Sample records for nanoradian angular stabilization

  1. An accuracy assessment of Magellan Very Long Baseline Interferometry (VLBI)

    NASA Technical Reports Server (NTRS)

    Engelhardt, D. B.; Kronschnabl, G. R.; Border, J. S.

    1990-01-01

    Very Long Baseline Interferometry (VLBI) measurements of the Magellan spacecraft's angular position and velocity were made during July through September, 1989, during the spacecraft's heliocentric flight to Venus. The purpose of this data acquisition and reduction was to verify this data type for operational use before Magellan is inserted into Venus orbit, in August, 1990. The accuracy of these measurements are shown to be within 20 nanoradians in angular position, and within 5 picoradians/sec in angular velocity. The media effects and their calibrations are quantified; the wet fluctuating troposphere is the dominant source of measurement error for angular velocity. The charged particle effect is completely calibrated with S- and X-Band dual-frequency calibrations. Increasing the accuracy of the Earth platform model parameters, by using VLBI-derived tracking station locations consistent with the planetary ephemeris frame, and by including high frequency Earth tidal terms in the Earth rotation model, add a few nanoradians improvement to the angular position measurements. Angular velocity measurements were insensitive to these Earth platform modelling improvements.

  2. Two-Dimensional Micro-/Nanoradian Angle Generator with High Resolution and Repeatability Based on Piezo-Driven Double-Axis Flexure Hinge and Three Capacitive Sensors.

    PubMed

    Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin

    2017-11-19

    This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG.

  3. Two-Dimensional Micro-/Nanoradian Angle Generator with High Resolution and Repeatability Based on Piezo-Driven Double-Axis Flexure Hinge and Three Capacitive Sensors

    PubMed Central

    Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin

    2017-01-01

    This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG. PMID:29156595

  4. Demonstration of sub-picometer length measurements and sub-nanoradian angular read-out in the millihertz-frequency range

    NASA Astrophysics Data System (ADS)

    Diekmann, Christian; Troebs, Michael; Steier, Frank; Bykov, Iouri; Heinzel, Gerhard; Danzmann, Karsten

    The space-based interferometric gravitational-wave detector Laser Interferometer Space An-tenna (LISA) requires interferometry with subpicometer and nanoradian sensitivity in the fre-quency range between 3 mHz and 1 Hz. Currently, a first prototype of the optical bench for LISA is being designed. We report on a pre-experiment with the aim to demonstrate the required sensitivities and to thoroughly characterise the equipment. For this purpose, a quasi-monolithic optical setup has been built with two Mach-Zehnder interferometers (MZI) on an optical bench made of zerodur. In a first step the relative length change between these two MZI will be measured with a heterodyne modulation scheme in the kHz-range and the angle between two laser beams will be read out via quadrant photodiodes and a technique called differential wavefront sensing. These techniques have already been used for the LISA prede-cessor mission LISA Pathfinder and their sensitivity needs to be further improved to fulfill the requirements of the LISA mission. We describe the experiment and the characterization of the basic components. Measurements of the length and angular noise will be presented.

  5. A novel instrument for generating angular increments of 1 nanoradian

    NASA Astrophysics Data System (ADS)

    Alcock, Simon G.; Bugnar, Alex; Nistea, Ioana; Sawhney, Kawal; Scott, Stewart; Hillman, Michael; Grindrod, Jamie; Johnson, Iain

    2015-12-01

    Accurate generation of small angles is of vital importance for calibrating angle-based metrology instruments used in a broad spectrum of industries including mechatronics, nano-positioning, and optic fabrication. We present a novel, piezo-driven, flexure device capable of reliably generating micro- and nanoradian angles. Unlike many such instruments, Diamond Light Source's nano-angle generator (Diamond-NANGO) does not rely on two separate actuators or rotation stages to provide coarse and fine motion. Instead, a single Physik Instrumente NEXLINE "PiezoWalk" actuator provides millimetres of travel with nanometre resolution. A cartwheel flexure efficiently converts displacement from the linear actuator into rotary motion with minimal parasitic errors. Rotation of the flexure is directly measured via a Magnescale "Laserscale" angle encoder. Closed-loop operation of the PiezoWalk actuator, using high-speed feedback from the angle encoder, ensures that the Diamond-NANGO's output drifts by only ˜0.3 nrad rms over ˜30 min. We show that the Diamond-NANGO can reliably move with unprecedented 1 nrad (˜57 ndeg) angular increments over a range of >7000 μrad. An autocollimator, interferometer, and capacitive displacement sensor are used to independently confirm the Diamond-NANGO's performance by simultaneously measuring the rotation of a reflective cube.

  6. A novel instrument for generating angular increments of 1 nanoradian.

    PubMed

    Alcock, Simon G; Bugnar, Alex; Nistea, Ioana; Sawhney, Kawal; Scott, Stewart; Hillman, Michael; Grindrod, Jamie; Johnson, Iain

    2015-12-01

    Accurate generation of small angles is of vital importance for calibrating angle-based metrology instruments used in a broad spectrum of industries including mechatronics, nano-positioning, and optic fabrication. We present a novel, piezo-driven, flexure device capable of reliably generating micro- and nanoradian angles. Unlike many such instruments, Diamond Light Source's nano-angle generator (Diamond-NANGO) does not rely on two separate actuators or rotation stages to provide coarse and fine motion. Instead, a single Physik Instrumente NEXLINE "PiezoWalk" actuator provides millimetres of travel with nanometre resolution. A cartwheel flexure efficiently converts displacement from the linear actuator into rotary motion with minimal parasitic errors. Rotation of the flexure is directly measured via a Magnescale "Laserscale" angle encoder. Closed-loop operation of the PiezoWalk actuator, using high-speed feedback from the angle encoder, ensures that the Diamond-NANGO's output drifts by only ∼0.3 nrad rms over ∼30 min. We show that the Diamond-NANGO can reliably move with unprecedented 1 nrad (∼57 ndeg) angular increments over a range of >7000 μrad. An autocollimator, interferometer, and capacitive displacement sensor are used to independently confirm the Diamond-NANGO's performance by simultaneously measuring the rotation of a reflective cube.

  7. A dual-heterodyne laser interferometer for simultaneous measurement of linear and angular displacements.

    PubMed

    Yan, Hao; Duan, Hui-Zong; Li, Lin-Tao; Liang, Yu-Rong; Luo, Jun; Yeh, Hsien-Chi

    2015-12-01

    Picometer laser interferometry is an essential tool for ultra-precision measurements in frontier scientific research and advanced manufacturing. In this paper, we present a dual-heterodyne laser interferometer for simultaneously measuring linear and angular displacements with resolutions of picometer and nanoradian, respectively. The phase measurement method is based on cross-correlation analysis and realized by a PXI-bus data acquisition system. By implementing a dual-heterodyne interferometer with a highly symmetric optical configuration, low frequency noises caused by the environmental fluctuations can be suppressed to very low levels via common-mode noise rejection. Experimental results for the dual-heterodyne interferometer configuration presented demonstrate that the noise levels of the linear and angular displacement measurements are approximately 1 pm/Hz(1/2) and 0.5 nrad/Hz(1/2) at 1 Hz.

  8. An ATP System for Deep-Space Optical Communication

    NASA Technical Reports Server (NTRS)

    Lee, Shinhak; Irtuzm Gerardi; Alexander, James

    2008-01-01

    An acquisition, tracking, and pointing (ATP) system is proposed for aiming an optical-communications downlink laser beam from deep space. In providing for a direction reference, the concept exploits the mature technology of star trackers to eliminate the need for a costly and potentially hazardous laser beacon. The system would include one optical and two inertial sensors, each contributing primarily to a different portion of the frequency spectrum of the pointing signal: a star tracker (<10 Hz), a gyroscope (<50 Hz), and a precise fluid-rotor inertial angular-displacement sensor (sometimes called, simply, "angle sensor") for the frequency range >50 Hz. The outputs of these sensors would be combined in an iterative averaging process to obtain high-bandwidth, high-accuracy pointing knowledge. The accuracy of pointing knowledge obtainable by use of the system was estimated on the basis of an 8-cm-diameter telescope and known parameters of commercially available star trackers and inertial sensors: The single-axis pointing-knowledge error was found to be characterized by a standard deviation of 150 nanoradians - below the maximum value (between 200 and 300 nanoradians) likely to be tolerable in deep-space optical communications.

  9. Shot-noise-limited optical Faraday polarimetry with enhanced laser noise cancelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiaming; Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202; Luo, Le, E-mail: leluo@iupui.edu

    2014-03-14

    We present a shot-noise-limited measurement of optical Faraday rotations with sub-ten-nanoradian angular sensitivity. This extremely high sensitivity is achieved by using electronic laser noise cancelling and phase sensitive detection. Specially, an electronic laser noise canceller with a common mode rejection ratio of over 100 dB was designed and built for enhanced laser noise cancelling. By measuring the Faraday rotation of ambient air, we demonstrate an angular sensitivity of up to 9.0×10{sup −9} rad/√(Hz), which is limited only by the shot-noise of the photocurrent of the detector. To date, this is the highest angular sensitivity ever reported for Faraday polarimeters in the absencemore » of cavity enhancement. The measured Verdet constant of ambient air, 1.93(3)×10{sup −9}rad/(G cm) at 633 nm wavelength, agrees extremely well with the earlier experiments using high finesse optical cavities. Further, we demonstrate the applications of this sensitive technique in materials science by measuring the Faraday effect of an ultrathin iron film.« less

  10. Development of a Hard X-ray Beam Position Monitor for Insertion Device Beams at the APS

    NASA Astrophysics Data System (ADS)

    Decker, Glenn; Rosenbaum, Gerd; Singh, Om

    2006-11-01

    Long-term pointing stability requirements at the Advanced Photon Source (APS) are very stringent, at the level of 500 nanoradians peak-to-peak or better over a one-week time frame. Conventional rf beam position monitors (BPMs) close to the insertion device source points are incapable of assuring this level of stability, owing to mechanical, thermal, and electronic stability limitations. Insertion device gap-dependent systematic errors associated with the present ultraviolet photon beam position monitors similarly limit their ability to control long-term pointing stability. We report on the development of a new BPM design sensitive only to hard x-rays. Early experimental results will be presented.

  11. A portable device for calibration of autocollimators with nanoradian precision

    NASA Astrophysics Data System (ADS)

    Yandayan, Tanfer

    2017-09-01

    A portable device has been developed in TUBITAK UME to calibrate high precision autocollimators with nanoradian precision. The device can operate in the range of +/-4500" which is far enough for the calibration of the available autocollimators and can generate ultra-small angles in measurement steps of 0.0005" (2.5 nrad). Description of the device with the performance tests using the calibrated precise autocollimators and novel methods will be reported. The test results indicate that the device is a good candidate for application to on-site/in-situ calibration of autocollimators with expanded uncertainties of 0.01" (50 nrad) particularly those used in slope measuring profilers.

  12. Scanning Optical Head with Nontilted Reference Beam: Assuring Nanoradian Accuracy for a New Generation Surface Profiler in the Large-Slope Testing Range

    DOE PAGES

    Qian, Shinan

    2011-01-01

    Nmore » anoradian Surface Profilers (SPs) are required for state-of-the-art synchrotron radiation optics and high-precision optical measurements. ano-radian accuracy must be maintained in the large-angle test range. However, the beams' notable lateral motions during tests of most operating profilers, combined with the insufficiencies of their optical components, generate significant errors of ∼ 1  μ rad rms in the measurements. The solution to nano-radian accuracy for the new generation of surface profilers in this range is to apply a scanning optical head, combined with nontilted reference beam. I describe here my comparison of different scan modes and discuss some test results.« less

  13. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal, E-mail: kawal.sawhney@diamond.ac.uk

    2016-05-15

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicabilitymore » in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.« less

  14. Delta-DOR: The One-Nanoradian Navigation Measurement System of the Deep Space Network --- History, Architecture, and Componentry

    NASA Astrophysics Data System (ADS)

    Curkendall, D. W.; Border, J. S.

    2013-05-01

    Doppler and range data alone supported navigation for the earliest missions into deep space. Though extremely precise in line-of-sight coordinates, the navigation system built on these data had a weakness for determining the spacecraft declination component. To address this, the Deep Space Network (DSN) developed the capability for very long baseline interferometry measurements beginning in the late 1970s. Both the implementation of the interferometric system and the importance of such measurements to flight projects have evolved significantly over the past three decades. Innovations introduced through research and development programs have led to continuous improvements in performance. Today's system provides data approaching one-nanoradian accuracy with reliability of 98 percent. This article provides an overview of the development and use of interferometric tracking techniques in the DSN starting with the Viking era and continuing with a description of the current system and its planned use to support interplanetary cruise navigation of the Mars Science Laboratory spacecraft.

  15. Measuring Low Frequency Tilts

    PubMed Central

    Kohl, M. L.; Levine, J.

    1993-01-01

    A borehole tiltmeter with a sensitivity of a few nanoradians is described. It is composed of two orthogonal horizontal pendulums with free periods of 1 s. The pendulums are insensitive to barometric pressure fluctuations, and the measured temperature coefficient is less than 30 nrad/°C. The range of the pendulums is about ±5 μ rad, and their response is linear within 1% and stable over several years. The performance of the tiltmeter in the field was evaluated using tidal data obtained from a closely spaced array of boreholes in Southern California. The long-term stability of the tiltmeter is generally better than 1 μ rad/yr. The data also indicate that instruments in boreholes at least 24 m deepare independent of surface effects. Several different capsules designed to couple the instrument to the surrounding material have been tested. In addition, an experimental method for estimating the magnitudes of local perturbation in the regional tilt field is described. PMID:28053466

  16. Comparison of Fixed-Stabilizer, Adjustable-Stabilizer and All-Moveable Horizontal Tails

    DTIC Science & Technology

    1945-10-01

    the thrust axis and wind direction at Infinity, degrees; primed to indicate that a is corrected for ground interference effects 5 angular ...deflection of control surface, degrees i+- maximum angular deflection of stabilizer measured with reference to thrust axis, degrees hnax...5e maximum negative angular deflection of elevator, degrees E downwash angle at teil, degrees; primed to indicate that e Is

  17. A phase-contrast X-ray imaging system—with a 60×30 mm field of view—based on a skew-symmetric two-crystal X-ray interferometer

    NASA Astrophysics Data System (ADS)

    Yoneyama, Akio; Takeda, Tohoru; Tsuchiya, Yoshinori; Wu, Jin; Thet-Thet-Lwin; Koizumi, Aritaka; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    A phase-contrast X-ray imaging system—with a 60×30 mm field of view—for biomedical observations was developed. To extend the observation field of view, the system is fitted with a skew-symmetric two-crystal X-ray interferometer. To attain the required sub-nanoradian mechanical stability between the crystal blocks for precise operation, the interferometer was mounted on two extremely rigid positioning tables (one with a sleeve bearings) and was controlled by a feedback positioning system using phase-lock interferometry. The imaging system produced a 60×30 mm interference pattern with 60% visibility using 17.7 keV monochromatic synchrotron X-rays at the Photon Factory. It was then used to perform radiographic observation (i.e., phase mapping) of rat liver vessels. These results indicate that this imaging system can be used to perform observations of large and in vivo biological samples.

  18. Attitude output feedback control for rigid spacecraft with finite-time convergence.

    PubMed

    Hu, Qinglei; Niu, Guanglin

    2017-09-01

    The main problem addressed is the quaternion-based attitude stabilization control of rigid spacecraft without angular velocity measurements in the presence of external disturbances and reaction wheel friction as well. As a stepping stone, an angular velocity observer is proposed for the attitude control of a rigid body in the absence of angular velocity measurements. The observer design ensures finite-time convergence of angular velocity state estimation errors irrespective of the control torque or the initial attitude state of the spacecraft. Then, a novel finite-time control law is employed as the controller in which the estimate of the angular velocity is used directly. It is then shown that the observer and the controlled system form a cascaded structure, which allows the application of the finite-time stability theory of cascaded systems to prove the finite-time stability of the closed-loop system. A rigorous analysis of the proposed formulation is provided and numerical simulation studies are presented to help illustrate the effectiveness of the angular-velocity observer for rigid spacecraft attitude control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Consideration of Gravity Gradient Stabilization for Orion

    DTIC Science & Technology

    1989-03-01

    AND ERIC ANDionl STABILIZATION TION. MAY NEED SECOND CONTROL SYSTEM TO CONTROL OVERALL ANGULAR MOMENTUM I MOMENTUM DUMPING I IN RESPONSE TO...FURTHER EXPERIENCE IS GAINED RPEFERS TO ANY DEVICE THAT MAY BEl USED Ift A PRIOCESS TOE ECHANGE ANGULAR MOMENTUM WITH THME SPACIECRAFTI BODY Figure 5...rotating with angular velocity w relative to XYZ. If unit vectors along the X, Y, and Z axes are ij, and k, respectively, the vector r can be written

  20. Improved Spacecraft Tracking and Navigation Using a Portable Radio Science Receiver

    NASA Technical Reports Server (NTRS)

    Soriano, Melissa; Jacobs, Christopher; Navarro, Robert; Naudet, Charles; Rogstad, Stephen; White, Leslie; Finley, Susan; Goodhart, Charles; Sigman, Elliott; Trinh, Joseph

    2013-01-01

    The Portable Radio Science Receiver (PRSR) is a suitcase-sized open-loop digital receiver designed to be small and easy to transport so that it can be deployed quickly and easily anywhere in the world. The PRSR digitizes, downconverts, and filters using custom hardware, firmware, and software. Up to 16 channels can be independently configured and recorded with a total data rate of up to 256 Mbps. The design and implementation of the system's hardware, firmware, and software is described. To minimize costs and time to deployment, our design leveraged elements of the hardware, firmware, and software designs from the existing full-sized operational (non-portable) Radio Science Receivers (RSR) and Wideband VLBI Science Receivers (WVSR), which have successfully supported flagship NASA deep space missions at all Deep Space Network (DSN) sites. We discuss a demonstration of the PRSR using VLBI, with one part per billion angular resolution: 1 nano-radian / 200 ?as synthesized beam. This is the highest resolution astronomical instrument ever operated solely from the Southern Hemisphere. Preliminary results from two sites are presented, including the European Space Agency (ESA) sites at Cebreros, Spain and Malargue, Argentina. Malargue's South American location is of special interest because it greatly improves the geometric coverage for spacecraft navigation in the Southern Hemisphere and will for the first time provide coverage to the 1/4 of the range of declination that has been excluded from reference frame work at Ka-band.

  1. New image-stabilizing system

    NASA Astrophysics Data System (ADS)

    Zhao, Yuejin

    1996-06-01

    In this paper, a new method for image stabilization with a three-axis image- stabilizing reflecting prism assembly is presented, and the principle of image stabilization in this prism assembly, formulae for image stabilization and working formulae with an approximation up to the third power are given in detail. In this image-stabilizing system, a single chip microcomputer is used to calculate value of compensating angles and thus to control the prism assembly. Two gyroscopes act as sensors from which information of angular perturbation is obtained, three stepping motors drive the prism assembly to compensate for the movement of image produced by angular perturbation. The image-stabilizing device so established is a multifold system which involves optics, mechanics, electronics and computer.

  2. Design guidelines for high dimensional stability of CFRP optical bench

    NASA Astrophysics Data System (ADS)

    Desnoyers, Nichola; Boucher, Marc-André; Goyette, Philippe

    2013-09-01

    In carbon fiber reinforced plastic (CFRP) optomechanical structures, particularly when embodying reflective optics, angular stability is critical. Angular stability or warping stability is greatly affected by moisture absorption and thermal gradients. Unfortunately, it is impossible to achieve the perfect laminate and there will always be manufacturing errors in trying to reach a quasi-iso laminate. Some errors, such as those related to the angular position of each ply and the facesheet parallelism (for a bench) can be easily monitored in order to control the stability more adequately. This paper presents warping experiments and finite-element analyses (FEA) obtained from typical optomechanical sandwich structures. Experiments were done using a thermal vacuum chamber to cycle the structures from -40°C to 50°C. Moisture desorption tests were also performed for a number of specific configurations. The selected composite material for the study is the unidirectional prepreg from Tencate M55J/TC410. M55J is a high modulus fiber and TC410 is a new-generation cyanate ester designed for dimensionally stable optical benches. In the studied cases, the main contributors were found to be: the ply angular errors, laminate in-plane parallelism (between 0° ply direction of both facesheets), fiber volume fraction tolerance and joints. Final results show that some tested configurations demonstrated good warping stability. FEA and measurements are in good agreement despite the fact that some defects or fabrication errors remain unpredictable. Design guidelines to maximize the warping stability by taking into account the main dimensional stability contributors, the bench geometry and the optical mount interface are then proposed.

  3. Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, John P.; Askari, Hesam A.; Hovanski, Yuri

    2015-03-01

    Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energymore » for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.« less

  4. Low-dimensional organization of angular momentum during walking on a narrow beam.

    PubMed

    Chiovetto, Enrico; Huber, Meghan E; Sternad, Dagmar; Giese, Martin A

    2018-01-08

    Walking on a beam is a challenging motor skill that requires the regulation of upright balance and stability. The difficulty in beam walking results from the reduced base of support compared to that afforded by flat ground. One strategy to maintain stability and hence avoid falling off the beam is to rotate the limb segments to control the body's angular momentum. The aim of this study was to examine the coordination of the angular momentum variations during beam walking. We recorded movement kinematics of participants walking on a narrow beam and computed the angular momentum contributions of the body segments with respect to three different axes. Results showed that, despite considerable variability in the movement kinematics, the angular momentum was characterized by a low-dimensional organization based on a small number of segmental coordination patterns. When the angular momentum was computed with respect to the beam axis, the largest fraction of its variation was accounted for by the trunk segment. This simple organization was robust and invariant across all participants. These findings support the hypothesis that control strategies for complex balancing tasks might be easier to understand by investigating angular momentum instead of the segmental kinematics.

  5. Tilt angle measurement with a Gaussian-shaped laser beam tracking

    NASA Astrophysics Data System (ADS)

    Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr; Lazar, Josef; Číp, Ondrej

    2014-05-01

    We have addressed the challenge to carry out the angular tilt stabilization of a laser guiding mirror which is intended to route a laser beam with a high energy density. Such an application requires good angular accuracy as well as large operating range, long term stability and absolute positioning. We have designed an instrument for such a high precision angular tilt measurement based on a triangulation method where a laser beam with Gaussian profile is reflected off the stabilized mirror and detected by an image sensor. As the angular deflection of the mirror causes a change of the beam spot position, the principal task is to measure the position on the image chip surface. We have employed a numerical analysis of the Gaussian intensity pattern which uses the nonlinear regression algorithm. The feasibility and performance of the method were tested by numeric modeling as well as experimentally. The experimental results indicate that the assembled instrument achieves a measurement error of 0.13 microradian in the range +/-0.65 degrees over the period of one hour. This corresponds to the dynamic range of 1:170 000.

  6. Isoperimetric surfaces and area-angular momentum inequality in a rotating black hole in new massive gravity

    NASA Astrophysics Data System (ADS)

    Aceña, Andrés; López, Ericson; Llerena, Mario

    2018-03-01

    We study the existence and stability of isoperimetric surfaces in a family of rotating black holes in new massive gravity. We show that the stability of such surfaces is determined by the sign of the hair parameter. We use the isoperimetric surfaces to find a geometric inequality between the area and the angular momentum of the black hole, conjecturing geometric inequalities for more general black holes.

  7. D = 5 Einstein-Maxwell-Chern-Simons black holes.

    PubMed

    Kunz, Jutta; Navarro-Lérida, Francisco

    2006-03-03

    Five-dimensional Einstein-Maxwell-Chern-Simons theory with a Chern-Simons coefficient lambda = 1 has supersymmetric black holes with a vanishing horizon angular velocity but finite angular momentum. Here supersymmetry is associated with a borderline between stability and instability, since for lambda > 1 a rotational instability arises, where counterrotating black holes appear, whose horizon rotates in the opposite sense to the angular momentum. For lambda > 2 black holes are no longer uniquely characterized by their global charges, and rotating black holes with vanishing angular momentum appear.

