Science.gov

Sample records for nanopowder ceo2-based solid

  1. Fundamentals and Catalytic Applications of CeO2-Based Materials.

    PubMed

    Montini, Tiziano; Melchionna, Michele; Monai, Matteo; Fornasiero, Paolo

    2016-05-25

    Cerium dioxide (CeO2, ceria) is becoming an ubiquitous constituent in catalytic systems for a variety of applications. 2016 sees the 40(th) anniversary since ceria was first employed by Ford Motor Company as an oxygen storage component in car converters, to become in the years since its inception an irreplaceable component in three-way catalysts (TWCs). Apart from this well-established use, ceria is looming as a catalyst component for a wide range of catalytic applications. For some of these, such as fuel cells, CeO2-based materials have almost reached the market stage, while for some other catalytic reactions, such as reforming processes, photocatalysis, water-gas shift reaction, thermochemical water splitting, and organic reactions, ceria is emerging as a unique material, holding great promise for future market breakthroughs. While much knowledge about the fundamental characteristics of CeO2-based materials has already been acquired, new characterization techniques and powerful theoretical methods are deepening our understanding of these materials, helping us to predict their behavior and application potential. This review has a wide view on all those aspects related to ceria which promise to produce an important impact on our life, encompassing fundamental knowledge of CeO2 and its properties, characterization toolbox, emerging features, theoretical studies, and all the catalytic applications, organized by their degree of establishment on the market.

  2. Long-term aging of a CeO(2) based nanocomposite used for wood protection.

    PubMed

    Auffan, Melanie; Masion, Armand; Labille, Jerome; Diot, Marie-Ange; Liu, Wei; Olivi, Luca; Proux, Olivier; Ziarelli, Fabio; Chaurand, Perrine; Geantet, Christophe; Bottero, Jean-Yves; Rose, Jerome

    2014-05-01

    A multi-scale methodology was used to characterize the long-term behavior and chemical stability of a CeO2-based nanocomposite used as UV filter in wood stains. ATR-FTIR and (13)C NMR demonstrated that the citrate coated chelates with Ce(IV) through its central carboxyl- and its α-hydroxyl- groups at the surface of the unaged nanocomposite. After 42 days under artificial daylight, the citrate completely disappeared and small amount of degradation products remained attached to the surface even after 112 days. Moreover, the release/desorption of the citrate layer led to a surface reorganization of the nano-sized CeO2 core observed by XANES (Ce L3-edge). Such a surface and structural transformation of the commercialized nanocomposite could have implications in term of fate, transport, and potential impacts towards the environment.

  3. Plasma column and nano-powder generation from solid titanium by localized microwaves in air

    NASA Astrophysics Data System (ADS)

    Popescu, Simona; Jerby, Eli; Meir, Yehuda; Barkay, Zahava; Ashkenazi, Dana; Mitchell, J. Brian A.; Le Garrec, Jean-Luc; Narayanan, Theyencheri

    2015-07-01

    This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy, and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ˜0.4 eV and ˜1019 m-3, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.

  4. Plasma column and nano-powder generation from solid titanium by localized microwaves in air

    SciTech Connect

    Popescu, Simona; Jerby, Eli Meir, Yehuda; Ashkenazi, Dana; Barkay, Zahava; Mitchell, J. Brian A.; Le Garrec, Jean-Luc; Narayanan, Theyencheri

    2015-07-14

    This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy, and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ∼0.4 eV and ∼10{sup 19 }m{sup −3}, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.

  5. Synthesis and structural characterization of Co2+ ions doped ZnO nanopowders by solid state reaction through sonication

    NASA Astrophysics Data System (ADS)

    Babu, B.; Rama Krishna, Ch.; Venkata Reddy, Ch.; Pushpa Manjari, V.; Ravikumar, R. V. S. S. N.

    2013-05-01

    Cobalt ions doped zinc oxide nanopowder was prepared at room temperature by a novel and simple one step solid-state reaction method through sonication in the presence of a suitable surfactant Sodium Lauryl Sulphate (SLS). The prepared powder was characterized by various spectroscopic techniques. Powder XRD data revealed that the crystal structure belongs to hexagonal and its average crystallite size was evaluated. From optical absorption data, crystal fields (Dq), inter-electronic repulsion parameters (B, C) were evaluated. By correlating optical and EPR spectral data, the site symmetry of Co2+ ion in the host lattice was determined as octahedral. Photoluminescence spectra exhibited the emission bands in ultraviolet and blue regions. The CIE chromaticity coordinates are also evaluated from the emission spectrum. FT-IR spectra showed the characteristic vibrational bands of Znsbnd O.

  6. Synthesis of 8YSZ-LSGM Composite Thick Film Ceramics for Solid Electrolyte From Nanopowder Utilizing Local Zircon Prepared Using Sol Gel Process

    NASA Astrophysics Data System (ADS)

    Syarif, Dani Gustaman; Soepriyanto, Syoni; Ismunandar, Korda, Akhmad

    2010-10-01

    Thick film ceramics of 8% mol Y2O3 doped-ZrO2 (8YSZ)-La0.8Sr0.2Ga0.2Mg0.8O3 (LSGM) composite for solid electrolyte have been synthesized from nanopowder. Concentration of LSGM was 0 and 10% weight. A paste for the thick films was made from 8YSZ nanopowder prepared using sol gel method and LSGM powder prepared by solid state reaction. Precursors for the 8YSZ nanopowder preparation were ZrOCl2ṡ8H2O derived from local zircon as byproduct of Tin processing at Bangka Island using caustic fussion method, and Y(NO3)3. The thick films were produced by screen printing technique on alumina substrates. The films were sintered at 1500° C for 2 hours in air. X-ray diffraction (XRD) data showed that the nanopowder of 8YSZ was well produced with broad peaks. The particle size of the 8YSZ powder was about 12 nm as calculated using Debye Scherrer method. The thick films of 8YSZ and 8YSZ-LSGM (90:10 in weight %) composite could be produced, however, the films still contain voids. The ionic conductance of the YSZ-10LSGM films was smaller than that of the YSZ films.

  7. Direct solid sampling system for electrothermal vaporization and its application to the determination of chlorine in nanopowder samples by inductively coupled plasma optical emission spectroscopy.

    PubMed

    Nakata, Kenichi; Hashimoto, Bunji; Uchihara, Hiroshi; Okamoto, Yasuaki; Ishizaka, Syoji; Fujiwara, Terufumi

    2015-06-01

    An electrothermal vaporization (ETV) system using a tungsten boat furnace (TBF) sample cuvette was designed for the direct determination of chlorine in metallic nanopowders and fine powder samples with detection by inductively coupled plasma optical emission spectroscopy (ICP-OES). A portion of a powder or particle sample was placed into a small tungsten sample cuvette and weighed accurately. A modifier solution of aqueous or alcoholic potassium hydroxide was added to it. Then, the cuvette was positioned on the TBF incorporated into the ETV apparatus. The analyte was vaporized and introduced into the ICP optical emission spectrometer with a carrier gas stream of argon and hydrogen. The metal samples were analyzed by using an external calibration curve prepared from aqueous standard solutions. Few chemical species including analyte and some chlorine-free species were introduced into the ICP, because the analyte has been separated from the matrix before introduction. Under such dry plasma conditions, the energy of plasma discharge was focused on the excitation of chlorine atoms, and as a result, lower detection limits were achieved. A detection limit of 170 ng g(-1) of chlorine in solid metal samples was established when 60 mg sample was used. The relative standard deviation for 16 replicate measurements obtained with 100 ng chlorine was 8.7%. Approximately 30 batches could be vaporized per hour. The analytical results for various nanopowders (iron (III) oxide, copper, silver, and gold) and metallic fine powder samples (silver and gold) are described. PMID:25863402

  8. CeO2-based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact

    PubMed Central

    2014-01-01

    As morphology plays a relevant role in solid/solid catalysis, where the number of contact points is a critical feature in this kind of reaction, three different ceria morphologies have been investigated in this work as soot oxidation catalysts: ceria nanofibers, which can become organized as a catalytic network inside diesel particulate filter channels and thus trap soot particles at several contact points but have a very low specific surface area (4 m2/g); solution combustion synthesis ceria, which has an uncontrolled morphology but a specific surface area of 31 m2/g; and three-dimensional self-assembled (SA) ceria stars, which have both high specific surface area (105 m2/g) and a high availability of contact points. A high microporous volume of 0.03 cm3/g and a finer crystallite size compared to the other morphologies suggested that self-assembled stars could improve their redox cycling capability and their soot oxidation properties. In this comparison, self-assembled stars have shown the best tendency towards soot oxidation, and the temperature of non-catalytic soot oxidation has dropped from 614°C to 403°C in tight and to 552°C in loose contact conditions, respectively. As far as the loose contact results are concerned, this condition being the most realistic and hence the most significant, self-assembled stars have exhibited the lowest T10% onset temperature of this trio (even after ageing), thus proving their higher intrinsic activity. Furthermore, the three-dimensional shape of self-assembled stars may involve more of the soot cake layer than the solution combustion synthesis or nanofibers of ceria and thus enhance the total number of contact points. The results obtained through this work have encouraged our efforts to understand soot oxidation and to transpose these results to real diesel particulate filters. PMID:24940178

  9. Rheological behavior of oxide nanopowder suspensions

    NASA Astrophysics Data System (ADS)

    Cinar, Simge

    Ceramic nanopowders offer great potential in advanced ceramic materials and many other technologically important applications. Because a material's rheological properties are crucial for most processing routes, control of the rheological behavior has drawn significant attention in the recent past. The control of rheological behavior relies on an understanding of how different parameters affect the suspension viscosities. Even though the suspension stabilization mechanisms are relatively well understood for sub-micron and micron size particle systems, this knowledge cannot be directly transferred to nanopowder suspensions. Nanopowder suspensions exhibit unexpectedly high viscosities that cannot be explained with conventional mechanisms and are still a topic of investigation. This dissertation aims to establish the critical parameters governing the rheological behavior of concentrated oxide nanopowder suspensions, and to elucidate the mechanisms by which these parameters control the rheology of these suspensions. Aqueous alumina nanopowders were chosen as a model system, and the findings were extrapolated to other oxide nanopowder systems such as zirconia, yttria stabilized zirconia, and titania. Processing additives such as fructose, NaCl, HCl, NaOH, and ascorbic acid were used in this study. The effect of solids content and addition of fructose on the viscosity of alumina nanopowder suspensions was investigated by low temperature differential scanning calorimetry (LT-DSC), rheological, and zeta potential measurements. The analysis of bound water events observed in LT-DSC revealed useful information regarding the rheological behavior of nanopowder suspensions. Because of the significance of interparticle interactions in nanopowder suspensions, the electrostatic stabilization was investigated using indifferent and potential determining ions. Different mechanisms, e.g., the effect of the change in effective volume fraction caused by fructose addition and electrostatic

  10. Research on the impact of CeO2-based solid solution metal oxide on combustion performance of diesel engine and emissions

    NASA Astrophysics Data System (ADS)

    Xin, Zhipeng; Tang, Yunbang; Man, Changzhong; Zhao, Yince; Ren, Jianlu

    2013-09-01

    This paper mainly studies on the performance of high-speed diesel engines and emission reduction when the engine uses heavy oil mixed with nanometer-sized additives Ce0.9Cu0.1O2 and Ce0.9Zr0.1O2. During the test, Indiset 620 combustion analyzer made by AVL, was used to make a real-time survey on the cylinder pressure, the fuel ignition moment, and establish a relation between the change trend of temperature in cylinder and the crank angle. For the engine burning heavy oil and heavy oil mixed with additives, combustion analysis software Indicom and Concerto were used to analyze its combustion process and emission conditions. Experimental investigation shows that nano-sized complex oxide can improve the performance of diesel engine fueled with heavy oil, and reduce the emission of pollutants like NOx and CO, comparing it with the pure heavy oil. According to the consequences of this experiment, the additives improve the overall performance in the use of heavy oil.

  11. Nanoexplosion synthesis of multimetal oxide ceramic nanopowders.

    PubMed

    Vasylkiv, Oleg; Sakka, Yoshio

    2005-12-01

    Herein we demonstrate a unique processing technique for engineering multicomponent ceramic nanopowders with precise morphologies by "nanoblast" calcination/deagglomeration. Multiple "nanoexplosions" of C(3)H(6)N(6)O(6) nanoparticles embedded in preliminary engineered nanoreactors break apart the agglomerates because of the highly energetic impacts of the blast waves. Also, the solid-solubility of one component into the other is enhanced by the extremely high local temperature generated during the nanoexplosions. We applied this technique to produce nanosized agglomerate-free ceria-gadolinia solid solution powder with an average aggregate size of 42 nm. The described method opens the door to the synthesis of a wide range of multimetal oxide ceramic and metal-ceramic composite nanopowders, with precise stoichiometries and uniform morphologies. PMID:16351222

  12. Production and properties of electrosprayed sericin nanopowder

    NASA Astrophysics Data System (ADS)

    Hazeri, Najmeh; Tavanai, Hossein; Moradi, Ali Reza

    2012-06-01

    Sericin is a proteinous substrate that envelops fibroin (silk) fiber, and its recovery provides significant economical and social benefits. Sericin is an antibacterial agent that resists oxidation and absorbs moisture and UV light. In powder form, sericin has a wide range of applications in food, cosmetics and drug delivery. Asides from other techniques of producing powder, such as precipitation and spray drying, electrospraying can yield solid nanoparticles, particularly in the submicron range. Here, we report the production of sericin nanopowder by electrospraying. Sericin sponge was recovered from Bombyx mori cocoons through a high-temperature, high-pressure process, followed by centrifugation and freeze drying of the sericin solution. The electrospraying solution was prepared by dissolving the sericin sponge in dimethyl sulfoxide. We demonstrate that electrospraying is capable of producing sericin nanopowder with an average particle size of 25 nm, which is by far smaller than the particles produced by other techniques. The electrosprayed sericin nanopowder consists of small crystallites and exhibits a high moisture absorbance.

  13. Combustion synthesis of Sm 0.5Sr 0.5CoO 3- x and La 0.6Sr 0.4CoO 3- x nanopowders for solid oxide fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Bansal, Narottam P.; Zhong, Zhimin

    Nanopowders of Sm 0.5Sr 0.5CoO 3- x (SSC) and La 0.6Sr 0.4CoO 3- x (LSC) compositions, which are being investigated as cathode materials for intermediate temperature solid oxide fuel cells (SOFC), were synthesized by a solution-combustion method using metal nitrates and glycine as fuel. Development of crystalline phases in the as-synthesized powders after heat treatments at various temperatures was monitored by X-ray diffraction (XRD). Perovskite phase in LSC formed more readily than in SSC. Single-phase perovskites were obtained after heat treatment of the combustion synthesized LSC and SSC powders at 1000 and 1200 °C, respectively. The as-synthesized powders had an average particle size of ∼12 nm as determined from X-ray line broadening analysis using the Scherrer equation. Average grain size of the powders increased with increase in calcination temperature. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy (SEM).

  14. Sol-Gel Synthesis of La(0.6)Sr(0.4)CoO(3-x) and Sm(0.5)Sr(0.5)CoO(3-x) Cathode Nanopowders for Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Wise, Brent

    2011-01-01

    Nanopowders of La(0.6)Sr(0.4)CoO(3-x) (LSC) and Sm(0.5)Sr(0.5)CoO(3-x) (SSC) compositions, which are being investigated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC) with La(Sr)Ga(Mg)O(3-x) (LSGM) as the electrolyte, were synthesized by low-temperature sol-gel method using metal nitrates and citric acid. Thermal decomposition of the citrate gels was followed by simultaneous DSC/TGA methods. Development of phases in the gels, on heat treatments at various temperatures, was monitored by x-ray diffraction. Solgel powders calcined at 550 to 1000 C consisted of a number of phases. Single perovskite phase La(0.6)Sr(0.4)CoO(3-x) or Sm(0.5)Sr(0.5)CoO(3-x) powders were obtained at 1200 and 1300 C, respectively. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy. The average particle size of the powders was approx.15 nm after 700 C calcinations and slowly increased to 70 to 100 nm after heat treatments at 1300 to 1400 C.

  15. Combustion Synthesis of Sm0.5Sr0.5CoO3-x and La0.6Sr0.4CoO3-x Nanopowders for Solid Oxide Fuel Cell Cathodes

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhong, zhimin

    2005-01-01

    Nanopowders of Sm0.5Sr0.5CoO(3-x) (SSC) and La0.6Sr0.4CoO(3-x) (LSC) compositions, which are being investigated as cathode materials for intermediate temperature solid oxide fuel cells, were synthesized by a solution-combustion method using metal nitrates and glycine as fuel. Development of crystalline phases in the as-synthesized powders after heat treatments at various temperatures was monitored by x-ray diffraction. Perovskite phase in LSC formed more readily than in SSC. Single phase perovskites were obtained after heat treatment of the combustion synthesized LSC and SSC powders at 1000 and 1200 C, respectively. The as-synthesized powders had an average particle size of 12 nm as determined from x-ray line broadening analysis using the Scherrer equation. Average grain size of the powders increased with increase in calcination temperature. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy.

  16. Synthesis, characterization and gas sensing properties of tin oxide nanopowder

    NASA Astrophysics Data System (ADS)

    Choudhary, Meenakshi; Mishra, V. N.; Dwivedi, R.

    2013-06-01

    In the present work, tin oxide nanopowder has been synthesized by solid-state reaction technique. The as-prepared pure and palladium doped (0.5 and 1%) powders have been used for the fabrication of thick film sensors. The influence of particle size of powders and morphology of the thick films has been studied on the sensing performance of thick film sensor. It is observed that the sensors produced from the SnO2 doped with 1% palladium have an excellent ability for the detection of hydrogen gas.

  17. Method for forming energetic nanopowders

    DOEpatents

    Lee, Kien-Yin; Asay, Blaine W.; Kennedy, James E.

    2013-10-15

    A method for the preparation of neat energetic powders, having nanometer dimensions, is described herein. For these neat powder, a solution of a chosen energetic material is prepared in an aprotic solvent and later combined with liquid hexane that is miscible with such solvent. The energetic material chosen is less soluble in the liquid hexane than in the aprotic solvent and the liquid hexane is cooled to a temperature that is below that of the solvent solution. In order to form a precipitate of said neat powders, the solvent solution is rapidly combined with the liquid hexane. When the resulting precipitate is collected, it may be dried and filtered to yield an energetic nanopowder material.

  18. Incorporation of aluminum nanopowder into NTO.

    SciTech Connect

    Lee, K. Y.; Kennedy, J. E.; Peterson, P. D.; Asay, B. W.

    2004-01-01

    Most insensitive high explosives have relatively low output and the user is forced to choose between enhancing operational safety and meeting ordnance performance requirements. The goals of this project are to investigate ways to incorporate Al nanopowder in NTO and to devise formulations that are insensitive and that exhibit high performance. In this paper, the novel method for the preparation of nanoNTO and its formulation with Al nanopowder will be presented, together with the characterization test results. Data from minisandwich velocity test on NTO and NTO/Al mix and the techniques used to verify the potential encapsulation of Al in NTO will also be presented.

  19. Synthesis of carbon nanostructures on iron nanopowders

    NASA Astrophysics Data System (ADS)

    Koshanova, A.; Partizan, G.; Mansurov, B.; Medyanova, B.; Mansurova, M.; Aliev, B.; Jiang, Xin

    2016-08-01

    This work presents the results of experiments on synthesis of carbon nanostructures (CNs) by the method of thermal chemical vapor deposition using iron nanopowders obtained by the method of electrical explosion of wires as catalysts. To study the process of nucleation and growth of individual carbon nanostructures, experiments were conducted not only on nanopowders, but also on the separated clusters. To determine the optimum conditions of the carbon nanostructures synthesis and lower temperature limit, experiments were performed at different temperatures (300-700°C) and pressures (100-400 mbar). The experiments have shown that the lower temperature limit for carbon nanostructures synthesis on the iron nanopowders is 350°C and in this process the growth of carbon nanostructures is not so massive. Stable growth of carbon nanostructures for nanopowders began from 400°C during the entire range of pressures. The analysis of Raman spectroscopy showed that the most optimum conditions for obtaining nanotubes of high quality are P = 100 mbar and T = 425°C.

  20. Multiple nano-blast synthesis of PT/8Y-ZP composite nanopowders.

    PubMed

    Vasylkiv, Oleg; Sakka, Yoshio; Skorokhod, Valeriy V

    2006-06-01

    We demonstrate a processing technique based on the synthesis of ceramic nanopowders and simultaneous impregnation with metallic nanoparticles by multiple 'nano-blasts' of embeded cyclotrimethylene trinitramine in preliminary engineered multi-component nano-reactors. 'Nano-blasts' of impregnated cyclotrimethylene trinitramine deagglomerate the nanopowder due to the high energetic impacts of the blast waves, while the decomposition of compounds and their solid-solubility is enhanced by the extremely high local temperature generated during the nano-explosions. We applied this technique to produce nanosized agglomerate-free 8 mol% yttria-doped cubic zirconia aggregates with an average size of 53 nm impregnated with 10 mass% of platinum particles of 2-14 nm. PMID:17025061

  1. Oxidation and melting of aluminum nanopowders.

    PubMed

    Trunov, Mikhaylo A; Umbrajkar, Swati M; Schoenitz, Mirko; Mang, Joseph T; Dreizin, Edward L

    2006-07-01

    Recently, nanometer-sized aluminum powders became available commercially, and their use as potential additives to propellants, explosives, and pyrotechnics has attracted significant interest. It has been suggested that very low melting temperatures are expected for nanosized aluminum powders and that such low melting temperatures could accelerate oxidation and trigger ignition much earlier than for regular, micron-sized aluminum powders. The objective of this work was to investigate experimentally the melting and oxidation behavior of nanosized aluminum powders. Powder samples with three different nominal sizes of 44, 80, and 121 nm were provided by Nanotechnologies Inc. The particle size distributions were measured using small-angle X-ray scattering. Melting was studied by differential scanning calorimetry where the powders were heated from room temperature to 750 degrees C in an argon environment. Thermogravimetric analysis was used to measure the mass increase indicative of oxidation while the powders were heated in an oxygen-argon gas mixture. The measured melting curves were compared to those computed using the experimental particle size distributions and thermodynamic models describing the melting temperature and enthalpy as functions of the particle size. The melting behavior predicted by different models correlated with the experimental observations only qualitatively. Characteristic stepwise oxidation was observed for all studied nanopowders. The observed oxidation behavior was well interpreted considering the recently established kinetics of oxidation of micron-sized aluminum powders. No correlation was found between the melting and oxidation of aluminum nanopowders.

  2. Growth model of binary alloy nanopowders for thermal plasma synthesis

    NASA Astrophysics Data System (ADS)

    Shigeta, Masaya; Watanabe, Takayuki

    2010-08-01

    A new model is developed for numerical analysis of the entire growth process of binary alloy nanopowders in thermal plasma synthesis. The model can express any nanopowder profile in the particle size-composition distribution (PSCD). Moreover, its numerical solution algorithm is arithmetic and straightforward so that the model is easy to use. By virtue of these features, the model effectively simulates the collective and simultaneous combined process of binary homogeneous nucleation, binary heterogeneous cocondensation, and coagulation among nanoparticles. The effect of the freezing point depression due to nanoscale particle diameters is also considered in the model. In this study, the metal-silicon systems are particularly chosen as representative binary systems involving cocondensation processes. In consequence, the numerical calculation with the present model reveals the growth mechanisms of the Mo-Si and Ti-Si nanopowders by exhibiting their PSCD evolutions. The difference of the materials' saturation pressures strongly affects the growth behaviors and mature states of the binary alloy nanopowder.

  3. Growth model of binary alloy nanopowders for thermal plasma synthesis

    SciTech Connect

    Shigeta, Masaya; Watanabe, Takayuki

    2010-08-15

    A new model is developed for numerical analysis of the entire growth process of binary alloy nanopowders in thermal plasma synthesis. The model can express any nanopowder profile in the particle size-composition distribution (PSCD). Moreover, its numerical solution algorithm is arithmetic and straightforward so that the model is easy to use. By virtue of these features, the model effectively simulates the collective and simultaneous combined process of binary homogeneous nucleation, binary heterogeneous cocondensation, and coagulation among nanoparticles. The effect of the freezing point depression due to nanoscale particle diameters is also considered in the model. In this study, the metal-silicon systems are particularly chosen as representative binary systems involving cocondensation processes. In consequence, the numerical calculation with the present model reveals the growth mechanisms of the Mo-Si and Ti-Si nanopowders by exhibiting their PSCD evolutions. The difference of the materials' saturation pressures strongly affects the growth behaviors and mature states of the binary alloy nanopowder.

  4. Studies on synthesis of alumina nanopowder from synthetic Bayer liquor

    SciTech Connect

    Mazloumi, Mahyar; Arami, Hamed; Khalifehzadeh, Razieh; Sadrnezhaad, S.K. . E-mail: sadrnezh@sharif.edu

    2007-06-05

    Procedure for synthesis of alumina nanopowder from Bayer liquor (synthetic sodium aluminate solution) is investigated. Cooling, ageing and then addition of 3 ml/l Tiron (1,2-dihydroxy-3,5-benzene disulfonic acid disodium salt) to the supersaturated liquor affect purity and fineness of the nanopowder product. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray (EDAX) analyses indicate that purity of the alumina nanopowder increases with the aging time. Experimental observations show that highly pure alumina nanopowders could be produced by direct calcination of cold gelatinous sodium aluminate solution followed by careful washing at a Tiron concentration of 3 ml/l NaOH.

  5. The processing of nanopowders by thermal plasma technology

    NASA Astrophysics Data System (ADS)

    Tong, Lirong; Reddy, Ramana G.

    2006-04-01

    The thermal plasma synthesis of nanopowders is a relatively new technology with great potential for future industrial applications. This article introduces research carried out in the plasma processing laboratory at the University of Alabama in Tuscaloosa, Alabama. Ceramic nanopowders and nanofibers (SiC, TiC, and B4C) and nanocomposite powders (TiC-Al(Ti), TiC-Fe(Ti), and TiN-Fe (Ti)) were successfully synthesized by thermal plasma technology.

  6. Carbon dot based nanopowders and their application for fingerprint recovery.

    PubMed

    Fernandes, D; Krysmann, M J; Kelarakis, A

    2015-03-21

    The incorporation of a minor amount of carbogenic nanoparticles into powder compositions imparts remarkable colour-tuneability, without compromising the flowability. In a proof-of-concept demonstration we report the use of these hybrid nanopowders for the visual enhancement of latent fingerprints where they effectively resolve issues arising from poor contrast against multi-coloured or patterned backgrounds.

  7. Si-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sinterability

    SciTech Connect

    Bianco, Alessandra Cacciotti, Ilaria; Lombardi, Mariangela Montanaro, Laura

    2009-02-04

    Synthetic hydroxyapatites incorporating small amounts of Si have shown improved biological performances in terms of enhanced bone apposition, bone in-growth and cell-mediated degradation. This paper reports a systematic investigation on Si-substituted hydroxyapatite (Si 1.40 wt%) nanopowders produced following two different conventional wet methodologies: (a) precipitation of Ca(NO{sub 3}){sub 2}.4H{sub 2}O and (b) titration of Ca(OH){sub 2}. The influence of the synthesis process on composition, thermal behaviour and sinterability of the resulting nanopowders is studied. Samples were characterised by electron microscopy, induced coupled plasma atomic emission spectroscopy, thermal analysis, infrared spectroscopy, N{sub 2} adsorption measurements, X-ray diffraction and dilatometry. Semicrystalline Si-substituted hydroxyapatite powders made up of needle-like nanoparticles were obtained, the specific surface area ranged between 84 and 110 m{sup 2}/g. Pure and Si-substituted hydroxyapatite nanopowders derived from Ca(NO{sub 3}){sub 2}.4H{sub 2}O decomposed around 1000 deg. C. Si-substituted hydroxyapatite nanopowders obtained from Ca(OH){sub 2} were thermally stable up to 1200 deg. C and showed a distinct decreased thermal stability with respect to the homologous pure sample. Si-substituted hydroxyapatites exhibited higher sintering temperature and increased total shrinkage with respect to pure powders. Nanostructured dense ceramics were obtained by sintering at 1100 deg. C Si-substituted hydroxyapatites derived from Ca(OH){sub 2}.

  8. One-Pot Polyol Synthesis of Pt/CeO2 and Au/CeO2 Nanopowders as Catalysts for CO Oxidation.

    PubMed

    Pilger, Frank; Testino, Andrea; Lucchini, Mattia Alberto; Kambolis, Anastasios; Tarik, Mohammed; El Kazzi, Mario; Arroyo, Yadira; Rossell, Marta D; Ludwig, Christian

    2015-05-01

    The facile one-pot synthesis of CeO2-based catalysts has been developed to prepare a relatively large amount of nanopowders with relevant catalytic activity towards CO oxidation. The method consists of a two-steps process carried out in ethylene glycol: in the first step, 5 nm well-crystallized pure CeO2 is prepared. In a subsequent second step, a salt of a noble metal is added to the CeO2 suspension and the deposition of the noble metal on the nanocrystalline CeO2 is induced by heating. Two catalysts were prepared: Pt/CeO2 and Au/CeO2. The as-prepared catalysts, the thermally treated catalysts, as well as the pure CeO2, are characterized by XRD, TGA, XPS, FTIR, HR-TEM, STEM, particle size distribution, and N2-physisorption. In spite of the identical preparation protocol, Au and Pt behave in a completely different way: Au forms rather large particles, most of them with triangular shape, easily identifiable and dispersed in the CeO2 matrix. In contrast, Pt was not identified as isolated particles. The high resolution X-ray diffraction carried out on the Pt/CeO2 thermally treated sample (500 degrees C for 1 h) shows a significant CeO2 lattice shrinkage, which can be interpreted as an at least partial incorporation of Pt into the CeO2 crystal lattice. Moreover, only Pt2+ and Pt4+ species were identified by XPS. In literature, the incorporation of Pt into the CeO2 lattice is supported by first-principle calculations and experimentally demonstrated only by combustion synthesis methods. To the best of our knowledge this is the first report where ionically dispersed Pt into the CeO2 lattice is obtained via a liquid synthesis method. The thermally treated Pt/CeO2 sample revealed good activity with 50% CO conversion at almost room temperature.

  9. Ignition and explosion of nanopowders: something new under the dust

    NASA Astrophysics Data System (ADS)

    Dufaud, Olivier; Vignes, Alexis; Henry, François; Perrin, Laurent; Bouillard, Jacques

    2011-07-01

    This work deals with the study of ignition and explosion characteristics of nanoparticles. It has been carried out on various powders: zinc, aluminum, carbon blacks... Specific behaviours have been highlighted during the first phase of this project (Nanosafe 2). For instance, it has been demonstrated that there mainly exists two combustion regimes that are either kinetically controlled, for small size particles, or diffusion controlled, for large size particles (generally with diameters greater than 1 or 2 μm). It has been found that as the particle size decreases, minimum ignition temperature and minimum ignition energy decrease (even lower than 1 mJ), indicating higher potential inflammation and explosion risks for metallic nanopowders. Moreover, the presence of agglomerates in the nanopowders could modify their reactivity. Thus, the explosion severity of Al powders tends to increase as the specific surface area decreases, before reaching a peak for 1 μm particle size. These results are essential for industries producing or handling nanopowders in order to propose/design new and proper prevention and protection means. Nevertheless, the validity of the classical characterization tools with regard to nanopowders should be discussed. For example, the experimental laminar flame velocity of Al dusts has been compared to a theoretical one, determined by Huang's model, which assumes that the propagation of the flame is run mainly by conduction. It has shown a good agreement. However, under certain conditions, the Al flame propagation is expected to be mainly conducted by radiation. Two hypotheses can then be made. On the one hand, it can be assumed that the 20 L sphere probably disturbs the flame propagation and thermal mechanisms by absorbing radiation (wall quenching effect). On the other hand, it has been observed, thanks to the use of a high speed camera that the preheating zone is smaller for some nanopowders than for micro-particles (figure below). It could

  10. Shock-induced consolidation and spallation of Cu nanopowders

    SciTech Connect

    Huang, L.; Han, W. Z.; Luo, S. N.; An, Q.; Goddard, W. A. III

    2012-01-01

    A useful synthesis technique, shock synthesis of bulk nanomaterials from nanopowders, is explored here with molecular dynamics simulations. We choose nanoporous Cu ({approx}11 nm in grain size and 6% porosity) as a representative system, and perform consolidation and spallation simulations. The spallation simulations characterize the consolidated nanopowders in terms of spall strength and damage mechanisms. The impactor is full density Cu, and the impact velocity (u{sub i}) ranges from 0.2 to 2 km s{sup -1}. We present detailed analysis of consolidation and spallation processes, including atomic-level structure and wave propagation features. The critical values of u{sub i} are identified for the onset plasticity at the contact points (0.2 km s{sup -1}) and complete void collapse (0.5 km s{sup -1}). Void collapse involves dislocations, lattice rotation, shearing/friction, heating, and microkinetic energy. Plasticity initiated at the contact points and its propagation play a key role in void collapse at low u{sub i}, while the pronounced, grain-wise deformation may contribute as well at high u{sub i}. The grain structure gives rise to nonplanar shock response at nanometer scales. Bulk nanomaterials from ultrafine nanopowders ({approx}10 nm) can be synthesized with shock waves. For spallation, grain boundary (GB) or GB triple junction damage prevails, while we also observe intragranular voids as a result of GB plasticity.

  11. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids.

    PubMed

    Hussain, Dilshad; Najam-ul-Haq, Muhammad; Jabeen, Fahmida; Ashiq, Muhammad N; Athar, Muhammad; Rainer, Matthias; Huck, Christian W; Bonn, Guenther K

    2013-05-01

    Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe(3+) and La(3+) ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program (www.matrixscience.com) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification.

  12. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids.

    PubMed

    Hussain, Dilshad; Najam-ul-Haq, Muhammad; Jabeen, Fahmida; Ashiq, Muhammad N; Athar, Muhammad; Rainer, Matthias; Huck, Christian W; Bonn, Guenther K

    2013-05-01

    Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe(3+) and La(3+) ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program (www.matrixscience.com) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification. PMID:23601977

  13. Assignment of Appropriate Conditions for Synthesizing Tungsten Nanopowder by Electric Explosion of Conductors

    NASA Astrophysics Data System (ADS)

    Zhuravkov, S. P.; Pustovalov, A. V.; Kuznetsov, M. A.; Rosliy, I. S.; Zernin, E. A.

    2016-08-01

    The paper provides the results of experimental research into properties of tungsten nanopowders synthesized by electric explosion of a conductor in argon at various energies, put into the conductor when exploding. The authors have studied how the conditions of synthesizing the tungsten nanopowder influence on the average size of particles.

  14. Zirconia nanoceramic via redispersion of highly agglomerated nanopowder and spark plasma sintering.

    PubMed

    Suárez, Gustavo; Borodianska, Hanna; Sakka, Yoshio; Aglietti, Esteban F; Vasylkiv, Oleg

    2010-10-01

    A 2.7 mol% yttria stabilizing tetragonal zirconia (2.7Y-TZP) nanopowder was synthesized and stored for five years. Humidity and unsatisfactory storage conditions gradually caused heavy agglomeration. Within a few months, 2.7Y-TZP nanopowder became useless for any technological application. A bead-milling deagglomeration technique was applied to recover the heavily agglomerated yttria-stabilized zirconia nanopowder. Low-temperature sintering and spark plasma sintering (SPS) were performed, resulting in fully dense nanostructured ceramics. Compacts formed with heavily agglomerated powder present low sinterability and poor mechanical properties. Bead-milling suspension formed compacts exhibit mechanical properties in the range of the values reported for nanostructured zirconia. This observation confirms the effectiveness of bead-milling in the deagglomeration of highly agglomerated nanopowders. The high value of Vickers hardness of 13.6 GPa demonstrates the success of the processing technique for recovering long-time-stored oxide nanopowders. PMID:21137774

  15. Synthesis of AlNiCo core/shell nanopowders

    NASA Astrophysics Data System (ADS)

    Genc, A. M.; Akdeniz, M. V.; Ozturk, T.; Kalay, Y. E.

    2016-11-01

    Magnetic core/shell nanostructures have been recently received much interest owing to their utmost potential in permanent magnetic applications. In the present work, AlNiCo permanent magnet powders were synthesized by ball milling and a core/shell nanostructure was obtained using RF induced plasma. The effects of particle size and nanoshell structure on the magnetic properties were investigated in details. The coercivity of AlNiCo powders was found to increase with decreasing particle size, exclusively nanopowders encapsulated with Fe3O4 shell showed the highest coercivity values. The shell structure produced during plasma reaction was found to form a resistant layer against oxidation of metallic nanoparticles.

  16. Incorporation of chromium into TiO{sub 2} nanopowders

    SciTech Connect

    Kollbek, Kamila; Sikora, Marcin; Kapusta, Czesław; Szlachetko, Jakub; Radecka, Marta; Lyson-Sypien, Barbara; Zakrzewska, Katarzyna

    2015-04-15

    Highlights: • Nanopowders of TiO{sub 2}:Cr with different amount of Cr dopant were obtained by flame spray synthesis, FSS. • Increase in the optical absorption and a shift of the absorption edge were observed upon Cr doping. • HERFD-XANES measurements indicated that the average valence state of titanium ions was preserved. • Increasing magnetic susceptibility of a paramagnetic character was observed upon Cr doping. - Abstract: The paper reports on the results of a study of optical, electronic and magnetic properties of TiO{sub 2} nanopowders doped with Cr ions. Diffused reflectance spectra reveal an increase in the optical absorption and a shift of the absorption edge towards lower energies upon Cr doping. Direct information on the Ti electronic state and the symmetry of its nearest environment is obtained from XANES Ti K-edge spectra. Magnetic behaviour is probed by means of the temperature dependence of DC magnetic susceptibility. Increasing magnetic susceptibility of a paramagnetic character is observed upon increasing chromium doping. The Curie constant of TiO{sub 2}:10 at.% Cr sample (0.12 emu K/mol Oe) is lower than that expected for Cr{sup 3+} (0.1875 emu K/mol Oe) possibly due to the appearance of Cr{sup 4+} or the presence of the orbital contribution to the magnetic moment.

  17. Spark plasma sintering of alumina nanopowders produced by electrical explosion of wires.

    PubMed

    An, Vladimir; Khasanov, Alexey; de Izarra, Charles

    2015-01-01

    Alumina nanopowders produced by electrical explosion of wires were sintered using the spark plasma sintering technique. The results of XRD analysis show that the main phase in the compacted nanopowders is α-Al2O3. According to the SEM observations, the sintered alumina nanopowder consists of micron-sized faceted grains and nano-sized necked grains. The increase in sintering temperature resulted in a higher density of the sintered powders: from 78.44 to 98.21 % of theoretical density. PMID:26543716

  18. Synthesis and Physical Properties of Nd:YVO4 Nanopowders prepared by a Chemical Method

    NASA Astrophysics Data System (ADS)

    Maleki, M. H.; Alhooie, S.; Dizaji, H. R.; Asgari, A.

    2014-01-01

    Single-phase Nd-doped YVO4 nanopowders were synthesized by a chemical method. The powders were heated at 1200°C for 1 h to obtain good crystallinity with better luminescence. Annealing temperature affects the crystal structure of the nanopowders. X-ray diffraction (XRD) revealed that a preferred crystallographic orientation is [200]. Measurements showed that the nanoparticles had an average size of 62.5 nm. A scanning electron microscope (SEM) image of the nanopowders indicated the formation of uniform and nearly spherical Nd:YVO4 particles. The transmittance spectrum of the nanopowders showed a broad absorption band around 808 nm. Photoluminescence studies on the annealed powders revealed their luminescence properties.

  19. Preparation of UO2, ThO2 and (Th,U)O2 pellets from photochemically-prepared nano-powders

    NASA Astrophysics Data System (ADS)

    Pavelková, Tereza; Čuba, Václav; de Visser-Týnová, Eva; Ekberg, Christian; Persson, Ingmar

    2016-02-01

    Photochemically-induced preparation of nano-powders of crystalline uranium and/or thorium oxides and their subsequent pelletizing has been investigated. The preparative method was based on the photochemically induced formation of amorphous solid precursors in aqueous solution containing uranyl and/or thorium nitrate and ammonium formate. The EXAFS analyses of the precursors shown that photon irradiation of thorium containing solutions yields a compound with little long-range order but likely "ThO2 like" and the irradiation of uranium containing solutions yields the mixture of U(IV) and U(VI) compounds. The U-containing precursors were carbon free, thus allowing direct heat treatment in reducing atmosphere without pre-treatment in the air. Subsequent heat treatment of amorphous solid precursors at 300-550 °C yielded nano-crystalline UO2, ThO2 or solid (Th,U)O2 solutions with high purity, well-developed crystals with linear crystallite size <15 nm. The prepared nano-powders of crystalline oxides were pelletized without any binder (pressure 500 MPa), the green pellets were subsequently sintered at 1300 °C under an Ar:H2 (20:1) mixture (UO2 and (Th,U)O2 pellets) or at 1600 °C in ambient air (ThO2 pellets). The theoretical density of the sintered pellets varied from 91 to 97%.

  20. Effect of deposition parameters on the structural properties of ZnO nanopowders prepared by microwave-assisted hydrothermal synthesis.

    PubMed

    Caglar, Yasemin; Gorgun, Kamuran; Aksoy, Seval

    2015-03-01

    ZnO nanopowders were synthesized via microwave-assisted hydrothermal method at different deposition (microwave irradiation) times and pH values. The effects of pH and deposition (microwave irradiation) time on the crystalline structure and orientation of the ZnO nanopowders have been investigated by X-ray diffraction (XRD) study. XRD observations showed that the crystalline quality of ZnO nanopowders increased with increasing pH value. The crystallite size and texture coefficient values of ZnO nanopowders were calculated. The structural quality of ZnO nanopowder was improved by deposition parameters. Field emission scanning electron microscope (FESEM) was used to analyze the surface morphology of the ZnO nanopowders. Microwave irradiation time and pH value showed a significant effect on the surface morphology.

  1. A comparative study of morphology and composition on oxide nanopowders elaborated by SPVD

    NASA Astrophysics Data System (ADS)

    Bârcă, E. S.; Rizea, V.; Abrudeanu, M.; Plaiasu, A. G.; Istrate, B.; Munteanu, C.

    2015-11-01

    The paper proposes a method of obtaining oxide nanopowders in a solar reactor using the solar energy (solar physical vapor deposition). The proposed method is a new method of obtaining nanopowders. Taking into consideration that the properties of the materials change once they get to nanodimensions it is desirable to obtain nanomaterials starting from base materials. Because of the properties that nanomaterials provide, the demand has grown in the last period of time. Also the last few years provided a various number of nanomaterials used in different fields of research. Among the materials that were obtained by SPVD there can be reminded the MoS2, the MoS2 doped with Zn, CeO2 doped with Zr. The CeO2 is used in applications such as catalysis, gas sensor, fuell cell as well as optical additives. All of the obtained nanopowders were analyzed and characterized by X-Ray diffraction (XRD) and by scanning electron microscopy (SEM) in order to acquire the information about the crystallography and morphology considering the reactions parameters that were used in obtaining the nanopowders. From the X-Ray diffraction can be concluded in the case of the CeO2 that doping occurred. By controlling the reactions parameters the end result is different in therms of obtained morphology of the nanopowders. All of the above elaborated nanopowders can be deposited in the form of thin films by laser ablation method in order to obtain better properties of the base material.

  2. Synthesis and spectral characterizations of trivalent ions (Cr3+, Fe3+) doped CdO nanopowders

    NASA Astrophysics Data System (ADS)

    Aswani, T.; Babu, B.; Pushpa Manjari, V.; Joyce Stella, R.; Thirumala Rao, G.; Rama Krishna, Ch.; Ravikumar, R. V. S. S. N.

    2014-03-01

    Trivalent transition metal ions (Cr3+, Fe3+) doped CdO nanopowders via sonication in the presence of Sodium lauryl sulfate as stabilizing agent were synthesized and characterized. Powder XRD studies indicate that the obtained CdO has a cubic phase and concluded that the trivalent ions doping induced the lattice constants to change some extent. Optical absorption spectra exhibited the characteristic bands of Cr3+ and Fe3+ ions in octahedral site symmetry. Crystal field (Dq) and inter-electronic repulsion (B and C) parameters are evaluated for Cr3+ doped CdO nanopowders as Dq = 1540, B = 619 and C = 3327 cm-1 and for Fe3+ doped CdO nanopowders Dq = 920, B = 690, C = 2750 cm-1. EPR spectra of the Cr3+ and Fe3+ doped CdO nanopowders exhibited resonances at g = 1.973 and g = 2 respectively which indicate distorted octahedral site for both ions with the host. Photoluminescence spectra shows the emission bands in violet and bluish green regions for Cr3+ doped CdO, ultraviolet and blue emissions for Fe3+ doped CdO nanopowders. The CIE chromaticity coordinates were also evaluated from the emission spectrum. FT-IR spectra indicate the presence of various functional groups of host lattice.

  3. Preparation, structural and linear optical properties of Zn doped CdS nanopowders

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.

    2015-02-01

    A series of Zn doped cadmium sulfide (CdS:Zn) nanopowders were prepared by a simple co-precipitation method at room temperature by mixing the stoichiometric amount of reactants in a Milli Q water solvent. The composition of nanopowders was accurately adjusted by controlling the molar ratio of Cd, Zn acetate in the mixed reactants. Spectroscopic studies on as prepared nanopowders were investigated by using XRD, Raman, UV-Vis absorption, FE- SEM-EDAX and photoluminescence. Extremely broad reflections of XRD peaks of as prepared powders establish the nanometer scale dimensions and cubic structure. Doping with Zn in CdS does not lead to any structural phase transformation but introduces a decrease in the lattice constants. Two characteristics of LO phonon peaks were observed in pure and Zn doped CdS samples. Raman peaks of Zn doped CdS nanopowders shifts slightly towards higher energy side compared to the pure CdS nanopowders. Exciton-phonon confinement factor (S) varies in between 0.3-0.4. At lower wavelength excitation we observed a broad emission peak maximum centered at 404 nm is attributed to localized band edge emission.

  4. A System to Create Stable Nanoparticle Aerosols from Nanopowders.

    PubMed

    Ding, Yaobo; Riediker, Michael

    2016-01-01

    Nanoparticle aerosols released from nanopowders in workplaces are associated with human exposure and health risks. We developed a novel system, requiring minimal amounts of test materials (min. 200 mg), for studying powder aerosolization behavior and aerosol properties. The aerosolization procedure follows the concept of the fluidized-bed process, but occurs in the modified volume of a V-shaped aerosol generator. The airborne particle number concentration is adjustable by controlling the air flow rate. The system supplied stable aerosol generation rates and particle size distributions over long periods (0.5-2 hr and possibly longer), which are important, for example, to study aerosol behavior, but also for toxicological studies. Strict adherence to the operating procedures during the aerosolization experiments ensures the generation of reproducible test results. The critical steps in the standard protocol are the preparation of the material and setup, and the aerosolization operations themselves. The system can be used for experiments requiring stable aerosol concentrations and may also be an alternative method for testing dustiness. The controlled aerosolization made possible with this setup occurs using energy inputs (may be characterized by aerosolization air velocity) that are within the ranges commonly found in occupational environments where nanomaterial powders are handled. This setup and its operating protocol are thus helpful for human exposure and risk assessment. PMID:27501179

  5. Ce, Gd codoped YAG nanopowder for white light emitting device.

    PubMed

    Schiopu, Vasilica; Matei, Alina; Dinescu, Adrian; Danila, Mihai; Cernica, Ileana

    2012-11-01

    In the last years white light emitting devices have received increased attention and have been used in a wide range of applications due to their long lifetime, high luminescence efficiency, low power consumption and environment friendliness, compared to conventional light sources. The discovery and improvement of inorganic phosphors that can be excited by a GaN chip in the wavelength range 370-470 nm is essential for the efficiency and quality of the emitted light. In the white light emitting device technology, the phosphor preparation step is the most important and it's quality defines the "whiteness". The tunable yellow emission property of YAG:Ce phosphor may be improved by the incorporation of an additional codoping element. Ce, Gd codoped YAG phosphor nanopowder with an average grain size of 40 nm has been synthesized by a sol-gel method. Well-crystallized fine nanoparticles and the formation of the garnet phase have been obtained at 1000 degrees C. The chemical structure and morphology of YAG:Ce, Gd was studied. PMID:23421297

  6. Nanopowder production by gas-embedded electrical explosion of wire

    NASA Astrophysics Data System (ADS)

    Zou, Xiao-Bing; Mao, Zhi-Guo; Wang, Xin-Xin; Jiang, Wei-Hua

    2013-04-01

    A small electrical explosion of wire (EEW) setup for nanopowder production is constructed. It consists of a low inductance capacitor bank of 2 μF-4 μF typically charged to 8 kV-30 kV, a triggered gas switch, and a production chamber housing the exploding wire load and ambient gas. With the EEW device, nanosize powders of titanium oxides, titanium nitrides, copper oxides, and zinc oxides are successfully synthesized. The average particle size of synthesized powders under different experimental conditions is in a range of 20 nm-80 nm. The pressure of ambient gas or wire vapor can strongly affect the average particle size. The lower the pressure, the smaller the particle size is. For wire material with relatively high resistivity, such as titanium, whose deposited energy Wd is often less than sublimation energy Ws due to the flashover breakdown along the wire prematurely ending the Joule heating process, the synthesized particle size of titanium oxides or titanium nitrides increases with overheat coefficient k (k = Wd/Ws) increasing.

  7. Interaction of hydrogen with ZnO nanopowders--evidence of hydroxyl group formation.

    PubMed

    Wong, Kester W J; Field, Matthew R; Ou, Jian Zhen; Latham, Kay; Spencer, Michelle J S; Yarovsky, Irene; Kalantar-zadeh, Kourosh

    2012-01-13

    There have been many investigations to reveal the nature of the hydrogen gas and ZnO nanopowder interaction at elevated temperatures, while at present no conclusive description of such an interaction has been confidently reported. In this work, we demonstrate that a hydroxyl group is formed during this interaction, depending on size and relative crystallinity of nanopowders. Our in situ Raman spectroscopy investigations show that the interaction directly affects the intensity of the Raman signal at 483 cm(-1), relative to the peak at 519 cm(-1). Ex situ x-ray diffraction (XRD) and infrared spectroscopy also show extra peaks at 44° and 1618 cm(-1), respectively, after hydrogenation. These peaks were all identified as surface hydroxyl groups, which can be related to the formation of water on the ZnO nanopowder surfaces.

  8. Copper and Graphene activated ZnO nanopowders for enhanced photocatalytic and antibacterial activities

    NASA Astrophysics Data System (ADS)

    Ravichandran, K.; Chidhambaram, N.; Gobalakrishnan, S.

    2016-06-01

    ZnO, ZnO:Cu and ZnO:Cu:Graphene nanopowders were synthesized via a facile wet chemical method. The XRD studies show that the synthesized samples have hexagonal wurtzite structure. It is found that graphene addition induces a decrease in crystallite size. UV-vis absorption spectra of the samples show sharp absorption edges around 380 nm. Photoluminescence studies reveal that the incorporation of copper and graphene in ZnO facilitates the efficient photo generated electron-hole pair separation. It is found that the ZnO:Cu and ZnO:Cu:Graphene nanopowder exhibit improved photocatalytic efficiency for the photodegradation of Methylene Blue (MB) under visible light irradiation. Moreover, improved antibacterial activity of ZnO:Cu:Graphene nanopowder against Escherichia coli and Staphylococcus aureus bacteria is observed.

  9. Bio-ecological consequences of crop seeds treatment with metal nano-powders

    NASA Astrophysics Data System (ADS)

    Churilov, G.

    2015-11-01

    As a result of our investigations we have determined the optimal concentrations of ferrum, cobalt and cuprum nano-powders recommended to be used as micro-fertilizers increasing the yield and feed value of crops at the expense of accumulating biologically active combinations by 25-35%. In unfavorable climate conditions, for example in a case of excess moisture or heat and drought, the plants development and ripening suffer. Our investigations have shown that the stimulating effect of nano-powders has lowered the effect of stress situations on plants development and simultaneously increased the rape seeds yield and quality. Treating the seeds with the drugs being studied has provided the high crop protection. If consider that the maximum efficiency of protectants Chinuk, SK (20 kg/t of seeds) and Cruiser, KS (10 kg/t of seeds) then for the same effect one needs nano-powders 0.1 g per hectare norm of seeds planting.

  10. Radiation stability of SiO2 micro- and nanopowders under electron and proton exposure

    NASA Astrophysics Data System (ADS)

    Li, Chundong; Mikhailov, M. M.; Neshchimenko, V. V.

    2014-01-01

    The effects of proton and electron (E = 100 keV, F = 5 × 1015 сm-2) exposure on the reflective spectra of SiO2 micro- and nanopowders in wavelength range from 250 to 2500 nm have been investigated. It has been established that the reflectance and radiation stability of nanopowders is less than that of micropowders. This effect is caused by the high concentration of radiation defects, which act as surface absorption centers (Es‧ centers) near the energies 5.47 and 4.45 eV, and peroxide silicon defects (tbnd Sisbnd Osbnd Osbnd Sitbnd) near the energy 3.84 eV.

