Science.gov

Sample records for nanopowders opredelenie soderzhaniya

  1. Method for forming energetic nanopowders

    DOEpatents

    Lee, Kien-Yin; Asay, Blaine W.; Kennedy, James E.

    2013-10-15

    A method for the preparation of neat energetic powders, having nanometer dimensions, is described herein. For these neat powder, a solution of a chosen energetic material is prepared in an aprotic solvent and later combined with liquid hexane that is miscible with such solvent. The energetic material chosen is less soluble in the liquid hexane than in the aprotic solvent and the liquid hexane is cooled to a temperature that is below that of the solvent solution. In order to form a precipitate of said neat powders, the solvent solution is rapidly combined with the liquid hexane. When the resulting precipitate is collected, it may be dried and filtered to yield an energetic nanopowder material.

  2. Rheological behavior of oxide nanopowder suspensions

    NASA Astrophysics Data System (ADS)

    Cinar, Simge

    Ceramic nanopowders offer great potential in advanced ceramic materials and many other technologically important applications. Because a material's rheological properties are crucial for most processing routes, control of the rheological behavior has drawn significant attention in the recent past. The control of rheological behavior relies on an understanding of how different parameters affect the suspension viscosities. Even though the suspension stabilization mechanisms are relatively well understood for sub-micron and micron size particle systems, this knowledge cannot be directly transferred to nanopowder suspensions. Nanopowder suspensions exhibit unexpectedly high viscosities that cannot be explained with conventional mechanisms and are still a topic of investigation. This dissertation aims to establish the critical parameters governing the rheological behavior of concentrated oxide nanopowder suspensions, and to elucidate the mechanisms by which these parameters control the rheology of these suspensions. Aqueous alumina nanopowders were chosen as a model system, and the findings were extrapolated to other oxide nanopowder systems such as zirconia, yttria stabilized zirconia, and titania. Processing additives such as fructose, NaCl, HCl, NaOH, and ascorbic acid were used in this study. The effect of solids content and addition of fructose on the viscosity of alumina nanopowder suspensions was investigated by low temperature differential scanning calorimetry (LT-DSC), rheological, and zeta potential measurements. The analysis of bound water events observed in LT-DSC revealed useful information regarding the rheological behavior of nanopowder suspensions. Because of the significance of interparticle interactions in nanopowder suspensions, the electrostatic stabilization was investigated using indifferent and potential determining ions. Different mechanisms, e.g., the effect of the change in effective volume fraction caused by fructose addition and electrostatic

  3. Incorporation of aluminum nanopowder into NTO.

    SciTech Connect

    Lee, K. Y.; Kennedy, J. E.; Peterson, P. D.; Asay, B. W.

    2004-01-01

    Most insensitive high explosives have relatively low output and the user is forced to choose between enhancing operational safety and meeting ordnance performance requirements. The goals of this project are to investigate ways to incorporate Al nanopowder in NTO and to devise formulations that are insensitive and that exhibit high performance. In this paper, the novel method for the preparation of nanoNTO and its formulation with Al nanopowder will be presented, together with the characterization test results. Data from minisandwich velocity test on NTO and NTO/Al mix and the techniques used to verify the potential encapsulation of Al in NTO will also be presented.

  4. Synthesis of carbon nanostructures on iron nanopowders

    NASA Astrophysics Data System (ADS)

    Koshanova, A.; Partizan, G.; Mansurov, B.; Medyanova, B.; Mansurova, M.; Aliev, B.; Jiang, Xin

    2016-08-01

    This work presents the results of experiments on synthesis of carbon nanostructures (CNs) by the method of thermal chemical vapor deposition using iron nanopowders obtained by the method of electrical explosion of wires as catalysts. To study the process of nucleation and growth of individual carbon nanostructures, experiments were conducted not only on nanopowders, but also on the separated clusters. To determine the optimum conditions of the carbon nanostructures synthesis and lower temperature limit, experiments were performed at different temperatures (300-700°C) and pressures (100-400 mbar). The experiments have shown that the lower temperature limit for carbon nanostructures synthesis on the iron nanopowders is 350°C and in this process the growth of carbon nanostructures is not so massive. Stable growth of carbon nanostructures for nanopowders began from 400°C during the entire range of pressures. The analysis of Raman spectroscopy showed that the most optimum conditions for obtaining nanotubes of high quality are P = 100 mbar and T = 425°C.

  5. Nanoexplosion synthesis of multimetal oxide ceramic nanopowders.

    PubMed

    Vasylkiv, Oleg; Sakka, Yoshio

    2005-12-01

    Herein we demonstrate a unique processing technique for engineering multicomponent ceramic nanopowders with precise morphologies by "nanoblast" calcination/deagglomeration. Multiple "nanoexplosions" of C(3)H(6)N(6)O(6) nanoparticles embedded in preliminary engineered nanoreactors break apart the agglomerates because of the highly energetic impacts of the blast waves. Also, the solid-solubility of one component into the other is enhanced by the extremely high local temperature generated during the nanoexplosions. We applied this technique to produce nanosized agglomerate-free ceria-gadolinia solid solution powder with an average aggregate size of 42 nm. The described method opens the door to the synthesis of a wide range of multimetal oxide ceramic and metal-ceramic composite nanopowders, with precise stoichiometries and uniform morphologies. PMID:16351222

  6. Production and properties of electrosprayed sericin nanopowder

    NASA Astrophysics Data System (ADS)

    Hazeri, Najmeh; Tavanai, Hossein; Moradi, Ali Reza

    2012-06-01

    Sericin is a proteinous substrate that envelops fibroin (silk) fiber, and its recovery provides significant economical and social benefits. Sericin is an antibacterial agent that resists oxidation and absorbs moisture and UV light. In powder form, sericin has a wide range of applications in food, cosmetics and drug delivery. Asides from other techniques of producing powder, such as precipitation and spray drying, electrospraying can yield solid nanoparticles, particularly in the submicron range. Here, we report the production of sericin nanopowder by electrospraying. Sericin sponge was recovered from Bombyx mori cocoons through a high-temperature, high-pressure process, followed by centrifugation and freeze drying of the sericin solution. The electrospraying solution was prepared by dissolving the sericin sponge in dimethyl sulfoxide. We demonstrate that electrospraying is capable of producing sericin nanopowder with an average particle size of 25 nm, which is by far smaller than the particles produced by other techniques. The electrosprayed sericin nanopowder consists of small crystallites and exhibits a high moisture absorbance.

  7. Oxidation and melting of aluminum nanopowders.

    PubMed

    Trunov, Mikhaylo A; Umbrajkar, Swati M; Schoenitz, Mirko; Mang, Joseph T; Dreizin, Edward L

    2006-07-01

    Recently, nanometer-sized aluminum powders became available commercially, and their use as potential additives to propellants, explosives, and pyrotechnics has attracted significant interest. It has been suggested that very low melting temperatures are expected for nanosized aluminum powders and that such low melting temperatures could accelerate oxidation and trigger ignition much earlier than for regular, micron-sized aluminum powders. The objective of this work was to investigate experimentally the melting and oxidation behavior of nanosized aluminum powders. Powder samples with three different nominal sizes of 44, 80, and 121 nm were provided by Nanotechnologies Inc. The particle size distributions were measured using small-angle X-ray scattering. Melting was studied by differential scanning calorimetry where the powders were heated from room temperature to 750 degrees C in an argon environment. Thermogravimetric analysis was used to measure the mass increase indicative of oxidation while the powders were heated in an oxygen-argon gas mixture. The measured melting curves were compared to those computed using the experimental particle size distributions and thermodynamic models describing the melting temperature and enthalpy as functions of the particle size. The melting behavior predicted by different models correlated with the experimental observations only qualitatively. Characteristic stepwise oxidation was observed for all studied nanopowders. The observed oxidation behavior was well interpreted considering the recently established kinetics of oxidation of micron-sized aluminum powders. No correlation was found between the melting and oxidation of aluminum nanopowders.

  8. Growth model of binary alloy nanopowders for thermal plasma synthesis

    NASA Astrophysics Data System (ADS)

    Shigeta, Masaya; Watanabe, Takayuki

    2010-08-01

    A new model is developed for numerical analysis of the entire growth process of binary alloy nanopowders in thermal plasma synthesis. The model can express any nanopowder profile in the particle size-composition distribution (PSCD). Moreover, its numerical solution algorithm is arithmetic and straightforward so that the model is easy to use. By virtue of these features, the model effectively simulates the collective and simultaneous combined process of binary homogeneous nucleation, binary heterogeneous cocondensation, and coagulation among nanoparticles. The effect of the freezing point depression due to nanoscale particle diameters is also considered in the model. In this study, the metal-silicon systems are particularly chosen as representative binary systems involving cocondensation processes. In consequence, the numerical calculation with the present model reveals the growth mechanisms of the Mo-Si and Ti-Si nanopowders by exhibiting their PSCD evolutions. The difference of the materials' saturation pressures strongly affects the growth behaviors and mature states of the binary alloy nanopowder.

  9. Growth model of binary alloy nanopowders for thermal plasma synthesis

    SciTech Connect

    Shigeta, Masaya; Watanabe, Takayuki

    2010-08-15

    A new model is developed for numerical analysis of the entire growth process of binary alloy nanopowders in thermal plasma synthesis. The model can express any nanopowder profile in the particle size-composition distribution (PSCD). Moreover, its numerical solution algorithm is arithmetic and straightforward so that the model is easy to use. By virtue of these features, the model effectively simulates the collective and simultaneous combined process of binary homogeneous nucleation, binary heterogeneous cocondensation, and coagulation among nanoparticles. The effect of the freezing point depression due to nanoscale particle diameters is also considered in the model. In this study, the metal-silicon systems are particularly chosen as representative binary systems involving cocondensation processes. In consequence, the numerical calculation with the present model reveals the growth mechanisms of the Mo-Si and Ti-Si nanopowders by exhibiting their PSCD evolutions. The difference of the materials' saturation pressures strongly affects the growth behaviors and mature states of the binary alloy nanopowder.

  10. Studies on synthesis of alumina nanopowder from synthetic Bayer liquor

    SciTech Connect

    Mazloumi, Mahyar; Arami, Hamed; Khalifehzadeh, Razieh; Sadrnezhaad, S.K. . E-mail: sadrnezh@sharif.edu

    2007-06-05

    Procedure for synthesis of alumina nanopowder from Bayer liquor (synthetic sodium aluminate solution) is investigated. Cooling, ageing and then addition of 3 ml/l Tiron (1,2-dihydroxy-3,5-benzene disulfonic acid disodium salt) to the supersaturated liquor affect purity and fineness of the nanopowder product. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray (EDAX) analyses indicate that purity of the alumina nanopowder increases with the aging time. Experimental observations show that highly pure alumina nanopowders could be produced by direct calcination of cold gelatinous sodium aluminate solution followed by careful washing at a Tiron concentration of 3 ml/l NaOH.

  11. The processing of nanopowders by thermal plasma technology

    NASA Astrophysics Data System (ADS)

    Tong, Lirong; Reddy, Ramana G.

    2006-04-01

    The thermal plasma synthesis of nanopowders is a relatively new technology with great potential for future industrial applications. This article introduces research carried out in the plasma processing laboratory at the University of Alabama in Tuscaloosa, Alabama. Ceramic nanopowders and nanofibers (SiC, TiC, and B4C) and nanocomposite powders (TiC-Al(Ti), TiC-Fe(Ti), and TiN-Fe (Ti)) were successfully synthesized by thermal plasma technology.

  12. Carbon dot based nanopowders and their application for fingerprint recovery.

    PubMed

    Fernandes, D; Krysmann, M J; Kelarakis, A

    2015-03-21

    The incorporation of a minor amount of carbogenic nanoparticles into powder compositions imparts remarkable colour-tuneability, without compromising the flowability. In a proof-of-concept demonstration we report the use of these hybrid nanopowders for the visual enhancement of latent fingerprints where they effectively resolve issues arising from poor contrast against multi-coloured or patterned backgrounds.

  13. Si-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sinterability

    SciTech Connect

    Bianco, Alessandra Cacciotti, Ilaria; Lombardi, Mariangela Montanaro, Laura

    2009-02-04

    Synthetic hydroxyapatites incorporating small amounts of Si have shown improved biological performances in terms of enhanced bone apposition, bone in-growth and cell-mediated degradation. This paper reports a systematic investigation on Si-substituted hydroxyapatite (Si 1.40 wt%) nanopowders produced following two different conventional wet methodologies: (a) precipitation of Ca(NO{sub 3}){sub 2}.4H{sub 2}O and (b) titration of Ca(OH){sub 2}. The influence of the synthesis process on composition, thermal behaviour and sinterability of the resulting nanopowders is studied. Samples were characterised by electron microscopy, induced coupled plasma atomic emission spectroscopy, thermal analysis, infrared spectroscopy, N{sub 2} adsorption measurements, X-ray diffraction and dilatometry. Semicrystalline Si-substituted hydroxyapatite powders made up of needle-like nanoparticles were obtained, the specific surface area ranged between 84 and 110 m{sup 2}/g. Pure and Si-substituted hydroxyapatite nanopowders derived from Ca(NO{sub 3}){sub 2}.4H{sub 2}O decomposed around 1000 deg. C. Si-substituted hydroxyapatite nanopowders obtained from Ca(OH){sub 2} were thermally stable up to 1200 deg. C and showed a distinct decreased thermal stability with respect to the homologous pure sample. Si-substituted hydroxyapatites exhibited higher sintering temperature and increased total shrinkage with respect to pure powders. Nanostructured dense ceramics were obtained by sintering at 1100 deg. C Si-substituted hydroxyapatites derived from Ca(OH){sub 2}.

  14. Ignition and explosion of nanopowders: something new under the dust

    NASA Astrophysics Data System (ADS)

    Dufaud, Olivier; Vignes, Alexis; Henry, François; Perrin, Laurent; Bouillard, Jacques

    2011-07-01

    This work deals with the study of ignition and explosion characteristics of nanoparticles. It has been carried out on various powders: zinc, aluminum, carbon blacks... Specific behaviours have been highlighted during the first phase of this project (Nanosafe 2). For instance, it has been demonstrated that there mainly exists two combustion regimes that are either kinetically controlled, for small size particles, or diffusion controlled, for large size particles (generally with diameters greater than 1 or 2 μm). It has been found that as the particle size decreases, minimum ignition temperature and minimum ignition energy decrease (even lower than 1 mJ), indicating higher potential inflammation and explosion risks for metallic nanopowders. Moreover, the presence of agglomerates in the nanopowders could modify their reactivity. Thus, the explosion severity of Al powders tends to increase as the specific surface area decreases, before reaching a peak for 1 μm particle size. These results are essential for industries producing or handling nanopowders in order to propose/design new and proper prevention and protection means. Nevertheless, the validity of the classical characterization tools with regard to nanopowders should be discussed. For example, the experimental laminar flame velocity of Al dusts has been compared to a theoretical one, determined by Huang's model, which assumes that the propagation of the flame is run mainly by conduction. It has shown a good agreement. However, under certain conditions, the Al flame propagation is expected to be mainly conducted by radiation. Two hypotheses can then be made. On the one hand, it can be assumed that the 20 L sphere probably disturbs the flame propagation and thermal mechanisms by absorbing radiation (wall quenching effect). On the other hand, it has been observed, thanks to the use of a high speed camera that the preheating zone is smaller for some nanopowders than for micro-particles (figure below). It could

  15. Shock-induced consolidation and spallation of Cu nanopowders

    SciTech Connect

    Huang, L.; Han, W. Z.; Luo, S. N.; An, Q.; Goddard, W. A. III

    2012-01-01

    A useful synthesis technique, shock synthesis of bulk nanomaterials from nanopowders, is explored here with molecular dynamics simulations. We choose nanoporous Cu ({approx}11 nm in grain size and 6% porosity) as a representative system, and perform consolidation and spallation simulations. The spallation simulations characterize the consolidated nanopowders in terms of spall strength and damage mechanisms. The impactor is full density Cu, and the impact velocity (u{sub i}) ranges from 0.2 to 2 km s{sup -1}. We present detailed analysis of consolidation and spallation processes, including atomic-level structure and wave propagation features. The critical values of u{sub i} are identified for the onset plasticity at the contact points (0.2 km s{sup -1}) and complete void collapse (0.5 km s{sup -1}). Void collapse involves dislocations, lattice rotation, shearing/friction, heating, and microkinetic energy. Plasticity initiated at the contact points and its propagation play a key role in void collapse at low u{sub i}, while the pronounced, grain-wise deformation may contribute as well at high u{sub i}. The grain structure gives rise to nonplanar shock response at nanometer scales. Bulk nanomaterials from ultrafine nanopowders ({approx}10 nm) can be synthesized with shock waves. For spallation, grain boundary (GB) or GB triple junction damage prevails, while we also observe intragranular voids as a result of GB plasticity.

  16. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids.

    PubMed

    Hussain, Dilshad; Najam-ul-Haq, Muhammad; Jabeen, Fahmida; Ashiq, Muhammad N; Athar, Muhammad; Rainer, Matthias; Huck, Christian W; Bonn, Guenther K

    2013-05-01

    Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe(3+) and La(3+) ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program (www.matrixscience.com) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification.

  17. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids.

    PubMed

    Hussain, Dilshad; Najam-ul-Haq, Muhammad; Jabeen, Fahmida; Ashiq, Muhammad N; Athar, Muhammad; Rainer, Matthias; Huck, Christian W; Bonn, Guenther K

    2013-05-01

    Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe(3+) and La(3+) ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program (www.matrixscience.com) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification. PMID:23601977

  18. Assignment of Appropriate Conditions for Synthesizing Tungsten Nanopowder by Electric Explosion of Conductors

    NASA Astrophysics Data System (ADS)

    Zhuravkov, S. P.; Pustovalov, A. V.; Kuznetsov, M. A.; Rosliy, I. S.; Zernin, E. A.

    2016-08-01

    The paper provides the results of experimental research into properties of tungsten nanopowders synthesized by electric explosion of a conductor in argon at various energies, put into the conductor when exploding. The authors have studied how the conditions of synthesizing the tungsten nanopowder influence on the average size of particles.

  19. Zirconia nanoceramic via redispersion of highly agglomerated nanopowder and spark plasma sintering.

    PubMed

    Suárez, Gustavo; Borodianska, Hanna; Sakka, Yoshio; Aglietti, Esteban F; Vasylkiv, Oleg

    2010-10-01

    A 2.7 mol% yttria stabilizing tetragonal zirconia (2.7Y-TZP) nanopowder was synthesized and stored for five years. Humidity and unsatisfactory storage conditions gradually caused heavy agglomeration. Within a few months, 2.7Y-TZP nanopowder became useless for any technological application. A bead-milling deagglomeration technique was applied to recover the heavily agglomerated yttria-stabilized zirconia nanopowder. Low-temperature sintering and spark plasma sintering (SPS) were performed, resulting in fully dense nanostructured ceramics. Compacts formed with heavily agglomerated powder present low sinterability and poor mechanical properties. Bead-milling suspension formed compacts exhibit mechanical properties in the range of the values reported for nanostructured zirconia. This observation confirms the effectiveness of bead-milling in the deagglomeration of highly agglomerated nanopowders. The high value of Vickers hardness of 13.6 GPa demonstrates the success of the processing technique for recovering long-time-stored oxide nanopowders. PMID:21137774

  20. Synthesis, characterization and gas sensing properties of tin oxide nanopowder

    NASA Astrophysics Data System (ADS)

    Choudhary, Meenakshi; Mishra, V. N.; Dwivedi, R.

    2013-06-01

    In the present work, tin oxide nanopowder has been synthesized by solid-state reaction technique. The as-prepared pure and palladium doped (0.5 and 1%) powders have been used for the fabrication of thick film sensors. The influence of particle size of powders and morphology of the thick films has been studied on the sensing performance of thick film sensor. It is observed that the sensors produced from the SnO2 doped with 1% palladium have an excellent ability for the detection of hydrogen gas.

  1. Synthesis of AlNiCo core/shell nanopowders

    NASA Astrophysics Data System (ADS)

    Genc, A. M.; Akdeniz, M. V.; Ozturk, T.; Kalay, Y. E.

    2016-11-01

    Magnetic core/shell nanostructures have been recently received much interest owing to their utmost potential in permanent magnetic applications. In the present work, AlNiCo permanent magnet powders were synthesized by ball milling and a core/shell nanostructure was obtained using RF induced plasma. The effects of particle size and nanoshell structure on the magnetic properties were investigated in details. The coercivity of AlNiCo powders was found to increase with decreasing particle size, exclusively nanopowders encapsulated with Fe3O4 shell showed the highest coercivity values. The shell structure produced during plasma reaction was found to form a resistant layer against oxidation of metallic nanoparticles.

  2. Incorporation of chromium into TiO{sub 2} nanopowders

    SciTech Connect

    Kollbek, Kamila; Sikora, Marcin; Kapusta, Czesław; Szlachetko, Jakub; Radecka, Marta; Lyson-Sypien, Barbara; Zakrzewska, Katarzyna

    2015-04-15

    Highlights: • Nanopowders of TiO{sub 2}:Cr with different amount of Cr dopant were obtained by flame spray synthesis, FSS. • Increase in the optical absorption and a shift of the absorption edge were observed upon Cr doping. • HERFD-XANES measurements indicated that the average valence state of titanium ions was preserved. • Increasing magnetic susceptibility of a paramagnetic character was observed upon Cr doping. - Abstract: The paper reports on the results of a study of optical, electronic and magnetic properties of TiO{sub 2} nanopowders doped with Cr ions. Diffused reflectance spectra reveal an increase in the optical absorption and a shift of the absorption edge towards lower energies upon Cr doping. Direct information on the Ti electronic state and the symmetry of its nearest environment is obtained from XANES Ti K-edge spectra. Magnetic behaviour is probed by means of the temperature dependence of DC magnetic susceptibility. Increasing magnetic susceptibility of a paramagnetic character is observed upon increasing chromium doping. The Curie constant of TiO{sub 2}:10 at.% Cr sample (0.12 emu K/mol Oe) is lower than that expected for Cr{sup 3+} (0.1875 emu K/mol Oe) possibly due to the appearance of Cr{sup 4+} or the presence of the orbital contribution to the magnetic moment.

  3. Spark plasma sintering of alumina nanopowders produced by electrical explosion of wires.

    PubMed

    An, Vladimir; Khasanov, Alexey; de Izarra, Charles

    2015-01-01

    Alumina nanopowders produced by electrical explosion of wires were sintered using the spark plasma sintering technique. The results of XRD analysis show that the main phase in the compacted nanopowders is α-Al2O3. According to the SEM observations, the sintered alumina nanopowder consists of micron-sized faceted grains and nano-sized necked grains. The increase in sintering temperature resulted in a higher density of the sintered powders: from 78.44 to 98.21 % of theoretical density. PMID:26543716

  4. Synthesis and Physical Properties of Nd:YVO4 Nanopowders prepared by a Chemical Method

    NASA Astrophysics Data System (ADS)

    Maleki, M. H.; Alhooie, S.; Dizaji, H. R.; Asgari, A.

    2014-01-01

    Single-phase Nd-doped YVO4 nanopowders were synthesized by a chemical method. The powders were heated at 1200°C for 1 h to obtain good crystallinity with better luminescence. Annealing temperature affects the crystal structure of the nanopowders. X-ray diffraction (XRD) revealed that a preferred crystallographic orientation is [200]. Measurements showed that the nanoparticles had an average size of 62.5 nm. A scanning electron microscope (SEM) image of the nanopowders indicated the formation of uniform and nearly spherical Nd:YVO4 particles. The transmittance spectrum of the nanopowders showed a broad absorption band around 808 nm. Photoluminescence studies on the annealed powders revealed their luminescence properties.

  5. Effect of deposition parameters on the structural properties of ZnO nanopowders prepared by microwave-assisted hydrothermal synthesis.

    PubMed

    Caglar, Yasemin; Gorgun, Kamuran; Aksoy, Seval

    2015-03-01

    ZnO nanopowders were synthesized via microwave-assisted hydrothermal method at different deposition (microwave irradiation) times and pH values. The effects of pH and deposition (microwave irradiation) time on the crystalline structure and orientation of the ZnO nanopowders have been investigated by X-ray diffraction (XRD) study. XRD observations showed that the crystalline quality of ZnO nanopowders increased with increasing pH value. The crystallite size and texture coefficient values of ZnO nanopowders were calculated. The structural quality of ZnO nanopowder was improved by deposition parameters. Field emission scanning electron microscope (FESEM) was used to analyze the surface morphology of the ZnO nanopowders. Microwave irradiation time and pH value showed a significant effect on the surface morphology.

  6. A comparative study of morphology and composition on oxide nanopowders elaborated by SPVD

    NASA Astrophysics Data System (ADS)

    Bârcă, E. S.; Rizea, V.; Abrudeanu, M.; Plaiasu, A. G.; Istrate, B.; Munteanu, C.

    2015-11-01

    The paper proposes a method of obtaining oxide nanopowders in a solar reactor using the solar energy (solar physical vapor deposition). The proposed method is a new method of obtaining nanopowders. Taking into consideration that the properties of the materials change once they get to nanodimensions it is desirable to obtain nanomaterials starting from base materials. Because of the properties that nanomaterials provide, the demand has grown in the last period of time. Also the last few years provided a various number of nanomaterials used in different fields of research. Among the materials that were obtained by SPVD there can be reminded the MoS2, the MoS2 doped with Zn, CeO2 doped with Zr. The CeO2 is used in applications such as catalysis, gas sensor, fuell cell as well as optical additives. All of the obtained nanopowders were analyzed and characterized by X-Ray diffraction (XRD) and by scanning electron microscopy (SEM) in order to acquire the information about the crystallography and morphology considering the reactions parameters that were used in obtaining the nanopowders. From the X-Ray diffraction can be concluded in the case of the CeO2 that doping occurred. By controlling the reactions parameters the end result is different in therms of obtained morphology of the nanopowders. All of the above elaborated nanopowders can be deposited in the form of thin films by laser ablation method in order to obtain better properties of the base material.

  7. Synthesis and spectral characterizations of trivalent ions (Cr3+, Fe3+) doped CdO nanopowders

    NASA Astrophysics Data System (ADS)

    Aswani, T.; Babu, B.; Pushpa Manjari, V.; Joyce Stella, R.; Thirumala Rao, G.; Rama Krishna, Ch.; Ravikumar, R. V. S. S. N.

    2014-03-01

    Trivalent transition metal ions (Cr3+, Fe3+) doped CdO nanopowders via sonication in the presence of Sodium lauryl sulfate as stabilizing agent were synthesized and characterized. Powder XRD studies indicate that the obtained CdO has a cubic phase and concluded that the trivalent ions doping induced the lattice constants to change some extent. Optical absorption spectra exhibited the characteristic bands of Cr3+ and Fe3+ ions in octahedral site symmetry. Crystal field (Dq) and inter-electronic repulsion (B and C) parameters are evaluated for Cr3+ doped CdO nanopowders as Dq = 1540, B = 619 and C = 3327 cm-1 and for Fe3+ doped CdO nanopowders Dq = 920, B = 690, C = 2750 cm-1. EPR spectra of the Cr3+ and Fe3+ doped CdO nanopowders exhibited resonances at g = 1.973 and g = 2 respectively which indicate distorted octahedral site for both ions with the host. Photoluminescence spectra shows the emission bands in violet and bluish green regions for Cr3+ doped CdO, ultraviolet and blue emissions for Fe3+ doped CdO nanopowders. The CIE chromaticity coordinates were also evaluated from the emission spectrum. FT-IR spectra indicate the presence of various functional groups of host lattice.

  8. Preparation, structural and linear optical properties of Zn doped CdS nanopowders

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.

    2015-02-01

    A series of Zn doped cadmium sulfide (CdS:Zn) nanopowders were prepared by a simple co-precipitation method at room temperature by mixing the stoichiometric amount of reactants in a Milli Q water solvent. The composition of nanopowders was accurately adjusted by controlling the molar ratio of Cd, Zn acetate in the mixed reactants. Spectroscopic studies on as prepared nanopowders were investigated by using XRD, Raman, UV-Vis absorption, FE- SEM-EDAX and photoluminescence. Extremely broad reflections of XRD peaks of as prepared powders establish the nanometer scale dimensions and cubic structure. Doping with Zn in CdS does not lead to any structural phase transformation but introduces a decrease in the lattice constants. Two characteristics of LO phonon peaks were observed in pure and Zn doped CdS samples. Raman peaks of Zn doped CdS nanopowders shifts slightly towards higher energy side compared to the pure CdS nanopowders. Exciton-phonon confinement factor (S) varies in between 0.3-0.4. At lower wavelength excitation we observed a broad emission peak maximum centered at 404 nm is attributed to localized band edge emission.

  9. A System to Create Stable Nanoparticle Aerosols from Nanopowders.

    PubMed

    Ding, Yaobo; Riediker, Michael

    2016-01-01

    Nanoparticle aerosols released from nanopowders in workplaces are associated with human exposure and health risks. We developed a novel system, requiring minimal amounts of test materials (min. 200 mg), for studying powder aerosolization behavior and aerosol properties. The aerosolization procedure follows the concept of the fluidized-bed process, but occurs in the modified volume of a V-shaped aerosol generator. The airborne particle number concentration is adjustable by controlling the air flow rate. The system supplied stable aerosol generation rates and particle size distributions over long periods (0.5-2 hr and possibly longer), which are important, for example, to study aerosol behavior, but also for toxicological studies. Strict adherence to the operating procedures during the aerosolization experiments ensures the generation of reproducible test results. The critical steps in the standard protocol are the preparation of the material and setup, and the aerosolization operations themselves. The system can be used for experiments requiring stable aerosol concentrations and may also be an alternative method for testing dustiness. The controlled aerosolization made possible with this setup occurs using energy inputs (may be characterized by aerosolization air velocity) that are within the ranges commonly found in occupational environments where nanomaterial powders are handled. This setup and its operating protocol are thus helpful for human exposure and risk assessment. PMID:27501179

  10. Ce, Gd codoped YAG nanopowder for white light emitting device.

    PubMed

    Schiopu, Vasilica; Matei, Alina; Dinescu, Adrian; Danila, Mihai; Cernica, Ileana

    2012-11-01

    In the last years white light emitting devices have received increased attention and have been used in a wide range of applications due to their long lifetime, high luminescence efficiency, low power consumption and environment friendliness, compared to conventional light sources. The discovery and improvement of inorganic phosphors that can be excited by a GaN chip in the wavelength range 370-470 nm is essential for the efficiency and quality of the emitted light. In the white light emitting device technology, the phosphor preparation step is the most important and it's quality defines the "whiteness". The tunable yellow emission property of YAG:Ce phosphor may be improved by the incorporation of an additional codoping element. Ce, Gd codoped YAG phosphor nanopowder with an average grain size of 40 nm has been synthesized by a sol-gel method. Well-crystallized fine nanoparticles and the formation of the garnet phase have been obtained at 1000 degrees C. The chemical structure and morphology of YAG:Ce, Gd was studied. PMID:23421297

  11. Nanopowder production by gas-embedded electrical explosion of wire

    NASA Astrophysics Data System (ADS)

    Zou, Xiao-Bing; Mao, Zhi-Guo; Wang, Xin-Xin; Jiang, Wei-Hua

    2013-04-01

    A small electrical explosion of wire (EEW) setup for nanopowder production is constructed. It consists of a low inductance capacitor bank of 2 μF-4 μF typically charged to 8 kV-30 kV, a triggered gas switch, and a production chamber housing the exploding wire load and ambient gas. With the EEW device, nanosize powders of titanium oxides, titanium nitrides, copper oxides, and zinc oxides are successfully synthesized. The average particle size of synthesized powders under different experimental conditions is in a range of 20 nm-80 nm. The pressure of ambient gas or wire vapor can strongly affect the average particle size. The lower the pressure, the smaller the particle size is. For wire material with relatively high resistivity, such as titanium, whose deposited energy Wd is often less than sublimation energy Ws due to the flashover breakdown along the wire prematurely ending the Joule heating process, the synthesized particle size of titanium oxides or titanium nitrides increases with overheat coefficient k (k = Wd/Ws) increasing.

  12. Interaction of hydrogen with ZnO nanopowders--evidence of hydroxyl group formation.

    PubMed

    Wong, Kester W J; Field, Matthew R; Ou, Jian Zhen; Latham, Kay; Spencer, Michelle J S; Yarovsky, Irene; Kalantar-zadeh, Kourosh

    2012-01-13

    There have been many investigations to reveal the nature of the hydrogen gas and ZnO nanopowder interaction at elevated temperatures, while at present no conclusive description of such an interaction has been confidently reported. In this work, we demonstrate that a hydroxyl group is formed during this interaction, depending on size and relative crystallinity of nanopowders. Our in situ Raman spectroscopy investigations show that the interaction directly affects the intensity of the Raman signal at 483 cm(-1), relative to the peak at 519 cm(-1). Ex situ x-ray diffraction (XRD) and infrared spectroscopy also show extra peaks at 44° and 1618 cm(-1), respectively, after hydrogenation. These peaks were all identified as surface hydroxyl groups, which can be related to the formation of water on the ZnO nanopowder surfaces.

  13. Copper and Graphene activated ZnO nanopowders for enhanced photocatalytic and antibacterial activities

    NASA Astrophysics Data System (ADS)

    Ravichandran, K.; Chidhambaram, N.; Gobalakrishnan, S.

    2016-06-01

    ZnO, ZnO:Cu and ZnO:Cu:Graphene nanopowders were synthesized via a facile wet chemical method. The XRD studies show that the synthesized samples have hexagonal wurtzite structure. It is found that graphene addition induces a decrease in crystallite size. UV-vis absorption spectra of the samples show sharp absorption edges around 380 nm. Photoluminescence studies reveal that the incorporation of copper and graphene in ZnO facilitates the efficient photo generated electron-hole pair separation. It is found that the ZnO:Cu and ZnO:Cu:Graphene nanopowder exhibit improved photocatalytic efficiency for the photodegradation of Methylene Blue (MB) under visible light irradiation. Moreover, improved antibacterial activity of ZnO:Cu:Graphene nanopowder against Escherichia coli and Staphylococcus aureus bacteria is observed.

  14. Bio-ecological consequences of crop seeds treatment with metal nano-powders

    NASA Astrophysics Data System (ADS)

    Churilov, G.

    2015-11-01

    As a result of our investigations we have determined the optimal concentrations of ferrum, cobalt and cuprum nano-powders recommended to be used as micro-fertilizers increasing the yield and feed value of crops at the expense of accumulating biologically active combinations by 25-35%. In unfavorable climate conditions, for example in a case of excess moisture or heat and drought, the plants development and ripening suffer. Our investigations have shown that the stimulating effect of nano-powders has lowered the effect of stress situations on plants development and simultaneously increased the rape seeds yield and quality. Treating the seeds with the drugs being studied has provided the high crop protection. If consider that the maximum efficiency of protectants Chinuk, SK (20 kg/t of seeds) and Cruiser, KS (10 kg/t of seeds) then for the same effect one needs nano-powders 0.1 g per hectare norm of seeds planting.

  15. Radiation stability of SiO2 micro- and nanopowders under electron and proton exposure

    NASA Astrophysics Data System (ADS)

    Li, Chundong; Mikhailov, M. M.; Neshchimenko, V. V.

    2014-01-01

    The effects of proton and electron (E = 100 keV, F = 5 × 1015 сm-2) exposure on the reflective spectra of SiO2 micro- and nanopowders in wavelength range from 250 to 2500 nm have been investigated. It has been established that the reflectance and radiation stability of nanopowders is less than that of micropowders. This effect is caused by the high concentration of radiation defects, which act as surface absorption centers (Es‧ centers) near the energies 5.47 and 4.45 eV, and peroxide silicon defects (tbnd Sisbnd Osbnd Osbnd Sitbnd) near the energy 3.84 eV.

  16. Far-infrared spectra of dysprosium doped yttrium aluminum garnet nanopowder

    NASA Astrophysics Data System (ADS)

    Trajić, J.; Rabasović, M. S.; Savić-Šević, S.; Ševic, D.; Babić, B.; Romčević, M.; Ristić-Djurović, J. L.; Paunović, N.; Križan, J.; Romčević, N.

    2016-07-01

    The solution combustion synthesis was used to prepare nanopowders of yttrium aluminum garnet (YAG) and YAG doped with dysprosium ions, Dy3+, (YAG:Dy). The morphology, specific surface area, texture, and optical properties of the prepared materials were studied by the means of scanning electron microscopy (SEM), nitrogen adsorption method, and far-infrared spectroscopy at room temperature in the spectral region between 80 and 600 cm-1. It was established that all the examined samples were microporous. The Maxwell-Garnet formula was used to model dielectric function of YAG and YAG:Dy nanopowders as mixtures of homogenous spherical inclusions in air.

  17. Synthesis and Characterization of Rutile TiO2Nanopowders Doped with Iron Ions

    PubMed Central

    2009-01-01

    Titanium dioxide nanopowders doped with different amounts of Fe ions were prepared by coprecipitation method. Obtained materials were characterized by structural (XRD), morphological (TEM and SEM), optical (UV/vis reflection and photoluminescence, and Raman), and analytical techniques (XPS and ICP-OES). XRD analysis revealed rutile crystalline phase for doped and undoped titanium dioxide obtained in the same manner. Diameter of the particles was 5–7 nm. The presence of iron ions was confirmed by XPS and ICP-OES. Doping process moved absorption threshold of TiO2into visible spectrum range. Photocatalytic activity was also checked. Doped nanopowders showed normal and up-converted photoluminescence. PMID:20596442

  18. Workplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System.

    PubMed

    Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Noh, Jung-Hun; Yook, Se-Jin; Cho, So-Hye; Bae, Gwi-Nam

    2015-01-01

    Many researchers who use laboratory-scale synthesis systems to manufacture nanomaterials could be easily exposed to airborne nanomaterials during the research and development stage. This study used various real-time aerosol detectors to investigate the presence of nanoaerosols in a laboratory used to manufacture titanium dioxide (TiO2). The TiO2 nanopowders were produced via flame synthesis and collected by a bag filter system for subsequent harvesting. Highly concentrated nanopowders were released from the outlet of the bag filter system into the laboratory. The fractional particle collection efficiency of the bag filter system was only 20% at particle diameter of 100 nm, which is much lower than the performance of a high-efficiency particulate air (HEPA) filter. Furthermore, the laboratory hood system was inadequate to fully exhaust the air discharged from the bag filter system. Unbalanced air flow rates between bag filter and laboratory hood systems could result in high exposure to nanopowder in laboratory settings. Finally, we simulated behavior of nanopowders released in the laboratory using computational fluid dynamics (CFD). PMID:26125024

  19. Workplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System

    PubMed Central

    Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Noh, Jung-Hun; Yook, Se-Jin; Cho, So-Hye; Bae, Gwi-Nam

    2015-01-01

    Many researchers who use laboratory-scale synthesis systems to manufacture nanomaterials could be easily exposed to airborne nanomaterials during the research and development stage. This study used various real-time aerosol detectors to investigate the presence of nanoaerosols in a laboratory used to manufacture titanium dioxide (TiO2). The TiO2 nanopowders were produced via flame synthesis and collected by a bag filter system for subsequent harvesting. Highly concentrated nanopowders were released from the outlet of the bag filter system into the laboratory. The fractional particle collection efficiency of the bag filter system was only 20% at particle diameter of 100 nm, which is much lower than the performance of a high-efficiency particulate air (HEPA) filter. Furthermore, the laboratory hood system was inadequate to fully exhaust the air discharged from the bag filter system. Unbalanced air flow rates between bag filter and laboratory hood systems could result in high exposure to nanopowder in laboratory settings. Finally, we simulated behavior of nanopowders released in the laboratory using computational fluid dynamics (CFD). PMID:26125024

  20. Lower sintering temperature of nanostructured dense ceramics compacted from dry nanopowders using powerful ultrasonic action

    NASA Astrophysics Data System (ADS)

    Khasanov, O.; Reichel, U.; Dvilis, E.; Khasanov, A.

    2011-10-01

    Nanostructured high dense zirconia ceramics have been sintered from dry nanopowders compacted by uniaxial pressing with simultaneous powerful ultrasonic action (PUA). Powerful ultrasound with frequency of 21 kHz was supplied from ultrasonic generator to the mold, which was the ultrasonic wave-guide. Previously the mold was filled by non-agglomerated zirconia nanopowder having average particle size of 40 nm. Any binders or plasticizers were excluded at nanopowder processing. Compaction pressure was 240 MPa, power of ultrasonic generator at PUA was 1 kW and 3 kW. The fully dense zirconia ceramics has been sintered at 1345°C and high-dense ceramics with a density of 99.1%, the most grains of which had the sizes Dgr <= 200 nm, has been sintered at low sintering temperature (1325°C). Applied approach prevents essential grain growth owing to uniform packing of nanoparticles under vibrating PU-action at pressing, which provides the friction forces control during dry nanopowder compaction without contaminating binders or plasticizers.

  1. The Study of Complex (Ti, Zr, Cs) Nanopowder Influencing the Effective Ionization Potential of Arc Discharge When Mma Welding

    NASA Astrophysics Data System (ADS)

    Sapozhkov, S. B.; Burakova, E. M.

    2016-08-01

    Strength is one of the most important characteristics of a weld joint. Mechanical properties of a weld metal can be improved in a variety of ways. One of the possibilities is to add a nanopowder to the weld metal. Authors of the paper suggest changing the production process of MMA welding electrodes via adding nanopowder Ti, Zr, Cs to electrode components through liquid glass. Theoretical research into the nanopowder influence on the effective ionization potential (Ueff) of welding arc discharge is also necessitated. These measures support arcing stability, improve strength of a weld joint, as the consequence, ensure quality enhancing of a weld joint and the structure on the whole.

  2. Liquid-feed flame spray pyrolysis synthesis of oxide nanopowders for the processing of ceramic composites

    NASA Astrophysics Data System (ADS)

    Taylor, Nathan John

    In the liquid-feed flame spray pyrolysis (LF-FSP) process, alcohol solutions of metalloorganic precursors are aerosolized by O2 and combusted. The metal oxide combustion products are rapidly quenched (< 10 ms) from flame temperatures of 1500°C to temperatures < 400° C, limiting particle growth. The resulting nanopowders are typically agglomerated but unaggregated. Here, we demonstrate two processing approaches to dense materials: nanopowders with the exact composition, and mixed single metal oxide nanopowders. The effect of the initial degree of phase separation on the final microstructures was determined by sintering studies. Our first studies included the production of yttrium aluminum garnet, Y3Al5O12 (YAG), tubes which we extruded from a thermoplastic/ceramic blend. At equivalent final densities, we found finer grain sizes in the from the mixed Y2O3 and Al2 O3 nanopowders, which was attributed to densification occurring before full transformation to the YAG phase. The enhanced densification in production of pure YAG from the reactive sintering process led us to produce composites in the YAG/alpha-Al 2O3 system. Finally, a third Y2O3 stabilized ZrO2 (YSZ) phase was added to further refine grain sizes using the same two processing approaches. In a separate study, single-phase metastable Al2O3 rich spinels with the composition MO•3Al 2O3 where M = Mg, Ni, and Co were sintered to produce dense MAl2O4/alpha-Al2O3 composites. All of these studies provide a test of the bottom-up approach; that is, how the initial length scale of mixing affects the final composite microstructure. Overall, the length scale of mixing is highly dependent upon the specific oxide composites studied. This work provides a processing framework to be adopted by other researchers to further refine microstructural size. LF-FSP flame temperatures were mapped using different alcohols with different heats of combustion: methanol, ethanol, 1-propanol, and n-butanol. The effect of different

  3. High elastic modulus nanopowder reinforced resin composites for dental applications

    NASA Astrophysics Data System (ADS)

    Wang, Yijun

    2007-12-01

    Dental restorations account for more than $3 billion dollars a year on the market. Among them, all-ceramic dental crowns draw more and more attention and their popularity has risen because of their superior aesthetics and biocompatibility. However, their relatively high failure rate and labor-intensive fabrication procedure still limit their application. In this thesis, a new family of high elastic modulus nanopowder reinforced resin composites and their mechanical properties are studied. Materials with higher elastic modulus, such as alumina and diamond, are used to replace the routine filler material, silica, in dental resin composites to achieve the desired properties. This class of composites is developed to serve (1) as a high stiffness support to all-ceramic crowns and (2) as a means of joining independently fabricated crown core and veneer layers. Most of the work focuses on nano-sized Al2O3 (average particle size 47 nm) reinforcement in a polymeric matrix with 50:50 Bisphenol A glycidyl methacrylate (Bis-GMA): triethylene glycol dimethacrylate (TEGDMA) monomers. Surfactants, silanizing agents and primers are examined to obtain higher filler levels and enhance the bonding between filler and matrix. Silane agents work best. The elastic modulus of a 57.5 vol% alumina/resin composite is 31.5 GPa compared to current commercial resin composites with elastic modulus <15 GPa. Chemical additives can also effectively raise the hardness to as much as 1.34 GPa. Besides>alumina, diamond/resin composites are studied. An elastic modulus of about 45 GPa is obtained for a 57 vol% diamond/resin composite. Our results indicate that with a generally monodispersed nano-sized high modulus filler, relatively high elastic modulus resin-based composite cements are possible. Time-dependent behavior of our resin composites is also investigated. This is valuable for understanding the behavior of our material and possible fatigue testing in the future. Our results indicate that with

  4. Fe{sub 2}O{sub 3} nanopowders prepared by a thermal plasma process for water oxidation

    SciTech Connect

    Lee, Dongeun; Choi, Yong-Wook; Na, Ye-Seul; Choi, Soo-Suk; Park, Dong-Wha; Choi, Jinsub

    2015-08-15

    Highlights: • Hematite nanopowders with a high purity were synthesized by a DC thermal plasma process. • Fe{sub 3}O{sub 4} is formed during the formation of Fe{sub 2}O{sub 3} by thermal plasma with iron and oxygen sources. • Hematite nanopowders with a high purity show higher PEC performance compared to mixed oxides. - Abstract: Hematite (Fe{sub 2}O{sub 3}) nanopowders were synthesized from commercially available micro-sized iron powders by a DC thermal plasma process at atmospheric pressure. The micro-sized iron powders were vaporized in the plasma region, after which the plasma processing equipment was rapidly quenched, resulting in the formation of iron nanopowders with a size of less than 100 nm. Subsequently, the iron nanopowders were heated to convert hematite with a high purity, which was then formed into a thin film with a binder for preparation of electrodes for photoelectrochemical water oxidation. Iron oxide nanopowders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), particle size analysis (PSA) and transmission electron microscopy (TEM). The photoelectrochemical properties of the Fe{sub 2}O{sub 3} film were characterized in 1 M NaOH under AM 1.5 conditions.

  5. Permeability, drying, and sintering of pressure filtered ceramic nanopowders

    NASA Astrophysics Data System (ADS)

    Sweeney, Sean M.

    2002-01-01

    point of drying (when fracture is most likely during drying). Agreement between maximum safe drying stresses and measured sample strengths is found to be good (to within better than a factor of 2) for boehmite samples, but not very good (off by a factor of ˜7) for nanocrystalline 3Y-TZP samples. Sub-critical crack growth is indicated as the source of this deviation in nanocrystalline 3Y-TZP samples. Literature studies of the sintering of chloride-derived 3Y-TZP nanopowders have documented numerous sintering problems including inability to reach full density, desintering, cracking, and the formation of a dense shell with less dense interior. To explain the poor sintering behavior of samples of one nanocrystalline 3Y-TZP powder, the origin of such a dense shell microstructure is determined. Three possible reasons for a dense shell microstructure are examined and rejected: exothermic reactions with the sintering atmosphere, pre-existing density gradients in the green compact, and thermal gradients occurring during sintering. A combination of gas flow/diffusion, thermodynamic, and sintering calculations are used to show that the evolution of a structure-coarsening gas (hydrogen chloride) during sintering causes the formation of a dense shell microstructure, and explains the poor densification behavior of this system. Two solutions to the problem are compared: (1) a thermal treatment composed of an extended hold at 1000°C to allow HCl gas removal before the onset of closed porosity (at about 90-93% of theoretical density), and (2) a chemical treatment performed by washing pre-sintered (500°C/30 min) samples at room temperature using a concentrated ammonium hydroxide solution to remove chlorides. The thermal treatment is found to be superior for removing residual chlorine and allowing full density to be achieved during sintering.

  6. Capacity fade in Sn-C nanopowder anodes due to fracture.

    PubMed

    Aifantis, Katerina E; Huang, Tao; Hackney, Stephen A; Sarakonsri, Thapanee; Yu, Aishui

    2012-01-01

    Sn based anodes allow for high initial capacities, which however cannot be retained due to the severe mechanical damage that occurs during Li-insertion and de-insertion. To better understand the fracture process during electrochemical cycling three different nanopowders comprised of Sn particles attached on artificial graphite, natural graphite or micro-carbon microbeads were examined. Although an initial capacity of 700 mAh g(-1) was obtained for all Sn-C nanopowders, a significant capacity fade took place with continuous electrochemical cycling. The microstructural changes in the electrodes corresponding to the changes in electrochemical behavior were studied by transmission and scanning electron microscopy. The fragmentation of Sn observed by microscopy correlates with the capacity fade, but this fragmentation and capacity fade can be controlled by controlling the initial microstructure. It was found that there is a dependence of the capacity fade on the Sn particle volume and surface area fraction of Sn on carbon.

  7. Synthesis of the thermoelectric nanopowder recovered from the used thermoelectric modules.

    PubMed

    Lee, Kun-Jae; Jin, Yun-Ho; Kong, Man-Sik

    2014-10-01

    We fabricated the thermoelectric powder using the used thermoelectric modules in a vehicle. As a starting material, the used thermoelectric modules were collected and separated to substrate, electrode, solder, and thermoelectric parts by a thermal process. The separation process was performed in a wet process at the critical temperature. The solder in the module was the neighbor part of the thermoelectric material with the lowest melting temperature in the module. We focused on the thermal property of the solder to separate the thermoelectric chips in the module. After the separation process, we prepared the pure thermoelectric material by the chemical etching for an impurity removal. Also the thermoelectric nanopowder was fabricated by a chemical reduction reaction using the recycled thermoelectric materials. The recovered nanopowder was confirmed to the phase of bismuth telluride (Bi2Te3) with the particle size of -15 nm.

  8. Thermal and Mechanical Characteristics of Polymer Composites Based on Epoxy Resin, Aluminium Nanopowders and Boric Acid

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The epoxy polymers are characterized by low thermal stability and high flammability. Nanoparticles are considered to be effective fillers of polymer composites for improving their thermal and functional properties. In this work, the epoxy composites were prepared using epoxy resin ED-20, polyethylene polyamine as a hardener, aluminum nanopowder and boric acid fine powder as flame-retardant filler. The thermal characteristics of the obtained samples were studied using thermogravimetric analysis and differential scanning calorimetry. The mechanical characteristics of epoxy composites were also studied. It was found that an addition of all fillers enhances the thermal stability and mechanical characteristics of the epoxy composites. The best thermal stability showed the epoxy composite filled with boric acid. The highest flexural properties showed the epoxy composite based on the combination of boric acid and aluminum nanopowder.

  9. Synthesis of the thermoelectric nanopowder recovered from the used thermoelectric modules.

    PubMed

    Lee, Kun-Jae; Jin, Yun-Ho; Kong, Man-Sik

    2014-10-01

    We fabricated the thermoelectric powder using the used thermoelectric modules in a vehicle. As a starting material, the used thermoelectric modules were collected and separated to substrate, electrode, solder, and thermoelectric parts by a thermal process. The separation process was performed in a wet process at the critical temperature. The solder in the module was the neighbor part of the thermoelectric material with the lowest melting temperature in the module. We focused on the thermal property of the solder to separate the thermoelectric chips in the module. After the separation process, we prepared the pure thermoelectric material by the chemical etching for an impurity removal. Also the thermoelectric nanopowder was fabricated by a chemical reduction reaction using the recycled thermoelectric materials. The recovered nanopowder was confirmed to the phase of bismuth telluride (Bi2Te3) with the particle size of -15 nm. PMID:25942894

  10. Structural and Optical Characterization of Synthesized TiO2 Nanopowder Using Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Lourduraj, S.; Williams, R. Victor

    2016-02-01

    The nanocrystalline TiO2 powder was synthesized by sol-gel method. The XRD analysis reveals that TiO2 powder was highly crystalline (anatase phase) and nanostructured with tetragonal system. The average crystallite size after calcined at 673K is found to be 7.7nm. The surface morphological studies using scanning electron microscopy (SEM) exhibit that the formation of nanosized TiO2 particles with less densification nature. Atomic force microscopy (AFM) topography exhibits the uniform distribution of spherical-shaped particles. The energy dispersive X-ray spectroscopy (EDX) confirms the presence of Titanium and Oxygen in synthesized TiO2 nanopowder. The value of optical bandgap of TiO2 nanopowder calculated from UV-Visible spectrum is 3.45eV. The presence of TiO2 particles is confirmed from the dominant fourier transform infrared (FTIR) peaks at 621cm-1 and 412cm-1.

  11. Formation regularities of AlOOH hollow spheres during aluminum nanopowder water oxidation

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, Aleksandr S.; Glazkova, Elena A.; Svarovskaya, Natalia V.; Bakina, Olga V.; Kazantsev, Sergey O.; Lerner, Marat I.

    2015-10-01

    There described a novel environmentally friendly synthesis route of micro/nanostructured hollow spheres of AlOOH by oxidation of Al nanopowder in pure water under mild processing conditions. The reaction kinetics of the aluminum nanopowder interaction with water was studied using the method of continuous recording of suspension pH and temperature. There observed the change in Al3+ concentration in the reaction medium and the rate of hydrogen release as well as TEM investigations of the intermediate reaction products at different stages of the process were performed. It is shown that AlOOH hollow spheres are formed through the aluminum core dissolution, Al3+ ion diffusion through the surface oxide film and AlOOH nanosheets formation on the surface of the precursor oxide film.

  12. Fast microstructure and phase analyses of nanopowders using combined analysis of transmission electron microscopy scattering patterns.

    PubMed

    Boullay, P; Lutterotti, L; Chateigner, D; Sicard, L

    2014-09-01

    The full quantitative characterization of nanopowders using transmission electron microscopy scattering patterns is shown. This study demonstrates the feasibility of the application of so-called combined analysis, a global approach for phase identification, structure refinement, characterization of anisotropic crystallite sizes and shapes, texture analysis and texture variations with the probed scale, using electron diffraction patterns of TiO2 and Mn3O4 nanocrystal aggregates and platinum films. Electron diffraction pattern misalignments, positioning, and slight changes from pattern to pattern are directly integrated and refined within this approach. The use of a newly developed full-pattern search-match methodology for phase identification of nanopowders and the incorporation of the two-wave dynamical correction for diffraction patterns are also reported and proved to be efficient. PMID:25176993

  13. Multiple nano-blast synthesis of PT/8Y-ZP composite nanopowders.

    PubMed

    Vasylkiv, Oleg; Sakka, Yoshio; Skorokhod, Valeriy V

    2006-06-01

    We demonstrate a processing technique based on the synthesis of ceramic nanopowders and simultaneous impregnation with metallic nanoparticles by multiple 'nano-blasts' of embeded cyclotrimethylene trinitramine in preliminary engineered multi-component nano-reactors. 'Nano-blasts' of impregnated cyclotrimethylene trinitramine deagglomerate the nanopowder due to the high energetic impacts of the blast waves, while the decomposition of compounds and their solid-solubility is enhanced by the extremely high local temperature generated during the nano-explosions. We applied this technique to produce nanosized agglomerate-free 8 mol% yttria-doped cubic zirconia aggregates with an average size of 53 nm impregnated with 10 mass% of platinum particles of 2-14 nm. PMID:17025061

  14. Fast microstructure and phase analyses of nanopowders using combined analysis of transmission electron microscopy scattering patterns.

    PubMed

    Boullay, P; Lutterotti, L; Chateigner, D; Sicard, L

    2014-09-01

    The full quantitative characterization of nanopowders using transmission electron microscopy scattering patterns is shown. This study demonstrates the feasibility of the application of so-called combined analysis, a global approach for phase identification, structure refinement, characterization of anisotropic crystallite sizes and shapes, texture analysis and texture variations with the probed scale, using electron diffraction patterns of TiO2 and Mn3O4 nanocrystal aggregates and platinum films. Electron diffraction pattern misalignments, positioning, and slight changes from pattern to pattern are directly integrated and refined within this approach. The use of a newly developed full-pattern search-match methodology for phase identification of nanopowders and the incorporation of the two-wave dynamical correction for diffraction patterns are also reported and proved to be efficient.

  15. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    SciTech Connect

    Koyanagi, Takaaki; Shimoda, Kazuya; Kondo, Sosuke; Hinoki, Tatsuya; Ozawa, Kazumi; Katoh, Yutai

    2014-12-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 °C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. Microstructural observation and data analysis were performed.

  16. Ultrasonic deagglomeration of aluminum nanopowders with multi-walled carbon nanotube mixtures

    SciTech Connect

    Kozulin, Alexander A. Vorozhtsov, Sergey A. Kulkov, Sergey S.; Kulkov, Sergey N.; Teipel, U.

    2015-10-27

    Comprehensive investigations of aluminum nanopowders, multi-walled carbon nanotubes, and aluminum mixtures with multi-walled carbon nanotubes subjected to ultrasonic deagglomeration in a liquid medium were performed, using microstructural, X-ray diffraction, thermogravimetric, and calorimetric analyses, and specific surface area measurements. The regime of ultrasonic deagglomeration of aluminum nanopowders with multi-walled carbon nanotubes in a liquid medium is described, during which the division of large agglomerates and creation of homogeneous distribution of mixtures components in the volume takes place. It was determined that ultrasonic treatment influences the morphology and crystalline structure of investigated mixtures, contributes to the appearance of X-ray amorphous phase, decreases the specific surface area of the aluminum nanopowder from 13 to 12 m{sup 2}/g, and increases the pore volume and average size from 0.04 to 0.06 cm{sup 3}/g and from 12 to 19 nm, respectively. The size of coherently-diffracting domain was determined by the X-ray diffraction analysis is close to that estimated from the specific surface area and corresponds to average crystallites size in the materials under study.

  17. Synthesis of nanopowders with a help of powerful CO2 laser

    NASA Astrophysics Data System (ADS)

    Osipov, V. V.; Lisenkov, V. V.; Platonov, V. V.

    2011-02-01

    The paper reports about the results of researches of nanopowder production with a help powerful repetitively pulsed CO2 laser "LAERT" which generated radiation with pulse energy of ~1 J, peak power of ~8 kW and mean power of 500 W. Laser radiation affected and evaporated the target. The target material vapor condensed into nanoparticles as a result of intermixing vapor with a flow of cold gas. In basic the air of atmospheric pressure was used as the carrier gas. However in some experiments were used He and Ar and the gas pressure also was changed. In our experiments we produced nanopowders of such materials as: YSZ, YSZ:Al2O3, Al2O3, CeO2:Gd2O3, 0.5%Nd:Y2O3, 1%Nd:YAG, Fe3O4and carbon with a middle size 10÷30 nm. Received nanopowders were also weakly agglomerated. We carried out 3D numerical modeling of thermo-hydrodynamic processes occurred during the laser evaporation of a target. Results of calculations have cleared up many details of target evaporation. In particular, influence of liquid melt movement on stoichiometry of evaporation of a target from oxide mixes is found out. Results of calculations are in a good agreement with experimental data.

  18. Solar physical vapor deposition: A new approach for preparing magnesium titanate nanopowders

    NASA Astrophysics Data System (ADS)

    Apostol, Irina; Saravanan, K. Venkata; Monty, Claude J. A.; Vilarinho, Paula M.

    2013-11-01

    Solar energy is a major factor in the equation of energy, because of the unlimited potential of the sun that eclipses all other renewable sources of energy. Solar physical vapor deposition (SPVD) is a core innovative, original and environmentally friendly process to prepare nanocrystalline materials in a powder form. The principle of this process is to melt the material under concentrated solar radiation, which evaporates and condenses as nanopowders on a cold surface. We synthesized nanopowders of magnesium titanate by the SPVD process at PROMES Laboratory in Odeillo-Font Romeu, France. The SPVD system consists of a parabolic mirror concentrator, a mobile plane mirror ("heliostat") tracking the sun and a solar reactor "heliotron". The synthesized nanopowders were analyzed by X-ray diffraction (XRD) to know their crystalline structure and scanning electron microscopy (SEM) was used for determining the surface morphology. We have shown that the characteristics of obtained nanotitanates were determined by the targets' composition and SPVD process parameters such as the working pressure inside the solar reactor and evaporation duration (process time).

  19. Photoluminescent BaMoO{sub 4} nanopowders prepared by complex polymerization method (CPM)

    SciTech Connect

    Azevedo Marques, Ana Paula de . E-mail: apamarques@liec.ufscar.br; Melo, Dulce M.A. de; Paskocimas, Carlos A.; Pizani, Paulo S.; Joya, Miryam R.; Leite, Edson R.; Longo, Elson

    2006-03-15

    The BaMoO{sub 4} nanopowders were prepared by the Complex Polymerization Method (CPM). The structure properties of the BaMoO{sub 4} powders were characterized by FTIR transmittance spectra, X-ray diffraction (XRD), Raman spectra, photoluminescence spectra (PL) and high-resolution scanning electron microscopy (HR-SEM). The XRD, FTIR and Raman data showed that BaMoO{sub 4} at 300 deg. C was disordered. At 400 deg. C and higher temperature, BaMoO{sub 4} crystalline scheelite-type phases could be identified, without the presence of additional phases, according to the XRD, FTIR and Raman data. The calculated average crystallite sizes, calculated by XRD, around 40 nm, showed the tendency to increase with the temperature. The crystallite sizes, obtained by HR-SEM, were around of 40-50 nm. The sample that presented the highest intensity of the red emission band was the one heat treated at 400 deg. C for 2 h, and the sample that displayed the highest intensity of the green emission band was the one heat treated at 700 deg. C for 2 h. The CPM was shown to be a low cost route for the production of BaMoO{sub 4} nanopowders, with the advantages of lower temperature, smaller time and reduced cost. The optical properties observed for BaMoO{sub 4} nanopowders suggested that this material is a highly promising candidate for photoluminescent applications.

  20. Synthesis, properties and host effects of rare-earth doped silica nanopowders for photonic applications

    NASA Astrophysics Data System (ADS)

    Halpern, Susan B.

    In this study, SiO2/Al2O3/Er2O 3 (SAE) nanopowders were fabricated by the CF-CVC technique with average primary particle sizes ranging from 10--30 nm. Fluorescence and lifetime measurements were made both on as-prepared powders, as well as heat treated powders, with the latter exhibiting significantly higher emission intensities. At ˜1000°C, the SAE became partially devitrified with extremely broad (FWHM ≈ 78 nm) and flat emission spectra, which is highly desirable for Wavelength Division Multiplexing (WDM) in optical amplifiers. The unique optical properties of the powders are attributed to the formation of a metastable phase consisting of an uniform nano-scale dispersion of a metastable intermediate SiO2 (Al,Er)2O3 phase in an amorphous SiO 2 matrix. At higher heat treatments (1400°C), a dual-phase equilibrium structure was formed, consisting of a pyrochlore phase in a crystobalite matrix. The SAE nanopowders were incorporated into various optical hybrid glass hosts for active planar waveguide applications. Host selection was dependent on transparency in the wavelength region of interest (900 nm--1600 nm), index matching (n ˜ 1.5), chemical/thermal stability, and ease of processing. Furthermore, the inorganic-organic glasses were hydrophobic, resulting in a minimal level of residual OH- which can quench fluorescence emission. Four separate groups of host materials were studied: Perfluoro-alkyl Hybrid Glass (n ≈ 1.42), Alumina-Silica Hybrid Glass (n ≈ 1.49), Polyurethane-Silica Hybrid Glass (n ≈ 1.44), and Methyl/Epoxy Group Hybrid Glass (n ≈ 1.48). All hosts showed high spectral transparency, uniform dispersion of the nanopowder in the host, and minimal surface quenching of emission, and therefore represent excellent candidates for fabrication of next generation nanophotonic planar devices.

  1. Preparation and properties of Ba1-xCaxTiO3 nanopowders obtained by mechanochemical synthesis

    NASA Astrophysics Data System (ADS)

    Szafraniak-Wiza, Izabela; Kozielski, Lucjan; Sebastian, Tutu

    2016-08-01

    The calcium-substituted barium titanate nanopowders Ba1-xCaxTiO3 (0.2 ≤ x ≤ 0.3) have been obtained at room temperature by mechanochemical synthesis. The formation of the perovskite phase was controlled by X-ray diffraction studies at various milling duration. The powders possess the perovskite crystallographic structure directly after milling longer than 10 h. The dielectric properties of the ceramics obtained by sintering of the nanopowders were investigated in the temperature range between 300 and 500 K. The temperature dependence of permittivity exhibited a single anomaly, which corresponds to the ferroelectric-paraelectric phase transition.

  2. The effect of annealing on properties of europium doped ZnO nanopowders obtained by a microwave hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wolska-Kornio, E.; Kaszewski, J.; Witkowski, B. S.; Wachnicki, Ł.; Godlewski, M.

    2016-09-01

    Europium doped ZnO nanopowders made by microwave hydrothermal method are investigated. As zinc oxide precursor zinc nitrate(V) hexahydrate (Zn(NO3)2·6H2O) was used. Two types of nanopowder samples are examined: as grown and annealed at 750 °C in air atmosphere. We investigate the structural, morphological and optical prosperities of europium doped ZnO. Results of scanning electron microscopy, X-ray diffraction, photo- and cathodoluminescence investigations and also CIE1961 chromaticity diagram are presented.

  3. A new technique for introducing chromium dopant into a phosphor synthesized from alumina nanopowder

    NASA Astrophysics Data System (ADS)

    Zvonarev, S. V.; Kortov, V. S.; Chikin, A. V.; Sannikov, P. P.

    2016-09-01

    A technique of doping a phosphor synthesized from an alumina nanopowder with chromium was developed and tested. Doping was performed through dipping Al2O3 host-matrix into the chromium nitrate solution with varying time and number of impregnation cycles. The following annealing in vacuum at 1500 °C for 3 hours resulted in the formation of Cr3+ luminescent centers which replaced Al atoms in the lattice sites. The results were verified by measuring photo- and cathode luminescence spectra. Concentration dependences were found at various impregnation parameters.

  4. Combustion synthesis and optical properties of ceria doped gadolinium-oxide nanopowder

    NASA Astrophysics Data System (ADS)

    Tamrakar, Raunak Kumar; Bisen, D. P.

    2013-06-01

    The Ceria doped Gadolinium (Gd2O3) nanopowder was synthesized by combustion synthesis by using urea as a fuel. The combustion synthesis method which is reported here is advantageous from the perspectives of small size of the nanoparticle. The structural and photoluminescence (PL) property of sample was studies. Gd2O3:Ce3+ nanoparticles exhibit green emission around 543 nm. The result of XRD show that synthesized sample has cubic structure. The average size of particle is found to be 45 nm. The surface morphology of the films is also presented.

  5. Photocatalytic degradation of betamethasone sodium phosphate in aqueous solution using ZnO nanopowder

    NASA Astrophysics Data System (ADS)

    Giahi, M.; Taghavi, H.; Habibi, S.

    2012-12-01

    The photocatalytic degradation of betamethasone sodium phosphate has been investigated in aqueous phase by using ultraviolet (UV) light and ZnO nanopowder. The effect of catalyst loading, irradiation time, pH, addition of oxidizers, effect of alcohol and anion presence on the reaction rate was ascertained and optimum conditions for maximum degradation were determined. The photocatalytic degradation of betamethasone sodium phosphate was strongly influenced by these parameters. The optimum amount of the photocatalyst used is 0.44 g/L. The efficiency of betamethasone sodium phosphate increases with the photo-degradation increase of the irradiation time.

  6. Plasma Synthesized Doped Boron Nanopowder for MgB2 Superconductors

    SciTech Connect

    James V. Marzik

    2012-03-26

    Under this program, a process to synthesize nano-sized doped boron powder by a plasma synthesis process was developed and scaled up from 20 gram batches at program start to over 200 grams by program end. Over 75 batches of boron nanopowder were made by RF plasma synthesis. Particle sizes were typically in the 20-200 nm range. The powder was synthesized by the reductive pyrolysis of BCl{sub 3} in hydrogen in an RF plasma. A wide range of process parameters were investigated including plasma power, torch geometry, gas flow rates, and process pressure. The powder-in-tube technique was used to make monofilament and multifilament superconducting wires. MgB{sub 2} wire made with Specialty Materials plasma synthesized boron nanopowder exhibited superconducting properties that significantly exceeded the program goals. Superconducting critical currents, J{sub c}, in excess of 10{sup 5} A cm{sup -2} at magnetic fields of 8 tesla were reproducibly achieved. The upper critical magnetic field in wires fabricated with program boron powder were H{sub c2}(0) = 37 tesla, demonstrating the potential of these materials for high field magnet applications. T{sub c} in carbon-doped MgB{sub 2} powder showed a systematic decrease with increasing carbon precursor gas flows, indicating the plasma synthesis process can give precise control over dopant concentrations. Synthesis rates increased by a factor of 400% over the course of the program, demonstrating the scalability of the powder synthesis process. The plasma synthesis equipment at Specialty Materials has successfully and reproducibly made high quality boron nanopowder for MgB{sub 2} superconductors. Research and development from this program enabled Specialty Materials to successfully scale up the powder synthesis process by a factor of ten and to double the size of its powder pilot plant. Thus far the program has been a technical success. It is anticipated that continued systematic development of plasma processing parameters, dopant

  7. O2/Ar Plasma Treatment for Enhancing the Biocompatibility of Hydroxyapatite Nanopowder and Polycaprolactone Composite Film.

    PubMed

    Ko, Yeong-Mu; Myung, Sung-Woon; Kim, Byung-Hoon

    2015-08-01

    In this study we performed O2/Ar plasma treatment to remove the polycaprolactone on hydroxyapatite nanopowder and polycaprolactone (HAp-NP/PCL) composite film. After plasma ashing, the HAp-NP was exposed on the composite film. The 25 wt% HAp-NP/PCL treated with plasma showed the hydrophilic surface property with reducing the aging effect. The MTT and ALP results indicated that the plasma etching increased the biocompatibility of HAp-NP/PCL composite film. The present simple plasma etching technique can be applicable in a development of biomaterials.

  8. Optical properties and radiation stability of submicro- and nanopowders titanium dioxide measured in situ

    NASA Astrophysics Data System (ADS)

    Mikhailov, M. M.; Neshchimenko, V. V.; Yuryev, S. A.

    2016-04-01

    This study carried out an in situ and external investigation on the reflective spectra of micro- and nanopowders titanium dioxide before and after irradiation by 30 keV electrons. The particle sizes range from 60-240 nm. It was established that the decrease in the particle size leads to an increase in intrinsic defects. The particles with intrinsic defects are then transformed into absorption centers during irradiation as a result of optical degradation of TiO2 powders. High radiation stability has particle sizes range from 80-160 nm.

  9. Three-dimensional simulations of nanopowder compaction processes by granular dynamics method

    NASA Astrophysics Data System (ADS)

    Boltachev, G. Sh.; Lukyashin, K. E.; Shitov, V. A.; Volkov, N. B.

    2013-07-01

    In order to describe and to study the processes of cold compaction within the discrete element method a three-dimensional model of nanosized powder is developed. The elastic forces of repulsion, the tangential forces of “friction” (Cattaneo-Mindlin), and the dispersion forces of attraction (van der Waals-Hamaker), as well as the formation and destruction of hard bonds between the individual particles are taken into account. The monosized powders with the size of particles in the range 10-40 nm are simulated. The simulation results are compared to the experimental data of the alumina nanopowders compaction. It is shown that the model allows us to reproduce experimental data reliably and, in particular, describes the size effect in the compaction processes. A number of different external loading conditions is used in order to perform the theoretical and experimental researches. The uniaxial compaction (the closed-die compaction), the biaxial (radial) compaction, and the isotropic compaction (the cold isostatic pressing) are studied. The real and computed results are in a good agreement with each other. They reveal a weak sensitivity of the oxide nanopowders to the loading condition (compaction geometry). The application of the continuum theory of the plastically hardening porous body, which is usually used for the description of powders, is discussed.

