process and the influence of HAp on the temperature and duration of PDMS/HAp cross-linking. The microstructure of composite cement surfaces after 10 days in vivo tests was observed by scanning electron microscopy (SEM). The presence of well-adhered macrophages, fibroblasts and monocytes was found on the implant surface upon its extraction from the organism.

  10. Suspension thermal spraying of hydroxyapatite: microstructure and in vitro behaviour.

    PubMed

    Bolelli, Giovanni; Bellucci, Devis; Cannillo, Valeria; Lusvarghi, Luca; Sola, Antonella; Stiegler, Nico; Müller, Philipp; Killinger, Andreas; Gadow, Rainer; Altomare, Lina; De Nardo, Luigi

    2014-01-01

    In cementless fixation of metallic prostheses, bony ingrowth onto the implant surface is often promoted by osteoconductive plasma-sprayed hydroxyapatite coatings. The present work explores the use of the innovative High Velocity Suspension Flame Spraying (HVSFS) process to coat Ti substrates with thin homogeneous hydroxyapatite coatings. The HVSFS hydroxyapatite coatings studied were dense, 27-37μm thick, with some transverse microcracks. Lamellae were sintered together and nearly unidentifiable, unlike conventional plasma-sprayed hydroxyapatite. Crystallinities of 10%-70% were obtained, depending on the deposition parameters and the use of a TiO2 bond coat. The average hardness of layers with low (<24%) and high (70%) crystallinity was ≈3.5GPa and ≈4.5GPa respectively. The distributions of hardness values, all characterised by Weibull modulus in the 5-7 range, were narrower than that of conventional plasma-sprayed hydroxyapatite, with a Weibull modulus of ≈3.3. During soaking in simulated body fluid, glassy coatings were progressively resorbed and replaced by a new, precipitated hydroxyapatite layer, whereas coatings with 70% crystallinity were stable up to 14days of immersion. The interpretation of the precipitation behaviour was also assisted by surface charge assessments, performed through Z-potential measurements. During in vitro tests, HA coatings showed no cytotoxicity towards the SAOS-2 osteoblast cell line, and surface cell proliferation was comparable with proliferation on reference polystyrene culture plates.

  11. In situ deposition of hydroxyapatite on graphene nanosheets

    SciTech Connect

    Neelgund, Gururaj M.; Oki, Aderemi; Luo, Zhiping

    2013-02-15

    Graphical abstract: A facile chemical precipitation method is reported for effective in situ deposition of hydroxyapatite on graphene nanosheets. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. Display Omitted Highlights: ► It is a facile and effective method for deposition of HA on GR nanosheets. ► It avoids the use of harmful reducing agents like hydrazine, NaBH{sub 4} etc. ► GR nanosheets were produced using bio-compatible, ethylenediamine. ► The graphitic structure of synthesized GR nanosheets was high ordered. ► The ratio of Ca to P in HA was 1.64, which is close to ratio in natural bone. -- Abstract: Graphene nanosheets were effectively functionalized by in situ deposition of hydroxyapatite through a facile chemical precipitation method. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. The resulting hydroxyapatite functionalized graphene nanosheets were characterized by attenuated total reflection IR spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray energy dispersive spectroscopy, Raman spectroscopy and thermogravimetric analysis. These characterization techniques revealed the successful grafting of hydroxyapatite over well exfoliated graphene nanosheets without destroying their structure.

  12. Effect of glass phase on the dissolution of hydroxyapatite.

    PubMed

    Youn, S H; Yang, Z X; Hwang, K H; Seo, D S; Lee, J K; Jun, B S; Kim, H

    2008-02-01

    Nano size defect formation at grain boundary during the dissolution of hydroxyapatite in water was evaluated by adding several sintering additives for sinterability enhancement. In the case of sintered pure hydroxyapatite, significant dissolution occurred after immersion in distilled water or in simulated body fluid. The dissolution initiated at the grain boundaries creating nano-size defects like small pores that afterwards grew up to micro scale by increasing immersion time. This dissolution resulted in grain separation at the surfaces and finally in fracture. The dissolution concentrated on the grains adjacent to pores rather than those in the dense region. So hydroxyapatite ceramics containing glass powders were prepared to prevent the dissolution by strengthening grain boundary. Calcium silicate and phosphate glasses were added at 0 to 10 mass% and sintered at 1200 degrees C for 2 h in air with moisture protection. Glass phase was incorporated into hydroxyapatite to act as the sintering aid followed by crystallization in order to improve the mechanical properties without reducing biocompatibility. Dissolution tests, as well as X-ray diffraction and SEM showed little decomposition of hydroxyapatite to secondary phases and the fracture toughness increased compared to pure hydroxyapatite.

  13. Improvement of the stability of hydroxyapatite through glass ceramic reinforcement.

    PubMed

    Ha, Na Ra; Yang, Zheng Xun; Hwang, Kyu Hong; Kim, Tae Suk; Lee, Jong Kook

    2010-05-01

    Hydroxyapatite has achieved significant application in orthopedic and dental implants due to its excellent biocompatibility. Sintered hydroxyapatites showed significant dissolution, however, after their immersion in water or simulated body fluid (SBF). This grain boundary dissolution, even in pure hydroxyapatites, resulted in grain separation at the surfaces, and finally, in fracture. In this study, hydroxyapatite ceramics containing apatite-wollastonite (AW) or calcium silicate (SG) glass ceramics as additives were prepared to prevent the dissolution. AW and SG glass ceramics were added at 0-7 wt% and powder-compacted uniaxially followed by firing at moisture conditions. The glass phase was incorporated into the hydroxyapatite to act as a sintering aid, followed by crystallization, to improve the mechanical properties without reducing the biocompatibility. As seen in the results of the dissolution test, a significant amount of damage was reduced even after more than 14 days. TEM and SEM showed no decomposition of HA to the secondary phase, and the fracture toughness increased, becoming even higher than that of the commercial hydroxyapatite.