  11. Far-infrared spectra of dysprosium doped yttrium aluminum garnet nanopowder

    NASA Astrophysics Data System (ADS)

    Trajić, J.; Rabasović, M. S.; Savić-Šević, S.; Ševic, D.; Babić, B.; Romčević, M.; Ristić-Djurović, J. L.; Paunović, N.; Križan, J.; Romčević, N.

    2016-07-01

    The solution combustion synthesis was used to prepare nanopowders of yttrium aluminum garnet (YAG) and YAG doped with dysprosium ions, Dy3+, (YAG:Dy). The morphology, specific surface area, texture, and optical properties of the prepared materials were studied by the means of scanning electron microscopy (SEM), nitrogen adsorption method, and far-infrared spectroscopy at room temperature in the spectral region between 80 and 600 cm-1. It was established that all the examined samples were microporous. The Maxwell-Garnet formula was used to model dielectric function of YAG and YAG:Dy nanopowders as mixtures of homogenous spherical inclusions in air.

  12. Synthesis and Characterization of Rutile TiO2Nanopowders Doped with Iron Ions

    PubMed Central

    2009-01-01

    Titanium dioxide nanopowders doped with different amounts of Fe ions were prepared by coprecipitation method. Obtained materials were characterized by structural (XRD), morphological (TEM and SEM), optical (UV/vis reflection and photoluminescence, and Raman), and analytical techniques (XPS and ICP-OES). XRD analysis revealed rutile crystalline phase for doped and undoped titanium dioxide obtained in the same manner. Diameter of the particles was 5–7 nm. The presence of iron ions was confirmed by XPS and ICP-OES. Doping process moved absorption threshold of TiO2into visible spectrum range. Photocatalytic activity was also checked. Doped nanopowders showed normal and up-converted photoluminescence. PMID:20596442

  13. Workplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System.

    PubMed

    Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Noh, Jung-Hun; Yook, Se-Jin; Cho, So-Hye; Bae, Gwi-Nam

    2015-01-01

    Many researchers who use laboratory-scale synthesis systems to manufacture nanomaterials could be easily exposed to airborne nanomaterials during the research and development stage. This study used various real-time aerosol detectors to investigate the presence of nanoaerosols in a laboratory used to manufacture titanium dioxide (TiO2). The TiO2 nanopowders were produced via flame synthesis and collected by a bag filter system for subsequent harvesting. Highly concentrated nanopowders were released from the outlet of the bag filter system into the laboratory. The fractional particle collection efficiency of the bag filter system was only 20% at particle diameter of 100 nm, which is much lower than the performance of a high-efficiency particulate air (HEPA) filter. Furthermore, the laboratory hood system was inadequate to fully exhaust the air discharged from the bag filter system. Unbalanced air flow rates between bag filter and laboratory hood systems could result in high exposure to nanopowder in laboratory settings. Finally, we simulated behavior of nanopowders released in the laboratory using computational fluid dynamics (CFD). PMID:26125024

  14. Workplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System

    PubMed Central

    Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Noh, Jung-Hun; Yook, Se-Jin; Cho, So-Hye; Bae, Gwi-Nam

    2015-01-01

    Many researchers who use laboratory-scale synthesis systems to manufacture nanomaterials could be easily exposed to airborne nanomaterials during the research and development stage. This study used various real-time aerosol detectors to investigate the presence of nanoaerosols in a laboratory used to manufacture titanium dioxide (TiO2). The TiO2 nanopowders were produced via flame synthesis and collected by a bag filter system for subsequent harvesting. Highly concentrated nanopowders were released from the outlet of the bag filter system into the laboratory. The fractional particle collection efficiency of the bag filter system was only 20% at particle diameter of 100 nm, which is much lower than the performance of a high-efficiency particulate air (HEPA) filter. Furthermore, the laboratory hood system was inadequate to fully exhaust the air discharged from the bag filter system. Unbalanced air flow rates between bag filter and laboratory hood systems could result in high exposure to nanopowder in laboratory settings. Finally, we simulated behavior of nanopowders released in the laboratory using computational fluid dynamics (CFD). PMID:26125024

  15. Lower sintering temperature of nanostructured dense ceramics compacted from dry nanopowders using powerful ultrasonic action

    NASA Astrophysics Data System (ADS)

    Khasanov, O.; Reichel, U.; Dvilis, E.; Khasanov, A.

    2011-10-01

    Nanostructured high dense zirconia ceramics have been sintered from dry nanopowders compacted by uniaxial pressing with simultaneous powerful ultrasonic action (PUA). Powerful ultrasound with frequency of 21 kHz was supplied from ultrasonic generator to the mold, which was the ultrasonic wave-guide. Previously the mold was filled by non-agglomerated zirconia nanopowder having average particle size of 40 nm. Any binders or plasticizers were excluded at nanopowder processing. Compaction pressure was 240 MPa, power of ultrasonic generator at PUA was 1 kW and 3 kW. The fully dense zirconia ceramics has been sintered at 1345°C and high-dense ceramics with a density of 99.1%, the most grains of which had the sizes Dgr <= 200 nm, has been sintered at low sintering temperature (1325°C). Applied approach prevents essential grain growth owing to uniform packing of nanoparticles under vibrating PU-action at pressing, which provides the friction forces control during dry nanopowder compaction without contaminating binders or plasticizers.

  16. The Study of Complex (Ti, Zr, Cs) Nanopowder Influencing the Effective Ionization Potential of Arc Discharge When Mma Welding

    NASA Astrophysics Data System (ADS)

    Sapozhkov, S. B.; Burakova, E. M.

    2016-08-01

    Strength is one of the most important characteristics of a weld joint. Mechanical properties of a weld metal can be improved in a variety of ways. One of the possibilities is to add a nanopowder to the weld metal. Authors of the paper suggest changing the production process of MMA welding electrodes via adding nanopowder Ti, Zr, Cs to electrode components through liquid glass. Theoretical research into the nanopowder influence on the effective ionization potential (Ueff) of welding arc discharge is also necessitated. These measures support arcing stability, improve strength of a weld joint, as the consequence, ensure quality enhancing of a weld joint and the structure on the whole.

  17. Liquid-feed flame spray pyrolysis synthesis of oxide nanopowders for the processing of ceramic composites

    NASA Astrophysics Data System (ADS)

    Taylor, Nathan John

    In the liquid-feed flame spray pyrolysis (LF-FSP) process, alcohol solutions of metalloorganic precursors are aerosolized by O2 and combusted. The metal oxide combustion products are rapidly quenched (< 10 ms) from flame temperatures of 1500°C to temperatures < 400° C, limiting particle growth. The resulting nanopowders are typically agglomerated but unaggregated. Here, we demonstrate two processing approaches to dense materials: nanopowders with the exact composition, and mixed single metal oxide nanopowders. The effect of the initial degree of phase separation on the final microstructures was determined by sintering studies. Our first studies included the production of yttrium aluminum garnet, Y3Al5O12 (YAG), tubes which we extruded from a thermoplastic/ceramic blend. At equivalent final densities, we found finer grain sizes in the from the mixed Y2O3 and Al2 O3 nanopowders, which was attributed to densification occurring before full transformation to the YAG phase. The enhanced densification in production of pure YAG from the reactive sintering process led us to produce composites in the YAG/alpha-Al 2O3 system. Finally, a third Y2O3 stabilized ZrO2 (YSZ) phase was added to further refine grain sizes using the same two processing approaches. In a separate study, single-phase metastable Al2O3 rich spinels with the composition MO•3Al 2O3 where M = Mg, Ni, and Co were sintered to produce dense MAl2O4/alpha-Al2O3 composites. All of these studies provide a test of the bottom-up approach; that is, how the initial length scale of mixing affects the final composite microstructure. Overall, the length scale of mixing is highly dependent upon the specific oxide composites studied. This work provides a processing framework to be adopted by other researchers to further refine microstructural size. LF-FSP flame temperatures were mapped using different alcohols with different heats of combustion: methanol, ethanol, 1-propanol, and n-butanol. The effect of different

  18. High elastic modulus nanopowder reinforced resin composites for dental applications

    NASA Astrophysics Data System (ADS)

    Wang, Yijun

    2007-12-01

    Dental restorations account for more than $3 billion dollars a year on the market. Among them, all-ceramic dental crowns draw more and more attention and their popularity has risen because of their superior aesthetics and biocompatibility. However, their relatively high failure rate and labor-intensive fabrication procedure still limit their application. In this thesis, a new family of high elastic modulus nanopowder reinforced resin composites and their mechanical properties are studied. Materials with higher elastic modulus, such as alumina and diamond, are used to replace the routine filler material, silica, in dental resin composites to achieve the desired properties. This class of composites is developed to serve (1) as a high stiffness support to all-ceramic crowns and (2) as a means of joining independently fabricated crown core and veneer layers. Most of the work focuses on nano-sized Al2O3 (average particle size 47 nm) reinforcement in a polymeric matrix with 50:50 Bisphenol A glycidyl methacrylate (Bis-GMA): triethylene glycol dimethacrylate (TEGDMA) monomers. Surfactants, silanizing agents and primers are examined to obtain higher filler levels and enhance the bonding between filler and matrix. Silane agents work best. The elastic modulus of a 57.5 vol% alumina/resin composite is 31.5 GPa compared to current commercial resin composites with elastic modulus <15 GPa. Chemical additives can also effectively raise the hardness to as much as 1.34 GPa. Besides>alumina, diamond/resin composites are studied. An elastic modulus of about 45 GPa is obtained for a 57 vol% diamond/resin composite. Our results indicate that with a generally monodispersed nano-sized high modulus filler, relatively high elastic modulus resin-based composite cements are possible. Time-dependent behavior of our resin composites is also investigated. This is valuable for understanding the behavior of our material and possible fatigue testing in the future. Our results indicate that with

  19. Crystallization and microstructure of 8YSZ nanopowders synthesized by ball-mill assisted constant pH route

    NASA Astrophysics Data System (ADS)

    Mohanty, Subrat K.; Nayak, Bibhuti B.

    2013-06-01

    8 mol% Y2O3 stabilized ZrO2 (8YSZ) nanopowders were prepared by two ways of precipitation technique namely conventional precipitation (i.e. stepwise increase of pH) and constant pH precipitation (i.e. precipitation at constant pH). The crystallization, microstructure and density of both the powders were studied with and without ball milling. The ball milled powders prepared in conventional method were found to be sintered upto 92% of the theoretical density, whereas the powders prepared in constant pH precipitation method after ball milling showed 97% of the theoretical density, at 1600°C. The presence of fine and uniformly distributed pores were observed, for the 8YSZ pellets synthesized via conventional precipitation method, whereas a relatively dense microstructure was observed for that synthesized via constant pH precipitation method, from the SEM micrographs. Constant pH route shows better results as compared to conventional route and seems to be effective way of synthesis to prepare 8YSZ for electrolyte in solid oxide fuel cell (SOFC) application.

  20. Fe{sub 2}O{sub 3} nanopowders prepared by a thermal plasma process for water oxidation

    SciTech Connect

    Lee, Dongeun; Choi, Yong-Wook; Na, Ye-Seul; Choi, Soo-Suk; Park, Dong-Wha; Choi, Jinsub

    2015-08-15

    Highlights: • Hematite nanopowders with a high purity were synthesized by a DC thermal plasma process. • Fe{sub 3}O{sub 4} is formed during the formation of Fe{sub 2}O{sub 3} by thermal plasma with iron and oxygen sources. • Hematite nanopowders with a high purity show higher PEC performance compared to mixed oxides. - Abstract: Hematite (Fe{sub 2}O{sub 3}) nanopowders were synthesized from commercially available micro-sized iron powders by a DC thermal plasma process at atmospheric pressure. The micro-sized iron powders were vaporized in the plasma region, after which the plasma processing equipment was rapidly quenched, resulting in the formation of iron nanopowders with a size of less than 100 nm. Subsequently, the iron nanopowders were heated to convert hematite with a high purity, which was then formed into a thin film with a binder for preparation of electrodes for photoelectrochemical water oxidation. Iron oxide nanopowders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), particle size analysis (PSA) and transmission electron microscopy (TEM). The photoelectrochemical properties of the Fe{sub 2}O{sub 3} film were characterized in 1 M NaOH under AM 1.5 conditions.

  1. Permeability, drying, and sintering of pressure filtered ceramic nanopowders

    NASA Astrophysics Data System (ADS)

    Sweeney, Sean M.

    2002-01-01

    point of drying (when fracture is most likely during drying). Agreement between maximum safe drying stresses and measured sample strengths is found to be good (to within better than a factor of 2) for boehmite samples, but not very good (off by a factor of ˜7) for nanocrystalline 3Y-TZP samples. Sub-critical crack growth is indicated as the source of this deviation in nanocrystalline 3Y-TZP samples. Literature studies of the sintering of chloride-derived 3Y-TZP nanopowders have documented numerous sintering problems including inability to reach full density, desintering, cracking, and the formation of a dense shell with less dense interior. To explain the poor sintering behavior of samples of one nanocrystalline 3Y-TZP powder, the origin of such a dense shell microstructure is determined. Three possible reasons for a dense shell microstructure are examined and rejected: exothermic reactions with the sintering atmosphere, pre-existing density gradients in the green compact, and thermal gradients occurring during sintering. A combination of gas flow/diffusion, thermodynamic, and sintering calculations are used to show that the evolution of a structure-coarsening gas (hydrogen chloride) during sintering causes the formation of a dense shell microstructure, and explains the poor densification behavior of this system. Two solutions to the problem are compared: (1) a thermal treatment composed of an extended hold at 1000°C to allow HCl gas removal before the onset of closed porosity (at about 90-93% of theoretical density), and (2) a chemical treatment performed by washing pre-sintered (500°C/30 min) samples at room temperature using a concentrated ammonium hydroxide solution to remove chlorides. The thermal treatment is found to be superior for removing residual chlorine and allowing full density to be achieved during sintering.

  2. Capacity fade in Sn-C nanopowder anodes due to fracture.

    PubMed

    Aifantis, Katerina E; Huang, Tao; Hackney, Stephen A; Sarakonsri, Thapanee; Yu, Aishui

    2012-01-01

    Sn based anodes allow for high initial capacities, which however cannot be retained due to the severe mechanical damage that occurs during Li-insertion and de-insertion. To better understand the fracture process during electrochemical cycling three different nanopowders comprised of Sn particles attached on artificial graphite, natural graphite or micro-carbon microbeads were examined. Although an initial capacity of 700 mAh g(-1) was obtained for all Sn-C nanopowders, a significant capacity fade took place with continuous electrochemical cycling. The microstructural changes in the electrodes corresponding to the changes in electrochemical behavior were studied by transmission and scanning electron microscopy. The fragmentation of Sn observed by microscopy correlates with the capacity fade, but this fragmentation and capacity fade can be controlled by controlling the initial microstructure. It was found that there is a dependence of the capacity fade on the Sn particle volume and surface area fraction of Sn on carbon.

  3. Synthesis of the thermoelectric nanopowder recovered from the used thermoelectric modules.

    PubMed

    Lee, Kun-Jae; Jin, Yun-Ho; Kong, Man-Sik

    2014-10-01

    We fabricated the thermoelectric powder using the used thermoelectric modules in a vehicle. As a starting material, the used thermoelectric modules were collected and separated to substrate, electrode, solder, and thermoelectric parts by a thermal process. The separation process was performed in a wet process at the critical temperature. The solder in the module was the neighbor part of the thermoelectric material with the lowest melting temperature in the module. We focused on the thermal property of the solder to separate the thermoelectric chips in the module. After the separation process, we prepared the pure thermoelectric material by the chemical etching for an impurity removal. Also the thermoelectric nanopowder was fabricated by a chemical reduction reaction using the recycled thermoelectric materials. The recovered nanopowder was confirmed to the phase of bismuth telluride (Bi2Te3) with the particle size of -15 nm.

  4. Thermal and Mechanical Characteristics of Polymer Composites Based on Epoxy Resin, Aluminium Nanopowders and Boric Acid

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The epoxy polymers are characterized by low thermal stability and high flammability. Nanoparticles are considered to be effective fillers of polymer composites for improving their thermal and functional properties. In this work, the epoxy composites were prepared using epoxy resin ED-20, polyethylene polyamine as a hardener, aluminum nanopowder and boric acid fine powder as flame-retardant filler. The thermal characteristics of the obtained samples were studied using thermogravimetric analysis and differential scanning calorimetry. The mechanical characteristics of epoxy composites were also studied. It was found that an addition of all fillers enhances the thermal stability and mechanical characteristics of the epoxy composites. The best thermal stability showed the epoxy composite filled with boric acid. The highest flexural properties showed the epoxy composite based on the combination of boric acid and aluminum nanopowder.

  5. Synthesis of the thermoelectric nanopowder recovered from the used thermoelectric modules.

    PubMed

    Lee, Kun-Jae; Jin, Yun-Ho; Kong, Man-Sik

    2014-10-01

    We fabricated the thermoelectric powder using the used thermoelectric modules in a vehicle. As a starting material, the used thermoelectric modules were collected and separated to substrate, electrode, solder, and thermoelectric parts by a thermal process. The separation process was performed in a wet process at the critical temperature. The solder in the module was the neighbor part of the thermoelectric material with the lowest melting temperature in the module. We focused on the thermal property of the solder to separate the thermoelectric chips in the module. After the separation process, we prepared the pure thermoelectric material by the chemical etching for an impurity removal. Also the thermoelectric nanopowder was fabricated by a chemical reduction reaction using the recycled thermoelectric materials. The recovered nanopowder was confirmed to the phase of bismuth telluride (Bi2Te3) with the particle size of -15 nm. PMID:25942894

  6. Structural and Optical Characterization of Synthesized TiO2 Nanopowder Using Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Lourduraj, S.; Williams, R. Victor

    2016-02-01

    The nanocrystalline TiO2 powder was synthesized by sol-gel method. The XRD analysis reveals that TiO2 powder was highly crystalline (anatase phase) and nanostructured with tetragonal system. The average crystallite size after calcined at 673K is found to be 7.7nm. The surface morphological studies using scanning electron microscopy (SEM) exhibit that the formation of nanosized TiO2 particles with less densification nature. Atomic force microscopy (AFM) topography exhibits the uniform distribution of spherical-shaped particles. The energy dispersive X-ray spectroscopy (EDX) confirms the presence of Titanium and Oxygen in synthesized TiO2 nanopowder. The value of optical bandgap of TiO2 nanopowder calculated from UV-Visible spectrum is 3.45eV. The presence of TiO2 particles is confirmed from the dominant fourier transform infrared (FTIR) peaks at 621cm-1 and 412cm-1.

  7. Formation regularities of AlOOH hollow spheres during aluminum nanopowder water oxidation

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, Aleksandr S.; Glazkova, Elena A.; Svarovskaya, Natalia V.; Bakina, Olga V.; Kazantsev, Sergey O.; Lerner, Marat I.

    2015-10-01

    There described a novel environmentally friendly synthesis route of micro/nanostructured hollow spheres of AlOOH by oxidation of Al nanopowder in pure water under mild processing conditions. The reaction kinetics of the aluminum nanopowder interaction with water was studied using the method of continuous recording of suspension pH and temperature. There observed the change in Al3+ concentration in the reaction medium and the rate of hydrogen release as well as TEM investigations of the intermediate reaction products at different stages of the process were performed. It is shown that AlOOH hollow spheres are formed through the aluminum core dissolution, Al3+ ion diffusion through the surface oxide film and AlOOH nanosheets formation on the surface of the precursor oxide film.

  8. Fast microstructure and phase analyses of nanopowders using combined analysis of transmission electron microscopy scattering patterns.

    PubMed

    Boullay, P; Lutterotti, L; Chateigner, D; Sicard, L

    2014-09-01

    The full quantitative characterization of nanopowders using transmission electron microscopy scattering patterns is shown. This study demonstrates the feasibility of the application of so-called combined analysis, a global approach for phase identification, structure refinement, characterization of anisotropic crystallite sizes and shapes, texture analysis and texture variations with the probed scale, using electron diffraction patterns of TiO2 and Mn3O4 nanocrystal aggregates and platinum films. Electron diffraction pattern misalignments, positioning, and slight changes from pattern to pattern are directly integrated and refined within this approach. The use of a newly developed full-pattern search-match methodology for phase identification of nanopowders and the incorporation of the two-wave dynamical correction for diffraction patterns are also reported and proved to be efficient. PMID:25176993

  9. Fast microstructure and phase analyses of nanopowders using combined analysis of transmission electron microscopy scattering patterns.

    PubMed

    Boullay, P; Lutterotti, L; Chateigner, D; Sicard, L

    2014-09-01

    The full quantitative characterization of nanopowders using transmission electron microscopy scattering patterns is shown. This study demonstrates the feasibility of the application of so-called combined analysis, a global approach for phase identification, structure refinement, characterization of anisotropic crystallite sizes and shapes, texture analysis and texture variations with the probed scale, using electron diffraction patterns of TiO2 and Mn3O4 nanocrystal aggregates and platinum films. Electron diffraction pattern misalignments, positioning, and slight changes from pattern to pattern are directly integrated and refined within this approach. The use of a newly developed full-pattern search-match methodology for phase identification of nanopowders and the incorporation of the two-wave dynamical correction for diffraction patterns are also reported and proved to be efficient.

  10. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    SciTech Connect

    Koyanagi, Takaaki; Shimoda, Kazuya; Kondo, Sosuke; Hinoki, Tatsuya; Ozawa, Kazumi; Katoh, Yutai

    2014-12-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 °C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. Microstructural observation and data analysis were performed.

  11. Ultrasonic deagglomeration of aluminum nanopowders with multi-walled carbon nanotube mixtures

    SciTech Connect

    Kozulin, Alexander A. Vorozhtsov, Sergey A. Kulkov, Sergey S.; Kulkov, Sergey N.; Teipel, U.

    2015-10-27

    Comprehensive investigations of aluminum nanopowders, multi-walled carbon nanotubes, and aluminum mixtures with multi-walled carbon nanotubes subjected to ultrasonic deagglomeration in a liquid medium were performed, using microstructural, X-ray diffraction, thermogravimetric, and calorimetric analyses, and specific surface area measurements. The regime of ultrasonic deagglomeration of aluminum nanopowders with multi-walled carbon nanotubes in a liquid medium is described, during which the division of large agglomerates and creation of homogeneous distribution of mixtures components in the volume takes place. It was determined that ultrasonic treatment influences the morphology and crystalline structure of investigated mixtures, contributes to the appearance of X-ray amorphous phase, decreases the specific surface area of the aluminum nanopowder from 13 to 12 m{sup 2}/g, and increases the pore volume and average size from 0.04 to 0.06 cm{sup 3}/g and from 12 to 19 nm, respectively. The size of coherently-diffracting domain was determined by the X-ray diffraction analysis is close to that estimated from the specific surface area and corresponds to average crystallites size in the materials under study.

  12. Synthesis of nanopowders with a help of powerful CO2 laser

    NASA Astrophysics Data System (ADS)

    Osipov, V. V.; Lisenkov, V. V.; Platonov, V. V.

    2011-02-01

    The paper reports about the results of researches of nanopowder production with a help powerful repetitively pulsed CO2 laser "LAERT" which generated radiation with pulse energy of ~1 J, peak power of ~8 kW and mean power of 500 W. Laser radiation affected and evaporated the target. The target material vapor condensed into nanoparticles as a result of intermixing vapor with a flow of cold gas. In basic the air of atmospheric pressure was used as the carrier gas. However in some experiments were used He and Ar and the gas pressure also was changed. In our experiments we produced nanopowders of such materials as: YSZ, YSZ:Al2O3, Al2O3, CeO2:Gd2O3, 0.5%Nd:Y2O3, 1%Nd:YAG, Fe3O4and carbon with a middle size 10÷30 nm. Received nanopowders were also weakly agglomerated. We carried out 3D numerical modeling of thermo-hydrodynamic processes occurred during the laser evaporation of a target. Results of calculations have cleared up many details of target evaporation. In particular, influence of liquid melt movement on stoichiometry of evaporation of a target from oxide mixes is found out. Results of calculations are in a good agreement with experimental data.

  13. Solar physical vapor deposition: A new approach for preparing magnesium titanate nanopowders

    NASA Astrophysics Data System (ADS)

    Apostol, Irina; Saravanan, K. Venkata; Monty, Claude J. A.; Vilarinho, Paula M.

    2013-11-01

    Solar energy is a major factor in the equation of energy, because of the unlimited potential of the sun that eclipses all other renewable sources of energy. Solar physical vapor deposition (SPVD) is a core innovative, original and environmentally friendly process to prepare nanocrystalline materials in a powder form. The principle of this process is to melt the material under concentrated solar radiation, which evaporates and condenses as nanopowders on a cold surface. We synthesized nanopowders of magnesium titanate by the SPVD process at PROMES Laboratory in Odeillo-Font Romeu, France. The SPVD system consists of a parabolic mirror concentrator, a mobile plane mirror ("heliostat") tracking the sun and a solar reactor "heliotron". The synthesized nanopowders were analyzed by X-ray diffraction (XRD) to know their crystalline structure and scanning electron microscopy (SEM) was used for determining the surface morphology. We have shown that the characteristics of obtained nanotitanates were determined by the targets' composition and SPVD process parameters such as the working pressure inside the solar reactor and evaporation duration (process time).

  14. Photoluminescent BaMoO{sub 4} nanopowders prepared by complex polymerization method (CPM)

    SciTech Connect

    Azevedo Marques, Ana Paula de . E-mail: apamarques@liec.ufscar.br; Melo, Dulce M.A. de; Paskocimas, Carlos A.; Pizani, Paulo S.; Joya, Miryam R.; Leite, Edson R.; Longo, Elson

    2006-03-15

    The BaMoO{sub 4} nanopowders were prepared by the Complex Polymerization Method (CPM). The structure properties of the BaMoO{sub 4} powders were characterized by FTIR transmittance spectra, X-ray diffraction (XRD), Raman spectra, photoluminescence spectra (PL) and high-resolution scanning electron microscopy (HR-SEM). The XRD, FTIR and Raman data showed that BaMoO{sub 4} at 300 deg. C was disordered. At 400 deg. C and higher temperature, BaMoO{sub 4} crystalline scheelite-type phases could be identified, without the presence of additional phases, according to the XRD, FTIR and Raman data. The calculated average crystallite sizes, calculated by XRD, around 40 nm, showed the tendency to increase with the temperature. The crystallite sizes, obtained by HR-SEM, were around of 40-50 nm. The sample that presented the highest intensity of the red emission band was the one heat treated at 400 deg. C for 2 h, and the sample that displayed the highest intensity of the green emission band was the one heat treated at 700 deg. C for 2 h. The CPM was shown to be a low cost route for the production of BaMoO{sub 4} nanopowders, with the advantages of lower temperature, smaller time and reduced cost. The optical properties observed for BaMoO{sub 4} nanopowders suggested that this material is a highly promising candidate for photoluminescent applications.

  15. Synthesis, properties and host effects of rare-earth doped silica nanopowders for photonic applications

    NASA Astrophysics Data System (ADS)

    Halpern, Susan B.

    In this study, SiO2/Al2O3/Er2O 3 (SAE) nanopowders were fabricated by the CF-CVC technique with average primary particle sizes ranging from 10--30 nm. Fluorescence and lifetime measurements were made both on as-prepared powders, as well as heat treated powders, with the latter exhibiting significantly higher emission intensities. At ˜1000°C, the SAE became partially devitrified with extremely broad (FWHM ≈ 78 nm) and flat emission spectra, which is highly desirable for Wavelength Division Multiplexing (WDM) in optical amplifiers. The unique optical properties of the powders are attributed to the formation of a metastable phase consisting of an uniform nano-scale dispersion of a metastable intermediate SiO2 (Al,Er)2O3 phase in an amorphous SiO 2 matrix. At higher heat treatments (1400°C), a dual-phase equilibrium structure was formed, consisting of a pyrochlore phase in a crystobalite matrix. The SAE nanopowders were incorporated into various optical hybrid glass hosts for active planar waveguide applications. Host selection was dependent on transparency in the wavelength region of interest (900 nm--1600 nm), index matching (n ˜ 1.5), chemical/thermal stability, and ease of processing. Furthermore, the inorganic-organic glasses were hydrophobic, resulting in a minimal level of residual OH- which can quench fluorescence emission. Four separate groups of host materials were studied: Perfluoro-alkyl Hybrid Glass (n ≈ 1.42), Alumina-Silica Hybrid Glass (n ≈ 1.49), Polyurethane-Silica Hybrid Glass (n ≈ 1.44), and Methyl/Epoxy Group Hybrid Glass (n ≈ 1.48). All hosts showed high spectral transparency, uniform dispersion of the nanopowder in the host, and minimal surface quenching of emission, and therefore represent excellent candidates for fabrication of next generation nanophotonic planar devices.

  16. Preparation and properties of Ba1-xCaxTiO3 nanopowders obtained by mechanochemical synthesis

    NASA Astrophysics Data System (ADS)

    Szafraniak-Wiza, Izabela; Kozielski, Lucjan; Sebastian, Tutu

    2016-08-01

    The calcium-substituted barium titanate nanopowders Ba1-xCaxTiO3 (0.2 ≤ x ≤ 0.3) have been obtained at room temperature by mechanochemical synthesis. The formation of the perovskite phase was controlled by X-ray diffraction studies at various milling duration. The powders possess the perovskite crystallographic structure directly after milling longer than 10 h. The dielectric properties of the ceramics obtained by sintering of the nanopowders were investigated in the temperature range between 300 and 500 K. The temperature dependence of permittivity exhibited a single anomaly, which corresponds to the ferroelectric-paraelectric phase transition.

  17. The effect of annealing on properties of europium doped ZnO nanopowders obtained by a microwave hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wolska-Kornio, E.; Kaszewski, J.; Witkowski, B. S.; Wachnicki, Ł.; Godlewski, M.

    2016-09-01

    Europium doped ZnO nanopowders made by microwave hydrothermal method are investigated. As zinc oxide precursor zinc nitrate(V) hexahydrate (Zn(NO3)2·6H2O) was used. Two types of nanopowder samples are examined: as grown and annealed at 750 °C in air atmosphere. We investigate the structural, morphological and optical prosperities of europium doped ZnO. Results of scanning electron microscopy, X-ray diffraction, photo- and cathodoluminescence investigations and also CIE1961 chromaticity diagram are presented.

  18. A new technique for introducing chromium dopant into a phosphor synthesized from alumina nanopowder

    NASA Astrophysics Data System (ADS)

    Zvonarev, S. V.; Kortov, V. S.; Chikin, A. V.; Sannikov, P. P.

    2016-09-01

    A technique of doping a phosphor synthesized from an alumina nanopowder with chromium was developed and tested. Doping was performed through dipping Al2O3 host-matrix into the chromium nitrate solution with varying time and number of impregnation cycles. The following annealing in vacuum at 1500 °C for 3 hours resulted in the formation of Cr3+ luminescent centers which replaced Al atoms in the lattice sites. The results were verified by measuring photo- and cathode luminescence spectra. Concentration dependences were found at various impregnation parameters.

  19. Combustion synthesis and optical properties of ceria doped gadolinium-oxide nanopowder

    NASA Astrophysics Data System (ADS)

    Tamrakar, Raunak Kumar; Bisen, D. P.

    2013-06-01

    The Ceria doped Gadolinium (Gd2O3) nanopowder was synthesized by combustion synthesis by using urea as a fuel. The combustion synthesis method which is reported here is advantageous from the perspectives of small size of the nanoparticle. The structural and photoluminescence (PL) property of sample was studies. Gd2O3:Ce3+ nanoparticles exhibit green emission around 543 nm. The result of XRD show that synthesized sample has cubic structure. The average size of particle is found to be 45 nm. The surface morphology of the films is also presented.

  20. Photocatalytic degradation of betamethasone sodium phosphate in aqueous solution using ZnO nanopowder

    NASA Astrophysics Data System (ADS)

    Giahi, M.; Taghavi, H.; Habibi, S.

    2012-12-01

    The photocatalytic degradation of betamethasone sodium phosphate has been investigated in aqueous phase by using ultraviolet (UV) light and ZnO nanopowder. The effect of catalyst loading, irradiation time, pH, addition of oxidizers, effect of alcohol and anion presence on the reaction rate was ascertained and optimum conditions for maximum degradation were determined. The photocatalytic degradation of betamethasone sodium phosphate was strongly influenced by these parameters. The optimum amount of the photocatalyst used is 0.44 g/L. The efficiency of betamethasone sodium phosphate increases with the photo-degradation increase of the irradiation time.

  1. Plasma Synthesized Doped Boron Nanopowder for MgB2 Superconductors

    SciTech Connect

    James V. Marzik

    2012-03-26

    Under this program, a process to synthesize nano-sized doped boron powder by a plasma synthesis process was developed and scaled up from 20 gram batches at program start to over 200 grams by program end. Over 75 batches of boron nanopowder were made by RF plasma synthesis. Particle sizes were typically in the 20-200 nm range. The powder was synthesized by the reductive pyrolysis of BCl{sub 3} in hydrogen in an RF plasma. A wide range of process parameters were investigated including plasma power, torch geometry, gas flow rates, and process pressure. The powder-in-tube technique was used to make monofilament and multifilament superconducting wires. MgB{sub 2} wire made with Specialty Materials plasma synthesized boron nanopowder exhibited superconducting properties that significantly exceeded the program goals. Superconducting critical currents, J{sub c}, in excess of 10{sup 5} A cm{sup -2} at magnetic fields of 8 tesla were reproducibly achieved. The upper critical magnetic field in wires fabricated with program boron powder were H{sub c2}(0) = 37 tesla, demonstrating the potential of these materials for high field magnet applications. T{sub c} in carbon-doped MgB{sub 2} powder showed a systematic decrease with increasing carbon precursor gas flows, indicating the plasma synthesis process can give precise control over dopant concentrations. Synthesis rates increased by a factor of 400% over the course of the program, demonstrating the scalability of the powder synthesis process. The plasma synthesis equipment at Specialty Materials has successfully and reproducibly made high quality boron nanopowder for MgB{sub 2} superconductors. Research and development from this program enabled Specialty Materials to successfully scale up the powder synthesis process by a factor of ten and to double the size of its powder pilot plant. Thus far the program has been a technical success. It is anticipated that continued systematic development of plasma processing parameters, dopant

  2. O2/Ar Plasma Treatment for Enhancing the Biocompatibility of Hydroxyapatite Nanopowder and Polycaprolactone Composite Film.

    PubMed

    Ko, Yeong-Mu; Myung, Sung-Woon; Kim, Byung-Hoon

    2015-08-01

    In this study we performed O2/Ar plasma treatment to remove the polycaprolactone on hydroxyapatite nanopowder and polycaprolactone (HAp-NP/PCL) composite film. After plasma ashing, the HAp-NP was exposed on the composite film. The 25 wt% HAp-NP/PCL treated with plasma showed the hydrophilic surface property with reducing the aging effect. The MTT and ALP results indicated that the plasma etching increased the biocompatibility of HAp-NP/PCL composite film. The present simple plasma etching technique can be applicable in a development of biomaterials.

  3. Optical properties and radiation stability of submicro- and nanopowders titanium dioxide measured in situ

    NASA Astrophysics Data System (ADS)

    Mikhailov, M. M.; Neshchimenko, V. V.; Yuryev, S. A.

    2016-04-01

    This study carried out an in situ and external investigation on the reflective spectra of micro- and nanopowders titanium dioxide before and after irradiation by 30 keV electrons. The particle sizes range from 60-240 nm. It was established that the decrease in the particle size leads to an increase in intrinsic defects. The particles with intrinsic defects are then transformed into absorption centers during irradiation as a result of optical degradation of TiO2 powders. High radiation stability has particle sizes range from 80-160 nm.

  4. Three-dimensional simulations of nanopowder compaction processes by granular dynamics method

    NASA Astrophysics Data System (ADS)

    Boltachev, G. Sh.; Lukyashin, K. E.; Shitov, V. A.; Volkov, N. B.

    2013-07-01

    In order to describe and to study the processes of cold compaction within the discrete element method a three-dimensional model of nanosized powder is developed. The elastic forces of repulsion, the tangential forces of “friction” (Cattaneo-Mindlin), and the dispersion forces of attraction (van der Waals-Hamaker), as well as the formation and destruction of hard bonds between the individual particles are taken into account. The monosized powders with the size of particles in the range 10-40 nm are simulated. The simulation results are compared to the experimental data of the alumina nanopowders compaction. It is shown that the model allows us to reproduce experimental data reliably and, in particular, describes the size effect in the compaction processes. A number of different external loading conditions is used in order to perform the theoretical and experimental researches. The uniaxial compaction (the closed-die compaction), the biaxial (radial) compaction, and the isotropic compaction (the cold isostatic pressing) are studied. The real and computed results are in a good agreement with each other. They reveal a weak sensitivity of the oxide nanopowders to the loading condition (compaction geometry). The application of the continuum theory of the plastically hardening porous body, which is usually used for the description of powders, is discussed.

  5. Synthesis and characterization of NiO nanopowder by sol-gel process

    SciTech Connect

    Ningsih, Sherly Kasuma Warda

    2015-09-30

    Preparation of nickel oxide (NiO) nanopowder by sol-gel process has been studied. NiO nanopowders were obtained by sol-gel method by using nickel nitrate hexahydrate and sodium hydroxide and aquadest were used as precursor, agent precipitator and solvent, respectively. The powders were formed by drying at 110°C and followed by heating in the furnace at 400°C for 1.5 hours. The product was obtained black powder. The product was characterized by Energy Dispesive X-ray Fluorescence (ED-XRF), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The ED-XRF pattern shows the composition of NiO produced was 97.1%. The XRD pattern showed NiO forms were produced generally in monoclinic stucture. The crystalline size of NiO was obtained in the range 40-85 nm. SEM micrograph clearly showed that powder had a spherical with uniform distribution size is 0.1-1.0 µm approximately.

  6. Dependence of viscosity of suspensions of ceramic nanopowders in ethyl alcohol on concentration and temperature

    PubMed Central

    2012-01-01

    This work presents results of measurements of viscosity of suspensions including yttrium oxide (Y2O3), yttrium aluminum garnet (Y3Al5O12) and magnesium aluminum spinel (MgAl2O4) nanopowders in ethanol. Nanoparticles used in our research were either commercially available (Baikowski) or nanopowders newly developed in the Institute of Ceramics and Building Materials in Warsaw, Poland. The study was conducted in a wide range of shear rates (0.01 to 2,000 s−1) and temperature interval from -15°C to 20°C. A Haake Mars 2 rheometer from Thermo Fisher, Germany, was used in the Biophysics Laboratory at Rzeszów University of Technology. Most of the samples show a non-Newtonian behaviour. It was confirmed with a Rheo-NMR system from Bruker that 10% by weight of Y2O3 suspension is a non-Newtonian fluid. In this work, we also report an unexpected behaviour of the viscosity of some samples (Y2O3 and Y3Al5O12) due to sedimentation effect. PMID:22824064

  7. EGCG assisted green synthesis of ZnO nanopowders: Photodegradative, antimicrobial and antioxidant activities

    NASA Astrophysics Data System (ADS)

    Suresh, D.; Udayabhanu; Nethravathi, P. C.; Lingaraju, K.; Rajanaika, H.; Sharma, S. C.; Nagabhushana, H.

    2015-02-01

    Zinc oxide nanopowders were synthesized by solution combustion method using Epigallocatechin gallate (EGCG) a tea catechin as fuel. The structure and morphology of the product was characterized by Powder X-ray Diffraction, Scanning Electron Microscopy, photoluminescence and UV-Visible spectroscopy. The nanopowders (Nps) were subjected to photocatalytic and biological activities such as antimicrobial and antioxidant studies. PXRD patterns demonstrate that the formed product belongs to hexagonal wurtzite system. SEM images show that the particles are agglomerated to form sponge like structure and the average crystallite sizes were found to be ∼10-20 nm. PL spectra exhibit broad and strong peak at 590 nm due to the Zn-vacancies, and O-vacancies. The prepared ZnO Nps exhibit excellent photocatalytic activity for the photodegradation of malachite green (MG) and methylene blue (MB) indicating that the ZnO NPs are potential photocatalytic semiconductor materials. ZnO NPs exhibit significant bactericidal activity against Klebsiella aerogenes, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus using the agar well diffusion method. Furthermore, the ZnO nano powders show good antioxidant activity by potentially scavenging DPPH radicals. The study successfully demonstrates synthesis of ZnO NPs by simple ecofriendly route employing EGCG as fuel that exhibit superior photodegradative, antibacterial and antioxidant activities.

  8. Bulk synthesis of monodisperse magnetic FeNi3 nanopowders by flow levitation method.

    PubMed

    Chen, Shanjun; Chen, Yan; Kang, Xiaoli; Li, Song; Tian, Yonghong; Wu, Weidong; Tang, Yongjian

    2013-10-01

    In this work, a novel bulk synthesis method for monodisperse FeNi3 nanoparticles was developed by flow levitation method (FL). The Fe and Ni vapours ascending from the high temperature levitated droplet was condensed by cryogenic Ar gas under atmospheric pressure. X-ray diffraction was used to identify and characterize the crystal phase of prepared powders exhibiting a FeNi3 phase. The morphology and size of nanopowders were observed by transmission electron microscopy (TEM). The chemical composition of the nanoparticles was determined with energy dispersive spectrometer (EDS). The results indicated that the FeNi3 permalloy powders are nearly spherical-shaped with diameter about 50-200 nm. Measurement of the magnetic property of nanopowders by a superconducting quantum interference device (SQUID, Quantum Design MPMS-7) showed a symmetric hysteresis loop of ferromagnetic behavior with coercivity of 220 Oe and saturation magnetization of 107.17 emu/g, at 293 K. At 5 K, the obtained saturation magnetization of the sample was 102.16 emu/g. The production rate of FeNi3 nanoparticles was estimated to be about 6 g/h. This method has great potential in mass production of FeNi3 nannoparticles. PMID:24245162

  9. Dependence of viscosity of suspensions of ceramic nanopowders in ethyl alcohol on concentration and temperature.

    PubMed

    Zyła, Gaweł; Cholewa, Marian; Witek, Adam

    2012-01-01

    : This work presents results of measurements of viscosity of suspensions including yttrium oxide (Y2O3), yttrium aluminum garnet (Y3Al5O12) and magnesium aluminum spinel (MgAl2O4) nanopowders in ethanol. Nanoparticles used in our research were either commercially available (Baikowski) or nanopowders newly developed in the Institute of Ceramics and Building Materials in Warsaw, Poland. The study was conducted in a wide range of shear rates (0.01 to 2,000 s-1) and temperature interval from -15°C to 20°C. A Haake Mars 2 rheometer from Thermo Fisher, Germany, was used in the Biophysics Laboratory at Rzeszów University of Technology. Most of the samples show a non-Newtonian behaviour. It was confirmed with a Rheo-NMR system from Bruker that 10% by weight of Y2O3 suspension is a non-Newtonian fluid. In this work, we also report an unexpected behaviour of the viscosity of some samples (Y2O3 and Y3Al5O12) due to sedimentation effect. PMID:22824064

  10. Ablation of oxide materials and production of nanopowders by ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Osipov, Vladimir V.; Lisenkov, Vasily V.; Platonov, Vladislav V.

    2015-03-01

    In this paper, laser radiation action on Nd3+:Y2O3 targets having the absorption 13-1.7 × 103 cm-1 is studied. During the experiment, we used the ytterbium fiber laser, which can operate both in continuous and pulse mode with the pulse duration time 0.1-1.9 ms. Laser radiation power was 200-700 W, and power density was (0.2-1.2) × 106 W/cm2. We found out the spike behavior of laser plume luminescence, large statistical variability of delay time of laser plume appearance, and spallation of front surface of the target. Aiming to explain these facts, we developed the numeric model of radiation impact on substance with non-uniform absorption coefficient. We found out the optimal laser oblation mode for nanopowder production. At laser power of 700 W, we received Nd3+:Y2O3 nanopowder with productivity up to 27 g/h. Average size of nanoparticles is 13.6 nm, and their phase is monoclinic.

  11. Low temperature synthesis of pure cubic ZrO2 nanopowder: structural and luminescence studies.

    PubMed

    Prakashbabu, D; Hari Krishna, R; Nagabhushana, B M; Nagabhushana, H; Shivakumara, C; Chakradar, R P S; Ramalingam, H B; Sharma, S C; Chandramohan, R

    2014-03-25

    Pure cubic zirconia (ZrO2) nanopowder is prepared for the first time by simple low temperature solution combustion method without calcination. The product is characterized by Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infra Red spectroscopy (FTIR) and Ultraviolet-Visible spectroscopy (UV-Vis). The PXRD showed the formation of pure stable cubic ZrO2 nanopowders with average crystallite size ranging from 6 to 12 nm. The lattice parameters were calculated from Rietveld refinement method. SEM micrograph shows fluffy, mesoporous, agglomerated particles with large number of voids. TEM micrograph shows honey comb like arrangement of particles with particle size ∼10 nm. The PL emission spectrum excited at 210 nm and 240 nm consists of intense bands centered at ∼365 and ∼390 nm. Both the samples show shoulder peak at ∼420 nm, along with four weak emission bands at ∼484, ∼528, ∼614 and ∼726 nm. TL studies were carried out pre-irradiating samples with γ-rays ranging from 1 to 5 KGy at room temperature. A well resolved glow peak at 377 °C is recorded which can be ascribed to deep traps. With increase in γ radiation there is linear increase in TL intensity which shows the possible use of ZrO2 as dosimetric material.

  12. A study on the effect factors of sol-gel synthesis of yttrium aluminum garnet nanopowders

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Lu, Tiecheng; Xu, Hui; Zhang, Wei; Ma, Benyuan

    2010-03-01

    Yttrium aluminum garnet (YAG) nanopowders were synthesized by sol-gel method using aluminum nitrate, yttrium nitrate, and citric acid as starting materials, de-ionized water, ethanol, and ethylene glycol as solvents, respectively. The phase formation process, state of particle size distribution (PSD), compositions, morphological characteristics, and thermal behavior of the powders were investigated by means of x-ray diffractometry, PSD, Fourier transform infrared, transmission electronic microscope, and thermogravimetry-differential scanning calorimetry. Results indicate that the formation and characteristics of precursor gel and YAG powder, such as the rate of gelation, average particle size, and powder agglomerate state, strongly depend on the stoichiometric amount of citric acid, the solvent composition, and the precalcination process. Highly crystalline, well-dispersed YAG nanopowder was obtained by calcining at 800 °C for 2 h in the presence of citric acid to nitrate ratio of 3, ethanol solvent, and precalcination process. According to the analysis of experimental results, sol-gel chemistry, DLVO theory, and steric effect, the effects of stoichiometric amount of citric acid, solvent composition, and precalcination process on the formation and characteristics of precursor gel and YAG powder have been discussed. Meanwhile, the overall synthesis mechanism in sol-gel method has been suggested.

  13. Dependence of viscosity of suspensions of ceramic nanopowders in ethyl alcohol on concentration and temperature

    NASA Astrophysics Data System (ADS)

    Żyła, Gaweł; Cholewa, Marian; Witek, Adam

    2012-07-01

    This work presents results of measurements of viscosity of suspensions including yttrium oxide (Y2O3), yttrium aluminum garnet (Y3Al5O12) and magnesium aluminum spinel (MgAl2O4) nanopowders in ethanol. Nanoparticles used in our research were either commercially available (Baikowski) or nanopowders newly developed in the Institute of Ceramics and Building Materials in Warsaw, Poland. The study was conducted in a wide range of shear rates (0.01 to 2,000 s-1) and temperature interval from -15°C to 20°C. A Haake Mars 2 rheometer from Thermo Fisher, Germany, was used in the Biophysics Laboratory at Rzeszów University of Technology. Most of the samples show a non-Newtonian behaviour. It was confirmed with a Rheo-NMR system from Bruker that 10% by weight of Y2O3 suspension is a non-Newtonian fluid. In this work, we also report an unexpected behaviour of the viscosity of some samples (Y2O3 and Y3Al5O12) due to sedimentation effect.

  14. Low temperature synthesis of pure cubic ZrO2 nanopowder: Structural and luminescence studies

    NASA Astrophysics Data System (ADS)

    Prakashbabu, D.; Hari Krishna, R.; Nagabhushana, B. M.; Nagabhushana, H.; Shivakumara, C.; Chakradar, R. P. S.; Ramalingam, H. B.; Sharma, S. C.; Chandramohan, R.

    2014-03-01

    Pure cubic zirconia (ZrO2) nanopowder is prepared for the first time by simple low temperature solution combustion method without calcination. The product is characterized by Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infra Red spectroscopy (FTIR) and Ultraviolet-Visible spectroscopy (UV-Vis). The PXRD showed the formation of pure stable cubic ZrO2 nanopowders with average crystallite size ranging from 6 to 12 nm. The lattice parameters were calculated from Rietveld refinement method. SEM micrograph shows fluffy, mesoporous, agglomerated particles with large number of voids. TEM micrograph shows honey comb like arrangement of particles with particle size ∼10 nm. The PL emission spectrum excited at 210 nm and 240 nm consists of intense bands centered at ∼365 and ∼390 nm. Both the samples show shoulder peak at ∼420 nm, along with four weak emission bands at ∼484, ∼528, ∼614 and ∼726 nm. TL studies were carried out pre-irradiating samples with γ-rays ranging from 1 to 5 KGy at room temperature. A well resolved glow peak at 377 °C is recorded which can be ascribed to deep traps. With increase in γ radiation there is linear increase in TL intensity which shows the possible use of ZrO2 as dosimetric material.

  15. Low temperature synthesis of pure cubic ZrO2 nanopowder: structural and luminescence studies.

    PubMed

    Prakashbabu, D; Hari Krishna, R; Nagabhushana, B M; Nagabhushana, H; Shivakumara, C; Chakradar, R P S; Ramalingam, H B; Sharma, S C; Chandramohan, R

    2014-03-25

    Pure cubic zirconia (ZrO2) nanopowder is prepared for the first time by simple low temperature solution combustion method without calcination. The product is characterized by Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infra Red spectroscopy (FTIR) and Ultraviolet-Visible spectroscopy (UV-Vis). The PXRD showed the formation of pure stable cubic ZrO2 nanopowders with average crystallite size ranging from 6 to 12 nm. The lattice parameters were calculated from Rietveld refinement method. SEM micrograph shows fluffy, mesoporous, agglomerated particles with large number of voids. TEM micrograph shows honey comb like arrangement of particles with particle size ∼10 nm. The PL emission spectrum excited at 210 nm and 240 nm consists of intense bands centered at ∼365 and ∼390 nm. Both the samples show shoulder peak at ∼420 nm, along with four weak emission bands at ∼484, ∼528, ∼614 and ∼726 nm. TL studies were carried out pre-irradiating samples with γ-rays ranging from 1 to 5 KGy at room temperature. A well resolved glow peak at 377 °C is recorded which can be ascribed to deep traps. With increase in γ radiation there is linear increase in TL intensity which shows the possible use of ZrO2 as dosimetric material. PMID:24317256

  16. Employing Ti nano-powder dielectric to enhance surface characteristics in electrical discharge machining of AISI D2 steel

    NASA Astrophysics Data System (ADS)

    Marashi, Houriyeh; Sarhan, Ahmed A. D.; Hamdi, Mohd

    2015-12-01

    Manufacturing components with superior surface characteristics is challenging when electrical discharge machining (EDM) is employed for mass production. The aim of this research is to enhance the characteristics of AISI D2 steel surface machined with EDM through adding Ti nano-powder to dielectric under various machining parameters, including discharge duration (Ton) and peak current (I). Surface roughness profilometer, FESEM and AFM analysis were utilized to reveal the machined surface characteristics in terms of surface roughness, surface morphology and surface micro-defects. Moreover, EDX analysis was performed in order to evaluate the atomic deposition of Ti nano-powder on the surface. The concentration of Ti nano-powder in dielectric was also examined using ESEM and EDX. According to the results, the addition of Ti nano-powder to dielectric notably enhanced the surface morphology and surface roughness at all machining parameters except Ton = 340 μs. Of these parameters, maximum enhancement was observed at Ton = 210 μs, where the material removal rate and average surface roughness improved by ∼69 and ∼35% for peak current of 6 and 12 A, respectively. Elemental analysis signified negligible Ti deposition on the machined surface while the atomic concentration of Ti was increased around the crack areas.

  17. Surface properties of calcium and magnesium oxide nanopowders grafted with unsaturated carboxylic acids studied with inverse gas chromatography.