  10. Synthesis and characterization of NiO nanopowder by sol-gel process

    SciTech Connect

    Ningsih, Sherly Kasuma Warda

    2015-09-30

    Preparation of nickel oxide (NiO) nanopowder by sol-gel process has been studied. NiO nanopowders were obtained by sol-gel method by using nickel nitrate hexahydrate and sodium hydroxide and aquadest were used as precursor, agent precipitator and solvent, respectively. The powders were formed by drying at 110°C and followed by heating in the furnace at 400°C for 1.5 hours. The product was obtained black powder. The product was characterized by Energy Dispesive X-ray Fluorescence (ED-XRF), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The ED-XRF pattern shows the composition of NiO produced was 97.1%. The XRD pattern showed NiO forms were produced generally in monoclinic stucture. The crystalline size of NiO was obtained in the range 40-85 nm. SEM micrograph clearly showed that powder had a spherical with uniform distribution size is 0.1-1.0 µm approximately.

  11. Dependence of viscosity of suspensions of ceramic nanopowders in ethyl alcohol on concentration and temperature

    PubMed Central

    2012-01-01

    This work presents results of measurements of viscosity of suspensions including yttrium oxide (Y2O3), yttrium aluminum garnet (Y3Al5O12) and magnesium aluminum spinel (MgAl2O4) nanopowders in ethanol. Nanoparticles used in our research were either commercially available (Baikowski) or nanopowders newly developed in the Institute of Ceramics and Building Materials in Warsaw, Poland. The study was conducted in a wide range of shear rates (0.01 to 2,000 s−1) and temperature interval from -15°C to 20°C. A Haake Mars 2 rheometer from Thermo Fisher, Germany, was used in the Biophysics Laboratory at Rzeszów University of Technology. Most of the samples show a non-Newtonian behaviour. It was confirmed with a Rheo-NMR system from Bruker that 10% by weight of Y2O3 suspension is a non-Newtonian fluid. In this work, we also report an unexpected behaviour of the viscosity of some samples (Y2O3 and Y3Al5O12) due to sedimentation effect. PMID:22824064

  12. EGCG assisted green synthesis of ZnO nanopowders: Photodegradative, antimicrobial and antioxidant activities

    NASA Astrophysics Data System (ADS)

    Suresh, D.; Udayabhanu; Nethravathi, P. C.; Lingaraju, K.; Rajanaika, H.; Sharma, S. C.; Nagabhushana, H.

    2015-02-01

    Zinc oxide nanopowders were synthesized by solution combustion method using Epigallocatechin gallate (EGCG) a tea catechin as fuel. The structure and morphology of the product was characterized by Powder X-ray Diffraction, Scanning Electron Microscopy, photoluminescence and UV-Visible spectroscopy. The nanopowders (Nps) were subjected to photocatalytic and biological activities such as antimicrobial and antioxidant studies. PXRD patterns demonstrate that the formed product belongs to hexagonal wurtzite system. SEM images show that the particles are agglomerated to form sponge like structure and the average crystallite sizes were found to be ∼10-20 nm. PL spectra exhibit broad and strong peak at 590 nm due to the Zn-vacancies, and O-vacancies. The prepared ZnO Nps exhibit excellent photocatalytic activity for the photodegradation of malachite green (MG) and methylene blue (MB) indicating that the ZnO NPs are potential photocatalytic semiconductor materials. ZnO NPs exhibit significant bactericidal activity against Klebsiella aerogenes, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus using the agar well diffusion method. Furthermore, the ZnO nano powders show good antioxidant activity by potentially scavenging DPPH radicals. The study successfully demonstrates synthesis of ZnO NPs by simple ecofriendly route employing EGCG as fuel that exhibit superior photodegradative, antibacterial and antioxidant activities.

  13. Bulk synthesis of monodisperse magnetic FeNi3 nanopowders by flow levitation method.

    PubMed

    Chen, Shanjun; Chen, Yan; Kang, Xiaoli; Li, Song; Tian, Yonghong; Wu, Weidong; Tang, Yongjian

    2013-10-01

    In this work, a novel bulk synthesis method for monodisperse FeNi3 nanoparticles was developed by flow levitation method (FL). The Fe and Ni vapours ascending from the high temperature levitated droplet was condensed by cryogenic Ar gas under atmospheric pressure. X-ray diffraction was used to identify and characterize the crystal phase of prepared powders exhibiting a FeNi3 phase. The morphology and size of nanopowders were observed by transmission electron microscopy (TEM). The chemical composition of the nanoparticles was determined with energy dispersive spectrometer (EDS). The results indicated that the FeNi3 permalloy powders are nearly spherical-shaped with diameter about 50-200 nm. Measurement of the magnetic property of nanopowders by a superconducting quantum interference device (SQUID, Quantum Design MPMS-7) showed a symmetric hysteresis loop of ferromagnetic behavior with coercivity of 220 Oe and saturation magnetization of 107.17 emu/g, at 293 K. At 5 K, the obtained saturation magnetization of the sample was 102.16 emu/g. The production rate of FeNi3 nanoparticles was estimated to be about 6 g/h. This method has great potential in mass production of FeNi3 nannoparticles. PMID:24245162

  14. Dependence of viscosity of suspensions of ceramic nanopowders in ethyl alcohol on concentration and temperature.

    PubMed

    Zyła, Gaweł; Cholewa, Marian; Witek, Adam

    2012-01-01

    : This work presents results of measurements of viscosity of suspensions including yttrium oxide (Y2O3), yttrium aluminum garnet (Y3Al5O12) and magnesium aluminum spinel (MgAl2O4) nanopowders in ethanol. Nanoparticles used in our research were either commercially available (Baikowski) or nanopowders newly developed in the Institute of Ceramics and Building Materials in Warsaw, Poland. The study was conducted in a wide range of shear rates (0.01 to 2,000 s-1) and temperature interval from -15°C to 20°C. A Haake Mars 2 rheometer from Thermo Fisher, Germany, was used in the Biophysics Laboratory at Rzeszów University of Technology. Most of the samples show a non-Newtonian behaviour. It was confirmed with a Rheo-NMR system from Bruker that 10% by weight of Y2O3 suspension is a non-Newtonian fluid. In this work, we also report an unexpected behaviour of the viscosity of some samples (Y2O3 and Y3Al5O12) due to sedimentation effect. PMID:22824064

  15. Ablation of oxide materials and production of nanopowders by ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Osipov, Vladimir V.; Lisenkov, Vasily V.; Platonov, Vladislav V.

    2015-03-01

    In this paper, laser radiation action on Nd3+:Y2O3 targets having the absorption 13-1.7 × 103 cm-1 is studied. During the experiment, we used the ytterbium fiber laser, which can operate both in continuous and pulse mode with the pulse duration time 0.1-1.9 ms. Laser radiation power was 200-700 W, and power density was (0.2-1.2) × 106 W/cm2. We found out the spike behavior of laser plume luminescence, large statistical variability of delay time of laser plume appearance, and spallation of front surface of the target. Aiming to explain these facts, we developed the numeric model of radiation impact on substance with non-uniform absorption coefficient. We found out the optimal laser oblation mode for nanopowder production. At laser power of 700 W, we received Nd3+:Y2O3 nanopowder with productivity up to 27 g/h. Average size of nanoparticles is 13.6 nm, and their phase is monoclinic.

  16. Low temperature synthesis of pure cubic ZrO2 nanopowder: structural and luminescence studies.

    PubMed

    Prakashbabu, D; Hari Krishna, R; Nagabhushana, B M; Nagabhushana, H; Shivakumara, C; Chakradar, R P S; Ramalingam, H B; Sharma, S C; Chandramohan, R

    2014-03-25

    Pure cubic zirconia (ZrO2) nanopowder is prepared for the first time by simple low temperature solution combustion method without calcination. The product is characterized by Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infra Red spectroscopy (FTIR) and Ultraviolet-Visible spectroscopy (UV-Vis). The PXRD showed the formation of pure stable cubic ZrO2 nanopowders with average crystallite size ranging from 6 to 12 nm. The lattice parameters were calculated from Rietveld refinement method. SEM micrograph shows fluffy, mesoporous, agglomerated particles with large number of voids. TEM micrograph shows honey comb like arrangement of particles with particle size ∼10 nm. The PL emission spectrum excited at 210 nm and 240 nm consists of intense bands centered at ∼365 and ∼390 nm. Both the samples show shoulder peak at ∼420 nm, along with four weak emission bands at ∼484, ∼528, ∼614 and ∼726 nm. TL studies were carried out pre-irradiating samples with γ-rays ranging from 1 to 5 KGy at room temperature. A well resolved glow peak at 377 °C is recorded which can be ascribed to deep traps. With increase in γ radiation there is linear increase in TL intensity which shows the possible use of ZrO2 as dosimetric material.

  17. A study on the effect factors of sol-gel synthesis of yttrium aluminum garnet nanopowders

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Lu, Tiecheng; Xu, Hui; Zhang, Wei; Ma, Benyuan

    2010-03-01

    Yttrium aluminum garnet (YAG) nanopowders were synthesized by sol-gel method using aluminum nitrate, yttrium nitrate, and citric acid as starting materials, de-ionized water, ethanol, and ethylene glycol as solvents, respectively. The phase formation process, state of particle size distribution (PSD), compositions, morphological characteristics, and thermal behavior of the powders were investigated by means of x-ray diffractometry, PSD, Fourier transform infrared, transmission electronic microscope, and thermogravimetry-differential scanning calorimetry. Results indicate that the formation and characteristics of precursor gel and YAG powder, such as the rate of gelation, average particle size, and powder agglomerate state, strongly depend on the stoichiometric amount of citric acid, the solvent composition, and the precalcination process. Highly crystalline, well-dispersed YAG nanopowder was obtained by calcining at 800 °C for 2 h in the presence of citric acid to nitrate ratio of 3, ethanol solvent, and precalcination process. According to the analysis of experimental results, sol-gel chemistry, DLVO theory, and steric effect, the effects of stoichiometric amount of citric acid, solvent composition, and precalcination process on the formation and characteristics of precursor gel and YAG powder have been discussed. Meanwhile, the overall synthesis mechanism in sol-gel method has been suggested.

  18. Dependence of viscosity of suspensions of ceramic nanopowders in ethyl alcohol on concentration and temperature

    NASA Astrophysics Data System (ADS)

    Żyła, Gaweł; Cholewa, Marian; Witek, Adam

    2012-07-01

    This work presents results of measurements of viscosity of suspensions including yttrium oxide (Y2O3), yttrium aluminum garnet (Y3Al5O12) and magnesium aluminum spinel (MgAl2O4) nanopowders in ethanol. Nanoparticles used in our research were either commercially available (Baikowski) or nanopowders newly developed in the Institute of Ceramics and Building Materials in Warsaw, Poland. The study was conducted in a wide range of shear rates (0.01 to 2,000 s-1) and temperature interval from -15°C to 20°C. A Haake Mars 2 rheometer from Thermo Fisher, Germany, was used in the Biophysics Laboratory at Rzeszów University of Technology. Most of the samples show a non-Newtonian behaviour. It was confirmed with a Rheo-NMR system from Bruker that 10% by weight of Y2O3 suspension is a non-Newtonian fluid. In this work, we also report an unexpected behaviour of the viscosity of some samples (Y2O3 and Y3Al5O12) due to sedimentation effect.

  19. Low temperature synthesis of pure cubic ZrO2 nanopowder: Structural and luminescence studies

    NASA Astrophysics Data System (ADS)

    Prakashbabu, D.; Hari Krishna, R.; Nagabhushana, B. M.; Nagabhushana, H.; Shivakumara, C.; Chakradar, R. P. S.; Ramalingam, H. B.; Sharma, S. C.; Chandramohan, R.

    2014-03-01

    Pure cubic zirconia (ZrO2) nanopowder is prepared for the first time by simple low temperature solution combustion method without calcination. The product is characterized by Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infra Red spectroscopy (FTIR) and Ultraviolet-Visible spectroscopy (UV-Vis). The PXRD showed the formation of pure stable cubic ZrO2 nanopowders with average crystallite size ranging from 6 to 12 nm. The lattice parameters were calculated from Rietveld refinement method. SEM micrograph shows fluffy, mesoporous, agglomerated particles with large number of voids. TEM micrograph shows honey comb like arrangement of particles with particle size ∼10 nm. The PL emission spectrum excited at 210 nm and 240 nm consists of intense bands centered at ∼365 and ∼390 nm. Both the samples show shoulder peak at ∼420 nm, along with four weak emission bands at ∼484, ∼528, ∼614 and ∼726 nm. TL studies were carried out pre-irradiating samples with γ-rays ranging from 1 to 5 KGy at room temperature. A well resolved glow peak at 377 °C is recorded which can be ascribed to deep traps. With increase in γ radiation there is linear increase in TL intensity which shows the possible use of ZrO2 as dosimetric material.

  20. Low temperature synthesis of pure cubic ZrO2 nanopowder: structural and luminescence studies.

    PubMed

    Prakashbabu, D; Hari Krishna, R; Nagabhushana, B M; Nagabhushana, H; Shivakumara, C; Chakradar, R P S; Ramalingam, H B; Sharma, S C; Chandramohan, R

    2014-03-25

    Pure cubic zirconia (ZrO2) nanopowder is prepared for the first time by simple low temperature solution combustion method without calcination. The product is characterized by Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infra Red spectroscopy (FTIR) and Ultraviolet-Visible spectroscopy (UV-Vis). The PXRD showed the formation of pure stable cubic ZrO2 nanopowders with average crystallite size ranging from 6 to 12 nm. The lattice parameters were calculated from Rietveld refinement method. SEM micrograph shows fluffy, mesoporous, agglomerated particles with large number of voids. TEM micrograph shows honey comb like arrangement of particles with particle size ∼10 nm. The PL emission spectrum excited at 210 nm and 240 nm consists of intense bands centered at ∼365 and ∼390 nm. Both the samples show shoulder peak at ∼420 nm, along with four weak emission bands at ∼484, ∼528, ∼614 and ∼726 nm. TL studies were carried out pre-irradiating samples with γ-rays ranging from 1 to 5 KGy at room temperature. A well resolved glow peak at 377 °C is recorded which can be ascribed to deep traps. With increase in γ radiation there is linear increase in TL intensity which shows the possible use of ZrO2 as dosimetric material. PMID:24317256

  1. Employing Ti nano-powder dielectric to enhance surface characteristics in electrical discharge machining of AISI D2 steel

    NASA Astrophysics Data System (ADS)

    Marashi, Houriyeh; Sarhan, Ahmed A. D.; Hamdi, Mohd

    2015-12-01

    Manufacturing components with superior surface characteristics is challenging when electrical discharge machining (EDM) is employed for mass production. The aim of this research is to enhance the characteristics of AISI D2 steel surface machined with EDM through adding Ti nano-powder to dielectric under various machining parameters, including discharge duration (Ton) and peak current (I). Surface roughness profilometer, FESEM and AFM analysis were utilized to reveal the machined surface characteristics in terms of surface roughness, surface morphology and surface micro-defects. Moreover, EDX analysis was performed in order to evaluate the atomic deposition of Ti nano-powder on the surface. The concentration of Ti nano-powder in dielectric was also examined using ESEM and EDX. According to the results, the addition of Ti nano-powder to dielectric notably enhanced the surface morphology and surface roughness at all machining parameters except Ton = 340 μs. Of these parameters, maximum enhancement was observed at Ton = 210 μs, where the material removal rate and average surface roughness improved by ∼69 and ∼35% for peak current of 6 and 12 A, respectively. Elemental analysis signified negligible Ti deposition on the machined surface while the atomic concentration of Ti was increased around the crack areas.

  2. Surface properties of calcium and magnesium oxide nanopowders grafted with unsaturated carboxylic acids studied with inverse gas chromatography.

    PubMed

    Maciejewska, Magdalena; Krzywania-Kaliszewska, Alicja; Zaborski, Marian

    2012-09-28

    Inverse gas chromatography (IGC) was applied at infinite dilution to evaluate the surface properties of calcium and magnesium oxide nanoparticles and the effect of surface grafted unsaturated carboxylic acid on the nanopowder donor-acceptor characteristics. The dispersive components (γ(s)(D)) of the free energy of the nanopowders were determined by Gray's method, whereas their tendency to undergo specific interactions was estimated based on the electron donor-acceptor approach presented by Papirer. The calcium and magnesium oxide nanoparticles exhibited high surface energies (79 mJ/m² and 74 mJ/m², respectively). Modification of nanopowders with unsaturated carboxylic acids decreased their specific adsorption energy. The lowest value of γ(s)(D) was determined for nanopowders grafted with undecylenic acid, approximately 55 mJ/m². The specific interactions were characterised by the molar free energy (ΔG(A)(SP)) and molar enthalpy (ΔH(A)(SP)) of adsorption as well as the donor and acceptor interaction parameters (K(A), K(D)). PMID:22907042

  3. Effect of Nb doping on structural, optical and photocatalytic properties of flame-made TiO2 nanopowder.

    PubMed

    Michalow, Katarzyna A; Flak, Dorota; Heel, Andre; Parlinska-Wojtan, Magdalena; Rekas, Mieczyslaw; Graule, Thomas

    2012-11-01

    TiO(2):Nb nanopowders within a dopant concentration in the range of 0.1-15 at.% were prepared by one-step flame spray synthesis. Effect of niobium doping on structural, optical and photocatalytic properties of titanium dioxide nanopowders was studied. Morphology and structure were investigated by means of Brunauer-Emmett-Teller isotherm, X-ray diffraction and transmission electron microscopy. Diffuse reflectance and the resulting band gap energy were determined by diffuse reflectance spectroscopy. Photocatalytic activity of the investigated nanopowders was revised for the photodecomposition of methylene blue (MB), methyl orange (MO) and 4-chlorophenol under UVA and VIS light irradiation. Commercial TiO(2)-P25 nanopowder was used as a reference. The specific surface area of the powders was ranging from 42.9 m(2)/g for TiO(2):0.1 at.% Nb to 90.0 m(2)/g for TiO(2):15 at.% Nb. TiO(2):Nb particles were nanosized, spherically shaped and polycrystalline. Anatase was the predominant phase in all samples. The anatase-related transition was at 3.31 eV and rutile-related one at 3.14 eV. TiO(2):Nb nanopowders exhibited additional absorption in the visible range. In comparison to TiO(2)-P25, improved photocatalytic activity of TiO(2):Nb was observed for the degradation of MB and MO under both UVA and VIS irradiation, where low doping level (Nb < 1 at.%) was the most effective. Niobium doping affected structural, optical and photocatalytic properties of TiO(2). Low dopant level enhanced photocatalytic performance under UVA and VIS irradiation. Therefore, TiO(2):Nb (Nb < 1 at.%) can be proposed as an efficient selective solar light photocatalyst. PMID:23054731

  4. Effect of solution combusted TiO2 nanopowder within commercial BaTiO3 dielectric layer on the photoelectric properties for AC powder electroluminescence devices.

    PubMed

    Park, Sung; Choi, Gil Rak; Kim, Youn Cheol; Lee, Jae Chun; Lee, Ju Hyeon

    2013-05-01

    A unique synthesis method was developed, which is called solution combustion method (SCM). TiO2 nanopowder was synthesized by this method. This SCM TiO2 nanopowder (-35 nm) was added to the dielectric layer of AC powder electroluminescence (EL) device. The dielectric layer was made of commercial BaTiO3 powder (-1.2 microm) and binding polymer. 0, 5, 10 and 15 wt% of SCM TiO2 nanopowder was added to the dielectric layer during fabrication of AC powder EL device respectively. Dielectric constant of these four kinds of dielectric layers was measured. The brightness and current density of AC powder EL device were also measured. When 10 wt% of SCM TiO2 nanopowder was added, dielectric constant and brightness were increased by 30% and 101% respectively. Furthermore, the current density was decreased by 71%. This means that the brightness was double and the power consumption was one third.

  5. Molten salt synthesis and localized surface plasmon resonance study of vanadium dioxide nanopowders

    SciTech Connect

    Wang Fu; Liu Yun; Liu Chunyan

    2009-12-15

    Rutile-type vanadium dioxide nanopowders with four different sizes were successfully synthesized by carbothermal reducing V{sub 2}O{sub 5} in KCl-LiCl molten salt. XRD and TEM characterizations suggested that vanadium dioxide particles formed by a broken and reunited process of vanadium oxide. Molten salt and organic carbon sources are crucial to the size of final particles. In the presence of the molten salt, the organic carbon with a shorter chain length would induce smaller particles. The UV-VIS-IR spectral measurements for as-prepared vanadium dioxide announced an obvious localized surface plasmon resonance band in the near infrared region at 90 deg. C. - Graphical abstract: Schematic illustration of the formation mechanism of VO{sub 2}(M) nanoparticles in molten salt, particles size can be controlled by choosing organic carbon sources with different chain length.

  6. Acoustic Properties of Polyurethane Composition Reinforced with Carbon Nanotubes and Silicon Oxide Nano-powder

    NASA Astrophysics Data System (ADS)

    Orfali, Wasim A.

    This article demonstrates the acoustic properties of added small amount of carbon-nanotube and siliconoxide nano powder (S-type, P-Type) to the host material polyurethane composition. By adding CNT and/or nano-silica in the form of powder at different concentrations up to 2% within the PU composition to improve the sound absorption were investigated in the frequency range up to 1600 Hz. Sound transmission loss measurement of the samples were determined using large impedance tube. The tests showed that addition of 0.2 wt.% Silicon Oxide Nano-powder and 0.35 wt.% carbon nanotube to polyurethane composition improved sound transmissions loss (Sound Absorption) up to 80 dB than that of pure polyurethane foam sample.

  7. The effect of calcination temperature on the crystallinity of TiO 2 nanopowders

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Fang; Lee, Chi-Young; Yeng, Ming-Yu; Chiu, Hsin-Tien

    2003-01-01

    TiO 2 nanopowders have been prepared using 0.1 M titanium tetraisopropoxide (TTIP) in varied pH aqueous solution containing TMC and NP-204 surfactants. Only the powder acquired from a solution of pH=2 has a regular particle size distribution. Anatase phase powders are obtained by calcination in nitrogen in the 250-500°C temperature range. When calcined at 400°C, the diameter of the nanoparticles is approximately 10 nm with a specific surface area of 106.9 m 2/g. As the calcination temperature is increased, the particle size increases. Rutile phase powders are formed at calcination temperatures above 600°C.

  8. Stable Co-Catalyst-Free Photocatalytic H2 Evolution From Oxidized Titanium Nitride Nanopowders.

    PubMed

    Zhou, Xuemei; Zolnhofer, Eva M; Nguyen, Nhat Truong; Liu, Ning; Meyer, Karsten; Schmuki, Patrik

    2015-11-01

    A simple strategy is used to thermally oxidize TiN nanopowder (∼20 nm) to an anatase phase of a TiO2:Ti(3+):N compound. In contrast to the rutile phase of such a compound, this photocatalyst provides activity for hydrogen evolution under AM1.5 conditions, without the use of any noble metal co-catalyst. Moreover the photocatalyst is active and stable over extended periods of time (tested for 4 months). Importantly, to achieve successful conversion to the active anatase polymorph, sufficiently small starting particles of TiN are needed. The key factor for catalysis is the stabilization of the co-catalytically active Ti(3+) species against oxidation by nitrogen present in the starting material. PMID:26427346

  9. Acetone Sensing Properties of a Gas Sensor Composed of Carbon Nanotubes Doped With Iron Oxide Nanopowder

    PubMed Central

    Tan, Qiulin; Fang, Jiahua; Liu, Wenyi; Xiong, Jijun; Zhang, Wendong

    2015-01-01

    Iron oxide (Fe2O3) nanopowder was prepared by a precipitation method and then mixed with different proportions of carbon nanotubes. The composite materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. A fabricated heater-type gas sensor was compared with a pure Fe2O3 gas sensor under the influence of acetone. The effects of the amount of doping, the sintering temperature, and the operating temperature on the response of the sensor and the response recovery time were analyzed. Experiments show that doping of carbon nanotubes with iron oxide effectively improves the response of the resulting gas sensors to acetone gas. It also reduces the operating temperature and shortens the response recovery time of the sensor. The response of the sensor in an acetone gas concentration of 80 ppm was enhanced, with good repeatability. PMID:26569253

  10. Preparation, structural and optical characterization of ZnO, ZnO: Al nanopowder

    SciTech Connect

    Mohan, R. Raj; Rajendran, K.; Sambath, K.

    2014-01-28

    In this paper, ZnO and ZnO:Al nanopowders have been synthesized by low cost hydrothermal method. Zinc nitrate, hexamethylenetetramine (HMT) and aluminium nitrate are used as precursors for ZnO and AZO with different molar ratios. The structural and optical characterization of doped and un-doped ZnO powders have been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDAX), photoluminescence (PL) and ultra violet visible (UV-Vis) absorption studies. The SEM results show that the hydrothermal synthesis can be used to obtain nanoparticles with different morphology. It is observed that the grain size of the AZO nanoparticles increased with increasing of Al concentration. The PL measurement of AZO shows that broad range of green emission around 550nm with high intensity. The green emission resulted mainly because of intrinsic defects.

  11. Physicochemical and sensory properties of milk supplemented with dispersible nanopowdered oyster shell during storage.

    PubMed

    Lee, Y K; Ahn, S I; Chang, Y H; Kwak, H S

    2015-09-01

    The current study was carried out to investigate the dispersibility of powdered oyster shell (POS), nanopowdered oyster shell (NPOS), and Zn-activated nanopowdered oyster shell (Zn-NPOS) in milk and to determine effects of adding oyster shell on the physicochemical and sensory properties of milk during storage at 4°C for 16 d. To ensure dispersibility, 10% (wt/vol) oyster shell was added to distilled water and stirred at 800 rpm for 2 h, and then the emulsifier 0.5% polyglycerol monostearate (PGMS) was added and stirred continually for 24 h. The particle sizes of POS, NPOS, and Zn-NPOS were 180μm, 389 nm, and 257 nm, respectively. The pH values of all milk samples ranged from 6.62 to 6.88 during storage, and the zeta-potential of milks with NPOS and Zn-NPOS added were more stable than that of milk with POS in low concentrations (0.5 and 1.0%, vol/vol) during storage. The L and a color values of the milks were not significantly influenced by treatment; however, the b value (yellow-blue color) significantly increased during storage after adding POS, NPOS, or Zn-NPOS. Sensory analysis revealed that sedimentation score significantly increased with POS-supplemented milk, but the NPOS- and Zn-NPOS-supplemented milks did not show sedimentation until after 8 d of storage. Based on the data obtained, we conclude that dispersible nanosized oyster shell at concentrations of 0.5 and 1.0% (vol/vol) could be supplemented to milk without significant adverse effects on physicochemical and sensory properties.

  12. Green approach for the synthesis and characterization of ZrSnO4 nanopowder

    NASA Astrophysics Data System (ADS)

    Athar, Taimur; Vishwakarma, Sandeep Kumar; Bardia, Avinash; Alabass, Razzaq; Alqarlosy, Ahmed; Khan, Aleem Ahmed

    2016-06-01

    Well-defined structural framework of ZrSnO4 nanopowder has been synthesized for the fabrications of cost-effective and sensitive devices which give final reproducible result with reliability under ideal conditions. The synthesis was carried out at moderate temperature and then finally dried in the laboratory oven and then followed with calcination at 1000 °C for 4 h to get phase selective product. It was observed that gelation time depends on the concentration of reactants and temperature. The characterization of ZrSnO4 was carried out with XRD, SEM, TEM, UV, thermal analysis, DLS and FT-IR techniques. With adjustment of reaction parameters, the systematic tuning of the particle size, shape and functional properties can be controlled. It was concluded that self-assembly is an integral part for the synthesis and opens a new exciting opportunity for better understanding the formation of nanostructure framework from micro- to nanoscale along with mechanistic via wet chemical approach. ZrSnO4 has vital role in identifying its potential cytotoxicity in the biological systems. The cytotoxicity effects of ZrSnO4 nanopowder in vitro were evaluated in three different human cell types (hepatocytes, mesenchymal stem cells and neuronal cells). Acute exposure of nanoparticles was found to have greater cytotoxic effect at higher concentration (30 µg/ml). However, partial detoxification was observed during nanoparticles exposure at day 6. The study concluded that an initial stress from nanoparticles incorporates sealing or detoxification of nanoparticles which may help to recover cell viability.

  13. Combustion synthesis, characterization and Raman studies of ZnO nanopowders

    NASA Astrophysics Data System (ADS)

    Reddy, A. Jagannatha; Kokila, M. K.; Nagabhushana, H.; Rao, J. L.; Shivakumara, C.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2011-10-01

    Spherical shaped ZnO nanopowders (14-50 nm) were synthesized by a low temperature solution combustion method in a short time <5 min. Rietveld analysis show that ZnO has hexagonal wurtzite structure with lattice constants a = 3.2511(1) Å, c = 5.2076(2) Å, unit cell volume ( V) = 47.66(5) (Å) 3 and belongs to space group P63mc. SEM micrographs reveal that the particles are spherical in shape and the powders contained several voids and pores. TEM results also confirm spherical shape, with average particle size of 14-50 nm. The values are consistent with the grain sizes measured from Scherrer's method and Williamson-Hall (W-H) plots. A broad UV-vis absorption spectrum was observed at ˜375 nm which is a characteristic band for the wurtzite hexagonal pure ZnO. The optical energy band gap of 3.24 eV was observed for nanopowder which is slightly lower than that of the bulk ZnO (3.37 eV). The observed Raman peaks at 438 and 588 cm -1 were attributed to the E 2 (high) and E 1 (LO) modes respectively. The broad band at 564 cm -1 is due to disorder-activated Raman scattering for the A 1 mode. These bands are associated with the first-order Raman active modes of the ZnO phase. The weak bands observed in the range 750-1000 cm -1 are due to small defects.

  14. Preparation, structural and spectroscopic studies of (Y xLu 1-x) 2O 3:Eu 3+ nanopowders

    NASA Astrophysics Data System (ADS)

    Antić, Željka; Krsmanović, Radenka; Wojtowicz, Marcin; Zych, Eugeniusz; Bártová, Barbora; Dramićanin, Miroslav D.

    2010-10-01

    Lutetium and yttrium oxides are promising scintillating materials suitable for use in medical planar X-ray imaging and mammography. In this paper the procedure for preparation of europium doped mixed lutetium-yttrium oxide nanopowders using polymer complex solution synthesis method is presented. Detailed information on nanopowder phase, morphology and crystallinity are obtained using X-ray powder diffraction, SEM and TEM while optical properties are investigated by photoluminescence and radioluminescence measurements. Constituting nanoparticles are 20-40 nm in size, and have excellent structural ordering in cubic bixbyite-type. Unit cell parameter, ionic coordinates, crystal coherence size and microstrain are determined from Rietveld analysis. All powders show strong Eu 3+-characteristic red emission, with an average 5D 0 emission lifetime of 1.5 ms. Radioluminescence efficiency is about 15% of the commercial micron-sized Gd 2O 2S:Eu 3+ powder while negligible level of afterglow is found.

  15. Electrical and optical properties of SrTiO3 nanopowders: Effect of different dopants Ba and Ag

    NASA Astrophysics Data System (ADS)

    Ghasemifard, Mahdi; Ghamari, Misagh; Iziy, Meysam

    2016-05-01

    Using strontium-titanium salts precursor, nanopowders (STO-based-NPs) were successfully synthesized by controlled gel-combustion method. Citric and nitric acids in an optimum ratio were used as the fuel and oxidizer agents, respectively. After heat treatment at 850∘C, the crystalline structure of the products was investigated by X-ray diffraction. The effects of Ba and Ag dopants on particle size distribution were discussed by transmission electron microscopy (TEM). The optical and dielectric parameters such as energy band gap (Eg), real and imaginary parts of refractive index, dielectric function and energy loss function of nanopowders have been investigated by UV-Vis and FTIR spectra. The band gap of SrTiO3 increased with increasing Ba, Ag and Ba-Ag. Different atomic radii of dopants are responsible for changing optical and dielectric parameters due to the altered orbital configuration of the lattice structure.

  16. A study on the production of titanium carbide nano-powder in the nanostate and its properties

    NASA Astrophysics Data System (ADS)

    Shiryaeva, L. S.; Rudneva, S. V.; Galevsky, G. V.; Garbuzova, A. K.

    2016-09-01

    The plasma synthesis of titanium carbide nano-powder in the conditions close to industrial was studied. Titanium carbide TiC is a wear- and corrosion-resistant, hard, chemically inert material, demanded in various fields for the production of hard alloys, metal- ceramic tools, heat-resistant products, protective metal coatings. New perspectives for application titanium carbide in the nanostate can be found in the field of alloys modification with different composition and destination.

  17. Ammonia sensing properties of V-doped ZnO:Ca nanopowders prepared by sol–gel synthesis

    SciTech Connect

    Fazio, E.; Hjiri, M.; Dhahri, R.; El Mir, L.; Sabatino, G.; Barreca, F.; Neri, F.; Leonardi, S.G.; Pistone, A.; Neri, G.

    2015-03-15

    V-doped ZnO:Ca nanopowders with different V loading were prepared by sol–gel synthesis and successive drying in ethanol under supercritical conditions. Characterization data of nanopowders annealed at 700 °C in air, revealed that they have the wurtzite structure. Raman features of V-doped ZnO:Ca samples were found to be substantially modified with respect to pure ZnO or binary ZnO:Ca samples, which indicate the substitution of vanadium ions in the ZnO lattice. The ammonia sensing properties of V-doped ZnO:Ca thick films were also investigated. The results obtained demonstrate the possibility of a fine tuning of the sensing characteristics of ZnO-based sensors by Ca and V doping. In particular, their combined effect has brought to an enhanced response towards NH{sub 3} compared to bare ZnO and binary V-ZnO and Ca-ZnO samples. Raman investigation suggested that the presence of Ca play a key role in enhancing the sensor response in these ternary composite nanomaterials. - Graphical abstract: V-doped ZnO:Ca nanopowders prepared by sol–gel synthesis possess enhanced sensing characteristics towards NH{sub 3} compared to bare ZnO. - Highlights: • V-doped ZnO:Ca nanopowders with different V loading were prepared by sol–gel synthesis. • Raman features of V-doped ZnO:Ca samples indicate the substitution of V ions in the ZnO lattice. • Combined effects of dopants have brought to an enhanced response to NH{sub 3} compared to ZnO. • Ca play a key role in enhancing the sensor response of ternary V-doped ZnO:Ca composites.

  18. The Preventive Effects of Nanopowdered Peanut Sprout-added Caciocavallo Cheese on Collagen-induced Arthritic Mice

    PubMed Central

    Chang, Yoon Hyuk

    2014-01-01

    The present study was carried out to investigate the effects of nanopowdered peanut sprout-added Caciocavallo cheese (NPCC) on the prevention and treatment of rheumatoid arthritis in DBA/IJ mice immunized with type II collagen. After the induction of arthritis, the mice were being divided into five groups: (1) normal, no immunization; (2) CIA, collagen-induced arthritis; (3) MTX, collagen-induced arthritis treated with methotrexate (0.3 mg/kg body weight); (4) CC, collagen-induced arthritis treated with Caciocavallo cheese (0.6 g/d); (5) NPCC, collagen-induced arthritis treated with nanopowdered peanut sprout-added Caciocavallo cheese (0.6 g/d). Nanopowdered peanut sprout was ranged from 300 to 350 nm, while regular powdered peanut sprouts were ranged from 50 to 150 μm. The NPCC group had considerable reductions of clinical scores and paw thicknesses at the end of experiment as compared to the CIA group. In the serum analysis, the TNF-α, IL-1β, IL- 6 and IgG1 levels in the NPCC group have decreased by 69.4, 75.9, 66.6, and 61.9%, respectively, when compared to the CIA group. The histological score and spleen index of the NPCC group were significantly lower than the CIA group. In conclusion, the feeding NPCC method could delay and/or prevent the rheumatoid arthritis in the collagen-induced arthritis mouse model. Based on this study, nanopowdered peanut sprouts could be applied to various functional cheeses. PMID:26760745

  19. TiC nanocrystal formation from carburization of laser-grown Ti/O/C nanopowders for nanostructured ceramics.

    PubMed

    Leconte, Y; Maskrot, H; Herlin-Boime, N; Porterat, D; Reynaud, C; Gierlotka, S; Swiderska-Sroda, A; Vicens, J

    2006-01-12

    Refractory carbide ceramics (TiC and ZrC) raise interest as promising materials for high-temperature applications such as structural materials for the future generation of nuclear reactors. In this context, nanostructured ceramics are expected to exhibit improved thermomechanical properties as well as better behavior under irradiation when compared to conventional materials. It is therefore necessary to synthesize carbide nanocrystals of such materials to elaborate the ceramics. We report here the formation study of TiC nanocrystals through the direct carburization of Ti/O/C nanopowders grown by laser pyrolysis. A spray of titanium tetraisopropoxide was laser pyrolyzed with ethylene as the sensitizer, leading to Ti/O/C nanopowders with various C contents controlled by the synthesis conditions. Annealing treatments performed on these nanopowders under an inert atmosphere without any C addition enabled the formation of TiC grains through the carburization of the oxide phase by free C incorporated during the synthesis. The powders were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The final TiC grain size was about 80 nm, and the grains were monocrystalline. The influence of the free C content on the grain growth during the annealing step, together with its effects on the densification of the ceramics after sintering by high-pressure flash sintering, was examined. A 93% densification was finally achieved.

  20. Synthesis of nanostructured framework of novel ZnBaO2 nanopowder via wet chemical approach and hepatocytotoxicity response

    NASA Astrophysics Data System (ADS)

    Athar, Taimur; Vishwakarma, Sandeep Kumar; Alabass, Razzaq; Alqaralosy, Ahmed; Khan, Aleem Ahmed

    2016-08-01

    Wet synthetic process is an effective and facile method at low cost, environmentally benign process for easy scaling-up and then used for fabrication of multi-utility devices. Self-assembling of nanobrick leads to architecture framework with new functional properties which help to make its vast applications as nanodevices with their intrinsic shape, size and functional properties. The bimetallic oxide nanostructure with phase structure was characterized by FTIR, UV-visible electronic absorption, XRD, thermal studies, SEM, TEM, DLS and fluorescence. Nanocrystalline ZnBaO2 powder can be used due to its chemical stability and excellent transmission in the visible region. It was observed that the annealing rate plays an important role to redefine the structural and other physicochemical properties which finally help to change gel into crystalline functional properties with porosity. Wet chemical approach can be used for the synthesis of other metal oxide nanopowders which can be easily scale up for production level. Along with synthesis and characterization, we also assessed biological responses of human hepatocytes exposed to ZnBaO2 nanopowder. Cell membrane permeability and ammonia detoxification were investigated against various concentrations of nanoparticles on in vitro cultured hepatocytes. Our results suggest that low concentrations (<40 μg/ml) of ZnBaO2 nanopowder have no cytotoxic effect on hepatocytes viability, proliferation and detoxification, whereas concentrations above 40 μg/ml depict significant toxicity on cells.

  1. Tuning the combined magnetic and antibacterial properties of ZnO nanopowders through Mn doping for biomedical applications

    NASA Astrophysics Data System (ADS)

    Ravichandran, K.; Karthika, K.; Sakthivel, B.; Jabena Begum, N.; Snega, S.; Swaminathan, K.; Senthamilselvi, V.

    2014-05-01

    Manganese (Mn) doped ZnO nanopowders (0, 2, 4, 6, 8 and 10 at%) were synthesized using a simple soft chemical route and their structural, optical, surface morphological, magnetic and antibacterial properties were investigated. Structural studies show that the nanopowders exhibit hexagonal wurtzite structure of ZnO. No other secondary phases like MnO2, MnO, Mn3O4 and Mn2O3 are observed. The blue shift observed in the photoluminescence spectra beyond the Mn doping level of 6 at% shows that there is an increase in the carrier concentration, caused by the interstitial incorporation of Zn and Mn in the ZnO matrix. From the antibacterial studies, it is found that ZnO:Mn nanopowders with higher Mn doping level (8 and 10 at%) exhibit good antibacterial efficiency against Escherichia coli (E. coli) bacteria. The magnetization curves obtained using vibrating sample magnetometer (VSM) show a sign of strong room temperature ferromagnetic behavior when the Mn doping level is 6 at% and a weak room temperature ferromagnetic behavior, when the Mn doping level is below 6 at%. Beyond 6 at% they are found to exhibit antiferromagnetic and paramagnetic properties, when the Mn doping levels are 8 and 10 at%, respectively. The SEM images indicate that there is a gradual decrease in the grain size with increase in the Mn doping level. The EDAX profile clearly confirms the presence of expected elements in the final product, in appropriate proportions.

  2. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-05-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11kg/m(3) of copper and 1.35kg/m(3) of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100-500nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. PMID:26918838

  3. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-05-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11kg/m(3) of copper and 1.35kg/m(3) of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100-500nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process.

  4. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    NASA Astrophysics Data System (ADS)

    Koyanagi, T.; Shimoda, K.; Kondo, S.; Hinoki, T.; Ozawa, K.; Katoh, Y.

    2014-12-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 °C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. The apparent stress exponent of the irradiation creep slightly exceeded unity, and instantaneous creep coefficient at 380-790 °C was estimated to be ∼1 × 10-5 [MPa-1 dpa-1] at ∼0.1 dpa and 1 × 10-7 to 1 × 10-6 [MPa-1 dpa-1] at ∼1 dpa. The irradiation creep strain appeared greater than that for the high purity SiC. Microstructural observation and data analysis indicated that the grain-boundary sliding associated with the secondary phases contributes to the irradiation creep at 380-790 °C to 0.01-0.11 dpa.

  5. Exchange Bias Effect in La1-xAgxMnO3 Nanopowders

    NASA Astrophysics Data System (ADS)

    Mihalik, M.; Antoňák, M.; Csach, K.; Fitta, M.; Mihalik, M.; Vavra, M.; Zentková, M.

    2013-01-01

    Exchange bias (EB) phenomena were first observed in the La1-xAgxMnO3 as prepared and heat treated (300 °C/2 hours) nanopowders (x = 0.10, 0.15 and 0.20) which were synthetized by self-combustion glycine-nitrate method. These nanoparticles have an average size of about 25 nm and adopt orthorhombic Pnma crystal structure. Cooling in magnetic field Hcf ≠ 0 through the Curie temperature TC shifts hysteresis loop in horizontal and vertical direction. The values of exchange bias field HE, coercive field Hc, remnant asymmetry μE and coercive magnetization μc increase with increasing value of cooling field Hcf. In addition the training effect was observed. Basic magnetic properties like the Curie temperature TC and the saturated magnetization µs increase and HE or µE decrease with heat treatment. Heat treatment at 600 °C/2 hours increases the average size of nanoparticles to about 55 nm, crystal structure changes to rhombohedral structure (space group R3c) and EB effect vanishes.

  6. Plasma column and nano-powder generation from solid titanium by localized microwaves in air

    NASA Astrophysics Data System (ADS)

    Popescu, Simona; Jerby, Eli; Meir, Yehuda; Barkay, Zahava; Ashkenazi, Dana; Mitchell, J. Brian A.; Le Garrec, Jean-Luc; Narayanan, Theyencheri

    2015-07-01

    This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy, and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ˜0.4 eV and ˜1019 m-3, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.

  7. CO sensing properties under UV radiation of Ga-doped ZnO nanopowders

    NASA Astrophysics Data System (ADS)

    Dhahri, R.; Hjiri, M.; Mir, L. El.; Bonavita, A.; Iannazzo, D.; Leonardi, S. G.; Neri, G.

    2015-11-01

    In this study, the effect of Ga-doping and UV radiation on CO sensing of ZnO nano-powders has been investigated. GZO nanoparticles with different Ga loadings were prepared using a modified sol-gel route and charaterized by means of trasmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL) analysis. Electrical and CO-sensing tests were performed on resistive planar devices consisting of thick films of GZO deposited on interdigitated alumina substrates in both dark and illumination condition by exposing the samples to UV radiation (λ = 400 nm). The baseline resistance in dark decreases strongly with the increase of Ga loading. This effect is reinforced by using UV radiation at low temperature in samples containing up to 3 at.% of Ga, which suggests also an effect of the microstructure of GZO on UV light promoting mechanism. The combined effect of Ga doping and UV irradiation allowed to monitor CO in air at low concentration with high sensitivity and lower operating temperature than on unpromoted ZnO sensor.

  8. Synthesis and magnetic properties of NiFe2-xSmxO4 nanopowder

    NASA Astrophysics Data System (ADS)

    Hassanzadeh-Tabrizi, S. A.; Behbahanian, Shahrzad; Amighian, Jamshid

    2016-07-01

    NiFe2-xSmxO4 (x=0.00, 0.05, 0.10 and 0.15) nanopowders were synthesized via a sol-gel combustion route. The structural studies were carried out by X-ray diffractometer, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The XRD results confirmed the formation of single-phase spinel cubic structure. The crystallite size decreased with an increase of samarium ion concentration, while lattice parameter and lattice strain increased with samarium substitution. TEM micrographs showed that agglomerated nanoparticles with particle sizes ranging from 35 to 90 nm were obtained. The magnetic studies were carried out using vibrating sample magnetometer. Magnetic measurements revealed that the saturation magnetization (Ms) of NiFe2-xSmxO4 nanoparticles decreases with increasing Sm3+substitution. The reduction of saturation magnetization is attributed to the dilution of the magnetic interaction. The coercivity (Hc) of samples increases by adding samarium.

  9. Magnetic structure, magnetoelastic coupling, and thermal properties of EuCrO3 nanopowders

    NASA Astrophysics Data System (ADS)

    Taheri, M.; Razavi, F. S.; Yamani, Z.; Flacau, R.; Reuvekamp, P. G.; Schulz, A.; Kremer, R. K.

    2016-03-01

    We carried out detailed studies of the magnetic structure, magnetoelastic coupling, and thermal properties of EuCrO3 nanopowders from room temperature to liquid helium temperature. Our neutron powder diffraction and x-ray powder diffraction measurements provide precise atomic positions of all atoms in the cell, especially for the light oxygen atoms. The low-temperature neutron powder diffraction data revealed extra Bragg peaks of magnetic origin, which can be attributed to a Gx antiferromagnetic structure with an ordered moment of ˜2.4 μB consistent with the 3 d3 electronic configuration of the Cr3 + cations. Apart from previously reported antiferromagnetic and ferromagnetic transitions in EuCrO3 at low temperatures, we also observed an anomaly at about 100 K. This anomaly was observed in the temperature dependence of the sample's, lattice parameters, thermal expansion, Raman spectroscopy, permittivity, and conductance measurements. This anomaly is attributed to the magnetoelastic distortion in the EuCrO3 crystal.

  10. Preparation and structural characterization of vulcanized natural rubber nanocomposites containing nickel-zinc ferrite nanopowders.

    PubMed

    Bellucci, F S; Salmazo, L O; Budemberg, E R; da Silva, M R; Rodríguez-Pérez, M A; Nobre, M A L; Job, A E

    2012-03-01

    Single-phase polycrystalline mixed nickel-zinc ferrites belonging to Ni0.5Zn0.5Fe2O4 were prepared on a nanometric scale (mean crystallite size equal to 14.7 nm) by chemical synthesis named the modified poliol method. Ferrite nanopowder was then incorporated into a natural rubber matrix producing nanocomposites. The samples were investigated by means of infrared spectroscopy, X-ray diffraction, scanning electron microscopy and magnetic measurements. The obtained results suggest that the base concentration of nickel-zinc ferrite nanoparticles inside the polymer matrix volume greatly influences the magnetic properties of nanocomposites. A small quantity of nanoparticles, less than 10 phr, in the nanocomposite is sufficient to produce a small alteration in the semi-crystallinity of nanocomposites observed by X-ray diffraction analysis and it produces a flexible magnetic composite material with a saturation magnetization, a coercivity field and an initial magnetic permeability equal to 3.08 emu/g, 99.22 Oe and 9.42 x 10(-5) respectively. PMID:22755110

  11. One-pot synthesis and characterization of Nb2O5 nanopowder.

    PubMed

    Athar, Taimur; Hashmi, Ameed; Al-Hajry, Ali; Ansari, Z A; Ansari, S G

    2012-10-01

    Nanosized niobium oxide powders were synthesized with a yield of approximately 87% using a simple and facile soft-chemical process. Niobium pentachloride (Nb2Cl5) was used as the precursor which was first converted into niobium ethoxide and then hydrolysed with water to synthesize niobia nanopowder. The synthesized powder was calcined at 500 degrees C for phase conversion to end-centered monoclinic as confirmed by diffraction studies and elemental analysis with a chemical composition in the ratio of Nb:O as 1:2.5. The molecular framework of Nb-O-Nb stretching and asymmetric frequency was confirmed by FT-IR, UV-visible and Raman spectroscopic studies. The size, shape and surface morphology of the powders were observed by SEM and TEM which indicated particle sizes of approximately 20 nm. The surface area of 20 m2/g, pore volume of 0.0538 cm2/g and the average pore size of 6.5 nm2 for the calcined sample were obtained with the help of nitrogen adsorption/desorption method using the Barrett-Joyner-Halenda (BJH) method which indicates that the synthesized powder can be used for catalysis and other surface sensitive applications. PMID:23421157

  12. Non-isothermal oxidation of aluminum nanopowder coated by hydrocarbons and fluorohydrocarbons

    NASA Astrophysics Data System (ADS)

    Sossi, A.; Duranti, E.; Paravan, C.; DeLuca, L. T.; Vorozhtsov, A. B.; Gromov, A. A.; Pautova, Yu. I.; Lerner, M. I.; Rodkevich, N. G.

    2013-04-01

    Aluminum nanopowder (nAl) obtained by electrical explosion of wires and passivated/coated with hydrocarbons and fluorohydrocarbons is comprehensively characterized. Coatings of different natures (octadecanoic and hexadecanoic acid, (1,1,11) trihydroperfluoro-undecan-1-ol, Fluorel™ + ester from esterification of (1,1,11) trihydroperfluoro-undecan-1-ol with furan-2,5-dione) were applied on the particle surface. The powders were studied by TEM, SEM, DSC-TGA, and BET specific surface area. The active aluminum content was determined by volumetric analyses. Coated nAl particles were compared to non-coated powder by the corresponding reactivity parameters obtained from DSC-TGA. It was found that while fatty acids have a weak effect on the non-isothermal oxidation behavior, fluoroelastomers shift the oxidation onset of nAl to higher temperatures by ˜20 °C for the first oxidation stage and by ˜100 °C for the second oxidation stage.

  13. ZnO and ZnTiO3 nanopowders for antimicrobial stone coating

    NASA Astrophysics Data System (ADS)

    Ruffolo, S. A.; La Russa, M. F.; Malagodi, M.; Oliviero Rossi, C.; Palermo, A. M.; Crisci, G. M.

    2010-09-01

    In the past a great variety of biocidal compounds and persistent organic pesticides were applied on a large scale for preventive measures aimed at the long-term preservation of our cultural heritage. Only recently, public and expert attention has started to focus increasingly on the risks resulting from these treatments on human health, works of art and environment in general. The work done in this field demonstrated that the most effective way for inactivation can be achieved by using highly efficient photocatalysts with the illumination of UV radiation. Following this direction our group focused its attention on well-known photocatalysts, ZnO and ZnTiO3, in the degradation and complete mineralisation of environmental pollutants. This explorative work deals with an experimental investigation on biocidal efficient of ZnO and ZnTiO3. In particular micro-quantities of the two nanopowdered photocatalysts were spread on plated dishes. They were filled by the MEA (Malt Extract Agar) medium containing given quantities of Aspergillus Niger (a chromogen filamentous fungus involved in biodeterioration). At the same time the two oxides were dispersed in different polymeric matrices, acrylic and fluorinated, in order to obtain a new coating technology, with hydrophobic, consolidant and biocidal properties for the restoration of building stone material. The mixtures obtained were applied on marble samples and capillary water absorption, simulated solar ageing, colourimetric measurements and contact angle measurements have been performed to evaluate its properties.

  14. Plasma column and nano-powder generation from solid titanium by localized microwaves in air

    SciTech Connect

    Popescu, Simona; Jerby, Eli Meir, Yehuda; Ashkenazi, Dana; Barkay, Zahava; Mitchell, J. Brian A.; Le Garrec, Jean-Luc; Narayanan, Theyencheri

    2015-07-14

    This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy, and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ∼0.4 eV and ∼10{sup 19 }m{sup −3}, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.

  15. When Halides Come to Lithium Niobate Nanopowders Purity and Morphology Assistance.

    PubMed

    Lamouroux, Emmanuel; Badie, Laurent; Miska, Patrice; Fort, Yves

    2016-03-01

    The preparation of pure lithium niobate nanopowders was carried out by a matrix-mediated synthesis approach. Lithium hydroxide and niobium pentachloride were used as precursors. The influence of the chemical environment was studied by adding lithium halide (LiCl or LiBr). After thermal treatment of the precursor mixture at 550 °C for 30 min, the morphology of the products was obtained from transmission electron microscopy and dynamic light scattering, whereas the crystallinity and phase purity were characterized by X-ray diffraction and UV-visible and Raman spectroscopies. Our results point out that the chemical environment during lithium niobate formation at 550 °C influences the final morphology. Moreover, direct and indirect band-gap energies have been determined from UV-visible spectroscopy. Their values for the direct-band-gap energies range from 3.97 to 4.36 eV with a slight dependence on the Li/Nb ratio, whereas for the indirect-band-gap energies, the value appears to be independent of this ratio and is 3.64 eV. No dependence of the band-gap energies on the average crystallite and nanoparticle sizes is observed. PMID:26859157

  16. Microwave sintering of nanopowder ZnNb2O6: Densification, microstructure and microwave dielectric properties

    NASA Astrophysics Data System (ADS)

    Bafrooei, H. Barzegar; Nassaj, E. Taheri; Hu, C. F.; Huang, Q.; Ebadzadeh, T.

    2014-12-01

    High density ZnNb2O6 ceramics were successfully fabricated by microwave sintering of ZnO-Nb2O5 and ZnNb2O6 nanopowders. Phase formation, microstructure and microwave electrical properties of the microwave sintered (MS) and microwave reaction sintered (MRS) specimens were examined using X-ray diffraction, field emission scanning electron microscopy and microwave dielectric properties measurement. Specimens were sintered in a temperature range from 950 to 1075 °C for 30 min at an interval of 25 °C using a microwave furnace operated at 2.45 GHz frequency, 3 kW power. XRD pattern revealed the formation of pure columbite phase of ZnNb2O6. The SEM micrographs show grain growth and reduction in porosity of specimens with the increase in sintering temperature. Good combination of microwave dielectric properties (εr~23.6, Qf~64,300 GHz and τf~-66 ppm/°C and εr~24, Qf~75,800 GHz and τf~-64 ppm/°C) was obtained for MS- and MRS-prepared samples at 1000 °C and 1050 °C for 30 min, respectively.

  17. Structure, nanohardness and photoluminescence of ZnO ceramics based on nanopowders

    NASA Astrophysics Data System (ADS)

    Muktepavela, Faina; Grigorjeva, Larisa; Kundzins, Karlis; Gorokhova, Elena; Rodnyi, Piotr

    2015-09-01

    ZnO ceramics obtained from grained powders with different grain size by hot pressing and ceramics from tetrapods nanopowders obtained by press-less sintering have been investigated under identical conditions. Ceramics obtained by hot pressing were optically transparent but were composed of large inhomogeneous grains (d = 8-35 μm) exhibiting a substructure. Decreased values of elastic modulus within a grain and a wide defect-associated (‘green’) photoluminescence (PL) band at 2.2-2.8 eV in conjunction with a weak excitonic band indicate a high concentration of residual point defects in hot pressed ZnO ceramics. Utilization of more small-grained powders contributes to the formation of more uniform microstructure (d = 5-15 μm) and extraction of point defects. This reflects as a substantially decreased defect PL band and increased excitonic band. Ceramics obtained by press-less sintering from tetrapods had fine-grained structure (d = 1-4 μm) with no signs of a substructure. PL spectrum has a narrow excitonic band with phonon replicas (1LO_ExD0), whereas the defect ‘green’ luminescence is negligible. The effects of powders morphologies have been explained in terms of a hereditary influence of interaction processes between initial particles on the formation of a microstructure and kinetic of defect distribution on the grain growth stages during the sintering of ZnO ceramics.

  18. SANS study of microstructural inhomogeneities on Al nano-powder compacts

    NASA Astrophysics Data System (ADS)

    Han, Young Soo; Seong, Baek Seok; Lee, Chang Hee; Lee, Geun Hee; Rhee, Chang Kyu; Kim, Whung Whoe; Wiedenmann, A.

    2004-07-01

    The nano-crystalline materials have excellent mechanical and electrical properties compared to conventional materials. These advantages mainly come from their nano-sized grain structure. Usually the nano-crystalline materials are fabricated using nano powder. The optimum consolidation process is essential to obtain a fully densified structure. The quantitative characterization of remaining pores is important to study the consolidation process. SANS is the best technique to characterize the nano sized inhomogeneities in bulk samples. Al nano powder was synthesized by pulsed wire evaporation (PWE) method and the nano-powder compacts were fabricated by magnetic pulse compaction (MPC) method. The Aluminum oxide was observed by transmission electron microscopy (TEM) at the surface of Al nano powder. The small angle neutron scattering experiments were performed both at the instrument V4 in HMI and at the SANS facility in Korea Atomic Energy Research Institute (KAERI). The SANS data measured in KAERI were compared with the SANS data measured in HMI. The scattering intensity at high Q region increases with decreasing relative density, while the intensity at low Q region increases with increasing relative density in the Al nano powder compacts. The scattering intensity depends on the content of residual pores and Al oxide particles. The volume fraction of Al oxide particle increases with relative density due to the fragmentation of Al oxide layer. The extra scattering at low Q region results from the presence of Al oxide particles.

  19. Effect of Mg doping level on the antibacterial activity of (Mg + F)-doped ZnO nanopowders synthesized using a soft chemical route

    NASA Astrophysics Data System (ADS)

    Ravichandran, K.; Snega, S.; Jabena Begum, N.; Christena, L. Rene; Dheivamalar, S.; Swaminathan, K.

    2014-08-01

    ZnO nanopowders simultaneously doped with fluorine (20 at.%) and magnesium (4, 8, 12 and 16 at.%) (ZnO:F:Mg) have been synthesized using an inexpensive simple soft chemical route for the first time. The effect of Mg doping level on certain physical properties and antibacterial activities of ZnO:F:Mg nanopowders has been investigated and reported. XRD studies showed that the products have the hexagonal wurtzite structure of ZnO. Fourier transform infrared spectra authenticate the presence of MgO stretching vibration, which is responsible for the increased antibacterial activity of the synthesized samples. The antibacterial activity of ZnO:F:Mg nanopowders was found to be enhanced with increase in Mg doping level as it causes a reduction in the grain size.

  20. Structural study and phase transition investigation in a simple synthesis of porous architected-ZnO nanopowder

    SciTech Connect

    Shang, C.; Barnabé, A.

    2013-12-15

    In this work, zinc oxide powder with a rectangular-shaped porous architecture, made of numerous spherical nanometric particles, was obtained. A simple precipitation/decomposition procedure was used comprising a zinc oxalate intermediate, obtained from zinc sulfate and oxalic acid without any additives. Detailed studies on zinc oxalate dehydration, decomposition and zinc oxide formation, were carried out using in-situ temperature X-ray diffraction and thermogravimetric analysis. During the investigation, the temperature dependence of particle sizes, lattice parameters and crystal structures of ZnC{sub 2}O{sub 4}·2H{sub 2}O, ZnC{sub 2}O{sub 4} and ZnO nanopowders were analyzed from room temperature to 450 °C. Structural transitions were also discussed. The structure and morphology of the as-prepared ZnO nanopowder were investigated by electron microscopy and compared to the crystalline rectangular shape of ZnC{sub 2}O{sub 4}·2H{sub 2}O. The calcination temperature, counter ion and precipitate agent were found to be related to the product's shape and diameter. Spherical ZnO nanoparticles with diameters of less than 20 nm and a maximum specific surface of 53 m{sup 2}/g were obtained using this method. Highlights: • ZnO nanopowders with porous architecture were synthesized by a simple method. • Spherical ZnO nanoparticles confined in submicronic rectangular shape are obtained. • Crystal structures are determined temperature in-situ XRD up to 450 °C. • Structural transitions were analyzed.

  1. Anode-supported microtubular cells fabricated with gadolinia-doped ceria nanopowders

    NASA Astrophysics Data System (ADS)

    Gil, V.; Gurauskis, J.; Campana, R.; Merino, R. I.; Larrea, A.; Orera, V. M.

    Anode-supported microtubular SOFCs based on ceria 3 ± 0.2 mm diameter and about 100 mm in length have been prepared using gadolinia-doped ceria (GDC) nanopowders. Nanometric Ce 0.9Gd 0.1O 1.95 (GDC) powders were deposited on NiO-Ce 0.9Gd 0.1O 1.95 (NiO-GDC) anode supports by dip-coating technique. Fabrication conditions to obtain dense and gas tight electrolyte layers on porous microtubular supports were studied. Three different dispersing agents: commercial Beycostat C213 (CECA, France) and short chain monomer (≤4 carbon atoms) with alcohol or carboxylic acid functional groups were evaluated. By optimizing colloidal dispersion parameters and sintering process, gas tight and dense GDC layers were obtained. Significantly lower sintering temperatures than reported previously (≤1300 °C) were employed to reach ≥98% values of theoretical density within electrolyte layers of ∼10 μm in thickness. A composite cathode, LSCF-GDC 50 wt.% with about 50 μm thickness was dip coated on the co-fired half-cell and then sintered at 1050 °C for 1 h. The electrochemical performance of these cells has been tested. In spite of electronic conduction due to partial reduction of the thin-electrolyte layer, the I- V measurements show power densities of 66 mW cm -2 at 0.45 V at temperatures as low as 450 °C (using 100% H 2 as fuel in the anodic compartment and air in the cathodic chamber).

  2. Reverse micelle synthesis of oxide nanopowders: mechanisms of precipitate formation and agglomeration effects.

    PubMed

    Graeve, Olivia A; Fathi, Hoorshad; Kelly, James P; Saterlie, Michael S; Sinha, Kaustav; Rojas-George, Gabriel; Kanakala, Raghunath; Brown, David R; Lopez, Enrique A

    2013-10-01

    We present an analysis of reverse micelle stability in four model systems. The first two systems, composed of unstable microemulsions of isooctane, water, and Na-AOT with additions of either iron sulfate or yttrium nitrate, were used for the synthesis of iron oxide or yttrium oxide powders. These oxide powders were of nanocrystalline character, but with some level of agglomeration that was dependent on calcination temperature and cleaning procedures. Results show that even though the reverse micellar solutions were unstable, nanocrystalline powders with very low levels of agglomeration could be obtained. This effect can be attributed to the protective action of the surfactant on the surfaces of the powders that prevents neck formation until after all the surfactant has volatilized. A striking feature of the IR spectra collected on the iron oxide powders is the absence of peaks in the ~1715 cm(-1) to 1750 cm(-1) region, where absorption due to the symmetric C=O (carbonyl) stretching occurs. The lack of such peaks strongly suggests the carbonyl group is no longer free, but is actively participating in the surfactant-precipitate interaction. The final two microemulsion systems, containing CTAB as the surfactant, showed that loss of control of the reverse micelle synthesis process can easily occur when the amount of salt in the water domains exceeds a critical concentration. Both model systems eventually resulted in agglomerated powders of broad size distributions or particles that were large compared to the sizes of the reverse micelles, consistent with the notion that the microemulsions were not stable and the powders were precipitated in an uncontrolled fashion. This has implications for the synthesis of nanopowders by reverse micelle synthesis and provides a benchmark for process control if powders of the highest quality are desired. PMID:23906861

  3. Evaluation of leakage from fume hoods using tracer gas, tracer nanoparticles and nanopowder handling test methodologies.

    PubMed

    Dunn, Kevin H; Tsai, Candace Su-Jung; Woskie, Susan R; Bennett, James S; Garcia, Alberto; Ellenbecker, Michael J

    2014-01-01

    The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 ft/min) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust airflows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in

  4. Spectral investigations on undoped and Cu2+ doped ZnO-CdS composite nanopowders

    NASA Astrophysics Data System (ADS)

    Thirumala Rao, G.; Babu, B.; Joyce Stella, R.; Pushpa Manjari, V.; Ravikumar, R. V. S. S. N.

    2015-03-01

    Undoped and Cu2+ doped ZnO-CdS composite nanopowders were synthesized by simple chemical precipitation method. Structural and spectroscopic properties of the prepared samples have been characterized by XRD, SEM with EDS, TEM, FT-IR, UV-Vis, EPR and Photoluminescence studies. X-ray diffraction pattern contains a series of peaks corresponds to hexagonal phase of ZnO and CdS. The average crystallite sizes of undoped and Cu2+ doped samples are determined and are in the range of 25-30 nm. SEM and TEM micrographs reveal that the samples show spherical like structures with little agglomeration. FT-IR spectra show the fundamental mode of vibrations of Znsbnd O at 515 cm-1, Cdsbnd S at 621 cm-1 and other functional groups. Optical absorption spectrum of Cu2+ doped sample consists of three bands at 665, 823 and 1192 nm attributed to the transitions 2B1g → 2Eg, 2B2g and 2A1g respectively. Crystal field and tetragonal field parameters are evaluated as Dq = 1214, Ds = 1610 and Dt = 389 cm-1. From EPR, spin-Hamiltonian and hyperfine splitting parameters are evaluated for Cu2+ doped sample as g‖ = 2.3391, g⊥ = 2.0550 and A‖ = 130 × 10-4 cm-1, A⊥ = 36 × 10-4 cm-1. The optical and EPR data suggests that Cu2+ entered into host lattice as tetragonally distorted octahedral site symmetry. PL spectra consists two emission bands at 367, 380 nm in UV region. A sharp blue emission peak at 425 nm and a broad green emission peak in the range of 450-570 nm are observed. The enhanced visible emission is observed after doping.

  5. Evaluation of leakage from fume hoods using tracer gas, tracer nanoparticles and nanopowder handling test methodologies.

    PubMed

    Dunn, Kevin H; Tsai, Candace Su-Jung; Woskie, Susan R; Bennett, James S; Garcia, Alberto; Ellenbecker, Michael J

    2014-01-01

    The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 ft/min) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust airflows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in

  6. EVALUATION OF LEAKAGE FROM FUME HOODS USING TRACER GAS, TRACER NANOPARTICLES AND NANOPOWDER HANDLING TEST METHODOLOGIES

    PubMed Central

    Dunn, Kevin H.; Tsai, Candace Su-Jung; Woskie, Susan R.; Bennett, James S.; Garcia, Alberto; Ellenbecker, Michael J.

    2015-01-01

    The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 feet/minute) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust air flows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in

  7. Physicochemical, microbial, and sensory properties of yogurt supplemented with nanopowdered chitosan during storage.

    PubMed

    Seo, M H; Lee, S Y; Chang, Y H; Kwak, H S

    2009-12-01

    This study was carried out to determine the possibility of adding nanopowdered chitosan (NPC) into cholesterol-reduced yogurt to improve the functionality of yogurt and the effects of adding NPC on the physicochemical, microbial, and sensory properties of the products during storage. The pH values and mean lactic acid bacteria counts of NPC-added (0.3 to approximately 0.7%, wt/vol) and cholesterol-reduced yogurt ranged from 4.19 to 4.41 and from 4.75 x 10(8) to 9.70 x 10(8) cfu/mL, respectively, when stored at 4 degrees C for 20 d, thereby indicating a possibility of prolonging the shelf life of yogurt. In color, the a* and b* values for cholesterol-reduced yogurt were not significantly influenced by the addition of NPC (0.1 to approximately 0.7%, wt/vol); however, the L* values significantly decreased with the addition of the greatest concentration (0.7%, wt/vol) of NPC at 0-d storage. The sensory test revealed that the astringency scores significantly increased at 0-d storage when the greatest concentration (0.7%, wt/vol) of NPC was added into cholesterol-reduced yogurt. Based on the data obtained from the current study, it is concluded that concentrations (0.3 to ~0.5%, vol/vol) of NPC could be used to produce an NPC-added and cholesterol-reduced yogurt without significantly adverse effects on the physicochemical, microbial, and sensory properties.

  8. Physicochemical, microbial, and sensory properties of nanopowdered eggshell-supplemented yogurt during storage.

    PubMed

    Al Mijan, Mohammad; Choi, Kyung-Hoon; Kwak, Hae-Soo

    2014-01-01

    This study was carried out to investigate the possibility of adding nanopowdered eggshell (NPES) into yogurt to improve the functionality of yogurt and the effects of adding NPES on the physicochemical, microbial, and sensory properties of the products during storage. The pH and mean lactic acid bacteria counts of NPES-added (0.15-0.45%, wt/vol) yogurt ranged from 4.31 to 4.66 and from 6.56 × 10(8) to 8.56 × 10(8)cfu/mL, respectively, whereas these values ranged from 4.13 to 4.44 and 8.46 × 10(8) to 1.39 × 10(9), respectively, for the control samples during storage at 5 °C for 16d, which indicates a prolonged shelf-life with NPES-supplemented yogurt. Color analysis showed that the lightness (L*) and position between red and green (a*) values were not significantly influenced by the addition of NPES. However, the position between yellow and blue (b*) value significantly increased with the addition of the concentration (0.45%, wt/vol) of NPES at d 16 of storage. Sensory evaluation revealed that NPES-added yogurts showed a notably less sourness score and a higher astringency score than the control. An earthy flavor was higher in 0.45% NPES-supplemented yogurt compared with the control. Based on the results obtained from the current study, the concentration (0.15 to 0.30%, wt/vol) of NPES can be used to formulate NPES-supplemented yogurt without any significant adverse effects on the physicochemical, microbial, and sensory properties.

  9. Magnetic field-enhanced sedimentation of nanopowder magnetite in water flow.

    PubMed

    Bakhteeva, Iu; Medvedeva, I; Byzov, I; Zhakov, S; Yermakov, A; Uimin, M; Shchegoleva, N

    2015-01-01

    Sedimentation dynamics of magnetite (γ-Fe3O4) nanopowder (10-20 nm) in water in a gradient magnetic field Bmax=0.3 T, (dB/dz)max=0.13 T/cm was studied for different water flow speeds and starting particle concentrations (0.1 and 1.0 g/l). The aggregates formation in water was monitored under the same conditions. In cyclical water flow, the velocity of particle sedimentation increases significantly in comparison to its rate in still water, which corresponds to the intensified aggregate formation. However, at a water flow speed more than 0.1 cm/s sedimentation velocity slows down, which might be connected to aggregate destruction in a faster water flow. Correlation between sedimentation time and the nanoparticle concentration in water does not follow the trend expected for spherical superparamagnetic particles. In our case sedimentation time is shorter for c=0.1 g/l in comparison with that for c=1 g/l. We submit that such a feature is caused by particle self-organization in water into complex structures of fractal type. This effect is unexplained in the framework of existing theoretical models of colloids systems, so far. Provisional recommendations are suggested for the design of a magnetic separator on the permanent magnets base. The main device parameters are magnetic field intensity B≥0.1 T, magnetic field gradient (dB/dz)max≈(0.1-0.2) T/cm, and water flow speed V<0.15 cm/s. For particle concentration c=1 g/l, purification of water from magnetite down to ecological and hygienic standards is reached in 80 min, for c=0.1 g/l the time is reduced down to 50 min. PMID:25650300

  10. Ultrafast synthesis of yolk-shell and cubic NiO Nanopowders and application in lithium ion batteries.

    PubMed

    Choi, Seung Ho; Kang, Yun Chan

    2014-02-26

    A continuous one-pot method was employed to synthesize yolk-shell and single-crystalline cubic NiO powders in a few seconds. Submicrometer-sized NiO yolk-shell particles were prepared by spray pyrolysis at 900 °C. Single-crystalline cubic NiO nanopowders were prepared by one-pot flame spray pyrolysis from NiO vapors. Particle surface areas of the yolk-shell and single-crystalline cubic NiO powders as obtained using the Brunauer-Emmett-Teller method were 8 and 5 m(2) g(-1), respectively. The mean crystallite sizes of the yolk-shell-structured and cubic NiO powders were 50 and 80 nm, respectively. The yolk-shell and single-crystalline cubic NiO powders delivered discharge capacities of 951 and 416 mA h g(-1), respectively, after 150 cycles, and the corresponding capacity retentions measured after the first cycle were 106 and 66%, respectively. The yolk-shell-structured NiO powders showed rate performance better than that of the single-crystalline cubic NiO nanopowders. Even at a high current density of 1 A g(-1), the discharge capacity of the yolk-shell-structured NiO powders was as high as 824 mA h g(-1) after 50 cycles, in which the current densities were increased stepwise. PMID:24490667

  11. Effect of Mg content on the bioactivity and biocompatibility of Mg-substituted fluorapatite nanopowders fabricated via mechanical activation.