  8. Color in the corners: ITO-free white OLEDs with angular color stability.

    PubMed

    Gaynor, Whitney; Hofmann, Simone; Christoforo, M Greyson; Sachse, Christoph; Mehra, Saahil; Salleo, Alberto; McGehee, Michael D; Gather, Malte C; Lüssem, Björn; Müller-Meskamp, Lars; Peumans, Peter; Leo, Karl

    2013-08-07

    High-efficiency white OLEDs fabricated on silver nanowire-based composite transparent electrodes show almost perfectly Lambertian emission and superior angular color stability, imparted by electrode light scattering. The OLED efficiencies are comparable to those fabricated using indium tin oxide. The transparent electrodes are fully solution-processable, thin-film compatible, and have a figure of merit suitable for large-area devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis of a correcting filter with phase stabilization of the angular velocity of a synchronous motor by the feedback system method

    NASA Technical Reports Server (NTRS)

    Kazlauskas, K. A.; Kurlavichus, A. I.

    1973-01-01

    The operating characteristics of a synchronous electric motor are discussed. A system of phase stabilization of the instantaneous angular velocity of rotation of a synchronous-reaction motor is diagrammed. A mathematical model is developed to show the parameters which affect the operation of the motor. The selection of a correcting filter to use with the motor in order to reduce the reaction of the system to interference is explained.

  10. OHANA, the Optical Hawaiian Array for Nanoradian Astronomy. Towards kilometric infrared arrays

    NASA Astrophysics Data System (ADS)

    Perrin, G.

    Optical/Infrared Interferometry has become a mature technique with more and more astrophysical results in the past years. For historical and technical reasons, the traditional field of investigation of interferometers is stellar physics. With the advent of large telescopes and adaptive optics, more resolving and more sensitive interferometers are within reach with the promise to widen the target list. In particular, extragalactic sources will benefit from this revolution. A prototype instrument, 'OHANA, is described here. 'OHANA uses single-mode fibers to turn the large telescopes of the Mauna Kea summit into a large near-infrared kilometric array.

  11. Optical spring stabilization

    NASA Astrophysics Data System (ADS)

    Lough, James D.

    The Advanced LIGO detectors will soon be online with enough sensitivity to begin detecting gravitational waves, based on conservative estimates of the rate of neutron star inspirals. These first detections are sure to be significant, however, we will always strive to do better. More questions will be asked about the nature of neutron star material, rates of black hole inspirals, electromagnetic counterparts, etc. To begin to answer all of the questions aLIGO will bring us we will need even better sensitivity in future gravitational wave detectors. This thesis addresses one aspect that will limit us in the future: angular stability of the test masses. Angular stability in advanced LIGO uses an active feedback system. We are proposing to replace the active feedback system with a passive one, eliminating sensing noise contributions. This technique uses the radiation pressure of light inside a cavity as a stable optical spring, fundamentally the same as technique developed by Corbitt, et al. with an additional degree of freedom. I will review the theory of the one dimensional technique and discuss the multidimensional control theory and angular trap setup. I will then present results from the one-dimensional trap which we have built and tested. And propose improvements for the angular trap experiment. Along the way we have discovered an interesting coupling with thermal expansion due to round trip absorption in the high reflective coatings. The front surface HR coating limits our spring stability in this experiment due to the high circulating power and small beam spot size.

  12. Piezo-based, high dynamic range, wide bandwidth steering system for optical applications

    NASA Astrophysics Data System (ADS)

    Karasikov, Nir; Peled, Gal; Yasinov, Roman; Feinstein, Alan

    2017-05-01

    Piezoelectric motors and actuators are characterized by direct drive, fast response, high positioning resolution and high mechanical power density. These properties are beneficial for optical devices such as gimbals, optical image stabilizers and mirror angular positioners. The range of applications includes sensor pointing systems, image stabilization, laser steering and more. This paper reports on the construction, properties and operation of three types of piezo based building blocks for optical steering applications: a small gimbal and a two-axis OIS (Optical Image Stabilization) mechanism, both based on piezoelectric motors, and a flexure-assisted piezoelectric actuator for mirror angular positioning. The gimbal weighs less than 190 grams, has a wide angular span (solid angle of > 2π) and allows for a 80 micro-radian stabilization with a stabilization frequency up to 25 Hz. The OIS is an X-Y, closed loop, platform having a lateral positioning resolution better than 1 μm, a stabilization frequency up to 25 Hz and a travel of +/-2 mm. It is used for laser steering or positioning of the image sensor, based on signals from a MEMS Gyro sensor. The actuator mirror positioner is based on three piezoelectric actuation axes for tip tilt (each providing a 50 μm motion range), has a positioning resolution of 10 nm and is capable of a 1000 Hz response. A combination of the gimbal with the mirror positioner or the OIS stage is explored by simulations, indicating a <10 micro-radian stabilization capability under substantial perturbation. Simulations and experimental results are presented for a combined device facilitating both wide steering angle range and bandwidth.

  13. Tail function during arboreal quadrupedalism in squirrel monkeys (Saimiri boliviensis) and tamarins (Saguinus oedipus).

    PubMed

    Young, Jesse W; Russo, Gabrielle A; Fellmann, Connie D; Thatikunta, Meena A; Chadwell, Brad A

    2015-10-01

    The need to maintain stability on narrow branches is often presented as a major selective force shaping primate morphology, with adaptations to facilitate grasping receiving particular attention. The functional importance of a long and mobile tail for maintaining arboreal stability has been comparatively understudied. Tails can facilitate arboreal balance by acting as either static counterbalances or dynamic inertial appendages able to modulate whole-body angular momentum. We investigate associations between tail use and inferred grasping ability in two closely related cebid platyrrhines-cotton-top tamarins (Saguinus oedipus) and black-capped squirrel monkeys (Saimiri boliviensis). Using high-speed videography of captive monkeys moving on 3.2 cm diameter poles, we specifically test the hypothesis that squirrel monkeys (characterized by grasping extremities with long digits) will be less dependent on the tail for balance than tamarins (characterized by claw-like nails, short digits, and a reduced hallux). Tamarins have relatively longer tails than squirrel monkeys, move their tails through greater angular amplitudes, at higher angular velocities, and with greater angular accelerations, suggesting dynamic use of tail to regulate whole-body angular momentum. By contrast, squirrel monkeys generally hold their tails in a comparatively stationary posture and at more depressed angles, suggesting a static counterbalancing mechanism. This study, the first empirical test of functional tradeoffs between grasping ability and tail use in arboreal primates, suggests a critical role for the tail in maintaining stability during arboreal quadrupedalism. Our findings have the potential to inform our functional understanding of tail loss during primate evolution. © 2015 Wiley Periodicals, Inc.

  14. Sub-microradian Surface Slope Metrology with the ALS Developmental Long Trace Profiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, Valeriy V; Barber, Samuel; Domning, Edward E.

    2009-09-11

    A new low budget slope measuring instrument, the Developmental Long Trace Profiler (DLTP), was recently brought to operation at the ALS Optical Metrology Laboratory. The design, instrumental control and data acquisition system, initial alignment and calibration procedures, as well as the developed experimental precautions and procedures are described in detail. The capability of the DLTP to achieve sub-microradian surface slope metrology is verified via cross-comparison measurements with other high performance slope measuring instruments when measuring the same high quality test optics. The directions of future work to develop a surface slope measuring profiler with nano-radian performance are also discussed.

  15. Control Laws for a Dual-Spin Stabilized Platform

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Moerder, D. D.

    2008-01-01

    This paper describes two attitude control laws suitable for atmospheric flight vehicles with a steady angular momentum bias in the vehicle yaw axis. This bias is assumed to be provided by an internal flywheel, and is introduced to enhance roll and pitch stiffness. The first control law is based on Lyapunov stability theory, and stability proofs are given. The second control law, which assumes that the angular momentum bias is large, is based on a classical PID control. It is shown that the large yaw-axis bias requires that the PI feedback component on the roll and pitch angle errors be cross-fed. Both control laws are applied to a vehicle simulation in the presence of disturbances for several values of yaw-axis angular momentum bias. It is seen that both control laws provide a significant improvement in attitude performance when the bias is sufficiently large, but the nonlinear control law is also able to provide improved performance for a small value of bias. This is important because the smaller bias corresponds to a smaller requirement for mass to be dedicated to the flywheel.

  16. Stability of Rigidly Rotating Relativistic Stars with Soft Equations of State against Gravitational Collapse

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru

    2004-04-01

    We study secular stability against a quasi-radial oscillation for rigidly rotating stars with soft equations of state in general relativity. The polytropic equations of state with polytropic index n between 3 and 3.05 are adopted for modeling the rotating stars. The stability is determined in terms of the turning-point method. It is found that (1) for n>~3.04, all the rigidly rotating stars are unstable against the quasi-radial oscillation and (2) for n>~3.01, the nondimensional angular momentum parameter q≡cJ/GM2 (where J, M, G, and c denote the angular momentum, the gravitational mass, the gravitational constant, and the speed of light, respectively) for all marginally stable rotating stars is larger than unity. A semianalytic calculation is also performed, and good agreement with the numerical results is confirmed. The final outcome after axisymmetric gravitational collapse of rigidly rotating and marginally stable massive stars with q>1 is predicted, assuming that the rest-mass distribution as a function of the specific angular momentum is preserved and that the pressure never halt the collapse. It is found that even for 1~2.5, the significant angular momentum will prevent the direct formation of a black hole.

  17. Angular-contact ball-bearing internal load estimation algorithm using runtime adaptive relaxation

    NASA Astrophysics Data System (ADS)

    Medina, H.; Mutu, R.

    2017-07-01

    An algorithm to estimate internal loads for single-row angular contact ball bearings due to externally applied thrust loads and high-operating speeds is presented. A new runtime adaptive relaxation procedure and blending function is proposed which ensures algorithm stability whilst also reducing the number of iterations needed to reach convergence, leading to an average reduction in computation time in excess of approximately 80%. The model is validated based on a 218 angular contact bearing and shows excellent agreement compared to published results.

  18. Laboratory Study of Magnetorotational Instability and Hydrodynamic Stability at Large Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Ji, H.; Burin, M.; Schartman, E.; Goodman, J.; Liu, W.

    2006-01-01

    Two plausible mechanisms have been proposed to explain rapid angular momentum transport during accretion processes in astrophysical disks: nonlinear hydrodynamic instabilities and magnetorotational instability (MRI). A laboratory experiment in a short Taylor-Couette flow geometry has been constructed in Princeton to study both mechanisms, with novel features for better controls of the boundary-driven secondary flows (Ekman circulation). Initial results on hydrodynamic stability have shown negligible angular momentum transport in Keplerian-like flows with Reynolds numbers approaching one million, casting strong doubt on the viability of nonlinear hydrodynamic instability as a source for accretion disk turbulence.

  19. Research on Performance of Wire-controlled Hydraulic Steering System Based on Four-wheel Steering

    NASA Astrophysics Data System (ADS)

    Tao, P.; Jin, X. H.

    2018-05-01

    In this paper, the steering stability and control strategy of forklift are put forward. Drive based on yawing moment distribution of rotary torque coordination control method, through analyzing the linear two degree of freedom model of forklift truck, forklift yawing angular velocity and mass center side-slip Angle of expectations, as the control target parameters system, using fuzzy controller output driving forklift steering the yawing moment, to drive rotary torque distribution, make the forklift truck to drive horizontal pendulum angular velocity and side-slip Angle tracking reference model very well. In this paper, the lateral stability control system were designed, the joint simulation in MATLAB/Simulink, the simulation results show that under the different partial load, the control system can effectively to control side forklift lateral stability, enhanced the forklift driving safety, for the side forklift steering stability study provides a theoretical basis.

  20. Angular Multigrid Preconditioner for Krylov-Based Solution Techniques Applied to the Sn Equations with Highly Forward-Peaked Scattering

    NASA Astrophysics Data System (ADS)

    Turcksin, Bruno; Ragusa, Jean C.; Morel, Jim E.

    2012-01-01

    It is well known that the diffusion synthetic acceleration (DSA) methods for the Sn equations become ineffective in the Fokker-Planck forward-peaked scattering limit. In response to this deficiency, Morel and Manteuffel (1991) developed an angular multigrid method for the 1-D Sn equations. This method is very effective, costing roughly twice as much as DSA per source iteration, and yielding a maximum spectral radius of approximately 0.6 in the Fokker-Planck limit. Pautz, Adams, and Morel (PAM) (1999) later generalized the angular multigrid to 2-D, but it was found that the method was unstable with sufficiently forward-peaked mappings between the angular grids. The method was stabilized via a filtering technique based on diffusion operators, but this filtering also degraded the effectiveness of the overall scheme. The spectral radius was not bounded away from unity in the Fokker-Planck limit, although the method remained more effective than DSA. The purpose of this article is to recast the multidimensional PAM angular multigrid method without the filtering as an Sn preconditioner and use it in conjunction with the Generalized Minimal RESidual (GMRES) Krylov method. The approach ensures stability and our computational results demonstrate that it is also significantly more efficient than an analogous DSA-preconditioned Krylov method.

  1. A New Approach to Attitude Stability and Control for Low Airspeed Vehicles

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Shin, Y-Y.; Moerder, D. D.; Cooper, E. G.

    2004-01-01

    This paper describes an approach for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The large thrust vector that characterizes such vehicles can be modulated to provide control forces and moments to the airframe, but such modulation is accompanied by significant unsteady flow effects. These effects are difficult to model, and can compromise the practical value of thrust vectoring in closed-loop attitude stability, even if the thrust vectoring machinery has sufficient bandwidth for stabilization. The stabilization approach described in this paper is based on using internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other "outer loop" control functions. The three main components of this approach are: (1) a z-body axis angular momentum bias enhances static attitude stability, reducing the amount of control activity needed for stabilization, (2) optionally, gimbaled reaction wheels provide high-bandwidth control torques for additional stabilization, or agility, and (3) the resulting strongly coupled system dynamics are controlled by a multivariable controller. A flight test vehicle is described, and nonlinear simulation results are provided that demonstrate the efficiency of the approach.

  2. A dynamical stabilizer in the climate system: a mechanism suggested by a simple model

    NASA Astrophysics Data System (ADS)

    Bates, J. R.

    1999-05-01

    A simple zonally averaged hemispheric model of the climate system is constructed, based on energy equations for two ocean basins separated at 30° latitude with the surface fluxes calculated explicitly. A combination of empirical input and theoretical calculation is used to determine an annual mean equilibrium climate for the model and to study its stability with respect to small perturbations. The insolation, the mean albedos and the equilibrium temperatures for the two model zones are prescribed from observation. The principal agent of interaction between the zones is the vertically integrated poleward transport of atmospheric angular momentum across their common boundary. This is parameterized using an empirical formula derived from a multiyear atmospheric data set. The surface winds are derived from the angular momentum transport assuming the atmosphere to be in a state of dynamic balance on the climatic timescales of interest. A further assumption that the air sea temperature difference and low level relative humidity remain fixed at their mean observed values then allows the surface fluxes of latent and sensible heat to be calculated. Results from a radiative model, which show a positive lower tropospheric water vapour/infrared radiative feedback on SST perturbations in both zones, are used to calculate the net upward infrared radiative fluxes at the surface. In the model's equilibrium climate, the principal processes balancing the solar radiation absorbed at the surface are evaporation in the tropical zone and net infrared radiation in the extratropical zone. The stability of small perturbations about the equilibrium is studied using a linearized form of the ocean energy equations. Ice-albedo and cloud feedbacks are omitted and attention is focussed on the competing effects of the water vapour/infrared radiative feedback and the turbulent surface flux and oceanic heat transport feedbacks associated with the angular momentum cycle. The perturbation equations involve inter-zone coupling and have coefficients dependent on the values of the equilibrium fluxes and the sensitivity of the angular momentum transport. Analytical solutions for the perturbations are obtained. These provide criteria for the stability of the equilibrium climate. If the evaporative feedback on SST perturbations is omitted, the equilibrium climate is unstable due to the influence of the water vapour/infrared radiative feedback, which dominates over the effects of the sensible heat and ocean heat transport feedbacks. The inclusion of evaporation gives a negative feedback which is of sufficient strength to stabilize the system. The stabilizing mechanism involves wind and humidity factors in the evaporative fluxes that are of comparable magnitude. Both factors involve the angular momentum transport. In including angular momentum and calculating the surface fluxes explicitly, the model presented here differs from the many simple climate models based on the Budyko Sellers formulation. In that formulation, an atmospheric energy balance equation is used to eliminate surface fluxes in favour of top-of-the-atmosphere radiative fluxes and meridional atmospheric energy transports. In the resulting models, infrared radiation appears as a stabilizing influence on SST perturbations and the dynamical stabilizing mechanism found here cannot be identified.

  3. A novel upwind stabilized discontinuous finite element angular framework for deterministic dose calculations in magnetic fields.

    PubMed

    Yang, R; Zelyak, O; Fallone, B G; St-Aubin, J

    2018-01-30

    Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.

  4. A novel upwind stabilized discontinuous finite element angular framework for deterministic dose calculations in magnetic fields

    NASA Astrophysics Data System (ADS)

    Yang, R.; Zelyak, O.; Fallone, B. G.; St-Aubin, J.

    2018-02-01

    Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.

  5. Algorithm for the stabilization of motion a bounding vehicle in the flight phase

    NASA Technical Reports Server (NTRS)

    Lapshin, V. V.

    1980-01-01

    The unsupported phase of motion of a multileg bounding vehicle is examined. An algorithm for stabilization of the angular motion of the vehicle housing by change of the motion of the legs during flight is constructed. The results of mathematical modelling of the stabilization process by computer are presented.

  6. Combined line-of-sight error and angular position to generate feedforward control for a charge-coupled device-based tracking loop

    NASA Astrophysics Data System (ADS)

    Tang, Tao; Cai, Huaxiang; Huang, Yongmei; Ren, Ge

    2015-10-01

    A feedforward control based on data fusion is proposed to enhance closed-loop performance. The target trajectory as the observed value of a Kalman filter is recovered by synthesizing line-of-sight error and angular position from the encoder. A Kalman filter based on a Singer acceleration model is employed to estimate the target velocity. In this control scheme, the control stability is influenced by the bandwidth of the Kalman filter and time misalignment. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability, which shows that the Kalman filter is the major factor that affects the control stability. The feedforward control proposed here is verified through simulations and experiments.

  7. Load Sharing Among Collateral Ligaments, Articular Surfaces, and the Tibial Post in Constrained Condylar Knee Arthroplasty.

    PubMed

    Wang, Xiaonan; Malik, Aamer; Bartel, Donald L; Wright, Timothy M; Padgett, Douglas E

    2016-08-01

    The normal knee joint maintains stable motion during activities of daily living. After total knee arthroplasty (TKA), stability is achieved by the conformity of the bearing surfaces of the implant components, ligaments, and constraint structures incorporated in the implant design. The large, rectangular tibial post in constrained condylar knee (CCK) arthroplasty, often used in revision surgery, provides added stability, but increases susceptibility to polyethylene wear as it contacts the intercondylar box on the femoral component. We examined coronal plane stability to understand the relative contributions of the mechanisms that act to stabilize the CCK knee under varus-valgus loading, namely, load distribution between the medial and lateral condyles, contact of the tibial post with the femoral intercondylar box, and elongation of the collateral ligaments. A robot testing system was used to determine the joint stability in human cadaveric knees as described by the moment versus angular rotation behavior under varus-valgus moments at 0 deg, 30 deg, and 90 deg of flexion. The angular rotation of the CCK knee in response to the physiological moments was limited to ≤1.5 deg. The primary stabilizing mechanism was the redistribution of the contact force on the bearing surfaces. Contact between the tibial post and the femoral box provided a secondary stabilizing mechanism after lift-off of a condyle had occurred. Collateral ligaments provide limited stability because little ligament elongation occurred under such small angular rotations. Compressive loads applied across the knee joint, such as would occur with the application of muscle forces, enhanced the ability of the bearing surfaces to provide resisting internal varus-valgus moment and, thus, reduced the exposure of the tibial post to the external varus-valgus loads. Our results suggest that the CCK stability can be refined by considering both the geometry of the bearing surfaces and the contacting geometry between the tibial post and femoral box.

  8. The effect of leg preference on postural stability in healthy athletes.

    PubMed

    Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; Hupperets, Maarten D W; van Dieën, Jaap H

    2014-01-03

    In research regarding postural stability, leg preference is often tested and controlled for. However, leg preference may vary between tasks. As athletes are a group of interest for postural stability testing, we evaluated the effect of five leg preference tasks categorization (step up, hop, ball kick, balance, pick up) on single-leg postural stability of 16 field hockey athletes. The 'center of pressure speed' was calculated as the primary outcome variable of single-leg postural stability. Secondary variables were 'mean length of the GRF vector in the horizontal plane', 'mean length of the ankle angular velocity vector', and 'mean length of the hip angular velocity vector', as well as the separate outcomes per degree of freedom. Results showed that leg preference was inconsistent between leg preference tasks. Moreover, the primary and secondary variables yielded no significant difference between the preferred and non-preferred legs, regardless of the applied leg preference task categorization (p>0.05). The present findings do not support the usability of leg preference tasks in controlling for bias of postural stability. In conclusion, none of the applied leg preference tasks revealed a significant effect on postural stability in healthy field hockey athletes. © 2013 Published by Elsevier Ltd.

  9. Low Cost Shore Protection: A Guide for Engineers and Contractors.

    DTIC Science & Technology

    1981-10-31

    pieces; stones should be angular and blocky, not rounded. The toe of the revetment should be located one design wave height (but at least three feet...coefficient from Table 12. Table 12 Stability Coefficients for Stone Revetments Armor Unit KD Quarrystone Smooth rounded 2.1 Rough angular 3.5 Graded riprap...Armor Layers K______D __ K D cot 0 Quarrystone Smooth ztounded 2 2.1 1.7 1.5 to 3.0 Rough angular 2 3.5 12.9 1l.5 Graded riprap Not Recommended A major

  10. Hip and knee joints are more stabilized than driven during the stance phase of gait: an analysis of the 3D angle between joint moment and joint angular velocity.

    PubMed

    Dumas, R; Cheze, L

    2008-08-01

    Joint power is commonly used in orthopaedics, ergonomics or sports analysis but its clinical interpretation remains controversial. Some basic principles on muscle actions and energy transfer have been proposed in 2D. The decomposition of power on 3 axes, although questionable, allows the same analysis in 3D. However, these basic principles have been widely criticized, mainly because bi-articular muscles must be considered. This requires a more complex computation in order to determine how the individual muscle force contributes to drive the joint. Conversely, with simple 3D inverse dynamics, the analysis of both joint moment and angular velocity directions is essential to clarify when the joint moment can contribute or not to drive the joint. The present study evaluates the 3D angle between the joint moment and the joint angular velocity and investigates when the hip, knee and ankle joints are predominantly driven (angle close to 0 degrees and 180 degrees ) or stabilized (angle close to 90 degrees ) during gait. The 3D angle curves show that the three joints are never fully but only partially driven and that the hip and knee joints are mainly stabilized during the stance phase. The notion of stabilization should be further investigated, especially for subjects with motion disorders or prostheses.

  11. Equilibrium properties of the Skylab CMG rotation law

    NASA Technical Reports Server (NTRS)

    Elrod, B. D.; Anderson, G. M.

    1972-01-01

    The equilibrium properties of the control moment gyroscopes of the Skylab are discussed. A rotation law is developed to produce gimbal rates which distribute the angular momentum contributions among the control moment gyroscopes to avoid gimbal stop encounters. The implications for gimbal angle management under various angular momentum situations are described. Conditions were obtained for the existence of equilibria and corresponding stability properties.

  12. Soft tissue changes and its stability as a sequlae to mandibular advancement.

    PubMed

    Uppada, Uday Kiran; Sinha, Ramen; Reddy, D Sreenatha; Paul, Dushyanth

    2014-01-01

    To predict the changes and evaluate the stability that occurs in the soft tissues following the skeletal movement subsequent to surgical advancement of the mandible through bilateral sagittal split osteotomy and to provide the patient reliable information with regard to esthetic changes that can be expected following the treatment. Twenty adult patients diagnosed with skeletal class II malocclusion and underwent bilateral sagittal split osteotomy for mandibular advancement by a mean of 8 mm using rigid fixation were included in the study. Soft tissue changes brought about by the surgical procedure and their stability over a period of time were evaluated prospectively using 12 linear (4 vertical and 8 horizontal) and 4 angular measurements on profile cephalograms which were taken preoperatively after the pre-surgical orthodontics (T1) and postoperatively with duration of 1 month (T2) and 6 months (T3) respectively. It was observed that compared to the linear measurements, the angular measurements showed significant changes. The improvement in the esthetic outcome is a direct reflection of the angular changes whereas the linear changes played a contributing role. Following mandibular advancement surgery the profiles of the patients was perceived to have improved with reduction in the facial convexity, an increase in the lower facial height, decrease in the depth of the mentolabial sulcus and improvement in the lip competency with lengthening, straightening and thinning of the lower lip. The soft tissue response and its stability depends on the stability of the surgical procedure itself, postsurgical growth and remodeling of the hard tissues and soft tissue changes as a result of maturation and aging.