  14. Nanoporous Pirani sensor based on anodic aluminum oxide

    NASA Astrophysics Data System (ADS)

    Jeon, Gwang-Jae; Kim, Woo Young; Shim, Hyun Bin; Lee, Hee Chul

    2016-09-01

    A nanoporous Pirani sensor based on anodic aluminum oxide (AAO) is proposed, and the quantitative relationship between the performance of the sensor and the porosity of the AAO membrane is characterized with a theoretical model. The proposed Pirani sensor is composed of a metallic resistor on a suspended nanoporous membrane, which simultaneously serves as the sensing area and the supporting structure. The AAO membrane has numerous vertically-tufted nanopores, resulting in a lower measurable pressure limit due to both the increased effective sensing area and the decreased effective thermal loss through the supporting structure. Additionally, the suspended AAO membrane structure, with its outer periphery anchored to the substrate, known as a closed-type design, is demonstrated using nanopores of AAO as an etch hole without a bulk micromachining process used on the substrate. In a CMOS-compatible process, a 200 μm × 200 μm nanoporous Pirani sensor with porosity of 25% was capable of measuring the pressure from 0.1 mTorr to 760 Torr. With adjustment of the porosity of the AAO, the measurable range could be extended toward lower pressures of more than one decade compared to a non-porous membrane with an identical footprint.

  15. DNA Translocation through Hydrophilic Nanopore in Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Hu, Ying; Wang, Hao; Xu, Zhi; Wang, Wenlong; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua

    2013-11-01

    Ultra-thin solid-state nanopore with good wetting property is strongly desired to achieve high spatial resolution for DNA sequencing applications. Atomic thick hexagonal boron nitride (h-BN) layer provides a promising two-dimensional material for fabricating solid-state nanopores. Due to its good oxidation resistance, the hydrophilicity of h-BN nanopore device can be significantly improved by UV-Ozone treatment. The contact angle of a KCl-TE droplet on h-BN layer can be reduced from 57° to 26° after the treatment. Abundant DNA translocation events have been observed in such devices, and strong DNA-nanopore interaction has been revealed in pores smaller than 10 nm in diameter. The 1/f noise level is closely related to the area of suspended h-BN layer, and it is significantly reduced in smaller supporting window. The demonstrated performance in h-BN nanopore paves the way towards base discrimination in a single DNA molecule.

  16. Silicon deposition in nanopores using a liquid precursor

    NASA Astrophysics Data System (ADS)

    Masuda, Takashi; Tatsuda, Narihito; Yano, Kazuhisa; Shimoda, Tatsuya

    2016-11-01

    Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices.

  17. Proximal Capture Dynamics for a Single Biological Nanopore Sensor.

    PubMed

    Pederson, Emmanuel D; Barbalas, Jonathan; Drown, Bryon S; Culbertson, Michael J; Keranen Burden, Lisa M; Kasianowicz, John J; Burden, Daniel L

    2015-08-20

    Single nanopore sensors enable capture and analysis of molecules that are driven to the pore entry from bulk solution. However, the distance between an analyte and the nanopore opening limits the detection efficiency. A theoretical basis for predicting particle capture rate is important for designing modified nanopore sensors, especially for those with covalently tethered reaction sites. Using the finite element method, we develop a soft-walled electrostatic block (SWEB) model for the alpha-hemolysin channel that produces a vector map of drift-producing forces on particles diffusing near the pore entrance. The maps are then coupled to a single-particle diffusion simulation to probe capture statistics and to track the trajectories of individual particles on the μs to ms time scales. The investigation enables evaluation of the interplay among the electrophoretic, electroosmotic, and thermal driving forces as a function of applied potential. The findings demonstrate how the complex drift-producing forces compete with diffusion over the nanoscale dimensions of the pore. The results also demonstrate the spatial and temporal limitations associated with nanopore detection and offer a basic theoretical framework to guide both the placement and kinetics of reaction sites located on, or near, the nanopore cap.

  18. Fabricating Nanodots using Lift-Off of a Nanopore Template

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Ramsey, Christopher R.; Bae, Youngsam; Choi, Daniel S.

    2008-01-01

    A process for fabricating a planar array of dots having characteristic dimensions of the order of several nanometers to several hundred nanometers involves the formation and use of a thin alumina nanopore template on a semiconductor substrate. The dot material is deposited in the nanopores, then the template is lifted off the substrate after the dots have been formed. This process is expected to be a basis for development of other, similar nanofabrication processes for relatively inexpensive mass production of nanometerscale optical, optoelectronic, electronic, and magnetic devices. Alumina nanopore templates are self-organized structures that result from anodization of aluminum under appropriate conditions. Alumina nanopore templates have been regarded as attractive for use in fabricating the devices mentioned above, but prior efforts to use alumina nanopore templates for this purpose have not been successful. One reason for the lack of success is that the aspect ratios (ratios between depth and diameter) of the pores have been too large: large aspect ratios can result in blockage of deposition and/or can prevent successful lift-off. The development of the present process was motivated partly by a requirement to reduce aspect ratios to values (of the order of 10) for which there is little or no blockage of deposition and attempts at lift-off are more likely to be successful. The fabrication process is outlined.

  19. Single molecule transistor based nanopore for the detection of nicotine

    NASA Astrophysics Data System (ADS)

    Ray, S. J.

    2014-12-01

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  20. Single molecule transistor based nanopore for the detection of nicotine

    SciTech Connect

    Ray, S. J.

    2014-12-28

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  1. Silicon deposition in nanopores using a liquid precursor

    PubMed Central

    Masuda, Takashi; Tatsuda, Narihito; Yano, Kazuhisa; Shimoda, Tatsuya

    2016-01-01

    Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices. PMID:27874085

  2. Electrostatic correlations on the ionic selectivity of cylindrical membrane nanopores

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin; Ala-Nissila, T.

    2014-02-01

    We characterize the role of electrostatic fluctuations on the charge selectivity of cylindrical nanopores confining electrolyte mixtures. To this end, we develop an extended one-loop theory that can account for correlation effects induced by the surface charge, nanoconfinement of the electrolyte, and interfacial polarization charges associated with the low permittivity membrane. We validate the quantitative accuracy of the theory by comparisons with previously obtained Monte-Carlo simulation data from the literature, and scrutinize in detail the underlying forces driving the ionic selectivity of the nanopore. In the biologically relevant case of electrolytes with divalent cations such as CaCl2 in negatively charged nanopores, electrostatic correlations associated with the dense counterion layer in the channel result in an increase of the pore coion density with the surface charge. This peculiarity analogous to the charge inversion phenomenon remains intact for dielectrically inhomogeneous pores, which indicates that the effect should be observable in nanofiltration membranes or DNA-blocked nanopores characterized by a low membrane permittivity. Our results show that a quantitatively accurate consideration of correlation effects is necessary to determine the ionic selectivity of nanopores in the presence of electrolytes with multivalent counterions.