    PubMed

    Kheradmandfard, M; Fathi, M H; Ansari, F; Ahmadi, T

    2016-11-01

    The aim of this work was preparation, characterization, bioactivity and biocompatibility evaluation of Mg-substituted fluorapatite (Mg-FA) nanopowders. Mg-FA nanopowders with a chemical composition of Ca10-xMgx(PO4)6F2, with x=0, 0.5, 1, and 2 were prepared by mechanically activated method. The in vitro bioactivity was investigated by soaking the powders in simulated body fluid (SBF) for various time periods to analyze the nucleation and growth of bone-like apatite on the surface of the samples. Cell viability and cell attachment were studied by MTT assay. Results indicated that the bioactivity of all of samples with different Mg content was improved compared with the pure FA. However, the mechanism of bioactivity is different and depends on the amount of Mg substitution. Finally, cell culture suggested that the addition of Mg(2+) has no adverse effect and Mg-FA samples have good biocompatibility. The Mg-FA material shows potential in satisfying the requirements of biomedical applications. PMID:27524005

  12. In vitro fabrication of dental filling nanopowder by green route and its antibacterial activity against dental pathogens.

    PubMed

    Lee, Jeong-Ho; Velmurugan, Palanivel; Park, Jung-Hee; Lee, Kui-Jae; Jin, Jong-Sik; Park, Yool-Jin; Bang, Keuk-Soo; Oh, Byung-Taek

    2016-06-01

    The aim of this study was to introduce novel Sn, Cu, Hg, and Ag nanopowders (NPs) and a composite nanopowder (NP) synthesized using Salvia miltiorrhiza Bunge (SM) root extract as a reducing and capping agent to improve the antibacterial property of dental filling materials. All of the NPs obtained were characterized using a scanning transmission electron microscope (STEM), and energy dispersive X-ray (EDX) spectrum imaging was performed to map the elemental distributions of the NP composite. Fourier transform infrared (FTIR) spectroscopy was performed to identify the role of various functional groups in all of the obtained NPs and the phyto-compound responsible for the reduction of various metal ions. The X-ray diffraction (XRD) patterns clearly illustrated the crystalline phase of the synthesized NP. The antibacterial properties of the synthesized Sn, Cu, Hg, Ag, composite NP, SM root extract, and commercial amalgam powder were evaluated. The Cu, composite NP, SM root extract and Ag NP displayed excellent antibacterial activity against dental bacteria Streptococcus mutans and Lactobacillus acidophilus. The results of this study require further evaluation for signs of metal toxicity in appropriate animal models. However, the results are encouraging for the application of metal NPs as suitable alternatives for antibiotics and disinfectants, especially in dental filling materials. PMID:27085055

  13. Sub-10 nm Ytterbium Oxide Nanopowder-doped Silicone Rubber Acoustic Lens Material for Medical Echo Array Probe

    NASA Astrophysics Data System (ADS)

    Yamashita, Yohachi (John); Hosono, Yasuharu; Itsumi, Kazuhiro

    2007-09-01

    The effects of 8-nm-Yb2O3-nanopowders dopant, on the physical and acoustical properties of high-temperature-vulcanization (HTV) silicone (Q) rubber have been investigated, to develop a low acoustic attenuation (α) lens material for medical array probes. A 35 wt % (6 vol %) Yb2O3-doped HTV Q rubber showed a sound velocity (c) = 867 m/s, an acoustic impedance (Z) = 1.36× 106 kg\\cdotm-2\\cdots-1, an acoustic attenuation α = 0.66 dB\\cdotmm-1\\cdotMHz-1, and an α-figure of merits (FOM) (α× c) = 574 at 37 °C. The α-FOM value with Z = 1.36× 106 kg\\cdotm-2\\cdots-1 for a Q rubber lens material is the lowest attenuation ever reported. Microstructure observation revealed that the low-α rubber showed a uniform Yb2O3 nanopowder distribution in the rubber matrix.

  14. Enhancement in the antibacterial efficiency of ZnO nanopowders by tuning the shape of the nanograins through fluorine doping

    NASA Astrophysics Data System (ADS)

    Ravichandran, K.; Snega, S.; Jabena Begum, N.; Swaminathan, K.; Sakthivel, B.; Rene Christena, L.; Chandramohan, G.; Ochiai, Shizuyasu

    2014-05-01

    Fluorine doped ZnO nanopowders were synthesized from starting solutions having different doping levels of F (0, 5, … , 20 at.%) using a simple soft chemical route and the effects of the doping level on the structural, optical, surface morphological and antibacterial properties were investigated. The XRD studies reveal that all the products have preferential orientation along the (1 0 1) plane. The PL studies show that all the samples exhibit strong visible emission with a peak at 425 nm. The enhancement in the visible emission indicates an increasing number of surface defects caused by the doping of F. The obtained FTIR spectra confirm the incorporation of F into ZnO lattice. From the SEM studies, it is observed that the ZnO nanowires formed at 10 at.% of F doping level exhibit excellent antibacterial activities. Antibacterial activity of F doped ZnO nanopowders against Staphylococcus aureus was found to be significantly higher than that against the Escherichia coli and Pseudomonas aeruginosa micro-organisms. All the physical properties were corroborated well with the findings related to antibacterial activity. Finally, we conclude that, the analysis of all the results shows that F doping level of 10 at.% is optimal in all respects and is suitable for antibacterial applications.

  15. Preparation of Y2O3:Eu3+, Tb3+ nanopowders with tunable luminescence by ammonium bicarbonate co-precipitation method

    NASA Astrophysics Data System (ADS)

    Shi, Hui; Zhang, Xi-Yan; Wang, Neng-Li; Dong, Wei-Li; Mi, Xiao-Yun

    2015-09-01

    Y2O3:Eu3+, Tb3+ nanopowders were prepared by co-precipitation method with NH4HCO3 as precipitant. The nanopowders with different calcined temperatures and Eu3+/Tb3+ doped ratio were characterized by X-ray Diffraction (XRD), scanning electron microscopy (SEM) and fluorescence spectrophotometer. The results showed that the nanopowders calcined at 1100°C for 2 h had a uniform distribution, high purity and good dispersibility. The particle size was in the range of 60-80 nm. The excitation spectra of Eu3+/Tb3+ co-doped phosphors were wide. The phosphors could emit the green light at the peak of 543 nm and the red light at the peak of 611 nm simultaneously under 276 nm or 300 nm excited. Because of the energy transfer between Tb3+ and Eu3+, the 543 nm emission of Tb3+ ion was weakened while the 611 nm emission of Eu3+ enhanced. The emissive colors of Y2O3:Eu3+, Tb3+ nanopowders could be adjusted from yellow-green to orange-red by changing the Eu3+/Tb3+ doping ratio.

  16. Synthesis of BaTi2O5 Nanopowders by Sol-Gel Method and the Dielectric Properties of the Ceramics

    NASA Astrophysics Data System (ADS)

    Akishige, Yukikuni; Xu, Jun; Shigematsu, Hirotake; Morito, Shigekazu; Ohba, Takuya

    2009-05-01

    A sol-gel process using barium diethoxide and titanium tetraisopropoxide as the sources for Ba and Ti, respectively, was employed to synthesize BaTi2O5 nanopowders and ceramics. BaTi2O5 nanopowders in the range of 20-50 nm in size were obtained by calcination of the gel precursors at 650 °C. By a further firing at 1000 °C, some BaTi2O5 nanopowders were grown to 200 nm in size. Conventional sintering at 1150 °C using these BaTi2O5 nanopowders yields BaTi2O5 ceramics of 80-85% relative density. A dense BaTi2O5 ceramic with a relative density of above 95% was fabricated by spark plasma sintering (SPS) at 1000 °C. Furthermore, by SPS combined with the hot-forging technique, we obtained a certain degree of grain orientation along the b-axis in the dense BaTi2O5 ceramic and observed an increase in the dielectric constant reaching 580.

  17. Effects of size-controlled TiO2 nanopowders synthesized by chemical vapor condensation process on conversion efficiency of dye-sensitized solar cells.

    PubMed

    Kim, Woo-Byoung; Lee, Jai-Sung

    2013-07-01

    To investigate the microstructural effects of the synthesized TiO2 nanopowders such as particle size, specific surface area, pore size and pore distributions for the application of an anode material of dye-sensitized solar cells (DSSC), size-controlled and well-dispersed TiO2 nanopowders were synthesized by chemical vapor condensation (CVC) process in the range of 800-1000 degreesC under a pressure of 50 mbar. The average particle size of synthesized TiO2 nanopowders was increased with increasing temperature from 13 nm for 800 degreesC, 15 nm for 900 degreesC and 26 nm. The specific surface area of synthesized nanoparticles were measured as 119.1 m2/g for 800 degreesC, 104.7 m2/g for 900 degreesC and 59.5 m2/g for 1000 degreesC, respectively. The conversion efficiency values (eta%) of DSSC with the synthesized TiO2 nanopowders at 800 degreesC, 900 degreesC, and 1000 degreesC were 2.59%, 5.96% and 3.66%, respectively. The highest conversion efficiency obtained in the 900 degreesC (5.96%) sample is thought to be attributable to homogeneous particle size and pore distributions, large specific surface area, and high transmittance in regions of dye absorption wavelength.

  18. Synthesis of 8YSZ-LSGM Composite Thick Film Ceramics for Solid Electrolyte From Nanopowder Utilizing Local Zircon Prepared Using Sol Gel Process

    NASA Astrophysics Data System (ADS)

    Syarif, Dani Gustaman; Soepriyanto, Syoni; Ismunandar, Korda, Akhmad

    2010-10-01

    Thick film ceramics of 8% mol Y2O3 doped-ZrO2 (8YSZ)-La0.8Sr0.2Ga0.2Mg0.8O3 (LSGM) composite for solid electrolyte have been synthesized from nanopowder. Concentration of LSGM was 0 and 10% weight. A paste for the thick films was made from 8YSZ nanopowder prepared using sol gel method and LSGM powder prepared by solid state reaction. Precursors for the 8YSZ nanopowder preparation were ZrOCl2ṡ8H2O derived from local zircon as byproduct of Tin processing at Bangka Island using caustic fussion method, and Y(NO3)3. The thick films were produced by screen printing technique on alumina substrates. The films were sintered at 1500° C for 2 hours in air. X-ray diffraction (XRD) data showed that the nanopowder of 8YSZ was well produced with broad peaks. The particle size of the 8YSZ powder was about 12 nm as calculated using Debye Scherrer method. The thick films of 8YSZ and 8YSZ-LSGM (90:10 in weight %) composite could be produced, however, the films still contain voids. The ionic conductance of the YSZ-10LSGM films was smaller than that of the YSZ films.

  19. Preparation of Carbon-Doped TiO2 Nanopowder Synthesized by Droplet Injection of Solution Precursor in a DC-RF Hybrid Plasma Flow System

    NASA Astrophysics Data System (ADS)

    Jang, Juyong; Takana, Hidemasa; Ando, Yasutaka; Solonenko, Oleg P.; Nishiyama, Hideya

    2013-08-01

    Carbon-doped titanium dioxide nanopowder has received much attention because of its higher photocatalytic performance, which is practically activated not only by UV, but also by visible light irradiation. In the present study, C-TiO2 nanopowder was synthesized by droplet injection of solution precursor in a DC-RF hybrid plasma flow system, resulting in higher photocatalytic performance even under visible light irradiation. In-flight C-TiO2 nanoparticles reacted with the high concentration of carbon in plasma flow and were then deposited on the surfaces of two quartz tubes in the upstream and downstream regions of this system. The collected C-TiO2 nanopowder contained anatase-rutile mixed-phase TiO2 and TiC, the contents of which depended on the location of the powder collection, the temperature, and the duration of plasma treatment. Highly functional C-TiO2 nanopowder collected in the downstream region exhibited a higher degradation rate of methylene blue than that of single-phase anatase TiO2, even under visible light irradiation, in spite of being TiC.

  20. X-ray photoelectron spectroscopy analysis for the chemical impact of solvent addition rate on electromagnetic shielding effectiveness of HCl-doped polyaniline nanopowders

    SciTech Connect

    Tantawy, Hesham Ramzy; Aston, D. Eric; Kengne, Blaise-Alexis F.; McIlroy, David N.; Qiang, You; Nguyen, Tai; Heo, Deukhyoun

    2015-11-07

    An in-depth analysis of the chemical functionality in HCl-doped polyaniline (PANI) nanopowders is discussed through interpretations of x-ray photoelectron spectra. The distinctions between three PANI sample types, produced under varied synthesis conditions, are compared on the basis correlations between newly collected electron spectra for chemical analysis (or also x-ray photoelectron spectroscopy) and electromagnetic (EM) shielding effectiveness (SE) within two frequency bands (100–1500 MHz and ∼2–14 GHz). The findings are discussed with reference to previous data analysis of electrical conductivities and Raman and UV-vis spectra analyzed from replicates of the same PANI nanopowders, where only the 8–12 GHz range for SE was tested. They further corroborate previous results for limited-solvent conditions that enhance EM shielding. The three nanopowder types show distinctive differences in polaron, bipolaron, and polar lattice contributions. The collective findings describe the chemical connections between controlling and, most importantly, limiting the available solvent for polymerization with simultaneously doping and how it is that the newly developed solvent-limited approach for HCl-PANI nanopowders provides better shielding than traditionally solvent-rich methods by having more extended and perhaps even faster polaron delocalization than other PANI-based products. The maximum oxidation (50%) and doping (49%) levels obtained in the solvent-free nanopowders also produced the highest SE values of 37.3 ± 3.7 dB (MHz band) and 68.6 ± 4.6 dB (GHz band)

  1. X-ray diffraction analysis of the effect of annealing temperature on the microstructure of magnesium oxide nanopowder

    NASA Astrophysics Data System (ADS)

    Soleimanian, V.; Aghdaee, S. R.

    2015-06-01

    In this study, nanocrystalline MgO powders were prepared using the sol-gel method and annealed in air over a temperature range of [400-700] °C. Various microstructural characteristics were determined using three different X-ray diffraction analysis approaches, i.e., modified Williamson-Hall, modified Warren-Averbach, and variance methods. The transmission electron microscopy micrographs were used to measure the size distributions of the MgO samples. The results obtained using the three different methods were in good agreement. At all temperatures, the main source of dislocation was edge type but as the annealing temperature increased, the crystallite size and dislocation density increased and decreased, respectively, thereby indicating that the crystal quality of the nanopowders was improved.

  2. Ho:YAG transparent ceramics based on nanopowders produced by laser ablation method: Fabrication, optical properties, and laser performance

    NASA Astrophysics Data System (ADS)

    Bagayev, S. N.; Osipov, V. V.; Vatnik, S. M.; Shitov, V. A.; Vedin, I. A.; Platonov, V. V.; Steinberg, I. Sh.; Maksimov, R. N.

    2015-12-01

    We fabricate Ho:YAG transparent ceramics based on nanopowders produced by laser ablation method via two approaches. Higher transmittance (82% in the infrared region) is achieved in ceramics prepared with an additional round of pre-calcining before sintering. We evaluate the average volume of the scattering centers in the ceramics and their distribution along the sample depth by the direct count method using an optical microscope and by the novel method of collinear two-photon interband photoexcitation, respectively. The laser characteristics of the 1% Ho:YAG ceramics are investigated using an intracavity pumping scheme. The slope efficiency is ∼40% relative to the absorbed pumping power at 1.85 μm.

  3. Synthesis and structural characterization of Co2+ ions doped ZnO nanopowders by solid state reaction through sonication

    NASA Astrophysics Data System (ADS)

    Babu, B.; Rama Krishna, Ch.; Venkata Reddy, Ch.; Pushpa Manjari, V.; Ravikumar, R. V. S. S. N.

    2013-05-01

    Cobalt ions doped zinc oxide nanopowder was prepared at room temperature by a novel and simple one step solid-state reaction method through sonication in the presence of a suitable surfactant Sodium Lauryl Sulphate (SLS). The prepared powder was characterized by various spectroscopic techniques. Powder XRD data revealed that the crystal structure belongs to hexagonal and its average crystallite size was evaluated. From optical absorption data, crystal fields (Dq), inter-electronic repulsion parameters (B, C) were evaluated. By correlating optical and EPR spectral data, the site symmetry of Co2+ ion in the host lattice was determined as octahedral. Photoluminescence spectra exhibited the emission bands in ultraviolet and blue regions. The CIE chromaticity coordinates are also evaluated from the emission spectrum. FT-IR spectra showed the characteristic vibrational bands of Znsbnd O.

  4. Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media.

    PubMed

    Hristovski, Kiril; Baumgardner, Andrew; Westerhoff, Paul

    2007-08-17

    This paper investigates the feasibility of arsenate removal by aggregated metal oxide nanoparticle media in packed bed columns. Batch experiments conducted with 16 commercial nanopowders in four water matrices were used to select a metal oxide nanoparticle that both amply removes arsenate and can be aggregated using an inert binder. TiO2, Fe(2)O(3), ZrO2 and NiO nanopowders, which exhibited the highest arsenate removal in all water matrices, were characterized with fitted Freundlich adsorption isotherm (q=KC(e)(1/n)) parameters. In 10 mM NaHCO3 buffered nanopure water and at both pH approximately 6.7 and 8.4, K ranged from 1.3 to 12.09(mg As/g(media))(L/mg As)(1/n), and 1/n ranged from 0.21 to 0.52. Under these conditions, the fitted Freundlich isotherm parameters for TiO2 nanoparticles aggregated with inorganic and organic binders (K of 4.75-28.45(mg As/g(media))(L/mg As)(1/n) and 1/n of 0.37-0.97) suggested favorable arsenate adsorption. To demonstrate that aggregated nanoparticle media would allow rapid mass transport of arsenate in a fixed bed adsorber setting, short bed adsorber (SBA) tests were conducted on TiO2 nanoparticle aggregates at empty bed contact times (EBCT) of 0.1-0.5 min and Re x Sc=1000 and 2000. These SBA tests suggested that the binder has a negligible role in adsorbing arsenic and that mass transport is controlled by rapid intraparticle diffusion rather than external film diffusion. PMID:17254707

  5. Nanostructured MgTiO3 thick films obtained by electrophoretic deposition from nanopowders prepared by solar PVD

    NASA Astrophysics Data System (ADS)

    Apostol, Irina; Mahajan, Amit; Monty, Claude J. A.; Venkata Saravanan, K.

    2015-12-01

    A novel combination of solar physical vapor deposition (SPVD) and electrophoretic deposition (EPD) that was developed to grow MgTiO3 nanostructured thick films is presented. Obtaining nanostructured MgTiO3 thick films, which can replace bulk ceramic components, a major trend in electronic industry, is the main objective of this work. The advantage of SPVD is direct synthesis of nanopowders, while EPD is simple, fast and inexpensive technique for preparing thick films. SPVD technique was developed at CNRS-PROMES Laboratory, Odeillo-Font Romeu, France, while the EPD was performed at University of Aveiro - DeMAC/CICECO, Portugal. The nanopowders with an average crystallite size of about 30 nm prepared by SPVD were dispersed in 50 ml of acetone in basic media with addition of triethanolamine. The obtained well-dispersed and stable suspensions were used for carrying out EPD on 25 μm thick platinum foils. After deposition, films with thickness of about 22-25 μm were sintered in air for 15 min at 800, 900 and 1000 °C. The structural and microstructural characterization of the sintered thick films was carried out using XRD and SEM, respectively. The thickness of the sintered samples were about 18-20 μm, which was determined by cross-sectional SEM. Films sintered at 900 °C exhibit a dielectric constant, ɛr ∼18.3 and dielectric loss, tan δ ∼0.0012 at 1 MHz. The effects of processing techniques (SPVD and EPD) on the structure, microstructure and dielectric properties are reported in detail. The obtained results indicate that the thick films obtained in the present study can be promising for low loss materials for microwave and millimeter wave applications.

  6. One-pot rapid synthesis of core-shell structured NiO@TiO2 nanopowders and their excellent electrochemical properties as anode materials for lithium ion batteries.

    PubMed

    Choi, Seung Ho; Lee, Jong-Heun; Kang, Yun Chan

    2013-12-21

    Core-shell structured NiO@TiO2 nanopowders for application as anode materials for lithium ion batteries are prepared by one-pot flame spray pyrolysis from aqueous spray solution containing Ni and Ti components. A new formation mechanism of the core-shell structured nanopowders in the flame spray pyrolysis is proposed. Composite nanopowders are first formed by surface growth and coagulation from NiO and TiO2 vapors. A small amount of TiO2 in composite powders disturbs the crystallization of TiO2. Therefore, the TiO2 component moves out to the surface of the powders forming an amorphous shell during the formation of single crystalline NiO. The initial discharge and charge capacities of the NiO@TiO2 nanopowders at a current density of 300 mA g(-1) are 1302 and 937 mA h g(-1), respectively. The discharge capacities of the pure NiO and NiO@TiO2 nanopowders after 80 cycles are 542 and 970 mA h g(-1), respectively. The capacity retentions of the pure NiO and NiO@TiO2 nanopowders after 80 cycles measured after the first cycles are 75 and 108%, respectively. PMID:24177597

  7. Influence of technology of nanopowder production on the microstructure of the sintered by spark-plasma material on the example of aluminum oxide

    NASA Astrophysics Data System (ADS)

    Zholnin, A. G.; Melekhov, A. P.; Hafizov, R. S.; Vakulenko, S. A.; Rubinkovskiy, N. A.; Samokhin, A. V.; Alekseev, N. V.; Grigoryev, E. G.

    2016-04-01

    A comparative study of the results of spark-plasma sintering (SPS) of two-types of aluminum oxide nanopowders, obtained by the method of conductor explosion and plasma synthesis. When the parameters of both powders are similar (spherical form of the particles, size, phase composition) as well as SPS modes the properties of the resulting compacts are significantly different both in mechanical properties and microstructure. The reason of differences in the properties of the obtained compacts is in technological impurities in powders, obtained by different methods. Artificial addition of impurities, contained in the nanopowder, obtained by electro explosion of conductor, into the powder, made by synthesis in plasma and not containing these impurities, allowed to reveal their effect on the formation of the microstructure and properties of the sintered by SPS method sample.

  8. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders

    PubMed Central

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-01-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications. PMID:27198738

  9. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders

    NASA Astrophysics Data System (ADS)

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-05-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications.

  10. Preparation of silicon carbide SiC-based nanopowders by the aerosol-assisted synthesis and the DC thermal plasma synthesis methods

    SciTech Connect

    Czosnek, Cezary; Bućko, Mirosław M.; Janik, Jerzy F.; Olejniczak, Zbigniew; Bystrzejewski, Michał; Łabędź, Olga; Huczko, Andrzej

    2015-03-15

    Highlights: • Make-up of the SiC-based nanopowders is a function of the C:Si:O ratio in precursor. • Two-stage aerosol-assisted synthesis offers conditions close to equilibrium. • DC thermal plasma synthesis yields kinetically controlled SiC products. - Abstract: Nanosized SiC-based powders were prepared from selected liquid-phase organosilicon precursors by the aerosol-assisted synthesis, the DC thermal plasma synthesis, and a combination of the two methods. The two-stage aerosol-assisted synthesis method provides at the end conditions close to thermodynamic equilibrium. The single-stage thermal plasma method is characterized by short particle residence times in the reaction zone, which can lead to kinetically controlled products. The by-products and final nanopowders were characterized by powder XRD, infrared spectroscopy FT-IR, scanning electron microscopy SEM, and {sup 29}Si MAS NMR spectroscopy. BET specific surface areas of the products were determined by standard physical adsorption of nitrogen at 77 K. The major component in all synthesis routes was found to be cubic silicon carbide β-SiC with average crystallite sizes ranging from a few to tens of nanometers. In some cases, it was accompanied by free carbon, elemental silicon or silica nanoparticles. The final mesoporous β-SiC-based nanopowders have a potential as affordable catalyst supports.

  11. Effects of Cd concentration on structure and optical properties of the ternary Zn1-xCdxO nanopowder prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Sui, Y. R.; Cao, Y.; Li, X. F.; Yue, Y. G.; Yao, B.; Lang, J. H.; Li, X. Y.; Yang, J. H.

    2015-06-01

    Zn1-xCdxO nanocrystalline powder with different Cd contents (0≤x≤1) has been prepared by new facile sol-gel route. The crystal structure and optical properties were investigated by X-ray diffraction patterns, Transmission electron microscope, X-ray photoelectron spectroscopy, Photoluminescence. As x varied from x=0 to 0.25, the Zn1-xCdxO nanopowder exhibits a hexagonal wurtzite structure of pure ZnO without any significant formation of a separated CdO phase. For the samples with 0.5≤x≤0.85, the Zn1-xCdxO nanopowder exhibits the coexistence of hexagonal ZnO and cubic CdO phase, meanwhile, the content of ZnO phase decreases while that of CdO increases with increasing the Cd content x. The ultra-violet near-band-edge emission of the Zn1-xCdxO nanopowder was monotonously red-shifted from 389 nm (x=0) to 406 nm (x=0.25) due to the direct modulation of band gap caused by Cd substitution.

  12. Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders

    NASA Astrophysics Data System (ADS)

    Kilicaslan, A.; Levasseur, O.; Roy-Garofano, V.; Profili, J.; Moisan, M.; Côté, C.; Sarkissian, A.; Stafford, L.

    2014-03-01

    An atmospheric-pressure plasma sustained by an electromagnetic surface wave (SW) in the microwave regime combined with a bubbler/flash evaporator for the injection of liquid precursors was used to produce organosilicon and organotitanium nanopowders. Following the addition of hexamethyldisiloxane (HMDSO) vapors in the nominally pure argon plasma, optical emission spectra revealed the apparition of strong C2 molecular bands along with Si and Balmer H emission lines. Such features were not observed in our atmospheric-pressure Ar/HMDSO discharges controlled by dielectric barriers, indicating that microwave plasmas are characterized by much higher fragmentation levels of the precursors due to much higher electron densities. Emission spectra from the Ar/HMDSO SW plasma further showed a high-intensity continuum, the intensity of which decreased with time as powders started to form on the discharge tube walls. In presence of titanium isopropoxide (TTIP) vapors in the nominally pure Ar plasma, the emission was dominated by Ar and Ti lines, with no trace of carbon and no continuum. Fourier-Transform Infrared (FTIR) Spectroscopy of the powders formed in Ar/HMDSO plasmas showed very strong Si-(CH3)x and O-Si-(CH3)x bands, which is consistent with the formation of silicon oxycarbide. Transmission Electron Microscopy (TEM) further showed tube and sheet-like nanofeatures as well as larger structures consisting of agglomerated primary clusters. On the other hand, introduction of O2 in Ar/HMDSO plasmas produced only round-like nanoparticles with strong Si-O-Si bands and no trace of carbon, consistent with the formation of SiOx. The average size of the silica nanoparticles was 50 nm. FTIR spectra of powders formed in Ar/TTIP plasmas showed strong Ti-O signals, even without the addition of O2 in the gas phase. Corresponding TEM analysis showed nano- and agglomerated features comparable to those obtained in Ar/HMDSO although the average size of the titanate nanoparticles was smaller

  13. Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders

    SciTech Connect

    Kilicaslan, A.; Levasseur, O.; Roy-Garofano, V.; Profili, J.; Moisan, M.; Stafford, L.; Côté, C.; Sarkissian, A.

    2014-03-21

    An atmospheric-pressure plasma sustained by an electromagnetic surface wave (SW) in the microwave regime combined with a bubbler/flash evaporator for the injection of liquid precursors was used to produce organosilicon and organotitanium nanopowders. Following the addition of hexamethyldisiloxane (HMDSO) vapors in the nominally pure argon plasma, optical emission spectra revealed the apparition of strong C{sub 2} molecular bands along with Si and Balmer H emission lines. Such features were not observed in our atmospheric-pressure Ar/HMDSO discharges controlled by dielectric barriers, indicating that microwave plasmas are characterized by much higher fragmentation levels of the precursors due to much higher electron densities. Emission spectra from the Ar/HMDSO SW plasma further showed a high-intensity continuum, the intensity of which decreased with time as powders started to form on the discharge tube walls. In presence of titanium isopropoxide (TTIP) vapors in the nominally pure Ar plasma, the emission was dominated by Ar and Ti lines, with no trace of carbon and no continuum. Fourier-Transform Infrared (FTIR) Spectroscopy of the powders formed in Ar/HMDSO plasmas showed very strong Si-(CH{sub 3}){sub x} and O-Si-(CH{sub 3}){sub x} bands, which is consistent with the formation of silicon oxycarbide. Transmission Electron Microscopy (TEM) further showed tube and sheet-like nanofeatures as well as larger structures consisting of agglomerated primary clusters. On the other hand, introduction of O{sub 2} in Ar/HMDSO plasmas produced only round-like nanoparticles with strong Si-O-Si bands and no trace of carbon, consistent with the formation of SiO{sub x}. The average size of the silica nanoparticles was 50 nm. FTIR spectra of powders formed in Ar/TTIP plasmas showed strong Ti-O signals, even without the addition of O{sub 2} in the gas phase. Corresponding TEM analysis showed nano- and agglomerated features comparable to those obtained in Ar/HMDSO although the

  14. Effect of Ni doping on structural and optical properties of Zn{sub 1−x}Ni{sub x}O nanopowder synthesized via low cost sono-chemical method

    SciTech Connect

    Singh, Budhendra; Kaushal, Ajay; Bdikin, Igor; Venkata Saravanan, K.; Ferreira, J.M.F.

    2015-10-15

    Highlights: • Pure and Ni doped ZnO nanopowders were synthesized by low cost sonochemical method. • The optical properties of Zn{sub 1−x}Ni{sub x}O nanopowders can be tuned by varying Ni content. • The results reveal the solubility limit of Ni into ZnO matrix as below 8%. - Abstract: Zn{sub 1−x}Ni{sub x}O nanopowders with different Ni contents of x = 0.0, 0.04 and 0.08 were synthesized via cost effective sonochemical reaction method. X-ray diffraction (XRD) pattern reveals pure wurtzite phase of prepared nanostructures with no additional impurity peaks. The morphology and dimensions of nanoparticles were investigated using scanning electron microscope (SEM). A sharp and strong peak for first order optical mode for wurtzite zinc oxide (ZnO) structure was observed at ∼438 cm{sup −1} in Raman spectra. The calculated optical band gap (E{sub g}) from UV–vis transmission data was found to decrease with increase in Ni content. The observed red shift in E{sub g} with increasing Ni content in ZnO nanopowders were in agreement with band gap behaviours found in their photoluminescence (PL) spectra. The synthesised ZnO nanopowders with controlled band gap on Ni doping reveals their potential for use in various electronic and optical device applications. The results were discussed in detail.

  15. Al-Mg co-doping effect on optical and magnetic properties of ZnO nanopowders

    NASA Astrophysics Data System (ADS)

    Si, Xiaodong; Liu, Yongsheng; Wu, Xinfang; Lei, Wei; Lin, Jia; Gao, Tian; Zheng, Li

    2015-07-01

    Zn0.97 - xMgxAl0.03O (x = 0 , 0.01 , 0.03 and 0.05) nanoparticles were prepared by hydrothermal growth, and their optical and magnetic properties were systematically studied by the X-ray diffraction (XRD), the UV-visible spectrophotometer, the infrared spectrometer and the physical properties measurement system (PPMS). These results showed that all the nanopowders had hexagonal wurtzite structures. With increasing the content of Mg, the strength of the (110) intensity peak increased. When Mg atoms were not incorporated into the Zn0.97Al0.03O lattice, the infrared light transmittance was higher than that of other groups of samples. In the UV range, the absorption decreased with the increase of the concentration of Mg. Mg doping weakened the magnetic property of the nanoparticles at room temperature. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves were separated with the decrease of temperature due to the pinning effect between the ferromagnetic domain and antiferromagnetic domain.

  16. Dielectric response and specific heat studies of Cd2Nb2O7 ceramics obtained from mechano-synthesized nanopowders.

    PubMed

    Połomska, Maria; Hilczer, Bożena; Markiewicz, Ewa; Trybuła, Zbigniew; Andrzejewski, Bartłomiej; Szafraniak-Wiza, Izabela; Pietraszko, Adam

    2013-08-01

    Cd(2)Nb(2)O(7) is still an interesting ferroelectric material because of its high permittivity value at helium temperatures and a variety of dielectric relaxation processes, the origin of which is still puzzling. We prepared hot-pressed ceramics, with grain sizes from 100 to 150 nm, obtained from Cd(2)Nb(2)O(7) nanopowders synthesized by high-energy milling of CdO and Nb(2)O(5) and studied their dielectric response and thermal properties. The nanoceramics were characterized by X-ray diffraction and their dielectric properties were measured at temperatures from 4K to 575K. Dielectric response of the nanoceramics was found to consist of a huge anomaly at ~150K with complex dielectric absorption and three relaxation processes apparent in frequency and temperature dependences of the imaginary part of permittivity in the temperature range from 18K to 145K. The anomaly at ~150K is related to overlapping contributions from the Curie point (shifted downward because of the size effect) and a dielectric relaxation process. The behavior of three relaxation modes observed at temperatures below 145K is discussed, based on the model proposed by Malcherek of polar nanoregions in the orthorhombic phase of Cd(2)Nb(2)O(7) and the theory of dielectric response of ferroelectric relaxors by Bokov and Ye.

  17. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Comparative Study of Activity of Different Agings of Aluminum Nanopowders

    NASA Astrophysics Data System (ADS)

    Yan, Zheng-Xin; Deng, Jun; Wanf, Ya-Min; Liu, Wei

    2009-08-01

    The structure and activity of aluminum nanopowders with a 3 nm oxide layer on their surface (3-nm-OLA) and 30 nm oxide layers on their surface (30-nm-OLA) are investigated comparably under the same normal incident shock wave intensity. Their corresponding reaction products are characterized by x-ray diffraction, high-resolution transmission electron microscopy and x-ray photoelectron spectroscopy. The spectrum of x-ray diffraction shows that there are different phases of alumina in their products, which evidences directly the different reacting temperature in the shock tube. The x-ray photoelectron spectroscopy reveals that the oxide layer thickness is 30 nm on the product surface of 30-nm-OLA, while it is only 3 nm on 3-nm-OLA. Images of transmission electron microscopy present additional evidence that the agglomeration mechanism is over sintering one in the containing-30-nm-OLA system, the reversed mechanism is observed in the containing-3-nm-OLA reaction system.

  18. Role of paramagnetic defects in light emission processes in Y-doped ZrO2 nanopowders

    NASA Astrophysics Data System (ADS)

    Korsunska, N.; Baran, M.; Zhuk, A.; Polishchuk, Yu; Stara, T.; Kladko, V.; Bacherikov, Yu; Venger, Ye; Konstantinova, T.; Khomenkova, L.

    2014-12-01

    Luminescence and structural properties of pure and Y-doped ZrO2 nanopowders with different Y content synthesized by co-precipitation of Zr and Y salts were investigated by x-ray diffraction, transmission electron microscopy, electron paramagnetic resonance (EPR) and photoluminescence (PL) methods. It was found that at constant calcination temperature (700 °С), the increase of Y content stimulates the transformation of crystalline phase from monoclinic through the tetragonal to the cubic one. Generally, room temperature PL emission was found to be similar for the samples with different Y content, demonstrating the same overlapped PL components in visible spectral range under extrinsic excitation. The relative contribution of each PL component was found to be affected by calcination time. In EPR spectra of as-prepared samples no signals were observed. The annealing in N2 or H2 flow results in the appearance of the signal from surface Zr3+ defects. In the latter the signal assigned to F-center also arises. The anti-correlation observed between the PL intensity and the value of the Zr3+ EPR signal allows us to conclude that the Zr3+ center is the center of fast non-radiative recombination. At the same time, interrelation between the intensity of the EPR signal assigned to F-centers and observed PL bands was not found.

  19. Crystallization and microstructure of 8YSZ nanopowders synthesized by ball-mill assisted constant pH route

    NASA Astrophysics Data System (ADS)

    Mohanty, Subrat K.; Nayak, Bibhuti B.

    2013-06-01

    8 mol% Y2O3 stabilized ZrO2 (8YSZ) nanopowders were prepared by two ways of precipitation technique namely conventional precipitation (i.e. stepwise increase of pH) and constant pH precipitation (i.e. precipitation at constant pH). The crystallization, microstructure and density of both the powders were studied with and without ball milling. The ball milled powders prepared in conventional method were found to be sintered upto 92% of the theoretical density, whereas the powders prepared in constant pH precipitation method after ball milling showed 97% of the theoretical density, at 1600°C. The presence of fine and uniformly distributed pores were observed, for the 8YSZ pellets synthesized via conventional precipitation method, whereas a relatively dense microstructure was observed for that synthesized via constant pH precipitation method, from the SEM micrographs. Constant pH route shows better results as compared to conventional route and seems to be effective way of synthesis to prepare 8YSZ for electrolyte in solid oxide fuel cell (SOFC) application.

  20. Improved compaction of ZnO nano-powder triggered by the presence of acetate and its effect on sintering

    NASA Astrophysics Data System (ADS)

    Dargatz, Benjamin; Gonzalez-Julian, Jesus; Guillon, Olivier

    2015-04-01

    The retention of nanocrystallinity in dense ceramic materials is still a challenge, even with the application of external pressure during sintering. The compaction behavior of high purity and acetate enriched zinc oxide (ZnO) nano-powders was investigated. It was found that acetate in combination with water plays a key role during the compaction into green bodies at moderate temperatures. Application of constant pressure resulted in a homogeneous green body with superior packing density (86% of theoretical value) at moderate temperature (85 °C) in the presence of water. In contrast, no improvement in density could be achieved if pure ZnO powder was used. This compaction behavior offers superior packing of the particles, resulting in a high relative density of the consolidated compact with negligible coarsening. Dissolution accompanying creep diffusion based matter transport is suggested to strongly support reorientation of ZnO particles towards densities beyond the theoretical limit for packing of ideal monosized spheres. Finally, the sintering trajectory reveals that grain growth is retarded compared to conventional processing up to 90% of theoretical density. Moreover, nearly no radial shrinkage was observed after sinter-forging for bodies performed with this advanced processing method.

  1. Application of the soluble salt-assisted route to scalable synthesis of ZnO nanopowder with repeated photocatalytic activity.

    PubMed

    Lv, Yingying; Yu, Leshu; Huang, Heyong; Feng, Yuying; Chen, Dongzhen; Xie, Xin

    2012-02-17

    In this paper, the soluble salt-assisted route has been extended to the low-cost and scalable preparation of ZnO nanostructures via the simple oxidation of Zn-Na2SO4 mixture followed by washing with water. The as-prepared ZnO nanopowders are of nanoscaled size, hexagonal phase, and pure, without being stained by Na2SO4. Their optical band gap is 3.22 eV, exhibiting a red-shift of 0.15 eV in comparison with pure ZnO bulk, and their optical absorbance is strong in the region of 200-400 nm, suggesting their full utilization of most of the UV light in sunlight. The product shows evident photocatalytic activity in degradation of RhB under solar light irradiation, and then its solar light degradation efficiency is close to that under UV irradiation, indicating that there is a possibility of practical application. More importantly, the obtained ZnO nanoparticles, because of the quick precipitation by themselves in solution with no stirring, could be easily recycled without any accessorial means such as high-speed centrifuge. The low-cost and scalable preparation, high photocatalytic activity, and convenient recycling of this ZnO nanomaterial gives it potential in purifying waste water. Hence the interesting results in this study indicate the wide range of the soluble salt-assisted route for the industrial preparation of many other advanced nanomaterials.

  2. Application of the soluble salt-assisted route to scalable synthesis of ZnO nanopowder with repeated photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Lv, Yingying; Yu, Leshu; Huang, Heyong; Feng, Yuying; Chen, Dongzhen; Xie, Xin

    2012-02-01

    In this paper, the soluble salt-assisted route has been extended to the low-cost and scalable preparation of ZnO nanostructures via the simple oxidation of Zn-Na2SO4 mixture followed by washing with water. The as-prepared ZnO nanopowders are of nanoscaled size, hexagonal phase, and pure, without being stained by Na2SO4. Their optical band gap is 3.22 eV, exhibiting a red-shift of 0.15 eV in comparison with pure ZnO bulk, and their optical absorbance is strong in the region of 200-400 nm, suggesting their full utilization of most of the UV light in sunlight. The product shows evident photocatalytic activity in degradation of RhB under solar light irradiation, and then its solar light degradation efficiency is close to that under UV irradiation, indicating that there is a possibility of practical application. More importantly, the obtained ZnO nanoparticles, because of the quick precipitation by themselves in solution with no stirring, could be easily recycled without any accessorial means such as high-speed centrifuge. The low-cost and scalable preparation, high photocatalytic activity, and convenient recycling of this ZnO nanomaterial gives it potential in purifying waste water. Hence the interesting results in this study indicate the wide range of the soluble salt-assisted route for the industrial preparation of many other advanced nanomaterials.

  3. Shape tailored green synthesis of CeO2:Ho3+ nanopowders, its structural, photoluminescence and gamma radiation sensing properties

    NASA Astrophysics Data System (ADS)

    Malleshappa, J.; Nagabhushana, H.; Kavyashree, D.; Prashantha, S. C.; Sharma, S. C.; Premkumar, H. B.; Shivakumara, C.

    2015-06-01

    CeO2:Ho3+ (1-9 mol%) nanopowders have been prepared by efficient and environmental friendly green combustion method using Aloe vera gel as fuel for the first time. The final products are well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), fourier transform infrared (FTIR). Bell, urchin, core shell and flower like morphologies are observed with different concentrations of the A. vera gel. It is apparent that by adjusting the concentration of the gel, considerable changes in the formation of CeO2:Ho3+ nano structures can be achieved. Photoluminescence (PL) studies show green (543, 548 nm) and red (645, 732 nm) emissions upon excited at 400 nm wavelength. The emission peaks at ∼526, 548, 655 and 732 nm are associated with the transitions of 5F3 → 5I8, 5S2 → 5I8, 5F5 → 5I8 and 5S2 → 5I7, respectively. Three TL glow peaks are observed at 118, 267 and 204 °C for all the γ irradiated samples which specify the surface and deeper traps. Linear TL response in the range 0.1-2 kGy shows that phosphor is fairly useful as γ radiation dosimeter. Kinetic parameters associated with the glow peaks are estimated using Chen's half width method. The CIE coordinate values show that phosphor is quite useful for the possible applications in WLEDs as orange red phosphor.

  4. Diffusion Processes in Water on Oxide Surfaces: Quasielastic Neutron Scattering Study of Hydration Water in Rutile Nano-Powder

    SciTech Connect

    Chu, Xiang-Qiang; Ehlers, Georg; Mamontov, Eugene; Podlesnyak, Andrey A; Wang, Wei; Wesolowski, David J

    2011-01-01

    Quasielastic neutron scattering (QENS) was used to investigate the diffusion dynamics of hydration water on the surface of rutile (TiO{sub 2}) nanopowder. The dynamics measurements utilizing two inelastic instruments, a backscattering spectrometer and a disk chopper spectrometer, probed the fast, intermediate, and slow motions of the water molecules on the time scale of picoseconds to more than a nanosecond. We employed a model-independent analysis of the data collected at each value of the scattering momentum transfer to investigate the temperature dependence of several diffusion components. All of the probed components were present in the studied temperature range of 230-320 K, providing, at a first sight, no evidence of discontinuity in the hydration water dynamics. However, a qualitative change in the elastic scattering between 240 and 250 K suggested a surface freezing-melting transition, when the motions that were localized at lower temperatures became delocalized at higher temperatures. On the basis of our previous molecular dynamics simulations of this system, we argue that interpretation of QENS data from such a complex interfacial system requires at least qualitative input from simulations, particularly when comparing results from spectrometers with very different energy resolutions and dynamic ranges.

  5. Comparison of structural and luminescence properties of Dy{sub 2}O{sub 3} nanopowders synthesized by co-precipitation and green combustion routes

    SciTech Connect

    Chandrasekhar, M.; Nagabhushana, H.; Sudheerkumar, K.H.; Dhananjaya, N.; Sharma, S.C.; Kavyashree, D.; Shivakumara, C.; Nagabhushana, B.M.

    2014-07-01

    Highlights: • Dy{sub 2}O{sub 3} nanopowders were prepared by co-precipitation and eco-friendly green combustion route using plant latex. • Both the products show excellent chromaticity coordinates in the white region, which were quite useful for white LED’s. • Thermoluminescence response of the Dy{sub 2}O{sub 3} product prepared by green synthesis was higher when compared to co-precipitation route. • Structural parameters of Dy{sub 2}O{sub 3} were estimated using Rietveld refinement. • The development of nanosize materials using eco-friendly resources was an attractive non-hazardous chemical route. - Abstract: Dysprosium oxide (Dy{sub 2}O{sub 3}) nanopowders were prepared by co-precipitation (CP) and eco-friendly green combustion (GC) routes. SEM micrographs prepared by CP route show smooth rods with various lengths and diameters while, GC route show porous, agglomerated particles. The results were further confirmed by TEM. Thermoluminescence (TL) responses of the nanopowder prepared by both the routes were studied using γ-rays. A well resolved glow peak at 353 °C along with less intense peak at 183 °C was observed in GC route while, in CP a single glow peak at 364 °C was observed. The kinetic parameters were estimated using Chen’s glow peak route. Photoluminescence (PL) of Dy{sub 2}O{sub 3} shows peaks at 481, 577, 666 and 756 nm which were attributed to Dy{sup 3+} transitions of {sup 4}F{sub 9/2}⟶{sup 6}H{sub 15/2}, {sup 6}H{sub 13/2}, {sup 6}H{sub 11/2} and {sup 6}H{sub 9/2}, respectively. Color co-ordinate values were located in the white region as a result the product may be useful for the fabrication of WLED’S.

  6. Thermally stimulated transformations in brookite-containing TiO2 nanopowders produced by the hydrolysis of TiCl4

    NASA Astrophysics Data System (ADS)

    Shul'ga, Yu. M.; Kabachkov, E. N.; Matyushenko, D. V.; Kurkin, E. N.; Domashnev, I. A.

    2011-01-01

    TiO2 nanopowder is produced by the low-temperature hydrolysis of TiCl4. The phase composition of the sample is found to form at a hydrolysis temperature of 30-38°C. Low-temperature annealing (up to 440°C) increases the degree of crystallinity of the phases present in the sample (anatase, brookite) and only weakly affects their ratio. At 500°C, the sample consists of three phases: rutile is detected apart from anatase and brookite. Brookite begins to fail at 600°C; at 700°C, crystalline brookite fails completely.

  7. Effect of heat treatment on the structural parameters and magnetic properties of copper ferrite nanopowders obtained by the sol-gel combustion

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. A.; Naiden, E. P.; Minin, R. V.; Itin, V. I.; Ufimtsev, M. R.

    2016-02-01

    Phase composition, structure parameters and basic magnetic characteristics obtained by the sol-gel combustion nanopowders of ferrospinel CuFe2O4 are investigated. A comparison of the properties of synthesized materials: first sample - immediately after the combustion of the gel and second sample - after annealing at 1073 K for 4 hours are performed. Annealing leads to an increase in the concentration of the phase with tetragonal crystal structure. Particle sizes and the value of anisotropy field of this phase also increased.

  8. Dynamics and structure of hydration water on rutile and cassiterite nanopowders studied by quasielastic neutron scattering and molecular dynamics simulations.

    SciTech Connect

    Mamontov, Eugene; Vlcek, Lukas; Wesolowski, David J

    2007-03-01

    Quasielastic neutron scattering (QENS) experiments carried out using time-of-flight and backscattering neutron spectrometers with widely different energy resolution and dynamic range revealed the diffusion dynamics of hydration water in nanopowder rutile (TiO{sub 2}) and cassiterite (SnO{sub 2}) that possess the rutile crystal structure with the (110) crystal face predominant on the surface. These isostructural oxides differ in their bulk dielectric constants, metal atom electronegativities, and lattice spacings, which may all contribute to differences in the structure and dynamics of sorbed water. When hydrated under ambient conditions, the nanopowders had similar levels of hydration: about 3.5 (OH/H{sub 2}O) molecules per Ti{sub 2}O{sub 4} surface structural unit of TiO{sub 2} and about 4.0 (OH/H{sub 2}O) molecules per Sn{sub 2}O{sub 4} surface unit of SnO{sub 2}. Ab initio optimized classical molecular dynamics (MD) simulations of the (110) surfaces in contact with SPC/E water at these levels of hydration indicate three structurally distinct sorbed water layers L{sub 1}, L{sub 2}, and L{sub 3}, where the L{sub 1} species are either associated water molecules or dissociated hydroxyl groups in direct contact with the surface, L{sub 2} water molecules are hydrogen bonded to L{sub 1} and structural oxygen atoms at the surface, and L{sub 3} water molecules are more weakly bound. At the hydration levels studied, L{sub 3} is incomplete compared with axial oxygen density profiles of bulk SPC/E water in contact with these surfaces, but the structure and dynamics of L{sub 1}-L{sub 3} species are remarkably similar at full and reduced water coverage. Three hydration water diffusion components, on the time scale of a picosecond, tens of picoseconds, and a nanosecond could be extracted from the QENS spectra of both oxides. However, the spectral weight of the faster components was significantly lower for SnO{sub 2} compared to TiO{sub 2}. In TiO{sub 2} hydration water, the

  9. Synthesis and magnetization studies of nanopowder Fe₇₀Ni₂₀Cr₁₀ alloys prepared by high energy milling

    SciTech Connect

    Chater, R.; Bououdina, M.; Chaanbi, D.; Abbas, H.

    2013-05-01

    Nanocrystalline Fe{sub 1–x–y}NixCry (x=20, y=10% in Wt)) alloy samples were prepared by mechanical alloying process. Fe, Ni and Cr elemental powders have been ball milled in a planetary mill for various periods of time, up to 27 h. XRD analysis allowed the determination of the structure of the mixture, the average crystallite size and the lattice parameter as a function of milling time. The complete formation of FeNiCr is observed after 27 h milling. With increasing milling time from 0 to 27 h, it is observed that the lattice parameter increases from 0.3515 to 0.3593 nm as well as an increase of microstrain from 0.15 to 0.40%, whereas the grain size decreases from 48 to 13 nm. Grain morphology of the powders at different formation stages was examined using SEM. Saturation magnetization and coercive fields derived from the hysteresis curves are discussed as a function of milling time. - Graphical abstract: Fe₇₀Ni₂₀Cr₁₀ nanopowders were prepared using a planetary ball mill. The structure and microstructure vary with milling time; thereby important modifications of the magnetic properties were observed and discussed. Highlights: • Nanocrystalline Fe₇₀Ni₂₀Cr₁₀ alloy were prepared by the mechanical alloying process. • The complete formation of Fe₇₀Ni₂₀Cr₁₀ is observed after 24 h milling. • With increasing milling time, the grain size decreases, while the strain increases. • The SEM images allowed following the morphology of the materials at different stages. • Ms and HC derived from the hysteresis are discussed as a function of milling time.

  10. Spectral investigations on undoped and Cu²⁺ doped ZnO-CdS composite nanopowders.

    PubMed

    Rao, G Thirumala; Babu, B; Stella, R Joyce; Manjari, V Pushpa; Ravikumar, R V S S N

    2015-03-15

    Undoped and Cu(2+) doped ZnO-CdS composite nanopowders were synthesized by simple chemical precipitation method. Structural and spectroscopic properties of the prepared samples have been characterized by XRD, SEM with EDS, TEM, FT-IR, UV-Vis, EPR and Photoluminescence studies. X-ray diffraction pattern contains a series of peaks corresponds to hexagonal phase of ZnO and CdS. The average crystallite sizes of undoped and Cu(2+) doped samples are determined and are in the range of 25-30 nm. SEM and TEM micrographs reveal that the samples show spherical like structures with little agglomeration. FT-IR spectra show the fundamental mode of vibrations of ZnO at 515 cm(-1), CdS at 621 cm(-1) and other functional groups. Optical absorption spectrum of Cu(2+) doped sample consists of three bands at 665, 823 and 1192 nm attributed to the transitions (2)B1g→(2)Eg, (2)B2g and (2)A1g respectively. Crystal field and tetragonal field parameters are evaluated as Dq=1214, Ds=1610 and Dt=389 cm(-1). From EPR, spin-Hamiltonian and hyperfine splitting parameters are evaluated for Cu(2+) doped sample as g‖=2.3391, g⊥=2.0550 and A‖=130×10(-4) cm(-1), A⊥=36×10(-4) cm(-1). The optical and EPR data suggests that Cu(2+) entered into host lattice as tetragonally distorted octahedral site symmetry. PL spectra consists two emission bands at 367, 380 nm in UV region. A sharp blue emission peak at 425 nm and a broad green emission peak in the range of 450-570 nm are observed. The enhanced visible emission is observed after doping.

  11. Ferromagnetism and optical properties of La1 − x Al x FeO3 nanopowders

    PubMed Central

    2014-01-01

    La1 − x Al x FeO3 (x = 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) nanopowders were prepared by polymerization complex method. All prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and UV-vis spectrophotometry (UV-vis). The magnetic properties were investigated using a vibrating sample magnetometer (VSM). The X-ray results of all samples show the formation of an orthorhombic phase with the second phase of α-Fe2O3 in doped samples. The crystallite sizes of nanoparticles decreased with increasing Al content, and they are found to be in the range of 58.45 ± 5.90 to 15.58 ± 4.64 nm. SEM and TEM images show the agglomeration of nanoparticles with average particle size in the range of 60 to 75 nm. The FT-IR spectra confirm the presence of metal oxygen bonds of O-Fe-O and Fe-O in the FeO6 octahedra. The UV-vis spectra show strong absorption peaks at approximately 285 nm, and the calculated optical band gaps are found to be in the range of 2.05 to 2.09 eV with increasing Al content. The M-H loop of the pure sample is antiferromagnetic, whereas those of the doped samples tend to be ferromagnetic with increasing Al content. The magnetization, remanent magnetization, and coercive field of the Al-doped sample with x = 0.5 are enhanced to 1.665 emu/g, 0.623 emu/g, and 4,087.0 Oe, respectively. PMID:25246876

  12. Effects of Ytterbium Oxide Nanopowder Particle Size on the Acoustic Properties of Silicone Rubber Lens for Medical Echo Array Probe

    NASA Astrophysics Data System (ADS)

    Yohachi; Yamashita; Hosono, Yasuharu; Yamamoto, Noriko; Itsumi, Kazuhiro

    2008-05-01

    The effects of Yb2O3 powder particle size, namely, 2000, 16, and 8 nm, on the physical and acoustic properties of a high-temperature-vulcanization (HTV) silicone (Q) rubber have been investigated in order to develop an acoustic lens material with a low sound velocity (c) and acoustic attenuation coefficient (α). The Yb2O3-doped HTV Q rubber with the large particle size of 2000 nm showed a density (ρ) of 1.6×103 kg/m3, with c = 828 m/s, characteristic acoustic impedance (Z) = 1.32×106 kg·m-2·s-1, α= 1.32 dB·mm-1·MHz-1, and an α-figure of merit (FOM) (α×c) of 1090 at 5 MHz at 37 °C. For the Yb2O3-doped Q rubber with the small particle size of 8 nm, ρ= 1.57×103 kg/m3, c = 864 m/s, Z = 1.36×106 kg·m-2·s-1, α= 0.68 dB·mm-1·MHz-1, and α-FOM = 590. The 16 nm Yb2O3-doped Q rubber had intermediate values of α= 0.88 dB·mm-1·MHz-1 and α-FOM = 760. These results show that there is a clear dopant particle size dependence on the acoustic properties of Yb2O3-doped HTV Q rubbers. The 8-nm-doped HTV Q rubber also showed an excellent mechanical properties for practical application. Microstructure observation revealed that the low-α rubber shows a uniform Yb2O3 nanopowder distribution in the HTV Q rubber matrix.

  13. Effects of Ceramic Nanopowder Dopants on Acoustic Attenuation Properties of Silicone Rubber Lens for Medical Echo Probe

    NASA Astrophysics Data System (ADS)

    Yamashita, Yohachi (John); Hosono, Yasuharu; Itsumi, Kazuhiro

    2007-07-01

    The effects of fine ceramic powder dopants, namely, TiO2, Al2O3, BaSO4, Fe2O3, ZrO2, and Yb2O3 with primary particle sizes of 16-100 nm, on the acoustic properties of silicone rubber have been investigated, in order to develop an acoustic lens material for medical echo probes with a low acoustic attenuation (α). Silicone rubber doped with Yb2O3 powder having a high density (ρ) of 9.2× 103 kg/m3 and an average particle size of 16 nm showed a lower acoustic attenuation than silicone rubber doped with other powders. The materials showed ρ=1.54× 103 kg/m3, a sound velocity (c)=882 m/s, an acoustic impedance ρ\\cdot c (Z)=1.36× 106 kg m-2 s-1, and an acoustic attenuation α=0.93 dB mm-1 MHz-1 at 37 °C. Silicone rubber doped with Fe2O3 powder having ρ=5.2× 103 kg/m3 and an average particle size of 30 nm showed the highest α=2.36 dB mm-1 MHz-1 and Z=1.47× 106 kg m-2 s-1. Microstructure observation of the rubber by scanning microscopy revealed that the α of the powder-doped rubber is not only determined by the primary particle size of the powders but also by the dispersion and agglomeration of the secondary particles in the rubber matrix. The discovery of the process parameter required to reduce the α of the nanopowder-doped silicone rubber has an important practical consequence.

  14. Preparation of UO2, ThO2 and (Th,U)O2 pellets from photochemically-prepared nano-powders

    NASA Astrophysics Data System (ADS)

    Pavelková, Tereza; Čuba, Václav; de Visser-Týnová, Eva; Ekberg, Christian; Persson, Ingmar

    2016-02-01

    Photochemically-induced preparation of nano-powders of crystalline uranium and/or thorium oxides and their subsequent pelletizing has been investigated. The preparative method was based on the photochemically induced formation of amorphous solid precursors in aqueous solution containing uranyl and/or thorium nitrate and ammonium formate. The EXAFS analyses of the precursors shown that photon irradiation of thorium containing solutions yields a compound with little long-range order but likely "ThO2 like" and the irradiation of uranium containing solutions yields the mixture of U(IV) and U(VI) compounds. The U-containing precursors were carbon free, thus allowing direct heat treatment in reducing atmosphere without pre-treatment in the air. Subsequent heat treatment of amorphous solid precursors at 300-550 °C yielded nano-crystalline UO2, ThO2 or solid (Th,U)O2 solutions with high purity, well-developed crystals with linear crystallite size <15 nm. The prepared nano-powders of crystalline oxides were pelletized without any binder (pressure 500 MPa), the green pellets were subsequently sintered at 1300 °C under an Ar:H2 (20:1) mixture (UO2 and (Th,U)O2 pellets) or at 1600 °C in ambient air (ThO2 pellets). The theoretical density of the sintered pellets varied from 91 to 97%.

  15. Direct solid sampling system for electrothermal vaporization and its application to the determination of chlorine in nanopowder samples by inductively coupled plasma optical emission spectroscopy.

    PubMed

    Nakata, Kenichi; Hashimoto, Bunji; Uchihara, Hiroshi; Okamoto, Yasuaki; Ishizaka, Syoji; Fujiwara, Terufumi

    2015-06-01

    An electrothermal vaporization (ETV) system using a tungsten boat furnace (TBF) sample cuvette was designed for the direct determination of chlorine in metallic nanopowders and fine powder samples with detection by inductively coupled plasma optical emission spectroscopy (ICP-OES). A portion of a powder or particle sample was placed into a small tungsten sample cuvette and weighed accurately. A modifier solution of aqueous or alcoholic potassium hydroxide was added to it. Then, the cuvette was positioned on the TBF incorporated into the ETV apparatus. The analyte was vaporized and introduced into the ICP optical emission spectrometer with a carrier gas stream of argon and hydrogen. The metal samples were analyzed by using an external calibration curve prepared from aqueous standard solutions. Few chemical species including analyte and some chlorine-free species were introduced into the ICP, because the analyte has been separated from the matrix before introduction. Under such dry plasma conditions, the energy of plasma discharge was focused on the excitation of chlorine atoms, and as a result, lower detection limits were achieved. A detection limit of 170 ng g(-1) of chlorine in solid metal samples was established when 60 mg sample was used. The relative standard deviation for 16 replicate measurements obtained with 100 ng chlorine was 8.7%. Approximately 30 batches could be vaporized per hour. The analytical results for various nanopowders (iron (III) oxide, copper, silver, and gold) and metallic fine powder samples (silver and gold) are described. PMID:25863402

  16. Deformation band-like defects as possible precursors to microfracture planes, resulting in the generation of nanopowders on simulated fault planes

    NASA Astrophysics Data System (ADS)

    Toy, V. G.; Wirth, R.; Mitchell, T. M.

    2013-12-01

    The development of at least partially ';amorphous' and/or ';nanocrystalline' materials within fault principal slip zones has been shown to reduce frictional shear resistance during fault slip. Thus it is proposed generation of these materials facilitates shear localization and possibly even seismic slip. The generation of such materials has been demonstrated experimentally, both in high velocity friction experiments at ambient conditions (e.g. silica gels reported by Goldsby & Tullis, 2002: GRL 29, 1844; Di Toro et al., 2004: Nature 427, 436), and very low velocity shear experiments at higher temperatures and confining pressures (e.g. apparent pseudotachylytes reported by Pec et al, 2012: EPSL 355-356, 299). They have also been reported in natural fault zones (e.g. natural silica gel from the Corona Fault described by Kirkpatrick et al., in press: Geology). These materials commonly comprise some proportion of randomly-oriented nanocrystals embedded in a non-crystalline matrix that displays no TEM diffraction contrast or lattice fringes. Proposed generation mechanisms include: irradiation damage, deformation, application of pressure, and chemical reactions. In particular, Pec et al., (2012) proposed that micro-comminution processes precede the generation of lattice defects. In this study we show that partially-amorphous silica material can be generated experimentally on a saw-cut surface in novaculite during shear at ~8 x 10-4m/s, in a Griggs apparatus under Pconf ~0.5 GPa, T = 450 and 600°C. The material comprises angular nanocrystals ranging from 2-10 nm diameter in a entirely non-crystalline matrix,has variable density that increases with decreasing proportion of nanocrystal remnants, suggesting it is a partially compacted nanopowder. This material is restricted to a zone <50 μm wide between the sawcut sliders. We infer an origin by micro-comminution, wherein repeated microfracturing results in formation of a very high proportion of non-crystalline surfaces

  17. La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanopowders: Synthesis of different powders structures and real magnetic properties of nanomanganites

    SciTech Connect

    Danilenko, Igor Konstantinova, Tetyana; Volkova, Galina; Glazunova, Valentina

    2013-08-15

    The difference in the magnetic properties between two lanthanum manganite nanopowders with identical phase and chemical composition is discussed in terms of the influence of nanopowder synthesis conditions on their properties. The aim of this investigation was to show the influence of precursor type and structure on the structure and properties of final La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanopowders obtained by precipitation technique. The forming of a complex structure of precursor materials during drying and inheritance at firing stage led to the formation of bimodal particle size distribution and magnetic properties typical of coarse powders. The correct choice of precursor material and the technological conditions of the drying and firing stage were allowed for the creation of a uniform powder structure with special magnetic properties. We showed that the magnetic properties of nanopowders were not always determined by chemical or phase composition and mean particle size of synthesized powders. The difference in precipitation process can lead to unpredictable and catastrophic results, and masked the effect of nanoparticles on the magnetic properties of the material. - Highlights: • Precursor’s structure has a strong influence on LSM nanoparticles structure. • Amorphous precursor structure led to uniform LSM nanoparticles formation. • Crystal precursors led to the formation of bimodal LSM particles distribution. • Decrease the single-domain LSM NP size led to decrease the powder’s magnetization.

  18. Synthesis, EPR and luminescent properties of YAlO3:Fe3+ (0.1-0.9 mol%) nanopowders

    NASA Astrophysics Data System (ADS)

    Premkumar, H. B.; Nagabhushana, H.; Sharma, S. C.; Daruka Prasad, B.; Nagabhushana, B. M.; Rao, J. L.; Chakradhar, R. P. S.

    A simple and inexpensive combustion method was used to prepare Fe3+ doped YAlO3 perovskite within few minutes at low temperature (400 ± 10 °C). This might be useful in lowering the cost of the material. The final products were well characterized by various spectroscopic techniques such as PXRD, SEM, TEM, FTIR and UV-Visible. The average crystallite size was estimated from the broadening of the PXRD peaks and found to be in the range 45-90 nm, the results were in good agreement with the W-H plots and TEM. The crystallites show dumbbell shape, agglomerated particles with different size. The TL glow curves of 1-5 kGy γ-irradiated YAlO3:Fe3+ (0.1 mol%) nanopowder warmed at a heating rate of 3 °C s-1 records a single glow peak at ∼260 °C. The kinetic parameters namely activation energy (E), order of kinetics (b) and frequency factor (s) were determined at different gamma doses using the Chens glow peak shape method and the results were discussed in detail. The photoluminescence spectra for Fe3+ (0.1-0.9 mol%) doped YAlO3 records the lower energy band at 720 nm (4T1 (4G) → 6A1 (6S)) and the intermediate band located at 620 nm (4T2 (4G) → 6A1 (6S)) with the excitation of 378 nm. The higher energy band located at 514 nm was associated to 4E + 4A1 (4G) → 6A1 (6S) transition. The resonance signals at g values 7.6, 4.97, 4.10, 2.94, 2.33 and 1.98 were observed in EPR spectra of Fe3+ (0.1-0.9 mol%) doped YAlO3 recorded at room temperature. The g values indicate that the iron ions were in trivalent state and distorted octahedral site symmetry was observed.

  19. La{sub 0.5}Sr{sub 0.5}TiO{sub 3} nanopowders prepared by the hydrothermal method

    SciTech Connect

    Putjuso, Thanin; Maensiri, Santi; Hunpratub, Sitchai; Swatsitang, Ekaphan

    2012-09-15

    Graphical abstract: LRTEM image of the single-phase La{sub 0.5}Sr{sub 0.5}TiO{sub 3} particles. It is seen from the figure that the product has a plate-like morphology with average particles sizes in the range of 100–300 nm. In addition, the SAED data taken from an individual particle (lower inset) shows the presence of sharp diffraction rings, which are indicative of polycrystalline La{sub 0.5}Sr{sub 0.5}TiO{sub 3} formation. The high-resolution TEM image (upper inset) shows for further confirmation of a crystalline structure of La{sub 0.5}Sr{sub 0.5}TiO{sub 3} powder. This image shows a clearly resolved crystalline domain with uniform interplanar spacing of 0.276 nm. Highlights: ► La{sub 0.5}Sr{sub 0.5}TiO{sub 3} nanopowder is prepared in 2 M KOH solution by hydrothermal method. ► The solution is heat treated at 220 °C for 24 h in air. ► LRTEM reveals a plate-like morphology of particle with average size of 100–300 nm. ► HRTEM image shows a crystalline domain with interplanar spacing of 0.276 nm. -- Abstract: La{sub 0.5}Sr{sub 0.5}TiO{sub 3} nanopowders were prepared by the hydrothermal method. The influence of processing parameters, including KOH concentration, reaction temperature and reaction time on the obtained products were studied. The structure and morphology of the obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD results show that pure phase La{sub 0.5}Sr{sub 0.5}TiO{sub 3} nanopowders can be successfully synthesized with 2 M KOH concentration at a low temperature of 220 °C for 24 h. In addition, the product has a plate-like shape with particle sizes in the range of 25–100 nm as estimated by TEM.

  20. Fundamental study of Ti feedstock evaporation and the precursor formation process in inductively coupled thermal plasmas during TiO2 nanopowder synthesis

    NASA Astrophysics Data System (ADS)

    Kodama, Naoto; Tanaka, Yasunori; Kita, K.; Ishisaka, Y.; Uesugi, Y.; Ishijima, T.; Sueyasu, S.; Nakamura, K.

    2016-08-01

    Two-dimensional spectroscopic observations were conducted for an inductively coupled thermal plasma (ICTP) torch during TiO2 nanopowder synthesis. The feedstock was injected intermittently into the ICTP torch to investigate the Ti feedstock evaporation process clearly and to elucidate the formation process of precursor species. Spatiotemporal distributions of Ti atomic lines and TiO spectra were observed simultaneously inside the plasma torch with the observation system developed. The observation results showed that the injected Ti feedstock was evaporated to form high-density Ti atomic vapour in the torch, and that the generated Ti atomic vapour is transported and diffused by gas flow and the density gradient. In addition, TiO molecular vapour was generated almost simultaneously around the on-axis region in the torch.

  1. Structure, morphology and optical properties of undoped and MN-doped ZnO(1-x)Sx nano-powders prepared by precipitation method

    NASA Astrophysics Data System (ADS)

    Dejene, F. B.; Onani, M. O.; Koao, L. F.; Wako, A. H.; Motloung, S. V.; Yihunie, M. T.

    2016-01-01

    The undoped and Mn-doped ZnO(1-x)Sx nano-powders were successfully synthesized by precipitation method without using any capping agent. Its structure, morphology, elemental analysis, optical and luminescence properties were determined by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis spectroscopy (UV) and photoluminescence spectroscopy (PL). A typical SEM image of the un-doped ZnO(1-x)Sx nanoparticles exhibit flake like structures that changes to nearly spherical particles with Mn-doping. The XRD of undoped and Mn doped ZnO(1-x)Sx pattern reveals the formation of a product indexed to the hexagonal wurtzite phase of ZnS. The nanopowders have crystallite sizes estimated from XRD measurements were in the range of 10-20 nm. All the samples showed absorption maximum of ZnO(1-x)Sx at 271 nm and high transmittance in UV and visible region, respectively. The undoped ZnO(1-x)Sx nanoparticles show strong room-temperature photoluminescence with four emission bands centering at 338 nm, 384 nm, 448 nm and 705 nm that may originate to the impurity of ZnO(1-x)Sx, existence of oxide related defects. The calculated bandgap of the nanocrystalline ZnO(1-x)Sx showed a blue-shift with respect to the Mn-doping. The PL spectra of the Mn-doped samples exhibit a strong orange emission at around 594 nm attributed to the 4T1-6A1 transition of the Mn2+ ions.

  2. Synthesis of YAG nanopowder by the co-precipitation method: Influence of pH and study of the reaction mechanisms

    SciTech Connect

    Marlot, Caroline; Barraud, Elodie; Le Gallet, Sophie; Eichhorn, Marc; Bernard, Frederic

    2012-07-15

    YAG nanopowders with an average grain size of 30 nm have been successfully synthesized by the co-precipitation method using nitrates with precipitant of ammonium hydrogen carbonate. The influence of precipitation conditions such as pH, aging time and calcination temperature on the formation of secondary phases has been studied. The accurate control of pH value at every stage of precipitation process is crucial to avoid the presence of YAM (Yttrium Aluminium Monoclinic, Y{sub 4}Al{sub 2}O{sub 9}) and yttrium oxide (Y{sub 2}O{sub 3}) after calcination. The reaction mechanisms have been investigated using different techniques such as infrared spectroscopy, x-ray diffraction and thermal analyses. The YAG phase is formed around 1050 Degree-Sign C passing through an intermediate phase called YAP (Yttrium Aluminium Perovskite, YAlO{sub 3}). Local chemical heterogeneities are responsible for the deviation of the Y:Al ratio and the formation of YAP during heat treatment. - Graphical abstract: Synthesis of YAG nanopowder by the co-precipitation method: Influence of pH and study of the reaction mechanisms, Marlot et al. Highlights: Black-Right-Pointing-Pointer Synthesis of pure YAG nanoparticles by the co-precipitation method. Black-Right-Pointing-Pointer Influence of pH value on the formation of secondary phases all along the process. Black-Right-Pointing-Pointer Study of the importance of pH using titration method. Black-Right-Pointing-Pointer Chemical evolution of the precursor during calcinations. Black-Right-Pointing-Pointer Proposition for reaction mechanisms.

  3. The effects of the location of Au additives on combustion-generated SnO(2) nanopowders for CO gas sensing.

    PubMed

    Bakrania, Smitesh D; Wooldridge, Margaret S

    2010-01-01

    The current work presents the results of an experimental study of the effects of the location of gold additives on the performance of combustion-generated tin dioxide (SnO(2)) nanopowders in solid state gas sensors. The time response and sensor response to 500 ppm carbon monoxide is reported for a range of gold additive/SnO(2) film architectures including the use of colloidal, sputtered, and combustion-generated Au additives. The opportunities afforded by combustion synthesis to affect the SnO(2)/additive morphology are demonstrated. The best sensor performance in terms of sensor response (S) and time response (τ) was observed when the Au additives were restricted to the outermost layer of the gas-sensing film. Further improvement was observed in the sensor response and time response when the Au additives were dispersed throughout the outermost layer of the film, where S = 11.3 and τ = 51 s, as opposed to Au localized at the surface, where S = 6.1 and τ = 60 s.