  13. Spatial filter with volume gratings for high-peak-power multistage laser amplifiers

    NASA Astrophysics Data System (ADS)

    Tan, Yi-zhou; Yang, Yi-sheng; Zheng, Guang-wei; Shen, Ben-jian; Pan, Heng-yue; Liu, Li

    2010-08-01

    The regular spatial filters comprised of lens and pinhole are essential component in high power laser systems, such as lasers for inertial confinement fusion, nonlinear optical technology and directed-energy weapon. On the other hand the pinhole is treated as a bottleneck of high power laser due to harmful plasma created by the focusing beam. In this paper we present a spatial filter based on angular selectivity of Bragg diffraction grating to avoid the harmful focusing effect in the traditional pinhole filter. A spatial filter consisted of volume phase gratings in two-pass amplifier cavity were reported. Two-dimensional filter was proposed by using single Pi-phase-shifted Bragg grating, numerical simulation results shown that its angular spectrum bandwidth can be less than 160urad. The angular selectivity of photo-thermorefractive glass and RUGATE film filters, construction stability, thermal stability and the effects of misalignments of gratings on the diffraction efficiencies under high-pulse-energy laser operating condition are discussed.

  14. Measurements of the STS orbiter's angular stability during in-orbit operations

    NASA Technical Reports Server (NTRS)

    Neupert, Werner M.; Epstein, Gabriel L.; Houston, James; Zarechnak, Andrew

    1995-01-01

    We report on measurements of the angular stability, commonly called 'jitter', of the STS Orbiter during normal operations in space. Measurements were carried out by measuring optically the Orbiter's roll and pitch orientation relative to the solar vector as the orbiter was held in a -Z(sub 0) solar inertial orientation (orbiter bay oriented toward the Sun). We also report observations of an interesting perturbation to the orbiter's orientation noted by the crew during the STS-60 mission. These data may be useful in analyzing the in-orbit response of the Orbiter to thruster firings and other applied torques, and may aid in the planning of future experiments that require fine-pointed operations by the orbiter.

  15. The dynamics of spin stabilized spacecraft with movable appendages, part 1

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Sellappan, R.

    1975-01-01

    The motion and stability of spin stabilized spacecraft with movable external appendages are treated both analytically and numerically. The two basic types of appendages considered are: (1) a telescoping type of varying length and (2) a hinged type of fixed length whose orientation with respect to the main part of the spacecraft can vary. Two classes of telescoping appendages are considered: (a) where an end mass is mounted at the end of an (assumed) massless boom; and (b) where the appendage is assumed to consist of a uniformly distributed homogeneous mass throughout its length. For the telescoping system Eulerian equations of motion are developed. During all deployment sequences it is assumed that the transverse component of angular momentum is much smaller than the component along the major spin axis. Closed form analytical solutions for the time response of the transverse components of angular velocities are obtained when the spacecraft hub has a nearly spherical mass distribution.

  16. Thermal stability of charged rotating quantum black holes

    NASA Astrophysics Data System (ADS)

    Sinha, Aloke Kumar; Majumdar, Parthasarathi

    2017-12-01

    Criteria for thermal stability of charged rotating black holes of any dimension are derived for horizon areas that are large relative to the Planck area (in these dimensions). The derivation is based on generic assumptions of quantum geometry, supported by some results of loop quantum gravity, and equilibrium statistical mechanics of the Grand Canonical ensemble. There is no explicit use of classical spacetime geometry in this analysis. The only assumption is that the mass of the black hole is a function of its horizon area, charge and angular momentum. Our stability criteria are then tested in detail against specific classical black holes in spacetime dimensions 4 and 5, whose metrics provide us with explicit relations for the dependence of the mass on the charge and angular momentum of the black holes. This enables us to predict which of these black holes are expected to be thermally unstable under Hawking radiation.

  17. Reflex Responses to Ligament Loading: Implications for Knee Joint Stability

    DTIC Science & Technology

    2001-10-25

    white noise approach", Prentice-Hall".:, 1978. [15] B. Grenfield and B. Wyke, "Reflex innervation of the temporo - mandibular joint .". Nature. 211(52...selective, depending on the magnitude of the angular perturbation. Keywords - Reflex, Periarticular tissue afferents, Joint stability I...INTRODUCTION Traditionally, joint stability has been considered to be purely mechanical in origin, with little or no consideration of neuromuscular

  18. Childhood angular kyphosis: a plea for involvement of the pediatric neurosurgeon.

    PubMed

    Cornips, E; Koudijs, S; Vles, J; van Rhijn, L

    2017-06-01

    Childhood angular kyphosis is rare, as most children are affected by a mixed kyphotic and scoliotic deformity. Published series involving a mix of kyphosis and kyphoscoliosis, pediatric and adult, congenital and acquired cases are almost exclusively authored by orthopedic surgeons, suggesting that (pediatric) neurosurgeons are not involved. We present five cases that illustrate the spectrum of angular kyphosis, and these were treated by a multidisciplinary team including child neurologist, orthopedic surgeon, and pediatric neurosurgeon as complementary partners. Angular kyphosis is a cosmetic problem but above all a serious threat to the spinal cord and as such to the child's ambulatory, sphincter, and genito-urinary functions. Spinal cord stretch over the internal kyphosis may cause pain and/or neurological deficit, often accompanied by myelomalacia or even segmental cord atrophy. Spinal cord function may be additionally affected by associated disorders such as syringomyelia or tethered cord, an orthopedic surgeon may be less familiar with. The decision when and how to proceed surgically should be made by a multidisciplinary team, including a pediatric neurosurgeon who actively participates in the operation and helps to safely achieve adequate spinal cord decompression and stabilization. Childhood angular kyphosis is a complex, heterogeneous disorder that should be managed by a multidisciplinary team in specialized pediatric spine centers. While every case is truly unique, the spinal cord is always at risk, especially during decompression, stabilization, and eventual correction of deformity. Pediatric neurosurgeons have an important role to play in preoperative work-up, actual operation, and follow-up.

  19. Prototype Design and Mission Analysis for a Small Satellite Exploiting Environmental Disturbances for Attitude Stabilization

    DTIC Science & Technology

    2016-03-01

    acceleration of the shifting masses experiences a Coriolis Effect due to the angular velocity of the spacecraft. However, the perpendicular component of...angular velocity. If we neglect the Coriolis Effect in absolute acceleration, both terms become zero. Then, Equation 4.22 becomes ( )0 0 0 0 0...METHOD ......................................................83  C.  EXPLORATION OF THE ALTITUDE AND INCLINATION EFFECTS ON THE CONTROL

  20. Three-body Coulomb problem probed by mapping the Bethe surface in ionizing ion-atom collisions.

    PubMed

    Moshammer, R; Perumal, A; Schulz, M; Rodríguez, V D; Kollmus, H; Mann, R; Hagmann, S; Ullrich, J

    2001-11-26

    The three-body Coulomb problem has been explored in kinematically complete experiments on single ionization of helium by 100 MeV/u C(6+) and 3.6 MeV/u Au(53+) impact. Low-energy electron emission ( E(e)<150 eV) as a function of the projectile deflection theta(p) (momentum transfer), i.e., the Bethe surface [15], has been mapped with Delta theta(p)+/-25 nanoradian resolution at extremely large perturbations ( 3.6 MeV/u Au(53+)) where single ionization occurs at impact parameters of typically 10 times the He K-shell radius. The experimental data are not in agreement with state-of-the-art continuum distorted wave-eikonal initial state theory.

  1. The Dominance of Dynamic Barlike Instabilities in the Evolution of a Massive Stellar Core Collapse That ``Fizzles''

    NASA Astrophysics Data System (ADS)

    Imamura, James N.; Durisen, Richard H.

    2001-03-01

    Core collapse in a massive rotating star may halt at subnuclear density if the core contains angular momentum J>~1049 g cm2 s-1. An aborted collapse can lead to the formation of a rapidly rotating equilibrium object, which, because of its high electron fraction, Ye>0.4, and high entropy per baryon, Sb/k~1-2, is secularly and dynamically stable. The further evolution of such a ``fizzler'' is driven by deleptonization and cooling of the hot, dense material. These processes cause the fizzler both to contract toward neutron star densities and to spin up, driving it toward instability points of the barlike modes. Using linear stability analyses to study the latter case, we find that the stability properties of fizzlers are similar to those of Maclaurin spheroids and polytropes despite the nonpolytropic nature and extreme compressibility of the fizzler equation of state. For fizzlers with the specific angular momentum distribution of the Maclaurin spheroids, secular and dynamic barlike instabilities set in at T/|W|~0.14 and 0.27, respectively, where T is the rotational kinetic energy and W is the gravitational energy of the fizzler, the same limits as found for Maclaurin spheroids. For fizzlers in which angular momentum is more concentrated toward the equator, the secular stability limits drop dramatically. For the most extreme angular momentum distribution we consider, the secular stability limit for the barlike modes falls to T/|W|~0.038, compared with T/|W|~0.09-0.10 for the most extreme polytropic cases known previously (Imamura et al.). For fixed equation-of-state parameters, the secular and dynamic stability limits occur at roughly constant mass over the range of typical fizzler central densities. Deleptonization and cooling decrease the limiting masses on timescales shorter than the growth time for secular instability. Consequently, unless an evolving fizzler reaches neutron star densities first, it will always encounter dynamic barlike instabilities before secular instabilities have time to grow. Quasi-linear analysis shows that the angular momentum loss during the early nonlinear evolution of the dynamic barlike instability is dominated by Newtonian self-interaction gravitational torques rather than by the emission of gravitational wave (GW) radiation. GW emission may dominate after the initial dynamic evolutionary phase ends. Nonlinear hydrodynamics simulations with a proper equation of state will be required to determine the ultimate outcome of such evolutions and to refine predictions of GW production by barlike instabilities.

  2. Soft tissue changes and its stability as a sequlae to mandibular advancement

    PubMed Central

    Uppada, Uday Kiran; Sinha, Ramen; Reddy, D. Sreenatha; Paul, Dushyanth

    2014-01-01

    Purpose of the Study: To predict the changes and evaluate the stability that occurs in the soft tissues following the skeletal movement subsequent to surgical advancement of the mandible through bilateral sagittal split osteotomy and to provide the patient reliable information with regard to esthetic changes that can be expected following the treatment. Materials and Methods: Twenty adult patients diagnosed with skeletal class II malocclusion and underwent bilateral sagittal split osteotomy for mandibular advancement by a mean of 8 mm using rigid fixation were included in the study. Soft tissue changes brought about by the surgical procedure and their stability over a period of time were evaluated prospectively using 12 linear (4 vertical and 8 horizontal) and 4 angular measurements on profile cephalograms which were taken preoperatively after the pre-surgical orthodontics (T1) and postoperatively with duration of 1 month (T2) and 6 months (T3) respectively. Results: It was observed that compared to the linear measurements, the angular measurements showed significant changes. The improvement in the esthetic outcome is a direct reflection of the angular changes whereas the linear changes played a contributing role. Following mandibular advancement surgery the profiles of the patients was perceived to have improved with reduction in the facial convexity, an increase in the lower facial height, decrease in the depth of the mentolabial sulcus and improvement in the lip competency with lengthening, straightening and thinning of the lower lip. Conclusion: The soft tissue response and its stability depends on the stability of the surgical procedure itself, postsurgical growth and remodeling of the hard tissues and soft tissue changes as a result of maturation and aging. PMID:25593860

  3. Bi-Stability of Movement Coordination as a Function of Skill Level and Task Difficulty

    ERIC Educational Resources Information Center

    Liu, Yeou-Teh; Mayer-Kress, Gottfried; Newell, Karl M.

    2010-01-01

    This study investigated whether the level of practice interacts with the initial conditions (here manipulated as preparatory movements) and task difficulty (ball angular velocity and friction) in determining the stability of movement coordination for a roller ball motor task. Practice level and task difficulty were manipulated as two control…

  4. Fixation of osteoporotic fractures in the upper limb with a locking compression plate.

    PubMed

    Neuhaus, V; King, J D; Jupiter, J B

    2012-01-01

    Locking Compression Plate (LCP) has the advantageous feature that screws can be locked in the plate leaving an angular stable construct. There is no need to have contact between the plate and the bone to achieve stability resulting from friction of the plate-bone-construct. Therefore the plate does not need to be contoured exactly to the bone and the healing bone's periosteal blood supply is not affected. The LCP is used as a bridging plate to gain relative stability in multi-fragmentary, diaphyseal or metaphyseal fractures. Depending on the fracture, the combination hole can also allow the LCP to achieve absolute stability similar to conventional fixation techniques. Osteoporotic fractures have significant impact on morbidity and mortality. Proximal humeral and distal radius fractures are typical examples. These osteoporotic and often comminuted fractures are ideal settings/indications for LCP utilization in the upper extremity. However, the data quality is due to mostly small study populations not so powerful. Unquestionably there has been a clear and fashionable trend to choose operative treatment for these fractures, because the angular stability allows stable fixation and early functional mobilization.

  5. LISA Technology Development and Risk Reduction at NASA

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector based on a laser interferometer. LISA relies on several technologies that are either new to spaceflight or must perform at levels not previously demonstrated in a spaceflight environment. The ESA-led LISA Pathfinder mission is the main effort to demonstrate LISA technology. NASA also supports complementary ground-based technology development and risk reduction activities. This presentation will report the status of NASA work on micronewton thrusters, the telescope, the optical pointing subsystem and mission formulation. More details on some of these topics will be given in posters. Other talks and posters will describe NASA-supported work on the laser subsystem, the phasemeter, and aspects of the interferometry. Two flight-qualified clusters of four colloid micronewton thrusters, each capable of thrust Levels between 5 and 30 microNewton with a resolution less than 0.l microNewton and a thrust noise less than 0.1 microNewton/vHz (0.001 to 4 Hz), have been integrated onto the LISA Pathfinder spacecraft. The complementary ground-based development focuses on lifetime demonstration. Laboratory verification of failure models and accelerated life tests are just getting started. LISA needs a 40 cm diameter, afocal telescope for beam expansion/reduction that maintains an optical pathlength stability of approximately 1 pm/vHz in an extremely stable thermal environment. A mechanical prototype of a silicon carbide primary-secondary structure has been fabricated for stability testing. Two optical assemblies must point at different distant spacecraft with nanoradian accuracy over approximately 1 degree annual variation in the angle between the distant spacecraft. A candidate piezo-inchworm actuator is being tested in a suitable testbed. In addition to technology development, NASA has carried out several studies in support of the mission formulation. The results of systems engineering work on flight software, avionics and reliability will be summarized.

  6. Gender differences in head-neck segment dynamic stabilization during head acceleration.

    PubMed

    Tierney, Ryan T; Sitler, Michael R; Swanik, C Buz; Swanik, Kathleen A; Higgins, Michael; Torg, Joseph

    2005-02-01

    Recent epidemiological research has revealed that gender differences exist in concussion incidence but no study has investigated why females may be at greater risk of concussion. Our purpose was to determine whether gender differences existed in head-neck segment kinematic and neuromuscular control variables responses to an external force application with and without neck muscle preactivation. Forty (20 females and 20 males) physically active volunteers participated in the study. The independent variables were gender, force application (known vs unknown), and force direction (forced flexion vs forced extension). The dependent variables were kinematic and EMG variables, head-neck segment stiffness, and head-neck segment flexor and extensor isometric strength. Statistical analyses consisted of multiple multivariate and univariate analyses of variance, follow-up univariate analyses of variance, and t-tests (P < or = 0.05). Gender differences existed in head-neck segment dynamic stabilization during head angular acceleration. Females exhibited significantly greater head-neck segment peak angular acceleration (50%) and displacement (39%) than males despite initiating muscle activity significantly earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity (79% peak activity and 117% muscle activity area). The head-neck segment angular acceleration differences may be because females exhibited significantly less isometric strength (49%), neck girth (30%), and head mass (43%), resulting in lower levels of head-neck segment stiffness (29%). For our subject demographic, the results revealed gender differences in head-neck segment dynamic stabilization during head acceleration in response to an external force application. Females exhibited significantly greater head-neck segment peak angular acceleration and displacement than males despite initiating muscle activity earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity.

  7. Head control: volitional aspects of rehabilitation training in patients with multiple sclerosis compared with healthy subjects.

    PubMed

    Cattaneo, Davide; Ferrarin, Maurizio; Frasson, William; Casiraghi, Anna

    2005-07-01

    To investigate the role of voluntary mechanisms and motor learning in head stability and the impact of longitudinal biofeedback training in head control. Crossover trial and single-subject research design. Neurorehabilitation research institute. Head stability during treadmill gait was measured in healthy subjects and patients with multiple sclerosis (MS). The experimental condition in which subjects walked on the treadmill was compared with that in which the head was voluntarily stabilized. In another experimental condition, augmented feedback of head displacement was provided by means of a laser mounted on the head that projected a laser beam on a screen. The motor learning was investigated with biofeedback training sessions. Positional feedback was represented by the laser beam, with subjects having to stabilize the beam while walking on the treadmill. Head angular oscillation in the sagittal and frontal planes. Results showed that on verbal request, healthy subjects and patients further stabilized the head during gait, especially in the sagittal plane. Short-term feedback of head displacement was no better than self-stabilization at improving head control. Conversely, the motor learning was evident in the rehabilitation protocol: after 10 to 15 training sessions, patients with MS showed a clinically relevant decrease of head angular oscillations. Voluntary mechanisms play a role in head stabilization during gait. Augmented biofeedback of head displacement may be effective in reducing head oscillations.

  8. Surgical correction of bilateral metacarpophalangeal valgus with curved osteotomies and type II external skeletal fixation in a seven-month-old alpaca.

    PubMed

    Schoonover, Mike J; Whitfield, Chase T; Rochat, Mark C; Streeter, Robert N; Sippel, Kate

    2016-09-20

    To report the successful surgical correction of severe bilateral metacarpophalangeal valgus angular limb deformities in a seven-month-old intact male alpaca cria using curved osteotomies stabilized with type II external skeletal fixation. Using a 21 mm crescentic shaped oscillating saw blade, bilateral osteotomies were performed in the distal metaphyses of the fused third and fourth metacarpal bones to correct valgus angular limb deformity of the metacarpophalangeal joints. Axial alignment of each limb was achieved by medially rotating the distal metacarpus in the frontal plane along the curved osteotomies. The osteotomies were stabilized using type II external skeletal fixators. The alpaca was immediately weight-bearing following the surgical procedure and no to minimal lameness was observed during healing of the osteotomies. Evaluation at five and 10 months following the surgery demonstrated acceptable axial alignment in the left forelimb while moderate to severe varus deformity (overcorrection) was observed in the right. Curved osteotomy of the distal metacarpus stabilized with type II external skeletal fixation can provide a favourable outcome in older alpaca crias affected with metacarpophalangeal angular limb deformities. Placement of the distal transfixation pins relative to the metacarpal physes should be carefully evaluated as overcorrection is possible, especially if growthpotential remains in only one physis of the fused third and fourth metacarpal bones.

  9. Gender difference in older adult's utilization of gravitational and ground reaction force in regulation of angular momentum during stair descent.

    PubMed

    Singhal, Kunal; Kim, Jemin; Casebolt, Jeffrey; Lee, Sangwoo; Han, Ki-Hoon; Kwon, Young-Hoo

    2015-06-01

    Angular momentum of the body is a highly controlled quantity signifying stability, therefore, it is essential to understand its regulation during stair descent. The purpose of this study was to investigate how older adults use gravity and ground reaction force to regulate the angular momentum of the body during stair descent. A total of 28 participants (12 male and 16 female; 68.5 years and 69.0 years of mean age respectively) performed stair descent from a level walk in a step-over-step manner at a self-selected speed over a custom made three-step staircase with embedded force plates. Kinematic and force data were used to calculate angular momentum, gravitational moment, and ground reaction force moment about the stance foot center of pressure. Women show a significantly greater change in normalized angular momentum (0.92Nms/Kgm; p=.004) as compared to men (0.45Nms/Kgm). Women produce higher normalized GRF (p=.031) during the double support phase. The angular momentum changes show largest backward regulation for Step 0 and forward regulation for Step 2. This greater difference in overall change in the angular momentum in women may explain their increased risk of fall over the stairs. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Three-axis stabilization of spacecraft using parameter-independent nonlinear quaternion feedback

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.; Kelkar, Atul G.

    1994-01-01

    This paper considers the problem of rigid spacecraft. A nonlinear control law which uses the feedback of the unit quaternion and the measured angular velocities is proposed and is shown to provide global asymptotic stability. The control law does not require the knowledge of the system parameters, and is therefore robust to modeling errors. The significance of the control law is that it can be used for large-angle maneuvers with guaranteed stability.

  11. Cervical spinal motion during intubation: efficacy of stabilization maneuvers in the setting of complete segmental instability.

    PubMed

    Lennarson, P J; Smith, D W; Sawin, P D; Todd, M M; Sato, Y; Traynelis, V C

    2001-04-01

    The purpose of this study was to characterize and compare segmental cervical motion during orotracheal intubation in cadavers with and without a complete subaxial injury, as well as to examine the efficacy of commonly used stabilization techniques in limiting that motion. Intubation procedures were performed in 10 fresh human cadavers in which cervical spines were intact and following the creation of a complete C4-5 ligamentous injury. Movement of the cervical spine during direct laryngoscopy and intubation was recorded using video fluoroscopy and examined under the following conditions: 1) without stabilization; 2) with manual in-line cervical immobilization; and 3) with Gardner-Wells traction. Subsequently, segmental angular rotation, subluxation, and distraction at the injured C4-5 level were measured from digitized frames of the recorded video fluoroscopy. After complete C4-5 destabilization, the effects of attempted stabilization on distraction, angulation, and subluxation were analyzed. Immobilization effectively eliminated distraction, and diminished angulation, but increased subluxation. Traction significantly increased distraction, but decreased angular rotation and effectively eliminated subluxation. Orotracheal intubation without stabilization had intermediate results, causing less distraction than traction, less subluxation than immobilization, but increased angulation compared with either intervention. These results are discussed in terms of both statistical and clinical significance and recommendations are made.

  12. Primary stability of an intramedullary calcaneal nail and an angular stable calcaneal plate in a biomechanical testing model of intraarticular calcaneal fracture.