  3. Atomistic simulation of Voronoi-based coated nanoporous metals

    NASA Astrophysics Data System (ADS)

    Onur Yildiz, Yunus; Kirca, Mesut

    2017-02-01

    In this study, a new method developed for the generation of periodic atomistic models of coated and uncoated nanoporous metals (NPMs) is presented by examining the thermodynamic stability of coated nanoporous structures. The proposed method is mainly based on the Voronoi tessellation technique, which provides the ability to control cross-sectional dimension and slenderness of ligaments as well as the thickness of coating. By the utilization of the method, molecular dynamic (MD) simulations of randomly structured NPMs with coating can be performed efficiently in order to investigate their physical characteristics. In this context, for the purpose of demonstrating the functionality of the method, sample atomistic models of Au/Pt NPMs are generated and the effects of coating and porosity on the thermodynamic stability are investigated by using MD simulations. In addition to that, uniaxial tensile loading simulations are performed via MD technique to validate the nanoporous models by comparing the effective Young’s modulus values with the results from literature. Based on the results, while it is demonstrated that coating the nanoporous structures slightly decreases the structural stability causing atomistic configurational changes, it is also shown that the stability of the atomistic models is higher at lower porosities. Furthermore, adaptive common neighbour analysis is also performed to identify the stabilized atomistic structure after the coating process, which provides direct foresights for the mechanical behaviour of coated nanoporous structures.

  4. Fluoride removal performance of glass derived hydroxyapatite

    SciTech Connect

    Liang, Wen; Zhan, Lei; Piao, Longhua; Russel, Christian

    2011-02-15

    Research highlights: {yields} Novel sodium calcium borate glass derived hydroxyapatite (G-HAP) is prepared. {yields} Micro-G-HAP adsorbs F{sup -} ions in solutions more effectively than commercial nano-HAP. {yields} The adsorption kinetics and isotherms are well fitted by a second order kinetic model and Freundlich isotherm model. -- Abstract: A novel sodium calcium borate glass derived hydroxyapatite (G-HAP) with different ranges of particle size was prepared by immersion sodium calcium borate glass in 0.1 M K{sub 2}HPO{sub 4} solution by the ratio of 50 g L{sup -1} for 7 days. The unique advantage of G-HAP for the adsorption of fluoride ions in solutions was studied. The effects of size and quantity of particles, pH value and adsorption time on adsorption performance were investigated. The maximum adsorption capacity was 17.34 mg g{sup -1} if 5 g L{sup -1}, <100 {mu}m G-HAP was added to a solution with an initial pH value of 6.72 and the adsorption time was 12 h. The results showed that the micro-G-HAP could immobilize F{sup -} in solution more effectively than commercial nano-HAP, which makes potential application of the G-HAP in removing the fluoride ions from wastewater. The adsorption kinetics and isotherms for F{sup -} could be well fitted by a second order kinetic model and Freundlich isotherm model respectively, which could be used to describe the adsorption behavior. The mechanism of G-HAP in immobilizing F{sup -} from aqueous solutions was investigated by the X-ray diffraction (XRD), infrared spectra (IR) and scanning electron microscopy (SEM).

  5. A kinetic study of the mechanism of radiation induced agglomeration of ovalbumin in aqueous solution

    NASA Astrophysics Data System (ADS)

    Tuce, Zorana; Janata, Eberhard; Radojcic, Marija; Milosavljevic, Bratoljub H.

    2001-10-01

    The effect of concentration on the protein radiolytic damage resulting in a change in molecular mass was measured in the concentration range from 0.2 to 2 mmol×dm -3 ovalbumin in phosphate buffered solutions saturated with N 2O. The electrophoretic analysis of samples on discontinuous SDS-polyacrylamide gels in the presence or absence of 5% β-mercaptoethanol showed an expected result, i.e. that the protein scission did not take place in the absence of oxygen. Only ovalbumin agglomerates, bonded by covalent bonds other than S-S bridges, were observed. The G-value for the formation of ovalbumin agglomerates increased linearly from 1.1 to 2.4 by increasing the ovalbumin concentration from 0.2 to 2 mmol×dm -3. The result is interpreted as to be owing to the competition between ovalbumin agglomeration and some intramolecular reactions which did not lead to the change in the molecular mass. It was also found that the G-value is independent of irradiation dose rate. The result was rationalized as a kinetic evidence that the agglomeration is not a cross-linking process, i.e. it does not occur via recombination of the protein radicals produced in the interaction of ovalbumin and rad OH radical. The result suggested that the agglomeration takes place via the process of grafting, i.e. it occurs in the reaction of ovalbumin radical and an intact ovalbumin molecule. The time-resolved light scattering experiments provided an additional proof, supporting the reaction scheme of radiation-induced protein agglomeration. The biological consequences of the proposed mechanism of protein agglomeration are also discussed.

  6. Combustion of single and agglomerated aluminum particles in solid rocket motor flows

    NASA Astrophysics Data System (ADS)

    Melcher, John Charles, IV

    2001-07-01

    Single and agglomerated aluminum droplets were studied in a solid rocket motor (SRM) test chamber with optical access to the internal flow at 6--22 atm and 2300 K. The chamber was pressurized by burning a main grain AP/HTPB propellant, and the burning aluminum droplets were generated by a smaller aluminized solid propellant sample, center-mounted in the flow. A 35 mm camera was used with a chopper wheel to give droplet flame diameter vs. time measurements of the burning droplets in flight, from which bum-rate laws were developed. A high-speed video CCD was used with high-magnification optics in order to image the flame/smoke cloud surrounding the burning liquid droplets. The intensity profiles of the droplet images were de-convoluted using an Abel inversion to give true intensity profiles. Both single and agglomerated droplets were studied, where agglomerates are comprised of hundreds of parent particles or more. The Abel inversion results show that the relative smoke cloud size is not constant with diameter, but instead grows as the droplet shrinks, by ˜D -0.5, for both the single and agglomerated droplets. Measured diameter trajectories show that for single droplets, the diameter law is D 0.75 = DO0.75 = 8·t [mu m, msec], and for agglomerated droplets, D 1.0 = Do1.0 - 20·t, such that the single droplets burn faster than the agglomerates. For both single and agglomerated droplets, the burning rate slope k did not change significantly over the chamber pressure studied. Lastly, a model was developed to describe the oxide cap accumulation on the droplet surface from the oxide smoke cloud surrounding the droplet. Results suggest that less oxide accumulates in high-pressure SRMs when considering mass burning rates for different relative cap sizes. The thermophoretic force, which can control oxide transport only over the cap, decreases with pressure.

  7. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.