  4. Adsorption of F2Cdbnd CFCl on TiO2 nano-powder: Structures, energetics and vibrational properties from DRIFT spectroscopy and periodic quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Tasinato, Nicola; Moro, Daniele; Stoppa, Paolo; Pietropolli Charmet, Andrea; Toninello, Piero; Giorgianni, Santi

    2015-10-01

    Photodegradation over titanium dioxide (TiO2) is a very appealing technology for removing environmental pollutants from the air, the adsorption interaction being the first step of the whole reaction pathway. In the present work the adsorption of F2Cdbnd CFCl (chlorotrifluoroethene, halon 1113), a compound used by industry and detected in the atmosphere, on a commercial TiO2 nano-powder is investigated experimentally by in situ DRIFT spectroscopy and theoretically through periodic ab initio calculations rooted in DFT. The spectra of the adsorbed molecule suggest that the anchoring to the surface mainly takes place through F atoms. Theoretically, five adsorption configurations for the molecule interacting with the anatase (1 0 1) surface are simulated at B3LYP level and for each of them, structures, binding energies and vibrational frequencies are derived. The interplay between theory and experiments shows the coexistence of different adsorption configurations, the foremost ones featuring the interaction of one F atom with a fivefold coordinated Ti4+ of the surface. These two adsorption models, which mostly differ for the orientation of the adsorbate with respect to the surface, feature a binding energy of -45.6 and -41.0 kJ mol-1 according to dispersion corrected DFT calculations. The favorable adsorption interaction appears as an important requirement toward the application of titanium dioxide technologies for the photocatalytic degradation of halon 1113.

  5. Investigation of magnetic properties of MnZn-substituted strontium ferrite nanopowders prepared via conventional ceramic technique followed by a high energy ball milling

    NASA Astrophysics Data System (ADS)

    Arab, A.; Mardaneh, M. R.; Yousefi, M. H.

    2015-01-01

    Strontium ferrite powders with substitution of Mn2+ and Zn2+ ions for Fe3+ ions according to the formula SrMnxZnxFe12-2xO19, wherein x ranging from 0 to 1 with a step of 0.2, has been pre-milled via conventional ceramic method and calcined at 1200 °C for 4 h in the air. In order to get nanopowders, the obtained powders were milled again in a high energy SPEX mill for 1 h and 15 min. XRD study was performed to investigation the phases and structural properties of samples. Lattice parameters and mean crystallite sizes of the milled powders were determined from the XRD data and Scherrer's formula. Size of particles was studied by TEM. The DC electrical resistivities of the milled samples have been measured by the two-point probe method. In addition, room temperature magnetizations and coercivities of the samples in a magnetic field of 14.7 kOe have been determined from the hysteresis loops. The behavior of magnetizations of samples has been discussed based on core-shell model and according to the site occupation of substituted cations on the sublattices. The discussion of site occupation also supports the increase of lattice parameters as x increases.

  6. Photo-catalytic inactivation of an Enterococcus biofilm: the anti-microbial effect of sulphated and europium-doped titanium dioxide nanopowders.

    PubMed

    Dworniczek, Ewa; Plesch, Gustav; Seniuk, Alicja; Adamski, Ryszard; Michal, Róbert; Čaplovičová, Mária

    2016-04-01

    The control and prevention of biofilm-related infections is an important public healthcare issue. Given the increasing antibiotic resistance among bacteria and fungi that cause serious infections in humans, promotion of new strategies combating microorganisms has been essential. One attractive approach to inactivate microorganisms is the use of semiconductor photo-catalysis, which has become the subject of extensive research. In this study, the bactericidal properties of four photo-catalysts, TiO₂, TiO₂-S, TiO₂-Eu and TiO₂-Eu-S, were investigated against established 24, 48, 72 and 96 h biofilms of Enterococcus The exposure of biofilms to the catalysts induced the production of superoxide radical anions. The best photo-catalytic inactivation was achieved with the TiO₂-Eu-S and TiO₂-S nanopowders and 24 h biofilms. Transmission electron microscopy images showed significant changes in the structure of the biofilm cells following photo-inactivation. The results suggest that doping with europium and modifying the surface with sulphate groups enhanced the bactericidal activity of the TiO₂ nanoparticles against enterococcal biofilms.

  7. Synthesis and electrochemical properties of LiNi 0.8Co 0.2O 2 nanopowders for lithium ion battery applications

    NASA Astrophysics Data System (ADS)

    Jouybari, Yaser Hamedi; Asgari, Sirous

    Nitrates of lithium, cobalt and nickel are utilized to synthesize LiNi 0.8Co 0.2O 2 cathode material through sol-gel technique. Various synthesis parameters such as calcination time and temperature as well as chelating agent are studied to determine the optimized condition for material processing. Using TG/DTA techniques, the optimized calcination temperatures are selected. Different characterization techniques such as ICP, XRD and TEM are employed to characterize the chemical composition, crystal structure, size and morphology of the powders. Micron and nano-sized powders are produced using citric/oxalic and TEA as chelating agent, respectively. Selected powders are used as cathode material to assemble batteries. Charge-discharge testing of these batteries show that the highest discharge capacity is 173 mAh g -1 at a constant current of 0.1 mA cm -2, between 3.0 and 4.2 V. This is obtained in a battery assembled with the nanopowder produced by TEA as chelating agent.

  8. Spark Plasma Sintering of Aluminum-Magnesium-Matrix Composites with Boron Carbide and Tungsten Nano-powder Inclusions: Modeling and Experimentation

    NASA Astrophysics Data System (ADS)

    Dvilis, E. S.; Khasanov, O. L.; Gulbin, V. N.; Petyukevich, M. S.; Khasanov, A. O.; Olevsky, E. A.

    2016-03-01

    Spark-plasma sintering (SPS) is used to fabricate fully-dense metal-matrix (Al/Mg) composites containing hard ceramic (boron carbide) and refractory metal (tungsten) inclusions. The study objectives include the modeling (and its experimental verification) of the process of the consolidation of the composites consisted of aluminum-magnesium alloy AMg6 (65 wt.%), B4C powder (15 wt.%), and W nano-powder (20 wt.%), as well as the optimization of the composite content and of the SPS conditions to achieve higher density. Discrete element modeling of the composite particles packing based on the particle size distribution functions of real powders is utilized for the determination of the powder compositions rendering maximum mixture packing densities. Two models: a power-law creep model of the high temperature deformation of powder materials, and an empirical logarithmic pressure-temperature-relative density relationship are successfully applied for the description of the densification of the aluminum-magnesium metal matrix powder composite subjected to spark-plasma sintering. The elastoplastic properties of the sintered composite samples are assessed by nanoindentation.

  9. Temperature dependence of Er{sup 3+} ionoluminescence and photoluminescence in Gd{sub 2}O{sub 3}:Bi nanopowder

    SciTech Connect

    Boruc, Zuzanna Fetliński, Bartosz; Kaczkan, Marcin; Malinowski, Michał; Gawlik, Grzegorz

    2014-06-15

    Ionoluminescence (IL) and photoluminescence (PL) of trivalent erbium ions (Er{sup 3+}) in Gd{sub 2}O{sub 3} nanopowder host activated with Bi{sup 3+} ions has been studied in order to establish the link between changes in luminescent spectra and temperature of the sample material. IL measurements have been performed with H{sub 2}{sup +} 100 keV ion beam bombarding the target material for a few seconds, while PL spectra have been collected for temperatures ranging from 20 °C to 700 °C. The PL data was used as a reference in determining the temperature corresponding to IL spectra. The collected data enabled the definition of empirical formula based on the Boltzmann distribution, which allows the temperature to be determined with a maximum sensitivity of 9.7 × 10{sup −3} °C{sup −1}. The analysis of the Er{sup 3+} energy level structure in terms of tendency of the system to stay in thermal equilibrium, explained different behaviors of the line intensities. This work led to the conclusion that temperature changes during ion excitation can be easily defined with separately collected PL spectra. The final result, which is empirical formula describing dependence of fluorescence intensity ratio on temperature, raises the idea of an application of method in temperature control, during processes like ion implantation and some nuclear applications.

  10. Study of the relation between oxygen vacancies and ferromagnetism in Fe-doped TiO{sub 2} nano-powders

    SciTech Connect

    Mudarra Navarro, Azucena M.; Rodríguez Torres, Claudia E. Fabiana Cabrera, A.; Bilovol, Vitaliy; Errico, L. A.; Weissmann, M.

    2014-06-14

    In this work, we present an experimental and theoretical study of structural and magnetic properties of Fe doped rutile TiO{sub 2} nanopowders. We show that Fe-doping induces the formation of oxygen vacancies in the first-sphere coordination of iron ions, which are in +2 and +3 oxidation states. We found that Fe ions form dimers that share one oxygen vacancy in the case of Fe{sup 3+} and two oxygen vacancies in the case of Fe{sup 2+}. The saturation magnetization is almost independent of iron concentration and slightly increases with the relative fraction of Fe{sup 2+}. Ab initio calculations show that two Fe ions sharing an oxygen vacancy are coupled ferromagnetically, forming a bound magnetic polaron (BMP), but two neighbor BMPs are aligned antiparallel to each other. Extra electron doping plays a fundamental role mediating the magnetic coupling between the ferromagnetic entities: carriers, possibly concentrated at grain boundaries, mediate between the BMP to produce ferromagnetic alignment.

  11. Properties of Gd{sub 2}O{sub 3}:Eu{sup 3+}, Tb{sup 3+} nanopowders obtained by sol-gel process

    SciTech Connect

    Ramirez, A. de J. Morales; Murillo, A. Garcia; Romo, F. de J. Carrillo; Hernandez, M. Garcia; Vigueras, D. Jaramillo

    2010-01-15

    A significant practical application for nanostructured materials is X-ray medical imagery, because it is necessary to use dense materials in order to enable absorption of high energy photons. An important requirement of these materials is UV-vis range emission produced by X-ray excitation, which can be influenced by the particle size. Europium doped gadolinium oxide is a well known red phosphor. Moreover, nanophosphors of Gd{sub 2}O{sub 3} codoped with Tb{sup 3+}, Eu{sup 3+} increase their light yield by energy transfer between Tb{sup 3+} and Eu{sup 3+}. In this study, Gd{sub 2}O{sub 3} nanopowders codoped with Eu{sup 3+} and Tb{sup 3+} (2.5 at.% Eu{sup 3+}, and 0.005 and 0.01 at.% Tb{sup 3+}) were obtained via a sol-gel process using gadolinium pentanedionate as precursor and europium and terbium nitrates as doping sources. In this paper, we report the influence of annealing temperature on the structure, morphology and luminescent properties of Gd{sub 2}O{sub 3}:Eu{sup 3+}, Tb{sup 3+} by means of TGA, XRD, TEM and X-ray emission measurements.

  12. Influence of quenching gas injection on the temperature field in pulse-modulated induction thermal plasma for large scale nanopowder synthesis

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasunori; Guo, Weixuan; Kodama, Naoto; Kita, Kentaro; Uesugi, Yoshihiko; Ishijima, Tatsuo; Watanabe, Shu; Nakamura, Keitaro

    2015-09-01

    We have so far developed a unique and original method for a large-scale nanopowder synthesis method using pulse-modulated induction thermal plasmas with time-controlled feedstock feeding (PMITP-TCFF). The PMITP is sustained by the coil current modulated into a rectangular waveform. Such the current modulation produces an extremely high-temperature thermal plasma in on-time, and in off-time relatively low-temperature thermal plasma. In PMITP-TCFF method, feedstock powder is intermittently injected to the PMITP synchronously during only on-time for its efficient and complete evaporation. That evaporated materials are rapidly cooled down to promote nucleation of nanoparticles during off-time. This report deals with a numerical approach on influence of quenching gas injection on the temperature field in the PMITP. The thermofluid model for the PMITP was developed on the assumption of local thermodynamic equilibrium (LTE). This model accounted for the pulse-modulation of the coil current and the quenching gas injection. It was found that the quenching gas injection works to increase the PMITP temperature inside the plasma torch during on-time, and then to decrease it effectively in the reaction chamber. This work is partly supported by JSPS KAKENHI Grant No. 26249034.

  13. Investigation of the influence of vanadium, iron and nickel dopants on the morphology, and crystal structure and photocatalytic properties of titanium dioxide based nanopowders.

    PubMed

    Shao, Godlisten N; Jeon, Sun-Jeong; Haider, M Salman; Abbass, Nadir; Kim, Hee Taik

    2016-07-15

    Photoactive V, Fe and Ni doped TiO2 (M-TiO2) nanopowders were synthesized by a modified two-step sol-gel process in the absence of additives. Titanium oxychloride, which is a rarely-used TiO2 precursor was used to yield M-TiO2 photocatalysts with preferential photochemical performance in the presence of natural solar irradiation. The obtained samples were calcined at different calcination temperatures ranging from 450 to 800°C to evaluate the influence of the sintering on the physicochemical properties. The properties of the obtained samples were examined by XRF, XRD, Raman spectroscopy, UV-visible DRS, XPS, nitrogen gas physisorption studies, SEM-EDAX and HRTEM analyses. Structural characterization of the samples revealed the incorporation of these transition metal element into TiO2. It was also depicted that the morphology, crystal structure, optical and photochemical properties of the obtained samples were largely dependent on the calcination temperature and the type of dopant used during the preparation process. The photochemical performance of the samples was investigated in the photodegradation of methylene blue in the presence of natural sunlight. The experimental results indicated that the VT600 sample possessed the highest activity due to its superior properties. This study provides a systematic preparation and selection of the precursor, dopant and calcination temperature that are suitable for the formation of TiO2-based heterogeneous photocatalysts with appealing morphology, crystal structure, optical and photochemical properties for myriad of applications.

  14. Magnetocaloric properties of TbN, DyN and HoN nanopowders prepared by the plasma arc discharge method.

    PubMed

    Shinde, K P; Jang, S H; Kim, J W; Kim, D S; Ranot, M; Chung, K C

    2015-12-21

    We report for the first time the synthesis of nanopowders of TbN, DyN and HoN crystallized in a cubic structure by the plasma arc discharge (PAD) method and investigate their magnetocaloric properties for magnetic refrigeration applications. The nitridization of terbium, dysprosium and holmium was obtained using a mixture of nitrogen and argon gas inside a discharge chamber with 4 kPa pressure. The structural and microstructural properties of these rare earth nitrides were investigated by using X-ray diffraction and transmission electron microscopy. The studied nitrides undergo a second-order ferromagnetic to paramagnetic phase transition at Curie temperatures of 35.7, 19.9 and 14.2 K for TbN, DyN and HoN, respectively. The magnetocaloric effects were estimated by calculating the magnetic entropy changes from the magnetization data sets measured at the different applied magnetic fields and temperatures. The changes in entropy -ΔSM were found to be 12.0, 13.6 and 24.5 J kg(-1) K(-1) at an applied magnetic field of 5 T. PMID:26492221

  15. Dynamics and structure of hydration water on rutile and cassiterite nano-powders studied by quasielastic neutron scattering and molecular dynamics simulations

    SciTech Connect

    Mamontov, Eugene

    2007-01-01

    Quasielastic neutron scattering (QENS) experiments carried out using time-of-flight and backscattering neutron spectrometers with widely different energy resolution and dynamic range revealed the diffusion dynamics of hydration water in nano-powder rutile (TiO2) and cassiterite (SnO2) that possess the rutile crystal structure with the (110) crystal face predominant on the surface. These isostructural oxides differ in their bulk dielectric constants, metal atom electronegativities, and lattice spacings, which may all contribute to differences in the structure and dynamics of sorbed water. When hydrated under ambient conditions, the nano-powders had similar levels of hydration: about 3.5 (OH/H2O) molecules per Ti2O4 surface structural unit of TiO2 and about 4.0 (OH/H2O) molecules per Sn2O4 surface unit of SnO2. Ab initio-optimized classical molecular dynamics (MD) simulations of the (110) surfaces in contact with SPC/E water at these levels of hydration indicate three structurally-distinct sorbed water layers L1, L2, and L3, where the L1 species are either associated water molecules or dissociated hydroxyl groups in direct contact with the surface, L2 water molecules are hydrogen bonded to L1 and structural oxygen atoms at the surface, and L3 water molecules are more weakly bound. At the hydration levels studied, L3 is incomplete compared with axial oxygen density profiles of bulk SPC/E water in contact with these surfaces, but the structure and dynamics of L1 "L3 species are remarkably similar at full and reduced water coverage. Three hydration water diffusion components, on the time scale of a picosecond, tens of picoseconds, and a nanosecond could be extracted from the QENS spectra of both oxides. However, the spectral weight of the faster components was significantly lower for SnO2 compared to TiO2. In TiO2 hydration water, the more strongly bound L2 water molecules exhibited slow (on the time scale of a nanosecond) dynamics characterized by super

  16. Investigation of the structure and properties of titanium-stainless steel permanent joints obtained by laser welding with the use of intermediate inserts and nanopowders

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Orishich, A. M.; Pugacheva, N. B.; Shapeev, V. P.

    2015-03-01

    Results of an experimental study of the structure, the phase composition, and the mechanical properties of laser-welded joints of 3-mm thick titanium and 12Kh18N10T steel sheets obtained with the use of intermediate inserts and nanopowdered modifying additives are reported. It is shown that that such parameters as the speed of welding, the radiation power, and the laser-beam focal spot position all exert a substantial influence on the welding-bath process and on the seam structure formed. In terms of chemical composition, most uniform seams with the best mechanical strength are formed at a 1-m/min traverse speed of laser and 2.35-kW laser power, with the focus having been positioned at the lower surface of the sheets. Under all other conditions being identical, uplift of the focus to workpiece surface or to a higher position results in unsteady steel melting, in a decreased depth and reduced degree of the diffusion-induced mixing of elements, and in an interpolate connection formed according to the soldering mechanism in the root portion of the seam. The seam material is an over-saturated copper-based solid solution of alloying elements with homogeneously distributed intermetallic disperse particles (Ti(Fe, Cr)2 and TiCu3) contained in this alloy. Brittle fracture areas exhibiting cleavage and quasi-cleavage facets correspond to coarse Ti(Fe, Cr)2 intermetallic particles or to diffusion zones primarily occurring at the interface with the titanium alloy. The reported data and the conclusions drawn from the numerical calculations of the thermophysical processes of welding of 3-mm thick titanium and steel sheets through an intermediate copper insert are in qualitative agreement with the experimental data. The latter agreement points to adequacy of the numerical description of the melting processes of contacting materials versus welding conditions and focal-spot position in the system.

  17. Investigation of the influence of vanadium, iron and nickel dopants on the morphology, and crystal structure and photocatalytic properties of titanium dioxide based nanopowders.

    PubMed

    Shao, Godlisten N; Jeon, Sun-Jeong; Haider, M Salman; Abbass, Nadir; Kim, Hee Taik

    2016-07-15

    Photoactive V, Fe and Ni doped TiO2 (M-TiO2) nanopowders were synthesized by a modified two-step sol-gel process in the absence of additives. Titanium oxychloride, which is a rarely-used TiO2 precursor was used to yield M-TiO2 photocatalysts with preferential photochemical performance in the presence of natural solar irradiation. The obtained samples were calcined at different calcination temperatures ranging from 450 to 800°C to evaluate the influence of the sintering on the physicochemical properties. The properties of the obtained samples were examined by XRF, XRD, Raman spectroscopy, UV-visible DRS, XPS, nitrogen gas physisorption studies, SEM-EDAX and HRTEM analyses. Structural characterization of the samples revealed the incorporation of these transition metal element into TiO2. It was also depicted that the morphology, crystal structure, optical and photochemical properties of the obtained samples were largely dependent on the calcination temperature and the type of dopant used during the preparation process. The photochemical performance of the samples was investigated in the photodegradation of methylene blue in the presence of natural sunlight. The experimental results indicated that the VT600 sample possessed the highest activity due to its superior properties. This study provides a systematic preparation and selection of the precursor, dopant and calcination temperature that are suitable for the formation of TiO2-based heterogeneous photocatalysts with appealing morphology, crystal structure, optical and photochemical properties for myriad of applications. PMID:27124812

  18. Tuning the optical, electrical and magnetic properties of Ba(0.5)Sr(0.5)Ti(x)M(1-x)O3 (BST) nanopowders.

    PubMed

    Turky, Ali Omar; Rashad, Mohamed Mohamed; Kandil, Abd El-Hakim Taha; Bechelany, Mikhael

    2015-05-21

    Metal doped barium strontium titanate (BST; Ba0.5Sr0.5TixM1-xO3) nanopowders have been successfully synthesized through the oxalate precursor route based on low cost starting materials. The effect of metal ion substitution, namely Fe(3+), Mn(2+), Co(2+) and Y(3+), on the crystal structure, microstructure and optical, electrical, dielectric and magnetic properties of BST was studied. The results revealed that a crystalline single cubic BST phase was formed for pure and Mn(2+), Co(2+) and Y(3+) ion-substituted BST samples, whereas a tetragonal BST structure was obtained for the Fe(3+) substituted BST sample at an annealing temperature of 1000 °C for 2 h. Furthermore, addition of the metal ions was found to decrease the crystallite size and unit cell volume of the produced BST phase. The microstructure of the produced pure BST phase was metal ion dependent. Most BST particles appeared as a cubic like structure. The transparency of BST was found to increase with metal substitution. Meanwhile, the band gap energy was increased from 3.4 eV for pure BST to 3.8, 4.1, 4.2 and 4.3 eV as the result of substitution by Fe(3+), Mn(2+) and Co(2+) and Y(3+) ions, respectively. The DC resistivity was metal ion dependent. The highest DC resistivity (ρ = 66.60 × 10(5) Ω cm) was accomplished with the Mn(2+) ion. Moreover, the addition of metal ions decreased the dielectric properties of the expected Mn(2+) ion and increased the magnetic properties.

  19. Experimental and DFT studies of structure, optical and magnetic properties of (Zn1-2xCexCox)O nanopowders

    NASA Astrophysics Data System (ADS)

    Arul Mary, J.; Judith Vijaya, J.; Dai, J. H.; Bououdina, M.; John Kennedy, L.; Song, Y.

    2015-03-01

    A simple one-step microwave-assisted combustion method using urea as a fuel, was applied to develop the nanophase powders of ((Zn1-2xCexCox) O (x = 0.00, 0.01, 0.02, 0.03, 0.04, and 0.05)). The results emphasize that by changing the codopant concentration it is feasible to fine-tune structural, morphological, optical and magnetic properties. The synthesized nanoparticles gave rise to new microstructures without changing the basic hexagonal wurtzite structure. The substitution of Ce and Co into ZnO lattice was confirmed from the shift in XRD peaks position, changes in peaks intensity, and cell parameters. Energy dispersive X-ray spectra confirmed the presence of Ce and Co within ZnO system; the weight percentage was close to their nominal stoichiometry. Ultraviolet-visible (UV-Vis) spectroscopy analysis indicated that the optical band gap decreased with the increase of Ce and Co codoping concentration. It is clear from SEM images that the average particles size decreased from 50 nm to 25 nm when codoping concentration was increased up to 0.05 M. Photoluminescence spectra exhibited the emission bands in ultra-violet and blue-green regions. Magnetization-Field (M-H) hysteresis loops revealed that the codoped nanopowders exhibited room temperature ferromagnetism (RTFM). Using first principles calculations, based on density functional theory, electronic and magnetic properties of codoped ZnO for different dopants concentration, were predicted. It is found that the observed RTFM is originated mainly from spin polarization of Co-d orbital, Ce-f orbital has partial contribution.

  20. Toward silicon anodes for next-generation lithium ion batteries: a comparative performance study of various polymer binders and silicon nanopowders.

    PubMed

    Erk, Christoph; Brezesinski, Torsten; Sommer, Heino; Schneider, Reinhard; Janek, Jürgen

    2013-08-14

    Silicon is widely regarded as one of the most promising anode materials for lithium ion and next-generation lithium batteries because of its high theoretical specific capacity. However, major issues arise from the large volume changes during alloying with lithium. In recent years, much effort has been spent on preparing nanostructured silicon and optimizing various aspects of material processing with the goal of preserving the electrode integrity upon lithiation/delithiation. The performance of silicon anodes is known to depend on a large number of parameters and, thus, the general definition of a "standard" is virtually impossible. In this work, we conduct a comparative performance study of silicon anode tapes prepared from commercially available materials while using both a well-defined electrode configuration and cycling method. Our results demonstrate that the polymer binder has a profound effect on the cell performance. Furthermore, we show that key parameters such as specific capacity, capacity retention, rate capability, and so forth can be strongly affected by the choice of silicon material, polymer binder and electrolyte system - even the formation of metastable crystalline Li15Si4 is found to depend on the electrode composition and low potential exposure time. Overall, the use of either poly(acrylic acid) with a viscosity-average molecular weight of 450.000 or poly(vinyl alcohol) Selvol 425 in combination with both silicon nanopowder containing a native oxide surface layer of ∼1 nm in diameter and with a monofluoroethylene carbonate-based electrolyte led to improved cycling stability at high loadings.

  1. Synthesis and luminescent properties of rare earth (Sm3+ and Eu3+) Doped Gd2Ti2O7 pyrochlore nanopowders

    NASA Astrophysics Data System (ADS)

    Ćulubrk, Sanja; Antić, Željka; Marinović-Cincović, Milena; Ahrenkiel, Phillip S.; Dramićanin, Miroslav D.

    2014-11-01

    This work describes the synthesis and photoluminescent properties of rare earth (Sm3+ and Eu3+) doped Gd2Ti2O7 pyrochlore nanopowders. Pure-phase rare earth-doped Gd2Ti2O7 nanoparticles of approximately 20-50 nm in diameter, as evidenced from X-ray diffraction and electron microscopy analysis, are produced via the mixed metal-citric acid complex method. A temperature of 880 °C is identified for the formation of the crystalline pyrochlore phase, based on a differential thermal analysis of Gd2Ti2O7 precursor gels. From photoluminescence excitation and emission spectra, measured at 10 K and room temperature, the energy levels of Sm3+ and Eu3+ ions in Gd2Ti2O7 nanoparticles are obtained. The dependence of luminescence emission intensity and emission decays on rare earth concentration are measured and discussed. The strongest Sm3+ orange-reddish emission is observed for samples containing 2.5 at.% of Sm3+ ions, while in the case of Eu3+, the most intense emission is found for 15 at.% Eu3+ doping. The 4G5/2 level lifetime decreases with an increase in Sm3+ concentration, from about 5 ms (for 0.1-0.2 at.% of Sm3+) to 2.4 ms (for 2.5 at.% of Sm3+). With an increase in Eu3+ concentration in the Gd2Ti2O7 nanoparticles, the Eu3+5D0 level lifetime decreases from ∼5.9 ms (for 0.5 at.% of Sm3+) to 3.1 ms (for 15 at.% of Sm3+).

  2. Effects of processing parameters on the synthesis of (K0.5Na0.5)NbO3 nanopowders by reactive high-energy ball milling method.

    PubMed

    Nguyen, Duc Van

    2014-01-01

    The effects of ball milling parameters, namely, the ball-to-powder mass ratio and milling speed, on the synthesis of (K0.5Na0.5)NbO3 nanopowders by high-energy ball milling method from a stoichiometric mixture containing Na2CO3, K2CO3, and Nb2O5 were investigated in this paper. The results indicated that the single crystalline phase of (K0.5Na0.5)NbO3 was received in as-milled samples synthesized using optimized ball-to-powder mass ratio of 35 : 1 and at a milling speed of 600 rpm for 5 h. In the optimized as-milled samples, no remaining alkali carbonates that can provide the volatilizable potassium-containing species were found and (K0.5Na0.5)NbO3 nanopowders were readily obtained via the formation of an intermediate carbonato complex. This complex was mostly transformed into (K0.5Na0.5)NbO3 at temperature as low as 350°C and its existence was no longer detected at spectroscopic level when calcination temperature crossed over 700°C.

  3. Effects of Processing Parameters on the Synthesis of (K0.5Na0.5)NbO3 Nanopowders by Reactive High-Energy Ball Milling Method

    PubMed Central

    Duc Van, Nguyen

    2014-01-01

    The effects of ball milling parameters, namely, the ball-to-powder mass ratio and milling speed, on the synthesis of (K0.5Na0.5)NbO3 nanopowders by high-energy ball milling method from a stoichiometric mixture containing Na2CO3, K2CO3, and Nb2O5 were investigated in this paper. The results indicated that the single crystalline phase of (K0.5Na0.5)NbO3 was received in as-milled samples synthesized using optimized ball-to-powder mass ratio of 35 : 1 and at a milling speed of 600 rpm for 5 h. In the optimized as-milled samples, no remaining alkali carbonates that can provide the volatilizable potassium-containing species were found and (K0.5Na0.5)NbO3 nanopowders were readily obtained via the formation of an intermediate carbonato complex. This complex was mostly transformed into (K0.5Na0.5)NbO3 at temperature as low as 350°C and its existence was no longer detected at spectroscopic level when calcination temperature crossed over 700°C. PMID:24592146

  4. One-Pot Polyol Synthesis of Pt/CeO2 and Au/CeO2 Nanopowders as Catalysts for CO Oxidation.

    PubMed

    Pilger, Frank; Testino, Andrea; Lucchini, Mattia Alberto; Kambolis, Anastasios; Tarik, Mohammed; El Kazzi, Mario; Arroyo, Yadira; Rossell, Marta D; Ludwig, Christian

    2015-05-01

    The facile one-pot synthesis of CeO2-based catalysts has been developed to prepare a relatively large amount of nanopowders with relevant catalytic activity towards CO oxidation. The method consists of a two-steps process carried out in ethylene glycol: in the first step, 5 nm well-crystallized pure CeO2 is prepared. In a subsequent second step, a salt of a noble metal is added to the CeO2 suspension and the deposition of the noble metal on the nanocrystalline CeO2 is induced by heating. Two catalysts were prepared: Pt/CeO2 and Au/CeO2. The as-prepared catalysts, the thermally treated catalysts, as well as the pure CeO2, are characterized by XRD, TGA, XPS, FTIR, HR-TEM, STEM, particle size distribution, and N2-physisorption. In spite of the identical preparation protocol, Au and Pt behave in a completely different way: Au forms rather large particles, most of them with triangular shape, easily identifiable and dispersed in the CeO2 matrix. In contrast, Pt was not identified as isolated particles. The high resolution X-ray diffraction carried out on the Pt/CeO2 thermally treated sample (500 degrees C for 1 h) shows a significant CeO2 lattice shrinkage, which can be interpreted as an at least partial incorporation of Pt into the CeO2 crystal lattice. Moreover, only Pt2+ and Pt4+ species were identified by XPS. In literature, the incorporation of Pt into the CeO2 lattice is supported by first-principle calculations and experimentally demonstrated only by combustion synthesis methods. To the best of our knowledge this is the first report where ionically dispersed Pt into the CeO2 lattice is obtained via a liquid synthesis method. The thermally treated Pt/CeO2 sample revealed good activity with 50% CO conversion at almost room temperature.

  5. Investigation on evaporation of Ti feedstock and formation of precursor TiO molecules during TiO2 nanopowder synthesis in induction thermal plasma with time-controlled feedstock injection

    NASA Astrophysics Data System (ADS)

    Kodama, Naoto; Kita, Kentaro; Ishisaka, Yosuke; Tanaka, Yasunori; Uesugi, Yoshihiko; Ishijima, Tatsuo; Sueyasu, Shiori; Nakamura, Keitaro; Kanazawa University Team; Nisshin Seifun Group Inc. Team

    2015-09-01

    The method using inductively coupled thermal plasma(ICTP) is very effective for nanopowder(NPs) synthesis. However, NPs formation process in the ICTP torch has not been clarified. In this study, the two-dimensional spectroscopic observation was carried out for ICTP torch during TiO2 NPs synthesis process with time-controlled feedstock injection. In order to investigate evaporation process of feedstock and formation process of precursor molecules, Ti feedstock was intermittently injected into the ICTP. Ti I(453.32 nm) and TiO(621 nm) were observed by using an imaging spectroscopic system. Observation results show that injected Ti feedstock was evaporated in the ICTP. Then, generated Ti atoms were transported to downstream of the torch by gas flow and were diffused to the radial direction by density gradient. High concentration of TiO molecular gas was formed only around central axis region in the torch.

  6. Combustion synthesis of Sm 0.5Sr 0.5CoO 3- x and La 0.6Sr 0.4CoO 3- x nanopowders for solid oxide fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Bansal, Narottam P.; Zhong, Zhimin

    Nanopowders of Sm 0.5Sr 0.5CoO 3- x (SSC) and La 0.6Sr 0.4CoO 3- x (LSC) compositions, which are being investigated as cathode materials for intermediate temperature solid oxide fuel cells (SOFC), were synthesized by a solution-combustion method using metal nitrates and glycine as fuel. Development of crystalline phases in the as-synthesized powders after heat treatments at various temperatures was monitored by X-ray diffraction (XRD). Perovskite phase in LSC formed more readily than in SSC. Single-phase perovskites were obtained after heat treatment of the combustion synthesized LSC and SSC powders at 1000 and 1200 °C, respectively. The as-synthesized powders had an average particle size of ∼12 nm as determined from X-ray line broadening analysis using the Scherrer equation. Average grain size of the powders increased with increase in calcination temperature. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy (SEM).

  7. Sol-Gel Synthesis of La(0.6)Sr(0.4)CoO(3-x) and Sm(0.5)Sr(0.5)CoO(3-x) Cathode Nanopowders for Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Wise, Brent

    2011-01-01

    Nanopowders of La(0.6)Sr(0.4)CoO(3-x) (LSC) and Sm(0.5)Sr(0.5)CoO(3-x) (SSC) compositions, which are being investigated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC) with La(Sr)Ga(Mg)O(3-x) (LSGM) as the electrolyte, were synthesized by low-temperature sol-gel method using metal nitrates and citric acid. Thermal decomposition of the citrate gels was followed by simultaneous DSC/TGA methods. Development of phases in the gels, on heat treatments at various temperatures, was monitored by x-ray diffraction. Solgel powders calcined at 550 to 1000 C consisted of a number of phases. Single perovskite phase La(0.6)Sr(0.4)CoO(3-x) or Sm(0.5)Sr(0.5)CoO(3-x) powders were obtained at 1200 and 1300 C, respectively. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy. The average particle size of the powders was approx.15 nm after 700 C calcinations and slowly increased to 70 to 100 nm after heat treatments at 1300 to 1400 C.

  8. Combustion Synthesis of Sm0.5Sr0.5CoO3-x and La0.6Sr0.4CoO3-x Nanopowders for Solid Oxide Fuel Cell Cathodes

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhong, zhimin

    2005-01-01

    Nanopowders of Sm0.5Sr0.5CoO(3-x) (SSC) and La0.6Sr0.4CoO(3-x) (LSC) compositions, which are being investigated as cathode materials for intermediate temperature solid oxide fuel cells, were synthesized by a solution-combustion method using metal nitrates and glycine as fuel. Development of crystalline phases in the as-synthesized powders after heat treatments at various temperatures was monitored by x-ray diffraction. Perovskite phase in LSC formed more readily than in SSC. Single phase perovskites were obtained after heat treatment of the combustion synthesized LSC and SSC powders at 1000 and 1200 C, respectively. The as-synthesized powders had an average particle size of 12 nm as determined from x-ray line broadening analysis using the Scherrer equation. Average grain size of the powders increased with increase in calcination temperature. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy.

  9. Chemical-physical properties of spinel CoMn2O4 nano-powders and catalytic activity in the 2-propanol and toluene combustion: Effect of the preparation method.

    PubMed

    Hosseini, Seyed Ali; Salari, Dariush; Niaei, Aligholi; Deganello, Francesca; Pantaleo, Giuseppe; Hojati, Pejman

    2011-01-01

    Spinel-type CoMn(2)O(4)nano-powders are prepared using sol-gel auto combustion (SGC) and co-precipitation (CP) methods and their catalytic activities are evaluated in combustion of 2-propanol and toluene. The chemical-physical properties of the oxides are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N(2)-adsorption-desorption, temperature programmed reduction (TPR) and scanning electron microscopy (SEM). After calcination at 700°C, CoMn(2)O(4)-SGC shows higher amounts of the normal-type spinel phase and is more crystalline than CoMn(2)O(4)-CP. Higher calcination temperatures (850°C) do not affect very much the weight percentage of the normal-type spinel phase; although the crystal size slightly increased. The TPR analysis evidences a large number of Mn(3+) cations in CoMn(2)O(4)-SGC compared to CoMn(2)O(4)-CP. This difference, together with the higher surface area, could justify the higher activity of CoMn(2)O(4)-SGC in both the investigated reactions.

  10. Effects of magnetic pre-alignment of nano-powders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route

    NASA Astrophysics Data System (ADS)

    Liu, Junliang; Zeng, Yanwei; Zhang, Xingkai; Zhang, Ming

    2015-05-01

    Highly textured barium hexa-ferrite quasi-single crystal with narrow ferromagnetic resonance line-width is believed to be a potential gyromagnetic material for self-biased microwave devices. To fabricate barium hexa-ferrite quasi-single crystal with a high grain orientation degree, a magnetic forming and liquid participation sintering route has been developed. In this paper, the effects of the pre-alignment of the starting nano-powders on the formation of barium quasi-single crystal structures have been investigated. The results indicated that: the crystallites with large sizes and small specific surfaces were easily aligned for they got higher driving forces and lower resistances during magnetic forming. The average restricting magnetic field was about 4.647 kOe to overcome the average friction barrier between crystallites. The pre-aligned crystallites in magnetic forming acted as the "crystal seeds" for oriented growth of the un-aligned crystallites during liquid participation sintering to achieve a high grain orientation. To effectively promote the grain orientation degrees of the sintered pellets, the grain orientation degrees of the green compacts must be higher than a limited value of 15.0%. Barium hexa-ferrite quasi-single crystal with a high grain orientation degree of 98.6% was successfully fabricated after sintering the green compact with its grain orientation degree of 51.1%.

  11. The effects of different polymerization agents on structural and optical properties of (K0.5Na0.5)NbO3 nanopowders synthesized by a facile green route

    NASA Astrophysics Data System (ADS)

    Khorrami, Gh. H.; Kompany, A.; Zak, A. Khorsand

    2014-11-01

    (K0.5N0.5)NbO3 lead-free nanopowders were synthesized by a modified sol-gel method in different media: gelatin, starch and chitosan, as polymerization and stabilizer agents. The proper temperature needed for calcinating the prepared gel was obtained using thermogravometric analysis (TGA). Structural and optical properties of the prepared powders were investigated and compared using X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-Vis diffused reflectance spectroscopy. The XRD patterns of the synthesized samples confirmed the formation of the orthorhombic structure at 600°C calcination temperature with no remarkable extra peaks. TEM images showed that the morphologies of the particles prepared in the three different media are cubic with the average size of about 69, 34 and 49 nm for gelatin, starch and chitosan, respectively. The value of the energy band gap of the samples was calculated by diffused reflectance spectroscopy, using Kubelka-Munk method. Our results showed that the type of the polymerization agent is important in preparing KNN nanoparticles and affects the structural and optical properties of the synthesized samples.

  12. Materials that can replace liquid electrolytes in Li batteries: Superionic conductivities in Li1.7Al0.3Ti1.7Si0.4P2.6O12. Processing combustion synthesized nanopowders to free standing thin films

    NASA Astrophysics Data System (ADS)

    Yi, Eongyu; Wang, Weimin; Mohanty, Som; Kieffer, John; Tamaki, Ryo; Laine, Richard M.

    2014-12-01

    We demonstrate that liquid-feed flame spray pyrolysis (LF-FSP) processing provides non-aggregated nanopowders that can be used immediately to tape cast, producing thin films (<100 μm) of Li+ ion conducting membranes when sintered. Glass-ceramic or sol-gel processing methods are commonly used for such but require additional high-energy milling and/or calcining to obtain powder feedstock. Li1+x+yAlxTi2-xSiyP3-yO12 (x = 0.1, 0.3/y = 0.2, 0.4) nanopowders were prepared by LF-FSP with a primary focus on the effects of Al0.3/Si0.4 doping on conductivities. Furthermore, the effects of excess Li2O on Al0.3/Si0.4 doped materials were studied. Li1.7Al0.3Ti1.7Si0.4P2.6O12 pellets sintered to 93-94% of theoretical density and samples with varying excess Li2O contents all show superionic conductivities of 2-3 × 10-3 S cm-1 at room temperature. Li2O lowers both the crystallization temperatures and temperatures required to sinter. Total conductivities range from 2 × 10-3 to 5 × 10-2 S cm-1 in the temperature span of 25°-125 °C. Small grain sizes of 600 ± 200 nm were produced. Initial attempts to make thin films gave films with thicknesses of 52 ± 1 μm on sintering just to 1000 °C. Measured conductivities were 3-5 × 10-4 S cm-1; attributed to final densities of only ≈88%.

  13. Greener syntheses of metallic nanoparticles and zinc oxide nanopowders

    NASA Astrophysics Data System (ADS)

    Samson, Jacopo

    In recent years, nanotechnology and nanomaterials synthesis have attracted a great deal of attention in the scientific community. Nanomaterials display size and morphology-related optical properties that differ from their bulk counterparts and therefore can be used for many applications in different fields such as biomedicine, electronics, antibacterial agents, and energy. Attempts to fabricate different morphologies of metallic and metal oxide nanoparticles (NPs) have successfully yielded attractive nanostructures such as particles, rods, helices, combs, tetra-pods, and flowers, all displaying properties mainly related to their enhanced surface area and/or aspect ratios. Most of the above mentioned nanomaterials productions have employed harsh synthetic routes such as high temperatures, low pressures, and the use of costly equipments. Here we show how a greener approach to nanomaterials synthesis is feasible with both minimization of aqueous precursors, energy and employment of a multi-block heater for temperature control. We present in this thesis several methods for the preparation of NPs of several materials that focus on minimizing the environmental impact of the synthesis itself. First, we describe the use of the toroidal form of plasmid DNA as a rigid narrowly dispersed bio-polymeric nanocavity, which mold the formation of disc-shaped nanoparticles of several types of metals. This approach exploits several properties of plasmid DNA: (a) DNA affinity for metal cations, (b) toroidal plasmid DNA structures which are favored by metal ionic binding, and (c) the ability to vary plasmid size. Herein, we present a complementary synthetic method based on a kinetic approach wherein the plasmid DNA acts as a template to initiate and control the formation of Au and other metallic NPs by incubation at elevated temperatures. Also reported herein is a simple, scalable hydrothermal method to make ZnO NPs that exploits temperature to precisely control the range of pH values of an organic amine buffer. The presence or absence of ethylenediaminetetraacetic acid in the tris(hydroxymethyl)aminomethane buffer further modulates the morphology of the ZnO nanomaterials since both compounds can serve as nucleating sites, and as stabilizing agents that prevents agglomeration.

  14. Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders.

    PubMed

    Rus, S F; Vlazan, P; Herklotz, A

    2016-01-01

    Nanocrystalline ferrites; CoFe₂O₄ (CFO) and CoFe₁.₉Zr₀.₁O₄ (CFZO) have been synthesized through chemical coprecipitation method. The role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. The increase in the saturation magnetization with the substitution of Zr suggests the preferential occupation of Zr⁴⁺ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. In the present study the investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials. PMID:27398535

  15. Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders

    SciTech Connect

    Rus, S. F.; Vlazan, P.; Herklotz, A.

    2016-01-01

    Nanocrystalline ferrites; CoFe2O4 (CFO) and CoFe1.9Zr0.1O4 (CFZO) have been synthesized through chemical coprecipitation method. Moreover, the role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. An increase in the saturation magnetization with the substitution of Zr suggests the preferential occupation of Zr4+ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. We investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials.

  16. Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders

    DOE PAGES

    Rus, S. F.; Vlazan, P.; Herklotz, A.

    2016-01-01

    Nanocrystalline ferrites; CoFe2O4 (CFO) and CoFe1.9Zr0.1O4 (CFZO) have been synthesized through chemical coprecipitation method. Moreover, the role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. An increase in the saturation magnetization with the substitution of Zr suggests themore » preferential occupation of Zr4+ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. We investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials.« less

  17. Property evaluation on the spontaneous polarity for nanopowders.

    PubMed

    Meng, Junping; Liang, Jinsheng; Ding, Yan; Han, Yilin; Yuan, Youde

    2011-11-01

    For the tourmaline fine powders, in view of their low polarized charge density and easily occurred neutralization, a new evaluation model on the spontaneous polarity was proposed. By adjusting the temperature and applying electric field, the polarized charge could be measured. On this basis, a portable evaluation device was designed and assembled into four parts: Voltage Input Unit, Temperature Control Unit, Sample Loading Unit, and Charge Detection Unit. Using the designed device, the property evaluation on the spontaneous polarity of tourmaline fine powders was carried out. The spontaneous polarization intensity was finally achieved. After experimental verification, the method had the characteristics of easy operation and high accuracy. PMID:22413324

  18. Laser synthesized nanopowders for polymer-based composites

    NASA Astrophysics Data System (ADS)

    Gavrila-Florescu, Lavinia; Sandu, Ion; Stan, Ana; Dutu, Elena; Voicu, Ion

    2012-09-01

    The paper presents the different laser-synthesized carbon and silicon carbide nanostructures used as fillers for composites with epoxy or phenol resin matrix reinforced with glass or carbon fiber. The effect of nanoadditives on the composites' mechanic and tribologic characteristics is presented. The addition of 2% nanocarbon or 5% SiC has led to the improvement of tensile strength and tensile modulus with 10-15% and 15-20%, respectively. The dry friction coefficient for nanocarbon-containing composites was decreased up to 25% for composites containing nanocarbon, whereas for carbon-carbon composites filled with silicon carbide, this parameter has increased with more than 50%.

  19. Property evaluation on the spontaneous polarity for nanopowders.

    PubMed

    Meng, Junping; Liang, Jinsheng; Ding, Yan; Han, Yilin; Yuan, Youde

    2011-11-01

    For the tourmaline fine powders, in view of their low polarized charge density and easily occurred neutralization, a new evaluation model on the spontaneous polarity was proposed. By adjusting the temperature and applying electric field, the polarized charge could be measured. On this basis, a portable evaluation device was designed and assembled into four parts: Voltage Input Unit, Temperature Control Unit, Sample Loading Unit, and Charge Detection Unit. Using the designed device, the property evaluation on the spontaneous polarity of tourmaline fine powders was carried out. The spontaneous polarization intensity was finally achieved. After experimental verification, the method had the characteristics of easy operation and high accuracy.

  20. Photocatalytically active titanium dioxide nanopowders: Synthesis, photoactivity and magnetic separation

    NASA Astrophysics Data System (ADS)

    Nikkanen, J.-P.; Heinonen, S.; Huttunen Saarivirta, E.; Honkanen, M.; Levänen, E.

    2013-12-01

    Two approaches were used to obtain nanocrystalline titanium dioxide (TiO2) photocatalyst powders. Firstly, low-temperature synthesis method and secondly liquid flame spraying. The structural properties of the produced powders were determined with X-ray diffraction, transmission electron microscopy and nitrogen adsorption tests. The photocatalytic properties of the powders were studied with methylene blue (MB) discoloration tests. After discolorations tests, TiO2 was coagulated with magnetite particles using FeCl3·6 H2O at a fixed pH value. Magnetic separation of coagulated TiO2 and magnetite was carried out by a permanent magnet. The obtained results showed that the particle size of the powders synthesized at low-temperature was very small and the specific surface area high. The phase content of the powder was also shown to depend greatly on the acidity of the synthesis solution. Powder synthesized by liquid flame spraying was mixture of anatase and rutile phases with essentially larger particle size and lower specific surface area than those of low-temperature synthesized powders. The MB discoloration test showed that photocatalytic activity depends on the phase structure as well as the specific surface area of the synthesized TiO2 powder. The magnetic separation of TiO2-magnetite coagulate from solution proved to be efficient around pH:8.

  1. Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders.

    PubMed

    Rus, S F; Vlazan, P; Herklotz, A

    2016-01-01

    Nanocrystalline ferrites; CoFe₂O₄ (CFO) and CoFe₁.₉Zr₀.₁O₄ (CFZO) have been synthesized through chemical coprecipitation method. The role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. The increase in the saturation magnetization with the substitution of Zr suggests the preferential occupation of Zr⁴⁺ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. In the present study the investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials.

  2. Ternary and coupled binary zinc tin oxide nanopowders: Synthesis, characterization, and potential application in photocatalytic processes

    SciTech Connect

    Ivetić, T.B.; Finčur, N.L.; Đačanin, Lj. R.; Abramović, B.F.; Lukić-Petrović, S.R.

    2015-02-15

    Highlights: • Mechanochemically synthesized nanocrystalline zinc tin oxide (ZTO) powders. • Photocatalytic degradation of alprazolam in the presence of ZTO water suspensions. • Coupled binary ZTO exhibits enhanced photocatalytic activity compared to ternary ZTO. - Abstract: In this paper, ternary and coupled binary zinc tin oxide nanocrystalline powders were prepared via simple solid-state mechanochemical method. X-ray diffraction, scanning electron microscopy, Raman and reflectance spectroscopy were used to study the structure and optical properties of the obtained powder samples. The thermal behavior of zinc tin oxide system was examined through simultaneous thermogravimetric-differential scanning calorimetric analysis. The efficiencies of ternary (Zn{sub 2}SnO{sub 4} and ZnSnO{sub 3}) and coupled binary (ZnO/SnO{sub 2}) zinc tin oxide water suspensions in the photocatalytic degradation of alprazolam, short-acting anxiolytic of the benzodiazepine class of psychoactive drugs, under UV irradiation were determined and compared with the efficiency of pure ZnO and SnO{sub 2}.

  3. New synthesis of nanopowders of proton conducting materials. A route to densified proton ceramics

    SciTech Connect

    Khani, Zohreh; Taillades-Jacquin, Melanie; Taillades, Gilles; Marrony, Mathieu; Jones, Deborah J.; Roziere, Jacques

    2009-04-15

    Low temperature routes have been developed for the preparation of BaCe{sub 0.9}Y{sub 0.1}O{sub 2.95} (BCY10) and BaZr{sub 0.9}Y{sub 0.1}O{sub 2.95} (BZY10) in the form of nanoparticulate powders for use after densification as ceramic membranes for a proton ceramic fuel cell. These methods make use on the one hand of the chelation of metal (II), (III) and (IV) ions by acrylates (hydrogelation route) and on the other of the destabilisation and precipitation of micro-emulsions. Both routes lead to single phase yttrium doped barium cerate or zirconate perovskites, as observed by X-ray diffraction, after thermal treatment at 900 deg. C for 4 h for BCY10 and 800 deg. C for BZY10. These temperatures, lower than those usually used for preparation of barium cerate or zirconate, lead to oxide nanoparticles of size <40 nm. Dense ceramics (>=95%) are obtained by sintering BCY10 pellets at 1350 deg. C and BZY10 pellets at 1500 deg. C for 10 h. The water uptake of compacted samples at 500 deg. C is 0.14 wt% for BCY10 and 0.26 wt% for BZY10. Total conductivities in the range 300-600 deg. C were determined using impedance spectroscopy in a humidified nitrogen atmosphere. The total conductivity was 1.8x10{sup -2} S/cm for BCY10 and 2x10{sup -3} S/cm for BZY10 at 600 deg. C. The smallest perovskite nanoparticles and highest conductivities were obtained by hydrogelation of precursor barium, zirconium, cerium and yttrium acrylates. - Graphical Abstract: Low temperature hydrogelation and micro-emulsion routes have been developed for the preparation of rare earth doped barium and zirconium cerates in the form of nanoparticulate powders for use after densification as ceramic membranes for a proton ceramic fuel cell.

  4. Millimeter-Wave Absorption as a Quality Control Tool for M-Type Hexaferrite Nanopowders

    SciTech Connect

    McCloy, John S.; Korolev, Konstantin A.; Crum, Jarrod V.; Afsar, Mohammed N.

    2013-01-01

    Millimeter wave (MMW) absorption measurements have been conducted on commercial samples of large (micrometer-sized) and small (nanometer-sized) particles of BaFe12O19 and SrFe12O19 using a quasi-optical MMW spectrometer and a series of backwards wave oscillators encompassing the 30-120 GHz range. Effective anisotropy of the particles calculated from the resonant absorption frequency indicates lower overall anisotropy in the nano-particles. Due to their high magnetocrystalline anisotropy, both BaFe12O19 and SrFe12O19 are expected to have spin resonances in the 45-55 GHz range. Several of the sampled BaFe12O19 powders did not have MMW absorptions, so they were further investigated by DC magnetization and x-ray diffraction to assess magnetic behavior and structure. The samples with absent MMW absorption contained primarily iron oxides, suggesting that MMW absorption could be used for quality control in hexaferrite powder manufacture.

  5. Structural and optical characterizations of ZnO aerogel nanopowder synthesized from zinc acetate ethanolic solution

    NASA Astrophysics Data System (ADS)

    Djouadi, D.; Meddouri, M.; Chelouche, A.

    2014-11-01

    ZnO aerogel powder has been synthesized by a modified sol-gel process using zinc acetate ethanolic solution. XRD, SEM, EDAX, FTIR, UV-visible absorption and photoluminescence (PL) techniques have been used to characterize the as-prepared and the annealed ZnO aerogel powders. The as-prepared ZnO powder has a well-defined polycrystalline hexagonal wurtzite structure. This measurement has demonstrated that the lattice parameters are lower than the standard ones indicating that drying in supercritical conditions of ethanol does not affect the crystallinity but acts as a compressive agent. EDAX measurements show that the obtained aerogel contains only O and Zn elements. Annealing improves the crystallinity in the low DRX angles and decreases the crystalline quality in the high diffraction angles. Also, annealing acts as a tensile agent and increases the lattice parameters. FTIR spectra confirm the annealing effect by the apparition of the strong Zn-O vibration band. The ZnO absorption band shifts to lower wave numbers after annealing indicating an increase in the Zn-O bond length and confirms the XRD results. UV-visible results show a decrease of the ZnO aerogel optical band gap after annealing and confirm the thermal decompression effect on the lattice parameters. The photoluminescence measurements show that the annealing of ZnO aerogel favors the thermal generation of zinc interstitials and oxygen vacancies defects existing in the as-prepared zinc oxide aerogel and shifts the emission toward lower energies.

  6. Two-level hierarchical structure in nano-powder agglomerates in gas media

    NASA Astrophysics Data System (ADS)

    de Martin, Lilian; Bouwman, Wim G.; van Ommen, J. Ruud

    2012-11-01

    Nanoparticles in high concentration in a gas form agglomerates due to the interparticle van der Waals forces. The size and the internal structure of these nanoparticles agglomerates strongly influence their dynamics and their interaction with other objects. This information is crucial, for example, when studying inhalation of nanoparticles. It is common to model the structure of these agglomerates using a fractal approach and to compare their dimension with the dimension obtained from aggregation models, such diffusion limited aggregation (DLA). In this work we have analyzed the structure of nanoparticles agglomerates in situ by means of Spin-Echo Small-Angle Neutron Scattering (SESANS), while they were fluidized in a gas stream. The advantage of SESANS over conventional SANS is that SESANS can measure scales up to 20 microns, while SANS does not exceed a few hundred of nanometers. We have observed that when agglomerates interact, their structure cannot be characterized by using only one scaling parameter, the fractal dimension. We have found that there are at least two structure levels in the agglomerates and hence, we need at least two parameters to describe the autocorrelation function in each level.

  7. The toxicity of titanium dioxide nanopowder to early life stages of the Japanese medaka (Oryzias latipes).

    PubMed

    Paterson, Gordon; Ataria, Jamie M; Hoque, M Ehsanul; Burns, Darcy C; Metcalfe, Chris D

    2011-02-01

    In this study, fertilized Japanese medaka (Oryzias latipes) embryos were exposed from fertilization to 5 d post-hatch using static non-renewal assays to aqueous suspensions of titanium dioxide nanoparticles (nTiO₂) ranging in nominal concentrations between 0 and 14 μg mL⁻¹. The average size of the nTiO₂ in the stock solution before addition to the test treatments was 87 nm (±14 nm). TiO₂ materials accumulated in a concentration dependent manner on the chorionic filaments of developing medaka embryos with evidence of pericardial edema occurring during embryo development. However, no significant (p > 0.05) increases in mortality relative to control treatments were observed for the nTiO₂ exposed embryos. A concentration dependent increase in cumulative percent hatch was observed at 11 d, indicating that exposure to increasing concentrations of nTiO₂ resulted in the premature hatch of medaka embryos. Post-hatch, a significant proportion of sac fry from the nTiO₂ exposure groups exhibited moribund swimming behavior and these individuals also experienced greater mortality at 15 d post-hatch. Combined, these results demonstrate that exposure to nTiO₂ can impact the development of early life stages of fish. PMID:21074241

  8. Structural and morphological characterizations of ZnO nanopowder synthesized by hydrothermal route using inorganic reactants

    NASA Astrophysics Data System (ADS)

    Djouadi, D.; Meddouri, M.; Chelouche, A.; Hammiche, L.; Aksas, A.

    2014-12-01

    Zinc oxide nanoscale powder has been synthesized by a hydrothermal route using zinc sulfate and sodium hydroxide. The as-prepared powder was annealed at 600 °C for 2 h and then characterized by X-ray diffraction (XRD), scanning electron microscopy and infra-red Fourier transformed spectroscopy. XRD measurements have shown a ZnO hexagonal wurtzite polycrystalline structure with good crystallinity and the formation of a new sodium pyrosulfate phase in the as-prepared powder. The annealing improves the crystalline quality of the powder and transforms the sodium pyrosulfate phase to a sodium sulfate one. The thermal treatment does not affect the lattice parameters and the Zn-O bond length but improves the random orientation of the ZnO crystallites growth. ZnO crystallites have an interconnected-nano-needles morphology forming irregular shaped aggregates. The size of the crystallites is about 20 nm. EDX analysis has shown the presence of C and S in addition to Zn and O. FTIR spectra confirm the formation of ZnO and sodium sulfate. The synthesized ZnO powder has a very high crystalline quality and the used method is a very advantageous one for the fabrication of nanosized metal oxides from inorganic reactants for photo-catalysis applications.

  9. Synthesis, characterization and application of TiO2 nanopowders as special paper coating pigment

    NASA Astrophysics Data System (ADS)

    El-Sherbiny, Samya; Morsy, Fatma; Samir, Marwa; Fouad, Osama A.

    2013-03-01

    TiO2 nanopigments in two pure crystallographic forms (anatase and rutile) have been synthesized successfully by two methods; hydrothermal and hydrolysis. The produced pigments from the two methods were investigated physicochemically by several analyses tools. Then they were applied in paper coating mixtures and their influence on coated paper properties was systematically investigated. XRD and FTIR investigations showed that the prepared pigments using hydrothermal method at 100 and 120 °C were a mixture of anatase and brookite and pure anatase, respectively, whereas hydrolysis method produced pure rutile phase pigment. TEM investigation showed that the crystallite size of anatase, mixture of anatase and brookite and rutile samples are 6.2, 11.7, and 9.2 nm, respectively. BET studies proved that anatase pigment has 140.74 m2/g, 0.237 cc/g and 18.33 Å, whereas rutile has 60.621 m2/g, 0.122 cc/g and 14.669 Å, surface area, pore volume and pore diameter, respectively. UV-Vis absorption and PL emission characteristics of the prepared pigments showed that the energy gaps for anatase, mixture of anatase and brookite and rutile are 3.36, 3.30 and 3.37 eV, respectively. The addition of the prepared nanopigments in conjugation with clay in coating mixture increased both brightness and opacity of the coated papers. The greatest effect was obtained upon using rutile nanopigment. Also there was a significant decrease in coated paper roughness while the air permeance started to decrease then increased at 50 % addition levels. In all coated paper, rutile pigment showed the highest enhancement effect on coated paper properties.

  10. Synthesis, characterization and application of TiO2 nanopowders as special paper coating pigment

    NASA Astrophysics Data System (ADS)

    El-Sherbiny, Samya; Morsy, Fatma; Samir, Marwa; Fouad, Osama A.

    2014-03-01

    TiO2 nanopigments in two pure crystallographic forms (anatase and rutile) have been synthesized successfully by two methods; hydrothermal and hydrolysis. The produced pigments from the two methods were investigated physicochemically by several analyses tools. Then they were applied in paper coating mixtures and their influence on coated paper properties was systematically investigated. XRD and FTIR investigations showed that the prepared pigments using hydrothermal method at 100 and 120 °C were a mixture of anatase and brookite and pure anatase, respectively, whereas hydrolysis method produced pure rutile phase pigment. TEM investigation showed that the crystallite size of anatase, mixture of anatase and brookite and rutile samples are 6.2, 11.7, and 9.2 nm, respectively. BET studies proved that anatase pigment has 140.74 m2/g, 0.237 cc/g and 18.33 Å, whereas rutile has 60.621 m2/g, 0.122 cc/g and 14.669 Å, surface area, pore volume and pore diameter, respectively. UV-Vis absorption and PL emission characteristics of the prepared pigments showed that the energy gaps for anatase, mixture of anatase and brookite and rutile are 3.36, 3.30 and 3.37 eV, respectively. The addition of the prepared nanopigments in conjugation with clay in coating mixture increased both brightness and opacity of the coated papers. The greatest effect was obtained upon using rutile nanopigment. Also there was a significant decrease in coated paper roughness while the air permeance started to decrease then increased at 50 % addition levels. In all coated paper, rutile pigment showed the highest enhancement effect on coated paper properties.

  11. Peculiarities of Production of Chromium Carbonitride Nanopowder and Its Physical-Chemical Certification

    NASA Astrophysics Data System (ADS)

    Shiryaeva, L. S.; Nozdrin, I. V.; Galevsky, G. V.

    2015-09-01

    Scientific and technological basics of plasma synthesis of chromium carbonitride have been developed, including analysis of the current production state and application of chromium carbon compounds, defining characteristics of three-jet plasma reactor, modeling- mathematical study of interaction of raw materials and plasma streams, prediction of technological parameters of plasma stream based on the modeling results, selection of optimal technological option, implementation of plasma-metallurgical technology of chromium nitride production, its physical-chemical certification and defining technical-economical production factors.

  12. Extraction and characterization of alumina nanopowders from aluminum dross by acid dissolution process

    NASA Astrophysics Data System (ADS)

    Sarker, Md. Saifur Rahman; Alam, Md. Zahangir; Qadir, Md. Rakibul; Gafur, M. A.; Moniruzzaman, Mohammad

    2015-04-01

    A significant amount of aluminum dross is available as a waste in foundry industries in Bangladesh. In this study, alumina was extracted from aluminum dross collected from two foundry industries situated in Dhamrai and Manikgang, near the capital city, Dhaka. Aluminum dross samples were found to approximately contain 75wt% Al2O3 and 12wt% SiO2. An acid dissolution process was used to recover the alumina value from the dross. The effects of various parameters, e.g., temperature, acid concentration, and leaching time, on the extraction of alumina were studied to optimize the dissolution process. First, Al(OH)3 was produced in the form of a gel. Calcination of the Al(OH)3 gel at 1000°C, 1200°C, and 1400°C for 2 h produced γ-Al2O3, (α+γ)-Al2O3, and α-alumina powder, respectively. Thermal characterization of the Al(OH)3 gel was performed by thermogravimetric/differential thermal analysis (TG/DTA) and differential scanning calorimetry (DSC). The phases and crystallite size of the alumina were determined by X-ray diffraction analysis. The dimensions of the alumina were found to be on the nano level. The chemical compositions of the aluminum dross and alumina were determined by X-ray fluorescence (XRF) spectroscopy. The microstructure and morphology of the alumina were studied with scanning electron microscopy. The purity of the alumina extracted in this study was found to be 99.0%. Thus, it is expected that the obtained alumina powders can be potentially utilized as biomaterials.

  13. Synthesis and characterization of Al-Zn/Al2O3 nano-powder composites.

    PubMed

    Durai, T G; Das, Karabi; Das, Siddhartha

    2007-06-01

    Composites consisting of Al-Zn/Al2O3 have been synthesized using high energy mechanical milling. High energy ball milling increases the sintering rate of the composite powder due to increased diffusion rate. Owing to the finer microstructure, the hardness of the sintered composite produced by using the mechanically milled nanocomposite powder is significantly higher than that of the sintered composite produced by using the as-mixed powder. The mean crystallite size of the matrix has been determined to be 27 nm by Scherrer equation using X-ray diffraction data. The powders have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and differential thermal analysis (DTA). The effect of high-energy ball milling and subsequent annealing on a mixture of Al and ZnO has also been investigated. DTA result show that the reaction temperature of Al-ZnO decreases with the increase in the ball milling time.

  14. Synthesis of ZrO2-Y2O3 "micropowder-nanopowder" compositions

    NASA Astrophysics Data System (ADS)

    Denisova, Elmira I.; Ustyuzhaninova, Irina A.; Kartashov, Vadim V.; Grigorov, Igor G.; Sultanova, Dina T.; Cherepanova, Natalia A.; Mullanurova, Dinara A.; Chernetskiy, Ivan V.; Vlasov, Alexander V.

    2016-09-01

    The conditions for preparing ZrO2-Y2O3 compositions by forming nanostructured powders on micron sized powders of the same composition were investigated. A technique of organic nitrate combustion was used for the synthesis. Fuel reagents were used in the ratio ensuring steady burning flame regime.

  15. Template-free hydrothermal derived cobalt oxide nanopowders: Synthesis, characterization, and removal of organic dyes

    SciTech Connect

    Nassar, Mostafa Y.; Ahmed, Ibrahim S.

    2012-09-15

    Graphical abstract: XRD patterns of the products obtained by hydrothermal treatment at 160 °C for 24 h, and at different [Co{sup 2+}]/[CO{sub 3}{sup 2−}] ratios: (a) 1:6, (b) 1:3, (c) 1:1.5, (d) 1:1, (e) 1:0.5. Highlights: ► Spinel cobalt oxide nanoparticles with different morphologies were prepared by hydrothermal approach. ► The optical characteristics of the as-prepared cobalt oxide revealed the presence of two band gaps. ► Adsorption of methylene blue dye on Co{sub 3}O{sub 4} was investigated and the percent uptake was found to be >99% in 24 h. -- Abstract: Pure spinel cobalt oxide nanoparticles were prepared through hydrothermal approach using different counter ions. First, the pure and uniform cobalt carbonate (with particle size of 21.8–29.8 nm) were prepared in high yield (94%) in an autoclave in absence unfriendly organic surfactants or solvents by adjusting different experimental parameters such as: pH, reaction time, temperature, counter ions, and (Co{sup 2+}:CO{sub 3}{sup 2−}) molar ratios. Thence, the spinel Co{sub 3}O{sub 4} (with mean particle size of 30.5–47.35 nm) was produced by thermal decomposition of cobalt carbonate in air at 500 °C for 3 h. The products were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM), scanning electron microscope (SEM), and thermal analysis (TA). Also, the optical characteristics of the as-prepared Co{sub 3}O{sub 4} nanoparticles revealed the presence of two band gaps (1.45–1.47, and 1.83–1.93 eV). Additionally, adsorption of methylene blue dye on Co{sub 3}O{sub 4} nanoparticles was investigated and the uptake% was found to be >99% in 24 h.

  16. Preparation and characterization of PbSe nanopowder and quasi-ceramics

    SciTech Connect

    Shimko, A. N. Malashkevich, G. E. Belkov, M. V.; Osipovich, N. P.

    2013-01-15

    By means of the reduction of Pb(II) and Se(IV) with hydrazine, oval monodispersed PbSe nanoparticles characterized by sizes {approx}100 nm and the cubic symmetry were obtained. Their compaction and sintering into quasi-ceramic state were performed. The samples were investigated by means of scanning electron microscopy, X-ray diffraction and FTIR spectroscopy. The results obtained are discussed.

  17. The fracture strength of cryomilled 99.7 Al nanopowders consolidated by high frequency induction sintering

    NASA Astrophysics Data System (ADS)

    El-Danaf, Ehab A.; Baig, Muneer; Almajid, Abdulhakim A.; Soliman, Mahmoud S.

    2014-08-01

    Mechanical Attrition of metallic powders induces severe plastic deformation and consequently reduces the average grain size. Powders of 99.7 Al (45μm particle size), cryomilled for 7 hrs having a crystal size of ~ 20 nm, were consolidated by high frequency induction sintering under a constant pressure of 50 MPa and at two temperatures of 500 and 550 °C for two sintering dwell times of 1 and 3 minutes at a constant heating rate of 400 °C/min. The bright field TEM image and X-ray line broadening technique, for the cryomilled powders, were used to measure-the crystallite size. Simple compression at an initial strain rate of 10-4 s-1 was conducted at room temperature, 373 and 473 K, and the yield strength was documented and correlated with the sintering parameters. The as-received 99.7 Al powders-consolidated using one of the sintering parameters was used as a reference material to compare the mechanical properties. Hardness, density and crystal size of the consolidated sample, that gave the highest yield and fracture strength, were measured.

  18. The cation inversion and magnetization in nanopowder zinc ferrite obtained by soft mechanochemical processing

    SciTech Connect

    Milutinović, A.; Lazarević, Z.; Jovalekić, Č.; Kuryliszyn-Kudelska, I.

    2013-11-15

    Graphical abstract: - Highlights: • Nano powder of ZnFe{sub 2}O{sub 4} prepared by a soft mechanochemical route after 18 h milling. • Phase formation controlled by XRD, Raman spectroscopy and magnetic measurements. • Size, strain and cation inversion degree determined by Rietveld refinement. • We were able to estimate the degree of inversion at most 0.348 and 0.4. • Obtained extremely high values of saturation magnetizations at T = 4.5 K. - Abstract: Two zinc ferrite nanoparticle materials were prepared by the same method – soft mechanochemical synthesis, but starting from different powder mixtures: (1) Zn(OH){sub 2}/α-Fe{sub 2}O{sub 3} and (2) Zn(OH){sub 2}/Fe(OH){sub 3}. In both cases a single phase system was obtained after 18 h of milling. The progress of the synthesis was controlled by X-ray diffractometry (XRD), Raman spectroscopy, TEM and magnetic measurements. Analysis of the XRD patterns by Rietveld refinement allowed determination of the cation inversion degree for both obtained single phase ZnFe{sub 2}O{sub 4} samples. The sample obtained from mixture (1) has the cation inversion degree 0.3482 and the sample obtained from mixture (2) 0.400. Magnetization measurements were confirmed that the degrees of the inversion were well estimated. Comparison with published data shows that used method of synthesis gives nano powder samples with extremely high values of saturation magnetizations: sample (1) 78.3 emu g{sup −1} and sample (2) 91.5 emu g{sup −1} at T = 4.5 K.

  19. Structural and magnetic properties of Gd3+ ion substituted magnesium ferrite nanopowders

    NASA Astrophysics Data System (ADS)

    Elkady, Ashraf S.; Hussein, Shaban I.; Rashad, Mohamed M.

    2015-07-01

    Nanocrystalline MgGdxFe2-xO4 powders (where x=0, 0.05, 0.1, 0.2, 0.25, 0.3) have been synthesized by the ethylene diamine tetraacetic acid (EDTA)-based sol-gel combustion method. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM) were applied in order to study the effect of variation of Gd3+ ion substitution and its impact on crystal structure, crystallite size, lattice parameters, nanostructure and magnetic properties of the formed powders. XRD indicated that, after doping and calcination at 400 °C for 2 h, all samples have two spinel ferrite structures namely cubic and tetragonal phases, which are dependent on Gd3+ ion concentration. The cubic phase is found to increase with increasing the Gd3+ ion molar ratio up to 0.1, compared to pure MgFe2O4 and higher Gd3+ content samples. Indeed, with increasing Gd3+ ion, the crystallite size was almost unchanged whereas the lattice parameter was found to increase. FT-IR spectrum showed broadening of the ν2 band and the presence of another band in the range (465-470 cm-1) upon adding Gd3+ ion, which confirm the presence of Gd3+ ion in addition to Fe3+ ion at octahedral site. Besides, these bands were assigned to the formation of (Gd3+-O2-) complexes at B-sites. HRTEM images showed that the studied samples consist of nanocrystallites having average particle sizes around 9 nm for pure MgFe2O4 up to 27 and 42 nm for the Gd3+ ion substituted MgFe2O4 of molar ratio 0.05 and 0.30, respectively. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Gd concentration incorporation up to x=0.1, as a result of the change of cubic and tetragonal spinel ratio and lattice parameters. Meanwhile, the formed powders exhibited superparamagnetic characteristics. Therefore, such newly synthesized superparamagnetic nanoparticles, containing Gd3+ ion can be considered as a promising candidate for use in several potential applications including neutron capture therapy (NCT), magnetic hyperthermia, ferrofluids and magnetic resonance imaging (MRI).