    PubMed

    Goldzak, M; Simon, P; Mittlmeier, T; Chaussemier, M; Chiergatti, R

    2014-01-01

    Nowadays, open anatomic reduction and internal fixation can be considered as a valuable treatment for displaced intra-articular fractures of the calcaneus. However, the application of a calcaneal plate via an extensile lateral approach is at risk for a substantial rate of complications including delayed healing, skin necrosis, or infection. There is some evidence that a limited exposure might contribute to a decreased soft tissue complication rate bearing in mind that most minimally invasive techniques have to accept a reduced primary stability compared with the open application of an angular stable plate. Recently, an intrafocal minimal invasive reduction technique has been established employing an intramedullary nail for fracture stabilisation and support of the subtalar joint. The aim of this study was to compare the primary biomechanical performance of the new device versus lateral angular stable plating. Biomechanical testings were performed on 14 human cadaveric feet (7 pairs). Dry calcaneal bones were fractured resulting in a Sanders type IIB fracture pattern and fixed by either a calcaneal locking plate or an intramedullary calcaneal nail. Compressive testing via the corresponding talus was employed at a constant loading velocity until failure with an universal testing machine and a specific mounting device to avoid any shear forces. Apart from the data of the load deformation diagram the relative motion of the fracture elements during loading was recorded by 8 extensometric transducers. After failure the specimens were carefully examined to check the failure patterns. The displacement of the subtalar joint fragment was substantially lower in specimens fixed with the nail. Stiffness and load to failure were significantly higher after fixation with the intramedullary nail than after application of the angular stable plate. Failure with both fixation modes generally occurred at the anterior calcaneal process fragment. The primary stability of an intramedullary nail appeared to be superior to an angular stable plate representing the present standard technique in open reconstruction of the fractured calcaneus. The results from the experimental model speak in favour of the clinical use of the intramedullary calcaneal nail. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. A self-calibrated angularly continuous 2D GRAPPA kernel for propeller trajectories

    PubMed Central

    Skare, Stefan; Newbould, Rexford D; Nordell, Anders; Holdsworth, Samantha J; Bammer, Roland

    2008-01-01

    The k-space readout of propeller-type sequences may be accelerated by the use of parallel imaging (PI). For PROPELLER, the main benefits are reduced blurring due to T2 decay and SAR reduction, while for EPI-based propeller acquisitions such as Turbo-PROP and SAP-EPI, the faster k-space traversal alleviates geometric distortions. In this work, the feasibility of calculating a 2D GRAPPA kernel on only the undersampled propeller blades themselves is explored, using the matching orthogonal undersampled blade. It is shown that the GRAPPA kernel varies slowly across blades, therefore an angularly continuous 2D GRAPPA kernel is proposed, in which the angular variation of the weights is parameterized. This new angularly continuous kernel formulation greatly increases the numerical stability of the GRAPPA weight estimation, allowing the generation of fully sampled diagnostic quality images using only the undersampled propeller data. PMID:19025911

  14. A novel sliding mode guidance law without line-of-sight angular rate information accounting for autopilot lag

    NASA Astrophysics Data System (ADS)

    He, Shaoming; Wang, Jiang; Wang, Wei

    2017-12-01

    This paper proposes a new composite guidance law to intercept manoeuvring targets without line-of-sight (LOS) angular rate information in the presence of autopilot lag. The presented formulation is obtained via a combination of homogeneous theory and sliding mode control approach. Different from some existing observers, the proposed homogeneous observer can estimate the lumped uncertainty and the LOS angular rate in an integrated manner. To reject the mismatched lumped uncertainty in the integrated guidance and autopilot system, a sliding surface, which consists of the system states and the estimated states, is proposed and a robust guidance law is then synthesised. Stability analysis shows that the LOS angular rate can be stabilised in a small region around zero asymptotically and the upper bound can be lowered by appropriate parameter choice. Numerical simulations with some comparisons are carried out to demonstrate the superiority of the proposed method.

  15. Analysis and Compensation of Modulation Angular Rate Error Based on Missile-Borne Rotation Semi-Strapdown Inertial Navigation System.

    PubMed

    Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang

    2018-05-04

    The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions.

  16. Postural stability and ankle sprain history in athletes compared to uninjured controls.

    PubMed

    Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; Verhagen, Evert A L M; van Dieën, Jaap H

    2014-02-01

    Diminished postural stability is a risk factor for ankle sprain occurrence and ankle sprains result in impaired postural stability. To date, ankle sprain history has not been taken into account as a determinant of postural stability, while it could possibly specify subgroups of interest. Postural stability was compared between 18 field hockey athletes who had recovered from an ankle sprain (mean (SD); 3.6 (1.5) months post-injury), and 16 uninjured controls. Force plate and kinematics parameters were calculated during single-leg standing: mean center of pressure speed, mean absolute horizontal ground reaction force, mean absolute ankle angular velocity, and mean absolute hip angular velocity. Additionally, cluster analysis was applied to the 'injured' participants, and the cluster with diminished postural stability was compared to the other participants with respect to ankle sprain history. MANCOVA showed no significant difference between groups in postural stability (P = 0.68). A self-reported history of an (partial) ankle ligament rupture was typically present in the cluster with diminished postural stability. Subsequently, a 'preceding rupture' was added as a factor in the MANCOVA, which showed a significant association between diminished postural stability and a 'preceding rupture' (P = 0.01), for all four individual parameters (P: 0.001-0.029; Cohen's d: 0.96-2.23). Diminished postural stability is not apparent in all previously injured athletes. However, our analysis suggests that an (mild) ankle sprain with a preceding severe ankle sprain is associated with impaired balance ability. Therefore, sensorimotor training may be emphasized in this particular group and caution is warranted in return to play decisions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. FEED FORWARD EQUATIONS.

    DTIC Science & Technology

    and feed forward stabilization) have been implemented. An on-mount gyro system consists of gyroscopes mounted on the radar antenna which sense...antenna motion and send compensating signals back to the antenna servo mechanism. Feed forward stabilization consists of determining antenna angular rates...caused by ships attitude changes, as measured by a stable platform (such as SINS), and feeding compensating signals back to the antenna servo

  18. Microstructure and Mechanical Properties of Ultrafine-Grained Al-6061 Prepared Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Wu, Zhaozhi; Liu, Zhiyuan; Guo, Dengji; Lou, Yan; Ruan, Shuangchen

    2017-10-01

    Equal-channel angular pressing (ECAP) is an efficient technique to achieve grain refinement in a wide range of materials. However, the extrusion process requires an excessive extrusion force, the microstructure of ECAPed specimens scatters heterogeneously because of considerable fragmentation of the structure and strain heterogeneity, and the resultant ultrafine grains exhibit poor thermal stability. The intermittent ultrasonic-assisted ECAP (IU-ECAP) approach was proposed to address these issues. In this work, ECAP and IU-ECAP were applied to produce ultrafine-grained Al-6061 alloys, and the differences in their mechanical properties, microstructural characteristics, and thermal stability were investigated. Mechanical testing demonstrated that the necessary extrusion force for IU-ECAP was significantly reduced; even more, the microhardness and ultimate tensile strength were strengthened. In addition, the IU-ECAPed Al alloy exhibited a smaller grain size with a more homogeneous microstructure. X-ray diffraction analysis indicated that the intensities of the textures were weakened using IU-ECAP, and a more homogeneous microstructure and larger dislocation densities were obtained. Investigation of the thermal stability revealed that the ultrafine-grained materials produced using IU-ECAP recrystallized at higher temperature or after longer time; the materials thus exhibited improved thermal stability.

  19. Sensor positioning and experimental constraints influence estimates of local dynamic stability during repetitive spine movements.

    PubMed

    Howarth, Samuel J; Graham, Ryan B

    2015-04-13

    Application of non-linear dynamics analyses to study human movement has increased recently, which necessitates an understanding of how dependent measures may be influenced by experimental design and setup. Quantifying local dynamic stability for a multi-articulated structure such as the spine presents the possibility for estimates to be influenced by positioning of kinematic sensors used to measure spine angular kinematics. Oftentimes researchers will also choose to constrain the spine's movement by physically restraining the pelvis and/or using targets to control movement endpoints. Ten healthy participants were recruited, and asked to perform separate trials of 35 consecutive cycles of spine flexion under both constrained and unconstrained conditions. Electromagnetic sensors that measure three-dimensional angular orientations were positioned over the pelvis and the spinous processes of L3, L1, and T11. Using the pelvic sensor as a reference, each sensor location on the spine was used to obtain a different representation of the three-dimensional spine angular kinematics. Local dynamic stability of each kinematic time-series was determined by calculating the maximum finite-time Lyapunov exponent (λmax). Estimates for λmax were significantly lower (i.e. dynamically more stable) for spine kinematic data obtained from the L3 sensor than those obtained from kinematic data using either the L1 or T11 sensors. Likewise, λmax was lower when the movement was constrained. These results emphasize the importance of proper placement of instrumentation for quantifying local dynamic stability of spine kinematics and are especially relevant for repeated measures designs where data are obtained from the same individual on multiple days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A tidal theory for the origin of the solar nebula

    NASA Technical Reports Server (NTRS)

    Kobrick, M.; Kaula, W. M.

    1979-01-01

    A model for the origin of the solar nebula is developed with attention to the significance of angular momentum considerations. Evidence that stars are born in groups rather than singly is examined. It is shown that protostars which are members of typical galactic clusters have some probability of undergoing a gravitational encounter with another star while they are collapsing. According to the model, these encounters impart disproportionate amounts of angular momentum to the later material to fall in toward already centrally condensed fragments. The amount of central condensation of a fragment is the overriding factor in determining its stability against destruction by tidal forces. The encounter also imparts angular momentum to matter that is still accreting onto the protosun.

  1. Magnetic moments of excited states in nuclei far from stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, A.; Berant, Z.; Gill, R.L.

    1985-01-01

    Magnetic moments of excited states in nuclei far from stability have been measured by gamma-gamma angular correlation at the output of the fission product separators TRISTAN and JOSEF. The results obtained until now will be reviewed. They provide important nuclear structure information about nuclei around closed shells, and transitional nuclei in the A = 100 and 150 regions. 22 refs., 3 figs., 3 tabs.

  2. Precessing rotating flows with additional shear: stability analysis.

    PubMed

    Salhi, A; Cambon, C

    2009-03-01

    We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Omega(0)) and the additional "precessing" Coriolis force (with angular velocity -epsilonOmega(0)), normal to it. A "weak" shear flow, with rate 2epsilon of the same order of the Poincaré "small" ratio epsilon , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler's equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov's [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré's [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small epsilon . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet's theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small epsilon , but significant differences are obtained regarding growth rates and widths of instability bands, if larger epsilon values, up to 0.2, are considered. Finally, both flow cases are briefly discussed in view of a subsequent nonlinear study using pseudospectral direct numerical simulations, which is a natural continuation of RDT.

  3. Interferometric rotation sensor

    NASA Technical Reports Server (NTRS)

    Walsh, T. M.

    1972-01-01

    Sensor generates interference fringes varying in number (horizontally and vertically) as a function of the total angular deviation relative to the line-of-sight axis. Device eliminates errors from zero or null shift due to lack of electrical circuitry stability.

  4. Analysis and Compensation of Modulation Angular Rate Error Based on Missile-Borne Rotation Semi-Strapdown Inertial Navigation System

    PubMed Central

    Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang

    2018-01-01

    The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions. PMID:29734707

  5. Realization of optimized quantum controlled-logic gate based on the orbital angular momentum of light.

    PubMed

    Zeng, Qiang; Li, Tao; Song, Xinbing; Zhang, Xiangdong

    2016-04-18

    We propose and experimentally demonstrate an optimized setup to implement quantum controlled-NOT operation using polarization and orbital angular momentum qubits. This device is more adaptive to inputs with various polarizations, and can work both in classical and quantum single-photon regime. The logic operations performed by such a setup not only possess high stability and polarization-free character, they can also be easily extended to deal with multi-qubit input states. As an example, the experimental implementation of generalized three-qubit Toffoli gate has been presented.

  6. Rotational accelerations stabilize leading edge vortices on revolving fly wings.

    PubMed

    Lentink, David; Dickinson, Michael H

    2009-08-01

    The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability are poorly understood. To gain fundamental insight into LEV stability on flapping fly wings we expressed the Navier-Stokes equations in a rotating frame of reference attached to the wing's surface. Using these equations we show that LEV dynamics on flapping wings are governed by three terms: angular, centripetal and Coriolis acceleration. Our analysis for hovering conditions shows that angular acceleration is proportional to the inverse of dimensionless stroke amplitude, whereas Coriolis and centripetal acceleration are proportional to the inverse of the Rossby number. Using a dynamically scaled robot model of a flapping fruit fly wing to systematically vary these dimensionless numbers, we determined which of the three accelerations mediate LEV stability. Our force measurements and flow visualizations indicate that the LEV is stabilized by the ;quasi-steady' centripetal and Coriolis accelerations that are present at low Rossby number and result from the propeller-like sweep of the wing. In contrast, the unsteady angular acceleration that results from the back and forth motion of a flapping wing does not appear to play a role in the stable attachment of the LEV. Angular acceleration is, however, critical for LEV integrity as we found it can mediate LEV spiral bursting, a high Reynolds number effect. Our analysis and experiments further suggest that the mechanism responsible for LEV stability is not dependent on Reynolds number, at least over the range most relevant for insect flight (100

  7. Bounded extremum seeking for angular velocity actuated control of nonholonomic unicycle

    DOE PAGES

    Scheinker, Alexander

    2016-08-17

    Here, we study control of the angular-velocity actuated nonholonomic unicycle, via a simple, bounded extremum seeking controller which is robust to external disturbances and measurement noise. The vehicle performs source seeking despite not having any position information about itself or the source, able only to sense a noise corrupted scalar value whose extremum coincides with the unknown source location. In order to control the angular velocity, rather than the angular heading directly, a controller is developed such that the closed loop system exhibits multiple time scales and requires an analysis approach expanding the previous work of Kurzweil, Jarnik, Sussmann, andmore » Liu, utilizing weak limits. We provide analytic proof of stability and demonstrate how this simple scheme can be extended to include position-independent source seeking, tracking, and collision avoidance of groups on autonomous vehicles in GPS-denied environments, based only on a measure of distance to an obstacle, which is an especially important feature for an autonomous agent.« less

  8. Integrated model reference adaptive control and time-varying angular rate estimation for micro-machined gyroscopes

    NASA Astrophysics Data System (ADS)

    Tsai, Nan-Chyuan; Sue, Chung-Yang

    2010-02-01

    Owing to the imposed but undesired accelerations such as quadrature error and cross-axis perturbation, the micro-machined gyroscope would not be unconditionally retained at resonant mode. Once the preset resonance is not sustained, the performance of the micro-gyroscope is accordingly degraded. In this article, a direct model reference adaptive control loop which is integrated with a modified disturbance estimating observer (MDEO) is proposed to guarantee the resonant oscillations at drive mode and counterbalance the undesired disturbance mainly caused by quadrature error and cross-axis perturbation. The parameters of controller are on-line innovated by the dynamic error between the MDEO output and expected response. In addition, Lyapunov stability theory is employed to examine the stability of the closed-loop control system. Finally, the efficacy of numerical evaluation on the exerted time-varying angular rate, which is to be detected and measured by the gyroscope, is verified by intensive simulations.

  9. Pigeons (C. livia) Follow Their Head during Turning Flight: Head Stabilization Underlies the Visual Control of Flight.

    PubMed

    Ros, Ivo G; Biewener, Andrew A

    2017-01-01

    Similar flight control principles operate across insect and vertebrate fliers. These principles indicate that robust solutions have evolved to meet complex behavioral challenges. Following from studies of visual and cervical feedback control of flight in insects, we investigate the role of head stabilization in providing feedback cues for controlling turning flight in pigeons. Based on previous observations that the eyes of pigeons remain at relatively fixed orientations within the head during flight, we test potential sensory control inputs derived from head and body movements during 90° aerial turns. We observe that periods of angular head stabilization alternate with rapid head repositioning movements (head saccades), and confirm that control of head motion is decoupled from aerodynamic and inertial forces acting on the bird's continuously rotating body during turning flapping flight. Visual cues inferred from head saccades correlate with changes in flight trajectory; whereas the magnitude of neck bending predicts angular changes in body position. The control of head motion to stabilize a pigeon's gaze may therefore facilitate extraction of important motion cues, in addition to offering mechanisms for controlling body and wing movements. Strong similarities between the sensory flight control of birds and insects may also inspire novel designs of robust controllers for human-engineered autonomous aerial vehicles.

  10. Pigeons (C. livia) Follow Their Head during Turning Flight: Head Stabilization Underlies the Visual Control of Flight

    PubMed Central

    Ros, Ivo G.; Biewener, Andrew A.

    2017-01-01

    Similar flight control principles operate across insect and vertebrate fliers. These principles indicate that robust solutions have evolved to meet complex behavioral challenges. Following from studies of visual and cervical feedback control of flight in insects, we investigate the role of head stabilization in providing feedback cues for controlling turning flight in pigeons. Based on previous observations that the eyes of pigeons remain at relatively fixed orientations within the head during flight, we test potential sensory control inputs derived from head and body movements during 90° aerial turns. We observe that periods of angular head stabilization alternate with rapid head repositioning movements (head saccades), and confirm that control of head motion is decoupled from aerodynamic and inertial forces acting on the bird's continuously rotating body during turning flapping flight. Visual cues inferred from head saccades correlate with changes in flight trajectory; whereas the magnitude of neck bending predicts angular changes in body position. The control of head motion to stabilize a pigeon's gaze may therefore facilitate extraction of important motion cues, in addition to offering mechanisms for controlling body and wing movements. Strong similarities between the sensory flight control of birds and insects may also inspire novel designs of robust controllers for human-engineered autonomous aerial vehicles. PMID:29249929

  11. Prediction of Lunar Reconnaissance Orbiter Reaction Wheel Assembly Angular Momentum Using Regression Analysis

    NASA Technical Reports Server (NTRS)

    DeHart, Russell

    2017-01-01

    This study determines the feasibility of creating a tool that can accurately predict Lunar Reconnaissance Orbiter (LRO) reaction wheel assembly (RWA) angular momentum, weeks or even months into the future. LRO is a three-axis stabilized spacecraft that was launched on June 18, 2009. While typically nadir-pointing, LRO conducts many types of slews to enable novel science collection. Momentum unloads have historically been performed approximately once every two weeks with the goal of maintaining system total angular momentum below 70 Nms; however flight experience shows the models developed before launch are overly conservative, with many momentum unloads being performed before system angular momentum surpasses 50 Nms. A more accurate model of RWA angular momentum growth would improve momentum unload scheduling and decrease the frequency of these unloads. Since some LRO instruments must be deactivated during momentum unloads and in the case of one instrument, decontaminated for 24 hours there after a decrease in the frequency of unloads increases science collection. This study develops a new model to predict LRO RWA angular momentum. Regression analysis of data from October 2014 to October 2015 was used to develop relationships between solar beta angle, slew specifications, and RWA angular momentum growth. The resulting model predicts RWA angular momentum using input solar beta angle and mission schedule data. This model was used to predict RWA angular momentum from October 2013 to October 2014. Predictions agree well with telemetry; of the 23 momentum unloads performed from October 2013 to October 2014, the mean and median magnitude of the RWA total angular momentum prediction error at the time of the momentum unloads were 3.7 and 2.7 Nms, respectively. The magnitude of the largest RWA total angular momentum prediction error was 10.6 Nms. Development of a tool that uses the models presented herein is currently underway.

  12. A Novel Angular Acceleration Sensor Based on the Electromagnetic Induction Principle and Investigation of Its Calibration Tests

    PubMed Central

    Zhao, Hao; Feng, Hao

    2013-01-01

    An angular acceleration sensor can be used for the dynamic analysis of human and joint motions. In this paper, an angular acceleration sensor with novel structure based on the principle of electromagnetic induction is designed. The method involves the construction of a constant magnetic field by the excitation windings of sensor, and the cup-shaped rotor that cut the magnetic field. The output windings of the sensor generate an electromotive force, which is directly proportional to the angular acceleration through the electromagnetic coupling when the rotor has rotational angular acceleration. The mechanical structure and the magnetic working circuit of the sensor are described. The output properties and the mathematical model including the transfer function and state-space model of the sensor are established. The asymptotical stability of the sensor when it is working is verified by the Lyapunov Theorem. An angular acceleration calibration device based on the torsional pendulum principle is designed. The method involves the coaxial connection of the angular acceleration sensor, torsion pendulum and a high-precision angle sensor, and then an initial external force is applied to the torsion pendulum to produce a periodic damping angle oscillation. The angular acceleration sensor and the angle sensor will generate two corresponding electrical signals. The sensitivity coefficient of the angular acceleration sensor can be obtained after processing these two-channel signals. The experiment results show that the sensitivity coefficient of the sensor is about 17.29 mv/Krad·s2. Finally, the errors existing in the practical applications of the sensor are discussed and the corresponding improvement measures are proposed to provide effective technical support for the practical promotion of the novel sensor. PMID:23941911

  13. European Workshop on Planetary Sciences, Rome, Italy, April 23-27, 1979, Proceedings. Part 1

    NASA Astrophysics Data System (ADS)

    1980-02-01

    Papers are presented on the dynamics and evolution of the solar system and its components. Specific topics include the dynamic stability of the solar system, the tidal friction theory of the earth moon system, the stability and irregularity of extrasolar planetary systems, angular momentum and magnetic braking during star formation, the collisional growth of planetesimals, the dynamics, interrelations and evolution of the asteroids and comets, the formation and stability of Saturn's rings, and the importance of nearly tangent orbits in planetary close encounters.

  14. Improving carrier-envelope phase stability in optical parametric chirped-pulse amplifiers by control of timing jitter.

    PubMed

    Hädrich, S; Rothhardt, J; Krebs, M; Demmler, S; Limpert, J; Tünnermann, A

    2012-12-01

    It is shown that timing jitter in optical parametric chirped-pulse amplification induces spectral drifts that transfer to carrier-envelope phase (CEP) instabilities via dispersion. Reduction of this effect requires temporal synchronization, which is realized with feedback obtained from the angularly dispersed idler. Furthermore, a novel method to measure the CEP drifts by utilizing parasitic second harmonic generation within parametric amplifiers is presented. Stabilization of the timing allows the obtainment of a CEP stability of 86 mrad over 40 min at 150 kHz repetition rate.

  15. Variable Speed CMG Control of a Dual-Spin Stabilized Unconventional VTOL Air Vehicle

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Moerder, Daniel D.; Shin, J-Y.

    2004-01-01

    This paper describes an approach based on using both bias momentum and multiple control moment gyros for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The stabilization approach described in this paper uses these internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other outer loop control functions, including CMG stabilization/ desaturation under persistent external disturbances. Simulation results show the feasibility of (1) improved vehicle performance beyond bias momentum assisted vector thrusting control, and (2) using control moment gyros to significantly reduce the external torque required from the vector thrusting machinery.

  16. Local Dynamic Stability Assessment of Motion Impaired Elderly Using Electronic Textile Pants.

    PubMed

    Liu, Jian; Lockhart, Thurmon E; Jones, Mark; Martin, Tom

    2008-10-01

    A clear association has been demonstrated between gait stability and falls in the elderly. Integration of wearable computing and human dynamic stability measures into home automation systems may help differentiate fall-prone individuals in a residential environment. The objective of the current study was to evaluate the capability of a pair of electronic textile (e-textile) pants system to assess local dynamic stability and to differentiate motion-impaired elderly from their healthy counterparts. A pair of e-textile pants comprised of numerous e-TAGs at locations corresponding to lower extremity joints was developed to collect acceleration, angular velocity and piezoelectric data. Four motion-impaired elderly together with nine healthy individuals (both young and old) participated in treadmill walking with a motion capture system simultaneously collecting kinematic data. Local dynamic stability, characterized by maximum Lyapunov exponent, was computed based on vertical acceleration and angular velocity at lower extremity joints for the measurements from both e-textile and motion capture systems. Results indicated that the motion-impaired elderly had significantly higher maximum Lyapunov exponents (computed from vertical acceleration data) than healthy individuals at the right ankle and hip joints. In addition, maximum Lyapunov exponents assessed by the motion capture system were found to be significantly higher than those assessed by the e-textile system. Despite the difference between these measurement techniques, attaching accelerometers at the ankle and hip joints was shown to be an effective sensor configuration. It was concluded that the e-textile pants system, via dynamic stability assessment, has the potential to identify motion-impaired elderly.

  17. Efficacy of Dorsoradial Capsulodesis for Trapeziometacarpal Joint Instability: A Cadaver Study.

    PubMed

    Chenoweth, Brian A; O'Mahony, Gavin D; Fitzgerald, Casey; Stoner, Julie A; O'Donoghue, Daniel L; Rayan, Ghazi M

    2017-01-01

    To test the biomechanical properties of the dorsoradial capsulodesis procedure. Six cadaveric hands were used. After exposing the trapeziometacarpal (TMC) joint, we placed Kirschner wires in the distal radius and thumb metacarpal. The rotation shear test was then performed to test the joint axial laxity, and angular measurements using Kirschner wires as reference points were documented. The dorsoradial (DR) ligament and capsule were released, followed by the intermetacarpal (IM) ligament; angular measurements were obtained. Finally, the DR capsulodesis procedure was performed, and final measurements were obtained. Comparisons were made among the various stages of ligament integrity to determine the amount of stability provided by DR capsulodesis. All cadavers demonstrated axial laxity with transection of the DR ligament; an increase in stability was obtained after DR capsulodesis. Transection of the capsule and IM ligament caused increased laxity relative to the native joint (median, 24° and 35°, respectively, on rotational testing). After we performed DR capsulodesis, rotational stability improved by a median of 41° compared with DR ligament transection, 49° compared with DR and IM ligament transection, and 18° relative to the native joint. Dorsoradial capsulodesis restores rotational stability for TMC joint after division of the DR and IM ligaments. The stability achieved was statistically significant compared with both an intact native TMC joint and induced laxity of the TMC joint. The DR capsulodesis procedure may improve rotational stability to the TMC joint. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  18. Picometre and nanoradian heterodyne interferometry and its application in dilatometry and surface metrology

    NASA Astrophysics Data System (ADS)

    Schuldt, T.; Gohlke, M.; Kögel, H.; Spannagel, R.; Peters, A.; Johann, U.; Weise, D.; Braxmaier, C.