    PubMed

    Maciejewska, Magdalena; Krzywania-Kaliszewska, Alicja; Zaborski, Marian

    2012-09-28

    Inverse gas chromatography (IGC) was applied at infinite dilution to evaluate the surface properties of calcium and magnesium oxide nanoparticles and the effect of surface grafted unsaturated carboxylic acid on the nanopowder donor-acceptor characteristics. The dispersive components (γ(s)(D)) of the free energy of the nanopowders were determined by Gray's method, whereas their tendency to undergo specific interactions was estimated based on the electron donor-acceptor approach presented by Papirer. The calcium and magnesium oxide nanoparticles exhibited high surface energies (79 mJ/m² and 74 mJ/m², respectively). Modification of nanopowders with unsaturated carboxylic acids decreased their specific adsorption energy. The lowest value of γ(s)(D) was determined for nanopowders grafted with undecylenic acid, approximately 55 mJ/m². The specific interactions were characterised by the molar free energy (ΔG(A)(SP)) and molar enthalpy (ΔH(A)(SP)) of adsorption as well as the donor and acceptor interaction parameters (K(A), K(D)). PMID:22907042

  18. Effect of Nb doping on structural, optical and photocatalytic properties of flame-made TiO2 nanopowder.

    PubMed

    Michalow, Katarzyna A; Flak, Dorota; Heel, Andre; Parlinska-Wojtan, Magdalena; Rekas, Mieczyslaw; Graule, Thomas

    2012-11-01

    TiO(2):Nb nanopowders within a dopant concentration in the range of 0.1-15 at.% were prepared by one-step flame spray synthesis. Effect of niobium doping on structural, optical and photocatalytic properties of titanium dioxide nanopowders was studied. Morphology and structure were investigated by means of Brunauer-Emmett-Teller isotherm, X-ray diffraction and transmission electron microscopy. Diffuse reflectance and the resulting band gap energy were determined by diffuse reflectance spectroscopy. Photocatalytic activity of the investigated nanopowders was revised for the photodecomposition of methylene blue (MB), methyl orange (MO) and 4-chlorophenol under UVA and VIS light irradiation. Commercial TiO(2)-P25 nanopowder was used as a reference. The specific surface area of the powders was ranging from 42.9 m(2)/g for TiO(2):0.1 at.% Nb to 90.0 m(2)/g for TiO(2):15 at.% Nb. TiO(2):Nb particles were nanosized, spherically shaped and polycrystalline. Anatase was the predominant phase in all samples. The anatase-related transition was at 3.31 eV and rutile-related one at 3.14 eV. TiO(2):Nb nanopowders exhibited additional absorption in the visible range. In comparison to TiO(2)-P25, improved photocatalytic activity of TiO(2):Nb was observed for the degradation of MB and MO under both UVA and VIS irradiation, where low doping level (Nb < 1 at.%) was the most effective. Niobium doping affected structural, optical and photocatalytic properties of TiO(2). Low dopant level enhanced photocatalytic performance under UVA and VIS irradiation. Therefore, TiO(2):Nb (Nb < 1 at.%) can be proposed as an efficient selective solar light photocatalyst. PMID:23054731

  19. The effects of the location of Au additives on combustion-generated SnO(2) nanopowders for CO gas sensing.

    PubMed

    Bakrania, Smitesh D; Wooldridge, Margaret S

    2010-01-01

    The current work presents the results of an experimental study of the effects of the location of gold additives on the performance of combustion-generated tin dioxide (SnO(2)) nanopowders in solid state gas sensors. The time response and sensor response to 500 ppm carbon monoxide is reported for a range of gold additive/SnO(2) film architectures including the use of colloidal, sputtered, and combustion-generated Au additives. The opportunities afforded by combustion synthesis to affect the SnO(2)/additive morphology are demonstrated. The best sensor performance in terms of sensor response (S) and time response (τ) was observed when the Au additives were restricted to the outermost layer of the gas-sensing film. Further improvement was observed in the sensor response and time response when the Au additives were dispersed throughout the outermost layer of the film, where S = 11.3 and τ = 51 s, as opposed to Au localized at the surface, where S = 6.1 and τ = 60 s.

  20. Effect of solution combusted TiO2 nanopowder within commercial BaTiO3 dielectric layer on the photoelectric properties for AC powder electroluminescence devices.

    PubMed

    Park, Sung; Choi, Gil Rak; Kim, Youn Cheol; Lee, Jae Chun; Lee, Ju Hyeon

    2013-05-01

    A unique synthesis method was developed, which is called solution combustion method (SCM). TiO2 nanopowder was synthesized by this method. This SCM TiO2 nanopowder (-35 nm) was added to the dielectric layer of AC powder electroluminescence (EL) device. The dielectric layer was made of commercial BaTiO3 powder (-1.2 microm) and binding polymer. 0, 5, 10 and 15 wt% of SCM TiO2 nanopowder was added to the dielectric layer during fabrication of AC powder EL device respectively. Dielectric constant of these four kinds of dielectric layers was measured. The brightness and current density of AC powder EL device were also measured. When 10 wt% of SCM TiO2 nanopowder was added, dielectric constant and brightness were increased by 30% and 101% respectively. Furthermore, the current density was decreased by 71%. This means that the brightness was double and the power consumption was one third.

  1. Molten salt synthesis and localized surface plasmon resonance study of vanadium dioxide nanopowders

    SciTech Connect

    Wang Fu; Liu Yun; Liu Chunyan

    2009-12-15

    Rutile-type vanadium dioxide nanopowders with four different sizes were successfully synthesized by carbothermal reducing V{sub 2}O{sub 5} in KCl-LiCl molten salt. XRD and TEM characterizations suggested that vanadium dioxide particles formed by a broken and reunited process of vanadium oxide. Molten salt and organic carbon sources are crucial to the size of final particles. In the presence of the molten salt, the organic carbon with a shorter chain length would induce smaller particles. The UV-VIS-IR spectral measurements for as-prepared vanadium dioxide announced an obvious localized surface plasmon resonance band in the near infrared region at 90 deg. C. - Graphical abstract: Schematic illustration of the formation mechanism of VO{sub 2}(M) nanoparticles in molten salt, particles size can be controlled by choosing organic carbon sources with different chain length.

  2. Acoustic Properties of Polyurethane Composition Reinforced with Carbon Nanotubes and Silicon Oxide Nano-powder

    NASA Astrophysics Data System (ADS)

    Orfali, Wasim A.

    This article demonstrates the acoustic properties of added small amount of carbon-nanotube and siliconoxide nano powder (S-type, P-Type) to the host material polyurethane composition. By adding CNT and/or nano-silica in the form of powder at different concentrations up to 2% within the PU composition to improve the sound absorption were investigated in the frequency range up to 1600 Hz. Sound transmission loss measurement of the samples were determined using large impedance tube. The tests showed that addition of 0.2 wt.% Silicon Oxide Nano-powder and 0.35 wt.% carbon nanotube to polyurethane composition improved sound transmissions loss (Sound Absorption) up to 80 dB than that of pure polyurethane foam sample.

  3. The effect of calcination temperature on the crystallinity of TiO 2 nanopowders

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Fang; Lee, Chi-Young; Yeng, Ming-Yu; Chiu, Hsin-Tien

    2003-01-01

    TiO 2 nanopowders have been prepared using 0.1 M titanium tetraisopropoxide (TTIP) in varied pH aqueous solution containing TMC and NP-204 surfactants. Only the powder acquired from a solution of pH=2 has a regular particle size distribution. Anatase phase powders are obtained by calcination in nitrogen in the 250-500°C temperature range. When calcined at 400°C, the diameter of the nanoparticles is approximately 10 nm with a specific surface area of 106.9 m 2/g. As the calcination temperature is increased, the particle size increases. Rutile phase powders are formed at calcination temperatures above 600°C.

  4. Stable Co-Catalyst-Free Photocatalytic H2 Evolution From Oxidized Titanium Nitride Nanopowders.

    PubMed

    Zhou, Xuemei; Zolnhofer, Eva M; Nguyen, Nhat Truong; Liu, Ning; Meyer, Karsten; Schmuki, Patrik

    2015-11-01

    A simple strategy is used to thermally oxidize TiN nanopowder (∼20 nm) to an anatase phase of a TiO2:Ti(3+):N compound. In contrast to the rutile phase of such a compound, this photocatalyst provides activity for hydrogen evolution under AM1.5 conditions, without the use of any noble metal co-catalyst. Moreover the photocatalyst is active and stable over extended periods of time (tested for 4 months). Importantly, to achieve successful conversion to the active anatase polymorph, sufficiently small starting particles of TiN are needed. The key factor for catalysis is the stabilization of the co-catalytically active Ti(3+) species against oxidation by nitrogen present in the starting material. PMID:26427346

  5. Acetone Sensing Properties of a Gas Sensor Composed of Carbon Nanotubes Doped With Iron Oxide Nanopowder

    PubMed Central

    Tan, Qiulin; Fang, Jiahua; Liu, Wenyi; Xiong, Jijun; Zhang, Wendong

    2015-01-01

    Iron oxide (Fe2O3) nanopowder was prepared by a precipitation method and then mixed with different proportions of carbon nanotubes. The composite materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. A fabricated heater-type gas sensor was compared with a pure Fe2O3 gas sensor under the influence of acetone. The effects of the amount of doping, the sintering temperature, and the operating temperature on the response of the sensor and the response recovery time were analyzed. Experiments show that doping of carbon nanotubes with iron oxide effectively improves the response of the resulting gas sensors to acetone gas. It also reduces the operating temperature and shortens the response recovery time of the sensor. The response of the sensor in an acetone gas concentration of 80 ppm was enhanced, with good repeatability. PMID:26569253

  6. Preparation, structural and optical characterization of ZnO, ZnO: Al nanopowder

    SciTech Connect

    Mohan, R. Raj; Rajendran, K.; Sambath, K.

    2014-01-28

    In this paper, ZnO and ZnO:Al nanopowders have been synthesized by low cost hydrothermal method. Zinc nitrate, hexamethylenetetramine (HMT) and aluminium nitrate are used as precursors for ZnO and AZO with different molar ratios. The structural and optical characterization of doped and un-doped ZnO powders have been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDAX), photoluminescence (PL) and ultra violet visible (UV-Vis) absorption studies. The SEM results show that the hydrothermal synthesis can be used to obtain nanoparticles with different morphology. It is observed that the grain size of the AZO nanoparticles increased with increasing of Al concentration. The PL measurement of AZO shows that broad range of green emission around 550nm with high intensity. The green emission resulted mainly because of intrinsic defects.

  7. Physicochemical and sensory properties of milk supplemented with dispersible nanopowdered oyster shell during storage.

    PubMed

    Lee, Y K; Ahn, S I; Chang, Y H; Kwak, H S

    2015-09-01

    The current study was carried out to investigate the dispersibility of powdered oyster shell (POS), nanopowdered oyster shell (NPOS), and Zn-activated nanopowdered oyster shell (Zn-NPOS) in milk and to determine effects of adding oyster shell on the physicochemical and sensory properties of milk during storage at 4°C for 16 d. To ensure dispersibility, 10% (wt/vol) oyster shell was added to distilled water and stirred at 800 rpm for 2 h, and then the emulsifier 0.5% polyglycerol monostearate (PGMS) was added and stirred continually for 24 h. The particle sizes of POS, NPOS, and Zn-NPOS were 180μm, 389 nm, and 257 nm, respectively. The pH values of all milk samples ranged from 6.62 to 6.88 during storage, and the zeta-potential of milks with NPOS and Zn-NPOS added were more stable than that of milk with POS in low concentrations (0.5 and 1.0%, vol/vol) during storage. The L and a color values of the milks were not significantly influenced by treatment; however, the b value (yellow-blue color) significantly increased during storage after adding POS, NPOS, or Zn-NPOS. Sensory analysis revealed that sedimentation score significantly increased with POS-supplemented milk, but the NPOS- and Zn-NPOS-supplemented milks did not show sedimentation until after 8 d of storage. Based on the data obtained, we conclude that dispersible nanosized oyster shell at concentrations of 0.5 and 1.0% (vol/vol) could be supplemented to milk without significant adverse effects on physicochemical and sensory properties.

  8. Green approach for the synthesis and characterization of ZrSnO4 nanopowder

    NASA Astrophysics Data System (ADS)

    Athar, Taimur; Vishwakarma, Sandeep Kumar; Bardia, Avinash; Alabass, Razzaq; Alqarlosy, Ahmed; Khan, Aleem Ahmed

    2016-06-01

    Well-defined structural framework of ZrSnO4 nanopowder has been synthesized for the fabrications of cost-effective and sensitive devices which give final reproducible result with reliability under ideal conditions. The synthesis was carried out at moderate temperature and then finally dried in the laboratory oven and then followed with calcination at 1000 °C for 4 h to get phase selective product. It was observed that gelation time depends on the concentration of reactants and temperature. The characterization of ZrSnO4 was carried out with XRD, SEM, TEM, UV, thermal analysis, DLS and FT-IR techniques. With adjustment of reaction parameters, the systematic tuning of the particle size, shape and functional properties can be controlled. It was concluded that self-assembly is an integral part for the synthesis and opens a new exciting opportunity for better understanding the formation of nanostructure framework from micro- to nanoscale along with mechanistic via wet chemical approach. ZrSnO4 has vital role in identifying its potential cytotoxicity in the biological systems. The cytotoxicity effects of ZrSnO4 nanopowder in vitro were evaluated in three different human cell types (hepatocytes, mesenchymal stem cells and neuronal cells). Acute exposure of nanoparticles was found to have greater cytotoxic effect at higher concentration (30 µg/ml). However, partial detoxification was observed during nanoparticles exposure at day 6. The study concluded that an initial stress from nanoparticles incorporates sealing or detoxification of nanoparticles which may help to recover cell viability.

  9. Combustion synthesis, characterization and Raman studies of ZnO nanopowders

    NASA Astrophysics Data System (ADS)

    Reddy, A. Jagannatha; Kokila, M. K.; Nagabhushana, H.; Rao, J. L.; Shivakumara, C.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2011-10-01

    Spherical shaped ZnO nanopowders (14-50 nm) were synthesized by a low temperature solution combustion method in a short time <5 min. Rietveld analysis show that ZnO has hexagonal wurtzite structure with lattice constants a = 3.2511(1) Å, c = 5.2076(2) Å, unit cell volume ( V) = 47.66(5) (Å) 3 and belongs to space group P63mc. SEM micrographs reveal that the particles are spherical in shape and the powders contained several voids and pores. TEM results also confirm spherical shape, with average particle size of 14-50 nm. The values are consistent with the grain sizes measured from Scherrer's method and Williamson-Hall (W-H) plots. A broad UV-vis absorption spectrum was observed at ˜375 nm which is a characteristic band for the wurtzite hexagonal pure ZnO. The optical energy band gap of 3.24 eV was observed for nanopowder which is slightly lower than that of the bulk ZnO (3.37 eV). The observed Raman peaks at 438 and 588 cm -1 were attributed to the E 2 (high) and E 1 (LO) modes respectively. The broad band at 564 cm -1 is due to disorder-activated Raman scattering for the A 1 mode. These bands are associated with the first-order Raman active modes of the ZnO phase. The weak bands observed in the range 750-1000 cm -1 are due to small defects.

  10. Preparation, structural and spectroscopic studies of (Y xLu 1-x) 2O 3:Eu 3+ nanopowders

    NASA Astrophysics Data System (ADS)

    Antić, Željka; Krsmanović, Radenka; Wojtowicz, Marcin; Zych, Eugeniusz; Bártová, Barbora; Dramićanin, Miroslav D.

    2010-10-01

    Lutetium and yttrium oxides are promising scintillating materials suitable for use in medical planar X-ray imaging and mammography. In this paper the procedure for preparation of europium doped mixed lutetium-yttrium oxide nanopowders using polymer complex solution synthesis method is presented. Detailed information on nanopowder phase, morphology and crystallinity are obtained using X-ray powder diffraction, SEM and TEM while optical properties are investigated by photoluminescence and radioluminescence measurements. Constituting nanoparticles are 20-40 nm in size, and have excellent structural ordering in cubic bixbyite-type. Unit cell parameter, ionic coordinates, crystal coherence size and microstrain are determined from Rietveld analysis. All powders show strong Eu 3+-characteristic red emission, with an average 5D 0 emission lifetime of 1.5 ms. Radioluminescence efficiency is about 15% of the commercial micron-sized Gd 2O 2S:Eu 3+ powder while negligible level of afterglow is found.

  11. Electrical and optical properties of SrTiO3 nanopowders: Effect of different dopants Ba and Ag

    NASA Astrophysics Data System (ADS)

    Ghasemifard, Mahdi; Ghamari, Misagh; Iziy, Meysam

    2016-05-01

    Using strontium-titanium salts precursor, nanopowders (STO-based-NPs) were successfully synthesized by controlled gel-combustion method. Citric and nitric acids in an optimum ratio were used as the fuel and oxidizer agents, respectively. After heat treatment at 850∘C, the crystalline structure of the products was investigated by X-ray diffraction. The effects of Ba and Ag dopants on particle size distribution were discussed by transmission electron microscopy (TEM). The optical and dielectric parameters such as energy band gap (Eg), real and imaginary parts of refractive index, dielectric function and energy loss function of nanopowders have been investigated by UV-Vis and FTIR spectra. The band gap of SrTiO3 increased with increasing Ba, Ag and Ba-Ag. Different atomic radii of dopants are responsible for changing optical and dielectric parameters due to the altered orbital configuration of the lattice structure.

  12. A study on the production of titanium carbide nano-powder in the nanostate and its properties

    NASA Astrophysics Data System (ADS)

    Shiryaeva, L. S.; Rudneva, S. V.; Galevsky, G. V.; Garbuzova, A. K.

    2016-09-01

    The plasma synthesis of titanium carbide nano-powder in the conditions close to industrial was studied. Titanium carbide TiC is a wear- and corrosion-resistant, hard, chemically inert material, demanded in various fields for the production of hard alloys, metal- ceramic tools, heat-resistant products, protective metal coatings. New perspectives for application titanium carbide in the nanostate can be found in the field of alloys modification with different composition and destination.

  13. Ammonia sensing properties of V-doped ZnO:Ca nanopowders prepared by sol–gel synthesis

    SciTech Connect

    Fazio, E.; Hjiri, M.; Dhahri, R.; El Mir, L.; Sabatino, G.; Barreca, F.; Neri, F.; Leonardi, S.G.; Pistone, A.; Neri, G.

    2015-03-15

    V-doped ZnO:Ca nanopowders with different V loading were prepared by sol–gel synthesis and successive drying in ethanol under supercritical conditions. Characterization data of nanopowders annealed at 700 °C in air, revealed that they have the wurtzite structure. Raman features of V-doped ZnO:Ca samples were found to be substantially modified with respect to pure ZnO or binary ZnO:Ca samples, which indicate the substitution of vanadium ions in the ZnO lattice. The ammonia sensing properties of V-doped ZnO:Ca thick films were also investigated. The results obtained demonstrate the possibility of a fine tuning of the sensing characteristics of ZnO-based sensors by Ca and V doping. In particular, their combined effect has brought to an enhanced response towards NH{sub 3} compared to bare ZnO and binary V-ZnO and Ca-ZnO samples. Raman investigation suggested that the presence of Ca play a key role in enhancing the sensor response in these ternary composite nanomaterials. - Graphical abstract: V-doped ZnO:Ca nanopowders prepared by sol–gel synthesis possess enhanced sensing characteristics towards NH{sub 3} compared to bare ZnO. - Highlights: • V-doped ZnO:Ca nanopowders with different V loading were prepared by sol–gel synthesis. • Raman features of V-doped ZnO:Ca samples indicate the substitution of V ions in the ZnO lattice. • Combined effects of dopants have brought to an enhanced response to NH{sub 3} compared to ZnO. • Ca play a key role in enhancing the sensor response of ternary V-doped ZnO:Ca composites.

  14. The Preventive Effects of Nanopowdered Peanut Sprout-added Caciocavallo Cheese on Collagen-induced Arthritic Mice

    PubMed Central

    Chang, Yoon Hyuk

    2014-01-01

    The present study was carried out to investigate the effects of nanopowdered peanut sprout-added Caciocavallo cheese (NPCC) on the prevention and treatment of rheumatoid arthritis in DBA/IJ mice immunized with type II collagen. After the induction of arthritis, the mice were being divided into five groups: (1) normal, no immunization; (2) CIA, collagen-induced arthritis; (3) MTX, collagen-induced arthritis treated with methotrexate (0.3 mg/kg body weight); (4) CC, collagen-induced arthritis treated with Caciocavallo cheese (0.6 g/d); (5) NPCC, collagen-induced arthritis treated with nanopowdered peanut sprout-added Caciocavallo cheese (0.6 g/d). Nanopowdered peanut sprout was ranged from 300 to 350 nm, while regular powdered peanut sprouts were ranged from 50 to 150 μm. The NPCC group had considerable reductions of clinical scores and paw thicknesses at the end of experiment as compared to the CIA group. In the serum analysis, the TNF-α, IL-1β, IL- 6 and IgG1 levels in the NPCC group have decreased by 69.4, 75.9, 66.6, and 61.9%, respectively, when compared to the CIA group. The histological score and spleen index of the NPCC group were significantly lower than the CIA group. In conclusion, the feeding NPCC method could delay and/or prevent the rheumatoid arthritis in the collagen-induced arthritis mouse model. Based on this study, nanopowdered peanut sprouts could be applied to various functional cheeses. PMID:26760745

  15. TiC nanocrystal formation from carburization of laser-grown Ti/O/C nanopowders for nanostructured ceramics.

    PubMed

    Leconte, Y; Maskrot, H; Herlin-Boime, N; Porterat, D; Reynaud, C; Gierlotka, S; Swiderska-Sroda, A; Vicens, J

    2006-01-12

    Refractory carbide ceramics (TiC and ZrC) raise interest as promising materials for high-temperature applications such as structural materials for the future generation of nuclear reactors. In this context, nanostructured ceramics are expected to exhibit improved thermomechanical properties as well as better behavior under irradiation when compared to conventional materials. It is therefore necessary to synthesize carbide nanocrystals of such materials to elaborate the ceramics. We report here the formation study of TiC nanocrystals through the direct carburization of Ti/O/C nanopowders grown by laser pyrolysis. A spray of titanium tetraisopropoxide was laser pyrolyzed with ethylene as the sensitizer, leading to Ti/O/C nanopowders with various C contents controlled by the synthesis conditions. Annealing treatments performed on these nanopowders under an inert atmosphere without any C addition enabled the formation of TiC grains through the carburization of the oxide phase by free C incorporated during the synthesis. The powders were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The final TiC grain size was about 80 nm, and the grains were monocrystalline. The influence of the free C content on the grain growth during the annealing step, together with its effects on the densification of the ceramics after sintering by high-pressure flash sintering, was examined. A 93% densification was finally achieved.

  16. Synthesis of nanostructured framework of novel ZnBaO2 nanopowder via wet chemical approach and hepatocytotoxicity response

    NASA Astrophysics Data System (ADS)

    Athar, Taimur; Vishwakarma, Sandeep Kumar; Alabass, Razzaq; Alqaralosy, Ahmed; Khan, Aleem Ahmed

    2016-08-01

    Wet synthetic process is an effective and facile method at low cost, environmentally benign process for easy scaling-up and then used for fabrication of multi-utility devices. Self-assembling of nanobrick leads to architecture framework with new functional properties which help to make its vast applications as nanodevices with their intrinsic shape, size and functional properties. The bimetallic oxide nanostructure with phase structure was characterized by FTIR, UV-visible electronic absorption, XRD, thermal studies, SEM, TEM, DLS and fluorescence. Nanocrystalline ZnBaO2 powder can be used due to its chemical stability and excellent transmission in the visible region. It was observed that the annealing rate plays an important role to redefine the structural and other physicochemical properties which finally help to change gel into crystalline functional properties with porosity. Wet chemical approach can be used for the synthesis of other metal oxide nanopowders which can be easily scale up for production level. Along with synthesis and characterization, we also assessed biological responses of human hepatocytes exposed to ZnBaO2 nanopowder. Cell membrane permeability and ammonia detoxification were investigated against various concentrations of nanoparticles on in vitro cultured hepatocytes. Our results suggest that low concentrations (<40 μg/ml) of ZnBaO2 nanopowder have no cytotoxic effect on hepatocytes viability, proliferation and detoxification, whereas concentrations above 40 μg/ml depict significant toxicity on cells.

  17. Tuning the combined magnetic and antibacterial properties of ZnO nanopowders through Mn doping for biomedical applications

    NASA Astrophysics Data System (ADS)

    Ravichandran, K.; Karthika, K.; Sakthivel, B.; Jabena Begum, N.; Snega, S.; Swaminathan, K.; Senthamilselvi, V.

    2014-05-01

    Manganese (Mn) doped ZnO nanopowders (0, 2, 4, 6, 8 and 10 at%) were synthesized using a simple soft chemical route and their structural, optical, surface morphological, magnetic and antibacterial properties were investigated. Structural studies show that the nanopowders exhibit hexagonal wurtzite structure of ZnO. No other secondary phases like MnO2, MnO, Mn3O4 and Mn2O3 are observed. The blue shift observed in the photoluminescence spectra beyond the Mn doping level of 6 at% shows that there is an increase in the carrier concentration, caused by the interstitial incorporation of Zn and Mn in the ZnO matrix. From the antibacterial studies, it is found that ZnO:Mn nanopowders with higher Mn doping level (8 and 10 at%) exhibit good antibacterial efficiency against Escherichia coli (E. coli) bacteria. The magnetization curves obtained using vibrating sample magnetometer (VSM) show a sign of strong room temperature ferromagnetic behavior when the Mn doping level is 6 at% and a weak room temperature ferromagnetic behavior, when the Mn doping level is below 6 at%. Beyond 6 at% they are found to exhibit antiferromagnetic and paramagnetic properties, when the Mn doping levels are 8 and 10 at%, respectively. The SEM images indicate that there is a gradual decrease in the grain size with increase in the Mn doping level. The EDAX profile clearly confirms the presence of expected elements in the final product, in appropriate proportions.

  18. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-05-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11kg/m(3) of copper and 1.35kg/m(3) of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100-500nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. PMID:26918838

  19. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-05-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11kg/m(3) of copper and 1.35kg/m(3) of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100-500nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process.

  20. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    NASA Astrophysics Data System (ADS)

    Koyanagi, T.; Shimoda, K.; Kondo, S.; Hinoki, T.; Ozawa, K.; Katoh, Y.

    2014-12-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 °C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. The apparent stress exponent of the irradiation creep slightly exceeded unity, and instantaneous creep coefficient at 380-790 °C was estimated to be ∼1 × 10-5 [MPa-1 dpa-1] at ∼0.1 dpa and 1 × 10-7 to 1 × 10-6 [MPa-1 dpa-1] at ∼1 dpa. The irradiation creep strain appeared greater than that for the high purity SiC. Microstructural observation and data analysis indicated that the grain-boundary sliding associated with the secondary phases contributes to the irradiation creep at 380-790 °C to 0.01-0.11 dpa.

  1. Exchange Bias Effect in La1-xAgxMnO3 Nanopowders

    NASA Astrophysics Data System (ADS)

    Mihalik, M.; Antoňák, M.; Csach, K.; Fitta, M.; Mihalik, M.; Vavra, M.; Zentková, M.

    2013-01-01

    Exchange bias (EB) phenomena were first observed in the La1-xAgxMnO3 as prepared and heat treated (300 °C/2 hours) nanopowders (x = 0.10, 0.15 and 0.20) which were synthetized by self-combustion glycine-nitrate method. These nanoparticles have an average size of about 25 nm and adopt orthorhombic Pnma crystal structure. Cooling in magnetic field Hcf ≠ 0 through the Curie temperature TC shifts hysteresis loop in horizontal and vertical direction. The values of exchange bias field HE, coercive field Hc, remnant asymmetry μE and coercive magnetization μc increase with increasing value of cooling field Hcf. In addition the training effect was observed. Basic magnetic properties like the Curie temperature TC and the saturated magnetization µs increase and HE or µE decrease with heat treatment. Heat treatment at 600 °C/2 hours increases the average size of nanoparticles to about 55 nm, crystal structure changes to rhombohedral structure (space group R3c) and EB effect vanishes.

  2. CO sensing properties under UV radiation of Ga-doped ZnO nanopowders

    NASA Astrophysics Data System (ADS)

    Dhahri, R.; Hjiri, M.; Mir, L. El.; Bonavita, A.; Iannazzo, D.; Leonardi, S. G.; Neri, G.

    2015-11-01

    In this study, the effect of Ga-doping and UV radiation on CO sensing of ZnO nano-powders has been investigated. GZO nanoparticles with different Ga loadings were prepared using a modified sol-gel route and charaterized by means of trasmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL) analysis. Electrical and CO-sensing tests were performed on resistive planar devices consisting of thick films of GZO deposited on interdigitated alumina substrates in both dark and illumination condition by exposing the samples to UV radiation (λ = 400 nm). The baseline resistance in dark decreases strongly with the increase of Ga loading. This effect is reinforced by using UV radiation at low temperature in samples containing up to 3 at.% of Ga, which suggests also an effect of the microstructure of GZO on UV light promoting mechanism. The combined effect of Ga doping and UV irradiation allowed to monitor CO in air at low concentration with high sensitivity and lower operating temperature than on unpromoted ZnO sensor.

  3. Synthesis and magnetic properties of NiFe2-xSmxO4 nanopowder

    NASA Astrophysics Data System (ADS)

    Hassanzadeh-Tabrizi, S. A.; Behbahanian, Shahrzad; Amighian, Jamshid

    2016-07-01

    NiFe2-xSmxO4 (x=0.00, 0.05, 0.10 and 0.15) nanopowders were synthesized via a sol-gel combustion route. The structural studies were carried out by X-ray diffractometer, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The XRD results confirmed the formation of single-phase spinel cubic structure. The crystallite size decreased with an increase of samarium ion concentration, while lattice parameter and lattice strain increased with samarium substitution. TEM micrographs showed that agglomerated nanoparticles with particle sizes ranging from 35 to 90 nm were obtained. The magnetic studies were carried out using vibrating sample magnetometer. Magnetic measurements revealed that the saturation magnetization (Ms) of NiFe2-xSmxO4 nanoparticles decreases with increasing Sm3+substitution. The reduction of saturation magnetization is attributed to the dilution of the magnetic interaction. The coercivity (Hc) of samples increases by adding samarium.

  4. Magnetic structure, magnetoelastic coupling, and thermal properties of EuCrO3 nanopowders

    NASA Astrophysics Data System (ADS)

    Taheri, M.; Razavi, F. S.; Yamani, Z.; Flacau, R.; Reuvekamp, P. G.; Schulz, A.; Kremer, R. K.

    2016-03-01

    We carried out detailed studies of the magnetic structure, magnetoelastic coupling, and thermal properties of EuCrO3 nanopowders from room temperature to liquid helium temperature. Our neutron powder diffraction and x-ray powder diffraction measurements provide precise atomic positions of all atoms in the cell, especially for the light oxygen atoms. The low-temperature neutron powder diffraction data revealed extra Bragg peaks of magnetic origin, which can be attributed to a Gx antiferromagnetic structure with an ordered moment of ˜2.4 μB consistent with the 3 d3 electronic configuration of the Cr3 + cations. Apart from previously reported antiferromagnetic and ferromagnetic transitions in EuCrO3 at low temperatures, we also observed an anomaly at about 100 K. This anomaly was observed in the temperature dependence of the sample's, lattice parameters, thermal expansion, Raman spectroscopy, permittivity, and conductance measurements. This anomaly is attributed to the magnetoelastic distortion in the EuCrO3 crystal.

  5. Preparation and structural characterization of vulcanized natural rubber nanocomposites containing nickel-zinc ferrite nanopowders.

    PubMed

    Bellucci, F S; Salmazo, L O; Budemberg, E R; da Silva, M R; Rodríguez-Pérez, M A; Nobre, M A L; Job, A E

    2012-03-01

    Single-phase polycrystalline mixed nickel-zinc ferrites belonging to Ni0.5Zn0.5Fe2O4 were prepared on a nanometric scale (mean crystallite size equal to 14.7 nm) by chemical synthesis named the modified poliol method. Ferrite nanopowder was then incorporated into a natural rubber matrix producing nanocomposites. The samples were investigated by means of infrared spectroscopy, X-ray diffraction, scanning electron microscopy and magnetic measurements. The obtained results suggest that the base concentration of nickel-zinc ferrite nanoparticles inside the polymer matrix volume greatly influences the magnetic properties of nanocomposites. A small quantity of nanoparticles, less than 10 phr, in the nanocomposite is sufficient to produce a small alteration in the semi-crystallinity of nanocomposites observed by X-ray diffraction analysis and it produces a flexible magnetic composite material with a saturation magnetization, a coercivity field and an initial magnetic permeability equal to 3.08 emu/g, 99.22 Oe and 9.42 x 10(-5) respectively. PMID:22755110

  6. One-pot synthesis and characterization of Nb2O5 nanopowder.

    PubMed

    Athar, Taimur; Hashmi, Ameed; Al-Hajry, Ali; Ansari, Z A; Ansari, S G

    2012-10-01

    Nanosized niobium oxide powders were synthesized with a yield of approximately 87% using a simple and facile soft-chemical process. Niobium pentachloride (Nb2Cl5) was used as the precursor which was first converted into niobium ethoxide and then hydrolysed with water to synthesize niobia nanopowder. The synthesized powder was calcined at 500 degrees C for phase conversion to end-centered monoclinic as confirmed by diffraction studies and elemental analysis with a chemical composition in the ratio of Nb:O as 1:2.5. The molecular framework of Nb-O-Nb stretching and asymmetric frequency was confirmed by FT-IR, UV-visible and Raman spectroscopic studies. The size, shape and surface morphology of the powders were observed by SEM and TEM which indicated particle sizes of approximately 20 nm. The surface area of 20 m2/g, pore volume of 0.0538 cm2/g and the average pore size of 6.5 nm2 for the calcined sample were obtained with the help of nitrogen adsorption/desorption method using the Barrett-Joyner-Halenda (BJH) method which indicates that the synthesized powder can be used for catalysis and other surface sensitive applications. PMID:23421157

  7. Non-isothermal oxidation of aluminum nanopowder coated by hydrocarbons and fluorohydrocarbons

    NASA Astrophysics Data System (ADS)

    Sossi, A.; Duranti, E.; Paravan, C.; DeLuca, L. T.; Vorozhtsov, A. B.; Gromov, A. A.; Pautova, Yu. I.; Lerner, M. I.; Rodkevich, N. G.

    2013-04-01

    Aluminum nanopowder (nAl) obtained by electrical explosion of wires and passivated/coated with hydrocarbons and fluorohydrocarbons is comprehensively characterized. Coatings of different natures (octadecanoic and hexadecanoic acid, (1,1,11) trihydroperfluoro-undecan-1-ol, Fluorel™ + ester from esterification of (1,1,11) trihydroperfluoro-undecan-1-ol with furan-2,5-dione) were applied on the particle surface. The powders were studied by TEM, SEM, DSC-TGA, and BET specific surface area. The active aluminum content was determined by volumetric analyses. Coated nAl particles were compared to non-coated powder by the corresponding reactivity parameters obtained from DSC-TGA. It was found that while fatty acids have a weak effect on the non-isothermal oxidation behavior, fluoroelastomers shift the oxidation onset of nAl to higher temperatures by ˜20 °C for the first oxidation stage and by ˜100 °C for the second oxidation stage.

  8. ZnO and ZnTiO3 nanopowders for antimicrobial stone coating

    NASA Astrophysics Data System (ADS)

    Ruffolo, S. A.; La Russa, M. F.; Malagodi, M.; Oliviero Rossi, C.; Palermo, A. M.; Crisci, G. M.

    2010-09-01

    In the past a great variety of biocidal compounds and persistent organic pesticides were applied on a large scale for preventive measures aimed at the long-term preservation of our cultural heritage. Only recently, public and expert attention has started to focus increasingly on the risks resulting from these treatments on human health, works of art and environment in general. The work done in this field demonstrated that the most effective way for inactivation can be achieved by using highly efficient photocatalysts with the illumination of UV radiation. Following this direction our group focused its attention on well-known photocatalysts, ZnO and ZnTiO3, in the degradation and complete mineralisation of environmental pollutants. This explorative work deals with an experimental investigation on biocidal efficient of ZnO and ZnTiO3. In particular micro-quantities of the two nanopowdered photocatalysts were spread on plated dishes. They were filled by the MEA (Malt Extract Agar) medium containing given quantities of Aspergillus Niger (a chromogen filamentous fungus involved in biodeterioration). At the same time the two oxides were dispersed in different polymeric matrices, acrylic and fluorinated, in order to obtain a new coating technology, with hydrophobic, consolidant and biocidal properties for the restoration of building stone material. The mixtures obtained were applied on marble samples and capillary water absorption, simulated solar ageing, colourimetric measurements and contact angle measurements have been performed to evaluate its properties.

  9. When Halides Come to Lithium Niobate Nanopowders Purity and Morphology Assistance.

    PubMed

    Lamouroux, Emmanuel; Badie, Laurent; Miska, Patrice; Fort, Yves

    2016-03-01

    The preparation of pure lithium niobate nanopowders was carried out by a matrix-mediated synthesis approach. Lithium hydroxide and niobium pentachloride were used as precursors. The influence of the chemical environment was studied by adding lithium halide (LiCl or LiBr). After thermal treatment of the precursor mixture at 550 °C for 30 min, the morphology of the products was obtained from transmission electron microscopy and dynamic light scattering, whereas the crystallinity and phase purity were characterized by X-ray diffraction and UV-visible and Raman spectroscopies. Our results point out that the chemical environment during lithium niobate formation at 550 °C influences the final morphology. Moreover, direct and indirect band-gap energies have been determined from UV-visible spectroscopy. Their values for the direct-band-gap energies range from 3.97 to 4.36 eV with a slight dependence on the Li/Nb ratio, whereas for the indirect-band-gap energies, the value appears to be independent of this ratio and is 3.64 eV. No dependence of the band-gap energies on the average crystallite and nanoparticle sizes is observed. PMID:26859157

  10. Microwave sintering of nanopowder ZnNb2O6: Densification, microstructure and microwave dielectric properties

    NASA Astrophysics Data System (ADS)

    Bafrooei, H. Barzegar; Nassaj, E. Taheri; Hu, C. F.; Huang, Q.; Ebadzadeh, T.

    2014-12-01

    High density ZnNb2O6 ceramics were successfully fabricated by microwave sintering of ZnO-Nb2O5 and ZnNb2O6 nanopowders. Phase formation, microstructure and microwave electrical properties of the microwave sintered (MS) and microwave reaction sintered (MRS) specimens were examined using X-ray diffraction, field emission scanning electron microscopy and microwave dielectric properties measurement. Specimens were sintered in a temperature range from 950 to 1075 °C for 30 min at an interval of 25 °C using a microwave furnace operated at 2.45 GHz frequency, 3 kW power. XRD pattern revealed the formation of pure columbite phase of ZnNb2O6. The SEM micrographs show grain growth and reduction in porosity of specimens with the increase in sintering temperature. Good combination of microwave dielectric properties (εr~23.6, Qf~64,300 GHz and τf~-66 ppm/°C and εr~24, Qf~75,800 GHz and τf~-64 ppm/°C) was obtained for MS- and MRS-prepared samples at 1000 °C and 1050 °C for 30 min, respectively.

  11. Structure, nanohardness and photoluminescence of ZnO ceramics based on nanopowders

    NASA Astrophysics Data System (ADS)

    Muktepavela, Faina; Grigorjeva, Larisa; Kundzins, Karlis; Gorokhova, Elena; Rodnyi, Piotr

    2015-09-01

    ZnO ceramics obtained from grained powders with different grain size by hot pressing and ceramics from tetrapods nanopowders obtained by press-less sintering have been investigated under identical conditions. Ceramics obtained by hot pressing were optically transparent but were composed of large inhomogeneous grains (d = 8-35 μm) exhibiting a substructure. Decreased values of elastic modulus within a grain and a wide defect-associated (‘green’) photoluminescence (PL) band at 2.2-2.8 eV in conjunction with a weak excitonic band indicate a high concentration of residual point defects in hot pressed ZnO ceramics. Utilization of more small-grained powders contributes to the formation of more uniform microstructure (d = 5-15 μm) and extraction of point defects. This reflects as a substantially decreased defect PL band and increased excitonic band. Ceramics obtained by press-less sintering from tetrapods had fine-grained structure (d = 1-4 μm) with no signs of a substructure. PL spectrum has a narrow excitonic band with phonon replicas (1LO_ExD0), whereas the defect ‘green’ luminescence is negligible. The effects of powders morphologies have been explained in terms of a hereditary influence of interaction processes between initial particles on the formation of a microstructure and kinetic of defect distribution on the grain growth stages during the sintering of ZnO ceramics.

  12. SANS study of microstructural inhomogeneities on Al nano-powder compacts

    NASA Astrophysics Data System (ADS)

    Han, Young Soo; Seong, Baek Seok; Lee, Chang Hee; Lee, Geun Hee; Rhee, Chang Kyu; Kim, Whung Whoe; Wiedenmann, A.

    2004-07-01

    The nano-crystalline materials have excellent mechanical and electrical properties compared to conventional materials. These advantages mainly come from their nano-sized grain structure. Usually the nano-crystalline materials are fabricated using nano powder. The optimum consolidation process is essential to obtain a fully densified structure. The quantitative characterization of remaining pores is important to study the consolidation process. SANS is the best technique to characterize the nano sized inhomogeneities in bulk samples. Al nano powder was synthesized by pulsed wire evaporation (PWE) method and the nano-powder compacts were fabricated by magnetic pulse compaction (MPC) method. The Aluminum oxide was observed by transmission electron microscopy (TEM) at the surface of Al nano powder. The small angle neutron scattering experiments were performed both at the instrument V4 in HMI and at the SANS facility in Korea Atomic Energy Research Institute (KAERI). The SANS data measured in KAERI were compared with the SANS data measured in HMI. The scattering intensity at high Q region increases with decreasing relative density, while the intensity at low Q region increases with increasing relative density in the Al nano powder compacts. The scattering intensity depends on the content of residual pores and Al oxide particles. The volume fraction of Al oxide particle increases with relative density due to the fragmentation of Al oxide layer. The extra scattering at low Q region results from the presence of Al oxide particles.

  13. Investigation of the structure and properties of titanium-stainless steel permanent joints obtained by laser welding with the use of intermediate inserts and nanopowders

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Orishich, A. M.; Pugacheva, N. B.; Shapeev, V. P.

    2015-03-01

    Results of an experimental study of the structure, the phase composition, and the mechanical properties of laser-welded joints of 3-mm thick titanium and 12Kh18N10T steel sheets obtained with the use of intermediate inserts and nanopowdered modifying additives are reported. It is shown that that such parameters as the speed of welding, the radiation power, and the laser-beam focal spot position all exert a substantial influence on the welding-bath process and on the seam structure formed. In terms of chemical composition, most uniform seams with the best mechanical strength are formed at a 1-m/min traverse speed of laser and 2.35-kW laser power, with the focus having been positioned at the lower surface of the sheets. Under all other conditions being identical, uplift of the focus to workpiece surface or to a higher position results in unsteady steel melting, in a decreased depth and reduced degree of the diffusion-induced mixing of elements, and in an interpolate connection formed according to the soldering mechanism in the root portion of the seam. The seam material is an over-saturated copper-based solid solution of alloying elements with homogeneously distributed intermetallic disperse particles (Ti(Fe, Cr)2 and TiCu3) contained in this alloy. Brittle fracture areas exhibiting cleavage and quasi-cleavage facets correspond to coarse Ti(Fe, Cr)2 intermetallic particles or to diffusion zones primarily occurring at the interface with the titanium alloy. The reported data and the conclusions drawn from the numerical calculations of the thermophysical processes of welding of 3-mm thick titanium and steel sheets through an intermediate copper insert are in qualitative agreement with the experimental data. The latter agreement points to adequacy of the numerical description of the melting processes of contacting materials versus welding conditions and focal-spot position in the system.

  14. Effect of Mg doping level on the antibacterial activity of (Mg + F)-doped ZnO nanopowders synthesized using a soft chemical route

    NASA Astrophysics Data System (ADS)

    Ravichandran, K.; Snega, S.; Jabena Begum, N.; Christena, L. Rene; Dheivamalar, S.; Swaminathan, K.

    2014-08-01

    ZnO nanopowders simultaneously doped with fluorine (20 at.%) and magnesium (4, 8, 12 and 16 at.%) (ZnO:F:Mg) have been synthesized using an inexpensive simple soft chemical route for the first time. The effect of Mg doping level on certain physical properties and antibacterial activities of ZnO:F:Mg nanopowders has been investigated and reported. XRD studies showed that the products have the hexagonal wurtzite structure of ZnO. Fourier transform infrared spectra authenticate the presence of MgO stretching vibration, which is responsible for the increased antibacterial activity of the synthesized samples. The antibacterial activity of ZnO:F:Mg nanopowders was found to be enhanced with increase in Mg doping level as it causes a reduction in the grain size.

  15. Structural study and phase transition investigation in a simple synthesis of porous architected-ZnO nanopowder

    SciTech Connect

    Shang, C.; Barnabé, A.

    2013-12-15

    In this work, zinc oxide powder with a rectangular-shaped porous architecture, made of numerous spherical nanometric particles, was obtained. A simple precipitation/decomposition procedure was used comprising a zinc oxalate intermediate, obtained from zinc sulfate and oxalic acid without any additives. Detailed studies on zinc oxalate dehydration, decomposition and zinc oxide formation, were carried out using in-situ temperature X-ray diffraction and thermogravimetric analysis. During the investigation, the temperature dependence of particle sizes, lattice parameters and crystal structures of ZnC{sub 2}O{sub 4}·2H{sub 2}O, ZnC{sub 2}O{sub 4} and ZnO nanopowders were analyzed from room temperature to 450 °C. Structural transitions were also discussed. The structure and morphology of the as-prepared ZnO nanopowder were investigated by electron microscopy and compared to the crystalline rectangular shape of ZnC{sub 2}O{sub 4}·2H{sub 2}O. The calcination temperature, counter ion and precipitate agent were found to be related to the product's shape and diameter. Spherical ZnO nanoparticles with diameters of less than 20 nm and a maximum specific surface of 53 m{sup 2}/g were obtained using this method. Highlights: • ZnO nanopowders with porous architecture were synthesized by a simple method. • Spherical ZnO nanoparticles confined in submicronic rectangular shape are obtained. • Crystal structures are determined temperature in-situ XRD up to 450 °C. • Structural transitions were analyzed.

  16. Anode-supported microtubular cells fabricated with gadolinia-doped ceria nanopowders

    NASA Astrophysics Data System (ADS)

    Gil, V.; Gurauskis, J.; Campana, R.; Merino, R. I.; Larrea, A.; Orera, V. M.

    Anode-supported microtubular SOFCs based on ceria 3 ± 0.2 mm diameter and about 100 mm in length have been prepared using gadolinia-doped ceria (GDC) nanopowders. Nanometric Ce 0.9Gd 0.1O 1.95 (GDC) powders were deposited on NiO-Ce 0.9Gd 0.1O 1.95 (NiO-GDC) anode supports by dip-coating technique. Fabrication conditions to obtain dense and gas tight electrolyte layers on porous microtubular supports were studied. Three different dispersing agents: commercial Beycostat C213 (CECA, France) and short chain monomer (≤4 carbon atoms) with alcohol or carboxylic acid functional groups were evaluated. By optimizing colloidal dispersion parameters and sintering process, gas tight and dense GDC layers were obtained. Significantly lower sintering temperatures than reported previously (≤1300 °C) were employed to reach ≥98% values of theoretical density within electrolyte layers of ∼10 μm in thickness. A composite cathode, LSCF-GDC 50 wt.% with about 50 μm thickness was dip coated on the co-fired half-cell and then sintered at 1050 °C for 1 h. The electrochemical performance of these cells has been tested. In spite of electronic conduction due to partial reduction of the thin-electrolyte layer, the I- V measurements show power densities of 66 mW cm -2 at 0.45 V at temperatures as low as 450 °C (using 100% H 2 as fuel in the anodic compartment and air in the cathodic chamber).

  17. Reverse micelle synthesis of oxide nanopowders: mechanisms of precipitate formation and agglomeration effects.

    PubMed

    Graeve, Olivia A; Fathi, Hoorshad; Kelly, James P; Saterlie, Michael S; Sinha, Kaustav; Rojas-George, Gabriel; Kanakala, Raghunath; Brown, David R; Lopez, Enrique A

    2013-10-01

    We present an analysis of reverse micelle stability in four model systems. The first two systems, composed of unstable microemulsions of isooctane, water, and Na-AOT with additions of either iron sulfate or yttrium nitrate, were used for the synthesis of iron oxide or yttrium oxide powders. These oxide powders were of nanocrystalline character, but with some level of agglomeration that was dependent on calcination temperature and cleaning procedures. Results show that even though the reverse micellar solutions were unstable, nanocrystalline powders with very low levels of agglomeration could be obtained. This effect can be attributed to the protective action of the surfactant on the surfaces of the powders that prevents neck formation until after all the surfactant has volatilized. A striking feature of the IR spectra collected on the iron oxide powders is the absence of peaks in the ~1715 cm(-1) to 1750 cm(-1) region, where absorption due to the symmetric C=O (carbonyl) stretching occurs. The lack of such peaks strongly suggests the carbonyl group is no longer free, but is actively participating in the surfactant-precipitate interaction. The final two microemulsion systems, containing CTAB as the surfactant, showed that loss of control of the reverse micelle synthesis process can easily occur when the amount of salt in the water domains exceeds a critical concentration. Both model systems eventually resulted in agglomerated powders of broad size distributions or particles that were large compared to the sizes of the reverse micelles, consistent with the notion that the microemulsions were not stable and the powders were precipitated in an uncontrolled fashion. This has implications for the synthesis of nanopowders by reverse micelle synthesis and provides a benchmark for process control if powders of the highest quality are desired. PMID:23906861

  18. Evaluation of leakage from fume hoods using tracer gas, tracer nanoparticles and nanopowder handling test methodologies.

    PubMed

    Dunn, Kevin H; Tsai, Candace Su-Jung; Woskie, Susan R; Bennett, James S; Garcia, Alberto; Ellenbecker, Michael J

    2014-01-01

    The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 ft/min) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust airflows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in

  19. Spectral investigations on undoped and Cu2+ doped ZnO-CdS composite nanopowders

    NASA Astrophysics Data System (ADS)

    Thirumala Rao, G.; Babu, B.; Joyce Stella, R.; Pushpa Manjari, V.; Ravikumar, R. V. S. S. N.

    2015-03-01

    Undoped and Cu2+ doped ZnO-CdS composite nanopowders were synthesized by simple chemical precipitation method. Structural and spectroscopic properties of the prepared samples have been characterized by XRD, SEM with EDS, TEM, FT-IR, UV-Vis, EPR and Photoluminescence studies. X-ray diffraction pattern contains a series of peaks corresponds to hexagonal phase of ZnO and CdS. The average crystallite sizes of undoped and Cu2+ doped samples are determined and are in the range of 25-30 nm. SEM and TEM micrographs reveal that the samples show spherical like structures with little agglomeration. FT-IR spectra show the fundamental mode of vibrations of Znsbnd O at 515 cm-1, Cdsbnd S at 621 cm-1 and other functional groups. Optical absorption spectrum of Cu2+ doped sample consists of three bands at 665, 823 and 1192 nm attributed to the transitions 2B1g → 2Eg, 2B2g and 2A1g respectively. Crystal field and tetragonal field parameters are evaluated as Dq = 1214, Ds = 1610 and Dt = 389 cm-1. From EPR, spin-Hamiltonian and hyperfine splitting parameters are evaluated for Cu2+ doped sample as g‖ = 2.3391, g⊥ = 2.0550 and A‖ = 130 × 10-4 cm-1, A⊥ = 36 × 10-4 cm-1. The optical and EPR data suggests that Cu2+ entered into host lattice as tetragonally distorted octahedral site symmetry. PL spectra consists two emission bands at 367, 380 nm in UV region. A sharp blue emission peak at 425 nm and a broad green emission peak in the range of 450-570 nm are observed. The enhanced visible emission is observed after doping.

  20. Evaluation of leakage from fume hoods using tracer gas, tracer nanoparticles and nanopowder handling test methodologies.

    PubMed

    Dunn, Kevin H; Tsai, Candace Su-Jung; Woskie, Susan R; Bennett, James S; Garcia, Alberto; Ellenbecker, Michael J

    2014-01-01

    The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 ft/min) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust airflows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in

  1. EVALUATION OF LEAKAGE FROM FUME HOODS USING TRACER GAS, TRACER NANOPARTICLES AND NANOPOWDER HANDLING TEST METHODOLOGIES

    PubMed Central

    Dunn, Kevin H.; Tsai, Candace Su-Jung; Woskie, Susan R.; Bennett, James S.; Garcia, Alberto; Ellenbecker, Michael J.

    2015-01-01

    The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 feet/minute) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust air flows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in

  2. Physicochemical, microbial, and sensory properties of yogurt supplemented with nanopowdered chitosan during storage.

    PubMed

    Seo, M H; Lee, S Y; Chang, Y H; Kwak, H S

    2009-12-01

    This study was carried out to determine the possibility of adding nanopowdered chitosan (NPC) into cholesterol-reduced yogurt to improve the functionality of yogurt and the effects of adding NPC on the physicochemical, microbial, and sensory properties of the products during storage. The pH values and mean lactic acid bacteria counts of NPC-added (0.3 to approximately 0.7%, wt/vol) and cholesterol-reduced yogurt ranged from 4.19 to 4.41 and from 4.75 x 10(8) to 9.70 x 10(8) cfu/mL, respectively, when stored at 4 degrees C for 20 d, thereby indicating a possibility of prolonging the shelf life of yogurt. In color, the a* and b* values for cholesterol-reduced yogurt were not significantly influenced by the addition of NPC (0.1 to approximately 0.7%, wt/vol); however, the L* values significantly decreased with the addition of the greatest concentration (0.7%, wt/vol) of NPC at 0-d storage. The sensory test revealed that the astringency scores significantly increased at 0-d storage when the greatest concentration (0.7%, wt/vol) of NPC was added into cholesterol-reduced yogurt. Based on the data obtained from the current study, it is concluded that concentrations (0.3 to ~0.5%, vol/vol) of NPC could be used to produce an NPC-added and cholesterol-reduced yogurt without significantly adverse effects on the physicochemical, microbial, and sensory properties.