  20. Studying dispersions of ferroelectric nanopowders in dioctyl phthalate as dielectric media for capacitive electronic components

    NASA Astrophysics Data System (ADS)

    Gorokhovskii, A. V.; Gorshkov, N. V.; Burmistrov, I. N.; Goffman, V. G.; Tret'yachenko, E. V.; Sevryugin, A. V.; Fedorov, F. S.; Kovyneva, N. N.

    2016-06-01

    The electrical properties of dispersions of a powdered ferroelectric nanocomposite based on ilmenite (FeTiO3) and hollandite (K1.46Ti7.2Fe0.8O16) in dioctyl phthalate have been studied by impedance spectroscopy techniques in a frequency range of 10-1-106 Hz. The influence of stabilizing additives of cationic and anionic surfactants and iron acetylacetonate on the permittivity, conductivity, and dielectric losses was determined for dispersions containing 40 mass % of the solid composite. The influence of composition on the mechanisms of relaxation processes in the system is discussed.

  1. Novel paint design based on nanopowder to protection against X and gamma rays

    PubMed Central

    Movahedi, Mohammad Mehdi; Abdi, Adibe; Mehdizadeh, Alireza; Dehghan, Naser; Heidari, Emad; Masumi, Yusef; Abbaszadeh, Mojtaba

    2014-01-01

    Background: Lead-based shields are the standard method of intraoperative radiation protection in the radiology and nuclear medicine department. Human lead toxicity is well documented. The lead used is heavy, lacks durability, is difficult to launder, and its disposal is associated with environmental hazards. The aim of this study was to design a lead free paint for protection against X and gamma rays. Materials and Methods: In this pilot st we evaluated several types of nano metal powder that seemed to have good absorption. The Monte Carlo code, MCNP4C, was used to model the attenuation of X-ray photons in paints with different designs. Experimental measurements were carried out to assess the attenuation properties of each paint design. Results: Among the different nano metal powder, nano tungsten trioxide and nano tin dioxide were the two most appropriate candidates for making paint in diagnostic photon energy range. Nano tungsten trioxide (15%) and nano tin dioxide (85%) provided the best protection in both simulation and experiments. After this step, attempts were made to produce appropriate nano tungsten trioxide-nano tin dioxide paints. The density of this nano tungsten trioxide-nano tin dioxide paint was 4.2 g/cm3. The MCNP simulation and experimental measurements for HVL (Half-Value Layer) values of this shield at 100 kVp were 0.25 and 0.23 mm, respectively. Conclusions: The results showed the cost-effective lead-free paint can be a great power in absorbing the X-rays and gamma rays and it can be used instead of lead. PMID:24591777

  2. Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Stanić, Vojislav; Janaćković, Djordje; Dimitrijević, Suzana; Tanasković, Sladjana B.; Mitrić, Miodrag; Pavlović, Mirjana S.; Krstić, Aleksandra; Jovanović, Dragoljub; Raičević, Slavica

    2011-02-01

    Monophase silver-doped hydroxyapatite (AgxCa10-x(PO4)6(OH)2; 0.002 ≤ x ≤ 0.04) nanoparticles were prepared using a neutralization method and investigated with respect to potential medical applications. This method consists of dissolving Ag2O in solution of H3PO4, and the slow addition to suspension of Ca(OH)2 was applied for the purpose of homogenous distribution of silver ions. Characterization studies from XRD, TEM and FTIR spectra showed that obtained crystals are monophase hydroxyapatites and that particles of all samples are of nano size, with average length of 70 nm and about 15-25 nm in diameter. Antimicrobial studies have demonstrated that all silver-doped hydroxyapatite samples exhibit excellent antimicrobial activity in vitro against the following pathogens: Staphylococcus aureus, Escherichia coli and Candida albicans. The hydroxyapatite sample with the highest content of silver has shown the highest antimicrobial activity; killed all cells of E. coli and brought to more than 99% reduction in viable counts of S. aureus and C. albicans. The atomic force microscopic studies illustrate that silver-doped hydroxyapatite sample causes considerable morphological changes of microorganism cells which might be the cause of cells' death. Hemolysis ratios of the silver-doped hydroxyapatite samples were below 3%, indicating good blood compatibility and that are promising as biomaterials.

  3. Radiation Stability of Zinc Oxide Pigment Modified by Zirconium Oxide and Aluminum Oxide Nanopowders

    SciTech Connect

    Mikhailov, M. M.; Neshchimenko, V. V.; Li Chundong

    2009-01-05

    The effect on the reflective spectra of heat treatment and modification of ZnO pigments by 1-30 wt.%ZrO{sub 2} and Al{sub 2}O{sub 3} nanoparticles has been investigated before and after irradiation by 100 keV protons with a fluence of 5x10{sup 15} cm{sup -2}. It is established that with the optimum concentration of 5 wt.% nanoparticles and the temperature of 800 deg. C a 20% increase in the radiation stability is observed for the modified ZnO pigment in comparison with the not modified pigment. The decrease of absorption in the modified pigments is determined by the decrease of the intensity of the absorption bands of the zinc vacancies (V{sub zn}{sup -}), oxygen vacancies (V{sub o}{sup +}) and donor-acceptor couples (V{sub zn}-{sup -}Zn{sub i}{sup 0})

  4. Degradation of petroleum aromatic hydrocarbons using TiO2 nanopowder film.

    PubMed

    Fard, Mohammad Alizadeh; Aminzadeh, Behnoush; Vahidi, Hossein

    2013-01-01

    The performance of a photo-reactor packed with titanium dioxide (TiO2) immobilized on glass beads, initiated by irradiation with natural and artificial ultraviolet (UV) sources, was evaluated in terms of the degradation efficiency of petroleum aromatic hydrocarbons. The effects of parameters such as pH, reaction time, hydrogen peroxide (H2O2) concentration and some ions were investigated. Additionally, the degradation of total organic carbon (TOC) and the formation of byproducts were studied. Photodegradation rates ofbenzene, toluene, ethylbenzene and xylenes (BTEX) by processes of UV/TiO2 and UV/TiO2/H2O2 were found to obey pseudo first-order kinetic models. Results indicated that the effect of pH value was negligible at the pH range of 5.5 to 8.5. TOC removal improved with addition of H2O2 demonstrating that a lack of hydrogen peroxide leads to incomplete mineralization. The effect of cations and anions on the photodegradation efficiencies of BTEX revealed that Mg2+ and Ca2+ caused the most deterioration in BTEX degradation efficiency. However S4O(2-) and CO3(2-) had the most salient inhibitory effects compared with other tested anions. The degradation efficiencies of both systems were investigated for the treatment of real polluted groundwater collected from the city of Tehran. Results showed that the degradation efficiencies of BTEX declined in the presence of inorganic and organic competitor species.

  5. Magnetization damping in two-component metal oxide micropowder and nanopowder compacts by broadband ferromagnetic resonance measurements

    NASA Astrophysics Data System (ADS)

    Youssef, Jamal Ben; Brosseau, Christian

    2006-12-01

    The microwave damping mechanisms in magnetic inhomogeneous systems have displayed a richness of phenomenology that has attracted widespread interest over the years. Motivated by recent experiments, we report an extensive experimental study of the Gilbert damping parameter of multicomponent metal oxides micro- and nanophases. We label the former by M samples, and the latter by N samples. The main thrust of this examination is the magnetization dynamics in systems composed of mixtures of magnetic (γ-Fe2O3) and nonmagnetic (ZnO and epoxy resin) materials fabricated via powder processing. Detailed ferromagnetic resonance (FMR) measurements on N and M samples are described so to determine changes in the microwave absorption over the 6-18GHz frequency range as a function of composition and static magnetic field. The FMR linewidth and the field dependent resonance were measured for the M and N samples, at a given volume fraction of the magnetic phase. The asymmetry in the form and change in the linewidth for the M samples are caused by the orientation distribution of the local anisotropy fields, whereas the results for the N samples suggest that the linewidth is very sensitive to details of the spatial magnetic inhomogeneities. For N samples, the peak-to-peak linewidth increases continuously with the volume content of magnetic material. The influence of the volume fraction of the magnetic phase on the static internal field was also investigated. Furthermore, important insights are gleaned through analysis of the interrelationship between effective permeability and Gilbert damping constant. Different mechanisms have been considered to explain the FMR linewidth: the intrinsic Gilbert damping, the broadening induced by the magnetic inhomogeneities, and the extrinsic magnetic relaxation. We observed that the effective Gilbert damping constant of the series of N samples are found to be substantially smaller in comparison to M samples. This effect is attributed to the surface anisotropy contribution to the anisotropy of Fe2O3 nanoparticles. From these measurements, the characteristic intrinsic damping dependent on the selected material and the damping due to surface/interface effects and interparticle interaction were estimated. The inhomogeneous linewidth (damping) due to surface/interface effects decreases with diminishing particle size, whereas the homogeneous linewidth (damping) due to interactions increases with increasing volume fraction of magnetic particles (i.e., reducing the separation between neighboring magnetic phases) in the composite.

  6. Toxicological characterization of bio-active drugs on basis of Iron Fe, Co, and Copper Cu nanopowders

    NASA Astrophysics Data System (ADS)

    Polishuk, S.; Nazarova, A.; Stepanova, I.

    2015-11-01

    The article presents investigations of toxicological parameters (acute and chronic toxicity, cumulative coefficient) of iron, cobalt, copper and copper oxide nanoparticles with white rats in labs. We have estimated the optimal concentrations of the above mentioned substances with rabbits. We have also studied morphological, physiological and biochemical parameters of the animals when adding the optimal doses to the diet for a long term.

  7. Synthesis of fluorine substituted hydroxyapatite nanopowders and application of the central composite design for determination of its antimicrobial effects

    NASA Astrophysics Data System (ADS)

    Stanić, Vojislav; Dimitrijević, Suzana; Antonović, Dušan G.; Jokić, Bojan M.; Zec, Slavica P.; Tanasković, Sladjana T.; Raičević, Slavica

    2014-01-01

    Synthetic biomaterials based on fluorine substituted hydroxyapatite are potentially attractive for orthopedic and dental implant applications. The new synthesis of fluorine substituted hydroxyapatite samples were done by neutralization, which consists of adding the solution of HF and H3PO4 in suspension of Ca(OH)2. Characterization studies from XRD, SEM and FTIR spectra showed that crystals are obtained with apatite structure and those particles of all samples are nano size, with an average length of 80 nm and about 15-25 nm in diameter. The central composite design was used in order to determine the optimal conditions for the antimicrobial activity of the synthesized samples. In order to evaluate the influence of operating parameters on the percent of viable cell reduction of Streptococcus mutans, three independent variables were chosen: exposure time, pH of saline and floride concentration in apatite samples. The experimental and predicted antimicrobial activities were in close agreement. Antimicrobial activity of the samples increases with the increase of fluoride concentration and the decreased pH of saline. The maximum antimicrobial activity was achieved at the initial pH of 4.

  8. Microwave and millimeter wave dielectric permittivity and magnetic permeability of epsilon-gallium-iron-oxide nano-powders

    SciTech Connect

    Chao, Liu Afsar, Mohammed N.; Ohkoshi, Shin-ichi

    2015-05-07

    In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe{sub 12}O{sub 19}) and strontium ferrite (SrFe{sub 12}O{sub 19}), which have natural ferromagnetic resonant frequency range from 40 GHz to 60 GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A series of gallium-substituted ε-iron oxides (ε-Ga{sub x}Fe{sub 2−x}O{sub 3}) are synthesized, which have ferromagnetic resonant frequencies appearing over the frequency range of 30 GHz to 150 GHz. The ε-Ga{sub x}Fe{sub 2−x}O{sub 3} is synthesized by the sol-gel method. The particle sizes are observed to be smaller than 100 nm. In this paper, in-waveguide transmission and reflection method and the free space magneto-optical approach have been employed to study these newly developed ε-Ga{sub x}Fe{sub 2−x}O{sub 3} particles in millimeter waves. These techniques enable to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the microwave and millimeter wave frequency range from single set of direct measurements. The complex dielectric permittivity and magnetic permeability spectra of ε-Ga{sub x}Fe{sub 2−x}O{sub 3} are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.

  9. Synthesis and characterization of high-quality PbI2 nanopowders from depleted SLA accumulator anode and cathode

    NASA Astrophysics Data System (ADS)

    Malevu, T. D.; Ocaya, R. O.; Tshabalala, K. G.; Fernandez, C.

    2016-07-01

    High-quality lead iodide (PbI2) nanoparticles were synthesized from both anode and cathode of a discarded sealed lead-acid accumulator as starting materials. The structure, morphology, chemical composition and optical properties of washed PbI2 were investigated using X-ray diffraction, field emission scanning electron microscope, photoluminescence and energy-dispersive X-ray spectrometer. The XRD measurements indicated the presence of pure hexagonal PbI2 nanoparticles. Application of the Scherrer equation indicates crystal sizes between 13.703 and 14.320 nm. SEM indicated the presence of spherical particle agglomerations between 1.5 and 3.5 \\upmum in diameter. The measured band gap using two methods was consistent at 2.75 eV. EDS results suggest the absence of impurities in the synthesized nanoparticles. The overall results suggest that discarded sealed lead-acid accumulators can source pure hexagonal-phase lead iodide nanoparticles with potential applications in perovskite solar cells. The novelty aspect is that this approach has not been previously reported.

  10. Hydrogenation of the nanopowders that form in a carbon-helium plasma stream during the introduction of Ni and Mg

    SciTech Connect

    Churilov, G. N. Osipova, I. V.; Tomashevich, Ye. V.; Glushchenko, G. A.; Fedorov, A. S.; Popov, Z. I.; Bulina, N. V.; Vereshchagin, S. N.; Zhizhaev, A. M.; Cherepakhin, A. V.

    2011-12-15

    Composite nanoparticles consisting of magnesium, nickel, and carbon atoms are studied both theoretically and experimentally. The calculations performed in terms of the density functional theory show that the jump frequency of hydrogen atoms in nickel-containing magnesium hydride increases substantially near impurity nickel atoms; as a result, the rate of hydrogen absorption by magnesium also increases. Nickel on the magnesium surface is shown to be absorbed via an island growth mechanism. Composite Mg-C, Ni-C, and Mg-Ni-C powders are produced by plasmachemical synthesis in a carbon-helium plasma stream. Hydrogen is introduced into a chamber during synthesis. It is found by X-ray photoelectron spectroscopy and thermogravimetric analysis that, among these three composites, only Mg-Ni-C contains magnesium fixed in the MgH{sub 2} compound. The process of such 'ultrarapid' hydrogenation of magnesium, which occurs in the time of formation of composite nanoparticles, can be explained by the catalytic action of nickel, which is enhanced by a high temperature. Scanning electron microscopy micrographs demonstrate the dynamics of the dehydrogenation of Mg-Ni-C composite nanoparticles in heating by an electron beam.

  11. Copper-zinc alloy nanopowder: a robust precious-metal-free catalyst for the conversion of 5-hydroxymethylfurfural.

    PubMed

    Bottari, Giovanni; Kumalaputri, Angela J; Krawczyk, Krzysztof K; Feringa, Ben L; Heeres, Hero J; Barta, Katalin

    2015-04-24

    Noble-metal-free copper-zinc nanoalloy (<150 nm) is found to be uniquely suited for the highly selective catalytic conversion of 5-hydroxymethylfurfural (HMF) to potential biofuels or chemical building blocks. Clean mixtures of 2,5-dimethylfuran (DMF) and 2,5-dimethyltetrahydrofuran (DMTHF) with combined product yields up to 97 % were obtained at 200-220 °C using 20-30 bar H2 . It is also possible to convert 10 wt % HMF solutions in CPME, with an excellent DMF yield of 90 %. Milder temperatures favor selective (95 %) formation of 2,5-furandimethanol (FDM). The one-pot conversion of fructose to valuable furan-ethers was also explored. Recycling experiments for DMF production show remarkable catalyst stability. Transmission electron microscopy (TEM) characterization provides more insight into morphological changes of this intriguing class of materials during catalysis. PMID:25833148

  12. Synthesis of Black and Red Mercury Sulfide Nano-Powder by Traditional Indian Method for Biomedical Application

    NASA Astrophysics Data System (ADS)

    Padhi, Payodhar; Sahoo, G.; Das, K.; Ghosh, Sudipto; Panigrahi, S. C.

    2008-10-01

    The use of metals and minerals in the traditional Indian system of medicine known as aired is very common and is practiced since seventh century B.C. Metals were reduced to calcined powder form for medicinal purpose. For detoxification, a further step of purification of the metals and minerals with different vegetable extracts was practiced. The people of East India were using mercury and its sulfide as medicine. Gradually this secret was leaked to Arabic physicians who used mercury in skin ointment. Subsequently Italian Physicians adopted Arabic prescriptions of mercurial ointments for skin diseases. In the olden days, metals and minerals were impregnated with decoction and juice of vegetables and animal products like milk and fat for purification. These were then reduced to fine particles by milling with a pestle and mortar. It was known by then that the fineness of the powder had a significant influence on the color, texture, and medicinal properties as is cited by Charak. Nagarjun studied in detail the processing of metals and minerals, particularly mercury and the influence of the processing parameters on the medicinal values. Mercury is unique in many aspects. Indian alchemy developed a wide variety a chemical processes for the ostensible transmutation of metals and preparation of elixir of life, in which mercury occupied a prime position .The present investigation attempts to use the traditional methods as prescribed in the ancient texts to prepare mercury sulfide in both red and black form for medicinal use. XRD, SEM and HRTEM investigations of the sulfides obtained shows that the ancient Indians were able to produce nano-sized powders. Possibly this may be taken as the earliest application of the production and use of nano powder. The study proves that even in ancient time the knowledge of nano particle synthesis was prevalent and used to enhance effectiveness of medicines. Further mercury in the free form is not acceptable in medicines. The ancient physicians could get rid of free mercury by milling and proper choice of the ratio of ingredients as is shown in the investigation by X-ray diffraction studies. In the traditional method for synthesis of mercury sulfide, mercury and pure sulfur were taken and milled in a mortar and pastel. During milling process, the white mercury and yellow sulfur yielded to a gray black colored sulfide. Synthesis of red sulfide of mercury required additional steps of heating and subsequent milling. For therapeutically application, the sulfide thus obtained needed detoxification, which was done using organic extracts. In the present investigation, the same method was followed to synthesize the sapphires and the product was characterized using modern methods like XRD, SEM and HRTEM. With increase in milling time the fineness of the powder increases, which increases the efficacy of the medicine, and free mercury, which is not desirable for medicinal application is found to decrease. The powder obtained at the end of 48 hours of milling is found to be of a size finer than l0nm.

  13. Synthesis and Luminescent Properties of CaSnO3:Eu Nanopowder Prepared by a Sol-Gel Route.

    PubMed

    Fu, Xiaoyan; Zhao, Tuyuan; Zhang, Yan; Chen, Yibin; Zhang, Hongwu

    2016-04-01

    Luminescent properties of nanocrystalline CaSnO3:1%Eu have been investigated in order to develop novel red phosphors. The results indicate that high-quality nanoparticles with controlled stoichiometry and microstructure were prepared by a sol-gel method using citric acid and EDTA as complexes. There are two broad excitation bands located at 240 and 270 nm existing in the excitation spectrum in addition to the characteristic excitation peaks of Eu3+. Further investigations show that the excitation band located at 240 nm can be assigned to the host absorption while the Eu-O charge transfer is responsible for the 270 nm excitation band. These results indicate that the host can efficiently transfer energy to the Eu3+ ions. The more important is that since the symmetry of Eu3+ ions is lower, the pure red emission (5D9 --> 7F2 transition located at 618 nm) is predominant over all the emission. This means CaSnO3:Eu is a potential candidate for red luminescent materials. PMID:27451726

  14. Synthesis of Black and Red Mercury Sulfide Nano-Powder by Traditional Indian Method for Biomedical Application

    SciTech Connect

    Padhi, Payodhar; Sahoo, G.; Das, K.; Ghosh, Sudipto; Panigrahi, S. C.

    2008-10-23

    The use of metals and minerals in the traditional Indian system of medicine known as aired is very common and is practiced since seventh century B.C. Metals were reduced to calcined powder form for medicinal purpose. For detoxification, a further step of purification of the metals and minerals with different vegetable extracts was practiced. The people of East India were using mercury and its sulfide as medicine. Gradually this secret was leaked to Arabic physicians who used mercury in skin ointment. Subsequently Italian Physicians adopted Arabic prescriptions of mercurial ointments for skin diseases. In the olden days, metals and minerals were impregnated with decoction and juice of vegetables and animal products like milk and fat for purification. These were then reduced to fine particles by milling with a pestle and mortar. It was known by then that the fineness of the powder had a significant influence on the color, texture, and medicinal properties as is cited by Charak. Nagarjun studied in detail the processing of metals and minerals, particularly mercury and the influence of the processing parameters on the medicinal values. Mercury is unique in many aspects. Indian alchemy developed a wide variety a chemical processes for the ostensible transmutation of metals and preparation of elixir of life, in which mercury occupied a prime position .The present investigation attempts to use the traditional methods as prescribed in the ancient texts to prepare mercury sulfide in both red and black form for medicinal use. XRD, SEM and HRTEM investigations of the sulfides obtained shows that the ancient Indians were able to produce nano-sized powders. Possibly this may be taken as the earliest application of the production and use of nano powder. The study proves that even in ancient time the knowledge of nano particle synthesis was prevalent and used to enhance effectiveness of medicines. Further mercury in the free form is not acceptable in medicines. The ancient physicians could get rid of free mercury by milling and proper choice of the ratio of ingredients as is shown in the investigation by X-ray diffraction studies. In the traditional method for synthesis of mercury sulfide, mercury and pure sulfur were taken and milled in a mortar and pastel. During milling process, the white mercury and yellow sulfur yielded to a gray black colored sulfide. Synthesis of red sulfide of mercury required additional steps of heating and subsequent milling. For therapeutically application, the sulfide thus obtained needed detoxification, which was done using organic extracts. In the present investigation, the same method was followed to synthesize the sapphires and the product was characterized using modern methods like XRD, SEM and HRTEM. With increase in milling time the fineness of the powder increases, which increases the efficacy of the medicine, and free mercury, which is not desirable for medicinal application is found to decrease. The powder obtained at the end of 48 hours of milling is found to be of a size finer than l0nm.

  15. Microwave and millimeter wave dielectric permittivity and magnetic permeability of epsilon-gallium-iron-oxide nano-powders

    NASA Astrophysics Data System (ADS)

    Chao, Liu; Afsar, Mohammed N.; Ohkoshi, Shin-ichi

    2015-05-01

    In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe12O19) and strontium ferrite (SrFe12O19), which have natural ferromagnetic resonant frequency range from 40 GHz to 60 GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A series of gallium-substituted ɛ-iron oxides (ɛ-GaxFe2-xO3) are synthesized, which have ferromagnetic resonant frequencies appearing over the frequency range of 30 GHz to 150 GHz. The ɛ-GaxFe2-xO3 is synthesized by the sol-gel method. The particle sizes are observed to be smaller than 100 nm. In this paper, in-waveguide transmission and reflection method and the free space magneto-optical approach have been employed to study these newly developed ɛ-GaxFe2-xO3 particles in millimeter waves. These techniques enable to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the microwave and millimeter wave frequency range from single set of direct measurements. The complex dielectric permittivity and magnetic permeability spectra of ɛ-GaxFe2-xO3 are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.

  16. Modification of Structure and Strength Properties of Permanent Joints Under Laser Beam Welding with Application of Nanopowder Modifiers

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Orishich, A. M.; Malikov, A. G.; Ovcharenko, V. E.

    2016-08-01

    In the paper we present the results of experimental study of specially prepared nanosize metal-ceramic compositions impact upon structure, microhardness and mechanical properties of permanent joints produced by laser-beam welding of steel and titanium alloy plates.

  17. Characterization of La(0.8)Sr(0.2)MnO(3 +/-delta) nanopowders synthesized by aerosol flame synthesis for SOFC cathode.

    PubMed

    Jung, Young-Geul; Choi, Jinyi; Yoon, Yongsub; Shin, Dongwook

    2011-08-01

    Lanthanum strontium manganite (La(0.8)Sr(0.2)MnO(3 +/- delta), LSM) powders with a high specific surface area (55.26 m2/g) were successfully synthesized by aerosol flame synthesis (AFS) technique. The crystallinity and morphology of the synthesized powders sintered at various temperatures were studied by XRD, TEM and BET. The synthesized powders exhibited spherical shape mostly in a few nanometer ranges with a relatively high crystallinity due to thermal plasma reactions in a high temperature of oxy-hydrogen flame. To analyze electrochemical performances of synthesized LSM powders, impedance spectroscopy (IS) was carried out with the symmetric cells prepared by slurry based electrostatic spray deposition (ESD) onto the YSZ electrolyte pellet. The interfacial polarization resistances were 3.04 ohms cm2 at 750 degrees C which is relatively lower than that of micro-porous film (7.24 ohms cm2) applying micro-sized powders deposited on same condition. PMID:22103223

  18. Effect of synthesis conditions on the nanopowder properties of Ce{sub 0.9}Zr{sub 0.1}O{sub 2}

    SciTech Connect

    Zimicz, M.G.; Fabregas, I.O.; Lamas, D.G.; Larrondo, S.A.

    2011-06-15

    Graphical abstract: . The synthesis of nanocrystalline Ce{sub 0.9}Zr{sub 0.1}O{sub 2} powders via the gel-combustion method, using different fuels, and following either stoichiometric or non-stoichiometric pH-controlled routes is investigated. Research highlights: {yields} All samples exhibited the fluorite-type crystal structure, nanometric average crystallite size and negligible carbon content. {yields} Synthesis conditions strongly affect the average crystallite size, the degree of agglomeration, the specific surface area and the pore volume. {yields} Our results indicate that, by controlling the synthesis conditions it is possible to obtain solids with custom-made morphological properties. -- Abstract: In this work, the synthesis of nanocrystalline Ce{sub 0.9}Zr{sub 0.1}O{sub 2} powders via the gel-combustion method, using different fuels, and following either stoichiometric or non-stoichiometric pH-controlled routes is investigated. The objective is to evaluate the effect of synthesis conditions on the textural and morphological properties, and the crystal structure of the synthesized materials. The solids were characterized by nitrogen physisorption, Scanning Electron Microscopy (SEM), X-ray powder diffraction (XPD), and Carbon-Hydrogen-Nitrogen Elemental Analysis (CHN). All the powders exhibited nanometric crystallite size, fluorite-type structure and negligible carbon content. Synthesis conditions strongly affect the average crystallite size, the degree of agglomeration, the specific surface area and the pore volume. Our results indicate that, by controlling the synthesis conditions it is possible to obtain solids with custom-made morphological properties.

  19. Green engineered ZnO nanopowders by Banyan Tree and E. tirucalli plant latex: auto ignition route, photoluminescent and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Anilkumar, M. R.; Nagaswarupa, H. P.; Anantharaju, K. S.; Gurushantha, K.; Pratapkumar, C.; Prashantha, S. C.; Shashi Shekhar, T. R.; Nagabhushana, H.; Sharma, S. C.; Vidya, Y. S.; Prasad, Daruka

    2015-03-01

    A simple and eco-friendly solution combustion route was used to prepare ZnO nanoparticles (ZNPs) using Banyan Tree (BT) and Euphorbia tirucalli (ET) plant latexes as fuels. The final products were characterized by powder x-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), UV-visible, scanning electron microcopy (SEM) and transmission electron microscopy (TEM). The PXRD result reveals the formation of hexagonal phase with Wurtzite structure. The crystallite size obtained from TEM was found to be ˜20-25 nm. SEM results reveal rose-like morphology with BT latex and hexagonal shaped with ET latex. The energy band gap of ZNPs obtained by BT and ET latex were found to be 3.20 and 3.38 eV, respectively. Photoluminescence (PL) emission peaks at ˜421, 458, 505, 522, 628 and 695 nm were observed in both the samples when excited at 383 nm. These emission peaks were mainly attributed to deep level oxygen (blue-green) defect and exciton (UV) defects, respectively. The international commission on illumination (CIE) chromaticity co-ordinates, as well as co-ordinated color temperature (CCT), were estimated from the emission spectra; the values (x, y) were very close to national television system committee (NTSC) standard values of pure white emission. Photocatalytic activity (PCA) of ZNPs prepared was studied in detail. The ZNPs prepared using BT latex showed highest PCA under sunlight. The results demonstrate that the synthesized product could be quite useful for display applications as well as photocatalyst. Further, the material prepared by this route was found to be non-toxic, environmentally friendly and could be a potential alternative to economical routes.

  20. The use of gamma irradiation in preparation of polybutadiene rubber nanopowder; Its effect on particle size, morphology and crosslink structure of the powder

    NASA Astrophysics Data System (ADS)

    Rezaei Abadchi, Majid; Jalali-Arani, Azam

    2014-02-01

    The aim of this work was the preparation and characterization of polybutadiene rubber (BR) powder by irradiating of rubber lattices using 60Co radiation and spray-drying of them at the appropriate condition. The influences of absorbed dose on the volume swelling ratio, molecular weight between crosslinks, gel fraction, and glass transition temperature of obtained powder were studied. Morphology, size and size distribution of rubber particles were examined by using scanning electron microscopy (SEM) and laser particle size analyzer (LPSA) technique, respectively. Results obtained by LPSA revealed that radiation has no effect on particle size of rubber latex but after drying, adherence properties of rubber particle causes increase in particle size of rubber powder, as shown in SEM photograph. Fourier transform infrared spectroscopy of rubber powders confirmed that with increasing the irradiation dose, characteristic peak corresponds to the >Cdbnd C< double bands decreased. Also Charlesby-Pinner equation was used to evaluate radiation yield.

  1. Exchange bias effect and glassy-like behavior of EuCrO3 and CeCrO3 nano-powders

    NASA Astrophysics Data System (ADS)

    Taheri, M.; Kremer, R. K.; Trudel, S.; Razavi, F. S.

    2015-09-01

    The magnetic properties of nano-sized EuCrO3 and CeCrO3 powders, synthesized by a solution combustion method, were investigated using DC/AC magnetization measurements. An exchange bias effect, magnetization irreversibility and AC susceptibility dispersion in these samples provided evidence for the presence of the spin disorder magnetic phase. The exchange bias phenomenon, which is assigned to the exchange coupling between the glassy-like shell and canted antiferromagnetic core, showed the opposite sign in EuCrO3 and CeCrO3 at low temperatures, suggesting different exchange interactions at the interfaces in these compounds. We also observed a sign reversal of exchange bias in CeCrO3 at different temperatures.

  2. Electrical Characteristics CuFe2O4 Thick Film Ceramics Made with Different Screen Size Utiizing Fe2O3 Nanopowder Derived from Yarosite for NTC Thermistor

    NASA Astrophysics Data System (ADS)

    Wiendartun, Syarif, Dani Gustaman

    2010-10-01

    Fabrication of CuFe2O4 thick film ceramics utilizing Fe2O3 derived from yarosite using screen printing technique for NTC thermistor has been carried out. Effect of thickness variation due to different size of screen (screen 225; 300 and 375 mesh) has been studied. X-ray diffraction analyses (XRD) was done to know crystal structure and phases formation. SEM analyses was carried out to know microstructure of the films. Electrical properties characterization was done through measurement of electrical resistance at various temperatures (room temperature to 100° C). The XRD data showed that the films crystalize in tetragonal spinel. The SEM images showed that the screen with the smaller of the hole size, made the grain size was bigger. Electrical data showed that the larger the screen different size thickness variation (mesh), the larger the resistance, thermistor constant and sensitivity. From the electrical characteristics data, it was known that the electrical characteristics of the CuFe2O4 thick film ceramics followed the NTC characteristic. The value of B and RRT of the produced CuFe2O4 ceramics namely B = 3241-3484 K and RRT = 25.6-87.0 M Ohm, fitted market requirement.

  3. Photocatalytic thin films containing TiO2:N nanopowders obtained by the layer-by-layer self-assembling method

    NASA Astrophysics Data System (ADS)

    Rojas-Blanco, L.; Urzúa, M. D.; Ramírez-Bon, R.; Espinoza Beltrán, F. J.

    2012-01-01

    In this work, TiO2-N powders were synthesized by high-energy ball milling, using commercial titanium dioxide (TiO2) in the anatase phase and urea to introduce nitrogen into TiO2 in order to enhance their photocatalytic properties in the visible spectral region. Several samples were prepared by milling a mixture of TiO2-urea during 2, 4, 8, 12 and 24 h and characterized by spectroscopic and analytical techniques. X-ray diffraction (XRD) results showed the coexistence of anatase and high-pressure srilankite TiO2 crystalline phases in the samples. Scanning electron microscopy (SEM) revealed that the grain size of the powder samples decreases to 200 nm at 24 h milling time. UV-Vis diffuse reflectance spectroscopic data showed a clear red-shift in the onset of light absorption from 387 to 469 nm as consequence of nitrogen doping in the samples. The photocatalytic activity of the TiO2-N samples was evaluated by methylene blue degradation under visible light irradiation. It was found that TiO2-N samples had higher photocatalytic activity than undoped TiO2 samples, which could be assigned to the effect of introducing N atoms and XPS results confirm it. Using polyethylenimine (PEI), transparent thin films of TiO2-N nanoparticles were prepared by layer-by-layer self assembly method. UV-visible spectrophotometry was employed in a quantitative manner to monitor the adsorbed mass of TiO2 and PEI after each dip cycle. The adsorption of both TiO2 and PEI showed a saturation dip time of 15 min.

  4. Role of flux on morphology and luminescence properties of Sm(3+) doped Y2SiO5 nanopowders for WLEDs.

    PubMed

    Ramakrishna, G; Nagabhushana, H; Prashantha, S C; Sharma, S C; Nagabhushana, B M

    2015-02-01

    The study involves preparation of samarium doped Y2SiO5 (YSO) nano powders by solution combustion method using urea as a fuel for the first time. Effect of different fluxes on the crystallization behavior, morphology and photoluminescence (PL) properties of YSO:Sm(3+) (1-9 mol%) were investigated. The final product was characterized by Powder X-ray diffraction (PXRD), Scanning Electron Microscopy (SEM) and UV-Vis spectroscopy. The average crystallite size estimated by Debye-Scherer's and Williamson-Hall plots were found to be in the range of 10-50 nm. Samples calcined at 1100°C show pure monoclinic X1 phase; whereas, samples calcined at 1200 and 1300°C show pure X2 phase of YSO. Photoluminescence (PL) studies of Sm(3+) (1-9 mol%) doped YSO for near ultra violet (NUV) excitation (407 nm) was studied in order to investigate the possibility of its use in white light emitting diode (WLED) applications. The emission spectra consists of intra 4f transitions of Sm(3+), such as (4)G5/2→(6)H5/2 (∼560 nm), (4)G5/2→(6)H7/2 (600-613 nm), (4)G5/2→(6)H9/2 (∼650 nm), (4)G5/2→(6)H11/2 (715 nm) and (4)G5/2→(6)H13/2 (763 nm) respectively. The emission intensity of the phosphor was found to be enhancing after addition of fluxes. Further, the emission at 600-613 nm show strong orange-red emission and can be applied to the orange-red emission of phosphor for near ultra violet excitation.

  5. Exchange bias effect and glassy-like behavior of EuCrO{sub 3} and CeCrO{sub 3} nano-powders

    SciTech Connect

    Taheri, M. Razavi, F. S.; Kremer, R. K.; Trudel, S.

    2015-09-28

    The magnetic properties of nano-sized EuCrO{sub 3} and CeCrO{sub 3} powders, synthesized by a solution combustion method, were investigated using DC/AC magnetization measurements. An exchange bias effect, magnetization irreversibility and AC susceptibility dispersion in these samples provided evidence for the presence of the spin disorder magnetic phase. The exchange bias phenomenon, which is assigned to the exchange coupling between the glassy-like shell and canted antiferromagnetic core, showed the opposite sign in EuCrO{sub 3} and CeCrO{sub 3} at low temperatures, suggesting different exchange interactions at the interfaces in these compounds. We also observed a sign reversal of exchange bias in CeCrO{sub 3} at different temperatures.

  6. Nanostructured catalyst supports

    SciTech Connect

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2015-09-29

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  7. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  8. Plasma Processed Nanosized-Powders of Refractory Compounds for Obtaining Fine-Grained Advanced Ceramics

    NASA Astrophysics Data System (ADS)

    I, Zalite; J, Grabis; E, Palcevskis; M, Herrmann

    2011-10-01

    One of the ways for the production of ceramic materials with a fine-grained structure is the use of nanopowders. Different methods are used for the production of nanopowders. One of them is the method of plasmachemical synthesis. Different nanopowders of refractory materials can be obtained by this method. The preparation of nanosized powders of nitrides and oxides and their composites by the method of plasmachemical synthesis, the possibilities to receive nanopowders with different particle size and the potential advantages of nanopowders were investigated.

  9. Sol-gel process for the manufacture of high power switches

    DOEpatents

    Landingham, Richard L.; Satcher, Jr, Joe; Reibold, Robert

    2016-09-27

    According to one embodiment, a photoconductive semiconductor switch includes a structure of nanopowder of a high band gap material, where the nanopowder is optically transparent, and where the nanopowder has a physical characteristic of formation from a sol-gel process. According to another embodiment, a method includes mixing a sol-gel precursor compound, a hydroxy benzene and an aldehyde in a solvent thereby creating a mixture, causing the mixture to gel thereby forming a wet gel, drying the wet gel to form a nanopowder, and applying a thermal treatment to form a SiC nanopowder.

  10. Effect of particle size distribution on the structure, hyperfine, and magnetic properties of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanopowders

    SciTech Connect

    Bhattacharjee, Kaustav; Das, G. C.; Pati, Satya P.; Das, D.

    2014-12-21

    Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nano powders were synthesized by an auto combustion method and then heat treated at different temperatures in air for a fixed time. As a consequence, a distribution in particle size and strain was incorporated within the specimens, as estimated from the Rietveld refinement analysis of the powder x-ray diffraction data. The changes in the microstructure and crystal structure parameters were carefully extracted through the refinement analysis. Thermal annealing causes increment in the dispersion and mean of the size distribution. Reallocation of cations in the lattice sites occur as a consequence of the heat treatment which was manifested in their altered unit cell length (a), r.m.s. strain (〈ε{sup 2}〉{sup 1/2}), oxygen positional parameter (u), metal-oxygen bond lengths (R{sub OA} and R{sub OB}), and the band positions (ν{sub 1}and ν{sub 2}) in the vibrational spectroscopy. We also investigate the hyperfine and magnetic properties of the samples using different instrumental techniques (with different operating time scales) like Mössbauer spectroscopy, electron paramagnetic resonance spectroscopy, and superconducting quantum interference device magnetometry. Results show that the effect of particle size distribution was manifested in their hyperfine field distribution profile, paramagnetic resonance spectra, and magnetic anisotropy energy distribution profile. Co-existence of superparamagnetic and ferrimagnetic phase was recorded at room temperature in the samples when annealed at lower temperature. However, with increase in annealing temperature, the nature of the size distribution changes and ferrimagnetic ordering predominates for the larger size nanoparticles. Thus, the effect of particle size distribution on the structural, hyperfine, and magnetic properties of various Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles was investigated herein which hitherto has not been discussed in the literature.

  11. Preparation of cobalt-zinc ferrite (Co{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}) nanopowder via combustion method and investigation of its magnetic properties

    SciTech Connect

    Yousefi, M.H.; Manouchehri, S.; Arab, A.; Mozaffari, M.; Amiri, Gh. R.; Amighian, J.

    2010-12-15

    Research highlights: {yields} Cobalt-zinc ferrite was prepared by combustion method. {yields} Properties of the sample were characterized by several techniques. {yields} Curie temperature was determined to be 350 {sup o}C. -- Abstract: Cobalt-zinc ferrite (Co{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}) was prepared by combustion method, using cobalt, zinc and iron nitrates. The crystallinity of the as-burnt powder was developed by annealing at 700 {sup o}C. Crystalline phase was investigated by XRD. Using Williamson-Hall method, the average crystallite sizes for nanoparticles were determined to be about 27 nm before and 37 nm after annealing, and residual stresses for annealed particles were omitted. The morphology of the annealed sample was investigated by TEM and the mean particle size was determined to be about 30 nm. The final stoichiometry of the sample after annealing showed good agreement with the initial stoichiometry using atomic absorption spectrometry. Magnetic properties of the annealed sample such as saturation magnetization, remanence magnetization, and coercivity measured at room temperature were 70 emu/g, 14 emu/g, and 270 Oe, respectively. The Curie temperature of the sample was determined to be 350 {sup o}C using AC-susceptibility technique.

  12. Screen-printed (La,Sr)CrO3 coatings on ferritic stainless steel interconnects for solid oxide fuel cells using nanopowders prepared by means of ultrasonic spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Brylewski, Tomasz; Dabek, Jaroslaw; Przybylski, Kazimierz; Morgiel, Jerzy; Rekas, Mieczyslaw

    2012-06-01

    In order to protect the cathode from chromium poisoning and improve electrical resistance, a perovskite (La,Sr)CrO3 coating was deposited on the surface of a DIN 50049 ferritic stainless steel by means of the screen-printing method, using a paste composed of an ultra-fine powder prepared via ultrasonic spray pyrolysis. Investigations of the oxidation process of the coated steel in air and the Ar-H2-H2O gas mixture at 1073 K for times up to 820 h showed high compactness of the protective film, good adhesion to the metal substrate, as well as area specific resistance (ASR) at a level acceptable for metallic SOFC interconnect materials. The microstructure, nanostructure, phase composition of the thick film, and in particular the film/substrate interface, were examined via chemical analyses by means of SEM-EDS and TEM-SAD. It was shown that the (La,Sr)CrO3 coating interacts with the steel during long-term thermal oxidation in the afore-mentioned conditions and intermediate, chromia-rich and/or spinel multilayer interfacial zones are formed. Cr-vaporization tests showed that the (La,Sr)CrO3 coating may play the role of barriers that decrease the volatilization rate of chromia species.

  13. In situ analysis of phase transformation in sol-gel cogelified nanopowder mixture of Al 2O 3 and TiO 2 using synchrotron X-ray radiation diffraction experiments

    NASA Astrophysics Data System (ADS)

    Jianu, A.; Stanciu, L.; Groza, J. R.; Lathe, Ch.; Burkel, E.

    2003-01-01

    Aluminium titanate (Al 2TiO 5) has been selected for study due to its high melting point and thermal shock resistance. In situ analysis of phase transformation and of transformation kinetics of sol-gel powder mixture of alumina and titania cogelified samples was performed using high-temperature synchrotron radiation X-ray diffraction experiments. The high reactivity and molecular mixing of sol-gel cogelified precursor powders contributed to the evolution of the reaction. The stability of the TiO 2-tetragonal structure (anatase) increases due to Al 2O 3 presence. The temperature of the aluminium titanate endothermic reaction decreases when heating rate increases. The results obtained by in situ analysis have been used to establish the sintering parameters in order to obtain fully transformed, dense aluminium titanate bulk ceramics.

  14. Specific features of aluminum nanoparticle water and wet air oxidation

    SciTech Connect

    Lozhkomoev, Aleksandr S. Glazkova, Elena A. Svarovskaya, Natalia V. Bakina, Olga V. Kazantsev, Sergey O. Lerner, Marat I.

    2015-10-27

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  15. Specific features of aluminum nanoparticle water and wet air oxidation

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, Aleksandr S.; Glazkova, Elena A.; Svarovskaya, Natalia V.; Bakina, Olga V.; Kazantsev, Sergey O.; Lerner, Marat I.

    2015-10-01

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  16. Preparation of a dense, polycrystalline ceramic structure

    DOEpatents

    Cooley, Jason; Chen, Ching-Fong; Alexander, David

    2010-12-07

    Ceramic nanopowder was sealed inside a metal container under a vacuum. The sealed evacuated container was forced through a severe deformation channel at an elevated temperature below the melting point of the ceramic nanopowder. The result was a dense nanocrystalline ceramic structure inside the metal container.

  17. Effects of Thallium Doping on the Transport Properties of Bi2Te3 Alloy

    NASA Astrophysics Data System (ADS)

    Yao, L.; Wu, F.; Wang, X. X.; Cao, R. J.; Li, X. J.; Hu, X.; Song, H. Z.

    2016-06-01

    Thallium-doped Tl x Bi2- x Te3 ( x = 0.0, 0.05, 0.1, and 0.2) nanopowders were synthesized by the hydrothermal method. The doping effect of thallium on the morphologies of the synthesized nanopowders was investigated. It was found that the doping of thallium can significantly change the morphologies of the synthesized nanopowders. The synthesized nanopowders were hot-pressed into bulk pellets and the doping effects of thallium on the transport properties of these pellets were investigated. The results show that the doping of thallium can enhance the Seebeck coefficient but increase the electrical resistivity. Moreover, the power factors of the thallium-doped samples decrease with the increasing of the thallium doping level as compared with the un-doped sample. This is attributed to the increase of the electrical resistivity and the disappearing of the flower-like morphologies of the doped nanopowders.

  18. Synthesis and characteristic of FeNi{sub 3} intermetallic compound obtained by electrical explosion of wire

    SciTech Connect

    Bac, L.H.; Kwon, Y.S.; Kim, J.S.; Lee, Y.I.; Lee, D.W.; Kim, J.C.

    2010-03-15

    In this work, the FeNi{sub 3} permalloy nanopowder was synthesized by wire explosion in deionized water. X-ray diffraction was used to identify and characterize the prepared nanopowder exhibiting a FeNi{sub 3} phase. The morphology and size of the prepared powders were observed by field emission-scanning electron microscopy and transmission electron microscopy. The compositions of the wire before exploding and the nanopowder were determined with electron probe microanalysis. The results indicate that the FeNi{sub 3} permalloy nanopowder was synthesized with an average particle size {approx}50 nm. The magnetic properties of the nanopowder indicate a symmetric hysteresis loop of ferromagnetic behavior with coercivity of 199.3 Oe and saturation magnetization of 56.7 emu/g.

  19. Spectroscopic characterization of nanohydroxyapatite synthesized by molten salt method.

    PubMed

    Gopi, D; Indira, J; Kavitha, L; Kannan, S; Ferreira, J M F

    2010-10-01

    Hydroxyapatite (HAP) nanopowders were synthesized by molten salt method at 260 degrees C. The as-prepared powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) and thermo gravimetric analysis (TGA). With the aid of the obtained results the effect of calcining time on the crystallinity, size and morphology of HAP nanopowders is presented. The HAP nanopowders synthesized by molten salt method consist of pure phase of HAP without any impurities and showed the rod-like morphology without detectable decomposition up to 1100 degrees C.

  20. Three-dimensional boron particle loaded thermal neutron detector

    DOEpatents

    Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel

    2014-09-09

    Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.

  1. In vitro evaluation of human osteoblast-like cell proliferation and attachment on nanostructured fluoridated hydroxyapatite.

    PubMed

    Esnaashary, Mohammadhossein; Fathi, Mohammadhossein; Ahmadian, Mahdi

    2014-06-01

    The effect of the fluorine content and nano-structure of fluoridated hydroxyapatite (FHA) on human osteoblast-like (HO) cell behavior were investigated. FHA nanopowders and bulk nanostructured FHA, produced via mechanical alloying and two-step sintering, respectively, were used. The cytotoxicity of FHA nanopowders was assessed by MTT. Cell attachment to the surface of the bulk nanostructured FHA was evaluated by culturing of HO cells. Although HO cells proliferated 10 % more in contact with FHA nanopowders compared to culture medium without FHA nanopowders, an increase in the fluorine content of FHA caused a delay in the cell proliferation by about 2 days. Cell attachment on the bulk nanostructured FHA did not change the fluorine content. PMID:24563314

  2. Structural, optical and thermal properties of silver colloidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Naderi, S.; Ghaderi, A.; Solaymani, S.; Golzan, M. M.

    2012-05-01

    In this paper, colloidal silver nanoparticles were prepared by chemical reduction of AgNO3 and pure Sn in a new and simple method. The type of crystallite lattice and the size of nanopowders were estimated by X-Ray Diffraction (XRD) analysis. The geometric, heterogeneous and mixing structure of synthesized nanopowders were studied by Scanning Electron Microscopy (SEM). Optical properties such as plasmon absorption and frequency of soluble colloidal nanopowders in two solutions of distilled water and oil were investigated by UV-Visible spectroscopy, which was developed to calculate the absorbance spectra of nanoparticles solution containing a size distribution of particles using the Mie theory. Dipole and quadrupole plasmons related to molecular structure of water and oil were found by absorbance spectra. Also, Differential Scanning Calorimetry (DSC) analysis was used for determining the thermal behavior, endothermic and exothermic peaks of Ag nanopowder.

  3. The Traps of Using Conventional Methodology of Evaluation of Powder Diffractograms for Determination of the Lattice Parameters of Nanocrystals

    NASA Technical Reports Server (NTRS)

    Palosz, Bogdan; Grzanka, Ewa; Stelmach, Svetlana; Gierlotka, Stanislaw; Palosz, Witold; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The inherent errors introduced by the algorithm of standard procedures of evaluation of powder diffractograms of nanopowders are shown. The implications of the errors are discussed and illustrated based on the results reported in the literature.

  4. Radiation stability of powders in mixtures with Al2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Mikhailov, M. M.; Utebekov, T. A.; Neshchimenko, V. V.

    2013-02-01

    A comparative research was conducted to investigate the absorption spectra of barium titanate powders mixtures with aluminum oxide micro- or nanopowders irradiated by electrons. It was established that the addition of aluminum oxide nanopowder enhances the radiation stability of mixtures, which increases with the concentration of nanoparticles. Stability augmentation of mixtures under irradiation is caused by the decrease in the concentration of radiation defects in the anion sublattice of barium titanate.

  5. Investigation of adsorption properties of alumina produced by vacuum spray method

    NASA Astrophysics Data System (ADS)

    Khrustaleva, K.; Voronova, G.

    2016-02-01

    In this paper nanopowders obtained by vacuum spray method were studied. The phase composition of the obtained powders is γ - Al2O3. Obtained nanopowders have specific surface area about 200 m2/g. Adsorptive properties of these powders were studied by static adsorption from solutions. The anionic dye eosin was selected as adsorbate. It has been found that the powders obtained by vacuum spray method have significant capacity to adsorb eosin.

  6. Preparation of Nanocomposite GDC/LSCF Cathode Material for IT-SOFC by Induction Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Almeida, Veronica Alexandra B.; Gitzhofer, François

    2011-01-01

    Homogeneous mixtures of Ce0.8Gd0.2O1.9 (GDC) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) nanopowders were successfully synthesized using induction plasma by axial injection of a solution. The resulting nanocomposite powders consisted of two kinds of nanopowders with different mass ratio of GDC/LSCF, such as 3/7 and 6/4. The morphological features, crystallinity, and the phases of the synthesized powders were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), local energy-dispersive x-ray spectroscopy (EDS) analysis, and x-ray diffraction (XRD). The nanopowders are almost globular in shape with a diameter smaller than 100 nm and their BET specific areas are around 20 m2 g-1. The GDC and LSCF phases are well distributed in the nanopowders. In addition, suspensions, made with the as-synthesized composite nanopowders and ethanol, were used to deposit cathode coatings using suspension plasma spray (SPS). Micro-nanostructures of the coatings are discussed. The coatings are homogeneous and porous (51% porosity) with cauliflower structures.

  7. Biomedical nanocomposites of poly(lactic acid) and calcium phosphate hybridized with modified carbon nanotubes for hard tissue implants.

    PubMed

    Lee, Hae-Hyoung; Sang Shin, Ueon; Lee, Jae-Ho; Kim, Hae-Won

    2011-08-01

    Degradable polymer-based materials are attractive in orthopedics and dentistry as an alternative to metallic implants for use as bone fixatives. Herein, a degradable polymer poly(lactic acid) (PLA) was combined with novel hybrid nanopowder of carbon nanotubes (CNTs)-calcium phosphate (CP) for this application. In particular, CNTs-CP hybrid nanopowders (0.1 and 0.25% CNTs) were prepared from the solution of ionically modified CNTs (mCNTs), which was specifically synthesized to be well-dispersed and thus to effectively adsorb onto the CP nanoparticles. The mCNTs-CP hybrid nanopowders were then mixed with PLA (up to 50%) to produce mCNTs-CP-PLA nanocomposites. The mechanical tensile strength of the nanocomposites was significantly improved by the addition of mCNTs-CP hybrid nanopowders. Moreover, nanocomposites containing low concentration of mCNTs (0.1%) showed significantly stimulated biological responses including cell proliferation and osteoblastic differentiation in terms of gene and protein expressions. Based on this study, the addition of novel mCNT-CP hybrid nanopowders to PLA biopolymer may be considered a new material choice for developing hard tissue implants.

  8. Doped titanium dioxide nanocrystalline powders with high photocatalytic activity

    SciTech Connect

    Castro, A.L.; Jumas, J.-C.; Costa, F.M.

    2009-07-15

    Doped titanium dioxide nanopowders (M:TiO{sub 2}; M=Fe, Co, Nb, Sb) with anatase structure were successfully synthesized through an hydrothermal route preceded by a precipitation doping step. Structural and morphological characterizations were performed by powder XRD and TEM. Thermodynamic stability studies allowed to conclude that the anatase structure is highly stable for all doped TiO{sub 2} prepared compounds. The photocatalytic efficiency of the synthesized nanopowders was tested and the results showed an appreciable enhancement in the photoactivity of the Sb:TiO{sub 2} and Nb:TiO{sub 2}, whereas no photocatalytic activity was detected for the Fe:TiO{sub 2} and Co:TiO{sub 2} nanopowders. These results were correlated to the doping ions oxidation states, determined by Moessbauer spectroscopy and magnetization data. - Graphical abstract: Doped titanium dioxide nanopowders (M:TiO{sub 2}; M=Fe, Co, Nb, Sb) with highly stable anatase structure were successfully synthesized through an hydrothermal route. The photocatalytic efficiencies of the synthesized nanopowders were tested and the results show an appreciable enhancement in the photoactivity of the Sb:TiO{sub 2} and Nb:TiO{sub 2}.

  9. Adsorption and photocatalytic degradation of malachite green by vanadium doped zinc oxide nanoparticles.

    PubMed

    Khezami, L; Taha, Kamal K; Ghiloufi, Imed; El Mir, Lassaad

    2016-01-01

    Herein the degradation of malachite green (MG) dye from aqueous medium by vanadium doped zinc oxide (ZnO:V3%) nanopowder was investigated. The specific surface area and pore volume of the nanopowder was characterized by nitrogen adsorption method. Batch experimental procedures were conducted to investigate the adsorption and photocatalytic degradation of MG dye. Adsorption kinetics investigations were performed by varying the amount of the catalyst and the initial dye concentrations. Adsorption and photocatalytic degradation data were modeled using the Lagergren pseudo-first-order and second-order kinetic equation. The results showed that the ZnO:V3% nanopowder was particularly effective for the removal of MG and data were found to comply with Lagergreen pseudo-first-order kinetic model. PMID:26901732

  10. Properties of transparent Re3+: Y2O3 ceramics doped with tetravalent additives

    NASA Astrophysics Data System (ADS)

    Osipov, V. V.; Shitov, V. A.; Maksimov, R. N.; Solomonov, V. I.

    2015-12-01

    Neodymium or ytterbium-doped transparent yttrium oxide ceramics with different tetravalent sintering additives (ZrO2, HfO2, or CeO2) were fabricated from nanopowders produced by laser ablation method. Phase composition and distribution of dopants in the synthesized nanopowders and ceramics were studied by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and scanning electron microscopy coupled with energy dispersive X-ray (SEM/EDX) spectroscopy. The tetravalent additives led to a decrease in grain size and an improvement in transmittance at the lasing wavelengths. However, an excess of tetravalent ions led to the formation of dispersed scattering volumes. We observed particles with modulated composition for nanopowder of Nd:Y2O3 doped by 10 mol% HfO2. The estimations based on Rayleigh light scattering showed that the maximum size of the dispersed scattering volume is below 20 nm.

  11. Magnetic and Magnetocaloric Properties of High-Energy Ball-Milled Nanocrystalline CeMn2Ge2 Compound

    NASA Astrophysics Data System (ADS)

    Kaya, Melike; Dincer, Ilker; Akturk, Selcuk; Elerman, Yalcin

    2016-10-01

    CeMn2Ge2 nanopowders have been obtained by high-energy ball milling for 5 and 10 hours from bulk compound to investigate the effect of milling time on magnetic and magnetocaloric properties. CeMn2Ge2 nanopowders have been characterized by X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy, transmission electron microscopy, and magnetization measurements. The average grain size of the nanoparticles from XRD measurements is about 12.2 and 8 nm for 5-hour and 10-hour ball-milled samples, respectively. The investigations reveal that magnetic entropy change (∆ S m) can be altered by changing the particle size of the compound. Maximum ∆ S m is -2.45 and -1.30 J kg-1 K-1 for the 5- and 10-hour ball-milled nanopowders, respectively.

  12. Induction of apoptosis in human endothelial cells by nanodiamond particles.

    PubMed

    Solarska, K; Gajewska, A; Bartosz, G; Mitura, K

    2012-06-01

    Carbon nanoparticles are a promising material which finds application in different fields in industry and medicine. For medical applications, biocompatibility of nanoparticles is of critical importance because a lot of medical implants are coated by carbon coating. Our previous results showed that nanoparticles may induce increased production of ROS by the cells so we decided to checked if nanopowders can induce apoptosis. Apoptosis was quantified by double-staining with acridine orange and ethidium bromide. For comparison, we identified apoptotic cells with annexin V-FITC/propidium iodide. Our data demonstrate that treatment of the cells with diamond nanopowders may induce apoptosis and necrosis and this effect is dependent on the time of treatment and concentration of the nanopowders. The highest level of apoptotic cells was observed after incubation with Ultrananocrystalline Detonation Diamond (UDD) suggesting that the size is the main determinant of nanoparticle cytotoxicity. PMID:22905588

  13. Tungsten nanoparticles influence on radiation protection properties of polymers

    NASA Astrophysics Data System (ADS)

    Gavrish, V. M.; Baranov, G. A.; Chayka, T. V.; Derbasova, N. M.; Lvov, A. V.; Matsuk, Y. M.

    2016-02-01

    In the presented article the results of the study of metal-polymer composites based on the ultra-high molecular weight polyethylene GUR 4122 with the addition of superdispersed tungsten nanopowders with 5, 10, 20, 40, and 50 mass percent content levels are given, their thermophysical, radiation-shielding, and mechanical properties are shown, and the influence of content levels of tungsten superdispersed nanopowders on these properties is analyzed. The conducted studies have shown the increase in the listed properties depending on the content level of tungsten superdispersed and nanopowders in the ultra-high molecular weight polyethylene GUR 4122. Owing to their properties, the obtained materials may be used in various fields, such as aviation, space technologies, mechanical engineering, etc.

  14. Comparison of physical and electrochemical properties of ZnO prepared via different surfactant-assisted precipitation routes

    NASA Astrophysics Data System (ADS)

    Gupta, Arun; Srivastava, Pankaj; Bahadur, Lal; Amalnerkar, D. P.; Chauhan, Ratna

    2014-11-01

    The flakes-, hexagons-, nanoparticle-, and flower-like ZnO nanostructures have been synthesized via different surfactant-assisted precipitation routes. The XRD of all ZnO nanostructures is hexagonal single crystalline in nature and the UV-Vis absorption spectra showed blue shift in wavelength corresponding to bulk. The synthesized zinc-oxide nanopowders were used to fabricate dye solar cells sensitized by N719 dye. The comparative study of cells prepared by above ZnO nanopowders has been done. The highest conversion efficiency (2.48 %) for the cell is shown by flower-like ZnO than the others. The difference in photovoltaic parameters for the ZnO nanopowders is due to the difference in surfactants which directly correlate with surface area and dye loading.

  15. Adsorption and photocatalytic degradation of malachite green by vanadium doped zinc oxide nanoparticles.

    PubMed

    Khezami, L; Taha, Kamal K; Ghiloufi, Imed; El Mir, Lassaad

    2016-01-01

    Herein the degradation of malachite green (MG) dye from aqueous medium by vanadium doped zinc oxide (ZnO:V3%) nanopowder was investigated. The specific surface area and pore volume of the nanopowder was characterized by nitrogen adsorption method. Batch experimental procedures were conducted to investigate the adsorption and photocatalytic degradation of MG dye. Adsorption kinetics investigations were performed by varying the amount of the catalyst and the initial dye concentrations. Adsorption and photocatalytic degradation data were modeled using the Lagergren pseudo-first-order and second-order kinetic equation. The results showed that the ZnO:V3% nanopowder was particularly effective for the removal of MG and data were found to comply with Lagergreen pseudo-first-order kinetic model.

  16. Magnetic and Magnetocaloric Properties of High-Energy Ball-Milled Nanocrystalline CeMn2Ge2 Compound

    NASA Astrophysics Data System (ADS)

    Kaya, Melike; Dincer, Ilker; Akturk, Selcuk; Elerman, Yalcin

    2016-07-01

    CeMn2Ge2 nanopowders have been obtained by high-energy ball milling for 5 and 10 hours from bulk compound to investigate the effect of milling time on magnetic and magnetocaloric properties. CeMn2Ge2 nanopowders have been characterized by X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy, transmission electron microscopy, and magnetization measurements. The average grain size of the nanoparticles from XRD measurements is about 12.2 and 8 nm for 5-hour and 10-hour ball-milled samples, respectively. The investigations reveal that magnetic entropy change (∆S m) can be altered by changing the particle size of the compound. Maximum ∆S m is -2.45 and -1.30 J kg-1 K-1 for the 5- and 10-hour ball-milled nanopowders, respectively.

  17. Monte Carlo Simulation of Nanoparticle Encapsulation in Flames

    NASA Technical Reports Server (NTRS)

    Sun, Z.; Huertas, J. I.; Axelbaum, R. L.

    1999-01-01

    Two critical challenges facing the application of flames for synthesis of nanopowder materials are: (1) overcoming formation of agglomerates and (2) ensuring that the highly reactive nanopowders that are synthesized in flames can be produced in such a manner that their purity is maintained during subsequent processing. Agglomerates are produced in flames because particle formation occurs in a high temperature and high number density environment. They are undesirable in most advanced applications of powders. For example, agglomerates have a deleterious effect on compaction density, leading to voids when nanopowders are consolidated. Efforts to avoid agglomeration in flames without substantially reducing particle number density and, consequently, production rate, have had limited success. Powder purity must also be maintained during subsequent handling of nanopowders and this poses a significant challenge for any synthesis route because nanopowders, particularly metals and non-oxide ceramic powders, are inherently reactive. Impurities acquired during handling of nanopowders have slowed the advancement of the nanostructured materials industry. One promising approach that has been proposed to address these problems is nano-encapsulation. In this approach, the core particles are encapsulated in a removable material while they are within the flame but before excessive agglomeration has occurred. Condensation can be very rapid so that core particles are trapped within the condensed material and agglomeration is limited. Nano-encapsulation also addresses the handling concerns for post-synthesis processing. Results have shown that when nano-encapsulated powders are exposed to atmosphere the core particles are protected from oxidation and/or hydrolysis. Thus, handling of the powders does not require extreme care. If, for example, at the time of consolidation the encapsulation material is removed by vacuum annealing, the resulting powder remains unagglomerated and free of

  18. Preparation of tungsten oxide

    DOEpatents

    Bulian, Christopher J.; Dye, Robert C.; Son, Steven F.; Jorgensen, Betty S.; Perry, W. Lee

    2009-09-22

    Tungsten trioxide hydrate (WO.sub.3.H.sub.2O) was prepared from a precursor solution of ammonium paratungstate in concentrated aqueous hydrochloric acid. The precursor solution was rapidly added to water, resulting in the crash precipitation of a yellow white powder identified as WO.sub.3.H.sub.2O nanosized platelets by x-ray diffraction and scanning electron microscopy. Annealing of the powder at 200.degree. C. provided cubic phase WO.sub.3 nanopowder, and at 400.degree. C. provided WO.sub.3 nanopowder as a mixture of monoclinic and orthorhombic phases.

  19. Stabilization of the high-temperature phases in ceramic coatings on zirconium alloy produced by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Apelfeld, A. V.; Betsofen, S. Y.; Borisov, A. M.; Vladimirov, B. V.; Savushkina, S. V.; Knyazev, E. V.

    2016-09-01

    The composition and structure of ceramic coatings obtained on Zr-1%Nb alloy by plasma electrolytic oxidation (PEO) in aqueous electrolyte comprising 2 g/L KOH, 6 g/L NaAlO2 and 2 g/L Na2SiO3 with addition of yttria nanopowder, have been studied. The PEO coatings of thickness ∼⃒20 μm were studied using scanning electron microscopy, X-ray microanalysis and X-ray phase analysis. Additives in the electrolyte of yttria nanopowder allowed stabilizing the high-temperature tetragonal and cubic zirconia in the coating.

  20. Synthesis, analysis and processing of novel materials in the yttrium oxide-aluminum oxide system

    NASA Astrophysics Data System (ADS)

    Marchal, Julien Claudius

    In the current work, liquid feed flame spray pyrolysis (LF-FSP) was used to create three novel nanopowders in the Y2O3-Al 2O3 system: alpha-Al2O3, YAG (garnet Y3Al5O12) and hexagonal Y3Al 5O12. For example, LF-FSP combustion of metalloorganic yttrium and aluminum precursors in a 3/5 ratio forms hexagonal Y3Al5O 12, a newly discovered crystalline phase detailed in this work. The resulting 15-35 nm average particle size, single crystal nanopowders were characterized by TGA-DTA, XRD, HR-TEM, electron diffraction and FTIR. The data was used to establish a model for the crystal structure of this new phase (hexagonal, with crystal parameter of a = 0.736 nm, c = 1.052) consisting of a superlattice of substituted hexagonal YAlO3. YAG has been extensively investigated for its applications as scintillators, phosphors and as a laser host. Fully dispersible, unaggregated single crystal YAG nanopowders with average particle sizes of 35-50 nm were obtained from hexagonal Y3Al5O12 after annealing at 850°C-1200°C (for 2h-8d). The resulting YAG nanopowder was processed into green bodies using cold isostatic pressing after adding binders. 99%+ dense monoliths were obtained after sintering at 1400°C in vacuum (6-8 h), while maintaining grain sizes < 500 nm. The ability to sinter while keeping sub-micron grains differs from present techniques (where translucency is obtained through exaggerated grain growth to 5-10 microns) reported in the literature for sintering polycrystalline YAG, and is the first step for improving polycrystalline YAG laser host optical properties. LF-FSP processing of transition Al2O3 nanopowders converts them to single crystal alpha-Al2O3 nanopowders, previously thought impossible to obtain. The alpha-Al2O 3 nanopowders thus obtained, consist of unaggregated 30-40 nm single particles. These nanopowders were characterized by XRD, HR-TEM, SEM, DLS, FTIR. Green bodies of alpha-Al2O3 nanopowders were sintered to 99% density without sintering aids at 1400°C (6

  1. Formulation of nano-zinc oxide into biocomposite beads for dye decolorization

    NASA Astrophysics Data System (ADS)

    Elkady, M. F.; Hassan, H. Shokry; El-Shazly, A. H.

    2015-03-01

    Zinc oxide nano-powder was prepared using sol-gel technique to be encapsulated onto polymeric blend composed from alginate and polyvinyl alcohol to fabricate novel bio-composite beads of nano-zinc oxide. The XRD patterns of both zinc oxide nano-powder and its polymeric hybrid were crystalline in their nature. The FTIR analysis of the fabricated ZnO polymeric hybrid confirms the binding between zinc oxide and the polymeric matrix. The BET analysis demonstrated that the calculated specific surface area of the formulated ZnO beads that equal to 22.8 m2/g is comparatively less than that of the free ZnO nano-powdered that equivalent to 64.9 m2/g. The thermal stability of ZnO nano-powdered dramatically decreased with its immobilization into the polymeric alginate and PVA matrix. The formulated beads had very strong mechanical strength and they are difficult to be broken up to 1500rpm. Moreover, this hybrid beads are chemically stable at the acidic media. The formulated ZnO hybrid beads verified to be good adsorbent material for C.I basic blue 41 (CB41).

  2. A Novel Device for Measuring Respirable Dustiness Using Low Mass Powder Samples

    PubMed Central

    O’Shaughnessy, Patrick T.; Kang, Mitchell; Ellickson, Daniel

    2013-01-01

    Respirable dustiness represents the tendency of a powder to generate respirable airborne dust during handling and therefore indicates the propensity for a powder to become an inhalation hazard. The dustiness of fourteen powders, including ten different nanopowders, was evaluated with the use of a novel low mass dustiness tester (LMDT) designed to minimize the use of the test powder. The aerosol created from 15-mg powder samples falling down a tube were measured with an aerodynamic particle sizer (APS). Particle counts integrated throughout the pulse of aerosol created by the falling powder were used to calculate a respirable dustiness mass fraction (D, mg/kg). An amorphous silicon dioxide nanopowder produced a respirable D of 121.4 mg/kg which was significantly higher than all other powders (p<0.001). Many nanopowders produced D values of that were not significantly different from large-particle powders such as Arizona Road Dust and Bentonite clay. In general, fibrous nanopowders and powders with primary particles > 100 nm are not as dusty as those containing granular, nano-sized primary particles. The method used here, incorporating an APS, represents a deviation from a standard method but resulted in dustiness values comparable to other standard methods. PMID:22335240

  3. Nano-cerium vanadate: a novel inorganic ion exchanger for removal of americium and uranium from simulated aqueous nuclear waste.

    PubMed

    Banerjee, Chayan; Dudwadkar, Nilesh; Tripathi, Subhash Chandra; Gandhi, Pritam Maniklal; Grover, Vinita; Kaushik, Chetan Prakash; Tyagi, Avesh Kumar

    2014-09-15

    Cerium vanadate nanopowders were synthesized by a facile low temperature co-precipitation method. The product was characterized by X-ray diffraction and transmission electron microscopy and found to consist of ∼25 nm spherical nanoparticles. The efficiency of these nanopowders for uptake of alpha-emitting radionuclides (233)U (4.82 MeV α) and (241)Am (5.49 MeV α, 60 keV γ) has been investigated. Thermodynamically and kinetically favorable uptake of these radionuclides resulted in their complete removal within 3h from aqueous acidic feed solutions. The uptake capacity was observed to increase with increase in pH as the zeta potential value decreased with the increase in pH but effect of ionic strength was insignificant. Little influence of the ions like Sr(2+), Ru(3+), Fe(3+), etc., in the uptake process indicated CeVO4 nanopowders to be amenable for practical applications. The isotherms indicated predominant uptake of the radioactive metal ions in the solid phase of the exchanger at lower feed concentrations and linear Kielland plots with positive slopes indicated favorable exchange of the metal ions with the nanopowder. Performance comparison with the other sorbents reported indicated excellent potential of nano-cerium vanadate for removing americium and uranium from large volumes of aqueous acidic solutions.

  4. Nano-cerium vanadate: a novel inorganic ion exchanger for removal of americium and uranium from simulated aqueous nuclear waste.

    PubMed

    Banerjee, Chayan; Dudwadkar, Nilesh; Tripathi, Subhash Chandra; Gandhi, Pritam Maniklal; Grover, Vinita; Kaushik, Chetan Prakash; Tyagi, Avesh Kumar

    2014-09-15

    Cerium vanadate nanopowders were synthesized by a facile low temperature co-precipitation method. The product was characterized by X-ray diffraction and transmission electron microscopy and found to consist of ∼25 nm spherical nanoparticles. The efficiency of these nanopowders for uptake of alpha-emitting radionuclides (233)U (4.82 MeV α) and (241)Am (5.49 MeV α, 60 keV γ) has been investigated. Thermodynamically and kinetically favorable uptake of these radionuclides resulted in their complete removal within 3h from aqueous acidic feed solutions. The uptake capacity was observed to increase with increase in pH as the zeta potential value decreased with the increase in pH but effect of ionic strength was insignificant. Little influence of the ions like Sr(2+), Ru(3+), Fe(3+), etc., in the uptake process indicated CeVO4 nanopowders to be amenable for practical applications. The isotherms indicated predominant uptake of the radioactive metal ions in the solid phase of the exchanger at lower feed concentrations and linear Kielland plots with positive slopes indicated favorable exchange of the metal ions with the nanopowder. Performance comparison with the other sorbents reported indicated excellent potential of nano-cerium vanadate for removing americium and uranium from large volumes of aqueous acidic solutions. PMID:25128895

  5. Inhomogeneous depletion of oxygen ions in metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Vykhodets, Vladimir B.; Jarvis, Emily A. A.; Kurennykh, Tatiana E.; Beketov, Igor V.; Obukhov, Sviatoslav I.; Samatov, Oleg M.; Medvedev, Anatoly I.; Davletshin, Andrey E.; Whyte, Travis H.