    2012-05-01

    A high-sensitivity heterodyne interferometer implementing differential wavefront sensing for tilt measurement was developed over the last few years. With this setup, using an aluminium breadboard and compact optical mounts with a beam height of 2 cm, noise levels less than 5 pm Hz-1/2 in translation and less than 10 nrad Hz-1/2 in tilt measurement, both for frequencies above 10-2 Hz, have been demonstrated. Here, a new, compact and ruggedized interferometer setup utilizing a baseplate made of Zerodur, a thermally and mechanically highly stable glass ceramic with a coefficient of thermal expansion (CTE) of 2 × 10-8 K-1, is presented. The optical components are fixed to the baseplate using a specifically developed, easy-to-handle, assembly-integration technology based on a space-qualified two-component epoxy. While developed as a prototype for future applications aboard satellite space missions (such as Laser Interferometer Space Antenna), the interferometer is used in laboratory experiments for dilatometry and surface metrology. A first dilatometer setup with a demonstrated accuracy of 10-7 K-1 in CTE measurement was realized. As it was seen that the accuracy is limited by the dimensional stability of the sample tube support, a new setup was developed utilizing Zerodur as structural material for the sample tube support. In another activity, the interferometer is used for characterization of high-quality mirror surfaces at the picometre level and for high-accuracy two-dimensional surface characterization in a prototype for industrial applications. In this paper, the corresponding designs, their realizations and first measurements of both applications in dilatometry and surface metrology are presented.

  19. Direct Imaging of Transient Fano Resonances in N_{2} Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy.

    PubMed

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J J; Kornilov, Oleg

    2016-04-22

    Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1  fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

  20. Multiple Model Adaptive Attitude Control of LEO Satellite with Angular Velocity Constraints

    NASA Astrophysics Data System (ADS)

    Shahrooei, Abolfazl; Kazemi, Mohammad Hosein

    2018-04-01

    In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.

  1. Preliminary Investigations of an Optical Assembly Tracking Mechanism for LISA

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira; Stebbins, Robin

    2010-01-01

    After injection into their specific orbits, the position of the LISA spacecraft are not actively controlled. Rather the spacecraft are allowed to passively follow their trajectories and the roughly equilateral triangular constellation is preserved. Slight variations in the orbits cause the constellation to experience both periodic and secular variations, one consequence of which is a variation in the interior angles of the constellation on the order of one degree. This variation is larger than the field of view of the LISA telescope, requiring a mechanism for each spacecraft to maintain pointing to its two companions. This Optical Assembly Tracking Mechanism (OATM) will be used to accommodate these variations while maintaining pointing at the ten nanoradian level to the far spacecraft. Here we report on a possible design for the OATM as well as initial results from a test campaign of a piezo-inchworm actuator used to drive the mechanism.

  2. On the impact index of synchronous generator displaced by DFIG on power system small-signal stability

    NASA Astrophysics Data System (ADS)

    Bi, J. T.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.

    2017-05-01

    As the maturity of wind power technology and the ageing and retirement of conventional synchronous generators, the displacement of synchronous generators by wind power generators would be a trend in the next few decades. The power system small-signal angular stability caused by the displacement is an urgent problem to be studied. The displacement of the SG by the DFIG includes withdrawing the dynamic interactions of the displaced SG and adding the dynamic interactions of the displacing DFIG. Based on this fact, a new index is proposed to predict the impact of the SG to be displaced by the DFIG on power system oscillation modes. The sensitivity index of the oscillation modes to the constant inertia of the displaced SGs, proposed in early literatures to estimate the dynamic impact of the SG being displaced by the DFIG, is also compared with the proposed index. The modified New England power system is adopted to show various results and conclusions. The proposed index can correctly identify the most dangerous and beneficial displacement to power system small-signal angular stability, and is very useful in practical applications.

  3. Air-to-Air Supersonic Pilotless Aircraft

    DTIC Science & Technology

    1947-02-06

    time of the mleelle to guidance data during the seek- ing phaee should be of the order of 0.1 second or less. Control system and angular stability ...it may be advisable to make the seeker smoothing time as short as practicable and effeet the necessary smoothing in the missile control system ...lioll stabilization thus Infers thtit, ideally, in the case of a cruciform missile that the axis of one pair of control surfaces remains at all times

  4. Precise attitude rate estimation using star images obtained by mission telescope for satellite missions

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Hosonuma, Takayuki; Ikari, Satoshi; Saisutjarit, Phongsatorn; Sako, Nobutada; Nakasuka, Shinichi

    2015-02-01

    Recently, small satellites have been employed in various satellite missions such as astronomical observation and remote sensing. During these missions, the attitudes of small satellites should be stabilized to a higher accuracy to obtain accurate science data and images. To achieve precise attitude stabilization, these small satellites should estimate their attitude rate under the strict constraints of mass, space, and cost. This research presents a new method for small satellites to precisely estimate angular rate using star blurred images by employing a mission telescope to achieve precise attitude stabilization. In this method, the angular velocity is estimated by assessing the quality of a star image, based on how blurred it appears to be. Because the proposed method utilizes existing mission devices, a satellite does not require additional precise rate sensors, which makes it easier to achieve precise stabilization given the strict constraints possessed by small satellites. The research studied the relationship between estimation accuracy and parameters used to achieve an attitude rate estimation, which has a precision greater than 1 × 10-6 rad/s. The method can be applied to all attitude sensors, which use optics systems such as sun sensors and star trackers (STTs). Finally, the method is applied to the nano astrometry satellite Nano-JASMINE, and we investigate the problems that are expected to arise with real small satellites by performing numerical simulations.

  5. Liapunov stability analysis of hybrid dynamical systems in the neighborhood of nontrivial equilibrium

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.

    1973-01-01

    This paper is concerned with the stability of a hybrid dynamical system in the neighborhood of a nontrivial equilibrium, where the system consists of one rigid part and n elastic members. The body moves in a central-force field with its mass center describing a circular orbit. The nontrivial equilibrium is defined by steady rotation of the system at an angular velocity equal to the orbital velocity, with the elastic members being in deformed state. A Liapunov stability analysis is performed by assuming small perturbations about the nontrivial equilibrium, where the latter is generally defined by nonlinear differential equations. The theory is applied to a gravity-gradient stabilized satellite with flexible appendages.

  6. Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer.

    PubMed

    Liu, Xiaokun; Yao, Yu; Ma, Kemao; Zhao, Hui; He, Fenghua

    2016-04-14

    A gyrowheel (GW) is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS) as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO) with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper.

  7. Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer

    PubMed Central

    Liu, Xiaokun; Yao, Yu; Ma, Kemao; Zhao, Hui; He, Fenghua

    2016-01-01

    A gyrowheel (GW) is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS) as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO) with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper. PMID:27089347

  8. Five degrees of freedom linear state-space representation of electrodynamic thrust bearings

    NASA Astrophysics Data System (ADS)

    Van Verdeghem, J.; Kluyskens, V.; Dehez, B.

    2017-09-01

    Electrodynamic bearings can provide stable and contactless levitation of rotors while operating at room temperatures. Depending solely on passive phenomena, specific models have to be developed to study the forces they exert and the resulting rotordynamics. In recent years, models allowing us to describe the axial dynamics of a large range of electrodynamic thrust bearings have been derived. However, these bearings being devised to be integrated into fully magnetic suspensions, the existing models still suffer from restrictions. Indeed, assuming the spin speed as varying slowly, a rigid rotor is characterised by five independent degrees of freedom whereas early models only considered the axial degree. This paper presents a model free of the previous limitations. It consists in a linear state-space representation describing the rotor's complete dynamics by considering the impact of the rotor axial, radial and angular displacements as well as the gyroscopic effects. This set of ten equations depends on twenty parameters whose identification can be easily performed through static finite element simulations or quasi-static experimental measurements. The model stresses the intrinsic decoupling between the axial dynamics and the other degrees of freedom as well as the existence of electrodynamic angular torques restoring the rotor to its nominal position. Finally, a stability analysis performed on the model highlights the presence of two conical whirling modes related to the angular dynamics, namely the nutation and precession motions. The former, whose intrinsic stability depends on the ratio between polar and transverse moments of inertia, can be easily stabilised through external damping whereas the latter, which is stable up to an instability threshold linked to the angular electrodynamic cross-coupling stiffness, is less impacted by that damping.

  9. Research on the water-entry attitude of a submersible aircraft.

    PubMed

    Xu, BaoWei; Li, YongLi; Feng, JinFu; Hu, JunHua; Qi, Duo; Yang, Jian

    2016-01-01

    The water entry of a submersible aircraft, which is transient, highly coupled, and nonlinear, is complicated. After analyzing the mechanics of this process, the change rate of every variable is considered. A dynamic model is build and employed to study vehicle attitude and overturn phenomenon during water entry. Experiments are carried out and a method to organize experiment data is proposed. The accuracy of the method is confirmed by comparing the results of simulation of dynamic model and experiment under the same condition. Based on the analysis of the experiment and simulation, the initial attack angle and angular velocity largely influence the water entry of vehicle. Simulations of water entry with different initial and angular velocities are completed, followed by an analysis, and the motion law of vehicle is obtained. To solve the problem of vehicle stability and control during water entry, an approach is proposed by which the vehicle sails with a zero attack angle after entering water by controlling the initial angular velocity. With the dynamic model and optimization research algorithm, calculation is performed, and the optimal initial angular velocity of water-entry is obtained. The outcome of simulations confirms that the effectiveness of the propose approach by which the initial water-entry angular velocity is controlled.

  10. Validation of the MCNP6 electron-photon transport algorithm: multiple-scattering of 13- and 20-MeV electrons in thin foils

    NASA Astrophysics Data System (ADS)

    Dixon, David A.; Hughes, H. Grady

    2017-09-01

    This paper presents a validation test comparing angular distributions from an electron multiple-scattering experiment with those generated using the MCNP6 Monte Carlo code system. In this experiment, a 13- and 20-MeV electron pencil beam is deflected by thin foils with atomic numbers from 4 to 79. To determine the angular distribution, the fluence is measured down range of the scattering foil at various radii orthogonal to the beam line. The characteristic angle (the angle for which the max of the distribution is reduced by 1/e) is then determined from the angular distribution and compared with experiment. Multiple scattering foils tested herein include beryllium, carbon, aluminum, copper, and gold. For the default electron-photon transport settings, the calculated characteristic angle was statistically distinguishable from measurement and generally broader than the measured distributions. The average relative difference ranged from 5.8% to 12.2% over all of the foils, source energies, and physics settings tested. This validation illuminated a deficiency in the computation of the underlying angular distributions that is well understood. As a result, code enhancements were made to stabilize the angular distributions in the presence of very small substeps. However, the enhancement only marginally improved results indicating that additional algorithmic details should be studied.

  11. Uniaxial angular accelerometers

    NASA Astrophysics Data System (ADS)

    Seleznev, A. V.; Shvab, I. A.

    1985-05-01

    The basic mechanical components of an angular accelerometer are the sensor, the damper, and the transducer. Penumatic dampers are simplest in construction, but the viscosity of air is very low and, therefore, dampers with special purpose oils having a high temperature stability (synthetic silicon or organosilicon oils) are most widely used. The most common types of viscous dampers are lamellar with meshed opposed arrays of fixed and movable vanes in the dashpot, piston dampers regulated by an adjustable-length capillary tube, and dampers with paddle wheel in closed tank. Another type of damper is an impact-inertial one with large masses absorbing the rotational energy upon collision with the sensor. Conventional measuring elements are resistive, capacitive, electromagnetic, photoelectric, and penumatic or hydraulic. Novel types of angular accelerometers are based on inertia of gas jets, electron beams, and ion beams, the piezoelectric effect in p-n junctions of diode and transistors, the electrokinetic effect in fluids, and cryogenic suspension of the sensor.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheinker, Alexander

    Here, we study control of the angular-velocity actuated nonholonomic unicycle, via a simple, bounded extremum seeking controller which is robust to external disturbances and measurement noise. The vehicle performs source seeking despite not having any position information about itself or the source, able only to sense a noise corrupted scalar value whose extremum coincides with the unknown source location. In order to control the angular velocity, rather than the angular heading directly, a controller is developed such that the closed loop system exhibits multiple time scales and requires an analysis approach expanding the previous work of Kurzweil, Jarnik, Sussmann, andmore » Liu, utilizing weak limits. We provide analytic proof of stability and demonstrate how this simple scheme can be extended to include position-independent source seeking, tracking, and collision avoidance of groups on autonomous vehicles in GPS-denied environments, based only on a measure of distance to an obstacle, which is an especially important feature for an autonomous agent.« less

  13. Angular description for 3D scattering centers

    NASA Astrophysics Data System (ADS)

    Bhalla, Rajan; Raynal, Ann Marie; Ling, Hao; Moore, John; Velten, Vincent J.

    2006-05-01

    The electromagnetic scattered field from an electrically large target can often be well modeled as if it is emanating from a discrete set of scattering centers (see Fig. 1). In the scattering center extraction tool we developed previously based on the shooting and bouncing ray technique, no correspondence is maintained amongst the 3D scattering center extracted at adjacent angles. In this paper we present a multi-dimensional clustering algorithm to track the angular and spatial behaviors of 3D scattering centers and group them into features. The extracted features for the Slicy and backhoe targets are presented. We also describe two metrics for measuring the angular persistence and spatial mobility of the 3D scattering centers that make up these features in order to gather insights into target physics and feature stability. We find that features that are most persistent are also the most mobile and discuss implications for optimal SAR imaging.

  14. The Large Deployable Reflector (LDR) report of the Science Coordination Group

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Large Deployable Reflector (LDR) is a telescope designed to carry out high-angular resolution, high-sensitivity observations at far-infrared and submillimeter wavelengths. The scientific rationale for the LDR is discussed in light of the recent Infrared Astronomical Satellite (IRAS) and Kuiper Airborne Observatory (KAO) results and the several new ground-based observatories planned for the late 1980s. The importance of high sensitivity and high angular resolution observations from space in the submillimeter region is stressed. The scientific and technical problems of using the LDR in a light bucket mode at approx. less than 5 microns and in designing the LDR as an unfilled aperture with subarcsecond resolution are also discussed. The need for an aperture as large as 20 m is established, along with the requirements of beam-shape stability, spatial chopping, thermal control, and surface figure stability. The instrument complement required to cover the wavelength-spectral resolution region of interest to the LDR is defined.

  15. Free-Flight-Tunnel Investigation of the Dynamic Stability and Control Characteristics of a Chance Vought F7U-3 Airplane in Towed Flight

    NASA Technical Reports Server (NTRS)

    Grana, David C.; Shanks, Robert E.

    1952-01-01

    As part of a program to determine the feasibility of using a fighter airplane as a parasite in combination with a Consolidated Vultee RB-36 for long-range reconnaissance missions (project FICON), an experimental investigation has been made in the Langley free-flight tunnel to determine the dynamic stability and control characteristics of a 1/17.5-scale model of a Chance Vought F7U-3 airplane in several tow configurations. The investigation consisted of flight tests in which the model was towed from a strut in the tunnel by a towline and by a direct coupling which provided complete angular freedom. The tests with the direct coupling also included a study of the effect of spring restraint in roll in order to simulate approximately the proposed full-scale arrangement in which the only freedom is that permitted by the flexibility of the launching and retrieving trapeze carried by the-bomber. For the tow configurations in which a towline was used (15 and 38 feet full scale), the model had a very unstable lateral oscillation which could not be controlled. The stability was also unsatisfactory for the tow configuration in Which the model was coupled directly to the strut with complete angular freedom. When spring restraint in roll was added, however, the stability was satisfactory. The use of the yaw damper which increased the damping in yaw to about six times the normal value of the model appeared to have no appreciable effect on the lateral oscillations in the towline configurations, but produced a slight improvement in the case of the direct coupling configurations. The longitudinal stability was satisfactory for those cases in which the lateral stability was good enough to permit study of longitudinal motions.

  16. Vortex coronagraphs for the Habitable Exoplanet Imaging Mission concept: theoretical performance and telescope requirements

    NASA Astrophysics Data System (ADS)

    Ruane, Garreth; Mawet, Dimitri; Mennesson, Bertrand; Jewell, Jeffrey; Shaklan, Stuart

    2018-01-01

    The Habitable Exoplanet Imaging Mission concept requires an optical coronagraph that provides deep starlight suppression over a broad spectral bandwidth, high throughput for point sources at small angular separation, and insensitivity to temporally varying, low-order aberrations. Vortex coronagraphs are a promising solution that performs optimally on off-axis, monolithic telescopes and may also be designed for segmented telescopes with minor losses in performance. We describe the key advantages of vortex coronagraphs on off-axis telescopes such as (1) unwanted diffraction due to aberrations is passively rejected in several low-order Zernike modes relaxing the wavefront stability requirements for imaging Earth-like planets from <10 to >100 pm rms, (2) stars with angular diameters >0.1 λ / D may be sufficiently suppressed, (3) the absolute planet throughput is >10 % , even for unfavorable telescope architectures, and (4) broadband solutions (Δλ / λ > 0.1) are readily available for both monolithic and segmented apertures. The latter make use of grayscale apodizers in an upstream pupil plane to provide suppression of diffracted light from amplitude discontinuities in the telescope pupil without inducing additional stroke on the deformable mirrors. We set wavefront stability requirements on the telescope, based on a stellar irradiance threshold set at an angular separation of 3 ± 0.5λ / D from the star, and discuss how some requirements may be relaxed by trading robustness to aberrations for planet throughput.

  17. Gaze stability, dynamic balance and participation deficits in people with multiple sclerosis at fall-risk.

    PubMed

    Garg, Hina; Dibble, Leland E; Schubert, Michael C; Sibthorp, Jim; Foreman, K Bo; Gappmaier, Eduard

    2018-05-05

    Despite the common complaints of dizziness and demyelination of afferent or efferent pathways to and from the vestibular nuclei which may adversely affect the angular Vestibulo-Ocular Reflex (aVOR) and vestibulo-spinal function in persons with Multiple Sclerosis (PwMS), few studies have examined gaze and dynamic balance function in PwMS. 1) Determine the differences in gaze stability, dynamic balance and participation measures between PwMS and controls, 2) Examine the relationships between gaze stability, dynamic balance and participation. Nineteen ambulatory PwMS at fall-risk and 14 age-matched controls were recruited. Outcomes included (a) gaze stability [angular Vestibulo-Ocular Reflex (aVOR) gain (ratio of eye to head velocity); number of Compensatory Saccades (CS) per head rotation; CS latency; gaze position error; Coefficient of Variation (CV) of aVOR gain], (b) dynamic balance [Functional Gait Assessment, FGA; four square step test], and (c) participation [dizziness handicap inventory; activities-specific balance confidence scale]. Separate independent t-tests and Pearson's correlations were calculated. PwMS were age = 53 ± 11.7yrs and had 4.2 ± 3.3 falls/yr. PwMS demonstrated significant (p<0.05) impairments in gaze stability, dynamic balance and participation measures compared to controls. CV of aVOR gain and CS latency were significantly correlated with FGA. Deficits and correlations across a spectrum of disability measures highlight the relevance of gaze and dynamic balance assessment in PwMS. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  18. Motion of a ballistic missile angularly misaligned with the flight path upon entering the atmosphere and its effect upon aerodynamic heating, aerodynamic loads, and miss distance

    NASA Technical Reports Server (NTRS)

    Allen, Julian H

    1957-01-01

    An analysis is given of the oscillating motion of a ballistic missile which upon entering the atmosphere is angularly misaligned with respect to the flight path. The history of the motion for some example missiles is discussed from the point of view of the effect of the motion on the aerodynamic heating and loading. The miss distance at the target due to misalignment and to small accidental trim angles is treated. The stability problem is also discussed for the case where the missile is tumbling prior to atmospheric entry.

  19. Light-sheet generation in inhomogeneous media using self-reconstructing beams and the STED-principle.

    PubMed

    Gohn-Kreuz, Cristian; Rohrbach, Alexander

    2016-03-21

    Self-reconstruction of Bessel beams in inhomogeneous media is beneficial in light-sheet based microscopy. Although the beam's ring system enables propagation stability, the resulting image contrast is reduced. Here, we show that by a combination of two self-reconstructing beams with different orbital angular momenta it is possible to inhibit fluorescence from the ring system by using stimulated emission depletion (STED) even in strongly scattering media. Our theoretical study shows that the remaining fluorescence γ depends non-linearly on the beams' relative radial and orbital angular momenta. For various scattering media we demonstrate that γ remains remarkably stable over long beam propagation distances.

  20. Nonaxisymmetric incompressible hydrostatic pressure effects in radial face seals

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1976-01-01

    A flat seal having an angular misalinement is analyzed, taking into account the radial variations in seal clearance. An analytical solution for axial force, tilting moment, and leakage is presented that covers the whole range from zero to full angular misalinement. Nonaxisymmetric hydrostatic pressures due to the radial variations in the film thickness have a considerable effect on seal stability. When the high pressure is on the outer periphery of the seal, both the axial force and the tilting moment are nonrestoring. The case of high-pressure seals where cavitation is eliminated is discussed, and the possibility of dynamic instability is pointed out.

  1. Inversion of particle-size distribution from angular light-scattering data with genetic algorithms.

    PubMed

    Ye, M; Wang, S; Lu, Y; Hu, T; Zhu, Z; Xu, Y

    1999-04-20

    A stochastic inverse technique based on a genetic algorithm (GA) to invert particle-size distribution from angular light-scattering data is developed. This inverse technique is independent of any given a priori information of particle-size distribution. Numerical tests show that this technique can be successfully applied to inverse problems with high stability in the presence of random noise and low susceptibility to the shape of distributions. It has also been shown that the GA-based inverse technique is more efficient in use of computing time than the inverse Monte Carlo method recently developed by Ligon et al. [Appl. Opt. 35, 4297 (1996)].

  2. Angular momentum exchange in white dwarf binaries accreting through direct impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepinsky, J. F.; Kalogera, V., E-mail: jeremy.sepinsky@scranton.edu, E-mail: vicky@northwestern.edu

    We examine the exchange of angular momentum between the component spins and the orbit in semi-detached double white dwarf binaries undergoing mass transfer through direct impact of the transfer stream. We approximate the stream as a series of discrete massive particles ejected in the ballistic limit at the inner Lagrangian point of the donor toward the accretor. This work improves upon similar earlier studies in a number of ways. First, we self-consistently calculate the total angular momentum of the orbit at all times. This includes changes in the orbital angular momentum during the ballistic trajectory of the ejected mass, asmore » well as changes during the ejection/accretion due to the radial component of the particle's velocity. Second, we calculate the particle's ballistic trajectory for each system, which allows us to determine the precise position and velocity of the particle upon accretion. We can then include specific information about the radius of the accretor as well as the angle of impact. Finally, we ensure that the total angular momentum is conserved, which requires the donor star spin to vary self-consistently. With these improvements, we calculate the angular momentum change of the orbit and each binary component across the entire parameter space of direct impact double white dwarf binary systems. We find a significant decrease in the amount of angular momentum removed from the orbit during mass transfer, as well as cases where this process increases the angular momentum of the orbit at the expense of the spin angular momentum of the donor. We conclude that, unlike earlier claims in the literature, mass transfer through direct impact need not destabilize the binary and that the quantity and sign of the orbital angular momentum transfer depends on the binary properties, particularly the masses of the double white dwarf binary component stars. This stabilization may significantly impact the population synthesis calculations of the expected numbers of events/systems for which double white dwarfs may be a progenitor, e.g., Type Ia supernovae, Type.Ia supernovae, and AM CVn.« less

  3. WFIRST: Managing Telescope Wavefront Stability to Meet Coronagraph Performance

    NASA Astrophysics Data System (ADS)

    Noecker, Martin; Poberezhskiy, Ilya; Kern, Brian; Krist, John; WFIRST System Engineering Team

    2018-01-01

    The WFIRST coronagraph instrument (CGI) needs a stable telescope and active wavefront control to perform coronagraph science with an expected sensitivity of 8x10-9 in the exoplanet-star flux ratio (SNR=10) at 200 milliarcseconds angular separation. With its subnanometer requirements on the stability of its input wavefront error (WFE), the CGI employs a combination of pointing and wavefront control loops and thermo-mechanical stability to meet budget allocations for beam-walk and low-order WFE, which enable stable starlight speckles on the science detector that can be removed by image subtraction. We describe the control strategy and the budget framework for estimating and budgeting the elements of wavefront stability, and the modeling strategy to evaluate it.