  3. Physicochemical, microbial, and sensory properties of nanopowdered eggshell-supplemented yogurt during storage.

    PubMed

    Al Mijan, Mohammad; Choi, Kyung-Hoon; Kwak, Hae-Soo

    2014-01-01

    This study was carried out to investigate the possibility of adding nanopowdered eggshell (NPES) into yogurt to improve the functionality of yogurt and the effects of adding NPES on the physicochemical, microbial, and sensory properties of the products during storage. The pH and mean lactic acid bacteria counts of NPES-added (0.15-0.45%, wt/vol) yogurt ranged from 4.31 to 4.66 and from 6.56 × 10(8) to 8.56 × 10(8)cfu/mL, respectively, whereas these values ranged from 4.13 to 4.44 and 8.46 × 10(8) to 1.39 × 10(9), respectively, for the control samples during storage at 5 °C for 16d, which indicates a prolonged shelf-life with NPES-supplemented yogurt. Color analysis showed that the lightness (L*) and position between red and green (a*) values were not significantly influenced by the addition of NPES. However, the position between yellow and blue (b*) value significantly increased with the addition of the concentration (0.45%, wt/vol) of NPES at d 16 of storage. Sensory evaluation revealed that NPES-added yogurts showed a notably less sourness score and a higher astringency score than the control. An earthy flavor was higher in 0.45% NPES-supplemented yogurt compared with the control. Based on the results obtained from the current study, the concentration (0.15 to 0.30%, wt/vol) of NPES can be used to formulate NPES-supplemented yogurt without any significant adverse effects on the physicochemical, microbial, and sensory properties.

  4. Magnetic field-enhanced sedimentation of nanopowder magnetite in water flow.

    PubMed

    Bakhteeva, Iu; Medvedeva, I; Byzov, I; Zhakov, S; Yermakov, A; Uimin, M; Shchegoleva, N

    2015-01-01

    Sedimentation dynamics of magnetite (γ-Fe3O4) nanopowder (10-20 nm) in water in a gradient magnetic field Bmax=0.3 T, (dB/dz)max=0.13 T/cm was studied for different water flow speeds and starting particle concentrations (0.1 and 1.0 g/l). The aggregates formation in water was monitored under the same conditions. In cyclical water flow, the velocity of particle sedimentation increases significantly in comparison to its rate in still water, which corresponds to the intensified aggregate formation. However, at a water flow speed more than 0.1 cm/s sedimentation velocity slows down, which might be connected to aggregate destruction in a faster water flow. Correlation between sedimentation time and the nanoparticle concentration in water does not follow the trend expected for spherical superparamagnetic particles. In our case sedimentation time is shorter for c=0.1 g/l in comparison with that for c=1 g/l. We submit that such a feature is caused by particle self-organization in water into complex structures of fractal type. This effect is unexplained in the framework of existing theoretical models of colloids systems, so far. Provisional recommendations are suggested for the design of a magnetic separator on the permanent magnets base. The main device parameters are magnetic field intensity B≥0.1 T, magnetic field gradient (dB/dz)max≈(0.1-0.2) T/cm, and water flow speed V<0.15 cm/s. For particle concentration c=1 g/l, purification of water from magnetite down to ecological and hygienic standards is reached in 80 min, for c=0.1 g/l the time is reduced down to 50 min. PMID:25650300

  5. Ultrafast synthesis of yolk-shell and cubic NiO Nanopowders and application in lithium ion batteries.

    PubMed

    Choi, Seung Ho; Kang, Yun Chan

    2014-02-26

    A continuous one-pot method was employed to synthesize yolk-shell and single-crystalline cubic NiO powders in a few seconds. Submicrometer-sized NiO yolk-shell particles were prepared by spray pyrolysis at 900 °C. Single-crystalline cubic NiO nanopowders were prepared by one-pot flame spray pyrolysis from NiO vapors. Particle surface areas of the yolk-shell and single-crystalline cubic NiO powders as obtained using the Brunauer-Emmett-Teller method were 8 and 5 m(2) g(-1), respectively. The mean crystallite sizes of the yolk-shell-structured and cubic NiO powders were 50 and 80 nm, respectively. The yolk-shell and single-crystalline cubic NiO powders delivered discharge capacities of 951 and 416 mA h g(-1), respectively, after 150 cycles, and the corresponding capacity retentions measured after the first cycle were 106 and 66%, respectively. The yolk-shell-structured NiO powders showed rate performance better than that of the single-crystalline cubic NiO nanopowders. Even at a high current density of 1 A g(-1), the discharge capacity of the yolk-shell-structured NiO powders was as high as 824 mA h g(-1) after 50 cycles, in which the current densities were increased stepwise. PMID:24490667

  6. Effect of Mg content on the bioactivity and biocompatibility of Mg-substituted fluorapatite nanopowders fabricated via mechanical activation.

    PubMed

    Kheradmandfard, M; Fathi, M H; Ansari, F; Ahmadi, T

    2016-11-01

    The aim of this work was preparation, characterization, bioactivity and biocompatibility evaluation of Mg-substituted fluorapatite (Mg-FA) nanopowders. Mg-FA nanopowders with a chemical composition of Ca10-xMgx(PO4)6F2, with x=0, 0.5, 1, and 2 were prepared by mechanically activated method. The in vitro bioactivity was investigated by soaking the powders in simulated body fluid (SBF) for various time periods to analyze the nucleation and growth of bone-like apatite on the surface of the samples. Cell viability and cell attachment were studied by MTT assay. Results indicated that the bioactivity of all of samples with different Mg content was improved compared with the pure FA. However, the mechanism of bioactivity is different and depends on the amount of Mg substitution. Finally, cell culture suggested that the addition of Mg(2+) has no adverse effect and Mg-FA samples have good biocompatibility. The Mg-FA material shows potential in satisfying the requirements of biomedical applications. PMID:27524005

  7. In vitro fabrication of dental filling nanopowder by green route and its antibacterial activity against dental pathogens.

    PubMed

    Lee, Jeong-Ho; Velmurugan, Palanivel; Park, Jung-Hee; Lee, Kui-Jae; Jin, Jong-Sik; Park, Yool-Jin; Bang, Keuk-Soo; Oh, Byung-Taek

    2016-06-01

    The aim of this study was to introduce novel Sn, Cu, Hg, and Ag nanopowders (NPs) and a composite nanopowder (NP) synthesized using Salvia miltiorrhiza Bunge (SM) root extract as a reducing and capping agent to improve the antibacterial property of dental filling materials. All of the NPs obtained were characterized using a scanning transmission electron microscope (STEM), and energy dispersive X-ray (EDX) spectrum imaging was performed to map the elemental distributions of the NP composite. Fourier transform infrared (FTIR) spectroscopy was performed to identify the role of various functional groups in all of the obtained NPs and the phyto-compound responsible for the reduction of various metal ions. The X-ray diffraction (XRD) patterns clearly illustrated the crystalline phase of the synthesized NP. The antibacterial properties of the synthesized Sn, Cu, Hg, Ag, composite NP, SM root extract, and commercial amalgam powder were evaluated. The Cu, composite NP, SM root extract and Ag NP displayed excellent antibacterial activity against dental bacteria Streptococcus mutans and Lactobacillus acidophilus. The results of this study require further evaluation for signs of metal toxicity in appropriate animal models. However, the results are encouraging for the application of metal NPs as suitable alternatives for antibiotics and disinfectants, especially in dental filling materials. PMID:27085055

  8. Sub-10 nm Ytterbium Oxide Nanopowder-doped Silicone Rubber Acoustic Lens Material for Medical Echo Array Probe

    NASA Astrophysics Data System (ADS)

    Yamashita, Yohachi (John); Hosono, Yasuharu; Itsumi, Kazuhiro

    2007-09-01

    The effects of 8-nm-Yb2O3-nanopowders dopant, on the physical and acoustical properties of high-temperature-vulcanization (HTV) silicone (Q) rubber have been investigated, to develop a low acoustic attenuation (α) lens material for medical array probes. A 35 wt % (6 vol %) Yb2O3-doped HTV Q rubber showed a sound velocity (c) = 867 m/s, an acoustic impedance (Z) = 1.36× 106 kg\\cdotm-2\\cdots-1, an acoustic attenuation α = 0.66 dB\\cdotmm-1\\cdotMHz-1, and an α-figure of merits (FOM) (α× c) = 574 at 37 °C. The α-FOM value with Z = 1.36× 106 kg\\cdotm-2\\cdots-1 for a Q rubber lens material is the lowest attenuation ever reported. Microstructure observation revealed that the low-α rubber showed a uniform Yb2O3 nanopowder distribution in the rubber matrix.

  9. Enhancement in the antibacterial efficiency of ZnO nanopowders by tuning the shape of the nanograins through fluorine doping

    NASA Astrophysics Data System (ADS)

    Ravichandran, K.; Snega, S.; Jabena Begum, N.; Swaminathan, K.; Sakthivel, B.; Rene Christena, L.; Chandramohan, G.; Ochiai, Shizuyasu

    2014-05-01

    Fluorine doped ZnO nanopowders were synthesized from starting solutions having different doping levels of F (0, 5, … , 20 at.%) using a simple soft chemical route and the effects of the doping level on the structural, optical, surface morphological and antibacterial properties were investigated. The XRD studies reveal that all the products have preferential orientation along the (1 0 1) plane. The PL studies show that all the samples exhibit strong visible emission with a peak at 425 nm. The enhancement in the visible emission indicates an increasing number of surface defects caused by the doping of F. The obtained FTIR spectra confirm the incorporation of F into ZnO lattice. From the SEM studies, it is observed that the ZnO nanowires formed at 10 at.% of F doping level exhibit excellent antibacterial activities. Antibacterial activity of F doped ZnO nanopowders against Staphylococcus aureus was found to be significantly higher than that against the Escherichia coli and Pseudomonas aeruginosa micro-organisms. All the physical properties were corroborated well with the findings related to antibacterial activity. Finally, we conclude that, the analysis of all the results shows that F doping level of 10 at.% is optimal in all respects and is suitable for antibacterial applications.

  10. Preparation of Y2O3:Eu3+, Tb3+ nanopowders with tunable luminescence by ammonium bicarbonate co-precipitation method

    NASA Astrophysics Data System (ADS)

    Shi, Hui; Zhang, Xi-Yan; Wang, Neng-Li; Dong, Wei-Li; Mi, Xiao-Yun

    2015-09-01

    Y2O3:Eu3+, Tb3+ nanopowders were prepared by co-precipitation method with NH4HCO3 as precipitant. The nanopowders with different calcined temperatures and Eu3+/Tb3+ doped ratio were characterized by X-ray Diffraction (XRD), scanning electron microscopy (SEM) and fluorescence spectrophotometer. The results showed that the nanopowders calcined at 1100°C for 2 h had a uniform distribution, high purity and good dispersibility. The particle size was in the range of 60-80 nm. The excitation spectra of Eu3+/Tb3+ co-doped phosphors were wide. The phosphors could emit the green light at the peak of 543 nm and the red light at the peak of 611 nm simultaneously under 276 nm or 300 nm excited. Because of the energy transfer between Tb3+ and Eu3+, the 543 nm emission of Tb3+ ion was weakened while the 611 nm emission of Eu3+ enhanced. The emissive colors of Y2O3:Eu3+, Tb3+ nanopowders could be adjusted from yellow-green to orange-red by changing the Eu3+/Tb3+ doping ratio.

  11. Synthesis of BaTi2O5 Nanopowders by Sol-Gel Method and the Dielectric Properties of the Ceramics

    NASA Astrophysics Data System (ADS)

    Akishige, Yukikuni; Xu, Jun; Shigematsu, Hirotake; Morito, Shigekazu; Ohba, Takuya

    2009-05-01

    A sol-gel process using barium diethoxide and titanium tetraisopropoxide as the sources for Ba and Ti, respectively, was employed to synthesize BaTi2O5 nanopowders and ceramics. BaTi2O5 nanopowders in the range of 20-50 nm in size were obtained by calcination of the gel precursors at 650 °C. By a further firing at 1000 °C, some BaTi2O5 nanopowders were grown to 200 nm in size. Conventional sintering at 1150 °C using these BaTi2O5 nanopowders yields BaTi2O5 ceramics of 80-85% relative density. A dense BaTi2O5 ceramic with a relative density of above 95% was fabricated by spark plasma sintering (SPS) at 1000 °C. Furthermore, by SPS combined with the hot-forging technique, we obtained a certain degree of grain orientation along the b-axis in the dense BaTi2O5 ceramic and observed an increase in the dielectric constant reaching 580.

  12. Effects of size-controlled TiO2 nanopowders synthesized by chemical vapor condensation process on conversion efficiency of dye-sensitized solar cells.

    PubMed

    Kim, Woo-Byoung; Lee, Jai-Sung

    2013-07-01

    To investigate the microstructural effects of the synthesized TiO2 nanopowders such as particle size, specific surface area, pore size and pore distributions for the application of an anode material of dye-sensitized solar cells (DSSC), size-controlled and well-dispersed TiO2 nanopowders were synthesized by chemical vapor condensation (CVC) process in the range of 800-1000 degreesC under a pressure of 50 mbar. The average particle size of synthesized TiO2 nanopowders was increased with increasing temperature from 13 nm for 800 degreesC, 15 nm for 900 degreesC and 26 nm. The specific surface area of synthesized nanoparticles were measured as 119.1 m2/g for 800 degreesC, 104.7 m2/g for 900 degreesC and 59.5 m2/g for 1000 degreesC, respectively. The conversion efficiency values (eta%) of DSSC with the synthesized TiO2 nanopowders at 800 degreesC, 900 degreesC, and 1000 degreesC were 2.59%, 5.96% and 3.66%, respectively. The highest conversion efficiency obtained in the 900 degreesC (5.96%) sample is thought to be attributable to homogeneous particle size and pore distributions, large specific surface area, and high transmittance in regions of dye absorption wavelength.

  13. Preparation of Carbon-Doped TiO2 Nanopowder Synthesized by Droplet Injection of Solution Precursor in a DC-RF Hybrid Plasma Flow System

    NASA Astrophysics Data System (ADS)

    Jang, Juyong; Takana, Hidemasa; Ando, Yasutaka; Solonenko, Oleg P.; Nishiyama, Hideya

    2013-08-01

    Carbon-doped titanium dioxide nanopowder has received much attention because of its higher photocatalytic performance, which is practically activated not only by UV, but also by visible light irradiation. In the present study, C-TiO2 nanopowder was synthesized by droplet injection of solution precursor in a DC-RF hybrid plasma flow system, resulting in higher photocatalytic performance even under visible light irradiation. In-flight C-TiO2 nanoparticles reacted with the high concentration of carbon in plasma flow and were then deposited on the surfaces of two quartz tubes in the upstream and downstream regions of this system. The collected C-TiO2 nanopowder contained anatase-rutile mixed-phase TiO2 and TiC, the contents of which depended on the location of the powder collection, the temperature, and the duration of plasma treatment. Highly functional C-TiO2 nanopowder collected in the downstream region exhibited a higher degradation rate of methylene blue than that of single-phase anatase TiO2, even under visible light irradiation, in spite of being TiC.

  14. X-ray photoelectron spectroscopy analysis for the chemical impact of solvent addition rate on electromagnetic shielding effectiveness of HCl-doped polyaniline nanopowders

    SciTech Connect

    Tantawy, Hesham Ramzy; Aston, D. Eric; Kengne, Blaise-Alexis F.; McIlroy, David N.; Qiang, You; Nguyen, Tai; Heo, Deukhyoun

    2015-11-07

    An in-depth analysis of the chemical functionality in HCl-doped polyaniline (PANI) nanopowders is discussed through interpretations of x-ray photoelectron spectra. The distinctions between three PANI sample types, produced under varied synthesis conditions, are compared on the basis correlations between newly collected electron spectra for chemical analysis (or also x-ray photoelectron spectroscopy) and electromagnetic (EM) shielding effectiveness (SE) within two frequency bands (100–1500 MHz and ∼2–14 GHz). The findings are discussed with reference to previous data analysis of electrical conductivities and Raman and UV-vis spectra analyzed from replicates of the same PANI nanopowders, where only the 8–12 GHz range for SE was tested. They further corroborate previous results for limited-solvent conditions that enhance EM shielding. The three nanopowder types show distinctive differences in polaron, bipolaron, and polar lattice contributions. The collective findings describe the chemical connections between controlling and, most importantly, limiting the available solvent for polymerization with simultaneously doping and how it is that the newly developed solvent-limited approach for HCl-PANI nanopowders provides better shielding than traditionally solvent-rich methods by having more extended and perhaps even faster polaron delocalization than other PANI-based products. The maximum oxidation (50%) and doping (49%) levels obtained in the solvent-free nanopowders also produced the highest SE values of 37.3 ± 3.7 dB (MHz band) and 68.6 ± 4.6 dB (GHz band)

  15. X-ray diffraction analysis of the effect of annealing temperature on the microstructure of magnesium oxide nanopowder

    NASA Astrophysics Data System (ADS)

    Soleimanian, V.; Aghdaee, S. R.

    2015-06-01

    In this study, nanocrystalline MgO powders were prepared using the sol-gel method and annealed in air over a temperature range of [400-700] °C. Various microstructural characteristics were determined using three different X-ray diffraction analysis approaches, i.e., modified Williamson-Hall, modified Warren-Averbach, and variance methods. The transmission electron microscopy micrographs were used to measure the size distributions of the MgO samples. The results obtained using the three different methods were in good agreement. At all temperatures, the main source of dislocation was edge type but as the annealing temperature increased, the crystallite size and dislocation density increased and decreased, respectively, thereby indicating that the crystal quality of the nanopowders was improved.

  16. Ho:YAG transparent ceramics based on nanopowders produced by laser ablation method: Fabrication, optical properties, and laser performance

    NASA Astrophysics Data System (ADS)

    Bagayev, S. N.; Osipov, V. V.; Vatnik, S. M.; Shitov, V. A.; Vedin, I. A.; Platonov, V. V.; Steinberg, I. Sh.; Maksimov, R. N.

    2015-12-01

    We fabricate Ho:YAG transparent ceramics based on nanopowders produced by laser ablation method via two approaches. Higher transmittance (82% in the infrared region) is achieved in ceramics prepared with an additional round of pre-calcining before sintering. We evaluate the average volume of the scattering centers in the ceramics and their distribution along the sample depth by the direct count method using an optical microscope and by the novel method of collinear two-photon interband photoexcitation, respectively. The laser characteristics of the 1% Ho:YAG ceramics are investigated using an intracavity pumping scheme. The slope efficiency is ∼40% relative to the absorbed pumping power at 1.85 μm.

  17. Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media.

    PubMed

    Hristovski, Kiril; Baumgardner, Andrew; Westerhoff, Paul

    2007-08-17

    This paper investigates the feasibility of arsenate removal by aggregated metal oxide nanoparticle media in packed bed columns. Batch experiments conducted with 16 commercial nanopowders in four water matrices were used to select a metal oxide nanoparticle that both amply removes arsenate and can be aggregated using an inert binder. TiO2, Fe(2)O(3), ZrO2 and NiO nanopowders, which exhibited the highest arsenate removal in all water matrices, were characterized with fitted Freundlich adsorption isotherm (q=KC(e)(1/n)) parameters. In 10 mM NaHCO3 buffered nanopure water and at both pH approximately 6.7 and 8.4, K ranged from 1.3 to 12.09(mg As/g(media))(L/mg As)(1/n), and 1/n ranged from 0.21 to 0.52. Under these conditions, the fitted Freundlich isotherm parameters for TiO2 nanoparticles aggregated with inorganic and organic binders (K of 4.75-28.45(mg As/g(media))(L/mg As)(1/n) and 1/n of 0.37-0.97) suggested favorable arsenate adsorption. To demonstrate that aggregated nanoparticle media would allow rapid mass transport of arsenate in a fixed bed adsorber setting, short bed adsorber (SBA) tests were conducted on TiO2 nanoparticle aggregates at empty bed contact times (EBCT) of 0.1-0.5 min and Re x Sc=1000 and 2000. These SBA tests suggested that the binder has a negligible role in adsorbing arsenic and that mass transport is controlled by rapid intraparticle diffusion rather than external film diffusion. PMID:17254707

  18. Nanostructured MgTiO3 thick films obtained by electrophoretic deposition from nanopowders prepared by solar PVD

    NASA Astrophysics Data System (ADS)

    Apostol, Irina; Mahajan, Amit; Monty, Claude J. A.; Venkata Saravanan, K.

    2015-12-01

    A novel combination of solar physical vapor deposition (SPVD) and electrophoretic deposition (EPD) that was developed to grow MgTiO3 nanostructured thick films is presented. Obtaining nanostructured MgTiO3 thick films, which can replace bulk ceramic components, a major trend in electronic industry, is the main objective of this work. The advantage of SPVD is direct synthesis of nanopowders, while EPD is simple, fast and inexpensive technique for preparing thick films. SPVD technique was developed at CNRS-PROMES Laboratory, Odeillo-Font Romeu, France, while the EPD was performed at University of Aveiro - DeMAC/CICECO, Portugal. The nanopowders with an average crystallite size of about 30 nm prepared by SPVD were dispersed in 50 ml of acetone in basic media with addition of triethanolamine. The obtained well-dispersed and stable suspensions were used for carrying out EPD on 25 μm thick platinum foils. After deposition, films with thickness of about 22-25 μm were sintered in air for 15 min at 800, 900 and 1000 °C. The structural and microstructural characterization of the sintered thick films was carried out using XRD and SEM, respectively. The thickness of the sintered samples were about 18-20 μm, which was determined by cross-sectional SEM. Films sintered at 900 °C exhibit a dielectric constant, ɛr ∼18.3 and dielectric loss, tan δ ∼0.0012 at 1 MHz. The effects of processing techniques (SPVD and EPD) on the structure, microstructure and dielectric properties are reported in detail. The obtained results indicate that the thick films obtained in the present study can be promising for low loss materials for microwave and millimeter wave applications.

  19. One-pot rapid synthesis of core-shell structured NiO@TiO2 nanopowders and their excellent electrochemical properties as anode materials for lithium ion batteries.

    PubMed

    Choi, Seung Ho; Lee, Jong-Heun; Kang, Yun Chan

    2013-12-21

    Core-shell structured NiO@TiO2 nanopowders for application as anode materials for lithium ion batteries are prepared by one-pot flame spray pyrolysis from aqueous spray solution containing Ni and Ti components. A new formation mechanism of the core-shell structured nanopowders in the flame spray pyrolysis is proposed. Composite nanopowders are first formed by surface growth and coagulation from NiO and TiO2 vapors. A small amount of TiO2 in composite powders disturbs the crystallization of TiO2. Therefore, the TiO2 component moves out to the surface of the powders forming an amorphous shell during the formation of single crystalline NiO. The initial discharge and charge capacities of the NiO@TiO2 nanopowders at a current density of 300 mA g(-1) are 1302 and 937 mA h g(-1), respectively. The discharge capacities of the pure NiO and NiO@TiO2 nanopowders after 80 cycles are 542 and 970 mA h g(-1), respectively. The capacity retentions of the pure NiO and NiO@TiO2 nanopowders after 80 cycles measured after the first cycles are 75 and 108%, respectively. PMID:24177597

  20. Making Solid Geometry Solid.

    ERIC Educational Resources Information Center

    Hartz, Viggo

    1981-01-01

    Allowing students to use a polystyrene cutter to fashion their own three-dimensional models is suggested as a means of allowing individuals to experience problems and develop ideas related to solid geometry. A list of ideas that can lead to mathematical discovery is provided. (MP)

  1. Influence of technology of nanopowder production on the microstructure of the sintered by spark-plasma material on the example of aluminum oxide

    NASA Astrophysics Data System (ADS)

    Zholnin, A. G.; Melekhov, A. P.; Hafizov, R. S.; Vakulenko, S. A.; Rubinkovskiy, N. A.; Samokhin, A. V.; Alekseev, N. V.; Grigoryev, E. G.

    2016-04-01

    A comparative study of the results of spark-plasma sintering (SPS) of two-types of aluminum oxide nanopowders, obtained by the method of conductor explosion and plasma synthesis. When the parameters of both powders are similar (spherical form of the particles, size, phase composition) as well as SPS modes the properties of the resulting compacts are significantly different both in mechanical properties and microstructure. The reason of differences in the properties of the obtained compacts is in technological impurities in powders, obtained by different methods. Artificial addition of impurities, contained in the nanopowder, obtained by electro explosion of conductor, into the powder, made by synthesis in plasma and not containing these impurities, allowed to reveal their effect on the formation of the microstructure and properties of the sintered by SPS method sample.

  2. Nanocrystalline Ce1- x La x O2- δ Solid Solutions Synthesized by Hydrolyzing and Oxidizing

    NASA Astrophysics Data System (ADS)

    Hou, Xueling; Xue, Yun; Han, Ning; Lu, Qianqian; Wang, Xiaochen; Phan, Manh-Huong; Zhong, Yunbo

    2016-05-01

    We undertook a novel batch production approach for the synthesis of CeO2 nanopowders doped with rare earth elements. Solid solution nanopowders of Ce1- x La x O2- δ ( x = 0.15) were successfully synthesized in a large-scale and low-cost production by hydrolyzing and oxidizing Ce-La-C alloys at room temperature and subsequent calcining of their powders at different temperatures (873-1073 K) for 1 h. The Ce-La-C alloys were prepared in a vacuum induction melting furnace. The final products were characterized by x-ray diffraction, transmission electron microscopy, Brunner-Emmet-Teller (BET) surface area analyzer, and Raman spectroscopy. The calculated lattice parameters of the cubic fluorite-type phase of CeO2 tended to increase when La3+ was incorporated into CeO2. The F 2g band shift and the absence of a peak corresponding to La2O3 in the Raman spectra consistently confirmed the incorporation of the La3+ ion into CeO2, and the formation of Ce1- x La x O2- δ solid solutions as manifested by increased oxygen vacancy defects. High-quality Ce1- x La x O2- δ nanopowders of ~10-15 nm diameter with a high BET surface area of ~77 m2 g-1 were obtained. The average crystallite size of Ce1- x La x O2- δ was found to be smaller than that of CeO2 for the same calcination temperature of 1073 K, demonstrating that the introduction of La3+ into CeO2 can stabilize the host lattice and refine the grain size at high temperatures.

  3. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders

    PubMed Central

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-01-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications. PMID:27198738

  4. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders

    NASA Astrophysics Data System (ADS)

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-05-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications.

  5. Preparation of silicon carbide SiC-based nanopowders by the aerosol-assisted synthesis and the DC thermal plasma synthesis methods

    SciTech Connect

    Czosnek, Cezary; Bućko, Mirosław M.; Janik, Jerzy F.; Olejniczak, Zbigniew; Bystrzejewski, Michał; Łabędź, Olga; Huczko, Andrzej

    2015-03-15

    Highlights: • Make-up of the SiC-based nanopowders is a function of the C:Si:O ratio in precursor. • Two-stage aerosol-assisted synthesis offers conditions close to equilibrium. • DC thermal plasma synthesis yields kinetically controlled SiC products. - Abstract: Nanosized SiC-based powders were prepared from selected liquid-phase organosilicon precursors by the aerosol-assisted synthesis, the DC thermal plasma synthesis, and a combination of the two methods. The two-stage aerosol-assisted synthesis method provides at the end conditions close to thermodynamic equilibrium. The single-stage thermal plasma method is characterized by short particle residence times in the reaction zone, which can lead to kinetically controlled products. The by-products and final nanopowders were characterized by powder XRD, infrared spectroscopy FT-IR, scanning electron microscopy SEM, and {sup 29}Si MAS NMR spectroscopy. BET specific surface areas of the products were determined by standard physical adsorption of nitrogen at 77 K. The major component in all synthesis routes was found to be cubic silicon carbide β-SiC with average crystallite sizes ranging from a few to tens of nanometers. In some cases, it was accompanied by free carbon, elemental silicon or silica nanoparticles. The final mesoporous β-SiC-based nanopowders have a potential as affordable catalyst supports.

  6. Effects of Cd concentration on structure and optical properties of the ternary Zn1-xCdxO nanopowder prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Sui, Y. R.; Cao, Y.; Li, X. F.; Yue, Y. G.; Yao, B.; Lang, J. H.; Li, X. Y.; Yang, J. H.

    2015-06-01

    Zn1-xCdxO nanocrystalline powder with different Cd contents (0≤x≤1) has been prepared by new facile sol-gel route. The crystal structure and optical properties were investigated by X-ray diffraction patterns, Transmission electron microscope, X-ray photoelectron spectroscopy, Photoluminescence. As x varied from x=0 to 0.25, the Zn1-xCdxO nanopowder exhibits a hexagonal wurtzite structure of pure ZnO without any significant formation of a separated CdO phase. For the samples with 0.5≤x≤0.85, the Zn1-xCdxO nanopowder exhibits the coexistence of hexagonal ZnO and cubic CdO phase, meanwhile, the content of ZnO phase decreases while that of CdO increases with increasing the Cd content x. The ultra-violet near-band-edge emission of the Zn1-xCdxO nanopowder was monotonously red-shifted from 389 nm (x=0) to 406 nm (x=0.25) due to the direct modulation of band gap caused by Cd substitution.

  7. Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders

    NASA Astrophysics Data System (ADS)

    Kilicaslan, A.; Levasseur, O.; Roy-Garofano, V.; Profili, J.; Moisan, M.; Côté, C.; Sarkissian, A.; Stafford, L.

    2014-03-01

    An atmospheric-pressure plasma sustained by an electromagnetic surface wave (SW) in the microwave regime combined with a bubbler/flash evaporator for the injection of liquid precursors was used to produce organosilicon and organotitanium nanopowders. Following the addition of hexamethyldisiloxane (HMDSO) vapors in the nominally pure argon plasma, optical emission spectra revealed the apparition of strong C2 molecular bands along with Si and Balmer H emission lines. Such features were not observed in our atmospheric-pressure Ar/HMDSO discharges controlled by dielectric barriers, indicating that microwave plasmas are characterized by much higher fragmentation levels of the precursors due to much higher electron densities. Emission spectra from the Ar/HMDSO SW plasma further showed a high-intensity continuum, the intensity of which decreased with time as powders started to form on the discharge tube walls. In presence of titanium isopropoxide (TTIP) vapors in the nominally pure Ar plasma, the emission was dominated by Ar and Ti lines, with no trace of carbon and no continuum. Fourier-Transform Infrared (FTIR) Spectroscopy of the powders formed in Ar/HMDSO plasmas showed very strong Si-(CH3)x and O-Si-(CH3)x bands, which is consistent with the formation of silicon oxycarbide. Transmission Electron Microscopy (TEM) further showed tube and sheet-like nanofeatures as well as larger structures consisting of agglomerated primary clusters. On the other hand, introduction of O2 in Ar/HMDSO plasmas produced only round-like nanoparticles with strong Si-O-Si bands and no trace of carbon, consistent with the formation of SiOx. The average size of the silica nanoparticles was 50 nm. FTIR spectra of powders formed in Ar/TTIP plasmas showed strong Ti-O signals, even without the addition of O2 in the gas phase. Corresponding TEM analysis showed nano- and agglomerated features comparable to those obtained in Ar/HMDSO although the average size of the titanate nanoparticles was smaller

  8. Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders

    SciTech Connect

    Kilicaslan, A.; Levasseur, O.; Roy-Garofano, V.; Profili, J.; Moisan, M.; Stafford, L.; Côté, C.; Sarkissian, A.

    2014-03-21

    An atmospheric-pressure plasma sustained by an electromagnetic surface wave (SW) in the microwave regime combined with a bubbler/flash evaporator for the injection of liquid precursors was used to produce organosilicon and organotitanium nanopowders. Following the addition of hexamethyldisiloxane (HMDSO) vapors in the nominally pure argon plasma, optical emission spectra revealed the apparition of strong C{sub 2} molecular bands along with Si and Balmer H emission lines. Such features were not observed in our atmospheric-pressure Ar/HMDSO discharges controlled by dielectric barriers, indicating that microwave plasmas are characterized by much higher fragmentation levels of the precursors due to much higher electron densities. Emission spectra from the Ar/HMDSO SW plasma further showed a high-intensity continuum, the intensity of which decreased with time as powders started to form on the discharge tube walls. In presence of titanium isopropoxide (TTIP) vapors in the nominally pure Ar plasma, the emission was dominated by Ar and Ti lines, with no trace of carbon and no continuum. Fourier-Transform Infrared (FTIR) Spectroscopy of the powders formed in Ar/HMDSO plasmas showed very strong Si-(CH{sub 3}){sub x} and O-Si-(CH{sub 3}){sub x} bands, which is consistent with the formation of silicon oxycarbide. Transmission Electron Microscopy (TEM) further showed tube and sheet-like nanofeatures as well as larger structures consisting of agglomerated primary clusters. On the other hand, introduction of O{sub 2} in Ar/HMDSO plasmas produced only round-like nanoparticles with strong Si-O-Si bands and no trace of carbon, consistent with the formation of SiO{sub x}. The average size of the silica nanoparticles was 50 nm. FTIR spectra of powders formed in Ar/TTIP plasmas showed strong Ti-O signals, even without the addition of O{sub 2} in the gas phase. Corresponding TEM analysis showed nano- and agglomerated features comparable to those obtained in Ar/HMDSO although the

  9. Effect of Ni doping on structural and optical properties of Zn{sub 1−x}Ni{sub x}O nanopowder synthesized via low cost sono-chemical method

    SciTech Connect

    Singh, Budhendra; Kaushal, Ajay; Bdikin, Igor; Venkata Saravanan, K.; Ferreira, J.M.F.

    2015-10-15

    Highlights: • Pure and Ni doped ZnO nanopowders were synthesized by low cost sonochemical method. • The optical properties of Zn{sub 1−x}Ni{sub x}O nanopowders can be tuned by varying Ni content. • The results reveal the solubility limit of Ni into ZnO matrix as below 8%. - Abstract: Zn{sub 1−x}Ni{sub x}O nanopowders with different Ni contents of x = 0.0, 0.04 and 0.08 were synthesized via cost effective sonochemical reaction method. X-ray diffraction (XRD) pattern reveals pure wurtzite phase of prepared nanostructures with no additional impurity peaks. The morphology and dimensions of nanoparticles were investigated using scanning electron microscope (SEM). A sharp and strong peak for first order optical mode for wurtzite zinc oxide (ZnO) structure was observed at ∼438 cm{sup −1} in Raman spectra. The calculated optical band gap (E{sub g}) from UV–vis transmission data was found to decrease with increase in Ni content. The observed red shift in E{sub g} with increasing Ni content in ZnO nanopowders were in agreement with band gap behaviours found in their photoluminescence (PL) spectra. The synthesised ZnO nanopowders with controlled band gap on Ni doping reveals their potential for use in various electronic and optical device applications. The results were discussed in detail.

  10. Al-Mg co-doping effect on optical and magnetic properties of ZnO nanopowders

    NASA Astrophysics Data System (ADS)

    Si, Xiaodong; Liu, Yongsheng; Wu, Xinfang; Lei, Wei; Lin, Jia; Gao, Tian; Zheng, Li

    2015-07-01

    Zn0.97 - xMgxAl0.03O (x = 0 , 0.01 , 0.03 and 0.05) nanoparticles were prepared by hydrothermal growth, and their optical and magnetic properties were systematically studied by the X-ray diffraction (XRD), the UV-visible spectrophotometer, the infrared spectrometer and the physical properties measurement system (PPMS). These results showed that all the nanopowders had hexagonal wurtzite structures. With increasing the content of Mg, the strength of the (110) intensity peak increased. When Mg atoms were not incorporated into the Zn0.97Al0.03O lattice, the infrared light transmittance was higher than that of other groups of samples. In the UV range, the absorption decreased with the increase of the concentration of Mg. Mg doping weakened the magnetic property of the nanoparticles at room temperature. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves were separated with the decrease of temperature due to the pinning effect between the ferromagnetic domain and antiferromagnetic domain.

  11. Dielectric response and specific heat studies of Cd2Nb2O7 ceramics obtained from mechano-synthesized nanopowders.

    PubMed

    Połomska, Maria; Hilczer, Bożena; Markiewicz, Ewa; Trybuła, Zbigniew; Andrzejewski, Bartłomiej; Szafraniak-Wiza, Izabela; Pietraszko, Adam

    2013-08-01

    Cd(2)Nb(2)O(7) is still an interesting ferroelectric material because of its high permittivity value at helium temperatures and a variety of dielectric relaxation processes, the origin of which is still puzzling. We prepared hot-pressed ceramics, with grain sizes from 100 to 150 nm, obtained from Cd(2)Nb(2)O(7) nanopowders synthesized by high-energy milling of CdO and Nb(2)O(5) and studied their dielectric response and thermal properties. The nanoceramics were characterized by X-ray diffraction and their dielectric properties were measured at temperatures from 4K to 575K. Dielectric response of the nanoceramics was found to consist of a huge anomaly at ~150K with complex dielectric absorption and three relaxation processes apparent in frequency and temperature dependences of the imaginary part of permittivity in the temperature range from 18K to 145K. The anomaly at ~150K is related to overlapping contributions from the Curie point (shifted downward because of the size effect) and a dielectric relaxation process. The behavior of three relaxation modes observed at temperatures below 145K is discussed, based on the model proposed by Malcherek of polar nanoregions in the orthorhombic phase of Cd(2)Nb(2)O(7) and the theory of dielectric response of ferroelectric relaxors by Bokov and Ye.

  12. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Comparative Study of Activity of Different Agings of Aluminum Nanopowders

    NASA Astrophysics Data System (ADS)

    Yan, Zheng-Xin; Deng, Jun; Wanf, Ya-Min; Liu, Wei

    2009-08-01

    The structure and activity of aluminum nanopowders with a 3 nm oxide layer on their surface (3-nm-OLA) and 30 nm oxide layers on their surface (30-nm-OLA) are investigated comparably under the same normal incident shock wave intensity. Their corresponding reaction products are characterized by x-ray diffraction, high-resolution transmission electron microscopy and x-ray photoelectron spectroscopy. The spectrum of x-ray diffraction shows that there are different phases of alumina in their products, which evidences directly the different reacting temperature in the shock tube. The x-ray photoelectron spectroscopy reveals that the oxide layer thickness is 30 nm on the product surface of 30-nm-OLA, while it is only 3 nm on 3-nm-OLA. Images of transmission electron microscopy present additional evidence that the agglomeration mechanism is over sintering one in the containing-30-nm-OLA system, the reversed mechanism is observed in the containing-3-nm-OLA reaction system.

  13. Role of paramagnetic defects in light emission processes in Y-doped ZrO2 nanopowders

    NASA Astrophysics Data System (ADS)

    Korsunska, N.; Baran, M.; Zhuk, A.; Polishchuk, Yu; Stara, T.; Kladko, V.; Bacherikov, Yu; Venger, Ye; Konstantinova, T.; Khomenkova, L.

    2014-12-01

    Luminescence and structural properties of pure and Y-doped ZrO2 nanopowders with different Y content synthesized by co-precipitation of Zr and Y salts were investigated by x-ray diffraction, transmission electron microscopy, electron paramagnetic resonance (EPR) and photoluminescence (PL) methods. It was found that at constant calcination temperature (700 °С), the increase of Y content stimulates the transformation of crystalline phase from monoclinic through the tetragonal to the cubic one. Generally, room temperature PL emission was found to be similar for the samples with different Y content, demonstrating the same overlapped PL components in visible spectral range under extrinsic excitation. The relative contribution of each PL component was found to be affected by calcination time. In EPR spectra of as-prepared samples no signals were observed. The annealing in N2 or H2 flow results in the appearance of the signal from surface Zr3+ defects. In the latter the signal assigned to F-center also arises. The anti-correlation observed between the PL intensity and the value of the Zr3+ EPR signal allows us to conclude that the Zr3+ center is the center of fast non-radiative recombination. At the same time, interrelation between the intensity of the EPR signal assigned to F-centers and observed PL bands was not found.

  14. Improved compaction of ZnO nano-powder triggered by the presence of acetate and its effect on sintering

    NASA Astrophysics Data System (ADS)

    Dargatz, Benjamin; Gonzalez-Julian, Jesus; Guillon, Olivier

    2015-04-01

    The retention of nanocrystallinity in dense ceramic materials is still a challenge, even with the application of external pressure during sintering. The compaction behavior of high purity and acetate enriched zinc oxide (ZnO) nano-powders was investigated. It was found that acetate in combination with water plays a key role during the compaction into green bodies at moderate temperatures. Application of constant pressure resulted in a homogeneous green body with superior packing density (86% of theoretical value) at moderate temperature (85 °C) in the presence of water. In contrast, no improvement in density could be achieved if pure ZnO powder was used. This compaction behavior offers superior packing of the particles, resulting in a high relative density of the consolidated compact with negligible coarsening. Dissolution accompanying creep diffusion based matter transport is suggested to strongly support reorientation of ZnO particles towards densities beyond the theoretical limit for packing of ideal monosized spheres. Finally, the sintering trajectory reveals that grain growth is retarded compared to conventional processing up to 90% of theoretical density. Moreover, nearly no radial shrinkage was observed after sinter-forging for bodies performed with this advanced processing method.

  15. Application of the soluble salt-assisted route to scalable synthesis of ZnO nanopowder with repeated photocatalytic activity.

    PubMed

    Lv, Yingying; Yu, Leshu; Huang, Heyong; Feng, Yuying; Chen, Dongzhen; Xie, Xin

    2012-02-17

    In this paper, the soluble salt-assisted route has been extended to the low-cost and scalable preparation of ZnO nanostructures via the simple oxidation of Zn-Na2SO4 mixture followed by washing with water. The as-prepared ZnO nanopowders are of nanoscaled size, hexagonal phase, and pure, without being stained by Na2SO4. Their optical band gap is 3.22 eV, exhibiting a red-shift of 0.15 eV in comparison with pure ZnO bulk, and their optical absorbance is strong in the region of 200-400 nm, suggesting their full utilization of most of the UV light in sunlight. The product shows evident photocatalytic activity in degradation of RhB under solar light irradiation, and then its solar light degradation efficiency is close to that under UV irradiation, indicating that there is a possibility of practical application. More importantly, the obtained ZnO nanoparticles, because of the quick precipitation by themselves in solution with no stirring, could be easily recycled without any accessorial means such as high-speed centrifuge. The low-cost and scalable preparation, high photocatalytic activity, and convenient recycling of this ZnO nanomaterial gives it potential in purifying waste water. Hence the interesting results in this study indicate the wide range of the soluble salt-assisted route for the industrial preparation of many other advanced nanomaterials.

  16. Application of the soluble salt-assisted route to scalable synthesis of ZnO nanopowder with repeated photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Lv, Yingying; Yu, Leshu; Huang, Heyong; Feng, Yuying; Chen, Dongzhen; Xie, Xin

    2012-02-01

    In this paper, the soluble salt-assisted route has been extended to the low-cost and scalable preparation of ZnO nanostructures via the simple oxidation of Zn-Na2SO4 mixture followed by washing with water. The as-prepared ZnO nanopowders are of nanoscaled size, hexagonal phase, and pure, without being stained by Na2SO4. Their optical band gap is 3.22 eV, exhibiting a red-shift of 0.15 eV in comparison with pure ZnO bulk, and their optical absorbance is strong in the region of 200-400 nm, suggesting their full utilization of most of the UV light in sunlight. The product shows evident photocatalytic activity in degradation of RhB under solar light irradiation, and then its solar light degradation efficiency is close to that under UV irradiation, indicating that there is a possibility of practical application. More importantly, the obtained ZnO nanoparticles, because of the quick precipitation by themselves in solution with no stirring, could be easily recycled without any accessorial means such as high-speed centrifuge. The low-cost and scalable preparation, high photocatalytic activity, and convenient recycling of this ZnO nanomaterial gives it potential in purifying waste water. Hence the interesting results in this study indicate the wide range of the soluble salt-assisted route for the industrial preparation of many other advanced nanomaterials.

  17. Shape tailored green synthesis of CeO2:Ho3+ nanopowders, its structural, photoluminescence and gamma radiation sensing properties

    NASA Astrophysics Data System (ADS)

    Malleshappa, J.; Nagabhushana, H.; Kavyashree, D.; Prashantha, S. C.; Sharma, S. C.; Premkumar, H. B.; Shivakumara, C.

    2015-06-01

    CeO2:Ho3+ (1-9 mol%) nanopowders have been prepared by efficient and environmental friendly green combustion method using Aloe vera gel as fuel for the first time. The final products are well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), fourier transform infrared (FTIR). Bell, urchin, core shell and flower like morphologies are observed with different concentrations of the A. vera gel. It is apparent that by adjusting the concentration of the gel, considerable changes in the formation of CeO2:Ho3+ nano structures can be achieved. Photoluminescence (PL) studies show green (543, 548 nm) and red (645, 732 nm) emissions upon excited at 400 nm wavelength. The emission peaks at ∼526, 548, 655 and 732 nm are associated with the transitions of 5F3 → 5I8, 5S2 → 5I8, 5F5 → 5I8 and 5S2 → 5I7, respectively. Three TL glow peaks are observed at 118, 267 and 204 °C for all the γ irradiated samples which specify the surface and deeper traps. Linear TL response in the range 0.1-2 kGy shows that phosphor is fairly useful as γ radiation dosimeter. Kinetic parameters associated with the glow peaks are estimated using Chen's half width method. The CIE coordinate values show that phosphor is quite useful for the possible applications in WLEDs as orange red phosphor.

  18. Diffusion Processes in Water on Oxide Surfaces: Quasielastic Neutron Scattering Study of Hydration Water in Rutile Nano-Powder

    SciTech Connect

    Chu, Xiang-Qiang; Ehlers, Georg; Mamontov, Eugene; Podlesnyak, Andrey A; Wang, Wei; Wesolowski, David J

    2011-01-01

    Quasielastic neutron scattering (QENS) was used to investigate the diffusion dynamics of hydration water on the surface of rutile (TiO{sub 2}) nanopowder. The dynamics measurements utilizing two inelastic instruments, a backscattering spectrometer and a disk chopper spectrometer, probed the fast, intermediate, and slow motions of the water molecules on the time scale of picoseconds to more than a nanosecond. We employed a model-independent analysis of the data collected at each value of the scattering momentum transfer to investigate the temperature dependence of several diffusion components. All of the probed components were present in the studied temperature range of 230-320 K, providing, at a first sight, no evidence of discontinuity in the hydration water dynamics. However, a qualitative change in the elastic scattering between 240 and 250 K suggested a surface freezing-melting transition, when the motions that were localized at lower temperatures became delocalized at higher temperatures. On the basis of our previous molecular dynamics simulations of this system, we argue that interpretation of QENS data from such a complex interfacial system requires at least qualitative input from simulations, particularly when comparing results from spectrometers with very different energy resolutions and dynamic ranges.

  19. Studying dispersions of ferroelectric nanopowders in dioctyl phthalate as dielectric media for capacitive electronic components

    NASA Astrophysics Data System (ADS)

    Gorokhovskii, A. V.; Gorshkov, N. V.; Burmistrov, I. N.; Goffman, V. G.; Tret'yachenko, E. V.; Sevryugin, A. V.; Fedorov, F. S.; Kovyneva, N. N.

    2016-06-01

    The electrical properties of dispersions of a powdered ferroelectric nanocomposite based on ilmenite (FeTiO3) and hollandite (K1.46Ti7.2Fe0.8O16) in dioctyl phthalate have been studied by impedance spectroscopy techniques in a frequency range of 10-1-106 Hz. The influence of stabilizing additives of cationic and anionic surfactants and iron acetylacetonate on the permittivity, conductivity, and dielectric losses was determined for dispersions containing 40 mass % of the solid composite. The influence of composition on the mechanisms of relaxation processes in the system is discussed.

  20. Solid propellants.

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Hutchison, J. J.

    1972-01-01

    The basic principles underlying propulsion by rocket motor are examined together with the configuration of a solid propellant motor. Solid propellants and their preparation are discussed, giving attention to homogeneous propellants, composite propellants, energetic considerations in choosing a solid propellant, the processing of composite propellants, and some examples of new developments. The performance of solid propellants is investigated, taking into account characteristics velocity, the specific impulse, and performance calculations. Aspects of propellant development considered include nonperformance requirements for solid propellants, the approach to development, propellant mechanical properties, and future trends.

  1. Comparison of structural and luminescence properties of Dy{sub 2}O{sub 3} nanopowders synthesized by co-precipitation and green combustion routes

    SciTech Connect

    Chandrasekhar, M.; Nagabhushana, H.; Sudheerkumar, K.H.; Dhananjaya, N.; Sharma, S.C.; Kavyashree, D.; Shivakumara, C.; Nagabhushana, B.M.

    2014-07-01

    Highlights: • Dy{sub 2}O{sub 3} nanopowders were prepared by co-precipitation and eco-friendly green combustion route using plant latex. • Both the products show excellent chromaticity coordinates in the white region, which were quite useful for white LED’s. • Thermoluminescence response of the Dy{sub 2}O{sub 3} product prepared by green synthesis was higher when compared to co-precipitation route. • Structural parameters of Dy{sub 2}O{sub 3} were estimated using Rietveld refinement. • The development of nanosize materials using eco-friendly resources was an attractive non-hazardous chemical route. - Abstract: Dysprosium oxide (Dy{sub 2}O{sub 3}) nanopowders were prepared by co-precipitation (CP) and eco-friendly green combustion (GC) routes. SEM micrographs prepared by CP route show smooth rods with various lengths and diameters while, GC route show porous, agglomerated particles. The results were further confirmed by TEM. Thermoluminescence (TL) responses of the nanopowder prepared by both the routes were studied using γ-rays. A well resolved glow peak at 353 °C along with less intense peak at 183 °C was observed in GC route while, in CP a single glow peak at 364 °C was observed. The kinetic parameters were estimated using Chen’s glow peak route. Photoluminescence (PL) of Dy{sub 2}O{sub 3} shows peaks at 481, 577, 666 and 756 nm which were attributed to Dy{sup 3+} transitions of {sup 4}F{sub 9/2}⟶{sup 6}H{sub 15/2}, {sup 6}H{sub 13/2}, {sup 6}H{sub 11/2} and {sup 6}H{sub 9/2}, respectively. Color co-ordinate values were located in the white region as a result the product may be useful for the fabrication of WLED’S.

  2. Solid lubricants

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1991-01-01

    The state of knowledge of solid lubricants is reviewed. The results of research on solid lubricants from the 1940's to the present are presented from a historical perspective. Emphasis is placed largely, but not exclusively, on work performed at NASA Lewis Research Center with a natural focus on aerospace applications. However, because of the generic nature of the research, the information presented in this review is applicable to most areas where solid lubricant technology is useful.

  3. Thermally stimulated transformations in brookite-containing TiO2 nanopowders produced by the hydrolysis of TiCl4

    NASA Astrophysics Data System (ADS)

    Shul'ga, Yu. M.; Kabachkov, E. N.; Matyushenko, D. V.; Kurkin, E. N.; Domashnev, I. A.

    2011-01-01

    TiO2 nanopowder is produced by the low-temperature hydrolysis of TiCl4. The phase composition of the sample is found to form at a hydrolysis temperature of 30-38°C. Low-temperature annealing (up to 440°C) increases the degree of crystallinity of the phases present in the sample (anatase, brookite) and only weakly affects their ratio. At 500°C, the sample consists of three phases: rutile is detected apart from anatase and brookite. Brookite begins to fail at 600°C; at 700°C, crystalline brookite fails completely.

  4. Effect of heat treatment on the structural parameters and magnetic properties of copper ferrite nanopowders obtained by the sol-gel combustion

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. A.; Naiden, E. P.; Minin, R. V.; Itin, V. I.; Ufimtsev, M. R.

    2016-02-01

    Phase composition, structure parameters and basic magnetic characteristics obtained by the sol-gel combustion nanopowders of ferrospinel CuFe2O4 are investigated. A comparison of the properties of synthesized materials: first sample - immediately after the combustion of the gel and second sample - after annealing at 1073 K for 4 hours are performed. Annealing leads to an increase in the concentration of the phase with tetragonal crystal structure. Particle sizes and the value of anisotropy field of this phase also increased.

  5. Dynamics and structure of hydration water on rutile and cassiterite nanopowders studied by quasielastic neutron scattering and molecular dynamics simulations.