    PubMed

    Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan

    2016-07-01

    Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition

  8. Synthesis of ordered large-scale ZnO nanopore arrays

    NASA Astrophysics Data System (ADS)

    Ding, G. Q.; Shen, W. Z.; Zheng, M. J.; Fan, D. H.

    2006-03-01

    An effective approach is demonstrated for growing ordered large-scale ZnO nanopore arrays through radio-frequency magnetron sputtering deposition on porous alumina membranes (PAMs). The realization of highly ordered hexagonal ZnO nanopore arrays benefits from the unique properties of ZnO (hexagonal structure, polar surfaces, and preferable growth directions) and PAMs (controllable hexagonal nanopores and localized negative charges). Further evidence has been shown through the effects of nanorod size and thermal treatment of PAMs on the yielded morphology of ZnO nanopore arrays. This approach opens the possibility of creating regular semiconducting nanopore arrays for the application of filters, sensors, and templates.

  9. Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: an in vitro and in vivo comparative study

    NASA Astrophysics Data System (ADS)

    Tavakol, S.; Nikpour, M. R.; Amani, A.; Soltani, M.; Rabiee, S. M.; Rezayat, S. M.; Chen, P.; Jahanshahi, M.

    2013-01-01

    Surface morphology, surface wettability, and size distribution of biomaterials affect their in vitro and in vivo bone regeneration potential. Since nano-hydroxyapatite has a great chemical and structural similarity to natural bone and dental tissues, incorporated biomaterial of such products could improve bioactivity and bone bonding ability. In this research, nano-hydroxyapatite (23 ± 0.09 nm) and its composites with variety of chitosan content [2, 4, and 6 g (45 ± 0.19, 32 ± 0.12, and 28 ± 0.12 nm, respectively)] were prepared via an in situ hybridization route. Size distribution of the particles, protein adsorption, and calcium deposition of powders by the osteoblast cells, gene expression and percentage of new bone formation area were investigated. The highest degree of bone regeneration potential was observed in nano-hydroxyapatite powder, while the bone regeneration was lowest in nano-hydroxyapatite with 6 g of chitosan. Regarding these data, suitable size distribution next to size distribution of hydroxyapatite in bone, smaller size, higher wettability, lower surface roughness of the nano-hydroxyapatite particles and homogeneity in surface resulted in higher protein adsorption, cell differentiation and percentage of bone formation area. Results obtained from in vivo and in vitro tests confirmed the role of surface morphology, surface wettability, mean size and size distribution of biomaterial besides surface chemistry as a temporary bone substitute.

  10. Controlled Fabrication of Nanoporous Oxide Layers on Zircaloy by Anodization.

    PubMed

    Park, Yang Jeong; Ha, Jun Mok; Ali, Ghafar; Kim, Hyun Jin; Addad, Yacine; Cho, Sung Oh

    2015-12-01

    We have presented a mechanism to explain why the resulting oxide morphology becomes a porous or a tubular nanostructure when a zircaloy is electrochemically anodized. A porous zirconium oxide nanostructure is always formed at an initial anodization stage, but the degree of interpore dissolution determines whether the final morphology is nanoporous or nanotubular. The interpore dissolution rate can be tuned by changing the anodization parameters such as anodization time and water content in an electrolyte. Consequently, porous or tubular oxide nanostructures can be selectively fabricated on a zircaloy surface by controlling the parameters. Based on this mechanism, zirconium oxide layers with completely nanoporous, completely nanotubular, and intermediate morphologies between a nanoporous and a nanotubular structure were controllably fabricated.

  11. Elastic properties of protein functionalized nanoporous polymer films

    DOE PAGES

    Charles T. Black; Wang, Haoyu; Akcora, Pinar

    2015-12-16

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Lastly, our results show that proteinmore » functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.« less

  12. Fabrication of solid-state nanopores and its perspectives.

    PubMed

    Kudr, Jiri; Skalickova, Sylvie; Nejdl, Lukas; Moulick, Amitava; Ruttkay-Nedecky, Branislav; Adam, Vojtech; Kizek, Rene

    2015-10-01

    Nanofluidics is becoming an extensively developing technique in the field of bioanalytical chemistry. Nanoscale hole embed in an insulating membrane is employed in a vast variety of sensing platforms and applications. Although, biological nanopores have several attractive characteristics, in this paper, we focused on the solid-state nanopores due to their advantages as high stability, possibility of diameter control, and ease of surface functionalizing. A detection method, based on the translocation of analyzed molecules through nanochannels under applied voltage bias and resistive pulse sensing, is well established. Nevertheless, it seems that the new detection methods like measuring of transverse electron tunneling using nanogap electrodes or optical detection can offer significant additional advantages. The aim of this review is not to cite all related articles, but highlight the steps, which in our opinion, meant important progresses in solid-state nanopore analysis.

  13. Transport behavior of water molecules through two-dimensional nanopores

    SciTech Connect

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-11-14

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  14. Production of organic nanoparticles by using nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Tuz, A. A.; Şimşek, A. K.; Kazanci, M.

    2017-02-01

    In this research, organic nanoparticles are produced by using different nanoporous membranes with different diameters in different solutions. In production; two liquids, a feed solution and a receiver solution, are seperated by a nanoporous polycarbonate tracketched (PCTE) membrane. The feed solution is pumped through the membrane into the receiver solution. The feed solution contained biopolymers dissolved in HCl and the receiver solution contained NaOH. pH change is used as precipitation method. Chitosan, collagen and alginic acid sodium salt from brown algae are used as biomaterials in order to obtain nanoparticles. Different sized nanoporous membranes are used to find the ideal pore and particle sizes. Nanoparticles are illustrated by SEM and sphere-shaped nanoparticles with different diameters and needle shaped structures are observed.

  15. Noise and its reduction in graphene based nanopore devices.

    PubMed

    Kumar, Ashvani; Park, Kyeong-Beom; Kim, Hyun-Mi; Kim, Ki-Bum

    2013-12-13

    Ionic current fluctuations in graphene nanopore devices are a ubiquitous phenomenon and are responsible for degraded spatial and temporal resolution. Here, we descriptively investigate the impact of different substrate materials (Si and quartz) and membrane thicknesses on noise characteristics of graphene nanopore devices. To mitigate the membrane fluctuations and pin-hole defects, a SiNx membrane is transferred onto the substrate and a pore of approximately 70 nm in diameter is perforated prior to the graphene transfer. Comprehensive noise study reveals that the few layer graphene transferred onto the quartz substrate possesses low noise level and higher signal to noise ratio as compared to single layer graphene, without deteriorating the spatial resolution. The findings here point to improvement of graphene based nanopore devices for exciting opportunities in future single-molecule genomic screening devices.