  4. Trajectories of Listeria-type motility in two dimensions

    NASA Astrophysics Data System (ADS)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2012-12-01

    Force generated by actin polymerization is essential in cell motility and the locomotion of organelles or bacteria such as Listeria monocytogenes. Both in vivo and in vitro experiments on actin-based motility have observed geometrical trajectories including straight lines, circles, S-shaped curves, and translating figure eights. This paper reports a phenomenological model of an actin-propelled disk in two dimensions that generates geometrical trajectories. Our model shows that when the evolutions of actin density and force per filament on the disk are strongly coupled to the disk self-rotation, it is possible for a straight trajectory to lose its stability. When the instability is due to a pitchfork bifurcation, the resulting trajectory is a circle; a straight trajectory can also lose stability through a Hopf bifurcation, and the resulting trajectory is an S-shaped curve. We also show that a half-coated disk, which mimics the distribution of functionalized proteins in Listeria, also undergoes similar symmetry-breaking bifurcations when the straight trajectory loses stability. For both a fully coated disk and a half-coated disk, when the trajectory is an S-shaped curve, the angular frequency of the disk self-rotation is different from that of the disk trajectory. However, for circular trajectories, these angular frequencies are different for a fully coated disk but the same for a half-coated disk.

  5. Self-reported knee joint instability is related to passive mechanical stiffness in medial knee osteoarthritis.

    PubMed

    Creaby, Mark W; Wrigley, Tim V; Lim, Boon-Whatt; Hinman, Rana S; Bryant, Adam L; Bennell, Kim L

    2013-11-20

    Self-reported knee joint instability compromises function in individuals with medial knee osteoarthritis and may be related to impaired joint mechanics. The purpose of this study was to evaluate the relationship between self-reported instability and the passive varus-valgus mechanical behaviour of the medial osteoarthritis knee. Passive varus-valgus angular laxity and stiffness were assessed using a modified isokinetic dynamometer in 73 participants with medial tibiofemoral osteoarthritis. All participants self-reported the absence or presence of knee instability symptoms and the degree to which instability affected daily activity on a 6-point likert scale. Forward linear regression modelling identified a significant inverse relationship between passive mid-range knee stiffness and symptoms of knee instability (r = 0.27; P < 0.05): reduced stiffness was indicative of more severe instability symptoms. Angular laxity and end-range stiffness were not related to instability symptoms (P > 0.05). Conceivably, a stiffer passive system may contribute toward greater joint stability during functional activities. Importantly however, net joint stiffness is influenced by both active and passive stiffness, and thus the active neuromuscular system may compensate for reduced passive stiffness in order to maintain joint stability. Future work is merited to examine the role of active stiffness in symptomatic joint stability.

  6. Self-reported knee joint instability is related to passive mechanical stiffness in medial knee osteoarthritis

    PubMed Central

    2013-01-01

    Background Self-reported knee joint instability compromises function in individuals with medial knee osteoarthritis and may be related to impaired joint mechanics. The purpose of this study was to evaluate the relationship between self-reported instability and the passive varus-valgus mechanical behaviour of the medial osteoarthritis knee. Methods Passive varus-valgus angular laxity and stiffness were assessed using a modified isokinetic dynamometer in 73 participants with medial tibiofemoral osteoarthritis. All participants self-reported the absence or presence of knee instability symptoms and the degree to which instability affected daily activity on a 6-point likert scale. Results Forward linear regression modelling identified a significant inverse relationship between passive mid-range knee stiffness and symptoms of knee instability (r = 0.27; P < 0.05): reduced stiffness was indicative of more severe instability symptoms. Angular laxity and end-range stiffness were not related to instability symptoms (P > 0.05). Conclusions Conceivably, a stiffer passive system may contribute toward greater joint stability during functional activities. Importantly however, net joint stiffness is influenced by both active and passive stiffness, and thus the active neuromuscular system may compensate for reduced passive stiffness in order to maintain joint stability. Future work is merited to examine the role of active stiffness in symptomatic joint stability. PMID:24252592

  7. Observation of an angular change in the structure of an RNA complex using Fluorescence Resonance Energy Transfer

    NASA Astrophysics Data System (ADS)

    Rahmanseresht, Sheema; Milas, Peker; Parrot, Louis; Goldner, Lori S.

    Single-molecular-pair FRET is often used to study distance fluctuations of single molecules. It is harder to capture angular changes using FRET, because rotational motion of the dyes tends to wash out the angular sensitivity. Using a dye labeling scheme that minimizes the rotational motion of the dyes with respect to the RNA, we use spFRET to measure an angular change in structure of an RNA kissing complex upon protein binding. The model system studied here, R1inv-R2inv, is derived from the RNAI-RNAII complex in E.coli. RNA II is a primer for replication of the ColE1 plasmid; its function is modulated by interaction with RNA I, Rop protein is known to stabilize the bent R1inv-R2inv kissing complex against dissociation. The effect, if any, of Rop protein on the conformation of the kissing complex is not known. The eight minimized-energy NMR structures reported for R1inv-R2inv show a small difference in end-to-end distances and much larger differences in twist and bend angles. We compare a first-principles model with spFRET data to determine if the observed change in FRET is consistent with an angular change in structure, as suggested by the model. Grant Number: NSF DBI-1152386.

  8. A rough end for smooth microstate geometries

    DOE PAGES

    Marolf, Donald; Michel, Ben; Puhm, Andrea

    2017-05-03

    Supersymmetric microstate geometries with five non-compact dimensions have recently been shown by Eperon, Reall, and Santos (ERS) to exhibit a non-linear instability featuring the growth of excitations at an “evanescent ergosurface” of infinite redshift. We argue that this growth may be treated as adiabatic evolution along a family of exactly supersymmetric solutions in the limit where the excitations are Aichelburg-Sexl-like shockwaves. In the 2-charge system such solutions may be constructed explicitly, incorpo-rating full backreaction, and are in fact special cases of known microstate geometries. In a near-horizon limit, they reduce to Aichelburg-Sexl shockwaves in AdS 3 × S 3 propagatingmore » along one of the angular directions of the sphere. Noting that the ERS analysis is valid in the limit of large microstate angular momentum j, we use the above identification to interpret their instability as a transition from rare smooth microstates with large angular momentum to more typical microstates with smaller angular momentum. This entropic driving terminates when the angular momentum decreases to j~√n 1n 5 where the density of microstates is maximal. Finally, we argue that, at this point, the large stringy corrections to such microstates will render them non-linearly stable. We identify a possible mechanism for this stabilization and detail an illustrative toy model.« less

  9. Mechanical aspects of a multidirectional, angular stable osteosynthesis system and comparison with four conventional systems.

    PubMed

    Gbara, Ali; Heiland, Max; Schmelzle, Rainer; Blake, Felix

    2008-04-01

    Following open reduction, internal fixation of fractures of the mandible is predominantly achieved using plates and screws. Today, a multitude of osteosynthesis systems are available on the market. One therapy modality, primarily developed for orthopaedic surgery, is using angular stable osteosynthesis plate systems. The dominating principle of these is the bond between screw and plate following insertion. This principle of an "internal fixateur" results in a more stable fixation of the fragments associated with less compression of the bone surfaces. A new multidirectional osteosynthesis system (TiFix=Smartlock, Hamburg - Germany) was modified to fit the maxillofacial region and compared with four other well established osteosynthesis systems developed by Mondial, Medicon, Synthes, Leibinger-Stryker, one of these (Unilock by Synthes) being also angular stable. The resistance to deformation in varying directions was investigated following fixation in four different materials. The TiFix system proved more resistant to deformation even when mounted with fewer screws than the non-angular stable systems. This system results in greater stability even when fewer screws are used. For the clinician this means smaller access incisions, less soft tissue trauma, better aesthetic results, decreased duration of operation and a reduction of costs.

  10. On the dynamics of a spinning top under the influence of rotation: Resonant relative equilibrium states

    NASA Astrophysics Data System (ADS)

    Sheheitli, H.; Touma, J. R.

    2018-06-01

    We investigate the dynamics of a spinning top driven by a turntable that rotates with a given angular speed Ω. The pivot point of the top is at a fixed distance from the center of the turntable. We show that such a setup leads to resonance where the spinning top is locked in a state of relative equilibrium: precessing with an angular speed equal to that of the turntable while maintaining a constant nutation angle. Bifurcation diagrams are presented to depict how the stability of these relative equilibria, along with the corresponding value of the nutation angle, depends on the two parameters: the initial spin angular momentum and Ω. We discuss the classical spinning top, that is, the Ω = 0 case, and address the relation of the "sleeping top" state to the aforementioned relative equilibria. We also relate the dynamics to that of a spherical pendulum on a rotary arm and show that the latter can be viewed as a special case of the system at hand. Finally, we illustrate how the relative equilibria can be exploited for the attitude control of the top through resonance capture while slowly varying the turnable angular speed, Ω.

  11. Preliminary determination of Newtonian gravitational constant with angular acceleration feedback method

    PubMed Central

    Xue, Chao; Quan, Li-Di; Yang, Shan-Qing; Wang, Bing-Peng; Wu, Jun-Fei; Shao, Cheng-Gang; Tu, Liang-Cheng; Milyukov, Vadim; Luo, Jun

    2014-01-01

    This paper describes the preliminary measurement of the Newtonian gravitational constant G with the angular acceleration feedback method at HUST. The apparatus has been built, and preliminary measurement performed, to test all aspects of the experimental design, particularly the feedback function, which was recently discussed in detail by Quan et al. The experimental results show that the residual twist angle of the torsion pendulum at the signal frequency introduces 0.4 ppm to the value of G. The relative uncertainty of the angular acceleration of the turntable is approximately 100 ppm, which is mainly limited by the stability of the apparatus. Therefore, the experiment has been modified with three features: (i) the height of the apparatus is reduced almost by half, (ii) the aluminium shelves were replaced with shelves made from ultra-low expansion material and (iii) a perfect compensation of the laboratory-fixed gravitational background will be carried out. With these improvements, the angular acceleration is expected to be determined with an uncertainty of better than 10 ppm, and a reliable value of G with 20 ppm or below will be obtained in the near future. PMID:25201996

  12. Preliminary determination of Newtonian gravitational constant with angular acceleration feedback method.

    PubMed

    Xue, Chao; Quan, Li-Di; Yang, Shan-Qing; Wang, Bing-Peng; Wu, Jun-Fei; Shao, Cheng-Gang; Tu, Liang-Cheng; Milyukov, Vadim; Luo, Jun

    2014-10-13

    This paper describes the preliminary measurement of the Newtonian gravitational constant G with the angular acceleration feedback method at HUST. The apparatus has been built, and preliminary measurement performed, to test all aspects of the experimental design, particularly the feedback function, which was recently discussed in detail by Quan et al. The experimental results show that the residual twist angle of the torsion pendulum at the signal frequency introduces 0.4 ppm to the value of G. The relative uncertainty of the angular acceleration of the turntable is approximately 100 ppm, which is mainly limited by the stability of the apparatus. Therefore, the experiment has been modified with three features: (i) the height of the apparatus is reduced almost by half, (ii) the aluminium shelves were replaced with shelves made from ultra-low expansion material and (iii) a perfect compensation of the laboratory-fixed gravitational background will be carried out. With these improvements, the angular acceleration is expected to be determined with an uncertainty of better than 10 ppm, and a reliable value of G with 20 ppm or below will be obtained in the near future. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Angular stable plates in proximal meta-epiphyseal tibial fractures: study of joint restoration and clinical and functional evaluation.

    PubMed

    Giannotti, S; Giovannelli, D; Dell'Osso, G; Bottai, V; Bugelli, G; Celli, F; Citarelli, C; Guido, G

    2016-04-01

    The tibial plateau fractures involve one of the main weight bearing joints of the human body. The goals of surgical treatment are anatomical reduction, articular surface reconstruction and high primary stability. The aim of this study was to evaluate the clinical and functional outcomes after internal plate fixation of this kind of fractures. From January 2009 to December 2012, we treated 75 cases of tibial plateau fracture with angular stable plates. We used Rasmussen Score and the Knee Society Score for the clinical and functional evaluation. Twenty-five cases that underwent hardware removal had arthroscopic and CT evaluation of the joint. No complications occurred. The clinical and functional evaluation, performed by the KSS and Rasmussen Score, highlighted the high percentage of good-to-excellent results (over 90 %). In every case, the range of motion was good with flexion >90°. Arthroscopy showed the presence of chondral damage in 100 % of patients. In all the cases, we found that X-ray images seem better than the CT images. Angular stable plates allow to obtain a good primary stability, permitting an early joint recovery with an excellent range of motion. Avoiding to perform a knee arthrotomy at the time of fracture reduction could prove to be an advantage in terms of functional recovery. The meniscus on the injured bone should be preserved in order to maintain good function of the joint. X-ray images remain the gold standard in checking the progression of post-traumatic osteoarthritis.

  14. The IMISS-1 Experiment for Recording and Analysis of Accelerations in Orbital Flight

    NASA Astrophysics Data System (ADS)

    Sadovnichii, V. A.; Alexandrov, V. V.; Bugrov, D. I.; Lemak, S. S.; Pakhomov, V. B.; Panasyuk, M. I.; Petrov, V. L.; Yashin, I. V.

    2018-03-01

    The IMISS-1 experiment represents the second step in solving the problem of the creation of the gaze stabilization corrector. This device is designed to correct the effect of the gaze stabilization delay under microgravity. IMISS-1 continues research started by the Tat'yana-2 satellite. This research will be continued on board the International Space Station. At this stage we study the possibility of registration of angular and linear accelerations acting on the sensitive mass in terms of Low Earth Orbit flight, using MEMS sensors.

  15. Linear stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Chow, Chuen-Yen

    1992-01-01

    A temporal stability analysis of compressible Taylor-Couette flow is presented. The viscous flow studied in this paper is contained between two concentric cylinders of infinite length, which are rotating with different angular velocities and are kept at different surface temperatures. The effects of differential rotation and temperature difference on the stability of Taylor-Couette flow are contrasted for a range of Mach numbers ranging from incompressible to Mach 3.0. The relative motion of the cylinders dramatically affects the characteristics of the Couette flow at the onset of instability. The flow is stabilized or destabilized depending upon the temperature ratio and speeds of the two cylinders. Independent of Mach number and temperature ratio, increasing Reynolds number generally promotes a destabilizing effect, indicating the inviscid nature of the Taylor-Couette flow.

  16. Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Basudeb; Sen, Manibrata; Mirizzi, Alessandro, E-mail: bdasgupta@theory.tifr.res.in, E-mail: alessandro.mirizzi@ba.infn.it, E-mail: manibrata.sen@gmail.com

    2017-02-01

    It has been recently pointed out that neutrino fluxes from a supernova can show substantial flavor conversions almost immediately above the core. Using linear stability analyses and numerical solutions of the fully nonlinear equations of motion, we perform a detailed study of these fast conversions , focussing on the region just above the supernova core. We carefully specify the instabilities for evolution in space or time, and find that neutrinos travelling towards the core make fast conversions more generic, i.e., possible for a wider range of flux ratios and angular asymmetries that produce a crossing between the zenith-angle spectra ofmore » ν {sub e} and ν-bar {sub e} . Using fluxes and angular distributions predicted by supernova simulations, we find that fast conversions can occur within tens of nanoseconds, only a few meters away from the putative neutrinospheres. If these fast flavor conversions indeed take place, they would have important implications for the supernova explosion mechanism and nucleosynthesis.« less

  17. A reverse KAM method to estimate unknown mutual inclinations in exoplanetary systems

    NASA Astrophysics Data System (ADS)

    Volpi, Mara; Locatelli, Ugo; Sansottera, Marco

    2018-05-01

    The inclinations of exoplanets detected via radial velocity method are essentially unknown. We aim to provide estimations of the ranges of mutual inclinations that are compatible with the long-term stability of the system. Focusing on the skeleton of an extrasolar system, i.e. considering only the two most massive planets, we study the Hamiltonian of the three-body problem after the reduction of the angular momentum. Such a Hamiltonian is expanded both in Poincaré canonical variables and in the small parameter D_2, which represents the normalised angular momentum deficit. The value of the mutual inclination is deduced from D_2 and, thanks to the use of interval arithmetic, we are able to consider open sets of initial conditions instead of single values. Looking at the convergence radius of the Kolmogorov normal form, we develop a reverse KAM approach in order to estimate the ranges of mutual inclinations that are compatible with the long-term stability in a KAM sense. Our method is successfully applied to the extrasolar systems HD 141399, HD 143761 and HD 40307.

  18. The motion and stability of a dual spin satellite during the momentum wheel spin-up maneuver

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Sen, S.

    1972-01-01

    The stability of a dual-spin satellite system during the momentum wheel spin-up maneuver is treated both analytically and numerically. The dual-spin system consists of: a slowly rotating or despun main-body; a momentum wheel (or rotor) which is accelerated by a torque motor to change its initial angular velocity relative to the main part to some high terminal value; and a nutation damper. A closed form solution for the case of a symmetrical satellite indicates that when the nutation damper is physically constrained for movement (i.e. by use of a mechanical clamp) the magnitude of the vector sum of the transverse angular velocity components remains bounded during the wheel spin-up under the influence of a constant motor torque. The analysis is extended to consider such effects as: the motion of the nutation damper during spin-up; a non-uniform motor torque; and the effect of a non-symmetrical mass distribution in the main spacecraft and the rotor. An approximate analytical solution using perturbation techniques is developed for the case of a slightly asymmetric main spacecraft.

  19. Study of twin-roll cast Aluminium alloys subjected to severe plastic deformation by equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Poková, M.; Cieslar, M.

    2014-08-01

    Aluminium alloys prepared by twin-roll casting method become widely used in industry applications. Their high solid solution supersaturation and finer grains ensure better mechanical properties when compared with the direct-chill cast ones. One of the possibilities how to enhance their thermal stability is the addition of zirconium. After heat treatment Al3Zr precipitates form and these pin moving grain boundaries when the material is exposed to higher temperatures. In the present work twin-roll cast aluminium alloys based on AA3003 with and without Zr addition were annealed for 8 hours at 450 °C to enable precipitation of Al3Zr phase. Afterwards they were subjected to severe plastic deformation by equal channel angular pressing, which led to the reduction of average grain size under 1 μm. During subsequent isochronal annealing recovery and recrystallization took place. These processes were monitored by microhardness measurements, light optical microscopy and in-situ transmission electron microscopy. The addition of Zr stabilizes the grain size and increases the recrystallization temperature by 100 °C.

  20. An elegant Breadboard of the optical bench for eLISA/NGO

    NASA Astrophysics Data System (ADS)

    d'Arcio, Luigi; Bogenstahl, Johanna; Diekmann, Christian; Fitzsimons, Ewan D.; Heinzel, Gerhard; Hogenhuis, Harm; Killow, Christian J.; Lieser, Maike; Nikolov, Susanne; Perreur-Lloyd, Michael; Pijnenburg, Joep; Robertson, David I.; Taylor, Alasdair; Tröbs, Michael; Ward, Harry; Weise, Dennis

    2017-11-01

    The Laser Interferometer Space Antenna, as well as its reformulated European-only evolution, the New Gravitational-Wave Observatory, both employ heterodyne laser interferometry on million kilometer scale arm lengths in a triangular spacecraft formation, to observe gravitational waves at frequencies between 3 × 10-5 Hz and 1 Hz. The Optical Bench as central payload element realizes both the inter-spacecraft as well as local laser metrology with respect to inertial proof masses, and provides further functions, such as point-ahead accommodation, acquisition sensing, transmit beam conditioning, optical power monitoring, and laser redundancy switching. These functions have been combined in a detailed design of an Optical Bench Elegant Breadboard, which is currently under assembly and integration. We present an overview of the realization and current performances of the Optical Bench subsystems, which employ ultraprecise piezo mechanism, ultrastable assembly techniques, and shot noise limited RF detection to achieve translation and tilt metrology at Picometer and Nanoradian noise levels.

  1. Star Tracker Based ATP System Conceptual Design and Pointing Accuracy Estimation

    NASA Technical Reports Server (NTRS)

    Orfiz, Gerardo G.; Lee, Shinhak

    2006-01-01

    A star tracker based beaconless (a.k.a. non-cooperative beacon) acquisition, tracking and pointing concept for precisely pointing an optical communication beam is presented as an innovative approach to extend the range of high bandwidth (> 100 Mbps) deep space optical communication links throughout the solar system and to remove the need for a ground based high power laser as a beacon source. The basic approach for executing the ATP functions involves the use of stars as the reference sources from which the attitude knowledge is obtained and combined with high bandwidth gyroscopes for propagating the pointing knowledge to the beam pointing mechanism. Details of the conceptual design are presented including selection of an orthogonal telescope configuration and the introduction of an optical metering scheme to reduce misalignment error. Also, estimates are presented that demonstrate that aiming of the communications beam to the Earth based receive terminal can be achieved with a total system pointing accuracy of better than 850 nanoradians (3 sigma) from anywhere in the solar system.

  2. The Potential for a Ka-band (32 GHz) Worldwide VLBI Network

    NASA Astrophysics Data System (ADS)

    Jacobs, C. S.; Bach, U.; Colomer, F.; Garcá-Miró, C.; Gómez-González, J.; Gulyaev, S.; Horiuchi, S.; Ichikawa, R.; Kraus, A.; Kronschnabl, G.; López-Fernández, J. A.; Lovell, J.; Majid, W.; T; Natusch; Neidhardt, A.; Phillips, C.; Porcas, R.; Romero-Wolf, A.; Saldana, L.; Schreiber, U.; Sotuela, I.; Takeuchi, H.; Trinh, J.; Tzioumis, A.; de Vincente, P.; Zharov, V.

    2012-12-01

    Ka-band (32 GHz, 9 mm) Very Long Baseline Interferometric (VLBI) networking has now begun and has tremendous potential for expansion over the next few years. Ka-band VLBI astrometry from NASA's Deep Space Network has already developed a catalog of 470 observable sources with highly accurate positions. Now, several antennas worldwide are planning or are considering adding Ka-band VLBI capability. Thus, there is now an opportunity to create a worldwide Ka-band network with potential for high resolution imaging and astrometry. With baselines approaching a Giga-lambda, a Ka-band network would be able to probe source structure at the nano-radian (200 as) level (100X better than Hubble) and thus gain insight into the astrophysics of the most compact regions of emission in active galactic nuclei. We discuss the advantages of Ka-band, show the known sources and candidates, simulate projected baseline (uv) coverage, and discuss potential radio frequency feeds. The combination of these elements demonstrates the feasibility of a worldwide Ka network within the next few years.

  3. The Potential for a Ka-band (32 GHz) Worldwide VLBI Network

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Bach, U.; Colomer, F.; Garcia-Miro, C.; Gomez-Gonzalez, J.; Gulyaev, S.; Horiuchi, S.; Ichikawa, R.; Kraus, A.; Kronschnabl, G.; hide

    2012-01-01

    Ka-band (32 GHz, 9mm) Very Long Baseline Interferometric (VLBI) networking has now begun and has tremendous potential for expansion over the next few years. Ka-band VLBI astrometry from NASA's Deep Space Network has already developed a catalog of 470 observable sources with highly accurate positions. Now, several antennas worldwide are planning or are considering adding Ka-band VLBI capability. Thus, there is now an opportunity to create a worldwide Ka-band network with potential for high resolution imaging and astrometry. With baselines approaching a Giga-lambda, a Ka-band network would be able to probe source structure at the nano-radian (200 as) level ( 100X better than Hubble) and thus gain insight into the astrophysics of the most compact regions of emission in active galactic nuclei. We discuss the advantages of Ka-band, show the known sources and candidates, simulate projected baseline (uv) coverage, and discuss potential radio frequency feeds. The combination of these elements demonstrates the feasibility of a worldwide Ka network within the next few years!