    2016-02-01

    Zirconia and yttria stabilized zirconia (YSZ) have multiple uses, including catalysis, fuel cells, dental applications, and thermal coatings. We employ nuclear reaction analysis to determine elemental composition of YSZ nanoparticles synthesized by laser evaporation including 18O studies to distinguish between oxide and adsorbed oxygen content as a function of surface area. We see dramatic deviation from stoichiometry that can be traced to loss of oxygen from the oxide near the surface of these nanopowders. Density functional calculations are coupled with these experimental studies to explore the electronic structure of nonstoichiometric surfaces achieved through depletion of oxygen. Our results show oxygen-depleted surfaces present under oxygen potentials where stoichiometric, oxygen-terminated surfaces would be favored thermodynamically for crystalline systems. Oxygen depletion at nanopowder surfaces can create effective two-dimensional surface metallic states while maintaining stoichiometry in the underlying nanoparticle core. This insight into nanopowder surfaces applies to dissimilar oxides of aluminum and zirconium indicating synthesis conditions may be more influential than the inherent oxide properties and displaying need for distinct models for nanopowders of these important engineering materials where surface chemistry dominates performance.

  6. Antibacterial Property of Cold-Sprayed HA-Ag/PEEK Coating

    NASA Astrophysics Data System (ADS)

    Sanpo, Noppakun; Tan, Meng Lu; Cheang, Philip; Khor, K. A.

    2009-03-01

    The antibacterial behavior of HA-Ag (silver-doped hydroxyapatite) nanopowder and their composite coatings were investigated against Escherichia coli (DH5α). HA-Ag nanopowder and PEEK (poly-ether-ether-ketone)-based HA-Ag composite powders were synthesized using in-house powder processing techniques. Bacteria culture assay of HA-Ag nanopowder and their composite powders displayed excellent bacteriostatic activity against E. coli. The antibacterial activity increased with increasing concentration of HA-Ag nanoparticle in these composite powders. These nanocomposite powders were subsequently used as feedstock to generate antibacterial coatings via cold spray technology. The ratios of HA-Ag to PEEK in their composite powders were 80:20, 60:40, 40:60, and 20:80 (wt.%). Microstructural characterization and phase analysis of feedstock powders and as-deposited coatings were carried out using FESEM/EDX and XRD. Antibacterial nanocomposite HA-Ag/PEEK coatings were successfully deposited using cold spraying parameters of 11-12 bars at preheated air temperature between 150 and 160 °C. These as-sprayed coatings of HA-Ag/PEEK composite powders comprising varying HA-Ag and PEEK ratios retained their inherent antibacterial property as verified from bacterial assay. The results indicated that the antibacterial activity increased with increasing HA-Ag nanopowder concentration in the composite powder feedstock and cold-sprayed coating.

  7. Earthquake lubrication and healing explained by amorphous nanosilica

    NASA Astrophysics Data System (ADS)

    Rowe, C. D.; Lamothe, K. G.; Rempe, M.; Andrews, M.; Mitchell, T. M.; Di Toro, G.; White, J. C.

    2015-12-01

    Earthquake slip and rupture propagation require fault strength to decrease during slip. Extreme shear weakening observed in laboratory friction experiments on silica-rich rocks has been explained by the formation of a hydrated amorphous 'silica gel' on the slip surface, but the mode of formation and deformation behavior of this material are not known. In addition, the wear material displays time-dependent strengthening on timescales of hours to days. We performed shearing experiments on chert rocks and analyzed the wear material formed at a range of slip rates from 10-4 - 10-1 m/s. We show by transmission electron microscopy (TEM) and X-ray diffraction that silica lubrication is the result of the formation of amorphous nanopowder rather than a gel. The nanopowder has distinct structure and properties when compared to commercially available amorphous silica nanoparticles, which result from the degree and distribution of hydration and the style of bond strain within particles (observed by Raman spectroscopy and FTIR). The lubrication effect is due to intra-particle plasticity, even at low temperature and interparticle lubrication caused by trapping of water layers between hydrated surfaces. The hours to days timescale of healing may be explained by the natural time-dependent sintering between the hydrated surfaces of the nanopowder. Formation of amorphous silica nanopowders during slip can explain the general characteristics of earthquake ruptures, including the timescales of coseismic weakening and post-seismic healing.

  8. Carbogenically coated silica nanoparticles and their forensic applications.

    PubMed

    Fernandes, D; Krysmann, M J; Kelarakis, A

    2016-07-01

    Carbogenically coated silica nanoparticles (C-SiO2) exhibit color-tunability and carry great promise for two important forensic applications. First, the C-SiO2 nanopowders are ideal for fingerprint development, yielding strong contrast against multicoloured and patterned backgrounds. Second, spontaneous nanoparticle aggregation leads to non-duplicable, inexpensive nanotags that can support sustainable technologies to combat counterfeiting.

  9. The Traps of using Conventional Methodology of Evaluation of Powder Diffractograms for Determination of the Lattice Parameters of Nanocrystals

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Technical Monitor); Palosz, B.; Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Palosz, W.

    2003-01-01

    Inherent errors introduced by the algorithm of standard procedures of evaluation of powder diffractograms when applied for nanopowders are shown. The implications of the errors are discussed in connection with some results reported in the literature. Alternate methodology of evaluation of powder diffractograms of nanocrystals is presented.

  10. Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Hsiang; Chi, Yu-Chieh; Lin, Gong-Ru

    2013-05-01

    Triturated charcoal nano-powder directly brushed on a fiber connector end-face is used for the first time as a fast saturable absorber for a passively mode-locked erbium-doped fiber-ring laser (EDFL). These dispersant-free charcoal nano-powders with a small amount of crystalline graphene phase and highly disordered carbon structure exhibit a broadened x-ray diffraction peak and their Raman spectrum shows the existence of a carbon related D-band at 1350 cm-1 and the disappearance of the 2D-band peak at 2700 cm-1. The charcoal nano-powder exhibits a featureless linear absorbance in the infrared region with its linear transmittance of 0.66 nonlinearly saturated at 0.73 to give a ΔT/T of 10%. Picosecond mode-locking at a transform-limited condition of a low-gain EDFL is obtained by using the charcoal nano-powder. By using a commercial EDFA with a linear gain of only 17 dB at the saturated output power of 17.5 dB m required to initiate the saturable absorption of the charcoal nano-powder, the EDFL provides a pulsewidth narrowing from 3.3 to 1.36 ps associated with its spectral linewidth broadening from 0.8 to 1.83 nm on increasing the feedback ratio from 30 to 90%. This investigation indicates that all the carbon-based materials containing a crystalline graphene phase can be employed to passively mode-lock the EDFL, however, the disordered carbon structure inevitably induces a small modulation depth and a large mode-locking threshold, thus limiting the pulsewidth shortening. Nevertheless, the nanoscale charcoal passively mode-locked EDFL still shows the potential to generate picosecond pulses under a relatively low cavity gain. An appropriate cavity design can be used to compensate this defect-induced pulsewidth limitation and obtain a short pulsewidth.

  11. Host thin films incorporating nanoparticles

    NASA Astrophysics Data System (ADS)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  12. Surface modification of sol–gel synthesized TiO{sub 2} nanoparticles induced by La-doping

    SciTech Connect

    Grujić-Brojčin, M.; Armaković, S.; Tomić, N.; Abramović, B.; Golubović, A.; Stojadinović, B.; Kremenović, A.; Babić, B.; Dohčević-Mitrović, Z.; Šćepanović, M.

    2014-02-15

    The influence of La-doping in the range of 0.5–6.0 mol% on structural and morphological properties of TiO{sub 2} nanopowders synthesized by sol–gel routine has been investigated by XRPD, AFM, EDS and BET measurements, as well as Raman spectroscopy. The XRPD and Raman measurements have revealed the anatase phase as dominant in all nanopowders, with crystallite size decreasing from ∼ 15 nm in pure TiO{sub 2} to ∼ 12 nm in La-doped samples. The BET data suggest that all samples are fully mesoporous, with mean pore diameters in the range of ∼ 6–8 nm. The specific surface area and the complexity of pore structure are greater in doped samples than in pure TiO{sub 2} sample. The spectroscopic ellipsometry has apparently shown that the band gap has been gradually increased with the increase of La content. The STM and STS techniques have been used successfully to evaluate the surface morphology and electronic properties of La-doped nanopowders. All investigated properties have been related to photocatalytic activity, tested in degradation of a metoprolol tartrate salt (0.05 mM), and induced by UV-radiation. All doped samples showed increased photocatalytic activity compared to pure TiO{sub 2}, among which the 0.65 mol% La-doped sample appeared to be the most efficient. - Highlights: • Effects of La-doping on structural, morphological and electronic properties of TiO{sub 2} nanopowders. • Surface morphology and electronic properties of La-doped nanopowders evaluated by STM/STS. • Spectroscopic ellipsometry shown gradual increase of bandgap with the increase of La content. • Photocatalytic activity of samples was tested in degradation of MET under UV light.

  13. Biosafety of the application of biogenic nanometal powders in husbandry

    NASA Astrophysics Data System (ADS)

    Anatolievna Nazarova, Anna; Dmitrievna Polischuk, Svetlana; Anatolievna Stepanova, Irina; Ivanovich Churilov, Gennady; Chau Nguyen, Hoai; Buu Ngo, Quoc

    2014-03-01

    Effects of iron and copper nanopowders (particle size of 20-40 nm) were investigated on rabbits of 1 month age and heifers of 6 months. For introduction of nanometals into the animal's ration, the mixed fodder was treated with the nanometal powder suspension in such a way: 0.08 mg of nanoiron per kg of animal's body weight and 0.04 mg kg-1 for nanocopper. The weight gain of the heifers who received nanoiron and nanocopper after 8 months was 22.4 and 10.7% higher than that of the control, respectively. For the rabbits who received nano Fe and Cu after 3 months, the weight gain was 11.7 and 7.3% compared to the control, respectively. Under the action of metal nanopowders morphological indices of blood were changed in comparison with the control: after 8 months the quantity of erythrocytes increased by 19.6%, hemoglobin by 17.1% and leukocytes by 7.6%. There was a realignment in leukocytic formula: the quantity of lymphocytes increased by 9% compared to the control. Biogenic metals in superdispersive state were able to stimulate immune, enzymatic and humoral systems of the animal's organism, promoting metabolism. Adding Co and Cu metal nanopowders to the bull-calves’ fodder rations increased content of Ca by 31.8 and 0%, Fe by 38.8 and 37.5%, K by 19.2 and 15.3%, Mg by 17.6 and 23.5%, Mn by 9.8 and 45% and Na by 20.5 and 8.8%, respectively, compared to control. Metal nanopowders improved the quality indices and meat productivity of black-white bull-calves, expressed in intensive growth of muscle, tissue and more nutritious meat. The conducted veterinary-sanitary expertise showed that the supplements based on iron, cobalt and copper nanopowders can be used as safe bioactive supplements in animal husbandry.

  14. Luminescent instabilities and nonradiative processes in rare earth systems

    NASA Astrophysics Data System (ADS)

    Redmond, Shawn Michael

    This research is an outgrowth of earlier experiments that demonstrated bistable luminescence in heavy metal halide crystals doped with trivalent ytterbium ions. This type of instability has importance as a fundamentally new physical phenomenon with a potential application for fast all-optical switching as well as a limitation on compact solid state laser performance. In this thesis, the investigation of luminescent instabilities is extended to bistable energy transfer processes in crystals and to the observation of "bistable" blackbody emission in rare earth nanopowders. High resolution laser spectroscopy was used to study bistable luminescence and energy transfer in Yb,Er:CsCdBr3 crystals at cryogenic temperatures. For the first time, it was found that bistable behavior associated with Yb 3+ ions was transferred to Er3+ through resonant energy transfer. Bistability of the resulting sensitized luminescence caused sufficiently dramatic changes in the crystal dynamics so as to change the color of emission from yellow to green. This color changing phenomenon is fully explained in the present work and is referred to as "chromatic switching." Temperature is a critical variable that is known to govern luminescent instabilities in all current theories. Therefore, in a search for new systems with luminescent instabilities at high temperatures, materials with extreme thermal properties were investigated as part of this research. Yb,Er:Y 2O3 nanopowders were selected for this purpose. Nanopowders exhibit greatly reduced thermal conductivity and were verified during the course of this work to cause enhanced absorption as the result of multiple scattering. Significant spectral differences between Yb,Er:Y2O 3 nanopowders and single crystals also emerged. Measurements of erbium upconversion luminescence versus pump intensity in resonance with the ytterbium absorption transition revealed striking new optical phenomena: strong luminescent quenching, intense "bistable" blackbody

  15. Growth and optical properties of partially transparent Eu doped CaF{sub 2} ceramic

    SciTech Connect

    Ghosh, Manoranjan Sen, Shashwati Pitale, S. S. Goutam, U. K. Shinde, Seema Patra, G. D. Gadkari, S. C.

    2014-04-24

    Partially transparent ceramic of 2 at.% Eu doped CaF{sub 2} have been grown preferentially towards [111] direction. For this purpose, Eu doped CaF{sub 2} nanoparticles (size∼12 nm) obtained by a low temperature solution growth method has been pressed at 1000°C under vacuum. The preferentially grown ceramic shows 15% transparency within the visible range of spectrum. As confirmed by the X-ray diffraction result, the hot pressed ceramic exhibits reduced lattice volume than the nanopowder. It indicates Eu{sup 3+} as the dominant substituting ions at the Ca{sup 2+} sites of CaF{sub 2} lattice in the hot pressed ceramic material. It is corroborated by the photoluminescence results of hot pressed ceramic which shows strong red emission corresponding to Eu{sup 3+} sites. However, photoluminescence of nanopowder exhibits intense peak in the blue region of the spectrum which is characteristics of Eu2+ sites.

  16. Preparation and Characterization of Grain Size Controlled LaB6 Polycrystalline Cathode Material

    NASA Astrophysics Data System (ADS)

    Bao, Li-Hong; Zhang, Jiu-Xing; Zhou, Shen-Lin; Wei, Yong-Feng

    2010-10-01

    The grain size controlled bulk Lanthanum hexaboride (LaBe) cathode material was prepared by using the spark plasma sintering method in an oxygen free system. The starting precursor nanopowders with average grain size of 50 nm were prepared by high-energy ball milling. The nanopowder was fully densified at 1300° C, which is about 350° C lower than the sintering temperature of the coarse powders. The thermionic emission current density was measured to be 42.0 A/cm2, which is much higher than 24.2 A/cm2 of coarse powders and Vickers hardness to be 1860 kg/mm2, which is also higher than 1700 kg/mm2 of coarse one. These results indicate that refining the powder grain size to nano level was beneficial for reducing the sintering temperature and promoting the thermionic emission and mechanic properties.

  17. Preparation and LPG-gas sensing characteristics of p-type semiconducting LaNbO4 ceramic material

    NASA Astrophysics Data System (ADS)

    Balamurugan, C.; Lee, D.-W.; Subramania, A.

    2013-10-01

    Lanthanam niobate (LaNbO4) nanopowder was synthesized by a low temperature solution-based process. Thermal analysis TG/DTA, XRD, SEM, TEM, EDX, impedance analysis and Brunauer-Emmett-Teller (BET) were used to characterize the precursor and the calcined LaNbO4 powders. The gas sensing behavior of LaNbO4 nanopowder was studied with gases like liquid petroleum gas (LPG), ammonia (NH3), and ethanol (C2H5OH), as a function of various controlling factors like operating temperature, concentration of the gas and response time. It revealed that LaNbO4 is a very promising material for the detection of LPG (80%) and NH3 (59%) at relatively lower operating temperatures.

  18. Frequency dependence and fuel effect on optical properties of nano TiO2-based structures

    NASA Astrophysics Data System (ADS)

    Ghasemifard, Mahdi; Ghamari, Misagh; Iziy, Meysam

    2016-06-01

    TiO2-(Ti0.5Si0.5)O2 nanopowders (TS-NPs) with average particle size around 90 nm were successfully synthesized by controlled auto-combustion method by using citric acid/nitric acid (AC:NA) and urea/metal cation (U:MC). The structure of powders was studied based on their X-ray diffraction (XRD) patterns. The XRD of TS-NPs shows that rutile and anatase are the main phases of TS-NPs for AC:NA and U:MC, respectively. Particle size and histogram of nanopowders were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Optical properties of TS-NPs were calculated by Fourier transform infrared spectroscopy (FTIR) and Kramers-Kroning (KK) relation. Plasma frequencies of TS-NPs obtained from energy loss functions depend on fuels as a result of changes in crystal structure, particle size distribution, and morphology.

  19. Synthesis of metal oxide composite nanosheets and their pressure sensing properties

    NASA Astrophysics Data System (ADS)

    Tariq Saeed Chani, Muhammad; Bahadar Khan, Sher; Karimov, Kh. S.; Abid, M.; Asiri, Abdullah M.; Akhtar, Kalsoom

    2015-02-01

    This study presents the synthesis of metal oxides composite nanosheets (oxides of cobalt, zinc and iron) and their pressure sensing properties. A transducer has been fabricated to directly measure the resistance—pressure and impedance—pressure relationships of pristine nanopowder. At the initial stage, a nanopowder sample of 10 mm diameter and 1 mm height was placed in the transducer and by applying pressure of up to 8.15 kN/m2; the DC resistance and the impedance are reduced by 44% on average. It can be explained by the densification of the samples and a decrease in porosity due to the effect of pressure. It was also observed that the DC resistance increases with time and saturated within 8 min. It is considered that this phenomenon is based on the effect of displacement currents of bound charges. The dependences of the impedance phase (θ) on frequency and pressure have also been investigated.

  20. Hydrothermal corrosion of silicon carbide joints without radiation

    DOE PAGES

    Koyanagi, Takaaki; Katoh, Yutai; Terrani, Kurt A.; Kim, Young-Jin; Kiggans, James O.; Hinoki, Tatsuya

    2016-09-28

    In this paper, hydrothermal corrosion of four types of the silicon carbide (SiC) to SiC plate joints were investigated under pressurized water reactor and boiling water reactor relevant chemical conditions without irradiation. The joints were formed by metal diffusion bonding using molybdenum or titanium interlayer, reaction sintering using Ti—Si—C system, and SiC nanopowder sintering. Most of the joints withstood the corrosion tests for five weeks. The recession of the SiC substrates was limited. Based on the recession of the bonding layers, it was concluded that all the joints except for the molybdenum diffusion bond are promising under the reducing environmentsmore » without radiation. Finally, the SiC nanopowder sintered joint was the most corrosion tolerant under the oxidizing environment among the four joints.« less

  1. Activation of consolidation processes of alumina ceramics

    NASA Astrophysics Data System (ADS)

    Matrenin, S. V.; Zenin, B. S.; Tayukin, R. V.

    2016-02-01

    The methods for activating sintering ceramics based on Al2O3 by mechanical activation in the planetary mill, by adding in the mixture of nanopowders (NP) Al, Al2O3, and submicron powder TiO2, and by applying the technology of spark plasma sintering (SPS) are developed. It has been shown that adding the nanopowder up to 20 wt. % Al2O3 in a coarse powder α-Al2O3 activates the sintering process resulting in increased density and hardness of the sintered alumina ceramics. Substantial effect of increasing density of alumina ceramics due to adding the submicron powder TiO2 in the compound of initial powder mixtures has been established.

  2. Frequency dependence and fuel effect on optical properties of nano TiO2-based structures

    NASA Astrophysics Data System (ADS)

    Ghasemifard, Mahdi; Ghamari, Misagh; Iziy, Meysam

    2016-06-01

    TiO2-(Ti0.5Si0.5)O2 nanopowders (TS-NPs) with average particle size around 90 nm were successfully synthesized by controlled auto-combustion method by using citric acid/nitric acid (AC:NA) and urea/metal cation (U:MC). The structure of powders was studied based on their X-ray diffraction (XRD) patterns. The XRD of TS-NPs shows that rutile and anatase are the main phases of TS-NPs for AC:NA and U:MC, respectively. Particle size and histogram of nanopowders were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Optical properties of TS-NPs were calculated by Fourier transform infrared spectroscopy (FTIR) and Kramers-Kroning (KK) relation. Plasma frequencies of TS-NPs obtained from energy loss functions depend on fuels as a result of changes in crystal structure, particle size distribution, and morphology.

  3. Inelastic neutron scattering study of phonon density of states in nanostructured Si1 xGex thermoelectrics

    SciTech Connect

    Dhital, Chetan; Abernathy, Douglas L; Zhu, Gaohua; Ren, Zhifeng; Broido, D.; Wilson, Stephen D

    2012-01-01

    Inelastic neutron scattering measurements are utilized to explore relative changes in the generalized phonon density of states of nanocrystalline Si1 xGex thermoelectric materials prepared via ball-milling and hot-pressing techniques. Dynamic signatures of Ge clustering can be inferred from the data by referencing the resulting spectra to a density functional theoretical model assuming homogeneous alloying via the virtual-crystal approximation. Comparisons are also presented between as-milled Si nanopowder and bulk, polycrystalline Si where a preferential low-energy enhancement and lifetime broadening of the phonon density of states appear in the nanopowder. Negligible differences are however observed between the phonon spectra of bulk Si andhot-pressed, nanostructured Si samples suggesting that changes to the single-phonon dynamics above 4 meV play only a secondary role in the modified heat conduction of this compound.

  4. Second Discharge Characteristics of Aluminum Wire Electrical Explosion Under Various Argon Pressures

    NASA Astrophysics Data System (ADS)

    Yan, Wenyu; Zhang, Qiaogen; Zhao, Junping; Chen, Gangliang; Liu, Longchen

    2014-10-01

    Electrical wire explosion is a promising method for the preparation of metal nanopowder, but the properties of metal nanopowder are affected by the second discharge process of electrical wire explosion. The second discharge characteristics of aluminum wire electrical explosion under variant argon pressures were studied in a RLC discharge circuit. The results show that the curve of the second discharge voltages versus the pressure presents a U-shape. To clarify the roles of aluminum vapor and argon in the process of the second discharge, a spectrograph and a high speed framing camera were used to study the radiation spectrum and spatial distribution of the electrical explosion plasma. It is observed that argon participates in the second discharge process under low pressure. A discharge channel develops along the surface of the aluminum vapor. Under higher pressure, a second discharge takes place in the aluminum vapor and the discharge channel is inside the aluminum vapor.

  5. Properties of magnetic iron oxides used as materials for wastewater treatment

    NASA Astrophysics Data System (ADS)

    Matei, E.; Predescu, A.; Vasile, E.; Predescu, A.

    2011-07-01

    The paper describes the properties of some nanopowders obtained by coprecipitation and used as adsorbent for wastewater treatment. The Fe3O4 and γ-Fe2O3 nanopowders were obtained using iron salts and NaOH as precipitation agents. D-sorbitol was used to prevent the agglomeration between the nanoparticles. The particle size and distribution were detected using a transmission electron microscopy (TEM) and a scanning electron microscope (SEM) equipped with dispersive analyze system in X radiation energy (EDS). The structure of the iron oxide nanoparticles was characterized by X-ray powder diffraction. Thus, the nanoparticles were characterized and compare in terms of particle size and chemical composition and used for adsorption studies in order to removal hexavalent chromium from waste waters.

  6. The effect of the nanocarbon structures from laser pyrolysis on microorganisms evolution

    NASA Astrophysics Data System (ADS)

    Florescu, L. Gavrila; Fleaca, C.; Voicu, I.; Morjan, I.; Stamatin, L.; Stamatin, Ioan

    2007-07-01

    The carbon nanoparticles existing in environment are an important factor on healthy either by their toxicity or by interaction with pathogen microorganisms, which can make them more resistant or induce a specific mutagenesis. To understand the role of the nanocarbon particles, a series of carbon nanopowders was synthesized by gas-phase laser pyrolysis from different hydrocarbon-based mixture and used to design cell culture media for Escherichia coli and Staphylococcus aureus. The microorganisms, grown in a given incubation time, were investigated by fluorescent markers (water soluble quantum dots). We report that structure and properties of the nanocarbons influence the behaviour of the aerobic microorganisms. We show that carbon nanopowders are oxygen supplier for microorganisms and, at the same time, due to the presence of polyaromatics or heterogeneous atoms existent in the reactive gas mixture, could have an inhibition/poisoning effect.

  7. Fabrication of transparent ceramic laser media for high energy laser applications

    NASA Astrophysics Data System (ADS)

    Serivalsatit, Karn

    Sesquioxides of yttrium, scandium, and lutetium, i.e., Y2O 3, Sc2O3, and Lu2O3, have received a great deal of recent attention as potential high power solid state laser hosts. These oxides are receptive to lanthanide doping, including trivalent Er, Ho and Tm which have well known emissions at eye-safe wavelengths that can be excited using commercial diode lasers. These sesquioxides are considered superior to the more conventional yttrium aluminum garnet (YAG) due to their higher thermal conductivity, which is critical for high power laser system. Unfortunately, these oxides possess high melting temperatures, which make the growth of high purity and quality crystals using melt techniques difficult. Transparent ceramics are an attractive alternative route to laser hosts since the processing by-passes many of the challenges of refractory crystal melt growth. Moreover, transparent ceramics can possess added benefits relative to single crystals including faster production rates, the fabrication of larger sizes and composite laser structures, uniform doping concentrations, and better mechanical behavior. In order to fabricate highly transparent ceramics, the starting powders must have good dispersion and high reactivity. In this work, sesquioxide nanopowders with high sinterability were synthesized by solution precipitation techniques. For Y2O3, the nanopowders were prepared using yttrium nitrate and ammonium hydroxide with the addition of a small amount of ammonium sulfate. Doping sulfate ions was found to reduce the agglomeration of Y 2O3 nanopowders. The Y2O3 nanopowders with average particle size about 40 nm were obtained by calcining at 1050°C for 4 hours. Unfortunately, this method failed to prepare well-dispersed Sc 2O3 and Lu2O3 nanopowders. For Sc 2O3 and Lu2O3, the nanopowders were synthesized by using scandium or lutetium sulfate and hexamethylenetetramine (HMT). The precipitate precursors were calcined at 1100°C for 4 hours to yielded Sc2O3 and Lu2O3

  8. Thermoluminescence property of nano scale Al2O3: C by combustion method

    NASA Astrophysics Data System (ADS)

    Bharthasaradhi, R.; Nehru, L. C.

    2016-05-01

    In this study, thermoluminescence dosimetry material of carbon doped aluminium oxide by combustion method using Aluminium nitrate and Glycine. The Structure of the prepared Sample was carried out by XRD. The sample was nano crystalline in nature. Having hexagonal structure with unit cell parameters a=4.75Å, C=12.99Å. The surface morphology of the prepared nanopowder was carried out through (SEM). The morphology of the prepared sample is platelet structure and functional group analysis carried out through FT-IR Spectrum. The prepared sample was irradiated through γ-ray CO60 (100Gy) was used as γ-ray source. The thermoluminescence glow curve of the irradiated sample showed an isolated peak at around 200°C. The result suggest the prepared nanopowder is suitable for medical radiation dosimetry.

  9. Suppression of Grain Growth by Additive in Nanostructured P-type Bismuth Antimony Tellurides

    SciTech Connect

    Zhang, Qian; Zhang, Qinyong; Chen, S.; Liu, W S; Lukas, K; Yan, X; Wang, H; Wang, D.; Opeil, C; Chen, Gang; Ren, Z. F.

    2011-01-01

    Grain growth is a major issue in the preparation of nanostructured bismuth-antimony-tellurides during hot pressing the nanopowders into dense bulk samples. To prevent grain agglomeration during ball milling and growth during hot pressing, organic agent (Oleic Acid, OA) as additive was added into the materials at the beginning of the ball milling process. With different concentrations of OA (0.5, 1.0, 1.5, 2.0, and 2.5 wt%), grains with different sizes are obtained. Structural analysis clearly shows that it is the particle size of the nanopowders that determines the final grain size in the densely compacted bulk samples. A combination of small grains ~200–500 nm and nanopores leads to effective phonon scattering, which results in the decrease of lattice thermal conductivity, and ZT of ~1.3 at 373 K for the sample with 2.0 wt% OA.

  10. Microstructural and Tribological Investigation of High-Velocity Suspension Flame Sprayed (HVSFS) Al2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Bolelli, Giovanni; Rauch, Johannes; Cannillo, Valeria; Killinger, Andreas; Lusvarghi, Luca; Gadow, Rainer

    2009-03-01

    Al2O3 coatings were manufactured by the high-velocity suspension flame spraying (HVSFS) technique using a nanopowder suspension. Their structural and microstructural characteristics, micromechanical behavior, and tribological properties were studied and compared to conventional atmospheric plasma sprayed and high-velocity oxygen-fuel-sprayed Al2O3 coatings manufactured using commercially available feedstock. The HVSFS process enables near full melting of the nanopowder particles, resulting in very small and well flattened lamellae (thickness range 100 nm to 1 μm), almost free of transverse microcracking, with very few unmelted inclusions. Thus, porosity is much lower and pores are smaller than in conventional coatings. Moreover, few interlamellar or intralamellar cracks exist, resulting in reduced pore interconnectivity (evaluated by electrochemical impedance spectroscopy). Such strong interlamellar cohesion favors much better dry sliding wear resistance at room temperature and at 400 °C.

  11. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    NASA Astrophysics Data System (ADS)

    Artem'ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-01

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2-5 nm and for neutron energies 3 × 10-7-10-3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  12. Microwave assisted synthesis & properties of nano HA-TCP biphasic calcium phosphate

    NASA Astrophysics Data System (ADS)

    Ghomash Pasand, E.; Nemati, A.; Solati-Hashjin, M.; Arzani, K.; Farzadi, A.

    2012-05-01

    Biphasic calcium phosphate (BCP) nanopowders were synthesized by using microwave and non-microwave irradiation assisted processes. The synthesized powders were pressed under a pressure of 90 MPa, and then were sintered at 1000-1200°C for 1 h. The mechanical properties of the samples were investigated. The formed phases and microstructures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the synthesis time was shorter, along with a more homogeneous microstructure, when the microwave irradiation assisted method was applied. The compression strength and the Young's modulus of the samples synthesized with microwave irradiation were about 60 MPa and 3 GPa, but those of the samples synthesized without microwave irradiation were about 30 MPa and 2 GPa, respectively. XRD patterns of the microwave irradiation assisted and non-microwave irradiation assisted nanopowders showed the coexistence of hydroxyapatite (HA) and tricalcium phosphate (TCP) phases in the system.

  13. Low temperature sintering and color of a new compound Sn 1.24Ti 1.94O 3.66(OH) 1.50F 1.42

    NASA Astrophysics Data System (ADS)

    Xie, Yahong; Yin, Shu; Yamane, Hisanori; Hashimoto, Takatoshi; Sato, Tsugio

    2009-09-01

    Nanopowder of a new tin(II) titanium(IV) oxide hydroxide fluoride, Sn 1.24Ti 1.94O 3.66(OH) 1.50F 1.42 with the pyrochlore-type structure (cubic a = 10.3777(7) Å, space group Fd-3 m) was prepared by using a microwave-assisted solvothermal reaction. The grain size of the nanopowder was 20-30 nm in diameter. Sn 1.24Ti 1.94O 3.66(OH) 1.50F 1.42 decomposed above 300 °C, but could be sintered to relative density greater than 99% by a hydrothermal hot-pressing (HHP) method at 270 °C and 80 MPa for 4 h. The synthesized powder and solidified body obtained using HHP showed significantly different color, probably due to the difference in water content.

  14. Microwave-assisted synthesis of Zn-WO3 and ZnWO4 for pseudocapacitor applications

    NASA Astrophysics Data System (ADS)

    Kumar, R. Dhilip; Andou, Y.; Karuppuchamy, S.

    2016-05-01

    Nanosized Zn-WO3 and ZnWO4 materials have been prepared by microwave irradiation method. The physico-chemical characterization of the prepared nanomaterials was carried out by X-ray diffraction (XRD) and high resolution-scanning electron microscopy (HR-SEM) techniques. The size and shape of the ZnWO4 material can be controlled by changing the temperature. The XRD analysis revealed the formation of monoclinic phase of the calcined nanopowder. The HR-SEM images showed the sphere and plate shape particles. The electrochemical behavior of the ZnWO4 modified electrodes was investigated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) techniques. The synthesized material shows the pseudocapacitance. The specific capacitance of 35.70 F/g was achieved for the Zn-WO3 nanopowder.

  15. Intense ultraviolet emission from needle-like WO3 nanostructures synthesized by noncatalytic thermal evaporation

    PubMed Central

    2011-01-01

    Photoluminescence measurements showed that needle-like tungsten oxide nanostructures synthesized at 590°C to 750°C by the thermal evaporation of WO3 nanopowders without the use of a catalyst had an intense near-ultraviolet (NUV) emission band that was different from that of the tungsten oxide nanostructures obtained in other temperature ranges. The intense NUV emission might be due to the localized states associated with oxygen vacancies and surface states. PMID:21752275

  16. Structural and optical properties of vanadium doped SnO2 nanoparticles synthesized by the polyol method

    NASA Astrophysics Data System (ADS)

    Ben Soltan, Wissem; Mbarki, Mourad; Ammar, Salah; Babot, Odile; Toupance, Thierry

    2016-04-01

    Nanocrystalline mesoporous pure and vanadium-doped (0-10 at%) SnO2 nanopowders were prepared by the polyol route. Compositional, textural and structural properties of pure and V-doped SnO2 nanopowders were thoroughly characterized by FTIR, XRD, TEM, DTA/TGA/MS, N2 sorption porosimetry and UV-visible Diffuse Reflectance Spectroscopy. According to XRD patterns, undoped and V-doped SnO2 materials exhibited the typical rutile-type tetragonal structure of SnO2 with average crystallite sizes ranging from 8.8 to 5.4 nm when the vanadium content was increased up to 10 at%. As shown by UV-visible Diffuse Reflectance Spectroscopy, this decrease in particle size was accompanied by a decrease of the band gap energy value from 3.36 eV for pure SnO2 down to 2.2 eV for 10 at% V-doped SnO2. Moreover, both FTIR and EDX analyses assessed the presence of SnO2 and vanadium oxide species the amount of which increasing with the doping content. Finally, the nanopowders prepared were composed of a mesoporous network of aggregated nanoparticles with BET specific areas increasing from 46.6 ± 1.5 to 61.7 ± 2 m2 g-1 when the vanadium concentration was varied from 0 to 10 at%. The V-doped nanopowders prepared by the polyol method therefore showed all the required textural and structural features to be used as visible photocatalysts or active layer in gas sensors.

  17. Synthesis of Zn1- x Co x Al2O4 Spinel Nanoparticles by Liquid-Feed Flame Spray Pyrolysis: Ceramic Pigments Application

    NASA Astrophysics Data System (ADS)

    Betancur Granados, Natalia; Yi, Eongyu; Laine, Richard M.; Restrepo Baena, Oscar Jaime

    2016-01-01

    Zn1- x Co x Al2O4 ( x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) spinel nanoparticles were synthesized by a liquid-feed flame spray pyrolysis (LF-FSP) method by combusting metallorganic precursor solutions to produce nanopowders with precise composition control. The precursor solutions were aerosolized into a methane/oxygen flame where it was combusted in an oxygen-rich environment to result in nanopowders at a single step. The nanopowders were analyzed by x-ray diffraction, Fourier transform infrared spectroscopy, colorimetry, field emission scanning electron microscopy, transmission electron microscopy, and BET (Brunauer-Emmett-Teller) N2 adsorption. Results show formation of spherical nanopowders with specific surface areas of 42 m2/g to 50 m2/g, which correspond to average particle sizes of 26 nm to 31 nm. Single-phase materials were obtained with a high control of composition, which indicates that LF-FSP is an excellent method to produce mixed-metal oxides for applications in which powder homogeneity is crucial. The products were evaluated for ceramic pigment application, where the ratio of Zn to Co was gradually changed to observe the color change in the structure with the increase of cobalt concentration. The resulting pigments were calcined at 1200°C, which aimed to identify the color stability after a high-temperature process, whereby the colors were measured using the color space CIE L*a*b* under standardized light, D65. Finally, the powders were tested for ceramic decoration using transparent glazes and ceramic bodies. The application was carried out at 1250°C to evaluate the color performance after a decoration process.

  18. Synthesis, characterization, and cytotoxicity of the plasmid EGFP-p53 loaded on pullulan-spermine magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Eslaminejad, Touba; Nematollahi-Mahani, Seyed Noureddin; Ansari, Mehdi

    2016-03-01

    Magnetic nanoparticles have been used as effective vehicles for the targeted delivery of therapeutic agents that can be controlled in their concentration and distribution to a desired part of the body by using externally driven magnets. This study focuses on the synthesis, characterization, and functionalization of pullulan-spermine (PS) magnetic nanoparticles for medical applications. Magnetite nanopowder was produced by thermal decomposition of goethite (FeOOH) in oleic acid and 1-octadecene; pullulan-spermine was deposited on the magnetite nanoparticles in the form of pullulan-spermine clusters. EGFP-p53 plasmid was loaded on functionalized iron oleate to transfer into cells. Synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), vibrating sample magnetometry (VSM), and transmission electron microscopy (TEM). The encapsulation efficiency and drug loading efficiency of the nanocomplexes were tested. FTIR studies showed the presence of oleic acid and 1-octadecene in the iron oleate nanopowder and verified the interaction between spermine and pullulan. The characteristic bands of PS in the spectrum of the pullulan-spermine-coated iron oleate (PSCFO) confirmed that PS covered the surface of the iron oleate particles. TEM studies showed the average size of the iron oleate nanopowder, the PSCFO, and the plasmid-carrying PSCFO (PSCFO/pEGFP-p53) to be 34±12 nm, 100±50 nm and 172±3 nm, respectively. Magnetic measurements revealed that magnetic saturation of the PSCFO was lower in comparison with the iron oleate nanopowder due to the presence of organic compounds in the former. In cytotoxicity tests performed using U87 cells as glioblastoma cells, a 92% survival rate was observed at 50 μg/μl of the plasmid-carrying PSCFO, with an IC50 value of 189 μg/μl.

  19. Nanoparticles of spinel and perovskite ferromagnets and prospects for their application in medicine

    NASA Astrophysics Data System (ADS)

    Belous, A. G.; Solopan, S. O.; Yelenich, O. V.; Tovstolytkin, A. I.; Kolodiazhnyi, T. V.; Osinsky, S. P.; Bubnovskaya, L. N.

    2014-11-01

    In this work, nanoparticles of La0.75Sr0.25MnO3 compounds with perovskite structure and AFe2O4 (A = Mn, Fe, Co, Ni, Zn) with spinel structure have been synthesized by precipitation from diethylene glycol and microemulsion using Triton X-100 surfactant. Comparative X-ray diffraction and magnetic studies of the synthesized nanoparticles have been carried out. Magnetic fluids prepared from synthesized nanopowders have been characterized by calorimetric measurements of specific loss power (SLP).

  20. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    SciTech Connect

    Selvaraj, Mahalakshmi; Venkatachalapathy, V.; Karazhanov, S.; Pearce, J. M. E-mail: jeyanthinath@yahoo.co.in

    2015-11-15

    Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO{sub 3}) nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C) employing barium dichloride (BaCl{sub 2}) and titanium tetrachloride (TiCl{sub 4}) as precursors and sodium hydroxide (NaOH) as mineralizer for synthesis of BaTiO{sub 3} nanopowders. The as-prepared BaTiO{sub 3} powders were investigated for structural characteristics using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phase directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula). SEM and TEM analysis verified that the BaTiO{sub 3} nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED) shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric) phases of undoped BaTiO{sub 3} nanopowders can be stabilized by the sol-hydrothermal method.

  1. Efficient lasing in Yb:(YLa)2O3 ceramics

    NASA Astrophysics Data System (ADS)

    Snetkov, I. L.; Mukhin, I. B.; Balabanov, S. S.; Permin, D. A.; Palashov, O. V.

    2015-02-01

    A high-optical-quality sample of Yb0.1Y1.7La0.2O3 ceramics is prepared using a recently developed technique of selfpropagating high-temperature synthesis of rare-earth-doped yttrium oxide nanopowder from acetate - nitrates of metals. Its optical and spectral characteristics are studied, and quasi-cw lasing at a wavelength of 1033 nm is achieved with a power of 7 W and a slope efficiency of 25%.

  2. Effect of diamond on structure and properties of confined water

    NASA Astrophysics Data System (ADS)

    Batsanov, Stepan S.; Batsanov, Andrei S.

    2016-05-01

    The molar volume of water adsorbed on the surface of micro- and nano-powders of diamond was determined from the measured densities of dry and variously hydrated diamond powders. This volume decreases near the diamond surface and in the first adsorbed monolayer can be as low as half that of bulk water. This effect can be attributed to breakdown of the hydrogen bond network, as confirmed by IR spectroscopy and calorimetrical data for crystal hydrates of diamond.

  3. Synthesis and characterization of nanocrystalline Nd{sup 3+}-doped gadolinium scandium aluminum garnet powders by a gel-combustion method

    SciTech Connect

    Su, Jing; Miao, Ju-hong; Xu, Lin-hua; Ji, Yu-qing; Wang, Chu-qin

    2012-07-15

    Graphical abstract: The graph shows the emission spectra (λ{sub ex} = 808 nm) of 1 at.% Nd:GSAG powders sintered at different temperatures for 3 h. Compared with the powder sintered at 900 °C, the PL intensity of the powder sintered at 1000 °C decreased significantly. The changes in the PL intensity should mainly due to the crystallinity and dispersion of the powders. Highlights: ► We synthesized Nd:GSAG nano-powders by gel-combustion method successfully. ► We analyzed the structure and the morphology of the heat-treated products. ► We studied the optical characteristics of Nd:GSAG nano-powders. -- Abstract: Nd{sup 3+}-doped gadolinium scandium aluminum garnet (Nd:GSAG) precursor was synthesized by a gel combustion method using metal nitrates and citric acid as raw materials. The structure and morphology of the precursor and the sintered powders were studied by means of X-ray diffraction (XRD), infrared spectroscopy (IR) and transmission electron microscopy (TEM). The results showed that the precursor transformed into pure GSAG polycrystalline phase at about 800 °C, and the powders sintered at 800–1000 °C were well-dispersed with average particle sizes in the range of 30–80 nm. Optical properties of Nd:GSAG nano-powders were characterized by using photoluminescence spectroscopy. The highest photoluminescence intensity was achieved for the powder sintered at 900 °C.

  4. Ionic liquid diffusion properties in tetrapod-like ZnO photoanode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Kun-Mu; Chiu, Wei-Hao; Hsu, Chih-Yu; Cheng, Hsin-Ming; Lee, Chia-Hua; Wu, Chun-Guey

    2012-10-01

    Dye-sensitized solar cells (DSCs) are a promising PV device to solve global energy-related problems because it is clean, inexhaustible and readily available. In order to improve the stability and reliability of the DSCs, ionic liquid (IL) electrolyte is a good choice for replacement of volatile solvent electrolyte systems (e.g. acetonitrile). However, the high viscosity of ionic liquids leads to mass-transport limitations on the photocurrents in the DSCs. In this report, a new porous photoanode made by tetrapod-like ZnO (T-ZnO) nanopowders provides not only a fast electron transport path in ZnO but also an efficient ionic diffusion pathway in the photoanode pore, comparing to the spherical commercial ZnO (C-ZnO) nanopowders. In addition, the ionic diffusion dynamics of T-ZnO and C-ZnO devices are characterized by electrochemical impedance analysis (EIS), photocurrent transient dynamics. We observed the presence of a tetrapod-like framework, which allowed the photoanode to provide a more efficient ionic diffusion pathway than conventional one made of commercial spherical nanopowders provided.

  5. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products.

    PubMed

    Kavitha Sankar, P C; Ramakrishnan, Reshmi; Rosemary, M J

    2016-04-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. PMID:26838891

  6. New Coll-HA/BT composite materials for hard tissue engineering.

    PubMed

    Zanfir, Andrei Vlad; Voicu, Georgeta; Busuioc, Cristina; Jinga, Sorin Ion; Albu, Madalina Georgiana; Iordache, Florin

    2016-05-01

    The integration of ceramic powders in composite materials for bone scaffolds can improve the osseointegration process. This work was aimed to the synthesis and characterization of new collagen-hydroxyapatite/barium titanate (Coll-HA/BT) composite materials starting from barium titanate (BT) nanopowder, hydroxyapatite (HA) nanopowder and collagen (Coll) gel. BT nanopowder was produced by combining two wet-chemical approaches, sol-gel and hydrothermal methods. The resulting materials were characterized in terms of phase composition and microstructure by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. Moreover, the biocompatibility and bioactivity of the composite materials were assessed by in vitro tests. The synthesized BT particles exhibit an average size of around 35 nm and a spherical morphology, with a pseudo-cubic or tetragonal symmetry. The diffraction spectra of Coll-HA and Coll-HA/BT composite materials indicate a pronounced interaction between Col and the mineral phases, meaning a good mineralization of Col fibres. As well, the in vitro tests highlight excellent osteoinductive properties for all biological samples, especially for Coll-HA/BT composite materials, fact that can be attributed to the ferromagnetic properties of BT.

  7. Effect of preparation procedure and nanostructuring on the thermoelectric properties of the lead telluride-based material system AgPbmBiTe2+m (BLST-m)

    NASA Astrophysics Data System (ADS)

    Falkenbach, Oliver; Schmitz, Andreas; Hartung, David; Dankwort, Torben; Koch, Guenter; Kienle, Lorenz; Klar, Peter J.; Mueller, Eckhard; Schlecht, Sabine

    2016-06-01

    We report on the preparation and thermoelectric properties of the quaternary system AgPbmBiTe2+m (Bismuth-Lead-Silver-Tellurium, BLST-m) that were nanostructured by mechanical alloying. Nanopowders of various compositions were compacted by three different methods: cold pressing/annealing, hot pressing, and short term sintering. The products are compared with respect to microstructure and sample density. The thermoelectric properties were measured: thermal conductivity in the temperature range from 300 K to 800 K and electrical conductivity and Seebeck coefficient between 100 K and 800 K. The compacting method and the composition had a substantial impact on carrier concentration and mobility as well as on the thermoelectric parameters. Room temperature Hall measurements yielded carrier concentrations in the order of 1019 cm-3, slightly increasing with increasing content of the additive silver bismuth telluride to the lead telluride base. ZT values close to the ones of bulk samples were achieved. X-ray diffraction and transmission electron microscopy (TEM) showed macroscopically homogeneous distributions of the constituting elements inside the nanopowders ensembles, indicating a solid solution. However, high resolution transmission electron microscopy (HRTEM) revealed disorder on the nanoscale inside individual nanopowders grains.

  8. Effect of small particle sizes on the measured density of nanocrystalline powders of nonstoichiometric tantalum carbide TaC y

    NASA Astrophysics Data System (ADS)

    Kurlov, A. S.; Gusev, A. I.

    2016-08-01

    Nanocrystalline powders of the nonstoichiometric tantalum carbide TaC y (0.81 ≤ y ≤ 0.96) with an average particle size in the range from 45 to 20 nm have been prepared using high-energy ball milling of coarse-grained powders. The density of the initial coarse-grained and prepared nanocrystalline powders of TaC y has been measured by helium pycnometry. The sizes of particles in tantalum carbide powders have been estimated using the X-ray diffraction analysis and the Brunauer-Emmett-Teller (BET) method. The density of TaC y nanopowders measured by helium pycnometry is underestimated as compared to the true density due to the adsorption of helium by the highly developed surface of the nanocrystalline powders. It has been shown that the difference between the true and measured densities is proportional to the specific surface area or is inversely proportional to the average particle size of the nanopowders. The large difference between the true and measured pycnometric densities indicates a superhydrophobicity of the tantalum carbide nanopowders.

  9. Luminescence properties of LaF{sub 3}:Ce nanoparticles encapsulated by oleic acid

    SciTech Connect

    Kim, Jaewoo; Lee, Jun-Hyung; An, Hyejin; Lee, Jungkuk; Park, Seong-Hee; Seo, Young-Soo; Miller, William H.

    2014-09-15

    Highlights: • In-situ hydrophobization of water dispersible LaF{sub 3}:Ce nanoparticles was achieved. • Oleic acid surface modification of the nanoparticles was verified by IR spectra. • Quantum yields of LaF{sub 3}:Ce and OA-LaF{sub 3}:Ce nanoparticles were evaluated. • Quantum yields of LaF{sub 3}:Ce are strongly dependent on OA surface modification. - Abstract: Cerium ions doped lanthanum fluoride (LaF{sub 3}:Ce) nanopowder as well as LaF{sub 3}:Ce nanopowder whose surfaces was modified by oleic acid (OA) were synthesized by using an in-situ hydrothermal process under the various doping concentrations. Based on the XRD spectra and TEM images, it was confirmed that the crystalline structured hexagonal LaF{sub 3}:Ce nanopowder was synthesized. Oleic acid was efficient for conversion of the water dispersible LaF{sub 3}:Ce nanoparticles to hydrophobic ones. Surface modification was verified by FTIR absorption spectrum as well as TEM images, showing no agglomeration between 5 and 10 nm scaled particles. Photoluminescence based on 5d ⟶ 4f electronic transition of cerium ions excited at λ{sub ex} ∼256 nm for both neat and OA encapsulated LaF{sub 3}:Ce nanoparticles decreases as the cerium concentration increases, while the quantum yields of OA encapsulated nanoparticles were much lower than the neat particles due to low photon transmittance of OA at the range longer than ∼350 nm.

  10. Reduction of silver (I) using defatted cashew nut shell starch and its structural comparison with commercial product.

    PubMed

    Velmurugan, Palanivel; Park, Jung-Hee; Lee, Sang-Myeong; Jang, Jum-Suk; Yi, Young-Joo; Han, Sang-Sub; Lee, Sang-Hyun; Cho, Kwang-Min; Cho, Min; Oh, Byung-Taek

    2015-11-20

    In this current study, we report on the reduction of noble metal silver into silver nanoparticles using defatted cashew nut shell (CNS) starch as both the reducing and capping agents. Furthermore, it was compared with commercially available silver nanopowder for the first time. Color changes, ultraviolet-visible spectra (433.76nm), X-ray diffraction peaks (2θ=37.8, 46.3, 66.2, and 77.92) revealed the face-centered cubic (fcc) geometry of silver nanoparticles, scanning electron microscopy-energy dispersive spectroscopy confirmed the presence of elemental silver nanoparticles and the defatted CNS starch silver nanoparticle structures was in accordance to commercial silver nanopowder. The size of both the nanoparticles was found to be similar in the range of 10-50nm as analyzed using high resolution-transmission electron micrographs. The FT-IR spectroscopy revealed the shifting of NH and OH of defatted CNS starch, starch based silver nanoparticle and commercial silver nanopowder has parallel functional groups. The use of environmentally benign and renewable materials like defatted CNS starch offers an alternative to large scale synthesis of silver nanoparticle and includes numerous benefits like eco-friendly and compatibility for pharmaceutical and biomedical applications.

  11. Synthesis and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapy.

    PubMed

    Ivashchenko, Olena; Lewandowski, Mikołaj; Peplińska, Barbara; Jarek, Marcin; Nowaczyk, Grzegorz; Wiesner, Maciej; Załęski, Karol; Babutina, Tetyana; Warowicka, Alicja; Jurga, Stefan

    2015-10-01

    The article is devoted to preparation and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapy. Magnetite nanopowder was produced by thermochemical technique; silver was deposited on the magnetite nanoparticles in the form of silver clusters. Magnetite/silver nanocomposite was investigated by XRD, SEM, TEM, AFM, XPS, EDX techniques. Adsorptivity of magnetite/silver nanocomposite towards seven antibiotics from five different groups was investigated. It was shown that rifampicin, doxycycline, ceftriaxone, cefotaxime and doxycycline may be attached by physical adsorption to magnetite/silver nanocomposite. Electrostatic surfaces of antibiotics were modeled and possible mechanism of antibiotic attachment is considered in this article. Raman spectra of magnetite, magnetite/silver and magnetite/silver/antibiotic were collected. It was found that it is difficult to detect the bands related to antibiotics in the magnetite/silver/antibiotic nanocomposite spectra due to their overlap by the broad carbon bands of magnetite nanopowder. Magnetic measurements revealed that magnetic saturation of the magnetite/silver/antibiotic nanocomposites decreased on 6-19 % in comparison with initial magnetite nanopowder. Pilot study of antimicrobial properties of the magnetite/silver/antibiotic nanocomposites were performed towards Bacillus pumilus.

  12. Understanding the effect of flower extracts on the photoconducting properties of nanostructured TiO2.

    PubMed

    Ansari, S G; Bhayana, Laitka; Umar, Ahmad; Al-Hajry, A; Al-Deyab, Salem S; Ansari, Z A

    2012-10-01

    Here we report an easy method to improve the optoelectronic properties of commercially available TiO2 nanopowder using extracts of various flowers viz. Calendula Orange (CO), Calendula Yellow (CY), Dahlia Violet (DV), Dahlia Yellow (DY), Rabbit flower (RF), Sweet Poppy (SP), Sweet Williams (SW) and their Mixed Extracts (ME). Various analysis techniques such as UV-Vis, FTIR, FESEM, XRD, and Raman spectroscopy were used to characterize for elemental, structural and morphological properties of the unmixed/mixed TiO2 nanopowder. TiO2 nanopowder was also calcined at 550 degrees C. Thick films of the these unmixed/mixed powder were printed, using conventional screen printing method, on fluorine doped tin oxide (FTO) substrate with organic binders and dried at 45 degrees C. The photoconducting properties are investigated as a function of wavelength from ultra-violet (UV) to infra-red (IR) region at a constant illumination intensity. Photocurrent gradually decreases when irradiated from UV to IR region. In case of unmixed and uncalcined TiO2, conductance decreased continuously whereas when extracts are added, a flat region of conductance is observed. The overall effect of extracts (colour pigments) is seen as an increase in the photoconductance. Highest photoconductance is observed in case of DY flower extract. Anthocyanins, present in flowers are known to have antioxidative properties and hence can contribute in photoconduction by reducing the surface adsorbed oxygen. This investigation indicates the potential use of flower extracts for dye sensitized solar cell (DSSC).

  13. Densification of nano-yttria powders for IR window applications

    NASA Astrophysics Data System (ADS)

    Willingham, Charles B.; Wahl, Joseph M.; Hogan, Patrick K.; Kupferberg, Lenn C.; Wong, Thomas Y.; De, Alok M.

    2003-09-01

    Commerically available yttrium oxide nanopowders were evaluated as starting materials for preparation of transparent materials. The objective is an yttria optical ceramic exhibiting approximately one micrometer grain size to provide increased strength and thermal shock resistance. Three vendors were selected to provide nanoscale powders for testing and evaluation. They were compared to a conventional (5 μm) powder previously used to prepare optical quality ceramic yttria. While all of the selected nanopowders had impurity levels that were too high to allow processing to full transparency, two of the samples were processed to full density and moderate transparency was produced in one. In preparation for processing via Hot Isostatic Press (HIP) samples were sintered to a closed pore state at temperatures as low as 1400 °C, and with soak times as short as 12 minutes at 1550 °C. The use of ultrasonic attenuation as a technique for measuring particle size distributions in slurries was explored and found to be an invaluable tool when colloidally processing nanopowders. Finally, the areas most important for continued improvements were identified.

  14. Understanding the effect of flower extracts on the photoconducting properties of nanostructured TiO2.

    PubMed

    Ansari, S G; Bhayana, Laitka; Umar, Ahmad; Al-Hajry, A; Al-Deyab, Salem S; Ansari, Z A

    2012-10-01

    Here we report an easy method to improve the optoelectronic properties of commercially available TiO2 nanopowder using extracts of various flowers viz. Calendula Orange (CO), Calendula Yellow (CY), Dahlia Violet (DV), Dahlia Yellow (DY), Rabbit flower (RF), Sweet Poppy (SP), Sweet Williams (SW) and their Mixed Extracts (ME). Various analysis techniques such as UV-Vis, FTIR, FESEM, XRD, and Raman spectroscopy were used to characterize for elemental, structural and morphological properties of the unmixed/mixed TiO2 nanopowder. TiO2 nanopowder was also calcined at 550 degrees C. Thick films of the these unmixed/mixed powder were printed, using conventional screen printing method, on fluorine doped tin oxide (FTO) substrate with organic binders and dried at 45 degrees C. The photoconducting properties are investigated as a function of wavelength from ultra-violet (UV) to infra-red (IR) region at a constant illumination intensity. Photocurrent gradually decreases when irradiated from UV to IR region. In case of unmixed and uncalcined TiO2, conductance decreased continuously whereas when extracts are added, a flat region of conductance is observed. The overall effect of extracts (colour pigments) is seen as an increase in the photoconductance. Highest photoconductance is observed in case of DY flower extract. Anthocyanins, present in flowers are known to have antioxidative properties and hence can contribute in photoconduction by reducing the surface adsorbed oxygen. This investigation indicates the potential use of flower extracts for dye sensitized solar cell (DSSC). PMID:23421149

  15. Controlled synthesis of nickel ferrite nanocrystals with tunable properties using a novel induction thermal plasma method

    SciTech Connect

    Bastien, Samuel; Braidy, Nadi

    2013-12-07

    Nickel ferrite spinel nanopowders were synthesised using a solution spray radio-frequency inductively coupled plasma reactor over a wide range of compositions (Ni{sub x}Fe{sub 3-x}O{sub 4}, x ≤ 1), with metastable powders produced for x = 0, 0.25, and 0.5. X-ray fluorescence and X-ray diffraction coupled to Rietveld refinement show that this synthesis technique offers an excellent level of control over both the chemical and crystallographic composition of the nanopowder through the control of the input Fe/Ni ratio. The technique produces highly crystalline nanopowders without the need for post-synthesis annealing. A bulk Fe/Ni ratio ≥2 yields a pure spinel Ni{sub x}Fe{sub 3-x}O{sub 4} phase, whereas Fe/Ni ratio <2 results in the excess Ni partitioning to a secondary bunsenite (Ni{sub x},Fe{sub 1-x})O phase. Morphological analysis using transmission electron microscopy shows that two types of particles are produced in different parts of the reactor: a highly faceted powder with the truncated octahedron morphology and a smaller-sized random agglomerate. The faceted particles have a log-normal particle size distribution, with an average size of about 30 nm while the agglomerates have a characteristic length of ∼3–5 nm.

  16. Development of Nanomaterials for Nuclear Energetics

    NASA Astrophysics Data System (ADS)

    Petrunin, V. F.

    Structure and properties peculiarities of the nanocrystalline powders give the opportunity to design new and to develop a modernization of nuclear energy industry materials. It was shown experimentally, that addition of 5-10% uranium dioxide nanocrystalline powder to traditional coarse powder allows to decrease the sintering temperature or to increase the fuel tablets size of grain. Similar perspectives for the technology of neutron absorbing tablets of control-rod modernization are shown by nanopowder of dysprosium hafnate changing instead now using boron carbide. It is powders in nanocrystalline state get an opportunity to sinter them and to receive compact tablet with 8,2-8,4 g/cm2 density for automatic defence system of nuclear reactor. Resource of dysprosium hafnate ceramics can be 18-20 years instead 4-5 years for boron carbide. To step up the radiation-damage stability of fuel element jacket material was suggested to strengthen a heat-resistant ferrite-martensite steel by Y2O3 nanocrystalline powder addition. Nanopowder with size of particles 560 nm and crystallite size 9 nm was prepeared by chemical coprecipitation method. To make lighter the container for transport and provisional disposal of exposed fuel from nuclear reactor a new boron-aluminium alloy called as boral was developed. This composite armed with nanopowders of boron-containing materials and heavy metals oxides can replace succesburnt-up corrosion-resistant steels.

  17. Reduction of silver (I) using defatted cashew nut shell starch and its structural comparison with commercial product.

    PubMed

    Velmurugan, Palanivel; Park, Jung-Hee; Lee, Sang-Myeong; Jang, Jum-Suk; Yi, Young-Joo; Han, Sang-Sub; Lee, Sang-Hyun; Cho, Kwang-Min; Cho, Min; Oh, Byung-Taek

    2015-11-20

    In this current study, we report on the reduction of noble metal silver into silver nanoparticles using defatted cashew nut shell (CNS) starch as both the reducing and capping agents. Furthermore, it was compared with commercially available silver nanopowder for the first time. Color changes, ultraviolet-visible spectra (433.76nm), X-ray diffraction peaks (2θ=37.8, 46.3, 66.2, and 77.92) revealed the face-centered cubic (fcc) geometry of silver nanoparticles, scanning electron microscopy-energy dispersive spectroscopy confirmed the presence of elemental silver nanoparticles and the defatted CNS starch silver nanoparticle structures was in accordance to commercial silver nanopowder. The size of both the nanoparticles was found to be similar in the range of 10-50nm as analyzed using high resolution-transmission electron micrographs. The FT-IR spectroscopy revealed the shifting of NH and OH of defatted CNS starch, starch based silver nanoparticle and commercial silver nanopowder has parallel functional groups. The use of environmentally benign and renewable materials like defatted CNS starch offers an alternative to large scale synthesis of silver nanoparticle and includes numerous benefits like eco-friendly and compatibility for pharmaceutical and biomedical applications. PMID:26344252

  18. Evaluation of antibacterial properties of Barium Zirconate Titanate (BZT) nanoparticle

    PubMed Central

    Mohseni, Simin; Aghayan, Mahdi; Ghorani-Azam, Adel; Behdani, Mohammad; Asoodeh, Ahmad

    2014-01-01

    So far, the antibacterial activity of some organic and inorganic compounds has been studied. Barium zirconate titanate [Ba(ZrxTi1-x)O3] (x = 0.05) nanoparticle is an example of inorganic materials. In vitro studies have provided evidence for the antibacterial activity of this nanoparticle. In the current study, the nano-powder was synthesized by sol-gel method. X-ray diffraction showed that the powder was single-phase and had a perovskite structure at the calcination temperature of 1000 °C. Antibacterial activity of the desired nanoparticle was assessed on two gram-positive (Staphylococcus aureus PTCC1431 and Micrococcus luteus PTCC1625) and two gram-negative (Escherichia coli HP101BA 7601c and clinically isolated Klebsiella pneumoniae) bacteria according to Radial Diffusion Assay (RDA). The results showed that the antibacterial activity of BZT nano-powder on both gram-positive and gram-negative bacteria was acceptable. The minimum inhibitory concentration of this nano-powder was determined. The results showed that MIC values for E. coli, K. pneumoniae, M. luteus and S. aureus were about 2.3 μg/mL, 7.3 μg/mL, 3 μg/mL and 12 μg/mL, respectively. Minimum bactericidal concentration (MBC) was also evaluated and showed that the growth of E. coli, K. pneumoniae, M. luteus and S. aureus could be decreased at 2.3, 14, 3 and 18 μg/mL of BZT. Average log reduction in viable bacteria count in time-kill assay ranged between 6 Log10 cfu/mL to zero after 24 h of incubation with BZT nanoparticle. PMID:25763046

  19. Evaluation of antibacterial properties of Barium Zirconate Titanate (BZT) nanoparticle.

    PubMed

    Mohseni, Simin; Aghayan, Mahdi; Ghorani-Azam, Adel; Behdani, Mohammad; Asoodeh, Ahmad

    2014-01-01

    So far, the antibacterial activity of some organic and inorganic compounds has been studied. Barium zirconate titanate [Ba(ZrxTi₁-x)O₃] (x = 0.05) nanoparticle is an example of inorganic materials. In vitro studies have provided evidence for the antibacterial activity of this nanoparticle. In the current study, the nano-powder was synthesized by sol-gel method. X-ray diffraction showed that the powder was single-phase and had a perovskite structure at the calcination temperature of 1000 °C. Antibacterial activity of the desired nanoparticle was assessed on two gram-positive (Staphylococcus aureus PTCC1431 and Micrococcus luteus PTCC1625) and two gram-negative (Escherichia coli HP101BA 7601c and clinically isolated Klebsiella pneumoniae) bacteria according to Radial Diffusion Assay (RDA). The results showed that the antibacterial activity of BZT nano-powder on both gram-positive and gram-negative bacteria was acceptable. The minimum inhibitory concentration of this nano-powder was determined. The results showed that MIC values for E. coli, K. pneumoniae, M. luteus and S. aureus were about 2.3 μg/mL, 7.3 μg/mL, 3 μg/mL and 12 μg/mL, respectively. Minimum bactericidal concentration (MBC) was also evaluated and showed that the growth of E. coli, K. pneumoniae, M. luteus and S. aureus could be decreased at 2.3, 14, 3 and 18 μg/mL of BZT. Average log reduction in viable bacteria count in time-kill assay ranged between 6 Log₁₀ cfu/mL to zero after 24 h of incubation with BZT nanoparticle.

  20. Mechanochemical synthesis of nanostructured Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} solid-solution powders and their surface photovoltage responses

    SciTech Connect

    Chen Xiaofeng; Luo Qiong; Han, Mandi; Tan, Ooi Kiang; Tse, Man Siu; Huang Hui

    2012-05-15

    A series of nanostructure Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} (STFx, x=0.4, 0.6, 0.8) solid-solution powders were synthesized by mechanochemical approach milling from the mixture of SrO, Fe{sub 2}O{sub 3} and TiO{sub 2} metal oxides at room temperature. The XRD results revealed that the perovskite STFx nanoparticles were finally formed with few residual {alpha}-Fe{sub 2}O{sub 3} detected dependent on the milling conditions. The structure evolution suggested that the mechanochemical synthesis underwent via a solid-state reaction route to initially form Ti-rich perovskite and then incorporate with the residual {alpha}-Fe{sub 2}O{sub 3} to achieve the estimated composition. The synthesized STF08 powders exhibited the significant Surface Photovoltage (SPV) spectrum response both in UV and in visible-light region with p-type semiconductor behavior. This finding suggested that the synthesized STF nanopowders could potentially utilize more solar spectrum energy effectively for photo-oxidation and photo-catalysis applications. - Graphical abstract: It is demonstrated that Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} perovskite nanopowders were successfully synthesized by mechanochemical reaction approach at room temerpature, and the synthesized STF08 powders showed the significant SPV response in UV-VIS region with p-type semiconductor behaviors. Highlights: Black-Right-Pointing-Pointer Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} nanopowders synthesized by mechanochemical reaction approach. Black-Right-Pointing-Pointer The reaction process was shorten by introduce high impact energy. Black-Right-Pointing-Pointer Synthesized STF08 powders show the significant SPV response in UV-VIS region. Black-Right-Pointing-Pointer Synthesized STFx powders show p-type semiconductor behaviors.

  1. Highly active La0.4Sr0.6Co0.8Fe0.2O3-δ nanocatalyst for oxygen reduction in intermediate temperature-solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Chanquía, Corina M.; Mogni, Liliana; Troiani, Horacio E.; Caneiro, Alberto

    2014-12-01

    Pure-phase La0.4Sr0.6Co0.8Fe0.2O3-δ (LSCF) nanocrystallites were successfully synthesized by the combustion method, by employing glycine as fuel and complexing agent, and ammonium nitrate as combustion trigger. The morphological and structural characterization of the LSCF nanopowders was performed by using X-ray diffraction, N2 physisorption and electron microscopy. The LSCF nanopowder consists of interconnected nanocrystallites (∼45 nm) forming a sponge-like structure with meso and macropores, being its specific surface area around 10 m2 g-1. Crystalline structural analyses show that the LSCF nanopowder presents cubic symmetry in the Pm-3m space group. By employing the spin coating technique and different thermal treatments, symmetrical cells with different electrode crystallite size (45 and 685 nm) were built, by using La0.8Sr0.2Ga0.8Mg0.2O3-δ as electrolyte. Electrochemical impedance spectroscopy measurements were performed varying temperature and pO2. The area specific resistance of the nanostructured sample (45 nm) decreases by two orders of magnitude with respect to the submicrostructured sample (685 nm), reaching values as low as 0.8 Ω cm2 at 450 °C. This improvement is attributed to the cathode morphology optimization in the nanoscale, i.e., enlargement of the exposed surface area and shortening of the oxygen diffusion paths, which reduce the polarization resistance associated to the surface exchange and O-ion bulk diffusion process.

  2. Nanocrystalline Ce1- x La x O2- δ Solid Solutions Synthesized by Hydrolyzing and Oxidizing

    NASA Astrophysics Data System (ADS)

    Hou, Xueling; Xue, Yun; Han, Ning; Lu, Qianqian; Wang, Xiaochen; Phan, Manh-Huong; Zhong, Yunbo

    2016-05-01

    We undertook a novel batch production approach for the synthesis of CeO2 nanopowders doped with rare earth elements. Solid solution nanopowders of Ce1- x La x O2- δ ( x = 0.15) were successfully synthesized in a large-scale and low-cost production by hydrolyzing and oxidizing Ce-La-C alloys at room temperature and subsequent calcining of their powders at different temperatures (873-1073 K) for 1 h. The Ce-La-C alloys were prepared in a vacuum induction melting furnace. The final products were characterized by x-ray diffraction, transmission electron microscopy, Brunner-Emmet-Teller (BET) surface area analyzer, and Raman spectroscopy. The calculated lattice parameters of the cubic fluorite-type phase of CeO2 tended to increase when La3+ was incorporated into CeO2. The F 2g band shift and the absence of a peak corresponding to La2O3 in the Raman spectra consistently confirmed the incorporation of the La3+ ion into CeO2, and the formation of Ce1- x La x O2- δ solid solutions as manifested by increased oxygen vacancy defects. High-quality Ce1- x La x O2- δ nanopowders of ~10-15 nm diameter with a high BET surface area of ~77 m2 g-1 were obtained. The average crystallite size of Ce1- x La x O2- δ was found to be smaller than that of CeO2 for the same calcination temperature of 1073 K, demonstrating that the introduction of La3+ into CeO2 can stabilize the host lattice and refine the grain size at high temperatures.

  3. Application of magnetic iron-based nanosorbents for water cleaning

    NASA Astrophysics Data System (ADS)

    Medvedeva, Irina; Bakhteeva, Iuliia; Revvo, Anastasya; Byzov, Ilya; Baerner, Klaus

    2014-05-01

    Iron-based magnetic nanopowders (Fe, γ-Fe2O3, γ-Fe3O4) are effective sorbents for the cleaning of water from heavy metal ions, radionuclides, organic and biological materials. The sorption capacity of the powder is defined by the specific surface which for particle diameter in nanosized range comes up to hundreds of m2/g. However, the small particle size creates difficulties to separate the solid phase from the water suspension using conventional mechanical filtration and sedimentation methods without additional reagents. If the nanoparticles have magnetic moments, their separation from aqueous solution can be enhanced in gradient magnetic fields. This will help to avoid a secondary water pollution by coagulants and flocculants. The sedimentation dynamics of the magnetite (Fe3O4) nanopowders with different particle sizes (10-100 nm) in water in gradient magnetic fields of different configurations ( radial and strip), with the strengths H = 0.5-6 kOe, and gradients up to dH/dz= 2 kOe/cm was studied by optical and by Nuclear Magnetic Resonance (NMR) methods. . In the gravitation field the suspensions of the small particles (~ 10-20 nm) remain stable for over 20 hours. The sedimentation process can be greatly accelerated by the action of a vertical gradient magnetic field, and the sedimentation time is reduced down to several minutes. In a gradient magnetic field enhanced by a steel grid the sedimentation of the nanopowder (c0= 0.1 g/l) for 180 minutes resulted in the reduction of the iron concentration in water down to 0.4 mg/l. In the flowing water regime the residual iron concentration in water 0.3 mg/l is reached after 80 minutes. This corresponds to the hygienic and environmental standards for drinking water and fishery.

  4. Zr doped anatase supported reticulated ceramic foams for photocatalytic water purification

    SciTech Connect

    Plesch, G.; Vargová, M.; Vogt, U.F.; Gorbár, M.; Jesenák, K.