  16. Elastic Properties of Lysozyme Confined in Nanoporous Polymer Films

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu; Akcora, Pinar

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. It is known that confined media provide a protective environment to the encapsulated proteins and prevent diffusion of the denaturant. In this study, different types of proteins (streptavidin, lysozyme and fibrinogen) were chemically attached into the nanopores of poly(methyl methacrylate) thin films. Heterogeneous flat surfaces with varying cylinder pore sizes (10-50 nm) were used to confine proteins of different sizes and shapes. Stiffness of protein functionalized nanopores was measured in nanoindentation experiments. Our results showed that streptavidin behaved more stiffly when pore dimension changed from micron to nanosize. Further, it was found that lysozyme confined within nanopores showed higher specific bioactivity than proteins on flat surfaces. These results on surface elasticity and protein activity may help in understanding protein interactions with surfaces of different topologies and chemistry.

  17. Elastic properties of protein functionalized nanoporous polymer films

    SciTech Connect

    Charles T. Black; Wang, Haoyu; Akcora, Pinar

    2015-12-16

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Lastly, our results show that protein functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.

  18. Deformation mechanism of nanoporous materials upon water freezing and melting

    NASA Astrophysics Data System (ADS)

    Erko, Maxim; Wallacher, Dirk; Paris, Oskar

    2012-10-01

    Temperature-induced non-monotonous reversible deformation of water-filled nanoporous silica materials is investigated experimentally using in-situ small-angle x-ray scattering. The influence of freezing and melting in the nanopores on this deformation is treated quantitatively by introducing a simple model based on the Gibbs-Thomson equation and a generalized Laplace-pressure. The physical origin of the melting/freezing induced pore lattice deformation is found to be exactly the same as for capillary condensation/evaporation, namely the curved phase boundary due to the preferred wetting of the pore walls by the liquid phase. As a practical implication, elastic properties of the nanoporous framework can be determined from the temperature-deformation curves.

  19. Nanoporous Gold as a Platform for a Building Block Catalyst

    SciTech Connect

    Wittstock, Arne; Wichmann, Andre; Baeumer, Marcus

    2012-09-25

    The porous bulk materials are of great interest in catalysis because they can be employed in heterogeneous gas and liquid phase catalysis, electrocatalysis, and in electrocatalytic sensing. Nanoporous gold gained considerable attraction in this context because it is the prime example of a corrosion-derived nanoporous bulk metal. Moreover, the material was shown to be a very active and selective Au type catalyst for a variety of oxidation reactions. In leveraging the functionalization of the surface of the material with various additives, its catalytic applications can be extended and tuned. In this review, we will summarize recent developments in using nanoporous gold as the platform for the development of high performance catalytic materials by adding metals, metal oxides, and molecular functionalities as building blocks.

  20. Nanoporous Carbon Monoliths with Tunable Thermal Insulation and Mechanical Properties.

    PubMed

    Wang, Xiaopeng; Chen, Fenghua; Luo, Zhenhua; Li, Hao; Zhao, Tong

    2016-01-01

    In this work, nanoscale porous carbon monoliths, with excellent compressive strength and thermal insulation, were obtained with a simple method of carbonizing cured phenol-formaldehyde resin/poly(methyl methacrylate) blends. Apparent density, pore size and morphology of the carbon monoliths were tailored by changing the composition, curing process and carbonization temperature. The continuous nanopores played a key role in enhancing mechanical and thermal performance of the carbon materials. When PMMA concentration was 25%, apparent density and thermal conductivity of the nanoporous carbonaceous monoliths were obtained as low as 1.07 g · cm⁻³ and 0.42 W/(m · K), decreasing by 29.4% and 35.4% than that of carbonaceous monoliths obtained from pure PF; while compressive strength of the nanoporous carbonaceous monoliths was as high as 34 MPa, which was improved over five times than that of pure PF carbon monoliths.

  1. Method of fabricating a scalable nanoporous membrane filter

    DOEpatents

    Tringe, Joseph W; Balhorn, Rodney L; Zaidi, Saleem

    2013-08-20

    A method of fabricating a nanoporous membrane filter having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter of the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.

  2. Development of a gas-promoted oil agglomeration process. Technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Wheelock, T.D.

    1995-12-01

    Several scale model mixing systems have been built and are being utilized to study the gas-promoted, oil agglomeration process for cleaning coal. Numerous batch agglomeration tests have been conducted with these systems. During an individual test the progress of agglomeration has been monitored by observing either changes in agitator torque in the case of concentrated particle suspensions or changes in turbidity in the case of dilute suspensions. A mathematical model has been developed for relating the rate of agglomeration of coal particles to the rate of change of turbidity of a dilute particle suspension undergoing agglomeration. The model has been utilized for analyzing and interpreting the results of a number of oil agglomeration tests in which several different system parameters were varied.

  3. Micro-agglomerate flotation for deep cleaning of coal. Quarterly progress report, July 1-September 30, 1996

    SciTech Connect

    Chander, S.; Hogg, R.

    1996-12-01

    The goals of this research program are to demonstrate the technical and economic feasibility of a micro-agglomerate flotation process and to establish the essential criteria for reagent selection and system design and operation. We are investigating the use of a hybrid process - Micro-agglomerate flotation - which is a combination of oil-agglomeration and froth flotation. The basic concept is to use small quantities of oil to promote the formation of dense micro- agglomerates with minimal entrapment of water and mineral particles, and to use froth flotation to extract these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units are agglomerates (about 30-50 mm in size) rather than individual coal particles (1-10 mm) the problems of froth overload and water/mineral carryover should be significantly alleviated.

  4. Tailoring nanoporous materials by atomic layer deposition.

    PubMed

    Detavernier, Christophe; Dendooven, Jolien; Sree, Sreeprasanth Pulinthanathu; Ludwig, Karl F; Martens, Johan A

    2011-11-01

    Atomic layer deposition (ALD) is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. The self-limiting nature of the chemical reactions ensures precise film thickness control and excellent step coverage, even on 3D structures with large aspect ratios. At present, ALD is mainly used in the microelectronics industry, e.g. for growing gate oxides. The excellent conformality that can be achieved with ALD also renders it a promising candidate for coating porous structures, e.g. for functionalization of large surface area substrates for catalysis, fuel cells, batteries, supercapacitors, filtration devices, sensors, membranes etc. This tutorial review focuses on the application of ALD for catalyst design. Examples are discussed where ALD of TiO(2) is used for tailoring the interior surface of nanoporous films with pore sizes of 4-6 nm, resulting in photocatalytic activity. In still narrower pores, the ability to deposit chemical elements can be exploited to generate catalytic sites. In zeolites, ALD of aluminium species enables the generation of acid catalytic activity.