    SciTech Connect

    Mamontov, Eugene; Vlcek, Lukas; Wesolowski, David J

    2007-03-01

    Quasielastic neutron scattering (QENS) experiments carried out using time-of-flight and backscattering neutron spectrometers with widely different energy resolution and dynamic range revealed the diffusion dynamics of hydration water in nanopowder rutile (TiO{sub 2}) and cassiterite (SnO{sub 2}) that possess the rutile crystal structure with the (110) crystal face predominant on the surface. These isostructural oxides differ in their bulk dielectric constants, metal atom electronegativities, and lattice spacings, which may all contribute to differences in the structure and dynamics of sorbed water. When hydrated under ambient conditions, the nanopowders had similar levels of hydration: about 3.5 (OH/H{sub 2}O) molecules per Ti{sub 2}O{sub 4} surface structural unit of TiO{sub 2} and about 4.0 (OH/H{sub 2}O) molecules per Sn{sub 2}O{sub 4} surface unit of SnO{sub 2}. Ab initio optimized classical molecular dynamics (MD) simulations of the (110) surfaces in contact with SPC/E water at these levels of hydration indicate three structurally distinct sorbed water layers L{sub 1}, L{sub 2}, and L{sub 3}, where the L{sub 1} species are either associated water molecules or dissociated hydroxyl groups in direct contact with the surface, L{sub 2} water molecules are hydrogen bonded to L{sub 1} and structural oxygen atoms at the surface, and L{sub 3} water molecules are more weakly bound. At the hydration levels studied, L{sub 3} is incomplete compared with axial oxygen density profiles of bulk SPC/E water in contact with these surfaces, but the structure and dynamics of L{sub 1}-L{sub 3} species are remarkably similar at full and reduced water coverage. Three hydration water diffusion components, on the time scale of a picosecond, tens of picoseconds, and a nanosecond could be extracted from the QENS spectra of both oxides. However, the spectral weight of the faster components was significantly lower for SnO{sub 2} compared to TiO{sub 2}. In TiO{sub 2} hydration water, the

  6. Synthesis and magnetization studies of nanopowder Fe₇₀Ni₂₀Cr₁₀ alloys prepared by high energy milling

    SciTech Connect

    Chater, R.; Bououdina, M.; Chaanbi, D.; Abbas, H.

    2013-05-01

    Nanocrystalline Fe{sub 1–x–y}NixCry (x=20, y=10% in Wt)) alloy samples were prepared by mechanical alloying process. Fe, Ni and Cr elemental powders have been ball milled in a planetary mill for various periods of time, up to 27 h. XRD analysis allowed the determination of the structure of the mixture, the average crystallite size and the lattice parameter as a function of milling time. The complete formation of FeNiCr is observed after 27 h milling. With increasing milling time from 0 to 27 h, it is observed that the lattice parameter increases from 0.3515 to 0.3593 nm as well as an increase of microstrain from 0.15 to 0.40%, whereas the grain size decreases from 48 to 13 nm. Grain morphology of the powders at different formation stages was examined using SEM. Saturation magnetization and coercive fields derived from the hysteresis curves are discussed as a function of milling time. - Graphical abstract: Fe₇₀Ni₂₀Cr₁₀ nanopowders were prepared using a planetary ball mill. The structure and microstructure vary with milling time; thereby important modifications of the magnetic properties were observed and discussed. Highlights: • Nanocrystalline Fe₇₀Ni₂₀Cr₁₀ alloy were prepared by the mechanical alloying process. • The complete formation of Fe₇₀Ni₂₀Cr₁₀ is observed after 24 h milling. • With increasing milling time, the grain size decreases, while the strain increases. • The SEM images allowed following the morphology of the materials at different stages. • Ms and HC derived from the hysteresis are discussed as a function of milling time.

  7. Spectral investigations on undoped and Cu²⁺ doped ZnO-CdS composite nanopowders.

    PubMed

    Rao, G Thirumala; Babu, B; Stella, R Joyce; Manjari, V Pushpa; Ravikumar, R V S S N

    2015-03-15

    Undoped and Cu(2+) doped ZnO-CdS composite nanopowders were synthesized by simple chemical precipitation method. Structural and spectroscopic properties of the prepared samples have been characterized by XRD, SEM with EDS, TEM, FT-IR, UV-Vis, EPR and Photoluminescence studies. X-ray diffraction pattern contains a series of peaks corresponds to hexagonal phase of ZnO and CdS. The average crystallite sizes of undoped and Cu(2+) doped samples are determined and are in the range of 25-30 nm. SEM and TEM micrographs reveal that the samples show spherical like structures with little agglomeration. FT-IR spectra show the fundamental mode of vibrations of ZnO at 515 cm(-1), CdS at 621 cm(-1) and other functional groups. Optical absorption spectrum of Cu(2+) doped sample consists of three bands at 665, 823 and 1192 nm attributed to the transitions (2)B1g→(2)Eg, (2)B2g and (2)A1g respectively. Crystal field and tetragonal field parameters are evaluated as Dq=1214, Ds=1610 and Dt=389 cm(-1). From EPR, spin-Hamiltonian and hyperfine splitting parameters are evaluated for Cu(2+) doped sample as g‖=2.3391, g⊥=2.0550 and A‖=130×10(-4) cm(-1), A⊥=36×10(-4) cm(-1). The optical and EPR data suggests that Cu(2+) entered into host lattice as tetragonally distorted octahedral site symmetry. PL spectra consists two emission bands at 367, 380 nm in UV region. A sharp blue emission peak at 425 nm and a broad green emission peak in the range of 450-570 nm are observed. The enhanced visible emission is observed after doping.

  8. Ferromagnetism and optical properties of La1 − x Al x FeO3 nanopowders

    PubMed Central

    2014-01-01

    La1 − x Al x FeO3 (x = 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) nanopowders were prepared by polymerization complex method. All prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and UV-vis spectrophotometry (UV-vis). The magnetic properties were investigated using a vibrating sample magnetometer (VSM). The X-ray results of all samples show the formation of an orthorhombic phase with the second phase of α-Fe2O3 in doped samples. The crystallite sizes of nanoparticles decreased with increasing Al content, and they are found to be in the range of 58.45 ± 5.90 to 15.58 ± 4.64 nm. SEM and TEM images show the agglomeration of nanoparticles with average particle size in the range of 60 to 75 nm. The FT-IR spectra confirm the presence of metal oxygen bonds of O-Fe-O and Fe-O in the FeO6 octahedra. The UV-vis spectra show strong absorption peaks at approximately 285 nm, and the calculated optical band gaps are found to be in the range of 2.05 to 2.09 eV with increasing Al content. The M-H loop of the pure sample is antiferromagnetic, whereas those of the doped samples tend to be ferromagnetic with increasing Al content. The magnetization, remanent magnetization, and coercive field of the Al-doped sample with x = 0.5 are enhanced to 1.665 emu/g, 0.623 emu/g, and 4,087.0 Oe, respectively. PMID:25246876

  9. Effects of Ytterbium Oxide Nanopowder Particle Size on the Acoustic Properties of Silicone Rubber Lens for Medical Echo Array Probe

    NASA Astrophysics Data System (ADS)

    Yohachi; Yamashita; Hosono, Yasuharu; Yamamoto, Noriko; Itsumi, Kazuhiro

    2008-05-01

    The effects of Yb2O3 powder particle size, namely, 2000, 16, and 8 nm, on the physical and acoustic properties of a high-temperature-vulcanization (HTV) silicone (Q) rubber have been investigated in order to develop an acoustic lens material with a low sound velocity (c) and acoustic attenuation coefficient (α). The Yb2O3-doped HTV Q rubber with the large particle size of 2000 nm showed a density (ρ) of 1.6×103 kg/m3, with c = 828 m/s, characteristic acoustic impedance (Z) = 1.32×106 kg·m-2·s-1, α= 1.32 dB·mm-1·MHz-1, and an α-figure of merit (FOM) (α×c) of 1090 at 5 MHz at 37 °C. For the Yb2O3-doped Q rubber with the small particle size of 8 nm, ρ= 1.57×103 kg/m3, c = 864 m/s, Z = 1.36×106 kg·m-2·s-1, α= 0.68 dB·mm-1·MHz-1, and α-FOM = 590. The 16 nm Yb2O3-doped Q rubber had intermediate values of α= 0.88 dB·mm-1·MHz-1 and α-FOM = 760. These results show that there is a clear dopant particle size dependence on the acoustic properties of Yb2O3-doped HTV Q rubbers. The 8-nm-doped HTV Q rubber also showed an excellent mechanical properties for practical application. Microstructure observation revealed that the low-α rubber shows a uniform Yb2O3 nanopowder distribution in the HTV Q rubber matrix.

  10. Effects of Ceramic Nanopowder Dopants on Acoustic Attenuation Properties of Silicone Rubber Lens for Medical Echo Probe

    NASA Astrophysics Data System (ADS)

    Yamashita, Yohachi (John); Hosono, Yasuharu; Itsumi, Kazuhiro

    2007-07-01

    The effects of fine ceramic powder dopants, namely, TiO2, Al2O3, BaSO4, Fe2O3, ZrO2, and Yb2O3 with primary particle sizes of 16-100 nm, on the acoustic properties of silicone rubber have been investigated, in order to develop an acoustic lens material for medical echo probes with a low acoustic attenuation (α). Silicone rubber doped with Yb2O3 powder having a high density (ρ) of 9.2× 103 kg/m3 and an average particle size of 16 nm showed a lower acoustic attenuation than silicone rubber doped with other powders. The materials showed ρ=1.54× 103 kg/m3, a sound velocity (c)=882 m/s, an acoustic impedance ρ\\cdot c (Z)=1.36× 106 kg m-2 s-1, and an acoustic attenuation α=0.93 dB mm-1 MHz-1 at 37 °C. Silicone rubber doped with Fe2O3 powder having ρ=5.2× 103 kg/m3 and an average particle size of 30 nm showed the highest α=2.36 dB mm-1 MHz-1 and Z=1.47× 106 kg m-2 s-1. Microstructure observation of the rubber by scanning microscopy revealed that the α of the powder-doped rubber is not only determined by the primary particle size of the powders but also by the dispersion and agglomeration of the secondary particles in the rubber matrix. The discovery of the process parameter required to reduce the α of the nanopowder-doped silicone rubber has an important practical consequence.

  11. Ternary and coupled binary zinc tin oxide nanopowders: Synthesis, characterization, and potential application in photocatalytic processes

    SciTech Connect

    Ivetić, T.B.; Finčur, N.L.; Đačanin, Lj. R.; Abramović, B.F.; Lukić-Petrović, S.R.

    2015-02-15

    Highlights: • Mechanochemically synthesized nanocrystalline zinc tin oxide (ZTO) powders. • Photocatalytic degradation of alprazolam in the presence of ZTO water suspensions. • Coupled binary ZTO exhibits enhanced photocatalytic activity compared to ternary ZTO. - Abstract: In this paper, ternary and coupled binary zinc tin oxide nanocrystalline powders were prepared via simple solid-state mechanochemical method. X-ray diffraction, scanning electron microscopy, Raman and reflectance spectroscopy were used to study the structure and optical properties of the obtained powder samples. The thermal behavior of zinc tin oxide system was examined through simultaneous thermogravimetric-differential scanning calorimetric analysis. The efficiencies of ternary (Zn{sub 2}SnO{sub 4} and ZnSnO{sub 3}) and coupled binary (ZnO/SnO{sub 2}) zinc tin oxide water suspensions in the photocatalytic degradation of alprazolam, short-acting anxiolytic of the benzodiazepine class of psychoactive drugs, under UV irradiation were determined and compared with the efficiency of pure ZnO and SnO{sub 2}.

  12. Deformation band-like defects as possible precursors to microfracture planes, resulting in the generation of nanopowders on simulated fault planes

    NASA Astrophysics Data System (ADS)

    Toy, V. G.; Wirth, R.; Mitchell, T. M.

    2013-12-01

    The development of at least partially ';amorphous' and/or ';nanocrystalline' materials within fault principal slip zones has been shown to reduce frictional shear resistance during fault slip. Thus it is proposed generation of these materials facilitates shear localization and possibly even seismic slip. The generation of such materials has been demonstrated experimentally, both in high velocity friction experiments at ambient conditions (e.g. silica gels reported by Goldsby & Tullis, 2002: GRL 29, 1844; Di Toro et al., 2004: Nature 427, 436), and very low velocity shear experiments at higher temperatures and confining pressures (e.g. apparent pseudotachylytes reported by Pec et al, 2012: EPSL 355-356, 299). They have also been reported in natural fault zones (e.g. natural silica gel from the Corona Fault described by Kirkpatrick et al., in press: Geology). These materials commonly comprise some proportion of randomly-oriented nanocrystals embedded in a non-crystalline matrix that displays no TEM diffraction contrast or lattice fringes. Proposed generation mechanisms include: irradiation damage, deformation, application of pressure, and chemical reactions. In particular, Pec et al., (2012) proposed that micro-comminution processes precede the generation of lattice defects. In this study we show that partially-amorphous silica material can be generated experimentally on a saw-cut surface in novaculite during shear at ~8 x 10-4m/s, in a Griggs apparatus under Pconf ~0.5 GPa, T = 450 and 600°C. The material comprises angular nanocrystals ranging from 2-10 nm diameter in a entirely non-crystalline matrix,has variable density that increases with decreasing proportion of nanocrystal remnants, suggesting it is a partially compacted nanopowder. This material is restricted to a zone <50 μm wide between the sawcut sliders. We infer an origin by micro-comminution, wherein repeated microfracturing results in formation of a very high proportion of non-crystalline surfaces

  13. La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanopowders: Synthesis of different powders structures and real magnetic properties of nanomanganites

    SciTech Connect

    Danilenko, Igor Konstantinova, Tetyana; Volkova, Galina; Glazunova, Valentina

    2013-08-15

    The difference in the magnetic properties between two lanthanum manganite nanopowders with identical phase and chemical composition is discussed in terms of the influence of nanopowder synthesis conditions on their properties. The aim of this investigation was to show the influence of precursor type and structure on the structure and properties of final La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanopowders obtained by precipitation technique. The forming of a complex structure of precursor materials during drying and inheritance at firing stage led to the formation of bimodal particle size distribution and magnetic properties typical of coarse powders. The correct choice of precursor material and the technological conditions of the drying and firing stage were allowed for the creation of a uniform powder structure with special magnetic properties. We showed that the magnetic properties of nanopowders were not always determined by chemical or phase composition and mean particle size of synthesized powders. The difference in precipitation process can lead to unpredictable and catastrophic results, and masked the effect of nanoparticles on the magnetic properties of the material. - Highlights: • Precursor’s structure has a strong influence on LSM nanoparticles structure. • Amorphous precursor structure led to uniform LSM nanoparticles formation. • Crystal precursors led to the formation of bimodal LSM particles distribution. • Decrease the single-domain LSM NP size led to decrease the powder’s magnetization.

  14. Synthesis, EPR and luminescent properties of YAlO3:Fe3+ (0.1-0.9 mol%) nanopowders

    NASA Astrophysics Data System (ADS)

    Premkumar, H. B.; Nagabhushana, H.; Sharma, S. C.; Daruka Prasad, B.; Nagabhushana, B. M.; Rao, J. L.; Chakradhar, R. P. S.

    A simple and inexpensive combustion method was used to prepare Fe3+ doped YAlO3 perovskite within few minutes at low temperature (400 ± 10 °C). This might be useful in lowering the cost of the material. The final products were well characterized by various spectroscopic techniques such as PXRD, SEM, TEM, FTIR and UV-Visible. The average crystallite size was estimated from the broadening of the PXRD peaks and found to be in the range 45-90 nm, the results were in good agreement with the W-H plots and TEM. The crystallites show dumbbell shape, agglomerated particles with different size. The TL glow curves of 1-5 kGy γ-irradiated YAlO3:Fe3+ (0.1 mol%) nanopowder warmed at a heating rate of 3 °C s-1 records a single glow peak at ∼260 °C. The kinetic parameters namely activation energy (E), order of kinetics (b) and frequency factor (s) were determined at different gamma doses using the Chens glow peak shape method and the results were discussed in detail. The photoluminescence spectra for Fe3+ (0.1-0.9 mol%) doped YAlO3 records the lower energy band at 720 nm (4T1 (4G) → 6A1 (6S)) and the intermediate band located at 620 nm (4T2 (4G) → 6A1 (6S)) with the excitation of 378 nm. The higher energy band located at 514 nm was associated to 4E + 4A1 (4G) → 6A1 (6S) transition. The resonance signals at g values 7.6, 4.97, 4.10, 2.94, 2.33 and 1.98 were observed in EPR spectra of Fe3+ (0.1-0.9 mol%) doped YAlO3 recorded at room temperature. The g values indicate that the iron ions were in trivalent state and distorted octahedral site symmetry was observed.

  15. Mechanochemical synthesis of nanostructured Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} solid-solution powders and their surface photovoltage responses

    SciTech Connect

    Chen Xiaofeng; Luo Qiong; Han, Mandi; Tan, Ooi Kiang; Tse, Man Siu; Huang Hui

    2012-05-15

    A series of nanostructure Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} (STFx, x=0.4, 0.6, 0.8) solid-solution powders were synthesized by mechanochemical approach milling from the mixture of SrO, Fe{sub 2}O{sub 3} and TiO{sub 2} metal oxides at room temperature. The XRD results revealed that the perovskite STFx nanoparticles were finally formed with few residual {alpha}-Fe{sub 2}O{sub 3} detected dependent on the milling conditions. The structure evolution suggested that the mechanochemical synthesis underwent via a solid-state reaction route to initially form Ti-rich perovskite and then incorporate with the residual {alpha}-Fe{sub 2}O{sub 3} to achieve the estimated composition. The synthesized STF08 powders exhibited the significant Surface Photovoltage (SPV) spectrum response both in UV and in visible-light region with p-type semiconductor behavior. This finding suggested that the synthesized STF nanopowders could potentially utilize more solar spectrum energy effectively for photo-oxidation and photo-catalysis applications. - Graphical abstract: It is demonstrated that Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} perovskite nanopowders were successfully synthesized by mechanochemical reaction approach at room temerpature, and the synthesized STF08 powders showed the significant SPV response in UV-VIS region with p-type semiconductor behaviors. Highlights: Black-Right-Pointing-Pointer Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} nanopowders synthesized by mechanochemical reaction approach. Black-Right-Pointing-Pointer The reaction process was shorten by introduce high impact energy. Black-Right-Pointing-Pointer Synthesized STF08 powders show the significant SPV response in UV-VIS region. Black-Right-Pointing-Pointer Synthesized STFx powders show p-type semiconductor behaviors.

  16. La{sub 0.5}Sr{sub 0.5}TiO{sub 3} nanopowders prepared by the hydrothermal method

    SciTech Connect

    Putjuso, Thanin; Maensiri, Santi; Hunpratub, Sitchai; Swatsitang, Ekaphan

    2012-09-15

    Graphical abstract: LRTEM image of the single-phase La{sub 0.5}Sr{sub 0.5}TiO{sub 3} particles. It is seen from the figure that the product has a plate-like morphology with average particles sizes in the range of 100–300 nm. In addition, the SAED data taken from an individual particle (lower inset) shows the presence of sharp diffraction rings, which are indicative of polycrystalline La{sub 0.5}Sr{sub 0.5}TiO{sub 3} formation. The high-resolution TEM image (upper inset) shows for further confirmation of a crystalline structure of La{sub 0.5}Sr{sub 0.5}TiO{sub 3} powder. This image shows a clearly resolved crystalline domain with uniform interplanar spacing of 0.276 nm. Highlights: ► La{sub 0.5}Sr{sub 0.5}TiO{sub 3} nanopowder is prepared in 2 M KOH solution by hydrothermal method. ► The solution is heat treated at 220 °C for 24 h in air. ► LRTEM reveals a plate-like morphology of particle with average size of 100–300 nm. ► HRTEM image shows a crystalline domain with interplanar spacing of 0.276 nm. -- Abstract: La{sub 0.5}Sr{sub 0.5}TiO{sub 3} nanopowders were prepared by the hydrothermal method. The influence of processing parameters, including KOH concentration, reaction temperature and reaction time on the obtained products were studied. The structure and morphology of the obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD results show that pure phase La{sub 0.5}Sr{sub 0.5}TiO{sub 3} nanopowders can be successfully synthesized with 2 M KOH concentration at a low temperature of 220 °C for 24 h. In addition, the product has a plate-like shape with particle sizes in the range of 25–100 nm as estimated by TEM.

  17. Solid electrolytes

    DOEpatents

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  18. Fundamental study of Ti feedstock evaporation and the precursor formation process in inductively coupled thermal plasmas during TiO2 nanopowder synthesis

    NASA Astrophysics Data System (ADS)

    Kodama, Naoto; Tanaka, Yasunori; Kita, K.; Ishisaka, Y.; Uesugi, Y.; Ishijima, T.; Sueyasu, S.; Nakamura, K.

    2016-08-01

    Two-dimensional spectroscopic observations were conducted for an inductively coupled thermal plasma (ICTP) torch during TiO2 nanopowder synthesis. The feedstock was injected intermittently into the ICTP torch to investigate the Ti feedstock evaporation process clearly and to elucidate the formation process of precursor species. Spatiotemporal distributions of Ti atomic lines and TiO spectra were observed simultaneously inside the plasma torch with the observation system developed. The observation results showed that the injected Ti feedstock was evaporated to form high-density Ti atomic vapour in the torch, and that the generated Ti atomic vapour is transported and diffused by gas flow and the density gradient. In addition, TiO molecular vapour was generated almost simultaneously around the on-axis region in the torch.

  19. Structure, morphology and optical properties of undoped and MN-doped ZnO(1-x)Sx nano-powders prepared by precipitation method

    NASA Astrophysics Data System (ADS)

    Dejene, F. B.; Onani, M. O.; Koao, L. F.; Wako, A. H.; Motloung, S. V.; Yihunie, M. T.

    2016-01-01

    The undoped and Mn-doped ZnO(1-x)Sx nano-powders were successfully synthesized by precipitation method without using any capping agent. Its structure, morphology, elemental analysis, optical and luminescence properties were determined by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis spectroscopy (UV) and photoluminescence spectroscopy (PL). A typical SEM image of the un-doped ZnO(1-x)Sx nanoparticles exhibit flake like structures that changes to nearly spherical particles with Mn-doping. The XRD of undoped and Mn doped ZnO(1-x)Sx pattern reveals the formation of a product indexed to the hexagonal wurtzite phase of ZnS. The nanopowders have crystallite sizes estimated from XRD measurements were in the range of 10-20 nm. All the samples showed absorption maximum of ZnO(1-x)Sx at 271 nm and high transmittance in UV and visible region, respectively. The undoped ZnO(1-x)Sx nanoparticles show strong room-temperature photoluminescence with four emission bands centering at 338 nm, 384 nm, 448 nm and 705 nm that may originate to the impurity of ZnO(1-x)Sx, existence of oxide related defects. The calculated bandgap of the nanocrystalline ZnO(1-x)Sx showed a blue-shift with respect to the Mn-doping. The PL spectra of the Mn-doped samples exhibit a strong orange emission at around 594 nm attributed to the 4T1-6A1 transition of the Mn2+ ions.

  20. Synthesis of YAG nanopowder by the co-precipitation method: Influence of pH and study of the reaction mechanisms

    SciTech Connect

    Marlot, Caroline; Barraud, Elodie; Le Gallet, Sophie; Eichhorn, Marc; Bernard, Frederic

    2012-07-15

    YAG nanopowders with an average grain size of 30 nm have been successfully synthesized by the co-precipitation method using nitrates with precipitant of ammonium hydrogen carbonate. The influence of precipitation conditions such as pH, aging time and calcination temperature on the formation of secondary phases has been studied. The accurate control of pH value at every stage of precipitation process is crucial to avoid the presence of YAM (Yttrium Aluminium Monoclinic, Y{sub 4}Al{sub 2}O{sub 9}) and yttrium oxide (Y{sub 2}O{sub 3}) after calcination. The reaction mechanisms have been investigated using different techniques such as infrared spectroscopy, x-ray diffraction and thermal analyses. The YAG phase is formed around 1050 Degree-Sign C passing through an intermediate phase called YAP (Yttrium Aluminium Perovskite, YAlO{sub 3}). Local chemical heterogeneities are responsible for the deviation of the Y:Al ratio and the formation of YAP during heat treatment. - Graphical abstract: Synthesis of YAG nanopowder by the co-precipitation method: Influence of pH and study of the reaction mechanisms, Marlot et al. Highlights: Black-Right-Pointing-Pointer Synthesis of pure YAG nanoparticles by the co-precipitation method. Black-Right-Pointing-Pointer Influence of pH value on the formation of secondary phases all along the process. Black-Right-Pointing-Pointer Study of the importance of pH using titration method. Black-Right-Pointing-Pointer Chemical evolution of the precursor during calcinations. Black-Right-Pointing-Pointer Proposition for reaction mechanisms.

  1. Rarefied solids

    NASA Technical Reports Server (NTRS)

    Noever, D. A.; Nikora, V. I.

    1994-01-01

    One important limit to creating low density materials is the objects' own weight. As a solid or colloidal matrix becomes more rarefied, gravity acts destructively to compress its suporting skeleton. We describe experimental results and propose a model which matches the low gravity behavior of rarefied or fractal solids. On parabolic airplane flights, we sought to demonstrate a key component of producing higher surface area fractals. Flight paths were selected to give a range of gravity levels: 0.01 g/g(sub 0) (low), 0.16 g(sub 0) (Lunar), 0.33 g/g(sub 0) (Martian), 1 g/g(sub 0) (Earth) and 1.8 g/g(sub 0) (high) (where g(sub 0) = 980 cm/sq s). Results using the model material of hydrophobic silica indicated that stable agglomeration of such tenuous objects can increase markedly in reduced gravity. Optical characterization revealed that fractal dimension changed directly with varying gravity. As measured by fractal dimension, effective surface area and roughness increased by 40% in low gravity. This finding supports the conclusion that relieving internal weight stresses on delicate aggregates can enhance their overall size (by two orders of magnitude) and internal surface area. We conclude that gravitational restructuring limits the overall size and void content of low-density solids. These sparse colloidal regimes may present new and technologically attractive physics, ranging from improved insulators, liquid-like tension in a 'solid' matrix, and characteristically low conductivities for sound and (8 to 14 micrometers wavelength) infrared radiation.

  2. Synthesis of GaN:ZnO solid solution by solution combustion method and characterization for photocatalytic application

    NASA Astrophysics Data System (ADS)

    Menon, Sumithra Sivadas; Anitha, R.; Gupta, Bhavana; Baskar, K.; Singh, Shubra

    2016-05-01

    GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 ° C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.

  3. Adsorption of F2Cdbnd CFCl on TiO2 nano-powder: Structures, energetics and vibrational properties from DRIFT spectroscopy and periodic quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Tasinato, Nicola; Moro, Daniele; Stoppa, Paolo; Pietropolli Charmet, Andrea; Toninello, Piero; Giorgianni, Santi

    2015-10-01

    Photodegradation over titanium dioxide (TiO2) is a very appealing technology for removing environmental pollutants from the air, the adsorption interaction being the first step of the whole reaction pathway. In the present work the adsorption of F2Cdbnd CFCl (chlorotrifluoroethene, halon 1113), a compound used by industry and detected in the atmosphere, on a commercial TiO2 nano-powder is investigated experimentally by in situ DRIFT spectroscopy and theoretically through periodic ab initio calculations rooted in DFT. The spectra of the adsorbed molecule suggest that the anchoring to the surface mainly takes place through F atoms. Theoretically, five adsorption configurations for the molecule interacting with the anatase (1 0 1) surface are simulated at B3LYP level and for each of them, structures, binding energies and vibrational frequencies are derived. The interplay between theory and experiments shows the coexistence of different adsorption configurations, the foremost ones featuring the interaction of one F atom with a fivefold coordinated Ti4+ of the surface. These two adsorption models, which mostly differ for the orientation of the adsorbate with respect to the surface, feature a binding energy of -45.6 and -41.0 kJ mol-1 according to dispersion corrected DFT calculations. The favorable adsorption interaction appears as an important requirement toward the application of titanium dioxide technologies for the photocatalytic degradation of halon 1113.

  4. Investigation of magnetic properties of MnZn-substituted strontium ferrite nanopowders prepared via conventional ceramic technique followed by a high energy ball milling

    NASA Astrophysics Data System (ADS)

    Arab, A.; Mardaneh, M. R.; Yousefi, M. H.

    2015-01-01

    Strontium ferrite powders with substitution of Mn2+ and Zn2+ ions for Fe3+ ions according to the formula SrMnxZnxFe12-2xO19, wherein x ranging from 0 to 1 with a step of 0.2, has been pre-milled via conventional ceramic method and calcined at 1200 °C for 4 h in the air. In order to get nanopowders, the obtained powders were milled again in a high energy SPEX mill for 1 h and 15 min. XRD study was performed to investigation the phases and structural properties of samples. Lattice parameters and mean crystallite sizes of the milled powders were determined from the XRD data and Scherrer's formula. Size of particles was studied by TEM. The DC electrical resistivities of the milled samples have been measured by the two-point probe method. In addition, room temperature magnetizations and coercivities of the samples in a magnetic field of 14.7 kOe have been determined from the hysteresis loops. The behavior of magnetizations of samples has been discussed based on core-shell model and according to the site occupation of substituted cations on the sublattices. The discussion of site occupation also supports the increase of lattice parameters as x increases.

  5. Photo-catalytic inactivation of an Enterococcus biofilm: the anti-microbial effect of sulphated and europium-doped titanium dioxide nanopowders.

    PubMed

    Dworniczek, Ewa; Plesch, Gustav; Seniuk, Alicja; Adamski, Ryszard; Michal, Róbert; Čaplovičová, Mária

    2016-04-01

    The control and prevention of biofilm-related infections is an important public healthcare issue. Given the increasing antibiotic resistance among bacteria and fungi that cause serious infections in humans, promotion of new strategies combating microorganisms has been essential. One attractive approach to inactivate microorganisms is the use of semiconductor photo-catalysis, which has become the subject of extensive research. In this study, the bactericidal properties of four photo-catalysts, TiO₂, TiO₂-S, TiO₂-Eu and TiO₂-Eu-S, were investigated against established 24, 48, 72 and 96 h biofilms of Enterococcus The exposure of biofilms to the catalysts induced the production of superoxide radical anions. The best photo-catalytic inactivation was achieved with the TiO₂-Eu-S and TiO₂-S nanopowders and 24 h biofilms. Transmission electron microscopy images showed significant changes in the structure of the biofilm cells following photo-inactivation. The results suggest that doping with europium and modifying the surface with sulphate groups enhanced the bactericidal activity of the TiO₂ nanoparticles against enterococcal biofilms.

  6. Synthesis and electrochemical properties of LiNi 0.8Co 0.2O 2 nanopowders for lithium ion battery applications

    NASA Astrophysics Data System (ADS)

    Jouybari, Yaser Hamedi; Asgari, Sirous

    Nitrates of lithium, cobalt and nickel are utilized to synthesize LiNi 0.8Co 0.2O 2 cathode material through sol-gel technique. Various synthesis parameters such as calcination time and temperature as well as chelating agent are studied to determine the optimized condition for material processing. Using TG/DTA techniques, the optimized calcination temperatures are selected. Different characterization techniques such as ICP, XRD and TEM are employed to characterize the chemical composition, crystal structure, size and morphology of the powders. Micron and nano-sized powders are produced using citric/oxalic and TEA as chelating agent, respectively. Selected powders are used as cathode material to assemble batteries. Charge-discharge testing of these batteries show that the highest discharge capacity is 173 mAh g -1 at a constant current of 0.1 mA cm -2, between 3.0 and 4.2 V. This is obtained in a battery assembled with the nanopowder produced by TEA as chelating agent.

  7. Spark Plasma Sintering of Aluminum-Magnesium-Matrix Composites with Boron Carbide and Tungsten Nano-powder Inclusions: Modeling and Experimentation

    NASA Astrophysics Data System (ADS)

    Dvilis, E. S.; Khasanov, O. L.; Gulbin, V. N.; Petyukevich, M. S.; Khasanov, A. O.; Olevsky, E. A.

    2016-03-01

    Spark-plasma sintering (SPS) is used to fabricate fully-dense metal-matrix (Al/Mg) composites containing hard ceramic (boron carbide) and refractory metal (tungsten) inclusions. The study objectives include the modeling (and its experimental verification) of the process of the consolidation of the composites consisted of aluminum-magnesium alloy AMg6 (65 wt.%), B4C powder (15 wt.%), and W nano-powder (20 wt.%), as well as the optimization of the composite content and of the SPS conditions to achieve higher density. Discrete element modeling of the composite particles packing based on the particle size distribution functions of real powders is utilized for the determination of the powder compositions rendering maximum mixture packing densities. Two models: a power-law creep model of the high temperature deformation of powder materials, and an empirical logarithmic pressure-temperature-relative density relationship are successfully applied for the description of the densification of the aluminum-magnesium metal matrix powder composite subjected to spark-plasma sintering. The elastoplastic properties of the sintered composite samples are assessed by nanoindentation.

  8. Temperature dependence of Er{sup 3+} ionoluminescence and photoluminescence in Gd{sub 2}O{sub 3}:Bi nanopowder

    SciTech Connect

    Boruc, Zuzanna Fetliński, Bartosz; Kaczkan, Marcin; Malinowski, Michał; Gawlik, Grzegorz

    2014-06-15

    Ionoluminescence (IL) and photoluminescence (PL) of trivalent erbium ions (Er{sup 3+}) in Gd{sub 2}O{sub 3} nanopowder host activated with Bi{sup 3+} ions has been studied in order to establish the link between changes in luminescent spectra and temperature of the sample material. IL measurements have been performed with H{sub 2}{sup +} 100 keV ion beam bombarding the target material for a few seconds, while PL spectra have been collected for temperatures ranging from 20 °C to 700 °C. The PL data was used as a reference in determining the temperature corresponding to IL spectra. The collected data enabled the definition of empirical formula based on the Boltzmann distribution, which allows the temperature to be determined with a maximum sensitivity of 9.7 × 10{sup −3} °C{sup −1}. The analysis of the Er{sup 3+} energy level structure in terms of tendency of the system to stay in thermal equilibrium, explained different behaviors of the line intensities. This work led to the conclusion that temperature changes during ion excitation can be easily defined with separately collected PL spectra. The final result, which is empirical formula describing dependence of fluorescence intensity ratio on temperature, raises the idea of an application of method in temperature control, during processes like ion implantation and some nuclear applications.

  9. Study of the relation between oxygen vacancies and ferromagnetism in Fe-doped TiO{sub 2} nano-powders

    SciTech Connect

    Mudarra Navarro, Azucena M.; Rodríguez Torres, Claudia E. Fabiana Cabrera, A.; Bilovol, Vitaliy; Errico, L. A.; Weissmann, M.

    2014-06-14

    In this work, we present an experimental and theoretical study of structural and magnetic properties of Fe doped rutile TiO{sub 2} nanopowders. We show that Fe-doping induces the formation of oxygen vacancies in the first-sphere coordination of iron ions, which are in +2 and +3 oxidation states. We found that Fe ions form dimers that share one oxygen vacancy in the case of Fe{sup 3+} and two oxygen vacancies in the case of Fe{sup 2+}. The saturation magnetization is almost independent of iron concentration and slightly increases with the relative fraction of Fe{sup 2+}. Ab initio calculations show that two Fe ions sharing an oxygen vacancy are coupled ferromagnetically, forming a bound magnetic polaron (BMP), but two neighbor BMPs are aligned antiparallel to each other. Extra electron doping plays a fundamental role mediating the magnetic coupling between the ferromagnetic entities: carriers, possibly concentrated at grain boundaries, mediate between the BMP to produce ferromagnetic alignment.

  10. Properties of Gd{sub 2}O{sub 3}:Eu{sup 3+}, Tb{sup 3+} nanopowders obtained by sol-gel process

    SciTech Connect

    Ramirez, A. de J. Morales; Murillo, A. Garcia; Romo, F. de J. Carrillo; Hernandez, M. Garcia; Vigueras, D. Jaramillo

    2010-01-15

    A significant practical application for nanostructured materials is X-ray medical imagery, because it is necessary to use dense materials in order to enable absorption of high energy photons. An important requirement of these materials is UV-vis range emission produced by X-ray excitation, which can be influenced by the particle size. Europium doped gadolinium oxide is a well known red phosphor. Moreover, nanophosphors of Gd{sub 2}O{sub 3} codoped with Tb{sup 3+}, Eu{sup 3+} increase their light yield by energy transfer between Tb{sup 3+} and Eu{sup 3+}. In this study, Gd{sub 2}O{sub 3} nanopowders codoped with Eu{sup 3+} and Tb{sup 3+} (2.5 at.% Eu{sup 3+}, and 0.005 and 0.01 at.% Tb{sup 3+}) were obtained via a sol-gel process using gadolinium pentanedionate as precursor and europium and terbium nitrates as doping sources. In this paper, we report the influence of annealing temperature on the structure, morphology and luminescent properties of Gd{sub 2}O{sub 3}:Eu{sup 3+}, Tb{sup 3+} by means of TGA, XRD, TEM and X-ray emission measurements.

  11. Influence of quenching gas injection on the temperature field in pulse-modulated induction thermal plasma for large scale nanopowder synthesis

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasunori; Guo, Weixuan; Kodama, Naoto; Kita, Kentaro; Uesugi, Yoshihiko; Ishijima, Tatsuo; Watanabe, Shu; Nakamura, Keitaro

    2015-09-01

    We have so far developed a unique and original method for a large-scale nanopowder synthesis method using pulse-modulated induction thermal plasmas with time-controlled feedstock feeding (PMITP-TCFF). The PMITP is sustained by the coil current modulated into a rectangular waveform. Such the current modulation produces an extremely high-temperature thermal plasma in on-time, and in off-time relatively low-temperature thermal plasma. In PMITP-TCFF method, feedstock powder is intermittently injected to the PMITP synchronously during only on-time for its efficient and complete evaporation. That evaporated materials are rapidly cooled down to promote nucleation of nanoparticles during off-time. This report deals with a numerical approach on influence of quenching gas injection on the temperature field in the PMITP. The thermofluid model for the PMITP was developed on the assumption of local thermodynamic equilibrium (LTE). This model accounted for the pulse-modulation of the coil current and the quenching gas injection. It was found that the quenching gas injection works to increase the PMITP temperature inside the plasma torch during on-time, and then to decrease it effectively in the reaction chamber. This work is partly supported by JSPS KAKENHI Grant No. 26249034.

  12. Investigation of the influence of vanadium, iron and nickel dopants on the morphology, and crystal structure and photocatalytic properties of titanium dioxide based nanopowders.

    PubMed

    Shao, Godlisten N; Jeon, Sun-Jeong; Haider, M Salman; Abbass, Nadir; Kim, Hee Taik

    2016-07-15

    Photoactive V, Fe and Ni doped TiO2 (M-TiO2) nanopowders were synthesized by a modified two-step sol-gel process in the absence of additives. Titanium oxychloride, which is a rarely-used TiO2 precursor was used to yield M-TiO2 photocatalysts with preferential photochemical performance in the presence of natural solar irradiation. The obtained samples were calcined at different calcination temperatures ranging from 450 to 800°C to evaluate the influence of the sintering on the physicochemical properties. The properties of the obtained samples were examined by XRF, XRD, Raman spectroscopy, UV-visible DRS, XPS, nitrogen gas physisorption studies, SEM-EDAX and HRTEM analyses. Structural characterization of the samples revealed the incorporation of these transition metal element into TiO2. It was also depicted that the morphology, crystal structure, optical and photochemical properties of the obtained samples were largely dependent on the calcination temperature and the type of dopant used during the preparation process. The photochemical performance of the samples was investigated in the photodegradation of methylene blue in the presence of natural sunlight. The experimental results indicated that the VT600 sample possessed the highest activity due to its superior properties. This study provides a systematic preparation and selection of the precursor, dopant and calcination temperature that are suitable for the formation of TiO2-based heterogeneous photocatalysts with appealing morphology, crystal structure, optical and photochemical properties for myriad of applications.

  13. Magnetocaloric properties of TbN, DyN and HoN nanopowders prepared by the plasma arc discharge method.

    PubMed

    Shinde, K P; Jang, S H; Kim, J W; Kim, D S; Ranot, M; Chung, K C

    2015-12-21

    We report for the first time the synthesis of nanopowders of TbN, DyN and HoN crystallized in a cubic structure by the plasma arc discharge (PAD) method and investigate their magnetocaloric properties for magnetic refrigeration applications. The nitridization of terbium, dysprosium and holmium was obtained using a mixture of nitrogen and argon gas inside a discharge chamber with 4 kPa pressure. The structural and microstructural properties of these rare earth nitrides were investigated by using X-ray diffraction and transmission electron microscopy. The studied nitrides undergo a second-order ferromagnetic to paramagnetic phase transition at Curie temperatures of 35.7, 19.9 and 14.2 K for TbN, DyN and HoN, respectively. The magnetocaloric effects were estimated by calculating the magnetic entropy changes from the magnetization data sets measured at the different applied magnetic fields and temperatures. The changes in entropy -ΔSM were found to be 12.0, 13.6 and 24.5 J kg(-1) K(-1) at an applied magnetic field of 5 T. PMID:26492221

  14. Dynamics and structure of hydration water on rutile and cassiterite nano-powders studied by quasielastic neutron scattering and molecular dynamics simulations

    SciTech Connect

    Mamontov, Eugene

    2007-01-01

    Quasielastic neutron scattering (QENS) experiments carried out using time-of-flight and backscattering neutron spectrometers with widely different energy resolution and dynamic range revealed the diffusion dynamics of hydration water in nano-powder rutile (TiO2) and cassiterite (SnO2) that possess the rutile crystal structure with the (110) crystal face predominant on the surface. These isostructural oxides differ in their bulk dielectric constants, metal atom electronegativities, and lattice spacings, which may all contribute to differences in the structure and dynamics of sorbed water. When hydrated under ambient conditions, the nano-powders had similar levels of hydration: about 3.5 (OH/H2O) molecules per Ti2O4 surface structural unit of TiO2 and about 4.0 (OH/H2O) molecules per Sn2O4 surface unit of SnO2. Ab initio-optimized classical molecular dynamics (MD) simulations of the (110) surfaces in contact with SPC/E water at these levels of hydration indicate three structurally-distinct sorbed water layers L1, L2, and L3, where the L1 species are either associated water molecules or dissociated hydroxyl groups in direct contact with the surface, L2 water molecules are hydrogen bonded to L1 and structural oxygen atoms at the surface, and L3 water molecules are more weakly bound. At the hydration levels studied, L3 is incomplete compared with axial oxygen density profiles of bulk SPC/E water in contact with these surfaces, but the structure and dynamics of L1 "L3 species are remarkably similar at full and reduced water coverage. Three hydration water diffusion components, on the time scale of a picosecond, tens of picoseconds, and a nanosecond could be extracted from the QENS spectra of both oxides. However, the spectral weight of the faster components was significantly lower for SnO2 compared to TiO2. In TiO2 hydration water, the more strongly bound L2 water molecules exhibited slow (on the time scale of a nanosecond) dynamics characterized by super

  15. Investigation of the influence of vanadium, iron and nickel dopants on the morphology, and crystal structure and photocatalytic properties of titanium dioxide based nanopowders.

    PubMed

    Shao, Godlisten N; Jeon, Sun-Jeong; Haider, M Salman; Abbass, Nadir; Kim, Hee Taik

    2016-07-15

    Photoactive V, Fe and Ni doped TiO2 (M-TiO2) nanopowders were synthesized by a modified two-step sol-gel process in the absence of additives. Titanium oxychloride, which is a rarely-used TiO2 precursor was used to yield M-TiO2 photocatalysts with preferential photochemical performance in the presence of natural solar irradiation. The obtained samples were calcined at different calcination temperatures ranging from 450 to 800°C to evaluate the influence of the sintering on the physicochemical properties. The properties of the obtained samples were examined by XRF, XRD, Raman spectroscopy, UV-visible DRS, XPS, nitrogen gas physisorption studies, SEM-EDAX and HRTEM analyses. Structural characterization of the samples revealed the incorporation of these transition metal element into TiO2. It was also depicted that the morphology, crystal structure, optical and photochemical properties of the obtained samples were largely dependent on the calcination temperature and the type of dopant used during the preparation process. The photochemical performance of the samples was investigated in the photodegradation of methylene blue in the presence of natural sunlight. The experimental results indicated that the VT600 sample possessed the highest activity due to its superior properties. This study provides a systematic preparation and selection of the precursor, dopant and calcination temperature that are suitable for the formation of TiO2-based heterogeneous photocatalysts with appealing morphology, crystal structure, optical and photochemical properties for myriad of applications. PMID:27124812

  16. Tuning the optical, electrical and magnetic properties of Ba(0.5)Sr(0.5)Ti(x)M(1-x)O3 (BST) nanopowders.

    PubMed

    Turky, Ali Omar; Rashad, Mohamed Mohamed; Kandil, Abd El-Hakim Taha; Bechelany, Mikhael

    2015-05-21

    Metal doped barium strontium titanate (BST; Ba0.5Sr0.5TixM1-xO3) nanopowders have been successfully synthesized through the oxalate precursor route based on low cost starting materials. The effect of metal ion substitution, namely Fe(3+), Mn(2+), Co(2+) and Y(3+), on the crystal structure, microstructure and optical, electrical, dielectric and magnetic properties of BST was studied. The results revealed that a crystalline single cubic BST phase was formed for pure and Mn(2+), Co(2+) and Y(3+) ion-substituted BST samples, whereas a tetragonal BST structure was obtained for the Fe(3+) substituted BST sample at an annealing temperature of 1000 °C for 2 h. Furthermore, addition of the metal ions was found to decrease the crystallite size and unit cell volume of the produced BST phase. The microstructure of the produced pure BST phase was metal ion dependent. Most BST particles appeared as a cubic like structure. The transparency of BST was found to increase with metal substitution. Meanwhile, the band gap energy was increased from 3.4 eV for pure BST to 3.8, 4.1, 4.2 and 4.3 eV as the result of substitution by Fe(3+), Mn(2+) and Co(2+) and Y(3+) ions, respectively. The DC resistivity was metal ion dependent. The highest DC resistivity (ρ = 66.60 × 10(5) Ω cm) was accomplished with the Mn(2+) ion. Moreover, the addition of metal ions decreased the dielectric properties of the expected Mn(2+) ion and increased the magnetic properties.

  17. Experimental and DFT studies of structure, optical and magnetic properties of (Zn1-2xCexCox)O nanopowders

    NASA Astrophysics Data System (ADS)

    Arul Mary, J.; Judith Vijaya, J.; Dai, J. H.; Bououdina, M.; John Kennedy, L.; Song, Y.

    2015-03-01

    A simple one-step microwave-assisted combustion method using urea as a fuel, was applied to develop the nanophase powders of ((Zn1-2xCexCox) O (x = 0.00, 0.01, 0.02, 0.03, 0.04, and 0.05)). The results emphasize that by changing the codopant concentration it is feasible to fine-tune structural, morphological, optical and magnetic properties. The synthesized nanoparticles gave rise to new microstructures without changing the basic hexagonal wurtzite structure. The substitution of Ce and Co into ZnO lattice was confirmed from the shift in XRD peaks position, changes in peaks intensity, and cell parameters. Energy dispersive X-ray spectra confirmed the presence of Ce and Co within ZnO system; the weight percentage was close to their nominal stoichiometry. Ultraviolet-visible (UV-Vis) spectroscopy analysis indicated that the optical band gap decreased with the increase of Ce and Co codoping concentration. It is clear from SEM images that the average particles size decreased from 50 nm to 25 nm when codoping concentration was increased up to 0.05 M. Photoluminescence spectra exhibited the emission bands in ultra-violet and blue-green regions. Magnetization-Field (M-H) hysteresis loops revealed that the codoped nanopowders exhibited room temperature ferromagnetism (RTFM). Using first principles calculations, based on density functional theory, electronic and magnetic properties of codoped ZnO for different dopants concentration, were predicted. It is found that the observed RTFM is originated mainly from spin polarization of Co-d orbital, Ce-f orbital has partial contribution.

  18. Toward silicon anodes for next-generation lithium ion batteries: a comparative performance study of various polymer binders and silicon nanopowders.

    PubMed

    Erk, Christoph; Brezesinski, Torsten; Sommer, Heino; Schneider, Reinhard; Janek, Jürgen

    2013-08-14

    Silicon is widely regarded as one of the most promising anode materials for lithium ion and next-generation lithium batteries because of its high theoretical specific capacity. However, major issues arise from the large volume changes during alloying with lithium. In recent years, much effort has been spent on preparing nanostructured silicon and optimizing various aspects of material processing with the goal of preserving the electrode integrity upon lithiation/delithiation. The performance of silicon anodes is known to depend on a large number of parameters and, thus, the general definition of a "standard" is virtually impossible. In this work, we conduct a comparative performance study of silicon anode tapes prepared from commercially available materials while using both a well-defined electrode configuration and cycling method. Our results demonstrate that the polymer binder has a profound effect on the cell performance. Furthermore, we show that key parameters such as specific capacity, capacity retention, rate capability, and so forth can be strongly affected by the choice of silicon material, polymer binder and electrolyte system - even the formation of metastable crystalline Li15Si4 is found to depend on the electrode composition and low potential exposure time. Overall, the use of either poly(acrylic acid) with a viscosity-average molecular weight of 450.000 or poly(vinyl alcohol) Selvol 425 in combination with both silicon nanopowder containing a native oxide surface layer of ∼1 nm in diameter and with a monofluoroethylene carbonate-based electrolyte led to improved cycling stability at high loadings.

  19. Synthesis and luminescent properties of rare earth (Sm3+ and Eu3+) Doped Gd2Ti2O7 pyrochlore nanopowders

    NASA Astrophysics Data System (ADS)

    Ćulubrk, Sanja; Antić, Željka; Marinović-Cincović, Milena; Ahrenkiel, Phillip S.; Dramićanin, Miroslav D.

    2014-11-01

    This work describes the synthesis and photoluminescent properties of rare earth (Sm3+ and Eu3+) doped Gd2Ti2O7 pyrochlore nanopowders. Pure-phase rare earth-doped Gd2Ti2O7 nanoparticles of approximately 20-50 nm in diameter, as evidenced from X-ray diffraction and electron microscopy analysis, are produced via the mixed metal-citric acid complex method. A temperature of 880 °C is identified for the formation of the crystalline pyrochlore phase, based on a differential thermal analysis of Gd2Ti2O7 precursor gels. From photoluminescence excitation and emission spectra, measured at 10 K and room temperature, the energy levels of Sm3+ and Eu3+ ions in Gd2Ti2O7 nanoparticles are obtained. The dependence of luminescence emission intensity and emission decays on rare earth concentration are measured and discussed. The strongest Sm3+ orange-reddish emission is observed for samples containing 2.5 at.% of Sm3+ ions, while in the case of Eu3+, the most intense emission is found for 15 at.% Eu3+ doping. The 4G5/2 level lifetime decreases with an increase in Sm3+ concentration, from about 5 ms (for 0.1-0.2 at.% of Sm3+) to 2.4 ms (for 2.5 at.% of Sm3+). With an increase in Eu3+ concentration in the Gd2Ti2O7 nanoparticles, the Eu3+5D0 level lifetime decreases from ∼5.9 ms (for 0.5 at.% of Sm3+) to 3.1 ms (for 15 at.% of Sm3+).

  20. SolidShperal

    2013-12-22

    SolidSpheral is an extension of the Spheral open source meshless hydrodynamics method. SolidSpheral adds the capability to model solid materials using analytic equations of state, and a simple damage model to allow for the modeled materials to undergo dynamic damage evolution. SolidSpheral is a distributed parallel code employing MPI for the parallel framework.

  1. Solids fluidizer-injector

    DOEpatents

    Bulicz, Tytus R.

    1990-01-01

    An apparatus and process for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine.

  2. Solids mass flow determination

    DOEpatents

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  3. Effects of processing parameters on the synthesis of (K0.5Na0.5)NbO3 nanopowders by reactive high-energy ball milling method.

    PubMed

    Nguyen, Duc Van

    2014-01-01

    The effects of ball milling parameters, namely, the ball-to-powder mass ratio and milling speed, on the synthesis of (K0.5Na0.5)NbO3 nanopowders by high-energy ball milling method from a stoichiometric mixture containing Na2CO3, K2CO3, and Nb2O5 were investigated in this paper. The results indicated that the single crystalline phase of (K0.5Na0.5)NbO3 was received in as-milled samples synthesized using optimized ball-to-powder mass ratio of 35 : 1 and at a milling speed of 600 rpm for 5 h. In the optimized as-milled samples, no remaining alkali carbonates that can provide the volatilizable potassium-containing species were found and (K0.5Na0.5)NbO3 nanopowders were readily obtained via the formation of an intermediate carbonato complex. This complex was mostly transformed into (K0.5Na0.5)NbO3 at temperature as low as 350°C and its existence was no longer detected at spectroscopic level when calcination temperature crossed over 700°C.