    2012-07-15

    Highlights: ► Thick photocatalytic anatase films on macroporous reticulated ceramic foams. ► Alumina and alumina–mullite macroporous reticulated foams as photocatalyst support. ► Zr doping significantly improves the TiO{sub 2} film activity in phenol photomineralization. ► Comparison of photocatalytic activity of thick films and powder suspensions. -- Abstract: Titanium dioxide films were deposited on macroporous reticulated Al{sub 2}O{sub 3} and alumina–mullite foams with pore sizes of 15 ppi (pores per inch). Coatings were prepared from suspensions of precursor powders of Aeroxide{sup ®} P25 nanopowder and precipitated TiO{sub 2} by using a dip coating process. The TiO{sub 2} forms films with a thickness of ∼2–20 μm. The photocatalytic activity was characterized as the mineralization rate of an aqueous phenol solution under UVA irradiation by the TOC technique. Precipitated TiO{sub 2} films have nearly the same photocatalytic activity as a titania suspension, in which powder aggregates have a size comparable with the thickness of the films. Samples made of Aeroxide{sup ®} P25 nanopowder, in which the size of aggregates is ∼0.1 μm show higher efficiency of photodecomposition in suspensions with films. The doping of precipitated anatase with Zr(IV) in the atomic ratio Zr/Ti = 0.008 significantly improves the photocatalytic activity of the foam supported titania. Zr doped anatase films show better performance as the films prepared only from Aeroxide{sup ®} P25 nanopowder.

  5. Luminescence of Y3Al5O12:Eu3+ nanophosphors in blood and organic media

    NASA Astrophysics Data System (ADS)

    Kolesnikov, I. E.; Povolotskiy, A. V.; Tolstikova, D. V.; Manshina, A. A.; Mikhailov, M. D.

    2015-02-01

    Lanthanide-doped nanoparticles characterized by their large Stokes’ shifts, narrow emission bands, long lifetimes and high photostability are promising candidates for luminescent labels in biological research. That is why investigation of lanthanide-doped nanoparticles’ fluorescence in complex biological media (like blood and Intralipid) is of great importance from the standpoint of applicability in medicine and biology. Nanopowder of yttrium aluminum garnet doped with Eu3+ was synthesized by the Pechini method. X-ray diffraction data demonstrated formation of cubic crystalline phase without any impurities. The synthesized sample was found to be well-defined 20-50 nm nanoparticles agglomerated to clusters no bigger than 200 nm in diameter. The emission spectrum of nanocrystalline powder consists of characteristic narrow lines attributed to 5D0-7FJ transitions. It was found that the long lifetime of 5D0 level (4.13 ms) allows using time-resolved techniques to eliminate fluorescence of the biological background. The possibility of the luminescence signal detection of Y3Al5O12:Eu3+ nanopowder (0.14 mg per 1 ml) against the background of blood auto-luminescence was demonstrated. Y3Al5O12:Eu3+ phosphors luminescence in blood media showed timing stability whereas fluorescein luminescence dropped down by a factor of 3 after 20 min. It was found that the luminescence signal of Y3Al5O12:Eu3+ phosphors could be detected through 5 mm of biological tissue. The possibility of independent registration of nanopowders doped with different REI-ions (Eu3+ and Nd3+) was investigated.

  6. Recent progress in the synthesis of magnetic titania/iron-based, composite nanoparticles manufactured by laser pyrolysis

    NASA Astrophysics Data System (ADS)

    Fleaca, C. T.; Scarisoreanu, M.; Morjan, I.; Alexandrescu, R.; Dumitrache, F.; Luculescu, C.; Morjan, I. P.; Birjega, R.; Niculescu, A.-M.; Filoti, G.; Kuncser, V.; Vasile, E.; Danciu, V.; Popa, M.

    2014-05-01

    We report the continuous, single step synthesis of titania/iron-based magnetic nanocomposites in a single step using gas-phase laser pyrolysis technique by separately and simultaneously introducing the precursors (together with C2H4 sensitizer) in the reaction zone: Fe(CO)5 on the central flow and, using air as carrier, TiCl4 on the annular coflow. The laser power and, for the last experiment, the injection geometry were modified in order to change the Fe/Ti ratio in the resulted nanopowders. Due to the specific geometry, the reaction zone (visible as a flame) have a reductive inner central zone surrounded by and oxidative environment, allowing the formation of the metallic-carbidic iron and/or iron-doped titania and iron oxide nanophases. The raw Fe-containing nanopowders have a ferromagnetic behavior, those synthesized at higher laser power and gas velocities show significant saturation magnetization Ms values (10-12 emu/g), whereas those obtained (with higher yield and carbon content) at lower laser power and gas velocities (using wider central nozzle cross-section) have a very weak magnetization (Ms ∼ 0.05 emu/g) in spite of the higher ethylene carried Fe(CO)5 flow. The powders were annealed in air at 400 °C show lower carbon content and, for those highly Fe-doped, the hematite phase formation. Preliminary tests using UV light confirm the photocatalytic action of the annealed nanopowders in salicylic acid degradation process in solution.

  7. Electrochemical properties of fiber-in-tube- and filled-structured TiO2 nanofiber anode materials for lithium-ion batteries.

    PubMed

    Cho, Jung Sang; Hong, Young Jun; Kang, Yun Chan

    2015-07-27

    Phase-pure anatase TiO2 nanofibers with a fiber-in-tube structure were prepared by the electrospinning process. The burning of titanium-oxide-carbon composite nanofibers with a filled structure formed as an intermediate product under an oxygen atmosphere produced carbon-free TiO2 nanofibers with a fiber-in-tube structure. The sizes of the nanofiber core and hollow nanotube were 140 and 500 nm, respectively. The heat treatment of the electrospun nanofibers at 450 and 500 °C under an air atmosphere produced grey and white filled-structured TiO2 nanofibers, respectively. The initial discharge capacities of the TiO2 nanofibers with the fiber-in-tube and filled structures and the commercial TiO2 nanopowders were 231, 134, and 223 mA h g(-1) , respectively, and their corresponding charge capacities were 170, 100, and 169 mA h g(-1) , respectively. The 1000th discharge capacities of the TiO2 nanofibers with the fiber-in-tube and filled structures and the commercial TiO2 nanopowders were 177, 64, and 101 mA h g(-1) , respectively, and their capacity retentions measured from the second cycle were 89, 82, and 52 %, respectively. The TiO2 nanofibers with the fiber-in-tube structure exhibited low charge transfer resistance and structural stability during cycling and better cycling and rate performances than the TiO2 nanofibers with filled structures and the commercial TiO2 nanopowders. PMID:26119328

  8. Biomechanical characteristics of polymeric UHMWPE composites with hybrid matrix and dispersed fillers

    NASA Astrophysics Data System (ADS)

    Panin, Sergey; Kornienko, Lyudmila; Shilko, Sergey; Thuc, Nguyen Xuan; Korchagin, Mikhail; Chaikina, Marina

    2015-11-01

    In order to develop artificial joint implants some biomechanical properties of composites with UHMWPE and hybrid (polymer-polymeric) "UHMWPE+PTFE" matrix with dispersed fillers were studied. A comparative analysis of the effectiveness of adding hydroxyapatite micron- and nanopowders as a biocompatible filler was carried out. It was shown that under dry sliding friction the wear rate of nanocomposites with the hybrid matrix is lower as compared with composites with the non-hybrid one. Mechanical activation of components further enhances the durability of nano- and microcomposites to almost double it without any significant reduction in the strength characteristics.

  9. Nanoparticles of spinel and perovskite ferromagnets and prospects for their application in medicine

    SciTech Connect

    Belous, A. G. E-mail: solopan@ukr.net Solopan, S. O. E-mail: solopan@ukr.net Yelenich, O. V. E-mail: solopan@ukr.net; Tovstolytkin, A. I.; Kolodiazhnyi, T. V.; Osinsky, S. P. E-mail: bybnovskayal@ukr.net; Bubnovskaya, L. N. E-mail: bybnovskayal@ukr.net

    2014-11-05

    In this work, nanoparticles of La{sub 0.75}Sr{sub 0.25}MnO{sub 3} compounds with perovskite structure and AFe{sub 2}O{sub 4} (A = Mn, Fe, Co, Ni, Zn) with spinel structure have been synthesized by precipitation from diethylene glycol and microemulsion using Triton X-100 surfactant. Comparative X-ray diffraction and magnetic studies of the synthesized nanoparticles have been carried out. Magnetic fluids prepared from synthesized nanopowders have been characterized by calorimetric measurements of specific loss power (SLP)

  10. Development of nuclear micro-battery with solid tritium source.

    PubMed

    Lee, Sook-Kyung; Son, Soon-Hwan; Kim, KwangSin; Park, Jong-Wan; Lim, Hun; Lee, Jae-Min; Chung, Eun-Su

    2009-01-01

    A micro-battery powered by tritium is being developed to utilize tritium produced from the Wolsong Tritium Removal Facility. The 3D p-n junction device has been designed and fabricated for energy conversion. Titanium tritide is adopted to increase tritium density and safety. Sub micron films or nano-powders of titanium tritide is applied on silicon semiconductor device to reduce the self absorption of beta rays. Until now protium has been used instead of tritium for safety. Hydrogen was absorbed up to atomic ratio of approximately 1.3 and approximately 1.7 in titanium powders and films, respectively. PMID:19328704

  11. Nanocomposite scintillator, detector, and method

    DOEpatents

    Cooke, D. Wayne; McKigney, Edward A.; Muenchausen, Ross E.; Bennett, Bryan L.

    2009-04-28

    A compact includes a mixture of a solid binder and at least one nanopowder phosphor chosen from yttrium oxide, yttrium tantalate, barium fluoride, cesium fluoride, bismuth germanate, zinc gallate, calcium magnesium pyrosilicate, calcium molybdate, calcium chlorovanadate, barium titanium pyrophosphate, a metal tungstate, a cerium doped nanophosphor, a bismuth doped nanophosphor, a lead doped nanophosphor, a thallium doped sodium iodide, a doped cesium iodide, a rare earth doped pyrosilicate, or a lanthanide halide. The compact can be used in a radiation detector for detecting ionizing radiation.

  12. Investigation of lasing characteristics of domestic Yb : YAG laser ceramics

    NASA Astrophysics Data System (ADS)

    Snetkov, I. L.; Palashov, O. V.; Osipov, V. V.; Mukhin, I. B.; Maksimov, R. N.; Shitov, V. A.; Luk'yashin, K. E.

    2016-07-01

    We report on the synthesis and laser characteristics of Yb3+-doped yttrium aluminium garnet (Y3Al5O12) optical ceramics. The ceramics was produced by solid-phase reactive sintering of a mixture of Yb (5 at %) : Y2O3 and Al2O3 nanopowders synthesised by laser ablation, using additional calcination of the mixture before compaction. In a thin disk geometry, multiwatt laser oscillation was obtained at a wavelength of 1030 nm with a power of 5.2 W and a slope efficiency of 37.0% at a pump pulse period-toduration ratio of 5.72.

  13. Effect of microstructural features on the laser efficiency of Nd3+:Y3Al5O12 ceramics

    NASA Astrophysics Data System (ADS)

    Vorona, I. O.; Yavetskiy, R. P.; Tolmachev, A. V.; Shpilinskaya, O. L.; Li, Jiang; Pan, Yubai; Voznyy, V. L.

    2015-09-01

    The optical properties and microstructure of transparent Nd3+:Y3Al5O12 ceramics synthesised by different reactive sintering routes are studied. It is found that the residual porosity of optical ceramics is directly related to the homogeneity of the microstructure of initial compacts, which can be estimated by the existence of particle agglomerates larger than 1 mm in initial nanopowders. A qualitative correlation is established between the residual porosity, the optical losses and the lasing slope efficiency of Nd3+:Y3Al5O12 ceramics. The maximum laser efficiency (η = 49%) was observed in the samples with the lowest porosity (2.3 × 10-3 vol %).

  14. Nanostructured lead sulfide: synthesis, structure and properties

    NASA Astrophysics Data System (ADS)

    Sadovnikov, S. I.; Gusev, A. I.; Rempel, A. A.

    2016-07-01

    The theoretical and experimental results of recent studies dealing with nanostructured lead sulfide are summarized and analyzed. The key methods for the synthesis of nanostructured lead sulfide are described. The crystal structure of PbS in nanopowders and nanofilms is discussed. The influence of the size of nanostructure elements on the optical and thermal properties of lead sulfide is considered. The dependence of the band gap of PbS on the nanoparticle (crystallite) size for powders and films is illustrated. The bibliography includes 222 references.

  15. A novel route for processing cobalt–chromium–molybdenum orthopaedic alloys

    PubMed Central

    Patel, Bhairav; Inam, Fawad; Reece, Mike; Edirisinghe, Mohan; Bonfield, William; Huang, Jie; Angadji, Arash

    2010-01-01

    Spark plasma sintering has been used for the first time to prepare the ASTM F75 cobalt–chromium–molybdenum (Co–Cr–Mo) orthopaedic alloy composition using nanopowders. In the preliminary work presented in this report, the effect of processing variables on the structural features of the alloy (phases present, grain size and microstructure) has been investigated. Specimens of greater than 99.5 per cent theoretical density were obtained. Carbide phases were not detected in the microstructure but oxides were present. However, harder materials with finer grains were produced, compared with the commonly used cast/wrought processing methods, probably because of the presence of oxides in the microstructure. PMID:20200035

  16. Structures Formation on the Y-TZP-AI2O3 Ceramic Composites Surface

    NASA Astrophysics Data System (ADS)

    Kulkov, Sergei; Sevostyanova, Irina; Sablina, Tatiana; Buyakova, Svetlana; Pshenichnyy, Artem; Savchenko, Nickolai

    2016-07-01

    The paper discusses the structure of Y-TZP-Al2O3 ceramics produced from nanopowders and friction surface, wear resistance, friction coefficient of Y-TZP-AEO3 composites rubbed against a steel disk counterface at a pressure of 5 MPa in a range of sliding speeds from 0.2 to 47 m/s. Analysis by X-ray diffraction, scanning electron microscopy showed that the high wear resistance of Y-TZP-Al2O3 composites at high sliding speeds is due to high-temperature phase transitions and protective film formation on the friction surface.

  17. Synthesis of YSZ@Ni Nanoparticle by Modified Electroless Plating Process.

    PubMed

    Yu, Ping; Zheng, Haizhong; Li, Guifa; Xiong, Lingling; Luo, Qinhao

    2015-12-01

    Ni-YSZ (Y2O3-stabilized ZrO2) composites with core-shell structure (YSZ@Ni) were produced by modified electroless plating process. It was found that YSZ nanoparticles were well encapsulated by nickel powders at 65 degrees C with pH = 12. The spherical nanopowders had core-shell structure and the shell layer was less than 20 nm. The X-ray diffraction (XRD) analysis inferred the production was composed of YSZ and Ni crystals. In the end, the formation mechanism was discussed.

  18. Synthesis dependent characteristics of Sr{sub 1-x}Mn{sub x}TiO{sub 3} (x=0.03, 0.05, 0.07 and 0.09)

    SciTech Connect

    Preethi Meher, K.R.S.; Bogicevic, Christine; Janolin, Pierre-Eymeric; Varma, K.B.R.

    2012-08-15

    Sr{sub 1-x}Mn{sub x}TiO{sub 3} (where x=0.03, 0.05, 0.07 and 0.09) was synthesized via different routes that include solid-state, oxalate precipitation and freeze drying. In oxalate precipitation technique, compositions corresponding to 3 and 5 mol% doping of Mn were monophasic whereas the higher compositions revealed the presence of the secondary phases such as MnO, Mn{sub 3}O{sub 4} etc., as confirmed by high resolution X-ray diffraction (XRD) studies. The decomposition behavior of the precursors prepared using oxalate precipitation method corresponding to the above mentioned compositions was studied. Nanopowders of compositions pertaining to 5 to 9 mol% of Mn doping were obtained using freeze-drying technique. The average crystallite size of these nanopowders was found to be in the 35 to 65 nm range. The microstructural studies carried out on the sintered ceramics, fabricated using powders synthesized by different routes established the fine grained nature (<1 {mu}m) of the one obtained by freeze drying method. Raman scattering studies were carried out in order to complement the observations made from XRD regarding the phase purity. The dielectric properties of the ceramics obtained by different synthesis routes were studied in the 80-300 K temperature range at 100 kHz and the effect of grain size has been discussed. - Graphical abstract: XRD patterns of Sr{sub 1-x}Mn{sub x}TiO{sub 3} (x=0.03 and 0.05) obtained by oxalate precipitation technique along with that of the nanopowders for x=0.05, 0.07 and 0.09 obtained by freeze drying method, microstructural characterization and synthesis dependent dielectric behavior. Highlights: Black-Right-Pointing-Pointer Monophasic samples obtained for compositions Sr{sub 1-x}Mn{sub x}TiO{sub 3} with x=0.03 and 0.05. Black-Right-Pointing-Pointer Nanopowders of Sr{sub 1-x}Mn{sub x}TiO{sub 3} with x=0.05, 0.07 and 0.09 were synthesized by freeze-drying method. Black-Right-Pointing-Pointer Phase purity of samples synthesized using

  19. Control of Particle Size and Morphology of Cobalt-Ferrite Nanoparticles by Salt-Matrix during Annealing

    NASA Astrophysics Data System (ADS)

    Azizi, A.; Sadrnezhaad, S. K.; Mostafavi, M.

    Salt-matrix annealing of mechanically alloyed Co-ferrite nanopowder was used to modify its particle size and morphology. Efficiency improvement due to suppression of sintering and growth resulted in reduction of average particle size from 100nm for salt-less to 40nm for salt-full annealing procedure. Nanosized single-phase cobalt-ferrite particles were observed after 2h annealing at 750°C in the samples milled for 20 hours both with and without NaCl. NaCl:CoFe2O4 ratio of 10:1 resulted in cabbage-like clusters containing particles smaller than 50 nm.

  20. The seeded growth of graphene.

    PubMed

    Lee, Jae-Kap; Lee, Sohyung; Kim, Yong-Il; Kim, Jin-Gyu; Min, Bong-Ki; Lee, Kyung-Il; Park, Yeseul; John, Phillip

    2014-01-01

    In this paper, we demonstrate the seeded growth of graphene under a plasma chemical vapor deposition condition. First, we fabricate graphene nanopowders (~5 nm) by ball-milling commercial multi-wall carbon nanotubes. The graphene nanoparticles were subsequently subject to a direct current plasma generated in a 100 Torr 10%CH4 - 90%H2 gas mixture. The plasma growth enlarged, over one hour, the nuclei to graphene sheets larger than one hundred nm(2) in area. Characterization by electron and X-ray diffraction, high-resolution transmission electron microscopy images provide evidence for the presence of monolayer graphene sheets. PMID:25022816

  1. Luminescent properties of alumina ceramics doped with chromium oxide

    NASA Astrophysics Data System (ADS)

    Kortov, V.; Kiryakov, A.; Pustovarov, V.

    2016-08-01

    Ceramics doped with chromium oxide were synthesized from alumina nanopowder at high heating and cooling rates. XRD analysis of the obtained samples shows that they consist mainly of Al2O3 α-phase. Photoluminescence (PL) spectra in the visible spectral region and thermoluminescence (TL) curves were measured. An effect of the dopant concentration on the intensity and shape of the PL bands as well as on the TL yield was found. Annealing of the quenching defects which emerged during the synthesis changed the PL spectra. The centers responsible for PL and TL in the synthesized ceramics were identified.

  2. Transparent Yb:(YLa)2O3 ceramics produced by self-propagating high-temperature synthesis and microwave sintering

    NASA Astrophysics Data System (ADS)

    Balabanov, S. S.; Bykov, Yu. V.; Egorov, S. V.; Eremeev, A. G.; Gavrishchuk, E. M.; Khazanov, E. A.; Mukhin, I. B.; Palashov, O. V.; Permin, D. A.; Zelenogorsky, V. V.

    2013-02-01

    A new self-propagating high-temperature synthesis (SHS) technique for production of yttrium oxide nanopowders, doped with rare-earth ions, from metal acetatonitrates was developed. The synthesized powders were used for preparing transparent ceramic samples by microwave sintering. Optical properties (transmittance, absorption, scattering, refraction) of Yb0.1(Y, La)1.9O3 ceramics depending on the content of lanthanum oxide, have been investigated. For the first time lasing at 1030 nm in Yb0.1Y1.7La0.2O3 ceramics, prepared by these methods, has been attained.

  3. Nano powders, components and coatings by plasma technique

    NASA Technical Reports Server (NTRS)

    McKechnie, Timothy N. (Inventor); Antony, Leo V. M. (Inventor); O'Dell, Scott (Inventor); Power, Chris (Inventor); Tabor, Terry (Inventor)

    2009-01-01

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  4. Nano powders, components and coatings by plasma technique

    DOEpatents

    McKechnie, Timothy N.; Antony, Leo V. M.; O'Dell, Scott; Power, Chris; Tabor, Terry

    2009-11-10

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  5. Formation of SiC nanoparticles in an atmospheric microwave plasma

    PubMed Central

    Vennekamp, Martin; Bauer, Ingolf; Groh, Matthias; Sperling, Evgeni; Ueberlein, Susanne; Myndyk, Maksym; Mäder, Gerrit

    2011-01-01

    Summary We describe the formation of SiC nanopowder using an atmospheric argon microwave plasma with tetramethylsilane (TMS) as precursor. The impact of several process conditions on the particle size of the product is experimentally investigated. Particles with sizes ranging from 7 nm to about 20 nm according to BET and XRD measurements are produced. The dependency of the particle size on the process parameters is evaluated statistically and explained with growth-rate equations derived from the theory of Ostwald ripening. The results show that the particle size is mainly influenced by the concentration of the precursor material in the plasma. PMID:22043455

  6. Nano-CuFe2O4 as a magnetically separable and reusable catalyst for the synthesis of diaryl/aryl alkyl sulfides via cross-coupling process under ligand-free conditions.

    PubMed

    Swapna, Kokkirala; Murthy, Sabbavarapu Narayana; Jyothi, Mocharla Tarani; Nageswar, Yadavalli Venkata Durga

    2011-09-01

    An efficient protocol was developed for the CuFe(2)O(4) nanopowder-catalyzed aryl-sulfur bond formation between aryl halide and thiol/disulfide. A variety of aryl sulfides were synthesized in impressive yields with good chemoselectivity and functional group tolerance in the presence of a catalytic amount of CuFe(2)O(4), Cs(2)CO(3) as base, in nitrogen atmosphere, under ligand-free conditions, in DMSO as solvent at 100 °C. The catalyst is air-stable, inexpensive, magnetically separable and recyclable up to four cycles. PMID:21769376

  7. High-strength transparent spinel with fine, unimodal grain size

    NASA Astrophysics Data System (ADS)

    Sweeney, S. M.; Brun, M. K.; Yosenick, T. J.; Kebbede, A.; Manoharan, M.

    2009-05-01

    Spinel (MgAl2O4) is a good candidate material for transparent armor and IR window applications. Traditionally, transparent spinel has suffered from poor strength and difficult polishing owing to its large, bimodal grain structure. Starting from a spinel nanopowder, spinel ceramics with a grain size of less than 2 microns have been made with better than 80% in-line transmittance at 632 nm wavelength for 3/8" thick samples. A ring-on-ring test has been used to measure biaxial flexural strength on samples machined to 0.8 mm thickness. The average strength was found to exceed 480 MPa.

  8. The influence of restricted geometry of diamagnetic nanoporous media on 3He relaxation

    NASA Astrophysics Data System (ADS)

    Alakshin, E. M.; Gazizulin, R. R.; Zakharov, M. Yu.; Klochkov, A. V.; Morozov, E. V.; Salikhov, T. M.; Safin, T. R.; Safiullin, K. R.; Tagirov, M. S.; Shabanova, O. B.

    2015-01-01

    This is an experimental study of the spin kinetics of 3He in contact with diamagnetic samples of inverse opals SiO2, and LaF3 nanopowder. It is demonstrated that the nuclear magnetic relaxation of the absorbed 3He occurs due to the modulation of dipole-dipole interaction by the quantum motion in the two-dimensional film. It is found that the relaxation of liquid 3He occurs through a spin diffusion to the absorption layer, and that the restricted geometry of diamagnetic nanoporous media has an influence on the 3He relaxation.

  9. Evolution of dispersion of high temperature chromium compounds

    NASA Astrophysics Data System (ADS)

    Shiryaeva, L. S.; Nozdrin, I. V.; Rudneva, V. V.; Galevsky, G. V.

    2016-09-01

    Chromium compound - boride Cr3B2 and carbide Cr3C2 are hard, wear-resistant, chemically inert materials, demanded for production of protective coatings of metals and cermets as components and alloying additives of tungsten free solid alloys. Future prospects for expansion of boride and chromium carbide usage are related to their production in the form of nanopowders. The researches into change of the particles shape and size of high-temperature chromium compounds in the conditions of plasma flow were carried out. There is coarsening of boride and carbonitride particles of nanoscale level at the reduction in the linear velocity of their growth.

  10. Applying Nanoscale Kirkendall Diffusion for Template-Free, Kilogram-Scale Production of SnO2 Hollow Nanospheres via Spray Drying System.

    PubMed

    Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan

    2016-01-01

    A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g(-1), respectively, at a current density of 2 A g(-1). The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones. PMID:27033088

  11. Applying Nanoscale Kirkendall Diffusion for Template-Free, Kilogram-Scale Production of SnO2 Hollow Nanospheres via Spray Drying System.

    PubMed

    Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan

    2016-04-01

    A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g(-1), respectively, at a current density of 2 A g(-1). The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones.

  12. Infiltration of Metal Substrates with Nanostructured CeO2 by a Room-Temperature Wet Process.

    PubMed

    Presto, Sabrina; Viviani, Massimo

    2015-05-01

    A room-temperature infiltration procedure for the deposition of CeO2 nanopowders on Ni-based foams employing stable CeO2 suspensions in water has been developed. It consists of a two-steps dipping process, the first in nanopowder suspension at pH 6.5 followed by further dipping into a NH3OH solution at pH 12. The pH shift represents a key factor to improve the homogeneity and dispersion of infiltrated powder by avoiding coalescence during the drying step. Water-based suspensions have been prepared starting from a commercial nanostructured CeO2. Powder was characterized by X-ray diffraction, particle size and specific surface area measurements, transmission electron microscopy. Stability of suspensions was studied by zeta potential measurements at low concentration, while sedimentation tests were carried out on highly concentrated suspensions as a function of pH, CeO2 amount and surfactant presence. Effect of CeO2 concentration, surfactant addition, pH value, substrate composition and microstructure were taken in account. Under best conditions, very homogeneous infiltrations could be obtained without any preferential orientation or agglomerates. Thermal stability of the composites infiltrated materials was also tested. The technique seems to be very promising in advanced nanostructured decorations and coating preparation.

  13. The Speciation of Silver Nanoparticles in Antimicrobial Fabric Before and After Exposure to a Hypochlorite/Detergent Solution

    SciTech Connect

    Impellitteri, Christopher A.; Tolaymat, Thabet M.; Scheckel, Kirk G.; EPA

    2009-07-14

    Because of their antibacterial properties, silver nanoparticles are often used in consumer products. To assess environmental and/or human health risks from these nanoparticles, there is a need to identify the chemical transformations that silver nanoparticles undergo in different environments. Thus an antimicrobial sock material containing Ag nanoparticles was examined by X-ray absorption spectroscopy to identify the speciation of Ag. The material was exposed to a hypochlorite/detergent solution and subjected to agitation. An elemental Ag nanopowder was also exposed to the hypochlorite/detergent solution or to a 1 mol L{sup -1} NaCl solution. Results showed that the sock material nanoparticles consisted of elemental Ag. After exposure to the hypochlorite/detergent solution, a significant portion (more than 50%) of the sock nanoparticles were converted, in situ, to AgCl. Results from exposures to elemental Ag nanopowder suggest that an oxidation step is necessary for the elemental Ag nanoparticles to transform into AgCl as there was no evidence of AgCl formation in the presence of chloride alone. As a result, if Ag ions leach from consumer products, any chloride present may quickly scavenge the ions. In addition, the efficacy of Ag, as an antimicrobial agent in fabrics, may be limited, or even negated, after washing in solutions containing oxidizers as AgCl is much less reactive than Ag ion.

  14. Tuning the thermal diffusivity of silver based nanofluids by controlling nanoparticle aggregation

    NASA Astrophysics Data System (ADS)

    Agresti, Filippo; Barison, Simona; Battiston, Simone; Pagura, Cesare; Colla, Laura; Fedele, Laura; Fabrizio, Monica

    2013-09-01

    With the aim of preparing stable nanofluids for heat exchange applications and to study the effect of surfactant on the aggregation of nanoparticles and thermal diffusivity, stable silver colloids were synthesized in water by a green method, reducing AgNO3 with fructose in the presence of poly-vinylpyrollidone (PVP) of various molecular weights. A silver nanopowder was precipitated from the colloids and re-dispersed at 4 vol% in deionized water. The Ag colloids were characterized by UV-visible spectroscopy, combined dynamic light scattering and ζ-potential measurements, and laser flash thermal diffusivity. The Ag nanopowders were characterized by scanning electron microscopy and thermal gravimetric analysis. It was found that the molecular weight of PVP strongly affects the ζ-potential and the aggregation of nanoparticles, thereby affecting the thermal diffusivity of the obtained colloids. In particular, it was observed that on increasing the molecular weight of PVP the absolute value of the ζ-potential is reduced, leading to increased aggregation of nanoparticles. A clear relation was identified between thermal diffusivity and aggregation, showing higher thermal diffusivity for nanofluids having higher aggregation. A maximum improvement of thermal diffusivity by about 12% was found for nanofluids prepared with PVP having higher molecular weight.

  15. Characterization of nanocrystalline CuCo2O4 spinel prepared by sol-gel technique applicable to the SOFC interconnect coating

    NASA Astrophysics Data System (ADS)

    Paknahad, Pouyan; Askari, Masoud; Ghorbanzadeh, Milad

    2015-05-01

    CuCo2O4 spinel nanopowders were synthesized by sol-gel method. The optimal values of pH and molar ratio of citric acid to metal ions (RC), and the influence of the calcination temperature and time were investigated. As-prepared materials were characterized by XRD, TGA, DSC, FE-SEM and electrical and coefficient of thermal expansion (CTE) measurements. It was found that pH = 4.5 and RC = 1 are the optimum conditions to produce pure CuCo2O4 nanopowders. The electrical conductivity was increased remarkably from 15.2 to 27.5 S cm-1 with an increase in temperature from 500 to 800 °C. Over the temperature range of 25-800 °C, the CTE of CuCo2O4 was 11.4 × 10-6 K-1 which is very close to the CTE of ferritic stainless steel (~12 × 10-6 K-1) used as solid oxide fuel cell interconnect.

  16. Enhanced photocatalytic performance of N-nitrosodimethylamine on TiO2 nanotube based on the role of singlet oxygen.

    PubMed

    Guo, Xiaoyan; Li, Qilin; Zhang, Man; Long, Mingce; Kong, Lulu; Zhou, Qixing; Shao, Huaiqi; Hu, Wanli; Wei, Tingting

    2015-02-01

    N-nitrosodimethylamine (NDMA) photocatalytic degradation performance and mechanism were investigated on the TiO2 nanotube prepared from anatase TiO2 nanopowder in terms of the production of reactive oxygen species including hydroxyl radical, singlet oxygen and superoxide radical. Significantly higher NDMA degradation efficiency was obtained on anatase TiO2 nanotube rather than anatase TiO2 nanopowder. The tubular morphology may be responsible for almost 100% NDMA removal on TiO2 nanotube, presumably due to its confinement effect leading to NDMA molecules within the nanotube being attacked by reactive oxygen species such as hydroxyl radical and singlet oxygen, and initiating reaction inside the nanotube. In particular, the ability of the nanotubular structure of TiO2 nanotube to promote a singlet oxygen oxidation pathway contributes much to the enhanced NDMA degradation efficiency and favors the formation of dimethylamine and NO3(-). Such function originating from nanotube morphology could bring new insights for the photocatalytic degradation of organic pollutants.

  17. Tailoring the Optoelectronic Properties of Nano-Metal Oxides Using Anthocyanins and Lanthanide.

    PubMed

    Al Rez, Mohammed Fayez; Choudhury, Trisha; Islam, J; Fouad, H; Umar, Ahmad; Khan, A A; Ansari, S G; Ansari, Z A

    2015-12-01

    Here we report a simple and effective method in tailoring the optoelectronic properties of semi-conducting metal oxide for suitable device application. Sol-gel synthesis was used to synthesize manganese doped TiO2 nanopowder and commercially available TiO2 nanopowder was used as reference material. Thick films of these powder were screen printed on FTO coated glass and annealed at 450 degrees C in ambient air. Separately, 60 μL of neodymium chloride prepared from neodymium oxide, 60 μL of ruthenium based commercial dye (N719) and 60 μL of extracts of calendula orange and dog flower were used as sensitizer to improve the photoconductance properties. Elemental analysis confirmed synthesis of composite material of Mn and TiO2. Morphological observation showed a uniform particles of 25 to 50 nm diameter. Optoelectronic properties were studied by using thick films of these powders as working electrode as a function of wavelength from 430 to 750 nm and the cyclic voltammogram were obtained by scanning potential from -1.5 V to +1.5 V at the illumination intensity of 1000 Wm(-2). Sensitization resulted in additional absorption and functional bands. Oxidation peak current was found decreasing with increasing wavelength. Sensitization with flower extract resulted in increased oxidation current at higher wavelength indicating the improved photoconduction in comparison with N719 and neodymium. PMID:26682377

  18. Rapid synthesis of tin (IV) oxide nanoparticles by microwave induced thermohydrolysis

    SciTech Connect

    Jouhannaud, J. Rossignol, J.; Stuerga, D.

    2008-06-15

    Tin oxide nanopowders, with an average size of 5 nm, were prepared by microwave flash synthesis. Flash synthesis was performed in aqueous solutions of tin tetrachloride and hydrochloric acid using a microwave autoclave (RAMO system) specially designed by the authors. Energy dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area analysis, nitrogen adsorption isotherm analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM), were used to characterize these nanoparticles. Compared with conventional synthesis, nanopowders can be produced in a short period (e.g. 60 s). In addition, high purity and high specific surface area are obtained. These characteristics are fundamental for gas sensing applications. - Graphical abstract: Tin oxide-based gas sensors have been extensively studied in recent years in order to understand and improve their sensing properties to a large variety of gaseous species. As is well known, high specific surface area increase the responses of gas sensors. Microwave-induced thermohydrolysis appears as an efficient way to produce nanoparticles in a very short time, with controlled size (4-5 nm) and high-specific area (160-190 m{sup 2} g{sup -1}). Pictogram represents our original microwave reactor, the RAMO (French acronym of Reacteur Autoclave Micro-Onde), containing the reactants and submitted to the microwave irradiation (multicolour candy represent obtained material), and a typical TEM image of the as-prepared SnO{sub 2} nanoparticles.

  19. Two-step synthesis of silver selenide semiconductor with a linear magnetoresistance effect

    NASA Astrophysics Data System (ADS)

    Yang, Fengxia; Xiong, Shuangtao; Xia, Zhengcai; Liu, Fengxian; Han, Chong; Zhang, Duanming

    2012-12-01

    A two-step synthesis method for polycrystalline β-silver selenide (β-Ag2Se) was developed. In the first step, nanopowder was prepared using a chemical conversion method at room temperature. In the second step, the nanopowder was compressed and then the bulk Ag2Se was fabricated by the solid-state sintering process. The crystalline phase and morphology were examined. The results showed that β-Ag2Se was fast fabricated at room temperature. The dense polycrystalline Ag-rich Ag2Se was synthesized successfully at 450 °C for 0.5 h under Argon flow. For the polycrystalline, the electronic properties and transverse magnetoresistance (TMR) in a pulsed magnetic field were investigated. The samples displayed n-type semiconducting behaviors and a critical temperature with a broaden temperature range of 140-150 K. Also, it presented a positive and nearly linear dependence on magnetic field H at H ≥ Hc (crossover field) ranging from 2 to 20 T. Moreover, the linear dependence of TMR at strong field was non-saturating up to 35 T. Combining with the observation of morphology, it is thought that this unusual TMR effect was caused by slightly excess Ag. This new synthesis method provided a potential route to synthesize nonstoichiometric silver selenide.

  20. Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration.

    PubMed

    Kim, Hae-Won; Lee, Hae-Hyoung; Knowles, J C

    2006-12-01

    Development of fibrous matrices of bioceramic-biopolymer nanocomposite offers great potential in the field of bone regeneration and tissue engineering. However, in order to produce electrospun fibers with homogeneous structure, it is essential for the ceramic powder to be fine and to remain stable in suspension. Herein, we developed a novel method whereby the bioceramic hydroxyapatite (HA) was kept in suspension in biopolymer poly(lactic acid) (PLA). The strategy was to introduce a surfactant hydroxysteric acid (HSA) between the hydrophilic HA powder and the hydrophobic chloroform-dissolved PLA. The HA nanopowder was dispersed effectively in HSA and mixed homogeneously with PLA. Continuous and uniform fibers were generated successfully with diameters of approximately 1-2 microm, and featured a well-developed nanocomposite structure of HA nanopowder-dispersed PLA. Initial cellular assays showed excellent cell attachment and proliferation and also enhanced expression of alkaline phosphatase at 7 days of culturing. The HA-PLA nanocomposite fibers may be potentially useful in tissue engineering applications, particularly as three-dimensional substrates for bone growth.

  1. Optical, luminescent and laser properties of highly transparent ytterbium doped yttrium lanthanum oxide ceramics

    NASA Astrophysics Data System (ADS)

    Ivanov, M.; Kopylov, Yu.; Kravchenko, V.; Li, Jiang; Pan, Yubai; Kynast, U.; Leznina, M.; Strek, W.; Marciniak, Lukasz; Palashov, O.; Snetkov, I.; Mukhin, I.; Spassky, D.

    2015-12-01

    This paper describes the fabrication and investigation of highly transparent Yb-doped yttrium lanthanum oxide ceramics. For sintering of the ceramics we used a technology, which consists of several consecutive steps: (a) synthesis of weakly agglomerated nanopowder by laser ablation, (b) compacting of the green body with cold isostatic pressing (CIP), and (c) sintering in vacuum. After calcinations of the synthesized nanopowder at 1200 °C, a pure single-phase solid solution Yb3+:(LaxY1-x)2O3 was formed. The lanthanum ions proved to be a good aid to sinter yttria ceramics doped with Yb3+ at comparatively moderate temperatures of about 1650 °C. The ceramics have a relative density higher than 99.99% and grain sizes around 40 μm. The absorption coefficient of 3.2 mm thick Yb0.12La0.27Y1.61O3 ceramics is 0.01 cm-1 at 1150 nm. Laser oscillation at a wavelength of 1033 nm is demonstrated.

  2. Luminescence and scintillation properties of Lu3Al5O12 nanoceramics sintered by SPS method

    NASA Astrophysics Data System (ADS)

    Pejchal, Jan; Babin, Vladimir; Beitlerova, Alena; Kucerkova, Romana; Panek, Dalibor; Barta, Jan; Cuba, Vaclav; Yamaji, Akihiro; Kurosawa, Shunsuke; Mihokova, Eva; Ito, Akihiko; Goto, Takashi; Nikl, Martin; Yoshikawa, Akira

    2016-03-01

    Ce-doped lutetium aluminum garnet Lu3Al5O12 (LuAG) nanoceramics were fabricated at 1600 °C and 1700 °C by spark-plasma sintering (SPS) method from nano-powders prepared by radiation synthesis. Both undoped and Ce-doped LuAG ceramic samples were also prepared from the nano-powders at 1700 °C with significantly increased pre-heating rate. The backscattered electron images revealed large amount of pores in all the Ce-doped samples causing their significant opacity. On the other hand, very large grains and no pores were revealed in the undoped sample, which was the only transparent one. The radioluminescence measurements revealed superior overall scintillation efficiency of the samples sintered at the temperature 1700 °C, and their defect emission in the UV region was ascribed to oxygen-vacancy-related defects such as F+ centers. The photoluminescence decay of the defect emission was characterized by an extremely fast decay time of a few nanoseconds. Influence of sintering procedure and subsequent annealing on the luminescence and scintillation properties is discussed.

  3. Fungus mediated biosynthesis and characterization of zinc oxide nanorods

    NASA Astrophysics Data System (ADS)

    Venkatesh, K. S.; Palani, N. S.; Krishnamoorthi, S. R.; Thirumal, V.; Ilangovan, R.

    2013-06-01

    Recently nanomaterials have been synthesized through biological approach due to its biocompatibility, inexpensive, eco friendly and it offers easiest experimental protocol and so on. ZnO can be potentially used in various applications. This present study reports the fungus mediated extra-cellular bio synthesis of ZnO nanorods using Fusarium Solani. The dried powder was calcined at 350°C for 1 hour in air. The thermal property of the as synthesized ZnO nanopowder was analyzed through Thermo gravimetric /Differential Thermo gravimetric (TGA / DTG) analysis. The structural and morphological properties of the calcined ZnO nanopowder were studied by XRD and SEM analysis respectively. X ray diffraction result revealed that a peak located at 2θ = 36.2° with (101) plane confirms the presence of Zinc oxide with Hexagonal crystal system. The morphology of the calcined ZnO powder was analyzed by Scanning Electron Microscopy and it clearly indicates the presence of ZnO nanorods. The diameter of the nanorods is in the range of 60 to 95 nm.

  4. 2-Aminoethanol-mediated wet chemical synthesis of ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Naz, Tehmina; Afzal, Adeel; Siddiqi, Humaira M.; Akhtar, Javeed; Habib, Amir; Banski, Mateusz; Podhorodecki, Artur

    2015-04-01

    The synthesis of ZnO nanostructures via co-precipitation of Zn(NO3)2·2H2O in 2-aminoethanol under different reaction conditions is presented. The effect of temperature and time on crystal structure, size, morphology, and optical properties of ZnO nanopowders is studied. XRD analyses demonstrate that single crystalline wurtzite ZnO nanostructures are instantaneously formed at higher temperature, or at low temperature with growth times equal to 2 h. However, the mean crystallite size increases as a function of reaction temperature and growth time. XRD and SEM results reveal that ZnO nuclei grow along favored crystallographic planes [wurtzite (101)] in 2-aminoethanol to form single crystalline nanorods. The optical band-gap energies of ZnO crystallites measured from their UV absorption spectra increase from 3.31 to 3.52 eV with decreasing particle size. ZnO nanopowders also exhibit good photoluminescent characteristics with strong UV and weak visible (violet, blue) light emissions corresponding to surface defects and oxygen vacancies in ZnO products.

  5. In situ photo-assisted deposition of MoS₂ electrocatalyst onto zinc cadmium sulphide nanoparticle surfaces to construct an efficient photocatalyst for hydrogen generation.

    PubMed

    Nguyen, Mai; Tran, Phong D; Pramana, Stevin S; Lee, Rui Lin; Batabyal, Sudip K; Mathews, Nripan; Wong, Lydia H; Graetzel, Michael

    2013-02-21

    We reported herein a facile and scalable preparation process for MoS(2)-decorated Zn(x)Cd(1-x)S hybrid photocatalysts for hydrogen generation. Zn(x)Cd(1-x)S nanopowder was first prepared from commercially available precursors employing a solution based process. MoS(2) hydrogen evolution reaction catalyst was then loaded onto the Zn(x)Cd(1-x)S nanopowder via a photo-assisted deposition process which employed mild conditions (room temperature, atmospheric pressure and visible light illumination). Thus, this process represents an important advantage in the large scale production of semiconductor/MoS(2) hybrid photocatalysts in comparison to the conventional method relying on thermal decomposition of (NH(4))(2)[MoS(4)] precursor at high temperature and under H(2)S pressure. The best Zn(0.2)Cd(0.8)S/MoS(2) 3% showed two hundred-and-ten times (210 times) faster hydrogen generation rate on visible light illumination compared with that obtained for un-treated Zn(0.2)Cd(0.8)S. That was the most impressive catalytic enhancement ever recorded for a semiconductor photocatalyst decorated with a noble metal free electrocatalyst. PMID:23334494

  6. Applying Nanoscale Kirkendall Diffusion for Template-Free, Kilogram-Scale Production of SnO2 Hollow Nanospheres via Spray Drying System

    PubMed Central

    Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan

    2016-01-01

    A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g−1, respectively, at a current density of 2 A g−1. The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones. PMID:27033088

  7. Tuning the thermal diffusivity of silver based nanofluids by controlling nanoparticle aggregation.

    PubMed

    Agresti, Filippo; Barison, Simona; Battiston, Simone; Pagura, Cesare; Colla, Laura; Fedele, Laura; Fabrizio, Monica

    2013-09-13

    With the aim of preparing stable nanofluids for heat exchange applications and to study the effect of surfactant on the aggregation of nanoparticles and thermal diffusivity, stable silver colloids were synthesized in water by a green method, reducing AgNO₃ with fructose in the presence of poly-vinylpyrollidone (PVP) of various molecular weights. A silver nanopowder was precipitated from the colloids and re-dispersed at 4 vol% in deionized water. The Ag colloids were characterized by UV-visible spectroscopy, combined dynamic light scattering and ζ-potential measurements, and laser flash thermal diffusivity. The Ag nanopowders were characterized by scanning electron microscopy and thermal gravimetric analysis. It was found that the molecular weight of PVP strongly affects the ζ-potential and the aggregation of nanoparticles, thereby affecting the thermal diffusivity of the obtained colloids. In particular, it was observed that on increasing the molecular weight of PVP the absolute value of the ζ-potential is reduced, leading to increased aggregation of nanoparticles. A clear relation was identified between thermal diffusivity and aggregation, showing higher thermal diffusivity for nanofluids having higher aggregation. A maximum improvement of thermal diffusivity by about 12% was found for nanofluids prepared with PVP having higher molecular weight.

  8. Gum Tragacanth-Mediated Synthesis of Nanocrystalline ZnO Powder for Use in Varistors

    NASA Astrophysics Data System (ADS)

    Liu, Ting-Ting; Wang, Mao-Hua; Su, Hang; Chen, Xi; Chen, Chao; Zhang, Ruo-Chen

    2015-10-01

    Zinc oxide nanopowders were synthesized by a sol-gel method with gum tragacanth and zinc nitrate as raw materials. Gum tragacanth was used as stabilizer to control the mobility of zinc cations and the growth of the nanopowders. Thermo-gravimetric analysis, x-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, and scanning electron microscopy were used to characterize the as-prepared samples. Zinc oxide (ZnO) nanoparticles calcined at different temperatures had a hexagonal wurtzite structure with average particle size ranging from 32.29 nm to 42.83 nm. The crystallinity of ZnO nanoparticles was improved by increasing the calcination temperature. The density of ZnO varistor ceramics sintered at 1150°C for 2 h in air was 5.46 g/cm3, which was 97.5% of the theoretical density, their breakdown voltage was 4572 V/cm, and their nonlinear coefficient was ~16.8. This method can be used as an excellent alternative method for synthesis of ZnO nanoparticles with a plant extract as a raw material. Our experimental results show our method had the advantage of improving the electrical performance of ZnO varistors.

  9. Origin of spin-glass and exchange bias in La{sub 1∕3}Sr{sub 2∕3}FeO{sub 3−γ} nanoparticles

    SciTech Connect

    Silva, R. B. da; Araújo, J. H. de; Soares, J. M.; Machado, F. L. A.

    2014-03-21

    The structure and the magnetic properties of nanopowdered samples of La{sub 1∕3}Sr{sub 2∕3}FeO{sub 3−γ} with average particles size d in the range of 67-367 nm prepared by a sol-gel method were investigated in detail. The samples were characterized by X-ray diffraction, scanning electron microscopy, specific heat, Mössbauer spectroscopy, ac susceptibility, and magnetization measurements. Exchange bias with vertical magnetization shift was found in all samples. Charge ordering and antiferromagnetism were observed close to 200 K for large particles (d ≥ 304 nm) samples, while for particles with intermediated and smaller values (d ≤ 156 nm) a cluster-glass like behaviour and a short range charge ordering were seen near 115 K and 200 K, respectively. The spin-glass like and exchange bias behaviour in nanopowdered samples of La{sub 1∕3}Sr{sub 2∕3}FeO{sub 3−γ} are associated to compact Fe{sup 3+} antiferromagnetic (AF) clusters caused by an oxygen deficiency, which was found to be higher in the samples with the smallest average particles sizes. The effect of exchange bias and vertical magnetization shifts are explained by a simple model involving the interaction of one AF phase with a canted AF phase.

  10. Toward hydrogen detection at room temperature with printed ZnO nanoceramics films activated with halogen lighting

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Son; Jubera, Véronique; Garcia, Alain; Debéda, Hélène

    2015-12-01

    Though semiconducting properties of ZnO have been extensively investigated under hazardous gases, research is still necessary for low-cost sensors working at room temperature. Study of printed ZnO nanopowders-based sensors has been undertaken for hydrogen detection. A ZnO paste made with commercial nanopowders is deposited onto interdigitated Pt electrodes and sintered at 400 °C. The ZnO layer structure and morphology are first examined by XRD, SEM, AFM and emission/excitation spectra prior to the study of the effect of UV-light on the electrical conduction of the semiconductor oxide. The response to hydrogen exposure is subsequently examined, showing that low UV-light provided by halogen lighting enhances the gas response and allows detection at room temperature with gas responses similar to those obtained in dark conditions at 150 °C. A gas response of 44% (relative change in current) under 300 ppm is obtained at room temperature. Moreover, it is demonstrated that very low UV-light power (15 μW/mm2) provided by the halogen lamp is sufficient to give sensitivities as high as those for much higher powers obtained with a UV LED (7.7 mW/mm2). These results are comparable to those obtained by others for 1D or 2D ZnO nanostructures working at room temperature or at temperatures up to 250 °C.

  11. Synthesis, characterization and application of Li3Fe2(PO4)3 nanoparticles as cathode of lithium-ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Karami, Hassan; Taala, Foroozandeh

    2011-08-01

    This work introduces a new method to synthesize Li3Fe2(PO4)3 nanoparticles in the nanopowder form and study its electrochemical performance by cyclic voltammetry and battery tests. Li3Fe2(PO4)3 is synthesized by the gel combustion method based on polyvinyl alcohol (PVA) as gel making agent. The optimum conditions of the synthesis include 8 wt% PVA, 0.34 wt% lithium slat, 1 wt% iron salt, 0.57 wt% ammonium dihydrogen phosphate, ethanol-water 50:50 as solvent, 675 °C combustion temperature and 4 h combustion time. Characterization of the samples is performed by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), EDX analysis, XRD patterns, BET specific surface area and DSL size distribution. In the optimum conditions, a nanopowder is obtained that consisting of uniform nanoparticles with an average diameter of 70 nm. The optimized sample shows 12.5 m2 g-1 specific surface areas. Cyclic voltammetry (CV) studies show that the synthesized compound has good reversibility and high cyclic stability. The CV results are confirmed by the battery tests. The obtained results show that the synthesized cathodic material has high practical discharge capacity (average 125.5 mAh g-1 approximately same with its theoretical capacity 128.2 mA h-1) and long cycle life.

  12. Ferromagnetic and multiferroic interfaces in granular perovskite composite xLa0.5Sr0.5CoO3-(1-x)BiFeO3

    NASA Astrophysics Data System (ADS)

    Lohr, Javier H.; López, Carlos A.; Saleta, Martín E.; Sánchez, Rodolfo D.

    2016-08-01

    Nanopowder of ferromagnetic La0.5Sr0.5CoO3 (LSCO) and multiferroic BiFeO3 (BFO) were synthesized by spray pyrolysis method. Different compositions of multiferroic xLSCO-(1-x)BFO composites were synthesized at 800 °C for 2 h. Scanning electron microscopy and energy dispersive spectroscopy elemental mapping were performed to study the morphology of composites. Ferri/ferromagnetic responses above TC (LSCO) are observed, which are associated with the interfaces LSCO/BFO. This interface presents a different behavior compared to the original perovskites, and the magnitude of the magnetization depends on x. Electrical DC conductivity as a function of temperature for LSCO nanopowder (x = 1) presents a different behavior than that reported in bulk material. For x = 1 and 0.9, the model by Glazman and Matveev [Zh. Eksp. Teor. Fiz. 94, 332 (1988)] is proposed to describe the electrical conductivity. On the other hand, x = 0, 0.1, and 0.5 present a variable range hopping behavior. Complex impedance spectroscopy as a function of frequency indicates a pure resistive behavior for x ≥ 0.5 compositions, while a complex resistive-capacitive behavior is observed for low x values (0, 0.1). In these samples, low values of magnetoelectric coupling were measured with an AC lock-in technique.

  13. Luminescence properties of zirconia nanocrystals prepared by solar physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Smits, Krisjanis; Grigorjeva, Larisa; Millers, Donats; Kundzins, Karlis; Ignatans, Reinis; Grabis, Janis; Monty, Claude

    2014-11-01

    Zirconia nanocrystals have attracted considerable interest as biolabels, which can be used as probes for medical imaging and biosensor applications. However, zirconia particle agglomeration forms a major limitation to its use for biolabeling. In this backdrop, for the first time, well-separated zirconia nanocrystals were obtained in a Heliotron reactor (PROMES CNRS, France) via the solar physical vapor deposition (SPVD) method. As the raw material target for solar evaporation, zirconia nanopowders obtained via the sol-gel process were used. The luminescence and upconversion luminescence properties of the Sol Gel nanopowders were compared with those of the SPVD nanocrystals. Erbium was chosen as the luminescence center with ytterbium as the sensitizer, and along with these two dopants, niobium was also used. Niobium acts as a charge compensator to compensate for depletion in the charge due to the introduction of trivalent erbium and ytterbium at tetravalent zirconium sites. Consequently, the oxygen-vacancy concentration is reduced, and this results in a significant increase in the upconversion luminescence. The SPVD-prepared samples showed less agglomeration and a fine crystal structure as well as high luminescence, and thus, such samples can be of great interest for biolabeling applications.

  14. Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications.

    PubMed

    Kharaziha, M; Fathi, M H; Edris, H

    2013-12-01

    Composite scaffolds consisting of polymers reinforced with ceramic nanoparticles are widely applied for hard tissue engineering. However, due to the incompatible polarity of ceramic nanoparticles with polymers, they tend to agglomerate in the polymer matrix which results in undesirable effects on the integral properties of composites. In this research, forsterite (Mg2SiO4) nanoparticles was surface esterified by dodecyl alcohol and nanofibrous poly(ε-caprolactone)(PCL)/modified forsterite scaffolds were developed through electrospinning technique. The aim of this research was to investigate the properties of surface modified forsterite nanopowder and PCL/modified forsterite scaffolds, before and after hydrolytic treatment, as well as the cellular attachment and proliferation. Results demonstrated that surface modification of nanoparticles significantly enhanced the tensile strength and toughness of scaffolds upon 1.5- and 4-folds compared to unmodified samples, respectively, due to improved compatibility between matrix and filler. Hydrolytic treatment of scaffolds also modified the bioactivity and cellular attachment and proliferation due to greatly enhanced hydrophilicity of the forsterite nanoparticles after this process compared to surface modified samples. Results suggested that surface modification of forsterite nanopowder and hydrolytic treatment of the developed scaffolds were effective approaches to address the issues in the formation of composite fibers and resulted in development of bioactive composite scaffolds with ideal mechanical and structural properties for bone tissue engineering applications.

  15. Adhesion and Water Repellent Properties Of Nascent Dammar—Silicone Thin Film: A Bio Mimicry Approach

    NASA Astrophysics Data System (ADS)

    Zakaria, R.; Ahmad, A. H.

    2009-06-01

    Dammar, a local plant resin (Dipterocaupacea sp) has been used in coating formulation to produce dammar-modified silicone resin. Dammar and silicone were mixed in various compositions and then were coated onto Aluminum Q-panel by using spin coating method and left to dry at room temperature. Adhesion property was investigated by using impact test and pull-off test. There were no significant damage and delaminations were observed at the panel coated with 15 wt.% of dammar that has undergone the impact test. Hence, the addition of more than 15 wt.% of dammar resulted in large delaminations and cracks on the coating materials. Results from pull off test also showed that 15 wt.% of dammar organic coating has strong adhesion, 108 Psi. It made 15 wt% as optimized composition. This optimized composition was added with nanopowder as rheological modifier or additive. Again the modified samples were undergone the impact and pull off test to study the effect of adhesiveness. Contact angle measurement of wettability test was also being carried out. The surface coated with dammar-silicone resin was found to be hydrophobic where the contact angle obtained was 70° for the sample containing 10 wt% of dammar. The additional of nanopowder into optimized composition exhibited more hydrophobic phenomenon which approached towards bio-mimicry behaviour, when water droplets simply rest on the surface without actually wetting the surface to any significant extent (hydrophobic) where the angle of wetting tests more than 90° have been achieved.

  16. Influence of the synthesis method on the porosity, microstructure and electrical properties of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} cathode materials

    SciTech Connect

    Conceicao, Leandro da; Silva, Camila R.B.

    2009-12-15

    Lanthanum strontium manganite (La{sub 1-x}Sr{sub x}MnO{sub 3}, LSM) has been studied as a promising material for application as a cathode in solid oxide fuel cells. In the present work La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanopowders were synthesized by three different methods (combustion, citrate and solid-state) and characterized by thermal analysis, X-ray diffraction, physical adsorption of N{sub 2} and scanning electron microscopy. All powders exhibited single LSM phase formation with crystallite sizes in the range of 12-20 nm. Nanopowders were sintered at 1100 deg. C to produce porous pellets. The porosity, particle size and microstructure of LSM sintered bodies are strongly dependent on the preparation methodology. The samples synthesized by combustion and citrate methods presented smaller particle sizes and higher porosity after sintering than that derived from solid-state synthesis. However, the electrical conductivity, measured by two-probe technique, was very similar for all three samples.

  17. Applying Nanoscale Kirkendall Diffusion for Template-Free, Kilogram-Scale Production of SnO2 Hollow Nanospheres via Spray Drying System

    NASA Astrophysics Data System (ADS)

    Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan

    2016-04-01

    A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g‑1, respectively, at a current density of 2 A g‑1. The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones.

  18. TEM and XPS studies on the faceted nanocrystals of Ce{sub 0.8}Zr{sub 0.2}O{sub 2}

    SciTech Connect

    Prusty, Debadutta; Pathak, Abhishek; Mukherjee, Manabendra; Mukherjee, Bratindranath; Chowdhury, Anirban

    2015-02-15

    Faceted nanocrystals of Ce{sub 0.8}Zr{sub 0.2}O{sub 2} synthesised by co-precipitation method were characterised by X-ray diffraction, high-resolution transmission electron microscopy, thermogravimetry–differential scanning calorimetry and X-ray photoelectron spectroscopy techniques. The nanocrystals were highly faceted and exhibited a cubic phase. X-ray photoelectron spectroscopy analyses confirmed the presence of vacancy related defects and revealed the presence of ~ 22% of Ce{sup 3} {sup +} in the nanopowders. High-resolution transmission electron microscopy results confirmed that the nanocrystal sizes are around 31 ± 5 nm and the obtained hexagonal cross-section shape is bound by hexagonal (111) and square (100) facets. The shape-controlled nanocrystals were synthesised without using any surfactants or complexing agents and retained their morphology beyond 800 °C. This is a simple and easy method for producing shape-controlled Ce{sub 0.8}Zr{sub 0.2}O{sub 2} nanoparticles which can be used for catalytic conversion and other related advanced technological areas. - Graphical abstract: Display Omitted - Highlights: • Synthesis of Ce{sub 0.8}Zr{sub 0.2}O{sub 2} faceted nanocrystal of hexagonal morphology. • Nanopowders synthesised without any surfactant; retained morphology beyond 800 °C. • XPS analyses confirm the potential of these powders for catalytic applications.

  19. Cell Attachment and Proliferation of Human Adipose-Derived Stem Cells on PLGA/Chitosan Electrospun Nano-Biocomposite

    PubMed Central

    Razavi, Shahnaz; Karbasi, Saeed; Morshed, Mohammad; Zarkesh Esfahani, Hamid; Golozar, Mohammad; Vaezifar, Sedigheh

    2015-01-01

    Objective In this study, nano-biocomposite composed of poly (lactide-co-glycolide) (PLGA) and chitosan (CS) were electrospun through a single nozzle by dispersing the CS nano-powders in PLGA solution. The cellular behavior of human adipose derived stem cells (h-ADSCs) on random and aligned scaffolds was then evaluated. Materials and Methods In this experimental study, the PLGA/CS scaffolds were prepared at the different ratios of 90/10, 80/20, and 70/30 (w/w) %. Morphology, cell adhesion and prolif- eration rate of h-ADSCs on the scaffolds were assessed using scanning electron microscope (SEM), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and trypan blue staining respectively. Results H-ADSCs seeded on the matrices indicated that the PLGA/CS composite matrix with aligned nanofibres and higher content of CS nano-powders gave significantly better performance than others in terms of cell adhesion and proliferation rate (P<0.05). Conclusion We found that CS enhanced cell adhesion and proliferation rate, and aligned nanofibers guided cell growth along the longitudinal axis of the nanofibers, which would provide a beneficial approach for tissue engineering. PMID:26464814

  20. Fabrication and Spark plasma sintering of nanostructured bismuth telluride (Bi{sub 2}Te{sub 3})

    SciTech Connect

    Saleemi, Mohsin; Toprak, Muhammet S.; Li, Shanghua; Johnsson, Mats; Muhammed, Mamoun

    2012-06-26

    Thermoelectric (TE) devices can harvest residual low-grade waste heat energy. Bismuth telluride (Bi{sub 2}Te{sub 3}) and its alloys are mostly used TE materials in the bulk form for making TE modules. We report a simple, fast and very high yield synthetic process for the bulk Bi{sub 2}Te{sub 3} nanopowders with hexagonal plate like morphology. Spark plasma sintering (SPS) process has been optimized in order to preserve nanostructure while achieving a high compaction density of the pellets. Electron microscopy analysis was used to determine the effect of SPS parameters during compaction on the grain growth. Optimal conditions for the fabricated nanopowder was determined as 673 K, 70 MPa pressure with no holding time, which resulted in average lateral grain size in the range of 165-190 nm for a compact density of 98%. About 50% reduction of thermal conductivity was observed as compared to its bulk counterparts, revealing the feasibility of suggested route in the preservation of nanostructure and enhanced phonon scattering.

  1. Systematic approach on the fabrication of Co doped ZnO semiconducting nanoparticles by mixture of fuel approach for Antibacterial applications

    NASA Astrophysics Data System (ADS)

    Rajendar, V.; Dayakar, T.; Shobhan, K.; Srikanth, I.; Venkateswara Rao, K.

    2014-11-01

    Zinc oxide (ZnO) is a wide band gap semiconductor (3.2 eV) with a high exciton binding energy (60 meV), where it has wide applications in advanced spintronic devices. The theoretical prediction of room temperature ferromagnetism and also antibacterial activity will be possible through the investigation of diluted magnetic semiconductors (DMS), such as transition metal doped ZnO, especially Cobalt doped ZnO. The aim of the work is the synthesis of Cobalt (Co) doped ZnO nanopowders were prepared Zn1-xCoxO (0 ⩽ x ⩾ 0.09) nanopowders from Sol-Gel auto combustion method have been synthesized with precursors such as Zinc and Cobalt nitrates with the assistance Ammonium acetate & Urea as fuel by increasing the cobalt concentration in zinc oxide and their structural, morphological, optical, Thermal, magnetic and antibacterial properties were studied by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission Electron microscope (TEM), UV-visible spectroscopy, thermo gravimetric/differential thermal analysis (TG/DTA) and vibrating sample magneto meter (VSM). From the antibacterial studies, against gram positive Bacillus subtilis bacteria is most abundant bacteria in soil and indoor atmosphere, which affects the stored spintronic devices so that the devices should be made with antibacterial activity of DMS like Co doped ZnO. In this article is found that ZnO:Co nanopowders with higher Co doping level (0.07 and 0.09 wt%) exhibit good antibacterial efficiency. The magnetization curves obtained using vibrating sample magnetometer (VSM) show a sign of strong room temperature ferromagnetic behavior when the Co doping level is 0.05 wt% and a weak room temperature ferromagnetic behavior Co doping level is below 0.07 wt%, and also they found to exhibit antiferromagnetic and paramagnetic properties, when the Co doping levels are 0.07 and 0.09 wt%, respectively, to enhance and increase the special magnetic and antibacterial property for

  2. Controlling the sol–gel process of nano-crystalline lithium-mica glass-ceramic by its chemical composition and synthesis parameters

    SciTech Connect

    Tohidifar, M.R.; Alizadeh, P.; Aghaei, A.R.

    2015-01-15

    This paper aims to explore the impact of the parameters such as pH of the system, refluxing temperature, water quantity and chemical composition on the sol–gel synthesis of lithium-mica glass-ceramic nano-powder. The synthesis process was accomplished using two chemical composition formula (Li{sub (1+x)}Mg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6.5x}F{sub 2} and LiMg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6x}F{sub 2}). X-ray diffraction, Brunauer–Emmett–Teller surface area measurement and scanning electron microscopy techniques were applied to evaluate a variety of as-synthesized samples. Consequently, a transparent homogeneous sol was obtained under the conditions as pH ≤ 4, synthesis temperature ≤ 50 °C, and mol ratio of water to chemicals ≤ 2. The prepared nano-powders under such conditions were in the range of 60–100 nm. The results also revealed that the mica glass-ceramics prepared based on the composition Li{sub (1+x)}Mg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6.5x}F{sub 2} possessed finer powders due to their slow hydrolysis process. Moreover, any reduction in the stoichiometric deviation of lithium mica (x) leads to acquiring finer powders. - Highlights: • A transparent homogeneous sol leads to prepare nanopowders in the range of 60–100 nm. • The particles synthesized at lower temperatures possess finer sizes. • The acquired product which is prepared with excessive water offers larger sizes. • Any reduction in stoichiometric deviation leads to acquiring finer powders. • Taking synthesis composition as Li{sub (1+x)}Mg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6.5x}F{sub 2} offers finer powders.

  3. Materials for Better Li-based Storage Systems for a "Green Energy Society"

    SciTech Connect

    Jean-Marie Tarascon

    2009-09-18

    Li-ion batteries are strongly considered for powering the upcoming generations of HEVs and PHEVs, but there are still the issues of safety and costs in terms of materials resources and abundances, synthesis, and recycling processes. Notions of materials having minimum footprint in nature, made via eco-efficient processes, must be integrated in our new research towards the next generation of sustainable and "greener" Li-ion batteries. In this July 13, 2009 talk sponsored by Berkeley Lab's Environental Energy Technologies Division, Jean-Marie Tarascon, a professor at the University of Picardie (Amiens), discuss Eco-efficient synthesis via hydrothermal/solvothermal processes using latent bases as well as structure directing templates or other bio-related approaches of LiFePO4 nanopowders.

  4. Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics

    NASA Astrophysics Data System (ADS)

    Luechinger, Norman A.; Athanassiou, Evagelos K.; Stark, Wendelin J.

    2008-11-01

    Metallic copper nanoparticles were synthesized by a bottom-up approach, and in situ coated with protective shells of graphene in order to get a metal nanopowder of high air stability and chemical inertness. Using an amphiphilic surfactant, a water-based copper nanocolloid could be prepared and successfully printed onto a polymer substrate by conventional ink-jet printing using household printers. The dried printed patterns exhibited strong metallic gloss and an electrical conductivity of >1 S cm-1 without the need for a sintering or densification step. This conductivity currently limits use in electronics to low current application or shielding and decorative effects. The high stability of graphene-coated copper nanoparticles makes them economically a most attractive alternative to silver or gold nanocolloids, and will strongly facilitate the industrial use of metal nanocolloids in consumer goods.

  5. Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics.

    PubMed

    Luechinger, Norman A; Athanassiou, Evagelos K; Stark, Wendelin J

    2008-11-01

    Metallic copper nanoparticles were synthesized by a bottom-up approach, and in situ coated with protective shells of graphene in order to get a metal nanopowder of high air stability and chemical inertness. Using an amphiphilic surfactant, a water-based copper nanocolloid could be prepared and successfully printed onto a polymer substrate by conventional ink-jet printing using household printers. The dried printed patterns exhibited strong metallic gloss and an electrical conductivity of >1 S cm(-1) without the need for a sintering or densification step. This conductivity currently limits use in electronics to low current application or shielding and decorative effects. The high stability of graphene-coated copper nanoparticles makes them economically a most attractive alternative to silver or gold nanocolloids, and will strongly facilitate the industrial use of metal nanocolloids in consumer goods. PMID:21832722

  6. Enhancement of thermal neutron attenuation of nano-B4C, -BN dispersed neutron shielding polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Kim, Jaewoo; Lee, Byung-Chul; Uhm, Young Rang; Miller, William H.

    2014-10-01

    Nano-sized boron carbide (B4C) and boron nitride (BN) powder were prepared using ball milling. Micro- and milled nano-powders were melt blended with high density polyethylene (HDPE) using a polymer mixer followed by hot pressing to fabricate sheet composites. The tensile and flexural strengths of HDPE nanocomposites were ∼20% higher than their micro counterparts, while those for latter decreased compared to neat HDPE. Thermal neutrons attenuation of the prepared HDPE nanocomposites was evaluated using a monochromatic ∼0.025 eV neutron beam. Thermal neutron attenuation of the HDPE nanocomposites was greatly enhanced compared to their micro counterparts at the same B-10 areal densities. Monte Carlo n-Particles (MCNP) simulations based on the lattice structure modeling also shows the similar filler size dependent thermal neutron absorption.

  7. Microstructure and performance of titanium oxide coatings sprayed by oxygen-acetylene flame.

    PubMed

    Ctibor, Pavel; Stengl, Vaclav; Zahalka, Frantisek; Murafa, Nataliya

    2011-03-01

    TiO(2) nano-powders were agglomerated by a spray drying process for application to thermal spraying. A conventional oxygen-acetylene flame torch was used to deposit porous partially nanostructured TiO(2) coatings. Steel substrates were used as a support for tested samples. Scanning electron microscopy, X-ray microanalysis and X-ray diffraction were performed to study the morphology and the crystalline phases of the titania coatings. Optical bandgap and kinetics of the acetone decomposition were also studied. The best results were obtained for the powder which is available as a commercial spray feedstock. This powder seems to be most resistant against the reducing atmosphere in the jet of combustive gases. PMID:20938550

  8. Role of sonic energy on growth morphology and optical properties of ZnO:S nanostructures

    SciTech Connect

    Panda, Nihar Ranjan Nayak, Pratibindhya; Acharya, Bhabani Shankar

    2014-04-24

    ZnO nanopowders doped with sulphur were prepared by sonochemical method. The input power of ultrasound was varied as 40%, 50% and 60% of the maximum power (375 W) in both continuous and pulsed mode. XRD results show the average size of the nanoparticles is the least for those prepared with 50% input power as well as the micro-strain. FESEM studies showed the formation of nanorods clubbed together to form flower like structure for these samples. In rest of the cases, no definite morphology was obtained. High resolution transmission electron microscopy (HRTEM) reveals the formation of nanorods oriented along c-axis for those samples prepared with 50% input power. No cavitation at 40% and excessive dissolution at 60% may lead to this type of morphology. Absorption studies showed high absorbance for sulphur doped samples but this was highest for the samples prepared with 60% input power.

  9. Electric field dependent dielectric response of alumina/silicone oil colloids

    NASA Astrophysics Data System (ADS)

    Magallon, Louis; Tsui, Stephen

    2014-03-01

    We investigate the dielectric response of a mixture of alumina nanopowder and silicone oil. Frequency and electric field dependent measurements of another insulating colloid, i.e., urea-coated Ba0.8Rb0.4TiO(C2O4)2 nanoparticles immersed in silicone oil, revealed universal dielectric response (UDR) characteristics and, with the application of high voltage, a negative capacitance. Alumina in silicone oil represents a simpler system in which to perform similar dielectric investigation. This colloid is sandwiched in a parallel plate capacitor cell, and the complex impedance is measured via lock-in amplifier at various frequencies and applied dc biases. Furthermore, we will compare and discuss the dielectric behaviors of different sized suspended alumina particles.

  10. Photoluminescent study of surface-functionalized BaTiO 3 nanoparticles in a poly(methyl methacrylate) matrix

    NASA Astrophysics Data System (ADS)

    Requena, Sebastian

    BaTiO3 nanopowders of average grain sizes 50 nm and 100 nm were functionalized by (3-aminopropyl)triethoxysilane (3APTS) and mixed with poly(methyl methacrylate)/toluene solution. Nanocomposite thin films were synthesized by solution spin-coating on to Si substrates. The nanocomposites films morphology and chemical structure were studied via AFM and FTIR. The photoluminescence spectrum of the pure nanoparticles was composed of an emission at 3.0 eV and multiple bands centered at 2.5 eV. Surface functionalization of the BaTiO3 nanoparticles via 3APTS increased overall luminescence at room temperature while only enhancing the 3.0 eV emission at low-temperature. Polymer coating of the functionalized nanoparticles significantly enhances 3.0 eV emissions while decreasing emissions associated with near-surface lattice distortions at 2.5 eV.