  5. Nano-porous calcium phosphate balls.

    PubMed

    Kovach, Ildyko; Kosmella, Sabine; Prietzel, Claudia; Bagdahn, Christian; Koetz, Joachim

    2015-08-01

    By dropping a NaH2PO4·H2O precursor solution to a CaCl2 solution at 90°C under continuous stirring in presence of two biopolymers, i.e. gelatin (G) and chitosan (C), supramolecular calcium phosphate (CP) card house structures are formed. Light microscopic investigations in combination with scanning electron microscopy show that the GC-based flower-like structure is constructed from very thin CP platelets. Titration experiments indicate that H-bonding between both biopolymers is responsible for the synergistic effect in presence of both polymers. Gelatin-chitosan-water complexes play an important role with regard to supramolecular ordering. FTIR spectra in combination with powder X-ray diffraction show that after burning off all organic components (heating up >600°C) dicalcium and tricalcium phosphate crystallites are formed. From high resolution transmission electron microscopy (HR-TEM) it is obvious to conclude, that individual crystal platelets are dicalcium phosphates, which build up ball-like supramolecular structures. The results reveal that the GC guided crystal growth leads to nano-porous supramolecular structures, potentially attractive candidates for bone repair.

  6. Rapid, Simultaneous Multianalyte Detection with a Nanopore

    NASA Astrophysics Data System (ADS)

    Kasianowicz, John; Henrickson, Sarah; Robertson, Baldwin; Weetall, Howard

    2000-03-01

    The ability to rapidly and simultaneously quantitate many analytes represents the next frontier in sensing. This capability would have a great impact on the cost and feasibility of analyzing blood, detecting pathogens and toxins in drinking water as well as chemical and biological warfare agents. In addition to performing transport and defense functions in cells and organelles, pore-forming proteins (ionic channels) act as sensors by converting the concentration of an analyte into a change in the pore’s conductance. Recently, several groups, including ours, suggested that channels placed in artificial membranes might prove useful for detecting analytes. Unfortunately, molecules that alter native channel conductance are limited to a small number of highly specific classes (e.g. neurotransmitters, anesthetics, protons or deuterium ions). Thus, steps towards adapting channels for more generalized analyte detection have placed recognition sites inside a channel, adjacent to the pore’s mouth or well outside the pore. We demonstrated that a wide variety of analytes could be simultaneously detected by a simpler system. Instead of attaching the recognition element inside a narrow channel, it is covalently linked to a polymer that threads completely through a nanopore.

  7. Diffusive Silicon Nanopore Membranes for Hemodialysis Applications

    PubMed Central

    Kim, Steven; Feinberg, Benjamin; Kant, Rishi; Chui, Benjamin; Goldman, Ken; Park, Jaehyun; Moses, Willieford; Blaha, Charles; Iqbal, Zohora; Chow, Clarence; Wright, Nathan; Fissell, William H.; Zydney, Andrew; Roy, Shuvo

    2016-01-01

    Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD). However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes has not fundamentally changed in over four decades. Therefore, we have proposed a fundamentally different approach using microelectromechanical systems (MEMS) fabrication techniques to create thin-flat sheets of silicon-based membranes for implantable or portable hemodialysis applications. The silicon nanopore membranes (SNM) have biomimetic slit-pore geometry and uniform pores size distribution that allow for exceptional permeability and selectivity. A quantitative diffusion model identified structural limits to diffusive solute transport and motivated a new microfabrication technique to create SNM with enhanced diffusive transport. We performed in vitro testing and extracorporeal testing in pigs on prototype membranes with an effective surface area of 2.52 cm2 and 2.02 cm2, respectively. The diffusive clearance was a two-fold improvement in with the new microfabrication technique and was consistent with our mathematical model. These results establish the feasibility of using SNM for hemodialysis applications with additional scale-up. PMID:27438878

  8. Optimizing nanoporous materials for gas storage.

    PubMed

    Simon, Cory M; Kim, Jihan; Lin, Li-Chiang; Martin, Richard L; Haranczyk, Maciej; Smit, Berend

    2014-03-28

    In this work, we address the question of which thermodynamic factors determine the deliverable capacity of methane in nanoporous materials. The deliverable capacity is one of the key factors that determines the performance of a material for methane storage in automotive fuel tanks. To obtain insights into how the molecular characteristics of a material are related to the deliverable capacity, we developed several statistical thermodynamic models. The predictions of these models are compared with the classical thermodynamics approach of Bhatia and Myers [Bhatia and Myers, Langmuir, 2005, 22, 1688] and with the results of molecular simulations in which we screen the International Zeolite Association (IZA) structure database and a hypothetical zeolite database of over 100,000 structures. Both the simulations and our models do not support the rule of thumb that, for methane storage, one should aim for an optimal heat of adsorption of 18.8 kJ mol(-1). Instead, our models show that one can identify an optimal heat of adsorption, but that this optimal heat of adsorption depends on the structure of the material and can range from 8 to 23 kJ mol(-1). The different models we have developed are aimed to determine how this optimal heat of adsorption is related to the molecular structure of the material.

  9. Nanoporous hard carbon membranes for medical applications.

    PubMed

    Narayan, Roger J; Jin, Chunming; Menegazzo, Nicola; Mizaikoff, Boris; Gerhardt, Rosario A; Andara, Melanie; Agarwal, Arvind; Shih, Chun-Che; Shih, Chun-Ming; Lin, Shing-Jong; Su, Yea-Yang

    2007-01-01

    Current blood glucose sensors have proven to be inadequate for long term in vivo applications; membrane biofouling and inflammation play significant roles in sensor instability. An ideal biosensor membrane material must prevent protein adsorption and promote integration of the sensor with the surrounding tissue. Furthermore, biosensor membranes must be sufficiently thin and porous in order to allow the sensor to rapidly respond to fluctuations in analyte concentration. In this study, the use of diamondlike carbon-coated anodized aluminum oxide as a potential biosensor membrane is discussed. Diamondlike carbon films and diamondlike carbon-coated anodized aluminum oxide nanoporous membranes were examined using scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and platelet rich plasma testing. The diamondlike carbon-coated anodized aluminum oxide membranes remained free from protein adsorption during in vitro platelet rich plasma testing. We anticipate that this novel membrane could find use in immunoisolation devices, pacemakers, kidney dialysis membranes, microdialysis systems, and other devices facing biocompatibility issues that limit in vivo function.