  4. Effects of Processing Parameters on the Synthesis of (K0.5Na0.5)NbO3 Nanopowders by Reactive High-Energy Ball Milling Method

    PubMed Central

    Duc Van, Nguyen

    2014-01-01

    The effects of ball milling parameters, namely, the ball-to-powder mass ratio and milling speed, on the synthesis of (K0.5Na0.5)NbO3 nanopowders by high-energy ball milling method from a stoichiometric mixture containing Na2CO3, K2CO3, and Nb2O5 were investigated in this paper. The results indicated that the single crystalline phase of (K0.5Na0.5)NbO3 was received in as-milled samples synthesized using optimized ball-to-powder mass ratio of 35 : 1 and at a milling speed of 600 rpm for 5 h. In the optimized as-milled samples, no remaining alkali carbonates that can provide the volatilizable potassium-containing species were found and (K0.5Na0.5)NbO3 nanopowders were readily obtained via the formation of an intermediate carbonato complex. This complex was mostly transformed into (K0.5Na0.5)NbO3 at temperature as low as 350°C and its existence was no longer detected at spectroscopic level when calcination temperature crossed over 700°C. PMID:24592146

  5. Fabrication of lanthanum strontium cobalt ferrite (LSCF) cathodes for high performance solid oxide fuel cells using a low price commercial inkjet printer

    NASA Astrophysics Data System (ADS)

    Han, Gwon Deok; Neoh, Ke Chean; Bae, Kiho; Choi, Hyung Jong; Park, Suk Won; Son, Ji-Won; Shim, Joon Hyung

    2016-02-01

    In this study, we investigate a method to fabricate high quality lanthanum strontium cobalt ferrite (LSCF) cathodes for solid oxide fuel cells (SOFCs) using a commercial low price inkjet printer. The ink source is synthesized by dissolving the LSCF nanopowder in a water-based solvent with a proper amount of surfactants. Microstructures of the LSCF layer, including porosity and thickness per printing scan cycle, are adjusted by grayscale in the printing image. It is successfully demonstrated that anode-supported SOFCs with optimally printed LSCF cathodes can produce decent power output, i.e., a maximum peak power density of 377 mW cm-2 at 600 °C, in our experiment. We expect that this approach can support the quick and easy prototyping and evaluating of a variety of cathode materials in SOFC research.

  6. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes

    NASA Astrophysics Data System (ADS)

    Kang, Yu Jin; Chung, Haegeun; Han, Chi-Hwan; Kim, Woong

    2012-02-01

    All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf2]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g-1 at a current density of 2 A g-1, when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg-1 and 41 Wh kg-1, respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications.

  7. Laser cooling of solids

    SciTech Connect

    Epstein, Richard I; Sheik-bahae, Mansoor

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  8. ROTARY BULK SOLIDS DIVIDER

    DOEpatents

    Maronde, Carl P.; Killmeyer JR., Richard P.

    1992-03-03

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  9. Rotary bulk solids divider

    DOEpatents

    Maronde, Carl P.; Killmeyer, Jr., Richard P.

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  10. Tetraphenylborate Solids Stability Tests

    SciTech Connect

    Walker, D.D.

    1997-06-25

    Tetraphenylborate solids are a potentially large source of benzene in the slurries produced in the In-Tank Precipitation (ITP) process. The stability of the solids is an important consideration in the safety analysis of the process and we desire an understanding of the factors that influence the rate of conversion of the solids to benzene. This report discusses current testing of the stability of tetraphenylborate solids.

  11. Tetraphenylborate Solids Stability Tests

    SciTech Connect

    Walker, D.D.; Edwards, T.B.

    1997-12-19

    Tetraphenylborate solids provide a potentially large source of benzene in the slurries produced in the In-Tank Precipitation process. The stability of the solids is an important consideration in the safety analysis of the process and we desire an understanding of the factors that influence the rate of conversion of the solids to benzene.

  12. Thermal dryers for solids

    SciTech Connect

    Billings, C.H.

    1993-12-01

    This article describes an indirect thermal dryer added to dewater solids before incineration of sewage sludge at a Buffalo, New York waste water treatment plant. In the first three months of operation, the solids inventory was reduced from about 799 tons to 250 tons. The solids processed in the plant's multiple hearth incinerators varied from 12 to 14 tons per hour.

  13. Solid State Division

    SciTech Connect

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  14. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  15. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  16. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  17. Combustibility of tetraphenylborate solids

    SciTech Connect

    Walker, D.D.

    1989-05-03

    Liquid slurries expected under normal in-tank processing (ITP) operations are not ignitible because of their high water content. However, deposits of dry solids from the slurries are combustible and produce dense, black smoke when burned. The dry solids burn similarly to Styrofoam and more easily than sawdust. It is the opinion of fire hazard experts that a benzene vapor deflagration could ignite the dry solids. A tetraphenylborate solids fire will rapidly plug the waste tank HEPA ventilation filters due to the nature of the smoke produced. To prevent ignition and combustion of these solids, the waste tanks have been equipped with a nitrogen inerting system.

  18. Solid expellant plasma generator

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H. (Inventor); Poe, Garrett D. (Inventor); Rood, Robert (Inventor)

    2010-01-01

    An improved solid expellant plasma generator has been developed. The plasma generator includes a support housing, an electrode rod located in the central portion of the housing, and a mass of solid expellant material that surrounds the electrode rod within the support housing. The electrode rod and the solid expellant material are made of separate materials that are selected so that the electrode and the solid expellant material decompose at the same rate when the plasma generator is ignited. This maintains a point of discharge of the plasma at the interface between the electrode and the solid expellant material.

  19. Subdue solids in towers

    SciTech Connect

    Sloley, A.W.; Martin, G.R.

    1995-01-01

    Many distillation, absorption, and stripping columns operate with solids present in the system. The presence of solids may be either intentional or unintentional. But, in all cases, the solids must be handled or tolerated by the vapor/liquid mass-transfer equipment. Such solids should be dealt with by a combination of four methods. From most favorable to least favorable, these are: (1) keep the solids out; (2) keep the solids moving; (3) put the solids somewhere harmless; and (4) make it easier to clean the hardware. The key precept for all these approaches is the realization that solids present in a system just don't disappear. In this article, the authors review the techniques and design issues involved in making a vapor/liquid mass-transfer system operate with solids present. They assume that the solids cannot be kept out, eliminating the first choice. The type of mass-transfer service does not matter. The same principles apply equally well to distillation, adsorption, and stripping. They include equipment design criteria based on the methods outlined above, as well as detailed recommendations for each of the major equipment choices that can be made for mass-transfer devices. Then, they illustrate the approach via an example--a vinyl chloride monomer (VCM) unit having solids as an inherent part of its feed.

  20. Solids fluidizer-injector

    DOEpatents

    Bulicz, T.R.

    1990-04-17

    An apparatus and process are described for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine. 3 figs.

  1. Investigation on evaporation of Ti feedstock and formation of precursor TiO molecules during TiO2 nanopowder synthesis in induction thermal plasma with time-controlled feedstock injection

    NASA Astrophysics Data System (ADS)

    Kodama, Naoto; Kita, Kentaro; Ishisaka, Yosuke; Tanaka, Yasunori; Uesugi, Yoshihiko; Ishijima, Tatsuo; Sueyasu, Shiori; Nakamura, Keitaro; Kanazawa University Team; Nisshin Seifun Group Inc. Team

    2015-09-01

    The method using inductively coupled thermal plasma(ICTP) is very effective for nanopowder(NPs) synthesis. However, NPs formation process in the ICTP torch has not been clarified. In this study, the two-dimensional spectroscopic observation was carried out for ICTP torch during TiO2 NPs synthesis process with time-controlled feedstock injection. In order to investigate evaporation process of feedstock and formation process of precursor molecules, Ti feedstock was intermittently injected into the ICTP. Ti I(453.32 nm) and TiO(621 nm) were observed by using an imaging spectroscopic system. Observation results show that injected Ti feedstock was evaporated in the ICTP. Then, generated Ti atoms were transported to downstream of the torch by gas flow and were diffused to the radial direction by density gradient. High concentration of TiO molecular gas was formed only around central axis region in the torch.

  2. Thermal dryer dewaters solids

    SciTech Connect

    DiMascio, F.J.; Burrowes, P.A.

    1993-09-01

    Solids incineration is traditionally an energy-intensive solids handling process at wastewater treatment plants. To reduce energy costs, the Buffalo (N.Y.) Sewer Authority has added an indirect thermal dryer to its treatment plant to dewater solids before incineration. In the first 3 months of operation, the authority reduced its solids inventory from 634,400 to 227,300 kg. Solids processed in the plant`s multiple-hearth incinerators varied from 11 to 12.75 wet Mg/hr at feed concentrations averaging 21% total solids. And, the dryer was operated with less than 5% downtime. The cost of this indirect thermal dryer system, including construction and equipment, was $995,000. 1 fig., 2 tabs.

  3. Solid propellant rocket motor

    NASA Technical Reports Server (NTRS)

    Dowler, W. L.; Shafer, J. I.; Behm, J. W.; Strand, L. D. (Inventor)

    1973-01-01

    The characteristics of a solid propellant rocket engine with a controlled rate of thrust buildup to a desired thrust level are discussed. The engine uses a regressive burning controlled flow solid propellant igniter and a progressive burning main solid propellant charge. The igniter is capable of operating in a vacuum and sustains the burning of the propellant below its normal combustion limit until the burning propellant surface and combustion chamber pressure have increased sufficiently to provide a stable chamber pressure.

  4. Mixed oxide solid solutions

    DOEpatents

    Magno, Scott; Wang, Ruiping; Derouane, Eric

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  5. Solid state synthesis of water-dispersible silicon nanoparticles from silica nanoparticles

    SciTech Connect

    Kravitz, Keren; Kamyshny, Alexander; Gedanken, Aharon; Magdassi, Shlomo

    2010-06-15

    A solid state synthesis for obtaining nanocrystalline silicon was performed by high temperature reduction of commercial amorphous nanosilica with magnesium powder. The obtained silicon powder contains crystalline silicon phase with lattice spacings characteristic of diamond cubic structure (according to high resolution TEM), and an amorphous phase. In {sup 29}Si CP MAS NMR a broad multicomponent peak corresponding to silicon is located at -61.28 to -69.45 ppm, i.e. between the peaks characteristic of amorphous and crystalline Si. The powder has displayed red luminescence while excited under UV illumination, due to quantum confinement within the nanocrystals. The silicon nanopowder was successfully dispersed in water containing poly(vinyl alcohol) as a stabilizing agent. The obtained dispersion was also characterized by red photoluminescence with a band maximum at 710 nm, thus enabling future functional coating applications. - Graphical abstract: High temperature reduction of amorphous nanosilica with magnesium powder results in the formation of powder containing crystalline silicon phase The powder displays red luminescence while excited under UV illumination, due to quantum confinement within the Si nanocrystals, and can be successfully dispersed in water containing poly(vinyl alcohol) as a stabilizing agent. The obtained dispersion was also characterized by red photoluminescence, thus enabling future functional coating applications.

  6. Solid Waste: Health Concerns

    ERIC Educational Resources Information Center

    Duel, Ward

    1975-01-01

    In this article the means of disposing solid wastes are discussed with reference to their health hazards and environmental desirability. Included in the discussion are solid waste dumps, landfills, incinerators, and grinders. Some attention is given to the reclamation of mineral resources from trash. (MA)

  7. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  8. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  9. Solid adenocarcinoma —

    Cancer.gov

    Uniformly solid character of the lesions is usually indicative of a well differentiated tumor. No solid adenocarcinomas have observed in our series. However, rare cases have been described by others. In human pathology this diagnosis is usually based on detection of mucin after periodic acid-Schiff reaction with diastase (α-amylase) digestion.

  10. Polyimide Precursor Solid Residuum

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    A polyimide precursor solid residuum is an admixture of an aromatic dianhydride or derivative thereof and an aromatic diamine or derivative thereof plus a complexing agent, which is complexed with the admixture by hydrogen bonding. The polyimide precursor solid residuum is effectively employed in the preparation of polyimide foam and the fabrication of polyimide foam structures.

  11. Lubrication with solids.

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Johnson, R. L.

    1972-01-01

    Brief discussion of the historical background, variety range, chemistry, physics, and other properties of solid lubricants, and review of their current uses. The widespread use of solid lubricants did not occur until about 1947. At present, they are the object of such interest that a special international conference on their subject was held in 1971. They are used at temperatures beyond the useful range of conventional lubricating oils and greases. Their low volatility provides them with the capability of functioning effectively in vacuum and invites their use in space applications. Their high load carrying ability makes them useful with heavily loaded components. Solid lubricants, however, do lack some of the desirable properties of conventional lubricants. Unlike oils and greases, which have fluidity and can continuously be carried back into contact with lubricated surfaces, solid lubricants, because of their immobility, have finite lives. Also, oils and greases can carry away frictional heat from contacting surfaces, while solid lubricants cannot.

  12. Solid propellant motor

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.; Marsh, H. E., Jr. (Inventor)

    1978-01-01

    A case bonded end burning solid propellant rocket motor is described. A propellant with sufficiently low modulus to avoid chamber buckling on cooling from cure and sufficiently high elongation to sustain the stresses induced without cracking is used. The propellant is zone cured within the motor case at high pressures equal to or approaching the pressure at which the motor will operate during combustion. A solid propellant motor with a burning time long enough that its spacecraft would be limited to a maximum acceleration of less than 1 g is provided by one version of the case bonded end burning solid propellant motor of the invention.

  13. Solid and Gaseous Fuels.

    ERIC Educational Resources Information Center

    Schultz, Hyman; And Others

    1989-01-01

    This review covers methods of sampling, analyzing, and testing coal, coke, and coal-derived solids and methods for the chemical, physical, and instrumental analyses of gaseous fuels. The review covers from October 1986, to September 1988. (MVL)

  14. The solid waste dilemma

    USGS Publications Warehouse

    Amey, E.B.; Russell, J.A.; Hurdelbrink, R.J.

    1996-01-01

    In 1976, the U.S. Congress enacted the Resource Conservation and Recovery Act (RCRA) to further address the problem of increasing industrial and municipal waste. The main objectives of RCRA were to responsibly manage hazardous and solid waste and to procure materials made from recovered wastes. To fulfill these objectives, four main programs of waste management were developed. These programs were defined under Subtitle C, the Hazardous Waste Program; Subtitle D, the Solid Waste Program; Subtitle I, the Underground Storage Tank Program; and Subtitle J, the Medical Waste Program. Subtitle D illustrates the solid waste dilemma occurring in the United States. Under this program, states are encouraged to develop and implement their own waste management plans. These plans include the promotion of recycling solid wastes and the closing and upgrading of all environmentally unsound dumps. ?? 1996 International Association for Mathematical Geology.

  15. ELECTRON IRRADIATION OF SOLIDS

    DOEpatents

    Damask, A.C.

    1959-11-01

    A method is presented for altering physical properties of certain solids, such as enhancing the usefulness of solids, in which atomic interchange occurs through a vacancy mechanism, electron irradiation, and temperature control. In a centain class of metals, alloys, and semiconductors, diffusion or displacement of atoms occurs through a vacancy mechanism, i.e., an atom can only move when there exists a vacant atomic or lattice site in an adjacent position. In the process of the invention highenergy electron irradiation produces additional vacancies in a solid over those normally occurring at a given temperature and allows diffusion of the component atoms of the solid to proceed at temperatures at which it would not occur under thermal means alone in any reasonable length of time. The invention offers a precise way to increase the number of vacancies and thereby, to a controlled degree, change the physical properties of some materials, such as resistivity or hardness.

  16. Solid adenoma —

    Cancer.gov

    Round to oval cells fill alveolar spaces. Fixation of the lung without inflation results in predominance of solid over alveolar pattern. Cells usually have abundant eosinophilic cytoplasm with fine granularity and/or vacuoles.

  17. The Organic Solid State.

    ERIC Educational Resources Information Center

    Cowan, Dwaine O.; Wlygul, Frank M.

    1986-01-01

    Reviews interesting and useful electrical, magnetic, and optical properties of the organic solid state. Offers speculation as to areas of fruitful research. Discusses organic superconductors, conducting organic polymers, organic metals, and traces recent history of creation of organic metals. (JM)

  18. Solid Earth: Introduction

    NASA Astrophysics Data System (ADS)

    Rummel, R.

    1991-10-01

    The principles of the solid Earth program are introduced. When considering the study of solid Earth from space, satellites are used as beacons, inertial references, free fall probes and carrying platforms. The phenomenon measured by these satellites and the processes which can be studied as a result of these measurements are tabulated. The NASA solid Earth program focusses on research into surface kinematics, Earth rotation, land, ice, and ocean monitoring. The ESA solid Earth program identifies as its priority the Aristoteles mission for determining the gravity and magnetic field globally, with high spatial resolution and high accuracy. The Aristoteles mission characteristics and goals are listed. The benefits of the improved gravity information that will be provided by this mission are highlighted. This information will help in the following research: geodesy, orbit mechanics, geodynamics, oceanography, climate sea level, and the atmosphere.

  19. Solids Accumulation Scouting Studies

    SciTech Connect

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    2012-09-26

    The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of

  20. Solid Waste Treatment Technology

    ERIC Educational Resources Information Center

    Hershaft, Alex

    1972-01-01

    Advances in research and commercial solid waste handling are offering many more processing choices. This survey discusses techniques of storage and removal, fragmentation and sorting, bulk reduction, conversion, reclamation, mining and mineral processing, and disposal. (BL)

  1. Screen-printed (La,Sr)CrO3 coatings on ferritic stainless steel interconnects for solid oxide fuel cells using nanopowders prepared by means of ultrasonic spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Brylewski, Tomasz; Dabek, Jaroslaw; Przybylski, Kazimierz; Morgiel, Jerzy; Rekas, Mieczyslaw

    2012-06-01

    In order to protect the cathode from chromium poisoning and improve electrical resistance, a perovskite (La,Sr)CrO3 coating was deposited on the surface of a DIN 50049 ferritic stainless steel by means of the screen-printing method, using a paste composed of an ultra-fine powder prepared via ultrasonic spray pyrolysis. Investigations of the oxidation process of the coated steel in air and the Ar-H2-H2O gas mixture at 1073 K for times up to 820 h showed high compactness of the protective film, good adhesion to the metal substrate, as well as area specific resistance (ASR) at a level acceptable for metallic SOFC interconnect materials. The microstructure, nanostructure, phase composition of the thick film, and in particular the film/substrate interface, were examined via chemical analyses by means of SEM-EDS and TEM-SAD. It was shown that the (La,Sr)CrO3 coating interacts with the steel during long-term thermal oxidation in the afore-mentioned conditions and intermediate, chromia-rich and/or spinel multilayer interfacial zones are formed. Cr-vaporization tests showed that the (La,Sr)CrO3 coating may play the role of barriers that decrease the volatilization rate of chromia species.

  2. Solid polymer electrolytes

    DOEpatents

    Abraham, K.M.; Alamgir, M.; Choe, H.S.

    1995-12-12

    This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

  3. Solid polymer electrolytes

    DOEpatents

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  4. Solid electrolyte cell

    NASA Technical Reports Server (NTRS)

    Richter, R. (Inventor)

    1982-01-01

    A solid electrolyte cell including a body of solid ionized gas-conductive electrolyte having mutually spaced surfaces and on which is deposited a multiplicity of mutually spaced electrodes is described. Strips and of bare substances are interposed between electrodes, so that currents of ionic gas may be established between the electrodes via the bare strips, whereby electrical resistance for the cells is lowered and the gas conductivity is enhanced.

  5. Solid state switch

    DOEpatents

    Merritt, Bernard T.; Dreifuerst, Gary R.

    1994-01-01

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

  6. Lyophilization -Solid Waste Treatment

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

    2004-01-01

    This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

  7. Keep solids in suspension

    SciTech Connect

    Gladki, H.Z.

    1997-10-01

    Mixing is an important operation in the CPI. It is not synonymous with agitation. Mixing is a random distribution into and through one another of two or more initially separate phases. Within that broad definition is the important specialty area of liquid-solid dispersion. This paper addresses the dispersion of solids in lower concentrations that don`t affect the rheological properties of the fluid. The just suspended condition represents the lowest grade of complete suspension, but this level of agitation is the most efficient for solids-liquid agitation. Higher mixing speeds waste energy. Undersized mixers need replacing. The top-entering mixer has a long history in the CPI and the environmental area. Many suspension studies were run with this type. These papers result in empirical correlations for just suspension conditions to scale up from laboratory measurement. Variables considered are the agitation speed, liquid and solids physical properties, solids concentration, system geometry and impeller type. Lately, submersible mixers are becoming more popular, but there are no published sizing methods. This article will explain how to define the critical hydraulic conditions in the tank to reach just solids suspension for a submersible agitator of the type described here as FJFA (Free Jet Flow Agitator).

  8. NOVEL ELECTRODE MATERIALS FOR LOW-TEMPERATURE SOLID-OXIDE FUEL CELLS

    SciTech Connect

    X. Lu; C. Xia; Y. Liu; W. Rauch; M. Liu

    2002-12-01

    Composite electrodes consisting of silver and bismuth vanadates exhibit remarkable catalytic activity for oxygen reduction at 500-550 C and greatly reduce the cathode-electrolyte (doped ceria) resistances of low temperature SOFCs, down to about 0.53 {Omega}cm{sup 2} at 500 C and 0.21 {Omega}cm{sup 2} at 550 C. The observed power densities of 231, 332, and 443 mWcm{sup -2} at 500, 525 and 550 C, respectively, make it possible to operate SOFCs at temperatures about 500 C. Using in situ potential dependent FTIR emission spectroscopy, we have found evidence for two, possibly three distinct di-oxygen species present on the electrode surface. We have successfully identified which surface oxygen species is present under a particular electrical or chemical condition and have been able to deduce the reaction mechanisms. This technique will be used to probe the gas-solid interactions at or near the TPB and on the surfaces of mixed-conducting electrodes in an effort to understand the molecular processes relevant to the intrinsic catalytic activity. Broad spectral features are assigned to the polarization-induced changes in the optical properties of the electrode surface layer. The ability of producing vastly different microstructures and morphologies of the very same material is critical to the fabrication of functionally graded electrodes for solid-state electrochemical devices, such as SOFCs and lithium batteries. By carefully adjusting deposition parameters of combustion CVD, we have successfully produced oxide nano-powders with the size of 30 {approx} 200 nm. Porous films with various microstructures and morphologies are also deposited on several substrates by systematic adjustment of deposition parameters. Symmetrical cells were fabricated by depositing cathode materials on both sides of GDC electrolytes.

  9. Anisotropy in solid inflation

    SciTech Connect

    Bartolo, Nicola; Matarrese, Sabino; Ricciardone, Angelo; Peloso, Marco E-mail: sabino.matarrese@pd.infn.it E-mail: angelo.ricciardone@pd.infn.it

    2013-08-01

    In the model of solid / elastic inflation, inflation is driven by a source that has the field theoretical description of a solid. To allow for prolonged slow roll inflation, the solid needs to be extremely insensitive to the spatial expansion. We point out that, because of this property, the solid is also rather inefficient in erasing anisotropic deformations of the geometry. This allows for a prolonged inflationary anisotropic solution, providing the first example with standard gravity and scalar fields only which evades the conditions of the so called cosmic no-hair conjecture. We compute the curvature perturbations on the anisotropic solution, and the corresponding phenomenological bound on the anisotropy. Finally, we discuss the analogy between this model and the f(φ)F{sup 2} model, which also allows for anisotropic inflation thanks to a suitable coupling between the inflaton φ and a vector field. We remark that the bispectrum of the curvature perturbations in solid inflation is enhanced in the squeezed limit and presents a nontrivial angular dependence, as had previously been found for the f(φ)F{sup 2} model.

  10. Defects in flexoelectric solids

    NASA Astrophysics Data System (ADS)

    Mao, Sheng; Purohit, Prashant K.

    2015-11-01

    A solid is said to be flexoelectric when it polarizes in proportion to strain gradients. Since strain gradients are large near defects, we expect the flexoelectric effect to be prominent there and decay away at distances much larger than a flexoelectric length scale. Here, we quantify this expectation by computing displacement, stress and polarization fields near defects in flexoelectric solids. For point defects we recover some well known results from strain gradient elasticity and non-local piezoelectric theories, but with different length scales in the final expressions. For edge dislocations we show that the electric potential is a maximum in the vicinity of the dislocation core. We also estimate the polarized line charge density of an edge dislocation in an isotropic flexoelectric solid which is in agreement with some measurements in ice. We perform an asymptotic analysis of the crack tip fields in flexoelectric solids and show that our results share some features from solutions in strain gradient elasticity and piezoelectricity. We also compute the energy release rate for cracks using simple crack face boundary conditions and use them in classical criteria for crack growth to make predictions. Our analysis can serve as a starting point for more sophisticated analytic and computational treatments of defects in flexoelectric solids which are gaining increasing prominence in the field of nanoscience and nanotechnology.

  11. Solid state cell with anolyte

    SciTech Connect

    Barnette, L. H.; Liang, C. C.

    1985-06-25

    A solid state cell having a solid cathode, a solid electrolyte, and a solid anolyte comprised of at least 50% by volume of ionically conductive materials such as the electrolye and 50% or less by volume of an active metal. The anolyte is either the cell anode or alternatively the anolyte is an additional structural member within said cell positioned between an anode, comprised of the same active metal, and the solid electrolyte.

  12. WET SOLIDS FLOW ENHANCEMENT

    SciTech Connect

    Hugo S. Caram; Natalie Foster

    1999-07-01

    The strain-stress behavior of a wet granular media was measured using a split Parfitt tensile tester. In all cases the stress increases linearly with distance until the maximum uniaxial tensile stress is reached. The stress then decreases exponentially with distance after this maximum is reached. The linear region indicates that wet solids behave elastically for stresses below the tensile stresses and can store significant elastic energy. The elastic deformation cannot be explained by analyzing the behavior of individual capillary bridges and requires accounting for the deformation of the solids particles. The elastic modulus of the wet granular material remains unexplained.

  13. WET SOLIDS FLOW ENHANCEMENT

    SciTech Connect

    Hugo S. Caram; Natalie Foster

    1998-03-30

    The strain-stress behavior of a wet granular media was measured using a split Parfitt tensile tester. In all cases the stress increases linearly with distance until the maximum uniaxial tensile stress is reached. The stress then decreases exponentially with distance after this maximum is reached. The linear region indicates that wet solids behave elastically for stresses below the tensile stresses and can store significant elastic energy. The elastic deformation cannot be explained by analyzing the behavior of individual capillary bridges and may require accounting for the deformation of the solids particles. The elastic modulus of the wet granular material remains unexplained.

  14. Local Solid Shape

    PubMed Central

    Koenderink, Jan; van Doorn, Andrea

    2015-01-01

    Local solid shape applies to the surface curvature of small surface patches—essentially regions of approximately constant curvatures—of volumetric objects that are smooth volumetric regions in Euclidean 3-space. This should be distinguished from local shape in pictorial space. The difference is categorical. Although local solid shape has naturally been explored in haptics, results in vision are not forthcoming. We describe a simple experiment in which observers judge shape quality and magnitude of cinematographic presentations. Without prior training, observers readily use continuous shape index and Casorati curvature scales with reasonable resolution. PMID:27648217

  15. Solid handling valve

    DOEpatents

    Williams, William R.

    1979-01-01

    The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

  16. Local Solid Shape

    PubMed Central

    Koenderink, Jan; van Doorn, Andrea

    2015-01-01

    Local solid shape applies to the surface curvature of small surface patches—essentially regions of approximately constant curvatures—of volumetric objects that are smooth volumetric regions in Euclidean 3-space. This should be distinguished from local shape in pictorial space. The difference is categorical. Although local solid shape has naturally been explored in haptics, results in vision are not forthcoming. We describe a simple experiment in which observers judge shape quality and magnitude of cinematographic presentations. Without prior training, observers readily use continuous shape index and Casorati curvature scales with reasonable resolution.

  17. Solid state switch

    DOEpatents

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  18. Local Solid Shape.

    PubMed

    Koenderink, Jan; van Doorn, Andrea; Wagemans, Johan

    2015-10-01

    Local solid shape applies to the surface curvature of small surface patches-essentially regions of approximately constant curvatures-of volumetric objects that are smooth volumetric regions in Euclidean 3-space. This should be distinguished from local shape in pictorial space. The difference is categorical. Although local solid shape has naturally been explored in haptics, results in vision are not forthcoming. We describe a simple experiment in which observers judge shape quality and magnitude of cinematographic presentations. Without prior training, observers readily use continuous shape index and Casorati curvature scales with reasonable resolution. PMID:27648217

  19. Chemical-physical properties of spinel CoMn2O4 nano-powders and catalytic activity in the 2-propanol and toluene combustion: Effect of the preparation method.

    PubMed

    Hosseini, Seyed Ali; Salari, Dariush; Niaei, Aligholi; Deganello, Francesca; Pantaleo, Giuseppe; Hojati, Pejman

    2011-01-01

    Spinel-type CoMn(2)O(4)nano-powders are prepared using sol-gel auto combustion (SGC) and co-precipitation (CP) methods and their catalytic activities are evaluated in combustion of 2-propanol and toluene. The chemical-physical properties of the oxides are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N(2)-adsorption-desorption, temperature programmed reduction (TPR) and scanning electron microscopy (SEM). After calcination at 700°C, CoMn(2)O(4)-SGC shows higher amounts of the normal-type spinel phase and is more crystalline than CoMn(2)O(4)-CP. Higher calcination temperatures (850°C) do not affect very much the weight percentage of the normal-type spinel phase; although the crystal size slightly increased. The TPR analysis evidences a large number of Mn(3+) cations in CoMn(2)O(4)-SGC compared to CoMn(2)O(4)-CP. This difference, together with the higher surface area, could justify the higher activity of CoMn(2)O(4)-SGC in both the investigated reactions.

  20. Effects of magnetic pre-alignment of nano-powders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route

    NASA Astrophysics Data System (ADS)

    Liu, Junliang; Zeng, Yanwei; Zhang, Xingkai; Zhang, Ming

    2015-05-01

    Highly textured barium hexa-ferrite quasi-single crystal with narrow ferromagnetic resonance line-width is believed to be a potential gyromagnetic material for self-biased microwave devices. To fabricate barium hexa-ferrite quasi-single crystal with a high grain orientation degree, a magnetic forming and liquid participation sintering route has been developed. In this paper, the effects of the pre-alignment of the starting nano-powders on the formation of barium quasi-single crystal structures have been investigated. The results indicated that: the crystallites with large sizes and small specific surfaces were easily aligned for they got higher driving forces and lower resistances during magnetic forming. The average restricting magnetic field was about 4.647 kOe to overcome the average friction barrier between crystallites. The pre-aligned crystallites in magnetic forming acted as the "crystal seeds" for oriented growth of the un-aligned crystallites during liquid participation sintering to achieve a high grain orientation. To effectively promote the grain orientation degrees of the sintered pellets, the grain orientation degrees of the green compacts must be higher than a limited value of 15.0%. Barium hexa-ferrite quasi-single crystal with a high grain orientation degree of 98.6% was successfully fabricated after sintering the green compact with its grain orientation degree of 51.1%.

  1. The effects of different polymerization agents on structural and optical properties of (K0.5Na0.5)NbO3 nanopowders synthesized by a facile green route

    NASA Astrophysics Data System (ADS)

    Khorrami, Gh. H.; Kompany, A.; Zak, A. Khorsand

    2014-11-01

    (K0.5N0.5)NbO3 lead-free nanopowders were synthesized by a modified sol-gel method in different media: gelatin, starch and chitosan, as polymerization and stabilizer agents. The proper temperature needed for calcinating the prepared gel was obtained using thermogravometric analysis (TGA). Structural and optical properties of the prepared powders were investigated and compared using X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-Vis diffused reflectance spectroscopy. The XRD patterns of the synthesized samples confirmed the formation of the orthorhombic structure at 600°C calcination temperature with no remarkable extra peaks. TEM images showed that the morphologies of the particles prepared in the three different media are cubic with the average size of about 69, 34 and 49 nm for gelatin, starch and chitosan, respectively. The value of the energy band gap of the samples was calculated by diffused reflectance spectroscopy, using Kubelka-Munk method. Our results showed that the type of the polymerization agent is important in preparing KNN nanoparticles and affects the structural and optical properties of the synthesized samples.

  2. Effect of synthesis conditions on the nanopowder properties of Ce{sub 0.9}Zr{sub 0.1}O{sub 2}

    SciTech Connect

    Zimicz, M.G.; Fabregas, I.O.; Lamas, D.G.; Larrondo, S.A.

    2011-06-15

    Graphical abstract: . The synthesis of nanocrystalline Ce{sub 0.9}Zr{sub 0.1}O{sub 2} powders via the gel-combustion method, using different fuels, and following either stoichiometric or non-stoichiometric pH-controlled routes is investigated. Research highlights: {yields} All samples exhibited the fluorite-type crystal structure, nanometric average crystallite size and negligible carbon content. {yields} Synthesis conditions strongly affect the average crystallite size, the degree of agglomeration, the specific surface area and the pore volume. {yields} Our results indicate that, by controlling the synthesis conditions it is possible to obtain solids with custom-made morphological properties. -- Abstract: In this work, the synthesis of nanocrystalline Ce{sub 0.9}Zr{sub 0.1}O{sub 2} powders via the gel-combustion method, using different fuels, and following either stoichiometric or non-stoichiometric pH-controlled routes is investigated. The objective is to evaluate the effect of synthesis conditions on the textural and morphological properties, and the crystal structure of the synthesized materials. The solids were characterized by nitrogen physisorption, Scanning Electron Microscopy (SEM), X-ray powder diffraction (XPD), and Carbon-Hydrogen-Nitrogen Elemental Analysis (CHN). All the powders exhibited nanometric crystallite size, fluorite-type structure and negligible carbon content. Synthesis conditions strongly affect the average crystallite size, the degree of agglomeration, the specific surface area and the pore volume. Our results indicate that, by controlling the synthesis conditions it is possible to obtain solids with custom-made morphological properties.

  3. Solid-State Devices.

    ERIC Educational Resources Information Center

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine Corps enlisted personnel with the principles of solid-state devices and their functions. The course contains four study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work…

  4. Solid polymer electrolyte compositions

    DOEpatents

    Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba

    2001-01-01

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  5. Solid-Waste Management

    ERIC Educational Resources Information Center

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  6. Solid State Lighting

    SciTech Connect

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2013-03-30

    The article discusses solid state lighting technologies. This topic was covered in two previous ASHRAE Journal columns (2010). This article covers advancements in technologies and the associated efficacies. The life-cycle, energy savings and market potential of these technologies are addressed as well.

  7. A new solid lubricant

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.; Sliney, H. E.

    1969-01-01

    Friction and wear life studies on burnished films of the compound graphite fluoride have demonstrated its potential as a solid lubricant material. It is effective in moist air, dry air, or in dry argon at temperatures up to approximately 400 degrees C.

  8. Solid fuel oil mixtures

    SciTech Connect

    Rutter, P.R.; Veal, C.J.

    1984-11-27

    Fuel composition comprises 15 to 60% be weight, preferably 40 to 55%, of a friable solid fuel, e.g. coal, a stabilizing additive composition and a fuel oil. The additive comprises the combination of a polymer containing functional groups, e.g., maleinized polybutadiene, and a surfactant. The composition is suitable for use as a liquid fuel for industrial burners.

  9. Solid rocket motors

    NASA Technical Reports Server (NTRS)

    Carpenter, Ronn L.

    1993-01-01

    Structural requirements, materials and, especially, processing are critical issues that will pace the introduction of new types of solid rocket motors. Designers must recognize and understand the drivers associated with each of the following considerations: (1) cost; (2) energy density; (3) long term storage with use on demand; (4) reliability; (5) safety of processing and handling; (6) operability; and (7) environmental acceptance.

  10. Thiokol Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  11. Solid rocket motors

    NASA Astrophysics Data System (ADS)

    Carpenter, Ronn L.

    1993-02-01

    Structural requirements, materials and, especially, processing are critical issues that will pace the introduction of new types of solid rocket motors. Designers must recognize and understand the drivers associated with each of the following considerations: (1) cost; (2) energy density; (3) long term storage with use on demand; (4) reliability; (5) safety of processing and handling; (6) operability; and (7) environmental acceptance.

  12. Solid electrolyte structure

    DOEpatents

    Fraioli, Anthony V.

    1984-01-01

    A solid electrolyte structure for fuel cells and other electrochemical devices providing oxygen ion transfer by a multiplicity of exposed internal surfaces made of a composition containing an oxide of a multivalent transition metal and forming small pore-like passages sized to permit oxygen ion transfer while limiting the transfer of oxygen gas.

  13. Silicone containing solid propellant

    NASA Technical Reports Server (NTRS)

    Ramohalli, K. N. R. (Inventor)

    1980-01-01

    The addition of a small amount, for example 1% by weight, of a liquid silicone oil to a metal containing solid rocket propellant provides a significant reduction in heat transfer to the inert nozzle walls. Metal oxide slag collection and blockage of the nozzle are eliminated and the burning rate is increased by about 5% to 10% thus improving ballistic performance.

  14. General view of the Solid Rocket Booster's (SRB) Solid Rocket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Solid Rocket Booster's (SRB) Solid Rocket Motor Segments in the Surge Building of the Rotation Processing and Surge Facility at Kennedy Space Center awaiting transfer to the Vehicle Assembly Building and subsequent mounting and assembly on the Mobile Launch Platform. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  15. Solid Phase Characterization of Solids Recovered from Failed Sluicer Arm

    SciTech Connect

    Cooke, Gary A.

    2015-03-09

    The Enclosure to this memo discusses the solid phase characterization of a solid sample that was retrieved from the single-shell Tank 241-C-111 extended reach sluicer #2. This sluicer, removed from riser #3 on September 25, 2014, was found to have approximately 0.4 gallons of solid tank waste adhering to the nozzle area.

  16. How to Reduce Solid Waste.

    ERIC Educational Resources Information Center

    Martins, George; Clapp, Leallyn B.

    1974-01-01

    Discusses the problem of solid waste disposal in the United States, suggests ways in which solid wastes might be reduced, and proposes a number of related topics for student debate in classes or in science clubs. (JR)

  17. Ion-Solid Interactions

    NASA Astrophysics Data System (ADS)

    Nastasi, Michael; Mayer, James; Hirvonen, James K.

    2004-12-01

    Modern technology depends on materials with precisely controlled properties. Ion beams are an excellent way to achieve controlled modification of surface and near-surface regions. In every integrated circuit production line, for example, there are ion implantation systems. In addition to integrated circuit technology, ion beams can modify the mechanical, tribological, and chemical properties of metal, intermetallic, and ceramic materials without altering their bulk properties. Ion-solid interactions are the foundation that underlies the broad application of ion beams to the modification of materials. This text covers the fundamentals and applications of ion-solid interactions, and is aimed at graduate students and researchers interested in electronic devices, surface engineering, reactor and nuclear engineering, and materials science issues associated with metastable phase synthesis.

  18. Edge remap for solids

    SciTech Connect

    Kamm, James R.; Love, Edward; Robinson, Allen C.; Young, Joseph G.; Ridzal, Denis

    2013-12-01

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.

  19. Solid polymer membrane program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are presented for a solid polymer electrolyte fuel cell development program. Failure mechanism was identified and resolution of the mechanism experienced in small stack testing was demonstrated. The effect included laboratory analysis and evaluation of a matrix of configurations and operational variables for effects on the degree of hydrogen fluoride released from the cell and on the degree of blistering/delamination occurring in the reactant inlet areas of the cell and to correlate these conditions with cell life capabilities. The laboratory evaluation tests were run at conditions intended to accelerate the degradation of the solid polymer electrolyte in order to obtain relative evaluations as quick as possible. Evaluation of the resolutions for the identified failure mechanism in space shuttle configuration cell assemblies was achieved with the fabrication and life testing of two small stack buildups of four cell assemblies and eight cells each.

  20. Solid State Laser

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Titan-CW Ti:sapphire (titanium-doped sapphire) tunable laser is an innovation in solid-state laser technology jointly developed by the Research and Solid State Laser Divisions of Schwartz Electro-optics, Inc. (SEO). SEO is producing the laser for the commercial market, an outgrowth of a program sponsored by Langley Research Center to develop Ti:sapphire technology for space use. SEO's Titan-CW series of Ti:sapphire tunable lasers have applicability in analytical equipment designed for qualitative analysis of carbohydrates and proteins, structural analysis of water, starch/sugar analyses, and measurements of salt in meat. Further applications are expected in semiconductor manufacture, in medicine for diagnosis and therapy, and in biochemistry.

  1. Solid state electrochemical current source

    DOEpatents

    Potanin, Alexander Arkadyevich; Vedeneev, Nikolai Ivanovich

    2002-04-30

    A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

  2. Tunable solid state lasers

    SciTech Connect

    Hammerling, R.; Budgor, A.B.; Pinto, A.

    1985-01-01

    This book presents the papers given at a conference on solid state lasers. Topics considered at the conference included transition-metal-doped lasers, line-narrowed alexandrite lasers, NASA specification, meteorological lidars, laser materials spectroscopy, laser pumped single pass gain, vibronic laser materials growth, crystal growth methods, vibronic laser theory, cross-fertilization through interdisciplinary fields, and laser action of color centers in diamonds.

  3. Compressibility of solids

    NASA Technical Reports Server (NTRS)

    Vinet, P.; Ferrante, J.; Rose, J. H.; Smith, J. R.

    1987-01-01

    A universal form is proposed for the equation of state (EOS) of solids. Good agreement is found for a variety of test data. The form of the EOS is used to suggest a method of data analysis, which is applied to materials of geophysical interest. The isothermal bulk modulus is discussed as a function of the volume and of the pressure. The isothermal compression curves for materials of geophysical interest are examined.

  4. Solid phase extraction membrane

    DOEpatents

    Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  5. Solar solids reactor

    DOEpatents

    Yudow, B.D.

    1986-02-24

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  6. Solar solids reactor

    DOEpatents

    Yudow, Bernard D.

    1987-01-01

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  7. SOLID WASTE STUDY

    SciTech Connect

    PAUL G. ORTIZ - COLEMAN RESEARCH CORP /COMPA INDUSTRIES

    1995-08-01

    The purpose of this document is to study the solid waste issues brought about by a Type C Investigation; ``Disposal of Inappropriate Material in the Los Alamos County Landfill'' (May 28, 1993). The study was completed in August 1995 by Coleman Research Corporation, under subcontract number 405810005-Y for Los Alamos National Laboratory (LANL). The study confirmed the issues identified in the Type C investigation, and also ascertained further issues or problems. During the course of this study two incidents involving hazardous waste resulted in the inappropriate disposal of the waste. An accidental spill, on June 8, 1995, at one of Laboratory buildings was not handled correctly, and ended up in the LAC Landfill. Hazardous waste was disposed of in a solid waste container and sent to the Los Alamos County Landfill. An attempt to locate the hazardous waste at the LAC Landfill was not successful. The second incident involving hazardous waste was discovered by the FSS-8, during a random dumpster surveillance. An interim dumpster program managed by FSS-8 discovered hazardous waste and copper chips in the solid waste, on August 9, 1995. The hazardous waste and copper chips would have been transported to the LAC Landfill if the audit team had not brought the problem to the awareness of the facility waste management personnel.

  8. Solid propellant environmental issues

    SciTech Connect

    Le, M.D.

    1998-07-01

    The objective of the Solid Propellant Environmental Issues (SPEI) project is to demonstrate environmentally acceptable technologies that will enhance the continued production of solid rocket motors (SRMs) by complying with current and anticipated environmental regulations. Phase 1 of the project identifies current and anticipated environmental regulations that may affect SRMs manufacturing in the future and identify emerging process technologies which comply with these regulations. Phase 2 of the project established a baseline database by fabricating a 363 kg motor using the current manufacturing process. In Phase 3, environmentally acceptable process technologies were evaluated, ranked, and selected for demonstration using criteria developed by the team. The results for Phase 1--3 have previously been presented. This paper will present data obtained to date on Phase 4. In Phase 4, the alternate process technologies were evaluated for compatibility, cleaning effectiveness, and waste minimization/pollution prevention. The best performing candidate for each application area was selected for demonstration. The selected process technologies will be inserted into the baseline manufacturing process from Phase 2. The new manufacturing process will be demonstrated and evaluated through the scale-up and fabrication of two 363 kg solid rocket motors.

  9. Packaging of solid state devices

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  10. Illinois solid waste management legislation

    SciTech Connect

    1999-07-01

    Contents include: Degradable Plastic Act; Energy Assistance Act of 1989; Hazardous and Solid Waste Recycling and Treatment Act; Household Hazardous Waste Collection Program Act; Illinois Emergency Planning and Community Right to Know Act; Illinois Environmental Facilities Financing Act; Illinois Procurement Code; Illinois Solid Waste Management Act; Intergovernmental Cooperation Act; Junkyard Act; Litter Control Act; Local Solid Waste Disposal Act; Metro East Solid Waste Disposal and Energy Producing Service Act; Recycled Newsprint Use Act; Responsible Property Transfer Act of 1988; Solid Waste Disposal District Act; Solid Waste Planning and Recycling Act; Solid Waste Site Operator Certification Law; Township Refuse Collection and Disposal Act; Toxic Pollution Prevention Act; Used Motor Oil Recycling Act; Waste Oil Recovery Act; and Water Supply, Drainage and Flood Control Act.

  11. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  12. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  13. Chemically Layered Porous Solids

    NASA Technical Reports Server (NTRS)

    Koontz, Steve

    1991-01-01

    Aerogels and other porous solids in which surfaces of pores have chemical properties varying with depth below macroscopic surfaces prepared by sequences of chemical treatments. Porous glass or silica bead treated to make two depth zones having different chemical properties. Beads dropped along tube filled with flowing gas containing atomic oxygen, generated in microwave discharge. General class of materials treatable include oxides of aluminum, silicon, zirconium, tin, titanium, and nickel, and mixtures of these oxides. Potential uses of treated materials include chromatographic separations, membrane separations, controlled releases of chemicals, and catalysis.

  14. Solid state optical microscope

    DOEpatents

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  15. Solid state optical microscope

    DOEpatents

    Young, I.T.

    1983-08-09

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

  16. Solid Earth: The priorities

    NASA Astrophysics Data System (ADS)

    Paquet, P.

    1991-10-01

    The European Space Agency's strategy concerning the solid Earth program is reviewed. Improvement of current knowledge of the global geopotential fields, both gravity and magnetic, was stressed as the highest priority. It was agreed that the objectives and goals of the planned Aristoteles mission correspond to this priority, and the need to realize this part of the program was stated. The interdisciplinary links of the program were identified, and it was decided that this program could make substantial contributions to research of oceans, climate and global change, atmosphere, ice and land surfaces.

  17. Diffusion from solid cylinders

    SciTech Connect

    Nestor, C.W. Jr.

    1980-01-01

    The problem considered is the diffusion of material from a solid cylinder initially containng a uniform concentration and immersed in a well-stirred bath which maintains the external concentration at zero. The Fourier-Bessel series form of the fraction of the original material removed from the cylinder as a function of time converges very slowly for small time. An alternate form was obtained, which converges reasonably rapidly for small time. The convergence acceleration method of P. Wynn was also used to provide an efficient method for computation. Numerical examples and program listings are included.

  18. Solid electrolyte battery

    SciTech Connect

    Cipriano, R.A.; Snelgrove, R.V.; McCullough, F.P. Jr.

    1990-08-28

    This patent describes a primary rechargeable electrical storage device, a housing, at least one cell position in the housing, each cell comprising an anode consisting of a metal selected from the group consisting of alkaline earth metal, alkaline earth metal alloy, alkali metal, alkali metal alloy and alkali metal eutectic mixtures, a separator surrounding the anode. The separator being capable of transporting or passing ionic species and electrically isolating the anode, a cathode, and an electrolyte associated with the cathode. The electrolyte comprising a membrane of a non-porous solid polymeric material containing a sulfonic acid group.

  19. WET SOLIDS FLOW ENHANCEMENT

    SciTech Connect

    Hugo S. Caram; Natalie Foster

    1997-03-31

    The objective was to visualize the flow of granular materials in flat bottomed silo. This was done by for dry materials introducing mustard seeds and poppy seeds as tracer particles and imaging them using Nuclear Magnetic Resonance. The region sampled was a cylinder 25 mm in diameter and 40 mm in length. Eight slices containing 128*128 to 256*256 pixels were generated for each image. The size of the silo was limited by the size of the high resolution NMR imager available. Cross-sections of 150mm flat bottomed silos, with the tracer layers immobilized by a gel, showed similar qualitative patterns for both dry and wet granular solids.

  20. Solid state devices

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Solid State Device research program is directed toward developing innovative devices for space remote and in-situ sensing, and for data processing. Innovative devices can result from the standard structures in innovative materials such as low and high temperature superconductors, strained layer superlattices, or diamond films. Innovative devices can also result from innovative structures achieved using electron tunneling or nanolithography in standard materials. A final step is to use both innovative structures and innovative materials. A new area of emphasis is the miniaturization of sensors and instruments molded by using the techniques of electronic device fabrication to micromachine silicon into micromechanical and electromechanical sensors and actuators.

  1. Solids flow mapping in gas-solid risers

    NASA Astrophysics Data System (ADS)

    Bhusarapu, Satish Babu

    Gas-solid risers are extensively used in many industrial processes for gas-solid reactions (e.g. coal combustion and gasification) and for solid catalyzed gas phase reactions (e.g. fluid catalytic cracking, butane oxidation to maleic anhydride). Ab initio prediction of the complex multiphase fluid dynamics in risers is not yet possible, which makes reactor modeling difficult. In particular, quantification of solids flow and mixing is important. Almost all the experimental techniques used to characterize solids flow lead to appreciable errors in measured variables in large scale, high mass flux systems. In addition, none of the experimental techniques provide all the relevant data required to develop a satisfactory solids flow model. In this study, non-invasive Computer Automated Radioactive Particle Tracking (CARPT) is employed to visualize and quantify the solids dynamics and mixing in the gas-solid riser of a Circulating Fluidized Bed (CFB). A single radioactive tracer particle is monitored during its multiple visits to the riser and with an assumption of ergodicity, the following flow parameters are estimated: (a) Overall solids mass flux in the CFB loop. (b) Solids residence time distribution in the riser and down-comer. (c) Lagrangian and Eulerian solids velocity fields in a fully-developed section of the riser. This includes velocity fluctuations and components of the diffusivity tensor. The existing CARPT technique is extended to large scale systems. A new algorithm, based on a cross-correlation search, is developed for position rendition from CARPT data. Two dimensional solids holdup profiles are estimated using gamma-ray computed tomography. The image quality from the tomography data is improved by implementing an alternating minimization algorithm. This work establishes for the first time a reliable database for local solids dynamic quantities such as time-averaged velocities, Reynolds stresses, eddy diffusivities and turbulent kinetic energy. In addition

  2. WET SOLIDS FLOW ENHANCEMENT

    SciTech Connect

    Hugo S. Caram; Natalie Foster

    1999-03-30

    The elastic modulus E of wet granular material was found to be of the order of 0.25 MPa, this value does not compare well with the value predicted for a cubic array of spheres under Hertzian contact were the predicted values were in the order of 250 MPa . The strain-stress behavior of a wet granular media was measured using a split Parfitt tensile tester. In all cases the stress increases linearly with distance until the maximum uniaxial tensile stress is reached. The stress then decreases exponentially with distance after this maximum is reached. The linear region indicates that wet solids behave elastically for stresses below the tensile stresses and can store significant elastic energy. The elastic deformation cannot be explained by analyzing the behavior of individual capillary bridges and requires accounting for the deformation of the solids particles. The elastic modulus of the wet granular material remains unexplained. New information was found to support the experimental finding and a first theory to explain the very small elastic modulus is presented. A new model based on the used of the finite element method is being developed.

  3. Solid fuel burning stove

    SciTech Connect

    Good, L.D.

    1982-07-13

    A solid fuel burning stove includes a firebox having an insulated bottom chamber in which fuel is burned. The bottom chamber includes an insulated bottom surface and walls which provides for heat retention when fuel is burn therein thereby creating high temperatures. The bottom chamber of the firebox is divided from a top chamber by a horizontally extending baffle which directs flow of exhaust gases from the bottom to the top of the firebox. The exhaust gases are burned in the top portion of the firebox by means of the heat generated within the lower chamber and the introduction of fresh combustion air. This fresh combustion air is drawn in through an orificed pipe extending along the length of the firebox. After the gases are burned in the top portion of the stove, they are communicated to a heat saver including an inverted v-shaped flow diverter which reduces the velocity of the exiting gases and provides for greater recovery of heat therefrom. The stove in accordance with the invention provides for a two-stage burning process wherein solid fuel is burned in the first stage and the volatile gases released by the fuel are burned in the second stage. In this way, the fuel is consumed in a most efficient manner.