  4. Attitude stability of spinning flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Likins, P. W.; Barbera, F. J.

    1971-01-01

    The stability of spinning flexible satellites in a force-free environment was analyzed. The satellite was modeled as a rigid core having attached to it a flexible appendage idealized as a collection of particles (point masses) interconnected by springs. Both Liapunov and Routh-Hurwitz stability procedures are used. In the former, the Hamiltonian of the system, constrained through the angular momentum integral so as to admit complete damping, is used as a testing function. Equations of motion are written using the hybrid coordinate formulation, which readily accepts a modal coordinate transformation ultimately allowing truncation to a level amenable to literal stability analysis. Closed form stability criteria are generated for the first mode of a restricted appendage model lying in a plane containing the system center of mass and orthogonal to the spin axis. The effects of spin on flexible bodies are discussed by considering a very elementary particle model. Control of passively unstable spacecraft is briefly considered.

  5. Detumbling of a rigid spacecraft via torque wheel assisted gyroscopic motion

    NASA Astrophysics Data System (ADS)

    Lin, Yiing-Yuh; Wang, Chin-Tzuo

    2014-01-01

    A time and energy efficient two-part method for detumbling a rigid spacecraft using an onboard torque wheel and a set of three-axis magnetic torquer is presented in this paper. Part-1 of the method manipulates the speed of the wheel, whose spin axis is parallel to a designated body axis of a tumbling spacecraft, and induces a desired gyroscopic-like motion to align the designated axis with its total angular momentum, H. The procedure in effect detumbles the spacecraft to rotate about the designated axis and distributes H, which is conserved during this control period, between the body and the wheel. After the alignment is achieved, Part-2 control, activated with a specified momentum transfer parameter, η, can either quickly stop the body rotation by transferring its angular momentum to the wheel or offload most of the momentum into space, using the wheel and the magnetic torquer. Convergence criteria and control laws for both parts are derived from the Lyapunov stability analysis and the method of feedback linearization. The wheel performs as a momentum storing and transferring device regulating the angular momentum between the wheel and the body. It can also provide gyroscopic stiffness to stabilize the system while the magnetic torquer is offloading the momentum. Simulation results from the included cases indicate that significantly fast detumbling of the spacecraft can be achieved with Part-1 of the proposed method. The results also show that, under the same condition, either by transferring almost all H to the wheel or dumping it, the two-part method, with a chosen η and final residual momentum condition, requires much less time and energy needed than the B-dot method does. Moreover, the stability nature of the two-part method is heuristically substantiated as the wheel torques and the dipole moment were constrained in the simulation.

  6. Probabilistic stability analysis: the way forward for stability analysis of sustainable power systems.

    PubMed

    Milanović, Jovica V

    2017-08-13

    Future power systems will be significantly different compared with their present states. They will be characterized by an unprecedented mix of a wide range of electricity generation and transmission technologies, as well as responsive and highly flexible demand and storage devices with significant temporal and spatial uncertainty. The importance of probabilistic approaches towards power system stability analysis, as a subsection of power system studies routinely carried out by power system operators, has been highlighted in previous research. However, it may not be feasible (or even possible) to accurately model all of the uncertainties that exist within a power system. This paper describes for the first time an integral approach to probabilistic stability analysis of power systems, including small and large angular stability and frequency stability. It provides guidance for handling uncertainties in power system stability studies and some illustrative examples of the most recent results of probabilistic stability analysis of uncertain power systems.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  7. Issues with Strong Compression of Plasma Target by Stabilized Imploding Liner

    NASA Astrophysics Data System (ADS)

    Turchi, Peter; Frese, Sherry; Frese, Michael

    2017-10-01

    Strong compression (10:1 in radius) of an FRC by imploding liquid metal liners, stabilized against Rayleigh-Taylor modes, using different scalings for loss based on Bohm vs 100X classical diffusion rates, predict useful compressions with implosion times half the initial energy lifetime. The elongation (length-to-diameter ratio) near peak compression needed to satisfy empirical stability criterion and also retain alpha-particles is about ten. The present paper extends these considerations to issues of the initial FRC, including stability conditions (S*/E) and allowable angular speeds. Furthermore, efficient recovery of the implosion energy and alpha-particle work, in order to reduce the necessary nuclear gain for an economical power reactor, is seen as an important element of the stabilized liner implosion concept for fusion. We describe recent progress in design and construction of the high energy-density prototype of a Stabilized Liner Compressor (SLC) leading to repetitive laboratory experiments to develop the plasma target. Supported by ARPA-E ALPHA Program.

  8. The Cosmology Large Angular Scale Surveyor

    NASA Technical Reports Server (NTRS)

    Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John; Bennett, Charles; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  9. Speed-constrained three-axes attitude control using kinematic steering

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Piggott, Scott

    2018-06-01

    Spacecraft attitude control solutions typically are torque-level algorithms that simultaneously control both the attitude and angular velocity tracking errors. In contrast, robotic control solutions are kinematic steering commands where rates are treated as the control variable, and a servo-tracking control subsystem is present to achieve the desired control rates. In this paper kinematic attitude steering controls are developed where an outer control loop establishes a desired angular response history to a tracking error, and an inner control loop tracks the commanded body angular rates. The overall stability relies on the separation principle of the inner and outer control loops which must have sufficiently different response time scales. The benefit is that the outer steering law response can be readily shaped to a desired behavior, such as limiting the approach angular velocity when a large tracking error is corrected. A Modified Rodrigues Parameters implementation is presented that smoothly saturates the speed response. A robust nonlinear body rate servo loop is developed which includes integral feedback. This approach provides a convenient modular framework that makes it simple to interchange outer and inner control loops to readily setup new control implementations. Numerical simulations illustrate the expected performance for an aggressive reorientation maneuver subject to an unknown external torque.

  10. Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks.

    PubMed

    Ji, Hantao; Burin, Michael; Schartman, Ethan; Goodman, Jeremy

    2006-11-16

    The most efficient energy sources known in the Universe are accretion disks. Those around black holes convert 5-40 per cent of rest-mass energy to radiation. Like water circling a drain, inflowing mass must lose angular momentum, presumably by vigorous turbulence in disks, which are essentially inviscid. The origin of the turbulence is unclear. Hot disks of electrically conducting plasma can become turbulent by way of the linear magnetorotational instability. Cool disks, such as the planet-forming disks of protostars, may be too poorly ionized for the magnetorotational instability to occur, and therefore essentially unmagnetized and linearly stable. Nonlinear hydrodynamic instability often occurs in linearly stable flows (for example, pipe flows) at sufficiently large Reynolds numbers. Although planet-forming disks have extreme Reynolds numbers, keplerian rotation enhances their linear hydrodynamic stability, so the question of whether they can be turbulent and thereby transport angular momentum effectively is controversial. Here we report a laboratory experiment, demonstrating that non-magnetic quasi-keplerian flows at Reynolds numbers up to millions are essentially steady. Scaled to accretion disks, rates of angular momentum transport lie far below astrophysical requirements. By ruling out purely hydrodynamic turbulence, our results indirectly support the magnetorotational instability as the likely cause of turbulence, even in cool disks.

  11. Online time-differential perturbed angular correlation study with an 19O beam - Residence sites of oxygen atoms in highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Sato, W.; Ueno, H.; Watanabe, H.; Miyoshi, H.; Yoshimi, A.; Kameda, D.; Ito, T.; Shimada, K.; Kaihara, J.; Suda, S.; Kobayashi, Y.; Shinohara, A.; Ohkubo, Y.; Asahi, K.

    2008-01-01

    The online time-differential perturbed angular correlation (TDPAC) method was applied to a study of the physical states of a probe 19F, the β- decay product of 19O (t1/2 = 26.9 s), implanted in highly oriented pyrolytic graphite. The observed magnitude of the electric field gradient at the probe nucleus, ∣Vzz∣ = 2.91(17) × 1022 V m-2, suggests that the incident 19O atoms are stabilized at an interlayer position with point group C3v. Exhibiting observed TDPAC spectra having a clear sample-to-detector configuration dependence, we demonstrate the applicability of the present online method with a short-lived radioactive 19O beam.

  12. Tidal disruption of inviscid planetesimals

    NASA Technical Reports Server (NTRS)

    Boss, A. P.; Cameron, A. G. W.; Benz, W.

    1991-01-01

    In view of previous efforts' demonstration that strongly dissipative planetesimals are immune to tidal disruption, an examination is presently conducted of the complementary case of inviscid planetesimals arising from collisions that are sufficiently energetic to entirely melt the resulting planetesimal and debris. The tidal disruption is numerically simulated by means of the smoothed particle hydrodynamics (SPH) code of Cameron and Benz (1991), concentrating on the tidal disruption of 0.01 earth-mass planetesimals passing by the earth with variations in the impact parameter at perigee and velocity at infinity. The SPH models show that tidal forces during a close encounter can efficiently convert orbital angular momentum into spin angular momentum, thereby initiating equatorial mass-shedding to inviscid planetesimals that have been spun up beyond the limit of rotational stability.

  13. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    NASA Technical Reports Server (NTRS)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    The performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0.3 to 3 deg is presented. The system represents a collaborative effort combining a low-background 1-m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3, 6, 9, and 12/cm (90, 180, 270, and 360 GHz). The telescope has been flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of about 0.00001 with detectors operated at 0.3 K.

  14. Vibration and Stability of Pretwisted Spinning Thin-Walled Composite Beams Featuring BENDING-BENDING Elastic Coupling

    NASA Astrophysics Data System (ADS)

    SONG, O.; JEONG, N.-H.; LIBRESCU, L.

    2000-10-01

    A number of issues related to the modelling, vibration and stability of anisotropic pretwisted beams rotating at constant angular speed about the longitudinal body-axis fixed in the inertial space are investigated. The analysis is carried out in the framework of a refined theory of thin-walled anisotropic composite beams featuring bending-bending elastic coupling, and encompassing a number of non-classical features such as transverse-shear, anisotropy and pretwist. Special attention is paid to the effect of the spinning speed, pretwist angle, axial compressive load and symmetry/non-symmetry of the beam cross-section on natural frequencies and instability of the structural system. Numerical illustrations highlighting their implication on vibration and stability are displayed and pertinent conclusions are outlined.

  15. Modelling and Control of an Annular Momentum Control Device

    NASA Technical Reports Server (NTRS)

    Downer, James R.; Johnson, Bruce G.

    1988-01-01

    The results of a modelling and control study for an advanced momentum storage device supported on magnetic bearings are documented. The control challenge posed by this device lies in its dynamics being such a strong function of flywheel rotational speed. At high rotational speed, this can lead to open loop instabilities, resulting in requirements for minimum and maximum control bandwidths and gains for the stabilizing controllers. Using recently developed analysis tools for systems described by complex coefficient differential equations, the closed properties of the controllers were analyzed and stability properties established. Various feedback controllers are investigated and discussed. Both translational and angular dynamics compensators are developed, and measures of system stability and robustness to plant and operational speed variations are presented.

  16. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    DOEpatents

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  17. Comparative Analysis of the Effects of Severe Plastic Deformation and Thermomechanical Training on the Functional Stability of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Maier, H. J.

    2010-01-01

    We compare the effectiveness of a conventional thermomechanical training procedure and severe plastic deformation via equal channel angular extrusion to achieve improved functional stability in a Ti50.5Ni24.5Pd25 high-temperature shape memory alloy. Thermomechanical testing indicates that both methods result in enhanced shape memory characteristics, such as reduced irrecoverable strain and thermal hysteresis. The mechanisms responsible for the improvements are discussed in light of microstructural findings from transmission electron microscopy.

  18. Nuclear spectroscopic studies. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.

    1994-02-18

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).

  19. Long-lived oscillons from asymmetric bubbles: Existence and stability

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.; Gleiser, Marcelo; Almeida, Carlos A.

    2002-10-01

    The possibility that extremely long-lived, time-dependent, and localized field configurations (``oscillons'') arise during the collapse of asymmetrical bubbles in (2+1)-dimensional φ4 models is investigated. It is found that oscillons can develop from a large spectrum of elliptically deformed bubbles. Moreover, we provide numerical evidence that such oscillons are (a) circularly symmetric and (b) linearly stable against small arbitrary radial and angular perturbations. The latter is based on a dynamical approach designed to investigate the stability of nonintegrable time-dependent configurations that is capable of probing slowly growing instabilities not seen through the usual ``spectral'' method.

  20. Modeling the early evolution of massive OB stars with an experimental wind routine. The first bi-stability jump and the angular momentum loss problem

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Z.; Puls, J.; Wade, G. A.

    2017-02-01

    Context. Stellar evolution models of massive stars are very sensitive to the adopted mass-loss scheme. The magnitude and evolution of mass-loss rates significantly affect the main sequence evolution, and the properties of post-main sequence objects, including their rotational velocities. Aims: Driven by potential discrepancies between theoretically predicted and observationally derived mass-loss rates in the OB star range, we aim in particular to investigate the response to mass-loss rates that are lower than currently adopted, in parallel with the mass-loss behavior at the "first" bi-stability jump. Methods: We performed 1D hydrodynamical model calculations of single 20-60 M⊙ Galactic (Z = 0.014) stars where the effects of stellar winds are already significant in the main sequence phase. We have developed an experimental wind routine to examine the behavior and response of the models under the influence of different mass-loss rates. This observationally guided, simple and flexible wind routine is not a new mass-loss description but a useful tool based on the wind-momentum luminosity relation and other scaling relations, and provides a meaningful base for various tests and comparisons. Results: The main result of this study indicates a dichotomy between solutions of currently debated problems regarding mass-loss rates of hot massive stars. In a fully diffusive approach, and for commonly adopted initial rotational velocities, lower mass-loss rates than theoretically predicted require to invoke an additional source of angular momentum loss (either due to bi-stability braking, or yet unidentified) to brake down surface rotational velocities. On the other hand, a large jump in the mass-loss rates due to the bi-stability mechanism (a factor of 5-7 predicted by Vink et al. (2000, A&A, 362, 295), but a factor of 10-20 in modern models of massive stars) is challenged by observational results, and might be avoided if the early mass-loss rates agreed with the theoretically predicted values. Conclusions: We conclude that simultaneously adopting lower mass-loss rates and a significantly smaller jump in the mass-loss rates over the bi-stability region (both compared to presently used prescriptions) would require an additional mechanism for angular momentum loss to be present in massive stars. Otherwise, the observed rotational velocities of a large population of B supergiants, that are thought to be the evolutionary descendants of O stars, would remain unexplained.

  1. Interaction of a magnetic island chain in a tokamak plasma with a resonant magnetic perturbation of rapidly oscillating phase

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Richard

    2017-12-01

    An investigation is made into the interaction of a magnetic island chain, embedded in a tokamak plasma, with an externally generated magnetic perturbation of the same helicity whose helical phase is rapidly oscillating. The analysis is similar in form to the classic analysis used by Kapitza [Sov. Phys. JETP 21, 588 (1951)] to examine the angular motion of a rigid pendulum whose pivot point undergoes rapid vertical oscillations. The phase oscillations are found to modify the existing terms, and also to give rise to new terms, in the equations governing the secular evolution of the island chain's radial width and helical phase. An examination of the properties of the new secular evolution equation reveals that it is possible to phase-lock an island chain to an external magnetic perturbation with an oscillating helical phase in a stabilizing phase relation provided that the amplitude, ɛ, of the phase oscillations (in radians) is such that |J0(ɛ )|≪1 , and the mean angular frequency of the perturbation closely matches the natural angular frequency of the island chain.

  2. Spectral collocation method with a flexible angular discretization scheme for radiative transfer in multi-layer graded index medium

    NASA Astrophysics Data System (ADS)

    Wei, Linyang; Qi, Hong; Sun, Jianping; Ren, Yatao; Ruan, Liming

    2017-05-01

    The spectral collocation method (SCM) is employed to solve the radiative transfer in multi-layer semitransparent medium with graded index. A new flexible angular discretization scheme is employed to discretize the solid angle domain freely to overcome the limit of the number of discrete radiative direction when adopting traditional SN discrete ordinate scheme. Three radial basis function interpolation approaches, named as multi-quadric (MQ), inverse multi-quadric (IMQ) and inverse quadratic (IQ) interpolation, are employed to couple the radiative intensity at the interface between two adjacent layers and numerical experiments show that MQ interpolation has the highest accuracy and best stability. Variable radiative transfer problems in double-layer semitransparent media with different thermophysical properties are investigated and the influence of these thermophysical properties on the radiative transfer procedure in double-layer semitransparent media is also analyzed. All the simulated results show that the present SCM with the new angular discretization scheme can predict the radiative transfer in multi-layer semitransparent medium with graded index efficiently and accurately.

  3. Post-launch analysis of the deployment dynamics of a space web sounding rocket experiment

    NASA Astrophysics Data System (ADS)

    Mao, Huina; Sinn, Thomas; Vasile, Massimiliano; Tibert, Gunnar

    2016-10-01

    Lightweight deployable space webs have been proposed as platforms or frames for a construction of structures in space where centrifugal forces enable deployment and stabilization. The Suaineadh project was aimed to deploy a 2 × 2m2 space web by centrifugal forces in milli-gravity conditions and act as a test bed for the space web technology. Data from former sounding rocket experiments, ground tests and simulations were used to design the structure, the folding pattern and control parameters. A developed control law and a reaction wheel were used to control the deployment. After ejection from the rocket, the web was deployed but entanglements occurred since the web did not start to deploy at the specified angular velocity. The deployment dynamics was reconstructed from the information recorded in inertial measurement units and cameras. The nonlinear torque of the motor used to drive the reaction wheel was calculated from the results. Simulations show that if the Suaineadh started to deploy at the specified angular velocity, the web would most likely have been deployed and stabilized in space by the motor, reaction wheel and controller used in the experiment.

  4. Bias Momentum Sizing for Hovering Dual-Spin Platforms

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Shin, Jong-Yeob; Moerder, Daniel D.

    2006-01-01

    An atmospheric flight vehicle in hover is typically controlled by varying its thrust vector. Achieving both levitation and attitude control with the propulsion system places considerable demands on it for agility and precision, particularly if the vehicle is statically unstable, or nearly so. These demands can be relaxed by introducing an appropriately sized angular momentum bias aligned with the vehicle's yaw axis, thus providing an additional margin of attitude stability about the roll and pitch axes. This paper describes a methodical approach for trading off angular momentum bias level needed with desired levels of vehicle response due to the design disturbance environment given a vehicle's physical parameters. It also describes several simplifications that provide a more physical and intuitive understanding of dual-spin dynamics for hovering atmospheric vehicles. This approach also mitigates the need for control torques and inadvertent actuator saturation difficulties in trying to stabilize a vehicle via control torques produced by unsteady aerodynamics, thrust vectoring, and unsteady throttling. Simulation results, based on a subscale laboratory test flying platform, demonstrate significant improvements in the attitude control robustness of the vehicle with respect to both wind disturbances and off-center of gravity payload changes during flight.

  5. The Stability of Tidal Equilibrium for Hierarchical Star-Planet-Moon Systems

    NASA Astrophysics Data System (ADS)

    Adams, Fred C.

    2018-04-01

    Motivated by the current search for exomoons, this talk considers the stability of tidal equilibrium for hierarchical three-body systems containing a star, a planet, and a moon. In this treatment, the energy and angular momentum budgets include contributions from the planetary orbit, lunar orbit, stellar spin, planetary spin, and lunar spin. The goal is to determine the optimized energy state of the system subject to the constraint of constant angular momentum. Due to the lack of a closed form solution for the full three-body problem, however, we must use use an approximate description of the orbits. We first consider the Keplerian limit and find that the critical energy states are saddle points, rather than minima, so that these hierarchical systems have no stable tidal equilibrium states. We then generalize the calculation so that the lunar orbit is described by a time-averaged version of the circular restricted three-body problem. In this latter case, the critical energy state is a shallow minimum, so that a tidal equilibrium state exists. In both cases, however, the lunar orbit for the critical point lies outside the boundary (roughly half the Hill radius) where (previous) numerical simulations indicate dynamical instability.

  6. Biomechanical Comparison of Locking Compression Plate versus Positive Profile Pins and Polymethylmethacrylate for Stabilization of the Canine Lumbar Vertebrae.

    PubMed

    Sturges, Beverly K; Kapatkin, Amy S; Garcia, Tanya C; Anwer, Cona; Fukuda, Shimpei; Hitchens, Peta L; Wisner, Tristan; Hayashi, Kei; Stover, Susan M

    2016-04-01

    To compare the stiffness, angular deformation, and mode of failure of lumbar vertebral column constructs stabilized with bilateral pins and polymethylmethacrylate (Pin-PMMA) or with a unilateral (left) locking compression plate (LCP) with monocortical screws. Ex vivo biomechanical, non-randomized. Cadaveric canine thoracolumbar specimens (n=16). Thoracolumbar (T13-L3) vertebral specimens had the L1-L2 vertebral motion unit stabilized with either Pin-PMMA or LCP. Stiffness in flexion, extension, and right and left lateral bending after nondestructive testing were compared between intact (pretreated) specimens and Pin-PMMA, and LCP constructs. The Pin-PMMA and LCP constructs were then tested to failure in flexion and left lateral bending. Both the Pin-PMMA and LCP constructs had reduced range of motion at the stabilized L1-L2 vertebral motion unit compared to intact specimens. The Pin-PMMA constructs had less range of motion for the flexion elastic zone than LCP constructs. The Pin-PMMA constructs were stiffer than intact specimens in flexion, extension, and lateral bending, and stiffer than LCP constructs in flexion and left lateral bending. The Pin-PMMA constructs had less angular deformation at construct yield and lower residual deformation at L1-L2 than LCP constructs after destructive testing to failure in flexion. The Pin-PMMA constructs were stiffer, stronger, and had less deformation at yield than LCP constructs after destructive testing to failure in lateral bending. Most constructs failed distant to the implant and fixation site. Pin-PMMA constructs had greater lumbar vertebral stiffness and reduced ROM than LCP constructs; however, both Pin-PMMA and LCP constructs were stronger than intact specimens. © Copyright 2016 by The American College of Veterinary Surgeons.

  7. Velocity-free attitude coordinated tracking control for spacecraft formation flying.

    PubMed

    Hu, Qinglei; Zhang, Jian; Zhang, Youmin

    2018-02-01

    This article investigates the velocity-free attitude coordinated tracking control scheme for a group of spacecraft with the assumption that the angular velocities of the formation members are not available in control feedback. Initially, an angular velocity observer is constructed based on each individual's attitude quarternion. Then, the distributed attitude coordinated control law is designed by using the observed states, in which adaptive control method is adopted to handle the external disturbances. Stability of the overall closed-loop system is analyzed theoretically, which shows the system trajectory converges to a small set around origin with fast convergence rate. Numerical simulations are performed to demonstrate fast convergence and improved tracking performance of the proposed control strategy. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Rapidly rotating polytropes in general relativity

    NASA Technical Reports Server (NTRS)

    Cook, Gregory B.; Shapiro, Stuart L.; Teukolsky, Saul A.

    1994-01-01

    We construct an extensive set of equilibrium sequences of rotating polytropes in general relativity. We determine a number of important physical parameters of such stars, including maximum mass and maximum spin rate. The stability of the configurations against quasi-radial perturbations is diagnosed. Two classes of evolutionary sequences of fixed rest mass and entropy are explored: normal sequences which behave very much like Newtonian evolutionary sequences, and supramassive sequences which exist solely because of relativistic effects. Dissipation leading to loss of angular momentum causes a star to evolve in a quasi-stationary fashion along an evolutionary sequence. Supramassive sequences evolve towards eventual catastrophic collapse to a black hole. Prior to collapse, the star must spin up as it loses angular momentum, an effect which may provide an observational precursor to gravitational collapse to a black hole.

  9. Dynamical Stability and Long-term Evolution of Rotating Stellar Systems

    NASA Astrophysics Data System (ADS)

    Varri, Anna L.; Vesperini, E.; McMillan, S. L. W.; Bertin, G.