  10. A tip-attached tuning fork sensor for the control of DNA translocation through a nanopore

    NASA Astrophysics Data System (ADS)

    Hyun, Changbae; Kaur, Harpreet; Huang, Tao; Li, Jiali

    2017-02-01

    In this work, we demonstrate that a tuning fork can be used as a force detecting sensor for manipulating DNA molecules and for controlling the DNA translocation rate through a nanopore. One prong of a tuning fork is glued with a probe tip which DNA molecules can be attached to. To control the motion and position of the tip, the tuning fork is fixed to a nanopositioning system which has sub-nanometer position control. A fluidic chamber is designed to fulfill many requirements for the experiment: for the access of a DNA-attached tip approaching to a nanopore, for housing a nanopore chip, and for measuring ionic current through a solid-state nanopore with a pair of electrodes. The location of a nanopore is first observed by transmission electron microscopy, and then is determined inside the liquid chambers with an optical microscope combined with local scanning the probe tip on the nanopore surface. When a DNA-immobilized tip approaches a membrane surface near a nanopore, free ends of the immobilized DNA strings can be pulled and trapped into the pore by an applied voltage across the nanopore chip, resulting in an ionic current reduction through the nanopore. The trapped DNA molecules can be lifted up from the nanopore at a user controlled speed. This integrated apparatus allows manipulation of biomolecules (DNA, RNA, and proteins) attached to a probe tip with sub-nanometer precision, and simultaneously allows measurement of the biomolecules by a nanopore device.

  11. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor

    PubMed Central

    Liu, Lei; Yang, Chun; Zhao, Kai; Li, Jingyuan; Wu, Hai-Chen

    2013-01-01

    An important issue in nanopore sensing is to construct stable and versatile sensors that can discriminate analytes with minute differences. Here we report a means of creating nanopores that comprise ultrashort single-walled carbon nanotubes inserted into a lipid bilayer. We investigate the ion transport and DNA translocation through single-walled carbon nanotube nanopores and find that our results are fundamentally different from previous studies using much longer single-walled carbon nanotubes. Furthermore, we utilize the new single-walled carbon nanotube nanopores to selectively detect modified 5-hydroxymethylcytosine in single-stranded DNA, which may have implications in screening specific genomic DNA sequences. This new nanopore platform can be integrated with many unique properties of carbon nanotubes and might be useful in molecular sensing such as DNA-damage detection, nanopore DNA sequencing and other nanopore-based applications. PMID:24352224

  12. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Yang, Chun; Zhao, Kai; Li, Jingyuan; Wu, Hai-Chen

    2013-12-01

    An important issue in nanopore sensing is to construct stable and versatile sensors that can discriminate analytes with minute differences. Here we report a means of creating nanopores that comprise ultrashort single-walled carbon nanotubes inserted into a lipid bilayer. We investigate the ion transport and DNA translocation through single-walled carbon nanotube nanopores and find that our results are fundamentally different from previous studies using much longer single-walled carbon nanotubes. Furthermore, we utilize the new single-walled carbon nanotube nanopores to selectively detect modified 5-hydroxymethylcytosine in single-stranded DNA, which may have implications in screening specific genomic DNA sequences. This new nanopore platform can be integrated with many unique properties of carbon nanotubes and might be useful in molecular sensing such as DNA-damage detection, nanopore DNA sequencing and other nanopore-based applications.

  13. Electro-Induced Dewetting and Concomitant Ionic Current Avalanche in Nanopores

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Qiao, Rui; Jiang, Xikai

    2013-01-01

    Electrically driven ionic transport of room-temperature ionic liquids (RTILs) through nanopores is studied using atomistic simulations. The results show that in nanopores wetted by RTILs a gradual dewetting transition occurs upon increasing the applied voltage, which is accompanied by a sharp increase in ionic current. These phenomena originate from the solvent-free nature of RTILs and are in stark contrast with the transport of conventional electrolytes through nanopores. Amplification is possible by controlling the properties of the nanopore and RTILs, and we show that it is especially pronounced in charged nanopores. The results highlight the unique physics of nonequilibrium transport of RTILs in confined geometries and point to potential experimental approaches for manipulating ionic transport in nanopores, which can benefit diverse techniques including nanofluidic circuitry and nanopore analytics.

  14. Sensing, capturing, and interrogation of single virus particles with solid state nanopores

    NASA Astrophysics Data System (ADS)

    Darvish, Armin; Goyal, Gaurav; Kim, Minjun

    2015-05-01

    Solid-state nanopores have gained much attention as a bioanalytical platform. By virtue of their tunable nanoscale dimensions, nanopore sensors can a spatial resolution that spans a wide range of biological species from a single-molecule to a single virus or microorganism. Several groups have already used solid-state nanopores for tag-free detection of viruses. However, no one has reported use of nanopores to capture a single virus for further interrogation by the electric field inside nanopores. In this paper we will report detection of single HIV-1 particle with solid-state nanopores and demonstrate the ability to trap a single HIV-1 particle on top of a nanopore and force it to squeeze through the pore using an electric field.

  15. Agglomeration and defluidization in fluidized beds due to thermally induced sintering

    SciTech Connect

    Compo, P.; Pfeffer, R.; Tardos, G.I.

    1987-01-01

    The surfaces of fluidizable particles often soften at temperatures well below the material's bulk solid melting point. When particles come into contact at elevated temperatures, there is a tendency for material bridges to form resulting in an interparticle adhesive force. This phenomenon, known as sintering, is driven by the reduction of excess surface energy and for each material is dependent on factors such as particle size and morphology, the interparticle compression force and most importantly, temperature. High temperature fluidization of cohesive powders results in agglomeration, thereby increasing the effective diameter and changing the hydrodynamic properties of the particles. If interparticle forces become significantly greater than forces generated by particle motion, defluidization will occur. In industrial practice, agglomeration is usually undesirable and must be avoided, although there are cases where controlled agglomeration is useful as in fluid-bed coal gasification where the mineral matter agglomerates and is removed from the reactor. The experimental work reported here consists of dilatometry to determine the sintering behavior of a powder as a function of temperature and high temperature fluidization in a pilot size unit to measure the minimum fluidization velocity (defluidization limit) and the voidage at minimum fluidization in the cohesive temperature range of the material. A wide variety of particles have been studied ranging from pure substances including polymers, salts and glass beads to ores and cracking catalysts obtained from industrial reactors where problematic agglomeration at high temperature fluidization was encountered.