  4. Wetting of Porous Solids.

    PubMed

    Patkar, Saket; Chaudhuri, Parag

    2013-01-10

    This paper presents a simple, three stage method to simulate the mechanics of wetting of porous solid objects, like sponges and cloth, when they interact with a fluid. In the first stage, we model the absorption of fluid by the object when it comes in contact with the fluid. In the second stage, we model the transport of absorbed fluid inside the object, due to diffusion, as a flow in a deforming, unstructured mesh. The fluid diffuses within the object depending on saturation of its various parts and other body forces. Finally, in the third stage, over-saturated parts of the object shed extra fluid by dripping. The simulation model is motivated by the physics of imbibition of fluids into porous solids in the presence of gravity. It is phenomenologically capable of simulating wicking and imbibition, dripping, surface flows over wet media, material weakening and volume expansion due to wetting. The model is inherently mass conserving and works for both thin 2D objects like cloth and for 3D volumetric objects like sponges. It is also designed to be computationally efficient and can be easily added to existing cloth, soft body and fluid simulation pipelines. PMID:23319518

  5. Wetting of porous solids.

    PubMed

    Patkar, Saket; Chaudhuri, Parag

    2013-09-01

    This paper presents a simple, three stage method to simulate the mechanics of wetting of porous solid objects, like sponges and cloth, when they interact with a fluid. In the first stage, we model the absorption of fluid by the object when it comes in contact with the fluid. In the second stage, we model the transport of absorbed fluid inside the object, due to diffusion, as a flow in a deforming, unstructured mesh. The fluid diffuses within the object depending on saturation of its various parts and other body forces. Finally, in the third stage, oversaturated parts of the object shed extra fluid by dripping. The simulation model is motivated by the physics of imbibition of fluids into porous solids in the presence of gravity. It is phenomenologically capable of simulating wicking and imbibition, dripping, surface flows over wet media, material weakening, and volume expansion due to wetting. The model is inherently mass conserving and works for both thin 2D objects like cloth and for 3D volumetric objects like sponges. It is also designed to be computationally efficient and can be easily added to existing cloth, soft body, and fluid simulation pipelines. PMID:23846102

  6. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  7. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  8. Position sensitive solid state detectors

    NASA Astrophysics Data System (ADS)

    Schnatterly, S. E.; Husk, D.

    1986-05-01

    Solid state detectors have been used for years as high quantum efficiency detectors for visible light. In this paper the use of PDA and CCD, solid state detectors, in the X-ray region will be discussed. In particular examples of data in the soft X-ray region are presented. Finally the use of phosphor coatings to enhance the sensitivity of solid state detectors is described.

  9. Solid Lubrication Fundamentals and Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2001-01-01

    Solid Lubrication Fundamentals and Applications description of the adhesion, friction, abrasion, and wear behavior of solid film lubricants and related tribological materials, including diamond and diamond-like solid films. The book details the properties of solid surfaces, clean surfaces, and contaminated surfaces as well as discussing the structures and mechanical properties of natural and synthetic diamonds; chemical-vapor-deposited diamond film; surface design and engineering toward wear-resistant, self-lubricating diamond films and coatings. The author provides selection and design criteria as well as applications for synthetic and natural coatings in the commercial, industrial and aerospace industries..

  10. Process for purification of solids

    NASA Technical Reports Server (NTRS)

    Herzer, H.; Rath, H. J.; Schmidt, D.

    1981-01-01

    A process for purifying solids, especially silicon, by melting and subsequent resolidification, is described. Silicon used in solar cell manufacturing is processed more efficiently and cost effectively.

  11. Solid state television camera

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, fabrication, and tests of a solid state television camera using a new charge-coupled imaging device are reported. An RCA charge-coupled device arranged in a 512 by 320 format and directly compatible with EIA format standards was the sensor selected. This is a three-phase, sealed surface-channel array that has 163,840 sensor elements, which employs a vertical frame transfer system for image readout. Included are test results of the complete camera system, circuit description and changes to such circuits as a result of integration and test, maintenance and operation section, recommendations to improve the camera system, and a complete set of electrical and mechanical drawing sketches.

  12. Solids feeder apparatus

    DOEpatents

    Bell, Jr., Harold S.

    1979-01-01

    This invention sets forth a double-acting piston, which carries a floating piston, and which is reciprocated in a housing, for feeding coal to a high pressure gasifier system. The housing has a plurality of solids (for instance: coal) in-feeding ports and a single discharge port, the latter port being in communication with a high pressure gasifier system. The double-acting piston sequentially and individually communicates each of the in-feeding ports with the discharge port. The floating piston both seals off the discharge port while each in-feeding port is receiving coal or the like, to prevent undue escape of gas from the gasifier system, and translates in the housing, following a discharge of coal or the like into the discharge port, to return gas which has been admitted into the housing back into the gasifier system.

  13. Solid state power controllers

    NASA Technical Reports Server (NTRS)

    Gibbs, R. S.

    1973-01-01

    The rationale, analysis, design, breadboarding and testing of the incremental functional requirements are reported that led to the development of prototype 1 and 5 Amp dc and 1 Amp ac solid state power controllers (SSPC's). The SSPC's are to be considered for use as a replacement of electro-mechanical relays and circuit breakers in future spacecraft and aircraft. They satisfy the combined function of both the relay and circuit breaker and can be remotely controlled by small signals, typically 10 mA, 5 to 28 Vdc. They have the advantage over conventional relay/circuit breaker systems in that they can be located near utilization equipment and the primary ac or dc bus. The low level control, trip indication and status signals can be circuited by small guage wire for control, computer interface, logic, electrical multiplexing, unboard testing, and power management and distribution purposes. This results in increased system versatility at appreciable weight saving and increased reliability.

  14. Solid lubrication design methodology

    NASA Technical Reports Server (NTRS)

    Aggarwal, B. B.; Yonushonis, T. M.; Bovenkerk, R. L.

    1984-01-01

    A single element traction rig was used to measure the traction forces at the contact of a ball against a flat disc at room temperature under combined rolling and sliding. The load and speed conditions were selected to match those anticipated for bearing applications in adiabatic diesel engines. The test program showed that the magnitude of traction forces were almost the same for all the lubricants tested; a lubricant should, therefore, be selected on the basis of its ability to prevent wear of the contact surfaces. Traction vs. slide/roll ratio curves were similar to those for liquid lubricants but the traction forces were an order of magnitude higher. The test data was used to derive equations to predict traction force as a function of contact stress and rolling speed. Qualitative design guidelines for solid lubricated concentrated contacts are proposed.

  15. Solid state rapid thermocycling

    SciTech Connect

    Beer, Neil Reginald; Spadaccini, Christopher

    2014-05-13

    The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

  16. ISRO's solid rocket motors

    NASA Astrophysics Data System (ADS)

    Nagappa, R.; Kurup, M. R.; Muthunayagam, A. E.

    1989-08-01

    Solid rocket motors have been the mainstay of ISRO's sounding rockets and the first generation satellite launch vehicles. For the new launch vehicle under development also, the solid rocket motors contribute significantly to the vehicle's total propulsive power. The rocket motors in use and under development have been developed for a variety of applications and range in size from 30 mm dia employing 450 g of solid propellant—employed for providing a spin to the apogee motors—to the giant 2.8 m dia motor employing nearly 130 tonnes of solid propellant. The initial development, undertaken in 1967 was of small calibre motor of 75 mm dia using a double base charge. The development was essentially to understand the technological elements. Extruded aluminium tubes were used as a rocket motor casing. The fore and aft closures were machined from aluminium rods. The grain was a seven-pointed star with an enlargement of the port at the aft end and was charged into the chamber using a polyester resin system. The nozzle was a metallic heat sink type with graphite throat insert. The motor was ignited with a black powder charge and fired for 2.0 s. Subsequent to this, further developmental activities were undertaken using PVC plastisol based propellants. A class of sounding rockets ranging from 125 to 560 mm calibre were realized. These rocket motors employed improved designs and had delivered lsp ranging from 2060 to 2256 Ns/kg. Case bonding could not be adopted due to the higher cure temperatures of the plastisol propellants but improvements were made in the grain charging techniques and in the design of the igniters and the nozzle. Ablative nozzles based on asbestos phenolic and silica phenolic with graphite inserts were used. For the larger calibre rocket motors, the lsp could be improved by metallic additives. In the early 1970s designs were evolved for larger and more efficient motors. A series of 4 motors for the country's first satellite launch vehicle SLV-3 were

  17. Solid state electrolyte systems

    SciTech Connect

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R.

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  18. Solid-solid phase transitions via melting in metals.

    PubMed

    Pogatscher, S; Leutenegger, D; Schawe, J E K; Uggowitzer, P J; Löffler, J F

    2016-04-22

    Observing solid-solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid-solid transition via the formation of a metastable liquid in a 'real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory.

  19. Solid-solid phase transitions via melting in metals

    NASA Astrophysics Data System (ADS)

    Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F.

    2016-04-01

    Observing solid-solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid-solid transition via the formation of a metastable liquid in a `real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory.

  20. From Solid Waste to Energy.

    ERIC Educational Resources Information Center

    Wisely, F. E.; And Others

    A project designed to convert solid waste to energy is explained in this paper. In April, 1972, an investor-owned utility began to burn municipal solid waste as fuel for the direct production of electric power. This unique venture was a cooperative effort between the City of St. Louis, Missouri, and the Union Electric Company, with financial…

  1. Scalability study of solid xenon

    SciTech Connect

    Yoo, J.; Cease, H.; Jaskierny, W. F.; Markley, D.; Pahlka, R. B.; Balakishiyeva, D.; Saab, T.; Filipenko, M.

    2015-04-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.

  2. Evaluating Solid-Lubricant Films

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1988-01-01

    Report describes experimental techniques for measuring properties of solid-lubricant films. Discusses experimental parameters. Reviews basic pin-on-disk configurations and methods of preparing disks and applying solid lubricants. Techniques for constant-temperature testing, low-contact-stress testing, and temperature-versus-time testing presented. Suggests methods of measuring pin-wear volume and recommends ways of presenting data.

  3. Nanoparticles: Neither solid nor liquid

    NASA Astrophysics Data System (ADS)

    Aguado, Andrés

    2016-09-01

    Nanoparticles of gallium deposited on a sapphire substrate, which are now shown to remain stable in a state of solid/liquid coexistence across a temperature window wider than 600 K, may prove useful for studying the properties of solid/liquid interfaces and in plasmonic or catalytic applications.

  4. Application of Organic Solid Electrolytes

    NASA Technical Reports Server (NTRS)

    Sekido, S.

    1982-01-01

    If ions are considered to be solid material which transport electric charges, polymer materials can then be considered as organic solid electrolytes. The role of these electrolytes is discussed for (1) ion concentration sensors; (2) batteries using lithium as the cathode and a charge complex of organic material and iodine in the anode; and (3) elements applying electrical double layer capability.

  5. Scalability study of solid xenon

    NASA Astrophysics Data System (ADS)

    Yoo, J.; Cease, H.; Jaskierny, W. F.; Markley, D.; Pahlka, R. B.; Balakishiyeva, D.; Saab, T.; Filipenko, M.

    2015-04-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified Bridgeman's technique reproduces a large scale optically transparent solid xenon.

  6. Electrospray Ionization on Solid Substrates

    PubMed Central

    So, Pui-Kin; Hu, Bin; Yao, Zhong-Ping

    2014-01-01

    Development of electrospray ionization on solid substrates (solid-substrate ESI) avoids the clogging problem encountered in conventional capillary-based ESI, allows more convenient sampling and permits new applications. So far, solid-substrate ESI with various materials, e.g., metals, paper, wood, fibers and biological tissue, has been developed, and applications ranging from analysis of pure compounds to complex mixtures as well as in vivo study were demonstrated. Particularly, the capability of solid-substrate ESI in direct analysis of complex samples, e.g., biological fluids and foods, has significantly facilitated mass spectrometric analysis in real-life applications and led to increasingly important roles of these techniques nowadays. In this review, various solid-substrate ESI techniques and their applications are summarized and the prospects in this field are discussed. PMID:26819900

  7. Valve for controlling solids flow

    DOEpatents

    Staiger, M. Daniel

    1985-01-01

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and apparatus for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  8. Valve for controlling solids flow

    DOEpatents

    Staiger, M.D.

    1982-09-29

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and means for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  9. Solution-solid-solid mechanism: superionic conductors catalyze nanowire growth.

    PubMed

    Wang, Junli; Chen, Kangmin; Gong, Ming; Xu, Bin; Yang, Qing

    2013-09-11

    The catalytic mechanism offers an efficient tool to produce crystalline semiconductor nanowires, in which the choice, state, and structure of catalysts are active research issues of much interest. Here we report a novel solution-solid-solid (SSS) mechanism for nanowire growth catalyzed by solid-phase superionic conductor nanocrystals in low-temperature solution. The preparation of Ag2Se-catalyzed ZnSe nanowires at 100-210 °C is exampled to elucidate the SSS model, which can be extendable to grow other II-VI semiconductor (e.g., CdSe, ZnS, and CdS) nanowires by the catalysis of nanoscale superionic-phase silver or copper(I) chalcogenides (Ag2Se, Ag2S, and Cu2S). The exceptional catalytic ability of these superionic conductors originates from their structure characteristics, known for high-density vacancies and fast mobility of silver or copper(I) cations in the rigid sublattice of Se(2-) or S(2-) ions. Insights into the SSS mechanism are provided based on the formation of solid solution and the solid-state ion diffusion/transport at solid-solid interface between catalyst and nanowire. PMID:23919513

  10. A comparison of observables for solid-solid phase transitions

    SciTech Connect

    Smilowitz, Laura B; Henson, Bryan F; Romero, Jerry J

    2009-01-01

    The study of solid-solid phase transformations is hindered by the difficulty of finding a volumetric probe to use as a progress variable. Solids are typically optically opaque and heterogeneous. Over the past several years, second harmonic generation (SHG) has been used as a kinetic probe for a solid-solid phase transition in which the initial and final phases have different symmetries. Bulk generation of SHG is allowed by symmetry only in noncentrosymmetric crystallographic space groups. For the organic energetic nitramine octahydro-1,3 ,5,7 -tetranitro-1,3 ,5,7 -tatrazocine (HMX), the beta phase is centro symmetric (space group P2{sub 1}/c) and the delta phase iS noncentrosymmetric (space group P6{sub 1}22) making SHG an extremely sensitive, essentially zero background probe of the phase change progress. We have used SHG as a tool to follow the progress of the transformation from beta to delta phase during the solid-solid transformation. However, kinetic models of the transformation derived using different observables from several other groups have differed, showing later onset for the phase change and faster progression to completion. In this work, we have intercompared several techniques to understand these differences. The three techniques discussed are second harmonic generation, Raman spectroscopy, and differential scanning calorimetry (DSC). The progress of the beta to delta phase transition in HMX observed with each of these different probes will be discussed and advantages and disadvantages of each technique described. This paper compares several different observables for use in measuring the kinetics of solid-solid phase transitions. Relative advantages and disadvantages for each technique are described and a direct comparison of results is made for the beta to delta polymorphic phase transition of the energetic nitramine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tatrazocine.

  11. Solid Xenon Project

    NASA Astrophysics Data System (ADS)

    Balakishiyeva, Durdana N.; Mahapatra, Rupak; Saab, Tarek; Yoo, Jonghee

    2010-08-01

    Crystals like Germanium and Silicon need to be grown in specialized facilities which is time and money costly. It takes many runs to test the detector once it's manufactured and mishaps are very probable. It is of a great challenge to grow big germanium crystals and that's why stacking them up in a tower is the only way at the moment to increase testing mass. Liquid Noble gas experiments experiencing contamination problems, their predicted energy resolution at 10 keV and lower energy range is not as good as predicted. Every experiment is targeting one specific purpose, looking for one thing. Why not to design an experiment that is diverse and build a detector that can search for Dark Matter, Solar Axions, Neutrinoless Double Beta decay, etc. Solid Xenon detector is such detector. We designed a simple Xenon crystal growing chamber that was put together at Fermi National Accelerator Laboratory. The first phase of this experiment was to demonstrate that a good, crack free Xenon crystal can be grown (regardless of many failed attempts by various groups) and our first goal, 1 kg crystal, was successful.

  12. Gasification of carbonaceous solids

    DOEpatents

    Coates, Ralph L.

    1976-10-26

    A process and apparatus for converting coal and other carbonaceous solids to an intermediate heating value fuel gas or to a synthesis gas. A stream of entrained pulverized coal is fed into the combustion stage of a three-stage gasifier along with a mixture of oxygen and steam at selected pressure and temperature. The products of the combustion stage pass into the second or quench stage where they are partially cooled and further reacted with water and/or steam. Ash is solidified into small particles and the formation of soot is suppressed by water/steam injections in the quench stage. The design of the quench stage prevents slag from solidifying on the walls. The products from the quench stage pass directly into a heat recovery stage where the products pass through the tube, or tubes, of a single-pass, shell and tube heat exchanger and steam is generated on the shell side and utilized for steam feed requirements of the process.

  13. Electrons in Solids^*

    NASA Astrophysics Data System (ADS)

    Watson, R. E.

    1997-03-01

    The first one-electron theory of electrons in solids followed J.J. Thompson's discovery by a few years and had benefit of neither quantum mechanics nor Fermi-Dirac statistics. After consideration of the early models we will inspect, in hindsight, an observation made by Wigner and Seitz. In 1953, when we had our first digital computers, they suggested ``if one had a great calculating machine'' it could be used to solve the Schroedinger equation and thereby obtain all interesting physical quantities. They continue by saying ``Presumably the results would agree with the experimentally determined quantities and nothing vastly new would be learned....It would be preferable instead to have a vivid picture....a simple description of the essence of the factors which determine...'' the behavior of atoms. Despite many computational successes we do not yet have that great calculating machine but we have gained insights from our imperfect calculations and there has been room for simple models. ^* This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-76CH00016.

  14. Solid fuel heating device

    SciTech Connect

    Rice, J.S.; Eavenson, B.; Eavenson, G.; Bryson, T.A.

    1986-08-26

    A heating device is described which consists of: a forced air stove adapted to burn solid fuel; the stove being at least partially made of a double-wall construction forming an air space so that air may be forced along the hot portions of the stove; a metal box defining a partial parallel piped shaped enclosure, the front of the box being open for receiving the stove, with the front of the stove substantially filling the front open space of the box; the top of the box having a hole therein for venting smoke and gases from the stove; a layer of thermal insulation attached to and covering substantially the entire inside surface of the box; the stove being removably positioned within the box so as to leave a second air space at least between the thermal insulation on the respective side, top and rear walls of the box, and the outer side, top and rear walls of the stove, there being no substantial heat conducting connecting elements between the insulation and the walls of the stove.

  15. Solid state power controllers

    NASA Technical Reports Server (NTRS)

    Gibbs, R. S.

    1974-01-01

    Solid state power controllers (SSPC's) are to be considered for use as replacements of electromechanical relays and circuit breakers in future spacecraft and aircraft. They satisfy the combined function of both the relay and circuit breaker and can be remotely controlled by small signals, typically 10 mA, 5 to 28 v(dc). They have the advantage over conventional relay/circuit breaker systems in that they can be located near the utilization equipment and the primary ac or dc bus. The low level control, trip indication and status signals can be circuited by small gauge wire for control, computer interface, logic, electrical multiplexing, onboard testing, power management, and distribution purposes. This results in increased system versatility at appreciable weight saving and increased reliability. Conventional systems require the heavy gage load wiring and the control wiring to be routed from the bus to the load to other remote relay contacts, switches, sensors, etc. and to the circuit breaker located in the flight engineer's compartment for purposes of manual reset.

  16. Electrical Breakdown in Solids

    NASA Astrophysics Data System (ADS)

    Hjalmarson, Harold; Zutavern, Fred; Kambour, Kenneth; Moore, Chris; Mar, Alan

    During electron breakdown of a solid subjected to a large electric field, impact ionization causes growth of an electron-hole plasma. This growth process is opposed by Auger recombination of the electron-hole pairs. In our work, such breakdown is investigated by obtaining steady-state solutions to the Boltzmann equation. In these calculations, the carriers are heated by the electric field and cooled by phonon emission. Our results imply that breakdown may lead to high carrier-density current filaments. Conductive filaments have been observed in optically-triggered, high-power photoconductive semiconductor switch (PCSS) devices being developed at Sandia Labs. The relationship between the steady-state computed solutions to the observed filaments will be discussed in the presentation. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  17. A Solid State Pyranometer

    NASA Astrophysics Data System (ADS)

    Dumitrescu, Anca Laura; Paulescu, Marius; Ercuta, Aurel

    2015-12-01

    The construction of a solid state device-based pyranometer designated to broadband irradiance measurements is presented in this paper. The device is built on the physical basis that the temperature difference between two bodies of identical shape and external surface area, identically exposed to the incident radiation, but having different absorption and heat transfer coefficients (e.g. one body is painted white and the other is painted black), is proportional to the incident irradiance. This proportionality may be put in evidence if the two bodies consisting of identical arrays of correspondingly painted semiconductor diodes, due to the thermal behaviour of their p-n junction. It is theoretically predicted and experimentally confirmed that the voltage drop across a diode passed through a constant forward current linearly decreases with the temperature of the junction. In other words, a signal proportional to the irradiance of the light source may be obtained via conventional analog electronics. The calibration of the apparatus, as performed by means of a professional device (LP PYRA 03), indicates a good linearity.

  18. Energy properties of solid fossil fuels and solid biofuels

    NASA Astrophysics Data System (ADS)

    Holubcik, Michal; Kolkova, Zuzana; Jandacka, Jozef

    2016-06-01

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  19. Optical constants of solid methane

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Thompson, W. R.; Sagan, C.; Arakawa, E. T.; Bruel, C.; Judish, J. P.; Khanna, R. K.; Pollack, J. B.

    1989-01-01

    Methane is the most abundant simple organic molecule in the outer solar system bodies. In addition to being a gaseous constituent of the atmospheres of the Jovian planets and Titan, it is present in the solid form as a constituent of icy surfaces such as those of Triton and Pluto, and as cloud condensate in the atmospheres of Titan, Uranus, and Neptune. It is expected in the liquid form as a constituent of the ocean of Titan. Cometary ices also contain solid methane. The optical constants for both solid and liquid phases of CH4 for a wide temperature range are needed for radiative transfer calculations, for studies of reflection from surfaces, and for modeling of emission in the far infrared and microwave regions. The astronomically important visual to near infrared measurements of solid methane optical constants are conspicuously absent from the literature. Preliminary results are presented of the optical constants of solid methane for the 0.4 to 2.6 micron region. K is reported for both the amorphous and the crystalline (annealed) states. Using the previously measured values of the real part of the refractive index, n, of liquid methane at 110 K n is computed for solid methane using the Lorentz-Lorentz relationship. Work is in progress to extend the measurements of optical constants n and k for liquid and solid to both shorter and longer wavelengths, eventually providing a complete optical constants database for condensed CH4.

  20. Stiffening solids with liquid inclusions

    NASA Astrophysics Data System (ADS)

    Style, Robert W.; Boltyanskiy, Rostislav; Allen, Benjamin; Jensen, Katharine E.; Foote, Henry P.; Wettlaufer, John S.; Dufresne, Eric R.

    2015-01-01

    From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and synthetic materials. Eshelby’s inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of a composite’s bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby’s theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet’s deformation is strongly size-dependent, with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the stiffness of soft solids. A straightforward extension of Eshelby’s theory, accounting for the surface tension of the solid-liquid interface, explains our experimental observations. The counterintuitive stiffening of solids by fluid inclusions is expected whenever inclusion radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young’s modulus of the solid matrix. These results suggest that surface tension can be a simple and effective mechanism to cloak the far-field elastic signature of inclusions.

  1. Dynamic characterization of solid rockets

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The structural dynamics of solid rockets in-general was studied. A review is given of the modes of vibration and bending that can exist for a solid propellant rocket, and a NASTRAN computer model is included. Also studied were the dynamic properties of a solid propellant, polybutadiene-acrylic acid-acrylonitrile terpolymer, which may be used in the space shuttle rocket booster. The theory of viscoelastic materials (i.e, Poisson's ratio) was employed in describing the dynamic properties of the propellant. These studies were performed for an eventual booster stage development program for the space shuttle.

  2. Chemical Symbolism and the Solid State

    ERIC Educational Resources Information Center

    Jensen, William B.

    1977-01-01

    Discusses the coordinated polyhedra approach to teaching the solid state. A solid is viewed as a collection of coordination complexes. Also proposes a method of extending the current chemical symbolism to include structural facts of solid state chemistry. (MLH)

  3. Is solid helium a supersolid?

    SciTech Connect

    Hallock, Robert

    2015-05-15

    Recent experiments suggest that helium-4 atoms can flow through an experimental cell filled with solid helium. But that incompletely understood flow is quite different from the reported superfluid-like motion that so excited physicists a decade ago.

  4. Small Solid Rocket Motor Test

    NASA Video Gallery

    It was three-two-one to brilliant fire as NASA's Marshall Space Flight Center tested a small solid rocket motor designed to mimic NASA's Space Launch System booster. The Mar. 14 test provides a qui...

  5. Thermogravimetry simplifies scrubber solids analysis

    SciTech Connect

    Buecker, B.

    1996-11-01

    Flue-gas desulfurization (FGD) system (FGDS) reliability and performance have improved over the years and so have the techniques for analyzing scrubber liquors and solids. Accurate analyses of scrubber reagents and reactants are important to determine FGDS efficiency, slurry scaling potential and other operational factors. For those who may not be familiar with the technique, thermogravimetry (TG) is an excellent method for obtaining fast but meaningful determinations of FGD solids. Prior to the use of thermogravimetry, lab personnel had to use time-consuming, wet chemistry techniques for FGDS solids analyses. Because a TG analysis (TGA) requires little sample preparation other than drying, results can be obtained fairly rapidly. TGA reduced, by more than half, the amount of time lab chemists needed to perform daily solids analyses, and it improved accuracy of the results.

  6. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  7. Relativistic Transformation of Solid Angle.

    ERIC Educational Resources Information Center

    McKinley, John M.

    1980-01-01

    Rederives the relativistic transformations of light intensity from compact sources (stars) to show where and how the transformation of a solid angle contributes. Discusses astrophysical and other applications of the transformations. (Author/CS)

  8. Development of nuclear micro-battery with solid tritium source.

    PubMed

    Lee, Sook-Kyung; Son, Soon-Hwan; Kim, KwangSin; Park, Jong-Wan; Lim, Hun; Lee, Jae-Min; Chung, Eun-Su

    2009-01-01

    A micro-battery powered by tritium is being developed to utilize tritium produced from the Wolsong Tritium Removal Facility. The 3D p-n junction device has been designed and fabricated for energy conversion. Titanium tritide is adopted to increase tritium density and safety. Sub micron films or nano-powders of titanium tritide is applied on silicon semiconductor device to reduce the self absorption of beta rays. Until now protium has been used instead of tritium for safety. Hydrogen was absorbed up to atomic ratio of approximately 1.3 and approximately 1.7 in titanium powders and films, respectively. PMID:19328704

  9. High power solid state lasers

    SciTech Connect

    Weber, H.

    1988-01-01

    These proceedings discuss the following subjects: trends in materials processing with laser radiation; slabs and high power systems; glasses and new crystals; solid state lasers at HOYA Corp.; lamps, resonators and transmission; glasses as active materials for high average power solid state lasers; flashlamp pumped GGG-crystals; alexandrite lasers; designing telescope resonators; mode operation of neodymium: YAG lasers; intracavity frequency doubling with KTP crystal and thermal effects in cylinder lasers.

  10. Solid State Photovoltaic Research Branch

    SciTech Connect

    Not Available

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  11. Stove for burning solid fuel

    SciTech Connect

    Koppe, E.

    1983-03-01

    A stove for burning solid fuels such as wood, briquettes, peat and the like includes a stove structure having a front and rear and two side walls. The front and rear walls have a width greater than the width of the two sidewalls, and one of the two sidewalls is provided with an access fire door for feeding the solid fuel into the side of the stove.

  12. Solid State Photovoltaic Research Branch

    NASA Astrophysics Data System (ADS)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30, 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  13. Solid-state dimer method for calculating solid-solid phase transitions

    SciTech Connect

    Xiao, Penghao; Henkelman, Graeme; Sheppard, Daniel; Rogal, Jutta

    2014-05-07

    The dimer method is a minimum mode following algorithm for finding saddle points on a potential energy surface of atomic systems. Here, the dimer method is extended to include the cell degrees of freedom for periodic solid-state systems. Using this method, reaction pathways of solid-solid phase transitions can be determined without having to specify the final state structure or reaction mechanism. Example calculations include concerted phase transitions between CdSe polymorphs and a nucleation and growth mechanism for the A15 to BCC transition in Mo.

  14. Fully automated solid weighing workstation.

    PubMed

    Wong, Stephen K-F; Lu, YiFeng; Heineman, William; Palmer, Janice; Courtney, Carter

    2005-08-01

    A fully automated, solid-to-solid weighing workstation (patent pending) is described in this article. The core of this automated process is the use of an electrostatically charged pipette tip to attract solid particles on its outside surface. The particles were then dislodged into a 1.2-mL destination vial in a microbalance by spinning the pipette tip. Textures of solid that could be weighed included powder, crystalline, liquid, and semi-solid substances. The workstation can pick up submilligram quantities of sample (=0.3mg) from source vials containing as little as 1mg. The destination vials containing the samples were stored in a 96-well rack to enable subsequent automated liquid handling. Using bovine serum albumin as test solid, the coefficient of variation of the protein concentration for 48 samples is less than 6%. The workstation was used successfully to weigh out 48 different synthetic compounds. Time required for automated weighing was similar to manual weighing. The use of this workstation reduced 90% hands-on time and thus exposure to potentially toxic compounds. In addition, it minimized sample waste and reduced artifacts due to the poor solubility of compound in solvents. Moreover, it enabled compounds synthesized in milligram quantities to be weighed out and tested in biological assays.

  15. Fabrication and microstructure of cerium doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics by solid-state reaction method

    SciTech Connect

    Li, Junlang; Xu, Jian; Shi, Ying; Qi, Hongfang; Xie, Jianjun; Lei, Fang

    2014-07-01

    Highlights: • We fabricate Ce doped lutetium aluminum garnet ceramics by solid-state method. • The raw materials include Lu{sub 2}O{sub 3} nanopowders synthesized by co-precipitation method. • The density of the transparent ceramics reach 99.7% of the theoretical value. • The optical transmittance of the bulk ceramic at 550 nm was 57.48%. • Some scattering centers decrease the optical characteristic of the ceramic. - Abstract: Polycrystalline Ce{sup 3+} doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics fabricated by one step solid-state reaction method using synthetic nano-sized Lu{sub 2}O{sub 3}, commercial α-Al{sub 2}O{sub 3} and CeO{sub 2} powders were investigated in this paper. The green compacts shaped by the mixed powders were successfully densified into Ce:LuAG transparent ceramics after vacuum sintering at 1750 °C for 10 h. The in-line optical transmittance of the Ce:LuAG ceramic made by home-made Lu{sub 2}O{sub 3} powders could reach 57.48% at 550 nm, which was higher than that of the ceramic made by commercial Lu{sub 2}O{sub 3} powders (22.96%). The microstructure observation showed that light scattering centers caused by micro-pores, aluminum segregation and refraction index inhomogeneities induced the decrease of optical transparency of the Ce:LuAG ceramics, which should be removed and optimized in the future work.

  16. Materials that can replace liquid electrolytes in Li batteries: Superionic conductivities in Li1.7Al0.3Ti1.7Si0.4P2.6O12. Processing combustion synthesized nanopowders to free standing thin films

    NASA Astrophysics Data System (ADS)

    Yi, Eongyu; Wang, Weimin; Mohanty, Som; Kieffer, John; Tamaki, Ryo; Laine, Richard M.

    2014-12-01

    We demonstrate that liquid-feed flame spray pyrolysis (LF-FSP) processing provides non-aggregated nanopowders that can be used immediately to tape cast, producing thin films (<100 μm) of Li+ ion conducting membranes when sintered. Glass-ceramic or sol-gel processing methods are commonly used for such but require additional high-energy milling and/or calcining to obtain powder feedstock. Li1+x+yAlxTi2-xSiyP3-yO12 (x = 0.1, 0.3/y = 0.2, 0.4) nanopowders were prepared by LF-FSP with a primary focus on the effects of Al0.3/Si0.4 doping on conductivities. Furthermore, the effects of excess Li2O on Al0.3/Si0.4 doped materials were studied. Li1.7Al0.3Ti1.7Si0.4P2.6O12 pellets sintered to 93-94% of theoretical density and samples with varying excess Li2O contents all show superionic conductivities of 2-3 × 10-3 S cm-1 at room temperature. Li2O lowers both the crystallization temperatures and temperatures required to sinter. Total conductivities range from 2 × 10-3 to 5 × 10-2 S cm-1 in the temperature span of 25°-125 °C. Small grain sizes of 600 ± 200 nm were produced. Initial attempts to make thin films gave films with thicknesses of 52 ± 1 μm on sintering just to 1000 °C. Measured conductivities were 3-5 × 10-4 S cm-1; attributed to final densities of only ≈88%.

  17. A Model for Solid-Solid drag in Bidisperse Gas-solid Flows

    NASA Astrophysics Data System (ADS)

    Murphy, Eric; Subramaniam, Shankar

    2014-11-01

    Computational models for gas-solid mixtures often require closures for interphase momentum and energy transfer. One of the most important interactions for polydisperse systems is a so-called solid-solid drag, i.e. the momentum transfer between different particulate phases traveling at different mean velocities. Modeling of these, and additional terms has been a focus of the granular physics community for nearly three decades and is no easy task. Flows of bidisperse particles are often high Mach number, Ma >> 1. As a result, many theories developed for low Mach number applications using the Chapman-Enskog (CE) theory are not strictly applicable. Still, many other analytic moment methods did not properly couple granular temperature and slip between particulate phases. We have developed a moment theory for the slip and temperature evolution employing the pseudo-Liouville operator technique, which correctly accounts for the coupling between phasic slip and temperatures. The theory is compared with other existing moment models for solid-solid drag. It is found that the drag model is a weighted sum of terms arising in both (CE) and existing moment theories. Additionally, new phase specific temperature evolution terms are obtained that shed light on phenomena such as non-equipartition of energy in bidisperse granular gases. Lastly, we explore some of the segregation behavior implied by the model for homogeneous gas-solid flows with bidisperse particles. This work was supported through DOE award number DE-FE0007260 and NSF Grants CMMI 0927660 and CBET 1134500.

  18. Optical constants of solid methane

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Thompson, W. R.; Sagan, C.; Arakawa, E. T.; Bruel, C.; Judish, J. P.; Khanna, R. K.; Pollack, J. B.

    1990-01-01

    Methane is the most abundant simple organic molecule in the outer solar system bodies. In addition to being a gaseous constituent of the atmospheres of the Jovian planets and Titan, it is present in the solid form as a constituent of icy surfaces such as those of Triton and Pluto, and as cloud condensate in the atmospheres of Titan, Uranus, and Neptune. It is expected in the liquid form as a constituent of the ocean of Titan. Cometary ices also contain solid methane. The optical constants for both solid and liquid phases of CH4 for a wide temperature range are needed for radiative transfer calculations, for studies of reflection from surfaces, and for modeling of emission in the far infrared and microwave regions. The astronomically important visual to near infrared measurements of solid methane optical constants are conspicuously absent from the literature. Preliminary results are presented on the optical constants of solid methane for the 0.4 to 2.6 micrometer region. Deposition onto a substrate at 10 K produces glassy (semi-amorphous) material. Annealing this material at approximately 33 K for approximately 1 hour results in a crystalline material as seen by sharper, more structured bands and negligible background extinction due to scattering. The constant k is reported for both the amorphous and the crystalline (annealed) states. Typical values (at absorption maxima) are in the .001 to .0001 range. Below lambda = 1.1 micrometers the bands are too weak to be detected by transmission through the films less than or equal to 215 micrometers in thickness, employed in the studies to date. Using previously measured values of the real part of the refractive index, n, of liquid methane at 110 K, n is computed for solid methane using the Lorentz-Lorenz relationship. Work is in progress to extend the measurements of optical constants n and k for liquid and solid to both shorter and longer wavelengths, eventually providing a complete optical constants database for

  19. Conversion of organic solids to hydrocarbons

    DOEpatents

    Greenbaum, Elias

    1995-01-01

    A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon.

  20. Conversion of organic solids to hydrocarbons

    DOEpatents

    Greenbaum, E.

    1995-05-23

    A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon. 5 Figs.

  1. Solid oxide electrochemical reactor science.

    SciTech Connect

    Sullivan, Neal P.; Stechel, Ellen Beth; Moyer, Connor J.; Ambrosini, Andrea; Key, Robert J.

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  2. Local electrical and dielectric properties of nanocrystalline solid oxide fuel cell electrolytes

    NASA Astrophysics Data System (ADS)

    Perry, Nicola Helen

    Reducing the operating temperature of solid oxide fuel cells (SOFCs), to improve durability and lower cost, requires an increase in the low temperature oxygen-ion conductivity of the electrolyte. This work investigates whether the electrolyte conductivity could be increased by decreasing the grain size into the nanoscale. Bulk electrolytes - cubic yttria-stabilized zirconia (YSZ, with 8mol% Y2O3), tetragonal zirconia polycrystal (TZP, with 3mol% Y2O3), and Sr- and Mg- co-doped LaGaO3 (LSGM) - were fabricated with grain sizes ranging from 10nm to 3mum, using commercial or sol-gel-derived nanopowders and various sintering techniques. Local grain boundary and grain core conductivities and dielectric constants were analyzed over a range of temperatures and atmospheres using AC-impedance spectroscopy and our novel nano-Grain Composite Model, and interpreted in terms of grain-size dependent defect chemistry (e.g. space charge models, local thermodynamics, and impurity/ acceptor segregation). All three oxides exhibited qualitatively similar electrical/ dielectric behavior. Their single crystal/ grain core dielectric constants exhibited an upturn with temperature, which was attributed to the onset of dipolar relaxation. Grain boundary dielectric constants were consistently higher than grain core dielectric constants at the nanoscale. n-GCM-derived electrical grain boundary half-widths agreed well with measured acceptor dopant segregation widths at grain boundaries. The local grain boundary conductivity was consistently increased in nanocrystalline vs. microcrystalline samples, although the mechanisms responsible for this behavior differed in each material. Grain core conductivity did not change with grain size in each case. Despite the increase in local grain boundary conductivity at the nanoscale, the total conductivity decreased monotonically with decreasing grain size in all three electrolytes; the grain boundaries remain barriers to transport (relative to grain cores

  3. Magnetic solids in analytical chemistry: a review.

    PubMed

    Aguilar-Arteaga, K; Rodriguez, J A; Barrado, E

    2010-08-01

    Magnetic solids are widely used in detection and analytical systems because of the performance advantages they offer compared to similar solids that lack magnetic properties. These solids can be used to pre-concentrate analytes and for the magnetic separation and molecular identification of biomolecules, and organic and inorganic species. Magnetic solid separation techniques also offer benefits over centrifugation, filtration, and solid-phase extraction. In this review, we describe the synthesis, characterization and applications of a series of solids including silica supports, carbon nanotubes, alumina, organic polymers and other materials, mostly containing magnetite or paramagnetic metals. Also addressed are the future perspectives of magnetic solid applications.

  4. Modern solid state laser materials

    SciTech Connect

    Krupke, W.F.

    1984-06-20

    This document contains visual aids used in an invited talk entitled Modern Solid State Laser Materials, presented at the Conference on Lasers and Electro-Optics (CLEO) held in Anaheim, California, on June 20, 1984. Interest at LLNL in solid state lasers focuses on evaluating the potential of solid state laser media for high average power applications, including inertial fusion power production. This talk identifies the relevant bulk material parameters characterizing average power capacity and uses chromium and neodymium co-doped gadolinium scandium gallium garnet (Nd:Cr:GSGG) as an example of a laser material with improved laser properties relative to Nd:YAG (plausible large-scale growth, more efficient spectral coupling to xenon flashlamp radiation, reduced stimulated emission cross section, adequate thermal shock and optical damage threshold parameters, etc.). Recently measured spectroscopic, kinetic, and thermo-mechanical properties of Nd:Cr:GSGG are given.

  5. Geometrical setting of solid mechanics

    SciTech Connect

    Fiala, Zdenek

    2011-08-15

    Highlights: > Solid mechanics within the Riemannian symmetric manifold GL (3, R)/O (3, R). > Generalized logarithmic strain. > Consistent linearization. > Incremental principle of virtual power. > Time-discrete approximation. - Abstract: The starting point in the geometrical setting of solid mechanics is to represent deformation process of a solid body as a trajectory in a convenient space with Riemannian geometry, and then to use the corresponding tools for its analysis. Based on virtual power of internal stresses, we show that such a configuration space is the (globally) symmetric space of symmetric positive-definite real matrices. From this unifying point of view, we shall analyse the logarithmic strain, the stress rate, as well as linearization and intrinsic integration of corresponding evolution equation.

  6. Solid-solid phase transitions determined by differential scanning calorimetry.

    NASA Technical Reports Server (NTRS)

    Murrill, E.; Whitehead, M. E.; Breed, L.

    1972-01-01

    Data are presented to show that tris(hydroxymethyl)acetic acid, monochloropentaerythritol, monofluoropentaerythritol, difluoropentaerythritol, monoaminopentaerythritol, and diaminopentaerythritol exhibit solid-state transitions to a plastic crystalline state. Transitional enthalpies in many of these substances are lower than might be expected by analogy with related structures, suggesting that some configurational contributions to their entropy increments have been inhibited.

  7. Solid acids for green chemistry.

    PubMed

    Clark, James H

    2002-09-01

    Solid acids and especially those based on micelle-templated silicas and other mesoporous high surface area support materials are beginning to play a significant role in the greening of fine and specialty chemicals manufacturing processes. A wide range of important organic reactions can be efficiently catalyzed by these materials, which can be designed to provide different types of acidity as well as high degrees of reaction selectivity. The solid acids generally have high turnover numbers and can be easily separated from the organic components. The combination of this chemistry with innovative reaction engineering offers exciting opportunities for innovative green chemical manufacturing in the future. PMID:12234209

  8. Lubrication of rigid ellipsida solids

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1982-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza' classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared by using the exact expression for the film in the analysis. Contour plots are known that indicate in detail the pressure developed between the solids.

  9. Solid-state lithium battery

    DOEpatents

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  10. Solid evacuated microspheres of hydrogen

    DOEpatents

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1982-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  11. The Advanced Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Mitchell, Royce E.

    1992-01-01

    The paper describes the Advanced Solid Rocket Motor (ASRM) that is being developed to replace, in 1997, the Redesigned Solid Rocket Motor which currently boosts the Space Shuttle. The ASRM will contain features to improve motor safety (fewer potential leak paths, improved seal materials, stronger case material, and fewer nozzle and case joints), an improved ignition system using through-bulkhead initiators, and highly reproducible manufacturing and inspection techniques with a large number of automated procedures. The ASRM will be able to deliver 12,000 lbs greater payloads to any given orbit of the Shuttle. There are also environmental improvements, realized by waste propellant recovery.

  12. Solid lithium-ion electrolyte

    SciTech Connect

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  13. Solid Waste/Energy Curriculum.

    ERIC Educational Resources Information Center

    Vivan, V. Eugene; And Others

    Provided are solid waste/energy curriculum materials for grades K-2, 3-4, 5-6, 7-9, and 10-12. Separate folders containing units of study (focusing on trash, litter, and recycling) are provided for kindergarten (four units), grade 1 (two units), and grade 2 (two units). Folders contain teachers' directions and activity cards which include picture…

  14. Controls for Burning Solid Wastes

    ERIC Educational Resources Information Center

    Toro, Richard F.; Weinstein, Norman J.

    1975-01-01

    Modern thermal solid waste processing systems are becoming more complex, incorporating features that require instrumentation and control systems to a degree greater than that previously required just for proper combustion control. With the advent of complex, sophisticated, thermal processing systems, TV monitoring and computer control should…

  15. Solid Wastes and Water Quality.

    ERIC Educational Resources Information Center

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  16. Vacuum Flushing of Sewer Solids

    EPA Science Inventory

    The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...

  17. Solid Rocket Booster-Illustration

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This illustration is a cutaway of the solid rocket booster (SRB) sections with callouts. The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment. The boosters are designed to survive water impact at almost 60 miles per hour, maintain flotation with minimal damage, and preclude corrosion of the hardware exposed to the harsh seawater environment. Under the project management of the Marshall Space Flight Center, the SRB's are assembled and refurbished by the United Space Boosters. The SRM's are provided by the Morton Thiokol Corporation.

  18. Recycling Solid Waste in Chattanooga

    ERIC Educational Resources Information Center

    Vredeveld, Ruth; Martin, Robin

    1973-01-01

    Students undertook a group project in collaboration with city officials to study garbage types in the community and possibilities of recycling solid wastes. Data collected from various sources revealed that public attitude was favorable for recycling efforts and that it was feasible economically. (PS)

  19. Solid oxide fuel cell generator

    DOEpatents

    Di Croce, A.M.; Draper, R.

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

  20. Solid polymer electrolyte photovoltaic cell

    SciTech Connect

    Skotheim, T.; Lundstrom, I.

    1982-04-01

    Solid photoelectrochemical cells are described based on PEO-KI/I/sub 2/ electrolytes, n-Si/Pt/PPy photoanodes, and conductive tin-oxide glass counter electrodes. The performance of the present devices is limited by a high series resistance in the polymer film. 22 refs.

  1. Electrochemical processing of solid waste

    NASA Technical Reports Server (NTRS)

    Bockris, John OM.

    1987-01-01

    An investigation of electrochemical waste treatment methods suitable for closed, or partially closed, life support systems for manned space exploration is discussed. The technique being investigated involves the electrolysis of solid waste where the aim is to upgrade waste material (mainly fecal waste) to generate gases that can be recycled in a space station or planetary space environment.

  2. Solid oxide fuel cell generator

    DOEpatents

    Di Croce, A. Michael; Draper, Robert

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.

  3. Versatile solid-state relay

    NASA Technical Reports Server (NTRS)

    Fox, D. A.

    1977-01-01

    Solid-state relay (SSR), containing multinode control logic, is operated as normally open, normally closed, or latched. Moreover several can be paralleled to form two-pole or double-throw relays. Versatile unit ends need to design custom control circuit for every relay application. Technique can be extended to incorporate selectable time delay, on operation or release, or pulsed output.

  4. Quadric solids and computational geometry

    SciTech Connect

    Emery, J.D.

    1980-07-25

    As part of the CAD-CAM development project, this report discusses the mathematics underlying the program QUADRIC, which does computations on objects modeled as Boolean combinations of quadric half-spaces. Topics considered include projective space, quadric surfaces, polars, affine transformations, the construction of solids, shaded image, the inertia tensor, moments, volume, surface integrals, Monte Carlo integration, and stratified sampling. 1 figure.

  5. Removing Solids From Supercritical Water

    NASA Technical Reports Server (NTRS)

    Hong, Glenn T.

    1992-01-01

    Apparatus removes precipitated inorganic salts and other solids in water-recycling process. Designed for use with oxidation in supercritical water which treats wastes and yields nearly pure water. Heating coils and insulation around vessel keep it hot. Locking bracket seals vessel but allows it to be easily opened for replacement of filled canisters.

  6. Regional solid waste management study

    SciTech Connect

    Not Available

    1992-09-01

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Rural Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.

  7. Solid lithium-ion electrolyte

    DOEpatents

    Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin

    1998-01-01

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  8. Thin Film Solid Lubricant Development

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.

    1997-01-01

    Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.

  9. Solid-state radioluminescent compositions

    DOEpatents

    Clough, Roger L.; Gill, John T.; Hawkins, Daniel B.; Renschler, Clifford L.; Shepodd, Timothy J.; Smith, Henry M.

    1991-01-01

    A solid state radioluminescent composition for light source comprises an optically clear polymer organic matrix containing tritiated organic materials and dyes capable of "red" shifting primary scintillation emissions from the polymer matrix. The tritiated organic materials are made by reducing, with tritium, an unsaturated organic compound that prior to reduction contains olefinic or alkynylic bonds.

  10. Solid colloidal optical wavelength filter

    DOEpatents

    Alvarez, Joseph L.

    1992-01-01

    A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

  11. Overhauser effects in insulating solids.

    PubMed

    Can, T V; Caporini, M A; Mentink-Vigier, F; Corzilius, B; Walish, J J; Rosay, M; Maas, W E; Baldus, M; Vega, S; Swager, T M; Griffin, R G

    2014-08-14

    We report magic angle spinning, dynamic nuclear polarization (DNP) experiments at magnetic fields of 9.4 T, 14.1 T, and 18.8 T using the narrow line polarizing agents 1,3-bisdiphenylene-2-phenylallyl (BDPA) dispersed in polystyrene, and sulfonated-BDPA (SA-BDPA) and trityl OX063 in glassy glycerol/water matrices. The (1)H DNP enhancement field profiles of the BDPA radicals exhibit a significant DNP Overhauser effect (OE) as well as a solid effect (SE) despite the fact that these samples are insulating solids. In contrast, trityl exhibits only a SE enhancement. Data suggest that the appearance of the OE is due to rather strong electron-nuclear hyperfine couplings present in BDPA and SA-BDPA, which are absent in trityl and perdeuterated BDPA (d21-BDPA). In addition, and in contrast to other DNP mechanisms such as the solid effect or cross effect, the experimental data suggest that the OE in non-conducting solids scales favorably with magnetic field, increasing in magnitude in going from 5 T, to 9.4 T, to 14.1 T, and to 18.8 T. Simulations using a model two spin system consisting of an electron hyperfine coupled to a (1)H reproduce the essential features of the field profiles and indicate that the OE in these samples originates from the zero and double quantum cross relaxation induced by fluctuating hyperfine interactions between the intramolecular delocalized unpaired electrons and their neighboring nuclei, and that the size of these hyperfine couplings is crucial to the magnitude of the enhancements. Microwave power dependent studies show that the OE saturates at considerably lower power levels than the solid effect in the same samples. Our results provide new insights into the mechanism of the Overhauser effect, and also provide a new approach to perform DNP experiments in chemical, biophysical, and physical systems at high magnetic fields.

  12. Overhauser effects in insulating solids

    SciTech Connect

    Can, T. V.; Corzilius, B.; Walish, J. J.; Griffin, R. G.; Caporini, M. A.; Rosay, M.; Maas, W. E.; Mentink-Vigier, F.; Vega, S.; Baldus, M.; Swager, T. M.

    2014-08-14

    We report magic angle spinning, dynamic nuclear polarization (DNP) experiments at magnetic fields of 9.4 T, 14.1 T, and 18.8 T using the narrow line polarizing agents 1,3-bisdiphenylene-2-phenylallyl (BDPA) dispersed in polystyrene, and sulfonated-BDPA (SA-BDPA) and trityl OX063 in glassy glycerol/water matrices. The {sup 1}H DNP enhancement field profiles of the BDPA radicals exhibit a significant DNP Overhauser effect (OE) as well as a solid effect (SE) despite the fact that these samples are insulating solids. In contrast, trityl exhibits only a SE enhancement. Data suggest that the appearance of the OE is due to rather strong electron-nuclear hyperfine couplings present in BDPA and SA-BDPA, which are absent in trityl and perdeuterated BDPA (d{sub 21}-BDPA). In addition, and in contrast to other DNP mechanisms such as the solid effect or cross effect, the experimental data suggest that the OE in non-conducting solids scales favorably with magnetic field, increasing in magnitude in going from 5 T, to 9.4 T, to 14.1 T, and to 18.8 T. Simulations using a model two spin system consisting of an electron hyperfine coupled to a {sup 1}H reproduce the essential features of the field profiles and indicate that the OE in these samples originates from the zero and double quantum cross relaxation induced by fluctuating hyperfine interactions between the intramolecular delocalized unpaired electrons and their neighboring nuclei, and that the size of these hyperfine couplings is crucial to the magnitude of the enhancements. Microwave power dependent studies show that the OE saturates at considerably lower power levels than the solid effect in the same samples. Our results provide new insights into the mechanism of the Overhauser effect, and also provide a new approach to perform DNP experiments in chemical, biophysical, and physical systems at high magnetic fields.

  13. Composite Solid Electrolyte For Lithium Cells

    NASA Technical Reports Server (NTRS)

    Peled, Emmanuel; Nagasubramanian, Ganesan; Halpert, Gerald; Attia, Alan I.

    1994-01-01

    Composite solid electrolyte material consists of very small particles, each coated with thin layer of Lil, bonded together with polymer electrolyte or other organic binder. Material offers significant advantages over other solid electrolytes in lithium cells and batteries. Features include high ionic conductivity and strength. Composite solid electrolyte expected to exhibit flexibility of polymeric electrolytes. Polymer in composite solid electrolyte serves two purposes: used as binder alone, conduction taking place only in AI2O3 particles coated with solid Lil; or used as both binder and polymeric electrolyte, providing ionic conductivity between solid particles that it binds together.

  14. High temperature solid state storage cell

    DOEpatents

    Rea, Jesse R.; Kallianidis, Milton; Kelsey, G. Stephen

    1983-01-01

    A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.

  15. Assessing total and volatile solids in municipal solid waste samples.

    PubMed

    Peces, M; Astals, S; Mata-Alvarez, J

    2014-01-01

    Municipal solid waste is broadly generated in everyday activities and its treatment is a global challenge. Total solids (TS) and volatile solids (VS) are typical control parameters measured in biological treatments. In this study, the TS and VS were determined using the standard methods, as well as introducing some variants: (i) the drying temperature for the TS assays was 105°C, 70°C and 50°C and (ii) the VS were determined using different heating ramps from room tempature to 550°C. TS could be determined at either 105°C or 70°C, but oven residence time was tripled at 70°C, increasing from 48 to 144 h. The VS could be determined by smouldering the sample (where the sample is burnt without a flame), which avoids the release of fumes and odours in the laboratory. However, smouldering can generate undesired pyrolysis products as a consequence of carbonization, which leads to VS being underestimated. Carbonization can be avoided using slow heating ramps to prevent the oxygen limitation. Furthermore, crushing the sample cores decreased the time to reach constant weight and decreased the potential to underestimate VS.