  11. AC susceptibility and EPR investigations of superspin dynamics in magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Price, Alex D.

    In this investigation we use two complementary techniques to distinguish between superparamagnetic blocking (SPB) and superspin-glass (SSG) freezing phenomena in magnetite nanoparticles. While these manifestations of the superspin dynamics are fundamentally different, they have similar "signatures", especially in dc-magnetization experiments. Even if ac-susceptibility measurements are employed, careful use of mathematical models to analyze the data are needed to uncover which type of phenomena (SPB or SSG freezing) occurs within the material. Yet, by utilizing electron paramagnetic resonance (EPR) on a 10 nm Fe3O4 nano-powder as well as on a ferrofluid (based on the same nanoparticle ensemble) we found a very distinct difference in the absorption spectra between the two samples, which indicates markedly different EPR signatures from SPB and SSG freezing behaviors.

  12. Coherent backscattering and dynamical light localization in liquid crystals driven throughout chaotic regimes.

    PubMed

    Carbone, Francesco; De Luca, Antonio; Barna, Valentin; Ferjani, Sameh; Vena, Carlo; Versace, Carlo; Strangi, Giuseppe

    2009-08-01

    An important effect of dynamical localization of light waves in liquid crystal electro-hydrodynamic instabilities is reported by investigating coherent backscattering effects. Recurrent multiple scattering in dynamic and chaotic complex fluids lead to a cone of enhanced backscattered light. The cone width and the related mean free path dependence on the dynamic scattering regimes emphasize the diverse light localization scales related to the internal structures present in the sample. The systems investigated up to now were mainly nano-powdered solutions or biological tissues, without any external control on the disorder. Here, an anisotropic complex fluid is "driven" throughout chaotic regimes by an external electric field, giving rise to dynamics that evolve through several spatio-temporal patterns.

  13. Preparation and Study on Nickel Oxide Reduction of Polyacrylonitrile-Based Carbon Nanofibers by Thermal Treatment.

    PubMed

    Lee, Yeong Ju; Kim, Hyun Bin; Jeun, Joon Pyo; Lee, Dae Soo; Koo, Dong Hyun; Kang, Phil Hyun

    2015-08-01

    Carbon materials containing magnetic nanopowder have been attractive in technological applications such as electrochemical capacitors and electromagnetic wave shielding. In this study, polyacrylonitrile (PAN) fibers containing nickel nanoparticles were prepared using an electrospinning method and thermal stabilization. The reduction of nickel oxide was investigated under a nitrogen atmosphere within a temperature range of 600 to 1,000 °C. Carbon nanofibers containing nickel nanoparticles were characterized by FE-SEM, EDS, XRD, TGA, and VSM. It was found that nickel nanoparticles were formed by a NiO reduction in PAN as a function of the thermal treatment. These results led to an increase in the coercivity of nanofibers and a decrease in the remanence magnetization.

  14. Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS.

    PubMed

    Lee, Sooheyong; Roseker, W; Gutt, C; Fischer, B; Conrad, H; Lehmkühler, F; Steinke, I; Zhu, D; Lemke, H; Cammarata, M; Fritz, D M; Wochner, P; Castro-Colin, M; Hruszkewycz, S O; Fuoss, P H; Stephenson, G B; Grübel, G; Robert, A

    2013-10-21

    The single shot based coherence properties of hard x-ray pulses from the Linac Coherent Light Source (LCLS) were measured by analyzing coherent diffraction patterns from nano-particles and gold nanopowder. The intensity histogram of the small angle x-ray scattering ring from nano-particles reveals the fully transversely coherent nature of the LCLS beam with a number of transverse mode 〈Ms〉 = 1.1. On the other hand, the speckle contrasts measured at a large wavevector yields information about the longitudinal coherence of the LCLS radiation after a silicon (111) monochromator. The quantitative agreement between our data and the simulation confirms a mean coherence time of 2.2 fs and a x-ray pulse duration of 29 fs. Finally the observed reduction of the speckle contrast generated by x-rays with pulse duration longer than 30 fs indicates ultrafast dynamics taking place at an atomic length scale prior to the permanent sample damage.

  15. A study of structural, optical and dielectric properties of crystalline Sr{sub 2}Nb{sub 2}O{sub 7} nanoparticles synthesized by a modified combustion technique

    SciTech Connect

    Mathai, K. C.; Vidya, S.; Thomas, J. K.; Solomon, Sam

    2014-01-28

    Nanocrystalline Strontium Pyroniobate is synthesized by a novel auto-igniting combustion technique. The X-Ray diffraction studies reveal that Strontium Niobate possesses orthorhombic structure. Phase purity and structure of the nanopowder is further examined using Fourier-Transform Infrared and Raman spectroscopy. The average particle size of the as prepared nanoparticles from the Transmission Electron Microscopy is 30 nm. Sr{sub 2}Nb{sub 2}O{sub 7} is a photoluminescent material and the optical band gap determined from the UV-DRS spectrum is 2.7eV. The sample is sintered at an optimized temperature of 1350°C for 2 hours and obtained maximum density. The dielectric constant and loss factor values obtained at 5MHz for a well-sintered Strontium Niobate pellet is found to be 40 and 3.9×10{sup −3} respectively, at room temperature.

  16. The photocatalytic degradation of cationic surfactant from wastewater in the presence of nano-zinc oxide using Taguchi method

    NASA Astrophysics Data System (ADS)

    Giahi, M.; Moradidoost, A.; Bagherinia, M. A.; Taghavi, H.

    2013-12-01

    The photocatalytic degradation of cetyl pyridinium chloride (CPC) has been investigated in aqueous phase using ultraviolet (UV) and ZnO nanopowder. Kinetic analysis showed that the extent of surfactant photocatalytic degradation can be fitted with pseudo-first-order model and photochemical elimination of CPC could be studied by Taguchi method. Our experimental design was based on testing five factors, i.e., dosage of K2S2O8, concentration of CPC, amount of ZnO, irradiation time and initial pH. Each factor was tested at four levels. The optimum parameters were found to be pH 5.0; amount of ZnO 11 mg; K2S2O8 3 mM; CPC 10 mg/L; irradiation time, 8 h.

  17. Transparent Nd doped YAG ceramics

    NASA Astrophysics Data System (ADS)

    Stanciu, Catalina-Andreea; Dascalu, Traian; Stanciu, George; Pavel, Nicolaie

    2016-08-01

    The reasearch main objective is to obtain ceramic laser materials based on pure YAG (Y3Al5O12) and Nd doped YAG (Y3-xNdxAl5O12, with × = 0.5 and 1.0 at. %), by conventional solid state reaction method. Stoichiometric compositions of Y3Al5O12 (YAG), Y2.985Nd0.015Al5O12 (0.5 at.% Nd:YAG) and Y2.97Nd0.03Al5O12 (1.0 at.% Nd:YAG) were prepared using high purity Y2O3 (99.999%), Al2O3 (99.999%) and Nd2O3 (99.999%) nanopowders. Green bodies were sintered at 1750 °C for 16 h under vacuum (1.0 × 10-3 Pa) and then annealed at 1450 °C for 10 h in the air.

  18. Crystallite size-dependent phases in nanocrystalline ZrO(2)-Sc(2)O(3).

    PubMed

    Abdala, Paula M; Fantini, Márcia C A; Craievich, Aldo F; Lamas, Diego G

    2010-03-28

    ZrO(2)-10, 12 and 14 mol% Sc(2)O(3) nanopowders were prepared by using a nitrate-lysine gel-combustion synthesis. These materials were studied by synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy after calcination at different temperatures from 650 to 1200 degrees C, which led to samples with different average crystallite sizes, up to about 100 nm. The results from SXPD and Raman analyses indicate that, depending on Sc(2)O(3) content, the metastable t''-form of the tetragonal phase or the cubic phase are fully retained at room temperature in nanocrystalline powders, provided an average crystallite sizes lower than approximately 30 nm. By contrast, powders with larger average crystallite sizes exhibit the stable rhombohedral, beta and gamma, phases and do not retain or very partially retain the metastable t'' and cubic ones.

  19. "Physics-to-Market Challenges in Nanotechnology"

    NASA Astrophysics Data System (ADS)

    W., Dennis; Hamill

    2003-03-01

    Nanotechnologies, Inc., is a small start-up company using a high energy pulsed-plasma process for making metal and ceramic nanopowders controllable in size from 5 to 100 nanometers in diameter. The author will discuss the challenges faced by a team of physicists in moving a unique technology toward a commercial success. The author, a solid state physicist who also teaches a High-Tech Marketing course in the Business School at the University of Texas, will detail experiences and insights dealing with marketing technology based products when both the technology and the marketplace are experiencing dramatic and rapid change. Topics included from the small company perspective are; venture capital constraints, market segmentation and lead user identification, management of the gap between technology value demonstration and commercialization scaleup, strategic partner choices, core competencies, and vertical market application leverage.

  20. Characterization of ZnO nanoparticle suspension in water: Effectiveness of ultrasonic dispersion

    SciTech Connect

    Chung, S.J.; Leonard, J.P.; Nettleship, I.; Lee, J.K.; Soong, Y.; Martello, D.V.; Chyu, M.K.

    2009-08-01

    Suspensions of ZnO nanoparticles in water were prepared with the two-step powder dispersion process using several methods of ultrasonication. The dispersion of ZnO was found to proceed by a fragmentation process. with minimum achievable particle size in the range 50 to 300 nm. This is consistent with other oxide nanopowder systems, in which most primary particulates still remain in hardened aggregates that cannot be further reduced. A submersible accelerometer probe was developed and used to measure the relative ultrasonic energy held in the liquid for the various ultrasonication methods. oscillation at the expected frequencies was identified in each case, with strong variability at different locations in the liquid volume.

  1. Synthesis of low-size flower-like AlOOH structures

    SciTech Connect

    Bakina, Olga V. E-mail: eagl@ispms.tsc.ru; Glazkova, Elena A. E-mail: eagl@ispms.tsc.ru; Lozhkomoev, Aleksandr S. Psakhie, Sergey G.; Svarovskaya, Natalia V.; Khorobraya, Elena G.

    2014-11-14

    Al/Cu, Al/Zn, and Al/Fe bimetallic nanoparticles have been obtained using the method of simultaneous electrical explosion of metal pairs in an argon atmosphere. The nanoparticles are chemically active and interact with water at 60°C forming flower-like hierarchical porous structures with a high specific surface area. As the Al/Cu nanopowder is oxidized with water, flower-like pseudoboehmite composite structures are formed with the size of under 1.0 μm; structurally heterogeneous electron-dense spherical inclusions of unreacted metal copper and intermetallides are identified inside them. Al/Fe product transformations are presented by the flower-like pseudoboehmite surrounded by lamellar structures enriched with ferric oxides. Al/Zn nanoparticles react with water, forming the flower-like pseudoboehmite and mainly hexagonal zinc oxide laminae. The composite particles obtained can be used as antibacterial agents in manufacturing medical supplies.

  2. Materials for Better Li-based Storage Systems for a "Green Energy Society"

    ScienceCinema

    Jean-Marie Tarascon

    2016-07-12

    Li-ion batteries are strongly considered for powering the upcoming generations of HEVs and PHEVs, but there are still the issues of safety and costs in terms of materials resources and abundances, synthesis, and recycling processes. Notions of materials having minimum footprint in nature, made via eco-efficient processes, must be integrated in our new research towards the next generation of sustainable and "greener" Li-ion batteries. In this July 13, 2009 talk sponsored by Berkeley Lab's Environental Energy Technologies Division, Jean-Marie Tarascon, a professor at the University of Picardie (Amiens), discuss Eco-efficient synthesis via hydrothermal/solvothermal processes using latent bases as well as structure directing templates or other bio-related approaches of LiFePO4 nanopowders.

  3. On the Mechanism of Ultrasound-Driven Deagglomeration of Nanoparticle Agglomerates in Aluminum Melt

    NASA Astrophysics Data System (ADS)

    Kudryashova, Olga; Vorozhtsov, Sergey

    2016-05-01

    One of the promising directions in the technology of composite alloys with improved mechanical properties is reinforcement of the metallic matrix with nanopowders introduced in the liquid metal. Ultrasonic processing is known to significantly improve the introduction of submicrone particles to the metallic melt. This study focuses on the mechanisms of deagglomeration and wettability of such particles by the melt under the action of ultrasound. The suggested mechanism involves the penetration of the liquid metal into the pores and cracks of the agglomerates under the excess pressure created by imploding cavitation bubbles and further destruction of the agglomerate by the sound wave. The main dependences connecting the acoustic parameters and processing time with the physical and chemical properties of particles and the melt are obtained through analytical modeling. The mathematical description of the ultrasonic deagglomeration in liquid metal is presented; a dependence of the threshold intensity of ultrasound for the break-up of agglomerates on their size is reported.

  4. Spectral and lasing characteristics of 1% Ho:YAG ceramics under intracavity pumping

    SciTech Connect

    Bagayev, S N; Vatnik, S M; Vedin, I A; Kurbatov, P F; Osipov, V V; Shitov, V A; Maksimov, R N; Luk'yashin, K E; Pavlyuk, A A

    2015-01-31

    High-transparency 1% Ho:YAG ceramics with the transmission coefficient of 82% in the IR range at the sample thickness of 1 mm are synthesised from a mixture of the Ho:Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} nanopowders obtained by the laser method. Results of investigations of spectral and lasing characteristics of 1 % Ho:YAG ceramics under intracavity pumping by radiation of a 5% Tm:KLuW disk element are presented. Based on spectral intensity analysis of generation in the 1.8 – 2.1 mm range and on cavity parameters, the estimated lasing slope efficiency for 1% Ho:YAG ceramics is about 40%. (lasers)

  5. Nano-Composite Material Development for 3-D Printers

    SciTech Connect

    Satches, Michael Randolph

    2015-12-01

    Graphene possesses excellent mechanical properties with a tensile strength that may exceed 130 GPa, excellent electrical conductivity, and good thermal properties. Future nano-composites can leverage many of these material properties in an attempt to build designer materials for a broad range of applications. 3-D printing has also seen vast improvements in recent years that have allowed many companies and individuals to realize rapid prototyping for relatively low capital investment. This research sought to create a graphene reinforced, polymer matrix nano-composite that is viable in commercial 3D printer technology, study the effects of ultra-high loading percentages of graphene in polymer matrices and determine the functional upper limit for loading. Loadings varied from 5 wt. % to 50 wt. % graphene nanopowder loaded in Acrylonitrile Butadiene Styrene (ABS) matrices. Loaded sample were characterized for their mechanical properties using three point bending, tensile tests, as well as dynamic mechanical analysis.

  6. Tuning of wettability of PANI-GNP composites using keV energy ions

    NASA Astrophysics Data System (ADS)

    Lakshmi, G. B. V. S.; Avasthi, D. K.

    2016-07-01

    Polyaniline nanofiber composites with various nanomaterials have several applications in electrochemical biosensors. The surface properties of these composites coated electrodes play crucial role in enzyme absorption and analyte detection process. In the present study, Polyaniline-Graphene nanopowder (PANI-GNP) composites were prepared by rapid-mixing polymerization method. The films were prepared on ITO coated glass substrates and irradiated with 42 keV He+ ions produced by indigenously fabricated accelerator at IUAC, New Delhi. The films were characterized before and after irradiation by SEM, Raman spectroscopy and contact angle measurements. The as-prepared films show superhydrophilic nature and after irradiation the films show highly hydrophobic nature with water contact angle (135°). The surface morphology was studied by SEM and structural changes were studied by Raman spectra. The surface morphological modifications induced by keV energy ions helps in tuning the wettability at different ion fluences.

  7. High performance HTPB-based energetic nanomaterial with CuO nanoparticles.

    PubMed

    de la Fuente, José Luis; Mosquera, Gonzalo; París, Rodrigo

    2009-12-01

    This work describes the first example to demonstrate the enhancement of performances of composite highly energetic materials by mean of employing standard CuO nano-powder as burning rate catalyst in comparison to micro-fillers. The solid composite propellants with CuO microparticles are less stable due to oversensitivity to pressure variations, but the nano-structured composite propellant yields high stable burning rates over a broad pressure range. In addition, the incorporation of CuO nanoparticles in the formulations of these energetic materials also improves their combustion and thermal properties, according to the characterization obtained by differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). These results indicate the excellent benefits found in using these nanoparticles as additive for solid rocket propulsion applications.

  8. Prospects of Nanodispersive Powder Applications in Surface Engineering Technologies

    NASA Astrophysics Data System (ADS)

    Levashov, E. A.; Kudryashov, A. E.; Vakaev, P. V.

    General potentials of UDD (ultra dispersive diamond), NbC, WC, W, WC-Co, ZrO2, Al2O3, Si3N4, Co, nanosized powders in determining structure and properties of composite electrodes and coatings deposited by electrospark alloying (ESA) and thermoreactive electrospark surface strengthening (TRESS) techniques were considered. It was shown that an addition of refractory compound nanosized powder to the electrode material positively effects microstructure and tribological characteristic of ESA-coatings. Nanoparticles incorporated in the coating on grains boundaries serve as a lubricant for friction pairs. Wear resistant W-C-Co coatings with a friction coefficient below 0.15 were deposited by TRESS using nanopowders of Co and W. Nano- or microstructural coatings on the base of cemented carbides can be formed, depending on pulse discharge energy and frequency. Examples of beneficial industrial application of the coatings strengthened by nanosized particles were presented.

  9. The effect of nanobioceramic reinforcement on mechanical and biological properties of Co-base alloy/hydroxyapatite nanocomposite.

    PubMed

    Bahrami, M; Fathi, M H; Ahmadian, M

    2015-03-01

    The goal of the present research was to fabricate, characterize, and evaluate mechanical and biological properties of Co-base alloy composites with different amounts of hydroxyapatite (HA) nanopowder reinforcement. The powder of Co-Cr-Mo alloy was mixed with different amounts of HA by ball milling and it was then cold pressed and sintered. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used. Microhardness measurement and compressive tests were also carried out. Bioactivity behavior was evaluated in simulated body fluid (SBF). A significant decrease in modulus elasticity and an increase in microhardness of the sintered composites were observed. Apatite formation on the surface of the composites showed that it could successfully convert bioinert Co-Cr-Mo alloy to bioactive type by adding 10, 15, and 20wt.% HA which have lower modulus elasticity and higher microhardness.

  10. Fabrication of lanthanum strontium cobalt ferrite (LSCF) cathodes for high performance solid oxide fuel cells using a low price commercial inkjet printer

    NASA Astrophysics Data System (ADS)

    Han, Gwon Deok; Neoh, Ke Chean; Bae, Kiho; Choi, Hyung Jong; Park, Suk Won; Son, Ji-Won; Shim, Joon Hyung

    2016-02-01

    In this study, we investigate a method to fabricate high quality lanthanum strontium cobalt ferrite (LSCF) cathodes for solid oxide fuel cells (SOFCs) using a commercial low price inkjet printer. The ink source is synthesized by dissolving the LSCF nanopowder in a water-based solvent with a proper amount of surfactants. Microstructures of the LSCF layer, including porosity and thickness per printing scan cycle, are adjusted by grayscale in the printing image. It is successfully demonstrated that anode-supported SOFCs with optimally printed LSCF cathodes can produce decent power output, i.e., a maximum peak power density of 377 mW cm-2 at 600 °C, in our experiment. We expect that this approach can support the quick and easy prototyping and evaluating of a variety of cathode materials in SOFC research.

  11. Synthesis and Characterization of BiFeO3 Ceramic by Simple and Novel Methods

    NASA Astrophysics Data System (ADS)

    Amiri, Omid; Reza Mozdianfar, Mohammad; Vahid, Mahmoud; Salavati-Niasari, Masoud; Gholamrezaei, Sousan

    2016-06-01

    BiFeO3 nanopowders with new morphology have been synthesized by different methods. X-ray diffraction analysis, scanning electron microscopy, Fourier transform infrared and vibrating sample magnetometer were carried out at room temperature to study the structural and magnetic properties of as-synthesized products. VSM was utilized to measure the size-dependent magnetic behaviors of the as-prepared nanoparticles. Results show that the method has strong effect on the purity of the products. BFO synthesized by third method was pure. Crystallite size has a great effect on the magnetic properties. According to these results the nanoparticle diameter is smaller than the critical single-domain diameter, avoiding the configuration of magnetic domain walls decreases the magnetization. Even though the diameter of particle becomes even smaller, the thermal stability of the magnetization orientation decreases.

  12. Optical absorption and emission characterization of P3HT: graphene composite for its prospective photovoltaic application

    NASA Astrophysics Data System (ADS)

    Singh, Joginder; Prasad, Neetu; Nirwal, Varun Singh; Gautam, Khyati; Peta, Koteswara Rao; Bhatnagar, P. K.

    2016-05-01

    In the present work, regioregular P3HT (Poly (3-hexylthiophene-2, 5-diyl) was blended with graphene nanopowder and the optical spectroscopic characterization of the composite has been performed. It was observed that at low concentration of graphene (up to 0.1 wt %) there is no significant variation in absorption intensity or wavelength range. But at higher concentration (> 0.1 wt %) the absorption intensity starts reducing. Whereas, the photoluminescence of the composite solution quenches as we increase the concentration of graphene. It reveals that charge recombination decreases with increase in concentration (0.05 to 0.5 wt %) of graphene. Therefore 0.1 wt % seems to be the optimized concentration of graphene in the composite for which appropriate quenching of PL was observed without any significant reduction in absorption of photons. Thus maximum efficiency in P3HT: graphene composite photovoltaic cell is expected for 0.1 wt % of graphene concentration in our typical case.

  13. High temperature Ir segregation in Ir-B ceramics: Effect of oxygen presence on stability of IrB2 and other Ir-B phases

    DOE PAGES

    Xie, Zhilin; Terracciano, Anthony C.; Cullen, David A.; Blair, Richard G.; Orlovskaya, Nina

    2015-05-13

    The formation of IrB2, IrB1.35, IrB1.1 and IrB monoboride phases in the Ir–B ceramic nanopowder was confirmed during mechanochemical reaction between metallic Ir and elemental B powders. The Ir–B phases were analysed after 90 h of high energy ball milling and after annealing of the powder for 72 h at 1050°C in vacuo. The iridium monoboride (IrB) orthorhombic phase was synthesised experimentally for the first time and identified by powder X-ray diffraction. Additionally, the ReB2 type IrB2 hexagonal phase was also produced for the first time and identified by high resolution transmission electron microscope. Ir segregation along disordered domains ofmore » the boron lattice was found to occur during high temperature annealing. Furthermore, these nanodomains may have useful catalytic properties.« less

  14. Effect of protective release coatings on the basis of superdispersersed zirconium oxide powder on the formation of gas defects in bronze casting

    NASA Astrophysics Data System (ADS)

    Martyushev, Nikita V.; Risto, Nikolay A.

    2014-10-01

    This paper investigates the use of nanopowders in the composition of foundry coatings when casting leaded tin bronzes. Influence of the composition of the applied protective coating on surface finish is studied. The effects of the coatings of the following compositions are compared: non-stick coating (a mixture of low-dispersed chromium oxide powder and heat-treated vegetable oil); non-stick lubricant ASPF-2/RgU on the basis of low- dispersed graphite powder and heat-treated vegetable oil; patent #2297300 (a mixture of superdispersed zirconium dioxide powder with industrial oil). It is demonstrated that application of foundry coatings containing superdispersed metal oxide powders with low thermal conductivity makes it possible to significantly reduce irregularities and eliminate gas porosity on the surface of tin-leaded bronze castings.

  15. Examination of Short- and Long-Range Atomic Order Nanocrystalline SiC and Diamond by Powder Diffraction Methods

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Weber, H.-P.; Proffen, T.; Palosz, W.

    2002-01-01

    The real atomic structure of nanocrystals determines unique, key properties of the materials. Determination of the structure presents a challenge due to inherent limitations of standard powder diffraction techniques when applied to nanocrystals. Alternate methodology of the structural analysis of nanocrystals (several nanometers in size) based on Bragg-like scattering and called the "apparent lattice parameter" (alp) is proposed. Application of the alp methodology to examination of the core-shell model of nanocrystals will be presented. The results of application of the alp method to structural analysis of several nanopowders were complemented by those obtained by determination of the Atomic Pair Distribution Function, PDF. Based on synchrotron and neutron diffraction data measured in a large diffraction vector of up to Q = 25 Angstroms(exp -1), the surface stresses in nanocrystalline diamond and SiC were evaluated.

  16. One-pot facile synthesis of Janus-structured SnO2-CuO composite nanorods and their application as anode materials in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Kang, Yun Chan

    2013-05-01

    SnO2-CuO composite nanorods with a Janus structure were prepared by one-step flame spray pyrolysis. High-aspect-ratio SnO2 nanorods were positioned on one side of the spherical CuO powder. The mean length of the rod-shaped crystals decreased from 200 to 20 nm when the SnO2 content in the composite powders decreased from 70 to 10 wt%. Initially, SnO2-CuO composite nanopowders formed from the vapors in the high-temperature diffusion flame by surface growth and coagulation. Phase separation of the composite nanopowders occurred and rod-like Janus structures evolved during the growth of SnO2 and CuO crystals in the quenching process. The maximum charge capacities of pure SnO2 and the composite powders with SnO2/CuO of 90/10, 70/30, and 50/50 were 547, 499, 493, and 316 mA h g-1, respectively, at a high current density of 3000 mA g-1. The corresponding capacity retentions after 50 cycles were found to be 39, 47, 80, and 85%, respectively. The decrease in the charge capacity with increasing current density was slower in SnO2-CuO (70/30) composite powders than in pure SnO2. The Janus-structured SnO2-CuO (70/30) composite powders showed a high charge capacity and excellent cycling performance at high current densities.SnO2-CuO composite nanorods with a Janus structure were prepared by one-step flame spray pyrolysis. High-aspect-ratio SnO2 nanorods were positioned on one side of the spherical CuO powder. The mean length of the rod-shaped crystals decreased from 200 to 20 nm when the SnO2 content in the composite powders decreased from 70 to 10 wt%. Initially, SnO2-CuO composite nanopowders formed from the vapors in the high-temperature diffusion flame by surface growth and coagulation. Phase separation of the composite nanopowders occurred and rod-like Janus structures evolved during the growth of SnO2 and CuO crystals in the quenching process. The maximum charge capacities of pure SnO2 and the composite powders with SnO2/CuO of 90/10, 70/30, and 50/50 were 547, 499, 493

  17. Processing and synthesis of multi-metallic nano oxide ceramics via liquid-feed flame spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Azurdia, Jose Antonio

    The liquid-feed flame spray pyrolysis (LF-FSP) process aerosolizes metal-carboxylate precursors dissolved in alcohol with oxygen and combusts them at >1500°C. The products are quenched rapidly (˜10s msec) to < 400°C. By selecting the appropriate precursor mixtures, the compositions of the resulting oxide nanopowders can be tailored easily, which lends itself to combinatorial studies of systems facilitating material property optimization. The resulting nanopowders typically consist of single crystal particles with average particle sizes (APS) < 35 nm, specific surface areas (SSA) of 20-60 m2/g and spherical morphology. LF-FSP provides access to novel single phase nanopowders, known phases at compositions outside their published phase diagrams, intimate mixing at nanometer length scales in multi metallic oxide nanopowders, and control of stoichiometry to ppm levels. The materials produced may exhibit unusual properties including structural, catalytic, and photonic ones and lower sintering temperatures. Prior studies used LF-FSP to produce MgAl2O4 spinel for applications in transparent armor and IR radomes. In these studies, a stable spinel structure with a (MgO)0.1(Al2O3)0.9 composition well outside the known phase field was observed. The work reported here extends this observation to two other spinel systems: Al2O3-NiO, Al2O3-CoOx; followed by three series of transition metal binary oxides, NiO-CoO, NiO-MoO3, NiO-CuO. The impetus to study spinels derives both from the fact that a number of them are known transparent ceramics, but also others offer high SSAs coupled with unusual phases that suggest potentially novel catalytic materials. Because LF-FSP provides access to any composition, comprehensive studies of the entire tie-lines were conducted rather than just compositions of value for catalytic applications. Initial efforts established baseline properties for the nano aluminate spinels, then three binary transition metal oxide sets (Ni-Co, Ni-Mo and Ni

  18. Fourier transform infrared and Raman spectroscopy studies on magnetite/Ag/antibiotic nanocomposites

    NASA Astrophysics Data System (ADS)

    Ivashchenko, Olena; Jurga-Stopa, Justyna; Coy, Emerson; Peplinska, Barbara; Pietralik, Zuzanna; Jurga, Stefan

    2016-02-01

    This article presents a study on the detection of antibiotics in magnetite/Ag/antibiotic nanocomposites using Fourier transform infrared (FTIR) and Raman spectroscopy. Antibiotics with different spectra of antimicrobial activities, including rifampicin, doxycycline, cefotaxime, and ceftriaxone, were studied. Mechanical mixtures of antibiotics and magnetite/Ag nanocomposites, as well as antibiotics and magnetite nanopowder, were investigated in order to identify the origin of FTIR bands. FTIR spectroscopy was found to be an appropriate technique for this task. The spectra of the magnetite/Ag/antibiotic nanocomposites exhibited very weak (for doxycycline, cefotaxime, and ceftriaxone) or even no (for rifampicin) antibiotic bands. This FTIR "invisibility" of antibiotics is ascribed to their adsorbed state. FTIR and Raman measurements show altered Csbnd O, Cdbnd O, and Csbnd S bonds, indicating adsorption of the antibiotic molecules on the magnetite/Ag nanocomposite structure. In addition, a potential mechanism through which antibiotic molecules interact with magnetite/Ag nanoparticle surfaces is proposed.

  19. Microstructural study and size control of iron oxide nanoparticles produced by microemulsion technique

    NASA Astrophysics Data System (ADS)

    Koutzarova, T.; Kolev, S.; Ghelev, Ch.; Paneva, D.; Nedkov, I.

    2006-05-01

    In this paper we study the possibility to control the size of iron oxide (Fe3O4) nanoparticles by the microemulsion technique. We used a water-in-oil reverse microemulsion system with n-hexadecil trimethylammonium bromide (CTAB) as a cationic surfactant, n-butanol as a co-surfactant, n-hexanol as a continuous oil phase, and aqueous phase. The magnetite nanopowders were synthesized by a single microemulsion technique in which the aqueous phase contains only metal ions (Fe2+ and Fe3+). The particle size of the powders varied in the range of 14-36 nm depending on the preparation conditions. We studied the influence of changing the water/surfactant ratio (W 0 = 5, 10, 15, 20) and the metallic ion (Fe2+ and Fe3+) concentration on the particle size distribution and crystallinity of Fe3O4.

  20. Metal-carbon nanosystem IR-PVA/Fe-Co for catalysis in the Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Vasilev, A. A.; Dzidziguri, E. L.; Ivantsov, M. I.; Efimov, M. N.

    2016-08-01

    Metal-carbon nanosystems consisting of nanodimensional bimetallic particles of Fe- Co dispersed in a carbon matrix for the Fischer-Tropsch synthesis were studied. Prepared metal-carbon nanopowders samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). It was shown formation of FeCo nanoparticles with body-centered cubic structures started at 400 °C. FeCo nanoparticles have spherical form, the mean size is 7 - 12 nm and uniform distribution in a carbon matrix. The metal-carbon nanosystem demonstrates a catalytic activity in the Fischer- Tropsch synthesis. The maximum yield of liquid hydrocabons C5+ was 92 g/m3 while the selectivity for the target product - 35%.

  1. Synthesis by sol-gel process, structural and optical properties of nanoparticles of zinc oxide doped vanadium

    NASA Astrophysics Data System (ADS)

    El Ghoul, J.; Barthou, C.; El Mir, L.

    2012-06-01

    We report the elaboration of vanadium-doped ZnO nanoparticles prepared by a sol-gel processing technique. In our approach, the water for hydrolysis was slowly released by esterification reaction followed by a supercritical drying in ethyl alcohol. Vanadium doping concentration of 10 at.% has been investigated. After treatment in air at different temperatures, the obtained nanopowder was characterised by various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL). Analysis by scanning electron microscopy at high resolution shows that the grain size increases with increasing temperature. Thus, in the case of thermal treatment at 500 °C in air, the powder with an average particle size of 25 nm shows a strong luminescence band in the visible range. The intensity and energy position of the obtained PL band depends on the temperature measurement increase. The mechanism of this emission band is discussed.

  2. Synthesis, structural and optical properties of nanocrystalline vanadium doped zinc oxide aerogel

    NASA Astrophysics Data System (ADS)

    El Ghoul, J.; Barthou, C.; El Mir, L.

    2012-06-01

    We report the synthesis of vanadium-doped ZnO nanoparticles prepared by a sol-gel processing technique. In our approach, the water for hydrolysis was slowly released by esterification reaction followed by a supercritical drying in ethyl alcohol. Vanadium doping concentration of 10 at% has been investigated. After treatment in air at different temperatures, the obtained nanopowder was characterized by various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL). Analysis by scanning electron microscopy at high resolution shows that the grain size increases with increasing temperature. Thus, in the case of thermal treatment at 500 °C in air, the powder with an average particle size of 25 nm shows a strong luminescence band in the visible range. The intensity and energy position of the obtained PL band depends on the temperature measurement increase. The mechanism of this emission band is discussed.

  3. Fabrication and Characterization of Fully Ceramic Microencapsulated Fuels

    SciTech Connect

    Terrani, Kurt A; Kiggans, Jim; Katoh, Yutai; Shimoda, Kazuya; Montgomery, Fred C; Armstrong, Beth L; Parish, Chad M; Hinoki, Tatsuya; Hunn, John D; Snead, Lance Lewis

    2012-01-01

    The current generation of fully ceramic microencapsulated fuels, consisting of Tristructural Isotropic fuel particles embedded in a silicon carbide matrix, is fabricated by hot pressing. Matrix powder feedstock is comprised of alumina - yttria additives thoroughly mixed with silicon carbide nanopowder using polyethyleneimine as a dispersing agent. Fuel compacts are fabricated by hot pressing the powder - fuel particle mixture at a temperature of 1800-1900 C using compaction pressures of 10-20 MPa. Detailed microstructural characterization of the final fuel compacts shows that oxide additives are limited in extent and are distributed uniformly at silicon carbide grain boundaries, at triple joints between silicon carbide grains, and at the fuel particle-matrix interface.

  4. Investigation of the Composition and Electromagnetic Properties of Lithium Ferrite LiFe5O8 Ceramics Synthesized from Ultradisperse Iron Oxide

    NASA Astrophysics Data System (ADS)

    Surzhikov, A. P.; Lysenko, E. N.; Malyshev, A. V.; Nikolaev, E. V.; Zhuravkov, S. P.; Vlasov, V. A.

    2015-02-01

    Structural, magnetic, and electric characteristics of LiFe5O8 synthesized from ultradisperse iron oxide powder are investigated. The basic Fe2O3 reagent is prepared by oxidation of iron nanopowder with particle sizes of 100 nm synthesized by the electroexplosive method. It is demonstrated that LiFe5O8 is characterized by fine-grained ceramic structure with average grain size of 1.4 μm, high values of the Curie temperature (~630°C), specific electrical resistance (107 Ωṡcm), and saturation magnetization (>3300 G). Thus, lithium ferrite so obtained without additives has the parameters suitable for its application as a microwave ferrite material. It is also demonstrated that addition of bismuth ferrite to the lithium ferrite composition during its sintering yields lower values of the specific electrical resistance and relatively high values of the density and saturation magnetization.

  5. The Surface Morphology and Optical Properties of Refined Glasses with Inorganic Nano-molecules

    NASA Astrophysics Data System (ADS)

    Drajewicz, Marcin; Pytel, Maciej; Rokicki, Paweł; Góral, Marek

    2015-05-01

    New refining technology of soda-calcium-silicon glass surfaces with inorganic compounds nano-molecules has been presented in the study. In order to determine modification of the glass surface SEM observation and EDX analysis have been carried out. The UV-VIS, photo-elasticity and ellipsometry examinations were carried out on glass samples. The results of investigations that have been conducted show that refining process of the glass surface by use of nanopowder inorganic compounds deposited electrostatically on glass surface provides forming of very thin (about 50 nm) surface layers [1]. This method of surface modification improves physical and chemical glass properties. In this paper results of microhardness test of refined glass were also presented.

  6. Receiving Wear-Resistance Coverings Additives of Nanoparticles of Refractory Metals at a Laser Cladding

    NASA Astrophysics Data System (ADS)

    Murzakov, M. A.; Petrovskiy, V. N.; Bykovskiy, D. P.; Andreev, A. O.; Birukov, V. P.; Markushov, Y. V.

    2016-02-01

    Laser cladding technology was used to conduct experiments on production of wear-resistant coatings with additive nanoparticles of refractory metals (WC, TaC). Mechanical testing of coating abrasion was made using Brinell-Howarth method. The obtained data was compared with wear- resistance of commercial powder containing WC. It was found that at a concentration 10-15% coating with nanopowder additives shows a dramatic increase in wear-resistance by 4-6 times as compared to carbon steel substrate. There were conducted metallurgical studies of coatings on inverse electron reflection. There was determined elemental composition of deposited coating and substrate, and microhardness measured. It was found that structure of deposited coating with nanoparticles is fine.

  7. Microwave Absorption Properties of Iron Nanoparticles Prepared by Ball-Milling

    NASA Astrophysics Data System (ADS)

    Chu, Xuan T. A.; Ta, Bach N.; Ngo, Le T. H.; Do, Manh H.; Nguyen, Phuc X.; Nam, Dao N. H.

    2016-05-01

    A nanopowder of iron was prepared using a high-energy ball milling method, which is capable of producing nanoparticles at a reasonably larger scale compared to conventional chemical methods. Analyses using x-ray diffraction and magnetic measurements indicate that the iron nanoparticles are a single phase of a body-centered cubic structure and have quite stable magnetic characteristics in the air. The iron nanoparticles were then mixed with paraffin and pressed into flat square plates for free-space microwave transmission and reflection measurements in the 4-8 GHz range. Without an Al backing plate, the Fe nanoparticles seem to only weakly absorb microwave radiation. The reflected signal S 11 drops to zero and a very large negative value of reflection loss ( RL) are observed for Al-backed samples, suggesting the existence of a phase matching resonance near frequency f ˜ 6 GHz.

  8. Effect of the heat treatment conditions on the synthesis of Sr-hexaferrite

    NASA Astrophysics Data System (ADS)

    Martinez Garcia, R.; Bilovol, V.; Socolovsky, L. M.

    2012-08-01

    The effect of heat treatment conditions under oxygen atmosphere on the SrFe12O19 synthesis is analyzed. Effect of partial evacuation of decomposition gases of the organometallic precursor on the phase composition of different samples is studied. An accurate structural analysis of samples obtained between 250 °C and 600 °C is reported. From the structural analysis several secondary phases are identified. The amount of secondary phases can be manipulated through the control of the heat treatment conditions, and therefore, this constitutes a methodology to manipulate the composition and the magnetic properties of the obtained nanopowders. The quantitative determination of phases is performed by structural refinement of X-ray powder patterns, using Rietveld analysis. Magnetic study is done by magnetization vs. applied magnetic field at room temperature.

  9. Ternary systems based on PVDF, BaTiO{sub 3} and MWCNTs: Fabrication, characterization, electromagnetic simulation

    SciTech Connect

    Cacciotti, Ilaria; Valentini, Manlio; Nanni, Francesca

    2015-03-10

    In this work, ternary bulk systems based on polyvinylidene fluoride (PVDF), synthesised barium titanate (BaTiO{sub 3}, BT) nanopowder and multi walled carbon nanotubes (MWCNTs) were fabricated by film stacking technique, starting from solvent cast films. The main purpose was to investigate the influence of BT and MWCNTs addition to the polymeric matrix on its microstructural and dielectrical properties. In order to achieve it, different BT concentrations, ranging between the 60 and 75 %wt, were tested, whereas a MWCNTs content of 2 %wt was maintained constant. The morphology was studied by observation at scanning electron microscopy (SEM), the microstructure and crystalline phases investigated by X-Ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy, and the electromagnetic properties measured in the microwave region (8-12 GHz). The electromagnetic response of the investigated bulk systems was also simulated as function of the sample thickness.

  10. Physical preparation and optical properties of CuSbS2 nanocrystals by mechanical alloying process

    NASA Astrophysics Data System (ADS)

    Zhang, Huihui; Xu, Qishu; Tan, Guolong

    2016-09-01

    CuSbS2 nanocrystals have been synthesized through mechanical alloying Cu, Sb and S elemental powders for 40 hs. The optical spectrum of as-milled CuSbS2 nano-powders demonstrates a direct gap of 1.35 eV and an indirect gap of 0.36 eV, which are similar to that of silicon and reveals the evidence for the indirect semiconductor characterization of CuSbS2. Afterwards, CuSbS2 nanocrystals were capped with trioctylphosphine oxide/trioctylphosphine/pyridine (TOPO/TOP). There appear four sharp absorption peaks within the region of 315 to 355 nm for the dispersion solution containing the capped nanocrystals. The multiple peaks are proposed to be originating from the energy level splitting of 1S electronic state into four discrete sub-levels, where electrons were excited into the conduction band and thus four exciton absorption peaks were produced.

  11. Initiation of the Adiabatic Wave of Combustion for Obtaining the Substances with the Free Valence

    NASA Astrophysics Data System (ADS)

    Baideldonova, A.; Ksandopulo, G.; Mukhina, L.

    2016-04-01

    According to the task of obtaining substances with the free valence for the linkage of the nano-powders, the procedure of the synthesis of materials under the extreme nonequilibrium conditions is presented. The combustion of multilayer aluminothermic systems in the revolving reactor was investigated. Experiments were carried out in the reactor of high-temperature centrifuge. The initiation of process realizes by electric pulse in the effective layer. Further the wave of combustion was propagated along the axis of the reactor. The particles of the restored metal penetrated the underlayers of fresh mixture under the action of centrifugal acceleration and created the additional centers of ignition. The higher the density of metal, the higher speed and depth of penetration. An increase in the centrifugal acceleration strengthens the activity of process also. The speed of the motion of metallic particles grows. According the theoretical calculations it reaches 90 m/s in the case of tungsten.

  12. Reflection and Transmission Coefficient of Yttrium Iron Garnet Filled Polyvinylidene Fluoride Composite Using Rectangular Waveguide at Microwave Frequencies

    PubMed Central

    Soleimani, Hassan; Abbas, Zulkifly; Yahya, Noorhana; Shameli, Kamyar; Soleimani, Hojjatollah; Shabanzadeh, Parvaneh

    2012-01-01

    The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer. PMID:22942718

  13. The fabrication of Stainless Stell Parts for MEMS

    SciTech Connect

    Terry J. Garino

    2002-01-01

    A micro-molding process was used to fabricate parts in the 0.1 to 10 mm size range from a stainless steel nano-powder. The two types of molds used were both produced from parts fabricated using the LIGA process so that they had precise dimensional tolerance and straight sidewalls. Rigid PMMA molds were made by injection molding and flexible silicone rubber molds were made by casting. Mold filling was accomplished by mixing the powder with epoxy to form a putty-like material that was then pressed into the mold cavities and allowed to cure. After pyrolysis of the epoxy, the parts were sintered in forming gas. The densification kinetics were measured in situ using a video system. Full densification was achieved after 1 hour at 1350 C. The microstructure of the sintered parts was examined using the SEM. The hardness, dimensional tolerance and surface roughness of the sintered parts were also measured.

  14. Synthesis of carbon containing TiO2 nano powders by aerosol flame deposition for photocatalyst.

    PubMed

    Lim, Gyeong-Taek; Kim, Yeon-Hong; Jeong, Hyung-Gon; Woo, Hee-Gweon; Ohk, Seung-Ho; Kim, Do-Heyoung

    2008-09-01

    In-situ carbon-doped-TiO2 nano-powder was prepared by an AFD (aerosol flame deposition) technique using ethanol and isopropanol, and the photocatalytic activity of the prepared powder was examined. There were no significant effect of the solvents on the phase of the prepared TiO2, but the level of carbon in the deposits prepared with ethanol was lower than that prepared with isopropanol. Also, the average sizes of the particles prepared with ethanol were slightly smaller than that formed with isopropanol. All the samples showed excellent photocatalytic activity in the decomposing of methylene blue (MB). We even observed photocatalytic activity of the powder under visible light irradiation, although the decomposition rate of MB under this irradiation was slightly slower than under UV-A light irradiation. PMID:19049067

  15. The effect of reduction atmospheres on the sintering behaviors of inkjet-printed Cu interconnectors

    NASA Astrophysics Data System (ADS)

    Kim, Inyoung; Kim, Jongryoul

    2010-11-01

    In order to overcome the serious problems posed by Cu ink, which include the strong tendency to the oxidation of Cu nanopowders, various reduction atmospheres were investigated. As a result, a resistivity of ˜4 μΩ cm was achieved in the Cu interconnectors sintered at 200 °C with a gaseous mixture of formic acid (HCOOH) and alcohol. As regards this sample, micrographs show the facet boundaries and an average grain size of ˜300 nm. The use of formic acid was an effective way to decrease the sintering temperature to 150 °C, at which temperature the resistivity was ˜72 μΩ cm. This low temperature sintering and microstructural densification was due to the decomposition of capping molecules and the reduction in Cu oxide by formic acid.

  16. Microemulsion synthesis and magnetic properties of hydroxyapatite-encapsulated nano CoFe2O4

    NASA Astrophysics Data System (ADS)

    Foroughi, Firoozeh; Hassanzadeh-Tabrizi, S. A.; Amighian, Jamshid

    2015-05-01

    Hydroxyapatite-encapsulated cobalt ferrite (CoFe2O4) nanopowders were synthesized by one step microemulsion method. The powders were characterized by X-ray Diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometer. TEM results showed that nanoparticles calcined at 700 °C have core-shell morphology. It was found that the resultant phases, morphology and magnetic properties of the samples depend on calcining temperature. The synthesized nanoparticles showed a maximum saturation magnetization of 7.8 emu/g with a wasp-waisted hysteresis loop. The magnetion was reduced by increasing calcining temperature to 900 °C. This reduction is due to the reaction of cobalt ferrite with hydroxyapatite which leads to CaFe12(PO4)8(OH)12 phase.

  17. Low-threshold and broadly tunable lasers of Yb3+-doped yttrium lanthanum oxide ceramic

    NASA Astrophysics Data System (ADS)

    Hao, Qiang; Li, Wenxue; Zeng, Heping; Yang, Qiuhong; Dou, Chuanguo; Zhou, Hongxu; Lu, Wei

    2008-05-01

    We experimentally demonstrated diode-pumped continuous wave and tunable laser operation of Yb3+-doped yttrium lanthanum oxide transparent ceramic [Yb:(Y1-xLax)2O3,x=0.1], which was fabricated with nanopowders and sintered in H2 atmosphere. As low as 400mW pumping threshold and a slope efficiency of 52% were realized at 1080nm under a high-brightness 976nm diode pump with a fiber core of 50μm and a numerical aperture of 0.22. A maximum output power of 2.1W was obtained when the non-lasing absorbed pump power was 19.5W at 976nm with diode laser of 400μm fiber core. A smooth tunable curve from 1018to1086nm was achieved at 940nm diode pump. Broadband lasing spectra up to 30nm were observed in the tunable laser experiment.

  18. Preparation and Study on Nickel Oxide Reduction of Polyacrylonitrile-Based Carbon Nanofibers by Thermal Treatment.

    PubMed

    Lee, Yeong Ju; Kim, Hyun Bin; Jeun, Joon Pyo; Lee, Dae Soo; Koo, Dong Hyun; Kang, Phil Hyun

    2015-08-01

    Carbon materials containing magnetic nanopowder have been attractive in technological applications such as electrochemical capacitors and electromagnetic wave shielding. In this study, polyacrylonitrile (PAN) fibers containing nickel nanoparticles were prepared using an electrospinning method and thermal stabilization. The reduction of nickel oxide was investigated under a nitrogen atmosphere within a temperature range of 600 to 1,000 °C. Carbon nanofibers containing nickel nanoparticles were characterized by FE-SEM, EDS, XRD, TGA, and VSM. It was found that nickel nanoparticles were formed by a NiO reduction in PAN as a function of the thermal treatment. These results led to an increase in the coercivity of nanofibers and a decrease in the remanence magnetization. PMID:26369192

  19. Dispersion of titania nanoparticles in polydimethylsiloxane fluids using grafted low molecular weight polymers.

    SciTech Connect

    Piech, Martin; Bell, Nelson Simmons; Frischknecht, Amalie Lucile

    2008-06-01

    Nanoparticle interactions and their impact on particle dispersion and rheology are well known to be functions of the interfacial structure between the particle and the fluid phase. The dispersion and flow properties of a titania nanopowder were evaluated in polydimethylsiloxane fluid using ''grafted to'' surface modification of the titania with short molecular weight PDMS polymers. The interaction energy between particles was modeled using analytical expressions as well as dynamic functional theory for polymer surface chains. Particle dynamics as a function of volume fraction were characterized using light scattering, acoustic spectroscopy, and shear and oscillatory measurements. Autophobic dewetting is a novel short range interaction in this system that may be impacting the maximum packing fraction of particles in a suspension.

  20. Microwave assisted synthesis of copper oxide and its application in electrochemical sensing

    NASA Astrophysics Data System (ADS)

    Felix, S.; Bala Praveen Chakkravarthy, R.; Nirmala Grace, A.

    2015-02-01

    Copper oxide nanopowders were prepared using copper acetate as the precursor and polyethylene glycol (PEG) as stabilizer in ethanol medium. The mixture containing copper acetate, sodium hydroxide and PEG was irradiated with microwave and nanometric copper oxide particles were formed within 8 min. The prepared nanoparticles were characterized using x-ray diffraction, UV-vis spectroscopy and scanning electron microscopy. The average particle size was found to be ~ 4 nm. This was used to modify glassy carbon electrode with PVDF & DMF as binder and used for sensing of carbohydrates (glucose and sucrose) and H2O2. The copper oxide nanoparticles showed excellent sensitivity in the range of 0.1 mM to 1 mM when choronoamperometry was carried out at 0.6 V Vs. Ag/AgCl. The observed sensitivity is much higher when compared with conventional micron sized copper oxide particles.

  1. STUDY ON SYNTHESIS AND EVOLUTION OF NANOCRYSTALLINE Mg4Ta2O9 BY AQUEOUS SOL-GEL PROCESS

    NASA Astrophysics Data System (ADS)

    Wu, H. T.; Yang, C. H.; Wu, W. B.; Yue, Y. L.

    2012-06-01

    Nanosized and highly reactive Mg4Ta2O9 were successfully synthesized by aqueous sol-gel method compared with conventional solid-state method. Ta-Mg-citric acid solution was first formed and then evaporated resulting in a dry gel for calcination in the temperature ranging from 600°C to 800°C for crystallization in oxygen atmosphere. The crystallization process from the gel to crystalline Mg4Ta2O9 was identified by thermal analysis and phase evolution of powders was studied using X-ray diffraction (XRD) technique during calcinations. Particle size and morphology were examined by transmission electron microscopy (TEM) and high resolution scanning electron microscopy (HR-SEM). The results revealed that sol-gel process showed great advantages over conventional solid-state method and Mg4Ta2O9 nanopowders with the size of 20-30 nm were obtained at 800°C.

  2. SERS substrates formed by gold nanorods deposited on colloidal silica films

    PubMed Central

    2013-01-01

    We describe a new approach to the fabrication of surface-enhanced Raman scattering (SERS) substrates using gold nanorod (GNR) nanopowders to prepare concentrated GNR sols, followed by their deposition on an opal-like photonic crystal (OPC) film formed on a silicon wafer. For comparative experiments, we also prepared GNR assemblies on plain silicon wafers. GNR-OPC substrates combine the increased specific surface, owing to the multilayer silicon nanosphere structure, and various spatial GNR configurations, including those with possible plasmonic hot spots. We demonstrate here the existence of the optimal OPC thickness and GNR deposition density for the maximal SERS effect. All other things being equal, the analytical integral SERS enhancement of the GNR-OPC substrates is higher than that of the thick, randomly oriented GNR assemblies on plain silicon wafers. Several ways to further optimize the strategy suggested are discussed. PMID:23697339

  3. Spark-plasma-sintering magnetic field assisted compaction of Co80Ni20 nanowires for anisotropic ferromagnetic bulk materials

    NASA Astrophysics Data System (ADS)

    Ouar, Nassima; Schoenstein, Frédéric; Mercone, Silvana; Farhat, Samir; Villeroy, Benjamin; Leridon, Brigitte; Jouini, Noureddine

    2013-10-01

    We developed a two-step process showing the way for sintering anisotropic nanostructured bulk ferromagnetic materials. A new reactor has been optimized allowing the synthesis of several grams per batch of nanopowders via a polyol soft chemistry route. The feasibility of the scale-up has been successfully demonstrated for Co80Ni20 nanowires and a massic yield of ˜97% was obtained. The thus obtained nanowires show an average diameter of ˜6 nm and a length of ˜270 nm. A new bottom-up strategy allowed us to compact the powder into a bulk nanostructured system. We used a spark-plasma-sintering technique under uniaxial compression and low temperature assisted by a permanent magnetic field of 1 T. A macroscopic pellet of partially aligned nanowire arrays has been easily obtained. This showed optimized coercive properties along the direction of the magnetic field applied during compaction (i.e., the nanowires' direction).

  4. ZnS/PVA nanocomposites for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Ozga, K.; Michel, J.; Nechyporuk, B. D.; Ebothé, J.; Kityk, I. V.; Albassam, A. A.; El-Naggar, A. M.; Fedorchuk, A. O.

    2016-07-01

    We have found a correlation between ZnS nanocomposite nonlinear optical features and technological processing using electrolytic method. In the earlier researches this factor was neglected. However, it may open a new stage for operation by photovoltaic features of the well known semiconductors within a wide range of magnitudes. The titled nanostructured zinc sulfide (ZnS) was synthesized by electrolytic method. The obtained ZnS nano-crystallites possessed nano-particles sizes varying within 1.6 nm…1.8 nm. The titled samples were analyzed by XRD, HR-TEM, STEM, and nonlinear optical methods such as photo-induced two-photon absorption (TPA) and second harmonic generation (SHG). For this reason the nano-powders were embedded into the photopolymer poly(vinyl) alcohol (PVA) matrices. Role of aggregation in the mentioned properties is discussed. Possible origin of the such correlations are discussed.

  5. Nanocrystalline Gd₂Ti₂O₇ Pyrochlore Material for NIR Reflective Pigment Application: Micro-Structural and Optical Studies.

    PubMed

    Balamurugan, S; Dheebikha, K; Raja, T S Gokul

    2016-01-01

    In this interesting article, the synthesis of nanocrystalline Gd₂Ti₂O₇ material by ball milling followed by annealing, characterization and its application are reported. The Rietveld structural refinement data confirm the cubic pyrochlore Gd₂Ti₂O7 phase with lattice parameter, a = 1.022(9) nm. The particle size observed by HRSEM image concurs with the average crystalline sizes of particles extracted from XRD data. The optical properties of pyrochlore nanocrystalline Gd2Ti207 material are explored from UV-visible, FT-IR, NIR, PL, and Raman spectroscopic measurements. From the present investigation, it is identified that the Gd₂Ti₂O7 nanopowder may be used as solar reflective as well as color pigment due to its high NIR reflectivity (85-95%) under the wavelength of 750-2500 nm. PMID:27398507

  6. The effect of phosphoric acid concentration on the synthesis of nano-whiskers of calcium metaphosphate by chemical precipitation Method

    NASA Astrophysics Data System (ADS)

    Yao, Nengjian; Zhang, Yin; Kong, Deshuang; Zhu, Jianping; Tao, Yaqiu; Qiu, Tai

    2011-10-01

    Calcium metaphosphate (CMP) nano-whiskers were produced by a chemical precipitation method. In order to produce nano-powders, CMP was prepared by the mixing of two precursors, calcium oxide (CaO) and phosphate acid (H3PO4). Sparingly soluble chemicals, the Ca/P ratio of the mixture was set to be 0.50 to produce stoichiometric CMP, were chemical agitated in phosphate acid solution. At least 3 hours of pre-hydrolysis of phosphorus precursor were required to obtain CMP phase. The CMP powders were dried in a drying oven at 60 °C for 7 days and then followed by a heat treatment at 390 °C for 8hours. The obtained powder was analyzed using XRD, XRF, FT-IR, SEM, TG-DTA, Zeta Potential Meter, Specific Surface Area, and Particle Size Analyzer. The results showed that obtained CMP nano-whiskers have a significantly powder characteristics.

  7. Modeling the Thermoelectric Properties of Ti5O9 Magnéli Phase Ceramics

    NASA Astrophysics Data System (ADS)

    Pandey, Sudeep J.; Joshi, Giri; Wang, Shidong; Curtarolo, Stefano; Gaume, Romain M.

    2016-11-01

    Magnéli phase Ti5O9 ceramics with 200-nm grain-size were fabricated by hot-pressing nanopowders of titanium and anatase TiO2 at 1223 K. The thermoelectric properties of these ceramics were investigated from room temperature to 1076 K. We show that the experimental variation of the electrical conductivity with temperature follows a non-adiabatic small-polaron model with an activation energy of 64 meV. In this paper, we propose a modified Heikes-Chaikin-Beni model, based on a canonical ensemble of closely spaced titanium t 2g levels, to account for the temperature dependency of the Seebeck coefficient. Modeling of the thermal conductivity data reveals that the phonon contribution remains constant throughout the investigated temperature range. The thermoelectric figure-of-merit ZT of this nanoceramic material reaches 0.3 K at 1076 K.

  8. Ultrasound assisted synthesis and characterization of M50 type nanostructured steel

    SciTech Connect

    Gonsalves, K.E.; Chen, X.; Rangarajan, S.P.

    1995-12-31

    A nanophase multicomponent (Fe-Cr-Mo-V-C) type steel was prepared via the ultrasound decomposition of organometallic precursors. The synthesis involved the sonication of a mixture of iron pentacarbonyl, bis(ethylbenzene)chromium, bis(ethyl benzene)molybdenum and vanadium hexacarbonyl in decalin at 0{degrees}C. The as-synthesized powders are amorphous as determined by XRD. The nanopowders were compacted into a dense bulk sample which was then characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive analysis x-ray (EDAX). The major peaks in the X-ray spectra of the consolidated sample were assigned to {alpha}-Fe and the line broadening analysis revealed the crystallite size in the sample to be 27 nm. The hardness of the sample was estimated to be 66.3 Rockwell C.

  9. Synthesis of nano-titanium dioxide by sol-gel route

    NASA Astrophysics Data System (ADS)

    Kaler, Vandana; Duchaniya, R. K.; Pandel, U.

    2016-04-01

    Nanosized titanium dioxide powder was synthesised via sol-gel route by hydrolysis of titanium tetraisopropoxide with ethanol and water mixture in high acidic medium. The synthesized nanopowder was further characterized by X-ray Diffraction, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and Ultraviolet Visible Spectroscopy in order to determine size, morphology and crystalline structure of the material. The synthesis of nano-TiO2 powder in anatase phase was realized by XRD. The optical studies of nano-TiO2 powder was carried out by UV-Vis spectroscopy and band gap was calculated as 3.5eV, The SEM results with EDAX confirmed that prepared nano-TiO2 particles were in nanometer range with irregular morphology. The FTIR analysis showed that only desired functional groups were present in sample. These nano-TiO2 particles have applications in solar cells, chemical sensors and paints, which are thrust areas these days.

  10. Comparative studies on electrochemical cycling behavior of two different silica-based ionogels

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Hsia, Ben; Alper, John P.; Carraro, Carlo; Wang, Zhe; Maboudian, Roya

    2016-01-01

    We report a comparative study of two silica-based ionogel electrolytes for electrochemical cycling applications. The ionogels considered represent two classes of gel networks, a covalently formed network generated by the polymerization of tetramethoxysilane catalyzed by formic acid, and a network formed by weak intermolecular forces obtained by mixing fumed silica nanopowder with ionic liquid. In both cases, 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide is utilized as the ion conductor in the gel network. With increasing temperature it is shown that the electrochemical stability window is reduced, the conductivity of the electrolyte is increased, and the double layer capacitance is increased for both types of ionogels. Long-term stability of the two ionogels is excellent, with 90% capacitance retained after 10,000 repetitive CV cycles at 100 °C. Our results indicate that both of these ionogel electrolytes are promising for application in solid-state electrochemical systems at high temperature.

  11. Microstructure and mechanical properties of thermoelectric nanostructured n-type silicon-germanium alloys synthesized employing spark plasma sintering

    SciTech Connect

    Bathula, Sivaiah; Gahtori, Bhasker; Tripathy, S. K.; Tyagi, Kriti; Srivastava, A. K.; Dhar, Ajay; Jayasimhadri, M.

    2014-08-11

    Owing to their high thermoelectric (TE) figure-of-merit, nanostructured Si{sub 80}Ge{sub 20} alloys are evolving as a potential replacement for their bulk counterparts in designing efficient radio-isotope TE generators. However, as the mechanical properties of these alloys are equally important in order to avoid in-service catastrophic failure of their TE modules, we report the strength, hardness, fracture toughness, and thermal shock resistance of nanostructured n-type Si{sub 80}Ge{sub 20} alloys synthesized employing spark plasma sintering of mechanically alloyed nanopowders of its constituent elements. These mechanical properties show a significant enhancement, which has been correlated with the microstructural features at nano-scale, delineated by transmission electron microscopy.

  12. Modeling the Thermoelectric Properties of Ti5O9 Magnéli Phase Ceramics

    NASA Astrophysics Data System (ADS)

    Pandey, Sudeep J.; Joshi, Giri; Wang, Shidong; Curtarolo, Stefano; Gaume, Romain M.

    2016-07-01

    Magnéli phase Ti5O9 ceramics with 200-nm grain-size were fabricated by hot-pressing nanopowders of titanium and anatase TiO2 at 1223 K. The thermoelectric properties of these ceramics were investigated from room temperature to 1076 K. We show that the experimental variation of the electrical conductivity with temperature follows a non-adiabatic small-polaron model with an activation energy of 64 meV. In this paper, we propose a modified Heikes-Chaikin-Beni model, based on a canonical ensemble of closely spaced titanium t 2g levels, to account for the temperature dependency of the Seebeck coefficient. Modeling of the thermal conductivity data reveals that the phonon contribution remains constant throughout the investigated temperature range. The thermoelectric figure-of-merit ZT of this nanoceramic material reaches 0.3 K at 1076 K.

  13. Fabrication, spectral and laser performance of 5 at.% Yb3+ doped (La0.10Y0.90)2O3 transparent ceramic

    NASA Astrophysics Data System (ADS)

    Zhang, Haojia; Yang, Qiuhong; Lu, Shenzhou; Huang, Dongdong; Wang, Yonggang; Wei, Zhiyi; Wang, Qing; Zhang, Yongdong

    2013-02-01

    A 5 at.% Yb3+ doped (La0.10Y0.90)2O3 transparent ceramic was fabricated with nano-powders and sintered in H2 atmosphere. Spectroscopic properties and laser performance of Yb:(La0.10Y0.90)2O3 ceramic were studied. The ceramic exhibits excellent spectroscopic properties, with broad absorption and emission bands, and its refractive index (n) is close to 2. The gain cross-section (σg) was calculated at different population inversion ratio (β) values. In addition, among Yb3+ doped YAG crystal, Y2O3 and (YLa)2O3 ceramic, (YLa)2O3 ceramic has the least pump intensity (Imin) of 1.25 KW cm-2. Furthermore, a diode-pumped C-W ceramic laser output has been demonstrated at 1075 nm with a slope-efficiency of 60.2%.

  14. The behavior of delaminations in composite materials - experimental results

    NASA Astrophysics Data System (ADS)

    Chermoshentseva, A. S.; Pokrovskiy, A. M.; Bokhoeva, L. A.

    2016-02-01

    Delamination is one of the most common failure modes of composite materials. It may occur as a consequence of imperfections in the production process or the effects of external factors during the operational life of the composite laminates, such as the impact by foreign objects. This paper presents the results of mechanical tests and the optimum degrees of filling the composite materials (CM) with hydrophobic powder (Tarkosil T-20) depending on the latter mass concentration. The results present test samples of the CM with the underlying interlayer defects. The samples were fabricated of twenty-ply pre-preg (fiberglass or carbon fiber). The industrial grade glass is T-25 (VM) specification 6-11-380-76. The composite materials have nanosized additives in structure. The volume concentration of nanopowders is varying from 0.1% to 0.5%. This kind of research has been done for the first time.

  15. Shock wave synthesis of aluminium nitride with rocksalt structure

    NASA Astrophysics Data System (ADS)

    Keller, K.; Schlothauer, T.; Schwarz, M.; Heide, G.; Kroke, E.

    2012-03-01

    The high pressure phase of aluminium nitride with rocksalt structure (rs) is a ceramic with high potential and a challenging material to investigate. The rs-AlN was synthesised and recovered by shock wave experiments using the flyer-plate method with multiple reflections at peak pressures between 15 and 43 GPa. Successful syntheses were carried out using AlN nanopowder with ambient pressure wurtzite structure (w-AlN) as starting material. The high pressure modification could, however, not be obtained when starting from submicron w-AlN. The recovery of rs-AlN is sensitive to the synthesis conditions as these influence the reconversion of rs-AlN to w-AlN.

  16. Single Shot Spatial and Temporal Coherence Properties of the SLAC Linac Coherent Light Source in the Hard X-Ray Regime

    NASA Astrophysics Data System (ADS)

    Gutt, C.; Wochner, P.; Fischer, B.; Conrad, H.; Castro-Colin, M.; Lee, S.; Lehmkühler, F.; Steinke, I.; Sprung, M.; Roseker, W.; Zhu, D.; Lemke, H.; Bogle, S.; Fuoss, P. H.; Stephenson, G. B.; Cammarata, M.; Fritz, D. M.; Robert, A.; Grübel, G.

    2012-01-01

    We measured the transverse and longitudinal coherence properties of the Linac Coherent Light Source (LCLS) at SLAC in the hard x-ray regime at 9 keV photon energy on a single shot basis. Speckle patterns recorded in the forward direction from colloidal nanoparticles yielded the transverse coherence properties of the focused LCLS beam. Speckle patterns from a gold nanopowder recorded with atomic resolution allowed us to measure the shot-to-shot variations of the spectral properties of the x-ray beam. The focused beam is in the transverse direction fully coherent with a mode number close to 1. The average number of longitudinal modes behind the Si(111) monochromator is about 14.5 and the average coherence time τc=(2.0±1.0)fs. The data suggest a mean x-ray pulse duration of (29±14)fs behind the monochromator for (100±14)fs long electron pulses.

  17. Bi2Te3 hexagonal nanoplates and thermoelectric properties of n-type Bi2Te3 nanocomposites

    NASA Astrophysics Data System (ADS)

    Fan, X. A.; Yang, J. Y.; Xie, Z.; Li, K.; Zhu, W.; Duan, X. K.; Xiao, C. J.; Zhang, Q. Q.

    2007-10-01

    Bi2Te3 plate-like crystals with homogeneous hexagonal morphology were rapidly synthesized using a microwave assisted wet chemical method in 30 min. These Bi2Te3 nanoplates possessed a fixed edge with a length of ~0.5-2 µm, and the thickness was less than ~100 nm. The n-type Bi2Te3 nanocomposites were prepared by consolidating mixtures of these nanoplates and mechanically alloyed powders using plasma activated sintering, and the effect of nanoplate addition on the thermoelectric properties of the nanocomposites was investigated. When the content of the doped nanoplates was 15 wt%, the lattice thermal conductivity of the Bi2Te3 nanocomposites decreased by 18% compared with that of the undoped compounds. A preliminary investigation showed that nanopowder addition was an effective way to decrease the thermal conductivity and increase the thermoelectric efficiency.

  18. One-pot facile synthesis of Janus-structured SnO2-CuO composite nanorods and their application as anode materials in Li-ion batteries.

    PubMed

    Choi, Seung Ho; Kang, Yun Chan

    2013-06-01

    SnO2-CuO composite nanorods with a Janus structure were prepared by one-step flame spray pyrolysis. High-aspect-ratio SnO2 nanorods were positioned on one side of the spherical CuO powder. The mean length of the rod-shaped crystals decreased from 200 to 20 nm when the SnO2 content in the composite powders decreased from 70 to 10 wt%. Initially, SnO2-CuO composite nanopowders formed from the vapors in the high-temperature diffusion flame by surface growth and coagulation. Phase separation of the composite nanopowders occurred and rod-like Janus structures evolved during the growth of SnO2 and CuO crystals in the quenching process. The maximum charge capacities of pure SnO2 and the composite powders with SnO2/CuO of 90/10, 70/30, and 50/50 were 547, 499, 493, and 316 mA h g(-1), respectively, at a high current density of 3000 mA g(-1). The corresponding capacity retentions after 50 cycles were found to be 39, 47, 80, and 85%, respectively. The decrease in the charge capacity with increasing current density was slower in SnO2-CuO (70/30) composite powders than in pure SnO2. The Janus-structured SnO2-CuO (70/30) composite powders showed a high charge capacity and excellent cycling performance at high current densities. PMID:23615939

  19. Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors.

    PubMed

    Rudin, Thomas; Wegner, Karsten; Pratsinis, Sotiris E

    2011-07-01

    A new flame-assisted spray pyrolysis (FASP) reactor design is presented, which allows the use of inexpensive precursors and solvents (e.g., ethanol) for synthesis of nanoparticles (10-20 nm) with uniform characteristics. In this reactor design, a gas-assisted atomizer generates the precursor solution spray that is mixed and combusted with externally fed inexpensive fuel gases (acetylene or methane) at a defined height above the atomizing nozzle. The gaseous fuel feed can be varied to control the combustion enthalpy content of the flame and onset of particle formation. This way, the enthalpy density of the flame is decoupled from the precursor solution composition. Low enthalpy content precursor solutions are prone to synthesis of non-uniform particles (e.g., bimodal particle size distribution) by standard flame spray pyrolysis (FSP) processes. For example, metal nitrates in ethanol typically produce nanosized particles by gas-to-particle conversion along with larger particles by droplet-to-particle conversion. The present FASP design facilitates the use of such low enthalpy precursor solutions for synthesis of homogeneous nanopowders by increasing the combustion enthalpy density of the flame with low-cost, gaseous fuels. The effect of flame enthalpy density on product properties in the FASP configuration is explored by the example of Bi(2)O(3) nanoparticles produced from bismuth nitrate in ethanol. Product powders were characterized by nitrogen adsorption, X-ray diffraction, X-ray disk centrifuge, and transmission electron microscopy. Homogeneous Bi(2)O(3) nanopowders were produced both by increasing the gaseous fuel content and, most notably, by cutting the air entrainment prior to ignition of the spray. PMID:23408113

  20. Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors

    PubMed Central

    Rudin, Thomas; Wegner, Karsten

    2013-01-01

    A new flame-assisted spray pyrolysis (FASP) reactor design is presented, which allows the use of inexpensive precursors and solvents (e.g., ethanol) for synthesis of nanoparticles (10–20 nm) with uniform characteristics. In this reactor design, a gas-assisted atomizer generates the precursor solution spray that is mixed and combusted with externally fed inexpensive fuel gases (acetylene or methane) at a defined height above the atomizing nozzle. The gaseous fuel feed can be varied to control the combustion enthalpy content of the flame and onset of particle formation. This way, the enthalpy density of the flame is decoupled from the precursor solution composition. Low enthalpy content precursor solutions are prone to synthesis of non-uniform particles (e.g., bimodal particle size distribution) by standard flame spray pyrolysis (FSP) processes. For example, metal nitrates in ethanol typically produce nanosized particles by gas-to-particle conversion along with larger particles by droplet-to-particle conversion. The present FASP design facilitates the use of such low enthalpy precursor solutions for synthesis of homogeneous nanopowders by increasing the combustion enthalpy density of the flame with low-cost, gaseous fuels. The effect of flame enthalpy density on product properties in the FASP configuration is explored by the example of Bi2O3 nanoparticles produced from bismuth nitrate in ethanol. Product powders were characterized by nitrogen adsorption, X-ray diffraction, X-ray disk centrifuge, and transmission electron microscopy. Homogeneous Bi2O3 nanopowders were produced both by increasing the gaseous fuel content and, most notably, by cutting the air entrainment prior to ignition of the spray. PMID:23408113