  16. Experimental development of a two-stage fluidized-bed/cyclonic agglomerating incinerator

    SciTech Connect

    Mensinger, M.C.; Rehmat, A.; Bryan, B.G.; Lau, F.S. ); Shearer, T.L. ); Duggan, P.A. )

    1991-01-01

    The Institute of Gas Technology (IGT) is conducting an experimental program to develop and test through pilot-plant scale of operation, IGT's two-stage fluidized-bed/cyclonic agglomerating incinerator (TSI). The TSI is based on combining the fluidized-bed agglomeration/gasification technology and the cyclonic combustion/incineration technology, which have been developed at IGT over many years. The TSI is a unique and extremely flexible combustor that can operate over a wide range of conditions in the fluidized-bed first stage from low temperature (desorption) to high temperature (agglomeration) including gasification of high-Btu wastes. The TSI can easily and efficiently destroy solid, liquid and gaseous organic wastes, while containing solid inorganic contaminants within an essentially non-leachable glassy matrix, suitable for disposal in an ordinary landfill. This paper presents the results of tests conducted in a batch, fluidized-bed bench-scale unit (BSU) with commercially available clean'' top soil and the same soil spiked with lead and chromium compounds. The objectives of these tests were to determine the operating conditions necessary to achieve soil agglomeration and to evaluate the leaching characteristics of the soil agglomerates formed. 7 refs., 7 figs., 6 tabs.

  17. Micro-agglomerate flotation for deep cleaning of coal. Final report

    SciTech Connect

    Chander, S.; Hogg, R.

    1997-01-15

    The development of practical technologies for the deep cleaning of coal has been seriously hampered by the problems of carrying out efficient coal/mineral separations at the very fine sizes (often finer than 10 {micro}m) needed to achieve adequate liberation of the mineral matter from the coal matrix. In this investigation a hybrid process--Micro-agglomerate flotation--which is a combination of oil-agglomeration and froth flotation was studied. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates with minimal entrapment of water and mineral particles and to use froth flotation to separate these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units will be relatively large agglomerates (30--50 {micro}m in size) rather than fine coal particles (1--10 {micro}m) the problems of froth overload and water/mineral carryover should be significantly alleviated. There are, however, complications. The process involves at least five phases: two or more solids (coal and mineral), two liquids (oil and water) and one gas (air). It is demonstrated in this study that the process is very sensitive to fluctuations in operating parameters. It is necessary to maintain precise control over the chemistry of the liquid phases as well as the agitation conditions in order to promote selectivity. Both kinetics as well as thermodynamic factors play a critical role in determining overall system response.

  18. Acoustic agglomeration of power plant fly ash: Quarterly technical report, November 5, 1986--February 5, 1987

    SciTech Connect

    Reethof, G.

    1987-03-20

    The objective of this project is to complete the investigations on the use of high intensity acoustic energy to agglomerate micron and submicron sized particulates in fly ash aerosols in order to provide the necessary scientific knowledge and design criteria for the specification of technically and economically viable intermediate flue gas treatment of coal fired power plants. The results of the project are to provide technical and economic information for the better development and evaluation of potential fine particulate control systems. The goals of the proposed work are to further the understanding of certain fundamental processes by means of theoretical and experimental investigations, to include this knowledge in an advanced computerized model of the agglomeration processes. Tests with the two acoustic agglomerators available in Penn State's new High Intensity Acoustics Laboratory will be used to verify the results from the agglomeration simulation. Research work will continue on high power, high efficiency sirens with special emphasis on the nonlinear acoustic phenomena and novel means of significantly increasing siren efficiency. A study will be carried out to evaluate the economics of conventional coal fired power plant clean-up systems using acoustic agglomerators as intermediate flue gas treatment.

  19. Acoustic agglomeration of power plant fly ash for environmental and hot gas cleanup

    SciTech Connect

    Reethof, G.; Koopmann, G.H.

    1989-12-01

    This two year research program has the objectives of completing the several investigations associated with the use of high intensity acoustic energy to agglomerate micron and submicron sized particles in fly ash aerosols in order to provide the necessary scientific knowledge and design criteria for the specification of technically and economically viable intermediate flue gas treatment of coal fired power plants. Goals are to further the understanding of certain fundamental processes by means of theoretical and experimental investigations to include this knowledge in an advanced computerized model of the agglomeration processes. Tests with the acoustic agglomeration facilities available in Penn State's new High Intensity Acoustic Laboratory were to be used to verify the results from the acoustic agglomeration simulations. Research work continued on high power, high efficiency sirens with special emphasis on the nonlinear acoustic phenomena and novel means of significantly increasing siren efficiency. A study was carried out to evaluate the economics of conventional coal fired power plant clean-up systems using acoustic agglomeration as an intermediate flue gas treatment. 154 refs., 152 figs., 30 tabs.

  20. Hydrodynamic chromatography coupled with single particle-inductively coupled plasma mass spectrometry for investigating nanoparticles agglomerates.

    PubMed

    Rakcheev, Denis; Philippe, Allan; Schaumann, Gabriele E

    2013-11-19

    Studying the environmental fate of engineered or natural colloids requires efficient methods for measuring their size and quantifying them in the environment. For example, an ideal method should maintain its correctness, accuracy, reproducibility, and robustness when applied to samples contained in complex matrixes and distinguish the target particles from the natural colloidal background signals. Since it is expected that a large portion of nanoparticles will form homo- or heteroagglomerates when released into environmental media, it is necessary to differentiate agglomerates from primary particles. At present, most sizing techniques do not fulfill these requirements. In this study, we used online coupling of two promising complementary sizing techniques: hydrodynamic chromatography (HDC) and single-particle ICPMS analysis to analyze gold nanoparticles agglomerated under controlled conditions. We used the single-particle mode of the ICPMS detector to detect single particles eluted from an HDC-column and determine a mass and an effective diameter for each particle using a double calibration approach. The average agglomerate relative density and fractal dimension were calculated using these data and used to follow the morphological evolution of agglomerates over time during the agglomeration process. The results demonstrate the ability of HDC coupled to single-particle analysis to identify and characterize nanoparticle homoagglomerates and is a very promising technique for the analysis of colloids in complex media.