  16. Solid-solid transitions induced by repulsive interactions revisited

    NASA Astrophysics Data System (ADS)

    Navascués, G.; Velasco, E.; Mederos, L.

    2016-10-01

    We revisit a problem already studied 15 years ago by us in collaboration with Stell and Hemmer: the isostructural solid-solid transitions induced by repulsive particle interactions exhibited by classical systems interacting via the Stell-Hemmer potentials. The full phase diagram in the crystal region is obtained by applying a perturbation theory for classical solids used during our collaboration with Stell. Also, the performance of such a theory is now tested by comparing the perturbative phase diagram with that obtained from computer simulations. The latter was calculated using a recently refined method to obtain the free-energy of crystals by means of Monte Carlo simulations. The perturbation theory captures the correct topology and correctly identifies the stable, fcc and bcc, phases. In addition, the theory predicts the occurrence of special points: a point where the two stable structures coexist at the same density, and two critical points terminating the corresponding isostructural phase transitions for fcc and bcc phases. The location of some of these features in the phase diagram is predicted almost quantitatively. However, phase boundaries involving the non-compact bcc phase are much less accurate, a problem that can be traced to the poor representation used for the bcc phase of the reference, hard-sphere, system.

  17. Solid-solid transitions induced by repulsive interactions revisited.

    PubMed

    Navascués, G; Velasco, E; Mederos, L

    2016-10-19

    We revisit a problem already studied 15 years ago by us in collaboration with Stell and Hemmer: the isostructural solid-solid transitions induced by repulsive particle interactions exhibited by classical systems interacting via the Stell-Hemmer potentials. The full phase diagram in the crystal region is obtained by applying a perturbation theory for classical solids used during our collaboration with Stell. Also, the performance of such a theory is now tested by comparing the perturbative phase diagram with that obtained from computer simulations. The latter was calculated using a recently refined method to obtain the free-energy of crystals by means of Monte Carlo simulations. The perturbation theory captures the correct topology and correctly identifies the stable, fcc and bcc, phases. In addition, the theory predicts the occurrence of special points: a point where the two stable structures coexist at the same density, and two critical points terminating the corresponding isostructural phase transitions for fcc and bcc phases. The location of some of these features in the phase diagram is predicted almost quantitatively. However, phase boundaries involving the non-compact bcc phase are much less accurate, a problem that can be traced to the poor representation used for the bcc phase of the reference, hard-sphere, system. PMID:27546295

  18. For nanowire growth, vapor-solid-solid (vapor-solid) mechanism is actually vapor-quasisolid-solid (vapor-quasiliquid-solid) mechanism.

    PubMed

    Noor Mohammad, S

    2009-12-14

    Vapor-phase mechanisms [e.g., vapor-liquid-solid (VLS), vapor-solid-solid, oxide-assisted growth, and the self-catalytic growth mechanisms] for the unidirectional nanowire (NW) growth are not yet well understood. For this understanding, growths of GaN and InN NWs in our laboratory, without and with the assistance of foreign element catalytic agents (FECAs), such as Au and In, were performed. GaN NW growth, in the presence of FECA identical withNi, was possible at temperatures below the Ni/Ga eutectic temperature. InN NWs were grown, in the presence of Au, and at temperatures in the vicinity of Au/In eutectic temperature. They were found to have Au at the NW tip, NW base, and NW sidewalls. Extensive investigation of the fundamentals underlying these anomalies has been carried out. The temperature dependence of the VLS mechanism has also been elucidated. A large number of available elemental and compound semiconductor NWs exhibiting similar characteristics have been considered for the investigation. Based on this investigation, a chemicophysical mechanism called the vapor-quasisolid-solid (VQS) (or vapor-semisolid-solid, or vapor-quasiliquid-solid, or vapor-semiliquid-solid) mechanism has been proposed. The cause of temperature dependence of the VLS growth under different growth conditions and growth environments, and the possible relationship between the VLS and the VQS mechanisms has been presented. To better describe the vapor-phase mechanisms, including the VQS mechanism, a unified definition of droplets has been proposed. A series of experimental evidences has been set forth to substantiate the validity of the proposed mechanism, and to justify the definition of the unified droplet model. They together appear to explain the fundamental basis of the NW growth by various mechanisms, including the VQS mechanisms. They also provide solutions of many known problems, conflicts, confusions, and controversies involving NW growth.

  19. For nanowire growth, vapor-solid-solid (vapor-solid) mechanism is actually vapor-quasisolid-solid (vapor-quasiliquid-solid) mechanism

    NASA Astrophysics Data System (ADS)

    Noor Mohammad, S.

    2009-12-01

    Vapor-phase mechanisms [e.g., vapor-liquid-solid (VLS), vapor-solid-solid, oxide-assisted growth, and the self-catalytic growth mechanisms] for the unidirectional nanowire (NW) growth are not yet well understood. For this understanding, growths of GaN and InN NWs in our laboratory, without and with the assistance of foreign element catalytic agents (FECAs), such as Au and In, were performed. GaN NW growth, in the presence of FECA≡Ni, was possible at temperatures below the Ni/Ga eutectic temperature. InN NWs were grown, in the presence of Au, and at temperatures in the vicinity of Au/In eutectic temperature. They were found to have Au at the NW tip, NW base, and NW sidewalls. Extensive investigation of the fundamentals underlying these anomalies has been carried out. The temperature dependence of the VLS mechanism has also been elucidated. A large number of available elemental and compound semiconductor NWs exhibiting similar characteristics have been considered for the investigation. Based on this investigation, a chemicophysical mechanism called the vapor-quasisolid-solid (VQS) (or vapor-semisolid-solid, or vapor-quasiliquid-solid, or vapor-semiliquid-solid) mechanism has been proposed. The cause of temperature dependence of the VLS growth under different growth conditions and growth environments, and the possible relationship between the VLS and the VQS mechanisms has been presented. To better describe the vapor-phase mechanisms, including the VQS mechanism, a unified definition of droplets has been proposed. A series of experimental evidences has been set forth to substantiate the validity of the proposed mechanism, and to justify the definition of the unified droplet model. They together appear to explain the fundamental basis of the NW growth by various mechanisms, including the VQS mechanisms. They also provide solutions of many known problems, conflicts, confusions, and controversies involving NW growth.

  20. Space-Filling with Solid Polyominoes.

    ERIC Educational Resources Information Center

    Eba, P. N.

    1979-01-01

    Solid polyominoes are formed by gluing cubes together so that the two faces of adjacent cubes are wholly in contact. Tessellations of a three-dimensional space with solid pentominoes are discussed and illustrated. (MP)

  1. Neglect of Solid State Chemistry Scored

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1974

    1974-01-01

    At a recent symposium concerning the teaching of solid state chemistry in the classroom, many educators indicated that important areas of solid state chemistry were being neglected in college curricula. (RH)

  2. Preparation of a Simple Thermochromic Solid.

    ERIC Educational Resources Information Center

    Van Oort, Michiel J. M.

    1988-01-01

    Suggests a laboratory introduction to solid-solid phase transitions, thermochromism, and color changes associated with changes in ligand coordination suitable for undergraduate students in physical and general chemistry. Describes the preparation and analysis of the experiment. (CW)

  3. SMP: A solid modeling program

    NASA Technical Reports Server (NTRS)

    Randall, D. P.; Jones, K. H.; Vonofenheim, W. H.; Gates, R. L.

    1984-01-01

    A prototype solid modeling program, SMP, developed by CSC for Langley Research Center (LaRC) is documented in this paper. The SMP software is employed by the System and Experiments Branch (SEB) of the Space Systems Division (SSD) for preliminary space station design, but is intended as a general purpose tool. The SMP document provides details concerning: the basic geometric modeling primitives and associated operators, the data representation scheme utilized to structure the geometric model, the available commands for both editing and displaying the solid model, the interactive user interface and the input/output interfaces to external software, and the utility of the package in the LaRC computing environment. The document is sufficiently detailed to serve both as a user's guide and reference manual.

  4. Nanoparticles for solid rocket propulsion

    NASA Astrophysics Data System (ADS)

    Galfetti, L.; DeLuca, L. T.; Severini, F.; Meda, L.; Marra, G.; Marchetti, M.; Regi, M.; Bellucci, S.

    2006-08-01

    The characterization of several differently sized aluminium powders, by BET (specific surface), EM (electron microscopy), XRD (x-ray diffraction), and XPS (x-ray photoelectron spectroscopy), was performed in order to evaluate their application in solid rocket propellant compositions. These aluminium powders were used in manufacturing several laboratory composite solid rocket propellants, based on ammonium perchlorate (AP) as oxidizer and hydroxil-terminated polybutadiene (HTPB) as binder. The reference formulation was an AP/HTPB/Al composition with 68/17/15% mass fractions respectively. The ballistic characterization of the propellants, in terms of steady burning rates, shows better performance for propellant compositions employing nano-aluminium when compared to micro-aluminium. Results obtained in the pressure range 1-70 bar show that by increasing the nano-Al mass fraction or decreasing the nano-Al size, larger steady burning rates are measured with essentially the same pressure sensitivity.

  5. Solid friction between soft filaments.

    PubMed

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes's drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  6. Cerium ion conducting solid electrolyte

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yasunori; Imanaka, Nobuhito; Adachi, Gin-ya

    2003-02-01

    A cerium ion conducting solid electrolyte, (Ce xZr 1- x) 4/4- xNb(PO 4) 3, was successfully realized with the NASICON-type structure which possesses a three-dimensional network, especially suitable for bulky ion migration. The cerium ion conductivity exceeds approximately one order of magnitude in comparison to that of the rare-earth ion conducting R2(WO 4) 3 and R1/3Zr 2(PO 4) 3 ( R=Sc, Y, Eu-Lu) series and the value is in the range between typical oxide anion conductors of yttria stabilized zirconia (YSZ) and calcia stabilized zirconia (CSZ). Since cerium ion has been demonstrated to be another migrating ion species in solid electrolyte field, a promising application for various functional materials is greatly expected.

  7. Space Shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Hardy, G. B.

    1979-01-01

    Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

  8. Multicellular Streaming in Solid Tumours

    NASA Astrophysics Data System (ADS)

    Kas, Josef

    As early as 400 BCE, the Roman medical encyclopaedist Celsus recognized that solid tumours are stiffer than surrounding tissue. However, cancer cell lines are softer, and softer cells facilitate invasion. This paradox raises several questions: Does softness emerge from adaptation to mechanical and chemical cues in the external microenvironment, or are soft cells already present inside a primary solid tumour? If the latter, how can a more rigid tissue contain more soft cells? Here we show that in primary tumour samples from patients with mammary and cervix carcinomas, cells do exhibit a broad distribution of rigidities, with a higher fraction of softer and more contractile cells compared to normal tissue. Mechanical modelling based on patient data reveals that, surprisingly, tumours with a significant fraction of very soft cells can still remain rigid. Moreover, in tissues with the observed distributions of cell stiffnesses, softer cells spontaneously self-organize into lines or streams, possibly facilitating cancer metastasis.

  9. Solid-state membrane module

    DOEpatents

    Gordon, John Howard; Taylor, Dale M.

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  10. Hazardous solid waste from agriculture.

    PubMed Central

    Loehr, R C

    1978-01-01

    Large quantities of food processing, crop, forestry, and animal solid wastes are generated in the United States each year. The major components of these wastes are biodegradable. However, they also contain components such as nitrogen, human and animal pathogens, medicinals, feed additives, salts, and certain metals, that under uncontrolled conditions can be detrimental to aquatic, plant, animal, or human life. The most common method of disposal of these wastes is application to the land. Thus the major pathways for transmission of hazards are from and through the soil. Use of these wastes as animal feed also can be a pathway. While at this time there are no crises associated with hazardous materials in agricultural solid wastes, the potential for problems should not be underestimated. Manpower and financial support should be provided to obtain more detailed information in this area, esepcially to better delineate transport and dispersal and to determine and evaluate risks. PMID:367770

  11. Solids production and control in petroleum recovery

    SciTech Connect

    Hawkins, B.F.; Adamache, I.; Leopold, G.

    1996-12-31

    Reservoir solids may be produced during exploitation of petroleum reservoirs. Solids management practices depend on the nature of the reservoir and the produced fluids. For conventional oil and gas reservoirs, operators normally have focused on prevention or control of solids influx into production wells. In Canada, exploitation of heavy oil reservoirs has been found to be more effective when solids are produced. Solids production from conventional oil and gas reservoirs can have detrimental effects on well productivity and equipment. Therefore, the practice has been to attempt to prevent or control solids influx into the wells by using screens, gravel packs, or other means to restrict solids flow. If, when, where, and how to install solids control systems are governed by both cost and risk factors. From a solids management point of view, production of heavy oil from unconsolidated formations poses different challenges than conventional oil and gas production. Production of large quantities of solids is critical for maintaining the productivity of wells in heavy oil reservoirs. This has necessitated the development of special pumping systems to transport fluids with high solids content. Many reservoirs are now being exploited by horizontal wells, which have long horizontal contact with the reservoir. Solids control methods for horizontal wells have been adapted from those used in vertical wells. Special techniques and equipment have been developed to remove deposited solids from horizontal wells. Specially designed equipment and techniques are required for the surface handling of high solids cut fluids. Separation, cleaning, and disposal of produced solids can be costly, especially if the solids must be oil-free to satisfy environmental regulations. 138 refs., 20 figs., 3 tabs.

  12. Solid-gas critical flow

    SciTech Connect

    Gidaspow, D.; Syamlal, M.

    1985-01-01

    Maximum solid-gas transport rates have been computed using several hydrodynamic models. In the limit of zero gas density, the critical velocity equals the square root of a compressibility modulus of the powder divided by its density. Compressibility waves move with this velocity through the powder. Part II of this paper deals with homogeneous critical powder flow for which a useful expression for maximum flow has been derived and compared to an experiment from the literature.

  13. Solid-state membrane module

    SciTech Connect

    Hinklin, Thomas Ray; Lewinsohn, Charles Arthur

    2015-06-30

    A module for separating oxygen from an oxygen-containing gaseous mixture comprising planar solid-state membrane units, each membrane unit comprising planar dense mixed conducting oxides layers, planar channel-free porous support layers, and one or more planar intermediate support layers comprising at least one channeled porous support layer. The porosity of the planar channeled porous support layers is less than the porosity of the planar channel-free porous support layers.

  14. Supercritical/Solid Catalyst (SSC)

    ScienceCinema

    None

    2016-07-12

    INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

  15. Solid-State Nuclear Power

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    2012-01-01

    A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.

  16. Solid rocket motor internal insulation

    NASA Technical Reports Server (NTRS)

    Twichell, S. E. (Editor); Keller, R. B., Jr.

    1976-01-01

    Internal insulation in a solid rocket motor is defined as a layer of heat barrier material placed between the internal surface of the case propellant. The primary purpose is to prevent the case from reaching temperatures that endanger its structural integrity. Secondary functions of the insulation are listed and guidelines for avoiding critical problems in the development of internal insulation for rocket motors are presented.

  17. Characterization of solid hydrogen targets

    SciTech Connect

    Fujiwara, M.C.; Bailey, J.M.; Beer, G.A.

    1995-12-01

    In experiments using the TRIUMF solid hydrogen target systems, knowledge of target thickness and uniformity is often essential in order to extract physical parameters from the data. We have characterized the thickness and uniformity of frozen targets using the energy loss of alpha particles. An accuracy of about 5% was achieved, a limit imposed by the uncertainty in the stopping powers. Details of the method are described and the thickness calibration of the target is presented.

  18. Supercritical/Solid Catalyst (SSC)

    SciTech Connect

    2010-01-01

    INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

  19. Perovskite solid electrolytes for SOFC

    SciTech Connect

    Sammells, A.F.

    1992-09-01

    Selected perovskite solid electrolytes incorporated into research size fuel cells have shown stability for > 4000 hours at 600{degrees}C. Perovskite lattice requirements which favor low E{sub a} for ionic conduction include (i) that the perovskite lattice possess a moderate enthalpy of formation, (ii) perovskite lattice possess large free volumes, (iii) that the lattice minimally polarizes the mobile ion and (iv) that the crystallographic saddle point r{sub c} for ionic conduction is {approx_equal} 1.

  20. Perovskite solid electrolytes for SOFC

    SciTech Connect

    Sammells, A.F.

    1992-01-01

    Selected perovskite solid electrolytes incorporated into research size fuel cells have shown stability for > 4000 hours at 600{degrees}C. Perovskite lattice requirements which favor low E{sub a} for ionic conduction include (i) that the perovskite lattice possess a moderate enthalpy of formation, (ii) perovskite lattice possess large free volumes, (iii) that the lattice minimally polarizes the mobile ion and (iv) that the crystallographic saddle point r{sub c} for ionic conduction is {approx equal} 1.

  1. A Simple Arbitrary Solid Slicer

    SciTech Connect

    Yao, J

    2005-06-23

    The intersection of a given plane and an arbitrary (possibly non-convex, with multiple connectivities) meshed solid is exactly expressed by a set of planar cross-sections. A rule for marching on the edges of an arbitrary polyhedron is set for obtaining the topology of the cross-section. The method neither seeks triangulation of the surface mesh nor utilizes look-up tables, therefore it has optimal efficiency.

  2. Solid Rocket Motor Acoustic Testing

    SciTech Connect

    Rogers, J.D.

    1999-03-31

    Acoustic data are often required for the determination of launch and powered flight loads for rocket systems and payloads. Such data are usually acquired during test firings of the solid rocket motors. In the current work, these data were obtained for two tests at a remote test facility where we were visitors. This paper describes the data acquisition and the requirements for working at a remote site, interfacing with the test hosts.

  3. Radiation sensitive solid state switch

    NASA Technical Reports Server (NTRS)

    Hutto, R. J. (Inventor)

    1973-01-01

    A mechanically operable solid state switch suited for use in achieving a variable circuit-switching function is described. This switch is characterized by an annular array of photoresponsive switching devices, disposed in communication with an included source of radiation, and a plurality of interchangeable, mechanically operable interrupter disks. Each disk has a predetermined pattern of transparent and opaque portions. Operative displacement of each disk serves to make and break selected electrical circuits through the photo responsive devices of said array.

  4. A solid phase antibody screen.

    PubMed

    Plapp, F V; Sinor, L T; Rachel, J M; Beck, M L; Coenen, W M; Bayer, W L

    1984-12-01

    An automated solid phase antibody screen (SPAS) in microplates has been developed. Red blood cell (RBC) adherence was used as the end point instead of agglutination. Consequently, positive and negative reactions were readily distinguished by a microplate spectrophotometer. The SPAS performed as well as conventional antiglobulin methods for detecting IgG antibodies in donor sera and had increased sensitivity as determined by serial dilutions of antibodies.

  5. Solid electrolyte oxygen regeneration system

    NASA Technical Reports Server (NTRS)

    Shumar, J. W.; See, G. G.; Schubert, F. H.; Powell, J. D.

    1976-01-01

    A program to design, develop, fabricate and assemble a one-man, self-contained, solid electrolyte oxygen regeneration system (SX-1) incorporating solid electrolyte electrolyzer drums was completed. The SX-1 is a preprototype engineering model designed to produce 0.952 kg (2.1 lb)/day of breathable oxygen (O2) from the electrolysis of metabolic carbon dioxide (CO2) and water vapor. The CO2 supply rate was established based on the metabolic CO2 generation rate for one man of 0.998 kg (2.2 lb)/day. The water supply rate (0.254 kg (0.56 lb)/day) was designed to be sufficient to make up the difference between the 0.952 kg (2.1 lb)/day O2 generation specification and the O2 available through CO2 electrolysis, 0.726 kg (1.6 lb)/day. The SX-1 was successfully designed, fabricated and assembled. Design verification tests (DVT) or the CO Disproportionators, H2 separators, control instrumentation, monitor instrumentation, water feed mechanism were successfully completed. The erratic occurrence of electrolyzer drum leakage prevented the completion of the CO2 electrolyzer module and water electrolyzer module DVT's and also prevented the performance of SX-1 integrated testing. Further development work is required to improve the solid electrolyte cell high temperature seals.

  6. Solid rocket motor witness test

    NASA Technical Reports Server (NTRS)

    Welch, Christopher S.

    1991-01-01

    The Solid Rocket Motor Witness Test was undertaken to examine the potential for using thermal infrared imagery as a tool for monitoring static tests of solid rocket motors. The project consisted of several parts: data acquisition, data analysis, and interpretation. For data acquisition, thermal infrared data were obtained of the DM-9 test of the Space Shuttle Solid Rocket Motor on December 23, 1987, at Thiokol, Inc. test facility near Brigham City, Utah. The data analysis portion consisted of processing the video tapes of the test to produce values of temperature at representative test points on the rocket motor surface as the motor cooled down following the test. Interpretation included formulation of a numerical model and evaluation of some of the conditions of the motor which could be extracted from the data. These parameters included estimates of the insulation remaining following the tests and the thickness of the charred layer of insulation at the end of the test. Also visible was a temperature signature of the star grain pattern in the forward motor segment.

  7. Energy transfer in solid explosives

    SciTech Connect

    Tarver, C.M.; Fried, L.E.; Ruggiero, A.J.; Calef, D.F.

    1993-07-01

    The nonequilibrium Zeldovich-von Neumann-Doring theory of detonation in solid explosives is extended to include recent nanosecond and picosecond experimental and theoretical results on each of the four main regions of the reaction zone. The first region is the three-dimensional, Mach stem dominated leading shock front which excites the phonon modes of the explosive molecules in less than a picosecond. The second region is the multiphonon up-pumping process in which the excited phonons anharmonically couple to the low frequency (doorway) vibrational modes which in turn equilibrate with the higher frequency modes by internal vibrational redistribution. This process may require on the order of tens of picoseconds. The third region is the chemical reconstitution region in which the vibrationally equilibrated transition state decomposes in a series of chain reaction steps into highly vibrationally excited diatomic and triatomic molecules in approximately one nanosecond. The fourth region is dominated by vibrational deexcitation and solid species formation as chemical and thermal equilibrium is approached. This is the region measured by current nanosecond resolution techniques and can last from nanoseconds to microseconds depending on the oxygen balance of the solid explosive.

  8. Solid-state proton conductors

    SciTech Connect

    Jewulski, J.R.; Osif, T.L.; Remick, R.J.

    1990-12-01

    The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling and optimization studies. Correlation and optimization studies, to include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells including the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms. 164 refs., 27 figs., 13 tabs.

  9. Solid Waste Management Plan. Revision 4

    SciTech Connect

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  10. Solid Waste Activity Packet for Teachers.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This solid waste activity packet introduces students to the solid waste problem in Illinois. Topics explore consumer practices in the market place, packaging, individual and community garbage generation, and disposal practices. The activities provide an integrated approach to incorporating solid waste management issues into subject areas. The…

  11. Rechargeable solid polymer electrolyte battery cell

    DOEpatents

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  12. Energy and solid/hazardous waste

    SciTech Connect

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  13. Suspended Solids Profiler Shop Test Report

    SciTech Connect

    STAEHR, T.W.

    2000-01-19

    The Suspended Solids Profiler (SSP) Instrument is planned to be installed in the AZ-101 tank to measure suspended solids concentrations during mixer pump testing. The SSP sensor uses a reflectance measurement principle to determine the suspended solids concentrations. The purpose of this test is to provide a documented means of verifying that the functional components of the SSP operate properly.

  14. Composite Solid Propellant Predictability and Quality Assurance

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar

    1989-01-01

    Reports are presented at the meeting at the University of Arizona on the study of predictable and reliable solid rocket motors. The following subject areas were covered: present state and trends in the research of solid propellants; the University of Arizona program in solid propellants, particularly in mixing (experimental and analytical results are presented).

  15. Flowmeter for gas-entrained solids flow

    DOEpatents

    Porges, Karl G.

    1990-01-01

    An apparatus and method for the measurement of solids feedrate in a gas-entrained solids flow conveyance system. The apparatus and method of the present invention include a vertical duct connecting a source of solids to the gas-entrained flow conveyance system, a control valve positioned in the vertical duct, and a capacitive densitometer positioned along the duct at a location a known distance below the control valved so that the solid feedrate, Q, of the gas entrained flow can be determined by Q=S.rho..phi.V.sub.S where S is the cross sectional area of the duct, .rho. is the density of the solid, .phi. is the solid volume fraction determined by the capacitive densitometer, and v.sub.S is the local solid velocity which can be inferred from the konown distance of the capacitive densitometer below the control valve.

  16. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

    2003-12-08

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

  17. Solid-Solid Phase Transition Kinetics of FOX-7

    SciTech Connect

    Burnham, A K; Weese, R K; Wang, R; Kwok, Q M; Jones, D G

    2005-07-12

    Since it was developed in the late 1990s, 1,1-diamino-2,2-dinitroethene (FOX-7), with lower sensitivity and comparable performance to RDX, has received increasing interest. This paper will present our results for the phase changes of FOX-7 using DSC and HFC (Heat Flow Calorimetry). DSC thermal curves recorded at linear heating rates of 0.10, 0.35 and 1.0 C min{sup -1} show two endothermic peaks and two exothermic peaks. The two endothermic peaks represent solid-solid phase transitions, which have been observed in the literature at 114 C ({beta}-{gamma}) and 159 C ({gamma}-{delta}) by both DSC and XPD (X-ray powder diffraction) measurements. The first transition shifts from 114.5 to 115.8 C as the heating rate increases from 0.10 to 1.0 C min{sup -1}, while the second transition shifts from 158.5 to 160.4 C. Cyclical heating experiments show the endotherms and exotherms for a first heating through the {gamma} phase to the {delta} phase, a cooling and reversion to the {alpha} or {beta} phase, and a second heating to the {gamma} and {delta} phases. The data are interpreted using kinetic models with thermodynamic constraints.

  18. Thermal transport across symmetric and asymmetric solid-solid interfaces

    NASA Astrophysics Data System (ADS)

    Bi, Kedong; Liu, Yadong; Zhang, Chunwei; Li, Jiapeng; Chen, Minhua; Chen, Yunfei

    2016-10-01

    Thermal transport across symmetric and asymmetric solid-solid interfaces is investigated by non-equilibrium molecular dynamics simulations. For symmetric interfaces, simulation results demonstrate that the thermal interface resistance is reduced greatly with the temperature increasing from 20 to 70 K. Besides, the introduction of an interlayer in the region of a highly mismatched interface is predicted to effectively decrease the thermal interface resistance due to the vibrational bridge role of the interlayer in connecting two vibrationally mismatched materials. As for the case of asymmetric interfaces, it is found that the capacity of thermal transport across an asymmetric interface is related to the effective interfacial area, namely the smaller cross-section area of component materials. In addition, effects of the transition angle at asymmetric interfaces on the thermal interface resistance are further studied when heat flows through interfaces from the side with larger cross-section area to the other. It is shown that a smoother transition is preferred for thermal transport through an asymmetric interface.

  19. Solid state division progress report, period ending February 29, 1980

    SciTech Connect

    Not Available

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.

  20. Solid state electrochromic light modulator

    SciTech Connect

    Cogan, S.F.; Rauh, R.D.

    1990-07-03

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counter electrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films. 4 figs.

  1. Colorimetric Solid-Phase Extractor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The heart of a colorimetric solid phase extractor (CSPE) test kit quickly measures the concentration of the biocides silver or iodine in astronauts' drinking water to determine whether concentrations are safe. When 10 milliliters (ml) of water is drawn through the disk, the disk will turn color (yellow in this picture for iodine) indicating the presence of the biocides. The device could someday be used to test water safety at reservoirs and water treatment plants on Earth. (photo credit: Microanalytical Instrumentation Center, Iowa State University).

  2. Crystallization of amorphous solid films

    NASA Astrophysics Data System (ADS)

    Safarik, Douglas Joseph

    2003-06-01

    Below ˜130 K, H2O can exist for prolonged periods in a thermodynamically unstable, non-crystalline solid form known as amorphous solid water (ASW). When warmed to above 135 K, ASW crystallizes to the thermodynamically favored state, cubic ice I, on a laboratory time scale. Despite the relevance of ASW crystallization to a variety of scientific problems ranging from astrophysical phenomena to cryopreservation, the kinetics of this transformation are largely uncharacterized, and its mechanism is not fully understood. In the present work, the crystallization kinetics of vapor-deposited, nonporous ASW films less than one micron thick are investigated experimentally near 140 K. The amorphous to crystalline transition is characterized using a probe molecule, chlorodifluoromethane (CHF2Cl), whose adsorbed states and hence desorption kinetics are sensitive to the crystallinity of solid water surfaces. The transformation kinetics of very thick ASW films are found to be both independent of specimen size and consistent with simultaneous homogeneous nucleation and isotropic growth of crystalline ice grains. As the ASW film thickness is reduced from 385 nm to 55 nm, however, the rate of surface crystallization decelerates, in apparent conflict with a homogeneous nucleation and growth mechanism. In an attempt to explain this behavior, a geometrical model of phase transition kinetics at the surface of solids, with special consideration of finite specimen size in one dimension, is constructed. For materials in which nucleation occurs spatially randomly, phase change is predicted to decelerate when film thickness is reduced below the mean crystal grain size. This phenomenon originates from a reduction in the number of crystallites available to transform the surface as the sample becomes thinner. Good quantitative agreement between this simple model and the experimental data is attained using a minimum of kinetic parameters, suggesting it captures the essential physics of ASW

  3. Solid waste management in Japan

    SciTech Connect

    Naito, S.

    1995-09-01

    On Friday 17 June 1994, as the invited speaker of the International Congress of IWM/ISWA at Torbay, UK the author presented a paper of {open_quotes}A framework for success: the role of legislation{close_quotes}. THis was to introduce the amendment of Waste Disposal Cleansing Law and the Basic Environment Law in 1991, but the combination of the two amended laws has enforced promoting and assisting the fulfillment of the responsibilities of corporations and citizens. In addition to such presentation, the author pointed out a new manner of solid waste management (SWM) in Japan.

  4. Solid state nuclear track detection

    SciTech Connect

    Durrani, S.A.; Bull, R.K.

    1987-01-01

    This book is a basic work on the technique variously known as 'nuclear track analysis', 'track-etch technique', or 'solid state nuclear tract detection'. This has greatly expanded in range, scope and depth since the early 1960's, soon after its discovery, until there is hardly a field now in which it has not found an actual or potential use. Such applications range from archaeology, geology, space physics, medicine and biology to reactor physics and nuclear physics-to name but a few.

  5. The Advanced Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Mitchell, Royce E.

    1992-01-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  6. The Advanced Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Mitchell, Royce E.

    1992-08-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  7. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1993-01-01

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  8. Solid-State Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.

    2005-01-01

    This document is a web site page, and a data sheet about Personal protection (i.e., space suits) presented to the Radiation and Micrometeoroid Mitigation Technology Focus Group meeting. The website describes the work of the PI to improve solid state personal radiation dosimetry. The data sheet presents work on the active personal radiation detection system that is to provide real-time local radiation exposure information during EVA. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.

  9. Solid-state optical microscope

    DOEpatents

    Young, I.T.

    1981-01-07

    A solid state optical microscope is described wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. Means for scanning in one of two orthogonal directions are provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  10. Constitutive equations for solid propellants

    SciTech Connect

    Oezuepek, S.; Becker, E.B.

    1997-04-01

    Mechanical behavior of the Space Shuttle redesigned solid rocket motor (RSRM) propellant is studied from a phenomenological point of view. Motivated by the study of the experimental data three initially isotropic constitutive models have been developed. All models represent the effect of strain rate, superimposed hydrostatic pressure, and cyclic loading on the stress and dilatation response of the material. A particular emphasis is given to the prediction of volume dilatation. The model resulting in the best representation of the available data is calibrated using only a few tests. The predictions of the model are compared with experiments for several loading conditions not used in the calibration.

  11. Composting of municipal solid waste.

    PubMed

    Kumar, Sunil

    2011-06-01

    This paper reviews the literature on the composting process, which is one of the technological options for the processing of municipal solid wastes (MSWs). The process assumes a great significance, particularly from the point of its economic viability, capability for recycling of nutrients and waste minimization with minimum environmental problems. A number of studies on various aspects of the composting process, including process control and monitoring parameters such as temperature, pH, moisture content, aeration, and porosity are reviewed. Salient observations on microbial properties of composting are described and details of vermicomposting, as well as a detailed analysis of patents on composting of MSW, are presented.

  12. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1990-01-01

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  13. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1993-12-07

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  14. Solid oxide fuel cell generator

    DOEpatents

    Draper, Robert; George, Raymond A.; Shockling, Larry A.

    1993-01-01

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  15. Solid oxide fuel cell generator

    DOEpatents

    Draper, R.; George, R.A.; Shockling, L.A.

    1993-04-06

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  16. Solid phase microextraction field kit

    DOEpatents

    Nunes, Peter J.; Andresen, Brian D.

    2005-08-16

    A field kit for the collection, isolation and concentration of trace amounts of high explosives (HE), biological weapons (BW) and chemical weapons (CW) residues in air, soil, vegetation, swipe, and liquid samples. The field kit includes a number of Solid Phase Microextraction (SPME) fiber and syringe assemblies in a hermetically sealed transportation container or tubes which includes a sampling port, a number of extra SPME fiber and syringe assemblies, the fiber and syringe assemblies including a protective cap for the fiber, and an extractor for the protective cap, along with other items including spare parts, protective glove, and an instruction manual, all located in an airtight container.

  17. Novel Electrode Materials for Low-Temperature Solid-Oxide Fuel Cells

    SciTech Connect

    Shaowu Zha; Meilin Liu

    2005-03-23

    morphologies of the very same material is critical to the fabrication of functionally graded electrodes for solid-state electrochemical devices such as SOFCs and lithium batteries. By carefully adjusting deposition parameters, we have successfully produced oxide nano-powders with the size of 30 {approx} 200 nm. Porous films with various microstructures and morphologies are also deposited on several substrates by systematic adjustment of the deposition parameters. Highly porous, excellently bonded and nano-structured electrodes fabricated by combustion CVD exhibit extremely high surface area and remarkable catalytic activities. Using in situ potential dependent FTIR emission spectroscopy, we have found evidence for two, possibly three distinct di-oxygen species present on the electrode surface. We have successfully identified which surface oxygen species is present under a particular electrical or chemical condition and have been able to deduce the reaction mechanisms. This technique will be used to probe the gas-solid interactions at or near the TPB and on the surfaces of mixed-conducting electrodes in an effort to understand the molecular processes relevant to the intrinsic catalytic activity. Broad spectral features are assigned to the electrochemical-polarization-induced changes in the optical properties of the electrode surface layer.

  18. Towards the characterization of silicon surfaces: Solid state nuclear magnetic resonance studies

    NASA Astrophysics Data System (ADS)

    Caylor, Rebecca Anne

    One of the developing areas in silicon chemistry is in small silicon particles, primarily the nanoparticles regime. When on the 'nano' scale, silicon possesses very different properties and characteristics from bulk silicon. These properties include novel optical and electronic properties that are size dependent. Semiconductor nanoparticles possess a unique bright photoluminescence when in the nanoparticle regime. The photoluminescence in the nanoparticle regime answers the problem of inefficient emissions, which have previously been a problem in bulk silicon, for use in solar cells. Nanoparticle silicon (np-Si) is also biocompatible, allowing for the use in various biological applications including biological tracers, biosensors, delivery of medicine, as well as many others. Although np-Si is widely used, its surface structure still remains largely debated. The surface structure of np-Si is of critical importance as it affects the reactivity of the sample as well as the properties the samples possess. Relative to other silicon samples, np-Si lends itself to be studied by solid state NMR due to its higher surface area, although other types of silicon samples have been studied to some degree in this dissertation project. The surface structure and adjacent interior of np-Si, obtained as commercially available silicon nanopowder, were studied in this project using multinuclear, solid-state NMR spectroscopy. The results are consistent with an overall picture in which the bulk of the np-Si interior consists of highly ordered ('crystalline') silicon atoms, each bound tetrahedrally to four other silicon atoms. From a combination of 1H and 29Si magic-angle-spinning (MAS) NMR results and quantum mechanical 29Si chemical shift calculations, silicon atoms on the surface of 'as-received' np-Si were found to exist in a variety of chemical structures, including primarily structures of the types (Si-O-)n(Si-) 3-nSi-H (with n = 1--3) and (Si-O-)2Si(H)OH, where Si stands for a

  19. Solid-surface luminescence analysis

    SciTech Connect

    Hurtubise, R.J.

    1991-01-01

    We have characterized several interactions that are very important in solid-matrix luminescence. With silica gel chromatoplates and filter paper, simple equations were derived for calculating the individual contributions to the percent decrease in luminescence due to either moisture or to a quenching gas. For sodium acetate as a solid matrix and p-aminobenzoate as a model compound, it was concluded that p-aminobenzoate was incorporated into the crystal structure of sodium acetate, and the triplet energy was lost be skeletal vibrations in sodium acetate. Also, with the same system is was shown that p-aminobenzoate did not undergo rotational relaxation, and thus rotational processes did not contribute to the deactivation of the triplet state. Several results were obtained from model compounds adsorbed on filter paper under different temperature and humidity conditions and with a variety of heavy atoms present. Fundamental photophysical equations were used in calculating several basic parameters that revealed information on rate processes and how the absorbed energy was distributed in an adsorbed lumiphor. The most important advancement with filter paper was the development of equations that relate phosphorescence parameters of adsorbed phosphors to the Young's modulus of filter paper. These equations are based on a fundamental theory that relates the hydrogen-bonding network of paper to the modulus of paper.

  20. Germanium-silicon solid solutions

    NASA Technical Reports Server (NTRS)

    Zemskov, V. S.; Kubasov, V. N.; Belokurova, I. N.; Titkov, A. N.; Shulpina, I. L.; Safarov, V. I.; Guseva, N. B.

    1977-01-01

    An experiment on melting and directional crystallization of an antimony (Sb) doped germanium silicon (GeSi) solid solution was designed for the Apollo-Soyuz Test Project (ASTP) to study the possibility of using zero-g conditions for obtaining solid-solution monocrystals with uniformly distributed components. Crystallization in the zero-g environment did not occur under ideal stationary growth and segregation conditions. Crystallization under zero-g conditions revealed the heterogeneous nature of Si and Sb distribution in the cross sections of crystals. The presence of the radial thermal gradient in the multipurpose furnace could be one of the reasons for such Si and Sb distribution. The structure of space-grown crystals correlates with the nature of heterogeneities of Si and Sb distribution in crystals. The type of surface morphology and the contour observed in space-grown crystals were never observed in ground-based crystals and indicate the absence of wetting of the graphitized walls of the ampoule by the melt during melting and crystallization.

  1. Continuum representations of cellular solids

    SciTech Connect

    Neilsen, M.K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  2. Contamination and solid state welds.

    SciTech Connect

    Mills, Bernice E.

    2007-05-01

    Since sensitivity to contamination is one of the verities of solid state joining, there is a need for assessing contamination of the part(s) to be joined, preferably nondestructively while it can be remedied. As the surfaces that are joined in pinch welds are inaccessible and thus provide a greater challenge, most of the discussion is of the search for the origin and effect of contamination on pinch welding and ways to detect and mitigate it. An example of contamination and the investigation and remediation of such a system is presented. Suggestions are made for techniques for nondestructive evaluation of contamination of surfaces for other solid state welds as well as for pinch welds. Surfaces that have good visual access are amenable to inspection by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Although other techniques are useful for specific classes of contaminants (such as hydrocarbons), DRIFT can be used most classes of contaminants. Surfaces such as the interior of open tubes or stems that are to be pinch welded can be inspected using infrared reflection spectroscopy. It must be demonstrated whether or not this tool can detect graphite based contamination, which has been seen in stems. For tubes with one closed end, the technique that should be investigated is emission infrared spectroscopy.

  3. Erosive burning of solid propellants

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1993-01-01

    Presented here is a review of the experimental and modeling work concerning erosive burning of solid propellants (augmentation of burning rate by flow of product gases across a burning surface). A brief introduction describes the motor design problems caused by this phenomenon, particularly for low port/throat area ratio motors and nozzleless motors. Various experimental techniques for measuring crossflow sensitivity of solid propellant burning rates are described, with the conclusion that accurate simulation of the flow, including upstream flow development, in actual motors is important since the degree of erosive burning depends not only on local mean crossflow velocity and propellant nature, but also upon this upstream development. In the modeling area, a brief review of simplified models and correlating equations is presented, followed by a description of more complex numerical analysis models. Both composite and double-base propellant models are reviewed. A second generation composite model is shown to give good agreement with data obtained in a series of tests in which composite propellant composition and heterogeneity (particle size distribution) were systematically varied. Finally, the use of numerical models for the development of erosive burning correlations is described, and a brief discussion of scaling is presented.

  4. Undulatory microswimming near solid boundaries

    NASA Astrophysics Data System (ADS)

    Schulman, R. D.; Backholm, M.; Ryu, W. S.; Dalnoki-Veress, K.

    2014-10-01

    The hydrodynamic forces involved in the undulatory microswimming of the model organism C. elegans are studied in proximity to solid boundaries. Using a micropipette deflection technique, we attain direct and time-resolved force measurements of the viscous forces acting on the worm near a single planar boundary as well as confined between two planar boundaries. We observe a monotonic increase in the lateral and propulsive forces with increasing proximity to the solid interface. We determine normal and tangential drag coefficients for the worm, and find these to increase with confinement. The measured drag coefficients are compared to existing theoretical models. The ratio of normal to tangential drag coefficients is found to assume a constant value of 1.5 ± 0.1(5) at all distances from a single boundary, but increases significantly as the worm is confined between two boundaries. In response to the increased drag due to confinement, we observe a gait modulation of the nematode, which is primarily characterized by a decrease in the swimming amplitude.

  5. Nanoscale Mixing of Soft Solids

    SciTech Connect

    Choi, Soo-Hyung; Lee, Sangwoo; Soto, Haidy E.; Lodge, Timothy P.; Bates, Frank S.

    2013-03-07

    Assessing the state of mixing on the molecular scale in soft solids is challenging. Concentrated solutions of micelles formed by self-assembly of polystyrene-block-poly(ethylene-alt-propylene) (PS-PEP) diblock copolymers in squalane (C{sub 30}H{sub 62}) adopt a body-centered cubic (bcc) lattice, with glassy PS cores. Utilizing small-angle neutron scattering (SANS) and isotopic labeling ({sup 1}H and {sup 2}H (D) polystyrene blocks) in a contrast-matching solvent (a mixture of squalane and perdeuterated squalane), we demonstrate quantitatively the remarkable fact that a commercial mixer can create completely random mixtures of micelles with either normal, PS(H), or deuterium-labeled, PS(D), cores on a well-defined bcc lattice. The resulting SANS intensity is quantitatively modeled by the form factor of a single spherical core. These results demonstrate both the possibility of achieving complete nanoscale mixing in a soft solid and the use of SANS to quantify the randomness.

  6. Solid-matrix luminescence analysis

    SciTech Connect

    Hurtubise, R.J.

    1993-01-15

    Several interactions with lumiphors adsorbed on filter paper were elucidated from experiments with moisture, modulus and heavy-atom salts. The data were interpreted using static and dynamic quenching models, heavy-atom theory, and a theory related to the modulus of paper. With cyclodextrin-salt matrices, it was shown that 10% [alpha]-cyclodextrin/NaCl was very effective for obtaining strong room-temperature fluorescence and moderate room-temperature phosphorescence from adsorbed stereoisomeric tetrols. Extensive photophysical information was obtained for the four tetrols on 10% [alpha]-cyclodextrin/NaCl. The photophysical information acquired was used to develop a method for characterizing two of the tetrols. Work with model compounds adsorbed on deuterated sodium acetate showed that C-H vibrations in the undeuterated sodium acetate were not responsible for the deactivation of the excited triplet state in the model phosphors investigated. A considerable amount of solution luminescence and solid-matrix luminescence data were compared. The most important finding was that in several cases the room-temperature solid-matrix luminescence quantum yields were greater than the solution low-temperature quantum yield values.

  7. Fusion genes in solid tumors.

    PubMed

    Aman, P

    1999-08-01

    Tumor development in different cell types and tissue locations involves many pathways, distinct genes and exogenous factors. Tumor type-specific chromosome rearrangements resulting in fusion genes or promoter swapping are believed to be involved in the early development of many tumor types. They are present in almost all cases of a particular tumor type and cases have been described that carry only tumor type-specific translocations without any signs of other cytogenetic changes. The mechanisms behind chromosome rearrangements in solid tumors are largely unknown. Radiation is an important factor in thyroid carcinomas but no com-$bmon sequence motifs are made out in the break points of solid tumors. The fusion genes found in sarcomas are dominated by the transcription factor type of genes with the TLS/FUS and EWS series of fusion genes as the largest group. More than 50% of papillary thyroid carcinomas carry fusion proteins with tyrosine kinase activity. Rearrangements involving HMGIC, HMGIY, and PLAG1 are common in benign mesenchymal tumors and salivary gland adenomas. Many recurrent tumor translocations show a strict specificity for tumor type. This specificity can most likely be explained by the specific sets of target genes that are deregulated by the fusion gene products. Identification of the downstream target genes is currently the object of intense research and may provide us with information that will help design better diagnostic tools and eventually find a cure for these diseases.

  8. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; Larry Chick

    2004-05-07

    The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.

  9. Comparison of solid self-microemulsifying drug delivery system (solid SMEDDS) prepared with hydrophilic and hydrophobic solid carrier.

    PubMed

    Oh, Dong Hoon; Kang, Jun Hyeok; Kim, Dong Wuk; Lee, Beom-Jin; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2011-11-28

    In order to compare the effects of hydrophilic and hydrophobic solid carrier on the formation of solid self-microemulsifying drug delivery system (SMEDDS), two solid SMEDDS formulations were prepared by spray-drying the solutions containing liquid SMEDDS and solid carriers. Colloidal silica and dextran were used as a hydrophobic and a hydrophilic carrier, respectively. The liquid SMEDDS, composed of Labrafil M 1944 CS/Labrasol/Trasncutol HP (12.5/80/7.5%) with 2% w/v flurbiprofen, gave a z-average diameter of about 100 nm. Colloidal silica produced an excellent conventional solid SMEDDS in which the liquid SMEDDS was absorbed onto its surfaces. It gave a microemulsion droplet size similar to that of the liquid SMEDDS (about 100 nm) which was smaller than the other solid SMEDDS formulation. In the solid SMEDDS prepared with dextran, liquid SMEDDS was not absorbed onto the surfaces of carrier but formed a kind of nano-sized microcapsule with carrier. However, the drug was in an amorphous state in two solid SMEDDS formulations. Similarly, they greatly improved the dissolution rate and oral bioavailability of flurbiprofen in rats due to the fast spontaneous emulsion formation and the decreased droplet size. Thus, except appearance, hydrophilic carrier (dextran) and hydrophobic carrier (colloidal silica) hardly affected the formation of solid SMEDDS such as crystalline properties, dissolution and oral bioavailability.

  10. Solid State Lighting Program (Falcon)

    SciTech Connect

    Meeks, Steven

    2012-06-30

    Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioning which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated

  11. Solid-oxide fuel cell electrolyte

    SciTech Connect

    Bloom, I.D.; Hash, M.C.; Krumpelt, M.

    1991-12-31

    This invention is comprised of a solid-oxide electrolyte operable at between 600{degrees}C and 800{degrees}C and a method of producing the solid-oxide electrolyte. The solid-oxide electrolyte comprises a combination of a compound having a weak metal-oxygen interactions with a compound having stronger metal-oxygen interactions whereby the resulting combination has both strong and weak metal-oxygen interaction properties.

  12. Program Generates Images Of Solid Surfaces

    NASA Technical Reports Server (NTRS)

    Goza, Sharon P.; Bell, Bradley; Shores, David

    1991-01-01

    Solid Surface Modeler (SSM) computer program generates three-dimensional computer models of solid surfaces for use in visual analysis and animation. Provides advanced functions, including Constructive Solid Geometry, Skin Construction, Tube Construction, Material Property Editing, and Texture Map Tools. Allows user to change such attributes as color, reflectivity, smoothing, and position of object easily. Model saved in ASCII or binary format for use in another program or saved in edit format for reloading in SSM. Written in standard C.

  13. Solid-oxide fuel cell electrolyte

    DOEpatents

    Bloom, Ira D.; Hash, Mark C.; Krumpelt, Michael

    1993-01-01

    A solid-oxide electrolyte operable at between 600.degree. C. and 800.degree. C. and a method of producing the solid-oxide electrolyte are provided. The solid-oxide electrolyte comprises a combination of a compound having weak metal-oxygen interactions with a compound having stronger metal-oxygen interactions whereby the resulting combination has both strong and weak metal-oxygen interaction properties.

  14. Solid-state rechargeable magnesium battery

    DOEpatents

    Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng

    2016-09-06

    Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.

  15. Washing of the AN-107 entrained solids

    SciTech Connect

    GJ Lumetta; FV Hoopes

    2000-03-31

    This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AN-107 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AN-107 entrained solids in 0.01 M NaOH, so that BNFL can evaluate whether these solids require caustic leaching.

  16. Eigenstress model for electrochemistry of solid surfaces.

    PubMed

    Ma, Hongxin; Xiong, Xilin; Gao, Panpan; Li, Xi; Yan, Yu; Volinsky, Alex A; Su, Yanjing

    2016-01-01

    Thermodynamic analysis and molecular dynamics simulations were conducted to systematically study the size-dependent electrochemical response of solids. By combining the generalized Young-Laplace equation with the popular Butler-Volmer formulation, the direct influence of surface stress on solid film electrochemical reactions was isolated. A series of thermodynamic formulas were developed to describe the size-dependent electrochemical properties of the solid surface. These formulas include intrinsic surface elastic parameters, such as surface eigenstress and surface elastic modulus. Metallic films of Au, Pt, Ni, Cu and Fe were studied as examples. The anodic current density of the metal film increased, while the equilibrium potential decreased with increasing solid film thickness.

  17. Path-integral simulation of solids.

    PubMed

    Herrero, C P; Ramírez, R

    2014-06-11

    The path-integral formulation of the statistical mechanics of quantum many-body systems is described, with the purpose of introducing practical techniques for the simulation of solids. Monte Carlo and molecular dynamics methods for distinguishable quantum particles are presented, with particular attention to the isothermal-isobaric ensemble. Applications of these computational techniques to different types of solids are reviewed, including noble-gas solids (helium and heavier elements), group-IV materials (diamond and elemental semiconductors), and molecular solids (with emphasis on hydrogen and ice). Structural, vibrational, and thermodynamic properties of these materials are discussed. Applications also include point defects in solids (structure and diffusion), as well as nuclear quantum effects in solid surfaces and adsorbates. Different phenomena are discussed, as solid-to-solid and orientational phase transitions, rates of quantum processes, classical-to-quantum crossover, and various finite-temperature anharmonic effects (thermal expansion, isotopic effects, electron-phonon interactions). Nuclear quantum effects are most remarkable in the presence of light atoms, so that especial emphasis is laid on solids containing hydrogen as a constituent element or as an impurity.

  18. Solid Lubrication Fundamentals and Applications. Chapter 2

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1998-01-01

    This chapter describes powerful analytical techniques capable of sampling tribological surfaces and solid-film lubricants. Some of these techniques may also be used to determine the locus of failure in a bonded structure or coated substrate; such information is important when seeking improved adhesion between a solid-film lubricant and a substrate and when seeking improved performance and long life expectancy of solid lubricants. Many examples are given here and through-out the book on the nature and character of solid surfaces and their significance in lubrication, friction, and wear. The analytical techniques used include the late spectroscopic methods.

  19. Municipal solid wastes and their disposal.

    PubMed Central

    Stone, R

    1978-01-01

    A brief overview is given of the sources, characteristics, and toxic constituents of municipal solid wastes. Several methods are presented for handling, treating, and disposal of solid wastes. Monitoring the landfill site is necessary; there has been a trend to recognize that municipal solid wastes may be hazardous and to provide separate secure handling, treatment, and disposal for their dangerous constituents. Under current state and Federal regulations, permits are being required to assure that proper handling of conventional solid wastes and more hazardous constituents are carefully managed. PMID:738240

  20. Acoustic superfocusing by solid phononic crystals

    SciTech Connect

    Zhou, Xiaoming; Assouar, M. Badreddine Oudich, Mourad

    2014-12-08

    We propose a solid phononic crystal lens capable of acoustic superfocusing beyond the diffraction limit. The unit cell of the crystal is formed by four rigid cylinders in a hosting material with a cavity arranged in the center. Theoretical studies reveal that the solid lens produces both negative refraction to focus propagating waves and surface states to amplify evanescent waves. Numerical analyses of the superfocusing effect of the considered solid phononic lens are presented with a separated source excitation to the lens. In this case, acoustic superfocusing beyond the diffraction limit is evidenced. Compared to the fluid phononic lenses, the solid lens is more suitable for ultrasonic imaging applications.