    2011-05-01

    We present the first results of an extensive survey of N-body simulations designed to investigate the dynamical stability and the long-term evolution of two new families of self-consistent stellar dynamical models, characterized by the presence of internal rotation. The first family extends the well-known King models to the case of axisymmetric systems flattened by solid-body rotation while the second family is characterized by differential rotation. The equilibrium configurations thus obtained can be described in terms of two dimensionless parameters, which measure the concentration and the amount of rotation, respectively. Slowly rotating configurations are found to be dynamically stable and we followed their long-term evolution, in order to evaluate the interplay between collisional relaxation and angular momentum transport. We also studied the stability of rapidly rotating models, which are characterized by the presence of a toroidal core embedded in an otherwise quasi-spherical configuration. In both cases, a description in terms of the radial and global properties, such as the ratio between the ordered kinetic energy and the gravitational energy of the system, is provided. Because the role of angular momentum in the process of cluster formation is only partly understood, we also undertook a preliminary investigation of the violent relaxation of simple systems initially characterized by approximate solid-body rotation. The properties of the final equilibrium configurations thus obtained are compared with those of the above-described family of differentially rotating models.

  10. A Method for Integrating Thrust-Vectoring and Actuated Forebody Strakes with Conventional Aerodynamic Controls on a High-Performance Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Lallman, Frederick J.; Davidson, John B.; Murphy, Patrick C.

    1998-01-01

    A method, called pseudo controls, of integrating several airplane controls to achieve cooperative operation is presented. The method eliminates conflicting control motions, minimizes the number of feedback control gains, and reduces the complication of feedback gain schedules. The method is applied to the lateral/directional controls of a modified high-performance airplane. The airplane has a conventional set of aerodynamic controls, an experimental set of thrust-vectoring controls, and an experimental set of actuated forebody strakes. The experimental controls give the airplane additional control power for enhanced stability and maneuvering capabilities while flying over an expanded envelope, especially at high angles of attack. The flight controls are scheduled to generate independent body-axis control moments. These control moments are coordinated to produce stability-axis angular accelerations. Inertial coupling moments are compensated. Thrust-vectoring controls are engaged according to their effectiveness relative to that of the aerodynamic controls. Vane-relief logic removes steady and slowly varying commands from the thrust-vectoring controls to alleviate heating of the thrust turning devices. The actuated forebody strakes are engaged at high angles of attack. This report presents the forward-loop elements of a flight control system that positions the flight controls according to the desired stability-axis accelerations. This report does not include the generation of the required angular acceleration commands by means of pilot controls or the feedback of sensed airplane motions.

  11. Stabilization of Taylor-Couette flow due to time-periodic outer cylinder oscillation

    NASA Technical Reports Server (NTRS)

    Murray, B. T.; Mcfadden, G. B.; Coriell, S. R.

    1990-01-01

    The linear stability of circular Couette flow between concentric infinite cylinders is considered for the case when the inner cylinder is rotated at a constant angular velocity and the outer cylinder is driven sinusoidally in time with zero mean rotation. This configuration was studied experimentally by Walsh and Donnelly. The critical Reynolds numbers calculated from linear stability theory agree well with the experimental values, except at large modulation amplitudes and small frequencies. The theoretical values are obtained using Floquet theory implemented in two distinct approaches: a truncated Fourier series representation in time, and a fundamental solution matrix based on a Chebyshev pseudospectral representation in space. For large amplitude, low frequency modulation, the linear eigenfunctions are temporally complex, consisting of a quiescent region followed by rapid change in the perturbed flow velocities.

  12. The Cosmology Large Angular Scale Surveyor

    NASA Astrophysics Data System (ADS)

    Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F.; Hubmayr, Johannes; Iuliano, Jeffrey; Karakla, John; McMahon, Jeff; Miller, Nathan T.; Moseley, Samuel H.; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián.; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2016-07-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  13. The Cosmology Large Angular Scale Surveyor (CLASS)

    NASA Technical Reports Server (NTRS)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  14. Generalized Momentum Control of the Spin-Stabilized Magnetospheric Multiscale Formation

    NASA Technical Reports Server (NTRS)

    Queen, Steven Z.; Shah, Neerav; Benegalrao, Suyog S.; Blackman, Kathie

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories elliptically orbiting the Earth in a tetrahedron formation. The on-board attitude control system adjusts the angular momentum of the system using a generalized thruster-actuated control system that simultaneously manages precession, nutation and spin. Originally developed using Lyapunov control-theory with rate-feedback, a published algorithm has been augmented to provide a balanced attitude/rate response using a single weighting parameter. This approach overcomes an orientation sign-ambiguity in the existing formulation, and also allows for a smoothly tuned-response applicable to both a compact/agile spacecraft, as well as one with large articulating appendages.

  15. Optical binding with cold atoms

    NASA Astrophysics Data System (ADS)

    Máximo, C. E.; Bachelard, R.; Kaiser, R.

    2018-04-01

    Optical binding is a form of light-mediated forces between elements of matter which emerge in response to the collective scattering of light. Such a phenomenon has been studied mainly in the context of the equilibrium stability of dielectric sphere arrays which move amid dissipative media. In this article, we demonstrate that optically bounded states of a pair of cold atoms can exist, in the absence of nonradiative damping. We study the scaling laws for the unstable-stable phase transition at negative detuning and the unstable-metastable one for positive detuning. In addition, we show that angular momentum can lead to dynamical stabilization with infinite-range scaling.

  16. Analysis and Experimentation of Control Strategies for Underactuated Spacecraft

    DTIC Science & Technology

    2009-09-01

    control techniques that provide time -invariant global asymptotic stability of the fully actuated spacecraft system of equations. Although these control ...momentum wheel actuators in finite time under the restriction that the total angular momentum vector of the system is zero. This control methodology...can be stabilizable to an arbitrarily small region about the equilibrium of the system via time -invariant smooth state feedback control

  17. A magnetic bearing based on eddy-current repulsion

    NASA Technical Reports Server (NTRS)

    Nikolajsen, J. L.

    1987-01-01

    This paper describes a new type of electromagnetic bearing, called the Eddy-Current Bearing, which works by repulsion between fixed AC-electromagnets and a conducting rotor. The following advantages are expected: inherent stability, higher load carrying capacity than DC-electromagnetic bearings, simultaneous radial, angular and thrust support, motoring and generating capability, and backup mode of operation in case of primary power failure. A prototype is under construction.

  18. Gyro Systems (Selected Pages),

    DTIC Science & Technology

    1982-03-19

    of the oil wells, etc. With the aid of gyro systems determine the direction of meridian and true vertical, measure the angular velocities and the...integrating gyroscopes, gyrostabilizers, course gyro systems, gyroscopic sensors of the direction of the true vertical and inertial systems. The action of...direction of the true vertical are the gyro stabilizer, corrected with the aid of the inductive or magnetic detector, the physical pendulum, the local

  19. Considerations for opto-mechanical vs. digital stabilization in surveillance systems

    NASA Astrophysics Data System (ADS)

    Kowal, David

    2015-05-01

    Electro-optical surveillance and reconnaissance systems are frequently mounted on unstable or vibrating platforms such as ships, vehicles, aircraft and masts. Mechanical coupling between the platform and the cameras leads to angular vibration of the line of sight. Image motion during detector and eye integration times leads to image smear and a resulting loss of resolution. Additional effects are wavy images for detectors based on a rolling shutter mechanism and annoying movement of the image at low frequencies. A good stabilization system should yield sub-pixel stabilization errors and meet cost and size requirements. There are two main families of LOS stabilization methods: opto-mechanical stabilization and electronic stabilization. Each family, or a combination of both, can be implemented by a number of different techniques of varying complexity, size and cost leading to different levels of stabilization. Opto-mechanical stabilization is typically based on gyro readings, whereas electronic stabilization is typically based on gyro readings or image registration calculations. A few common stabilization techniques, as well as options for different gimbal arrangements will be described and analyzed. The relative merits and drawbacks of the different techniques and their applicability to specific systems and environments will be discussed. Over the years Controp has developed a large number of stabilized electro-optical payloads. A few examples of payloads with unique stabilization mechanisms will be described.

  20. Hovering Dual-Spin Vehicle Groundwork for Bias Momentum Sizing Validation Experiment

    NASA Technical Reports Server (NTRS)

    Rothhaar, Paul M.; Moerder, Daniel D.; Lim, Kyong B.

    2008-01-01

    Angular bias momentum offers significant stability augmentation for hovering flight vehicles. The reliance of the vehicle on thrust vectoring for agility and disturbance rejection is greatly reduced with significant levels of stored angular momentum in the system. A methodical procedure for bias momentum sizing has been developed in previous studies. This current study provides groundwork for experimental validation of that method using an experimental vehicle called the Dual-Spin Test Device, a thrust-levitated platform. Using measured data the vehicle's thrust vectoring units are modeled and a gust environment is designed and characterized. Control design is discussed. Preliminary experimental results of the vehicle constrained to three rotational degrees of freedom are compared to simulation for a case containing no bias momentum to validate the simulation. A simulation of a bias momentum dominant case is presented.

  1. Intercentrosomal angular separation during mitosis plays a crucial role for maintaining spindle stability

    NASA Astrophysics Data System (ADS)

    Sutradhar, S.; Basu, S.; Paul, R.

    2015-10-01

    Cell division through proper spindle formation is one of the key puzzles in cell biology. In most mammalian cells, chromosomes spontaneously arrange to achieve a stable bipolar spindle during metaphase which eventually ensures proper segregation of the DNA into the daughter cells. In this paper, we present a robust three-dimensional mechanistic model to investigate the formation and maintenance of a bipolar mitotic spindle in mammalian cells under different physiological constraints. Using realistic parameters, we test spindle viability by measuring the spindle length and studying the chromosomal configuration. The model strikingly predicts a feature of the spindle instability arising from the insufficient intercentrosomal angular separation and impaired sliding of the interpolar microtubules. In addition, our model successfully reproduces chromosomal patterns observed in mammalian cells, when activity of different motor proteins is perturbed.

  2. Measurement of cosmic muon angular distribution and vertical integrated flux by 2 m × 2 m RPC stack at IICHEP-Madurai

    NASA Astrophysics Data System (ADS)

    Pethuraj, S.; Datar, V. M.; Majumder, G.; Mondal, N. K.; Ravindran, K. C.; Satyanarayana, B.

    2017-09-01

    The 50 kton INO-ICAL is a proposed underground high energy physics experiment at Theni, India (9o57'N, 77o16'E) to study the neutrino oscillation parameters using atmospheric neutrinos. The Resistive Plate Chamber (RPC) has been chosen as the active detector element for the ICAL detector. An experimental setup consisting of 12 layers of glass RPCs of size 2 m × 2 m has been built at IICHEP, Madurai to study the long term stability and performance of RPCs which are produced on a large scale in Indian industry. In this paper, the studies on the performance of RPCs are presented along with the angular distribution of muons at Madurai (9o56'N,78o00'E and Altitude ≈ 160 m from sea level).

  3. Global finite-time attitude stabilization for rigid spacecraft in the exponential coordinates

    NASA Astrophysics Data System (ADS)

    Shi, Xiao-Ning; Zhou, Zhi-Gang; Zhou, Di

    2018-06-01

    This paper addresses the global finite-time attitude stabilisation problem on the special orthogonal group (SO(3)) for a rigid spacecraft via homogeneous feedback approach. Considering the topological and geometric properties of SO(3), the logarithm map is utilised to transform the stabilisation problem on SO(3) into the one on its associated Lie algebra (?). A model-independent discontinuous state feedback plus dynamics compensation scheme is constructed to achieve the global finite-time attitude stabilisation in a coordinate-invariant way. In addition, to address the absence of angular velocity measurements, a sliding mode observer is proposed to reconstruct the unknown angular velocity information within finite time. Then, an observer-based finite-time output feedback control strategy is obtained. Numerical simulations are finally performed to demonstrate the effectiveness of the proposed finite-time controllers.

  4. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    NASA Technical Reports Server (NTRS)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    We report the performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0 deg 3 min to 3 deg. The system represents a collaborative effort combining a low-background 1 m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3 (90), 6 (180), 9 (270), and 12 (360) cm(exp -1) (GHz). The telescope was flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of Delta(T)/T(sub CMB) is approximately equal to 10(exp -5) with detectors operated at T = 0.3 K.

  5. Stabilization of gaze during circular locomotion in light. I. Compensatory head and eye nystagmus in the running monkey

    NASA Technical Reports Server (NTRS)

    Solomon, D.; Cohen, B.

    1992-01-01

    1. A rhesus and cynomolgus monkey were trained to run around the perimeter of a circular platform in light. We call this "circular locomotion" because forward motion had an angular component. Head and body velocity in space were recorded with angular rate sensors and eye movements with electrooculography (EOG). From these measurements we derived signals related to the angular velocity of the eyes in the head (Eh), of the head on the body (Hb), of gaze on the body (Gb), of the body in space (Bs), of gaze in space (Gs), and of the gain of gaze (Gb/Bs). 2. The monkeys had continuous compensatory nystagmus of the head and eyes while running, which stabilized Gs during the slow phases. The eyes established and maintained compensatory gaze velocities at the beginning and end of the slow phases. The head contributed to gaze velocity during the middle of the slow phases. Slow phase Gb was as high as 250 degrees/s, and targets were fixed for gaze angles as large as 90-140 degrees. 3. Properties of the visual surround affected both the gain and strategy of gaze compensation in the one monkey tested. Gains of Eh ranged from 0.3 to 1.1 during compensatory gaze nystagmus. Gains of Hb varied around 0.3 (0.2-0.7), building to a maximum as Eh dropped while running past sectors of interest. Consistent with predictions, gaze gains varied from below to above unity, when translational and angular body movements with regard to the target were in opposite or the same directions, respectively. 4. Gaze moved in saccadic shifts in the direction of running during quick phases. Most head quick phases were small, and at times the head only paused during an eye quick phase. Eye quick phases were larger, ranging up to 60 degrees. This is larger than quick phases during passive rotation or saccades made with the head fixed. 5. These data indicate that head and eye nystagmus are natural phenomena that support gaze compensation during locomotion. Despite differential utilization of the head and eyes in various conditions, Gb compensated for Bs. There are various frames of reference in which an estimate of angular velocity that drives the head and eyes could be based. We infer that body in space velocity (Bs) is likely to be represented centrally to provide this signal.

  6. Elastic robot control - Nonlinear inversion and linear stabilization

    NASA Technical Reports Server (NTRS)

    Singh, S. N.; Schy, A. A.

    1986-01-01

    An approach to the control of elastic robot systems for space applications using inversion, servocompensation, and feedback stabilization is presented. For simplicity, a robot arm (PUMA type) with three rotational joints is considered. The third link is assumed to be elastic. Using an inversion algorithm, a nonlinear decoupling control law u(d) is derived such that in the closed-loop system independent control of joint angles by the three joint torquers is accomplished. For the stabilization of elastic oscillations, a linear feedback torquer control law u(s) is obtained applying linear quadratic optimization to the linearized arm model augmented with a servocompensator about the terminal state. Simulation results show that in spite of uncertainties in the payload and vehicle angular velocity, good joint angle control and damping of elastic oscillations are obtained with the torquer control law u = u(d) + u(s).

  7. Circularly polarized light to study linear magneto-optics for ferrofluids: θ-scan technique

    NASA Astrophysics Data System (ADS)

    Meng, Xiangshen; Huang, Yan; He, Zhenghong; Lin, Yueqiang; Liu, Xiaodong; Li, Decai; Li, Jian; Qiu, Xiaoyan

    2018-06-01

    Circularly polarized light can be divided into two vertically linearly polarized light beams with  ±π/2 phase differences. In the presence of an external magnetic field, when circularly polarized light travels through a ferrofluid film, whose thickness is no more than that of λ/4 plate, magneto-optical, magnetic birefringence and dichroism effects cause the transmitted light to behave as elliptically polarized light. Using angular scan by a continuously rotating polarizer as analyzer, the angular (θ) distribution curve of relative intensity (T) corresponding to elliptically polarized light can be measured. From the T  ‑  θ curve having ellipsometry, the parameters such as the ratio of short to long axis, and angular orientation of the long axis to the vertical field direction can be obtained. Thus, magnetic birefringence and dichroism can be probed simultaneously by measuring magneto-optical, positive or negative birefringence and dichroism features from the transmission mode. The proposed method is called θ-scan technique, and can accurately determine sample stability, magnetic field direction, and cancel intrinsic light source ellipticity. This study may be helpful to further research done to ferrofluids and other similar colloidal samples with anisotropic optics.

  8. Possible Vascular Injury Due to Screw Eccentricity in Minimally Invasive Total Hip Arthroplasty.

    PubMed

    Singh, Nishant Kumar; Rai, Sanjay Kumar; Rastogi, Amit

    2017-01-01

    Vascular injury during minimally invasive total hip arthroplasty (THA) is uncommon, yet a well-recognized and serious issue. It emerges because of non-visibility of vascular structures proximal to the pelvic bone during reaming, drilling holes, and fixing of screws. Numerous studies have found that screw fixation during cementless THA is beneficial for the initial stability of cup; yet, no anatomical guidelines support angular eccentric screw fixation. In this study, we obtained the pelvic arterial-phase computed tomographic data of thirty eight humans and reconstructed the three-dimensional models of osseous and vessel structures. We performed the surgical simulation to fix these structures with cementless cups and screws with angular eccentricities. The effect of screw eccentricities (angular eccentricities of ±17° and ±34°) on the vascular injury was determined. Measurement between screw and adjoining vessels was performed and analyzed statistically to ascertain a comparative risk study for blood vessels that are not visible during surgery. Authors similarly discussed the significant absence of appreciation of quadrant systems proposed by Wasielewski et al . on eccentric screws. Adjustment of quadrant systems provided by Wasielewski et al . is required for acetabular implants with eccentric holes for fixation of acetabular screws.

  9. HITPRO Tests and Analyses

    DTIC Science & Technology

    1976-09-01

    significant error here would perhaps be the angular velocity as seen by the computer because the optical angle is read to the nearest tenth milliradian ...Track 6. When the tape is reproduced, this signal is recovered from the tape and is compared to the crystal oscillator reference frequency. If a...34 Comparative Evaluation of the Electro-Hydraulic and All-Electric Stabilization Systems Developed for the M60A2 Tank," dated August 1974, by

  10. Rotating hairy black holes in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Erices, Cristián; Martínez, Cristián

    2018-01-01

    A class of exact rotating black hole solutions of gravity nonminimally coupled to a self-interacting scalar field in arbitrary dimensions is presented. These spacetimes are asymptotically locally anti-de Sitter manifolds and have a Ricci-flat event horizon hiding a curvature singularity at the origin. The scalar field is real and regular everywhere, and its effective mass, coming from the nonminimal coupling with the scalar curvature, saturates the Breitenlohner-Freedman bound for the corresponding spacetime dimension. The rotating black hole is obtained by applying an improper coordinate transformation to the static one. Although both spacetimes are locally equivalent, they are globally different, as it is confirmed by the nonvanishing angular momentum of the rotating black hole. It is found that the mass is bounded from below by the angular momentum, in agreement with the existence of an event horizon. The thermodynamical analysis is carried out in the grand canonical ensemble. The first law is satisfied, and a Smarr formula is exhibited. The thermodynamical local stability of the rotating hairy black holes is established from their Gibbs free energy. However, the global stability analysis establishes that the vacuum spacetime is always preferred over the hairy black hole. Thus, the hairy black hole is likely to decay into the vacuum one for any temperature.

  11. On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars

    NASA Astrophysics Data System (ADS)

    Fleming, David P.; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.

    2018-05-01

    We outline a mechanism that explains the observed lack of circumbinary planets (CBPs) via coupled stellar–tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time, impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that, in some cases, the stability semimajor axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that, typically, at least one planet is ejected from the system. We apply our theory to the shortest-period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar–tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.

  12. The Hyper-Angular Rainbow Polarimeter (HARP) CubeSat Observatory and the Characterization of Cloud Properties

    NASA Astrophysics Data System (ADS)

    Neilsen, T. L.; Martins, J. V.; Fernandez Borda, R. A.; Weston, C.; Frazier, C.; Cieslak, D.; Townsend, K.

    2015-12-01

    The Hyper-Angular Rainbow Polarimeter HARP instrument is a wide field-of-view imager that splits three spatially identical images into three independent polarizers and detector arrays.This technique achieves simultaneous imagery of the same ground target in three polarization states and is the key innovation to achieve high polarimetric accuracy with no moving parts. The spacecraft consists of a 3U CubeSat with 3-axis stabilization designed to keep the image optics pointing nadir during data collection but maximizing solar panel sun pointing otherwise. The hyper-angular capability is achieved by acquiring overlapping images at very fast speeds.An imaging polarimeter with hyper-angular capability can make a strong contribution to characterizing cloud properties. Non-polarized multi-angle measurements have been shown to besensitive to thin cirrus and can be used to provide climatology ofthese clouds. Adding polarization and increasing the number ofobservation angles allows for the retrieval of the complete sizedistribution of cloud droplets, including accurate information onthe width of the droplet distribution in addition to the currentlyretrieved effective radius.The HARP mission is funded by the NASA Earth Science Technology Office as part of In-Space Validation of Earth Science Technologies (InVEST) program. The HARP instrument is designed and built by a team of students and professionals lead by Dr. Vanderlei Martines at University of Maryland, Baltimore County. The HARP spacecraft is designed and built by a team of students and professionals and The Space Dynamics Laboratory.

  13. Relative stability of deep- versus shallow-side bone levels in angular proximal infrabony defects.

    PubMed

    Heins, P; Hartigan, M; Low, S; Chace, R

    1989-01-01

    The relative changes with time, in the position of the coronal margin of the mesial and distal bone of proximal, angular infrabony defects, were investigated. Tracings of the radiographs of 51 mandibular posterior sites, treated by flap curettage, with a mean post-surgical duration of 11.8 years, were measured using a digitizer pad. The group consisting of shallow-side sites (N = 51), exhibited no significant change in the bone height with time; however, there was a significant decrease in bone height in the deep-side group (N = 51). The mean area of proximal bone decreased significantly with time. The defects were divided into early (N = 25) and advanced (N = 26) angular groups, and then into deep- and shallow-side subgroups. In the early defect group, there was a significant decrease in the mean bone height of the deep-side subgroup. There were no differences in the changes of mean bone level of the remaining 3 subgroups with time. There was no correlation between changes in bone levels of adjacent mesial and distal sides of angular defects with time (r = 0.27). There was no difference between the deep- and shallow-side groups in the number of sites which gained, lost or evidenced no change in bone height. In the study population, the bone height of 73% of the deep-side, and 84% of the shallow-side sites was either unchanged or in a more coronal position.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. AMD-stability in the presence of first-order mean motion resonances

    NASA Astrophysics Data System (ADS)

    Petit, A. C.; Laskar, J.; Boué, G.

    2017-11-01

    The angular momentum deficit (AMD)-stability criterion allows to discriminate between a priori stable planetary systems and systems for which the stability is not granted and needs further investigations. AMD-stability is based on the conservation of the AMD in the averaged system at all orders of averaging. While the AMD criterion is rigorous, the conservation of the AMD is only granted in absence of mean-motion resonances (MMR). Here we extend the AMD-stability criterion to take into account mean-motion resonances, and more specifically the overlap of first-order MMR. If the MMR islands overlap, the system will experience generalized chaos leading to instability. The Hamiltonian of two massive planets on coplanar quasi-circular orbits can be reduced to an integrable one degree of freedom problem for period ratios close to a first-order MMR. We use the reduced Hamiltonian to derive a new overlap criterion for first-order MMR. This stability criterion unifies the previous criteria proposed in the literature and admits the criteria obtained for initially circular and eccentric orbits as limit cases. We then improve the definition of AMD-stability to take into account the short term chaos generated by MMR overlap. We analyze the outcome of this improved definition of AMD-stability on selected multi-planet systems from the Extrasolar Planets Encyclopædia.

  15. An angle-dependent estimation of CT x-ray spectrum from rotational transmission measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuan, E-mail: yuan.lin@duke.edu; Samei, Ehsan; Ramirez-Giraldo, Juan Carlos

    2014-06-15

    Purpose: Computed tomography (CT) performance as well as dose and image quality is directly affected by the x-ray spectrum. However, the current assessment approaches of the CT x-ray spectrum require costly measurement equipment and complicated operational procedures, and are often limited to the spectrum corresponding to the center of rotation. In order to address these limitations, the authors propose an angle-dependent estimation technique, where the incident spectra across a wide range of angular trajectories can be estimated accurately with only a single phantom and a single axial scan in the absence of the knowledge of the bowtie filter. Methods: Themore » proposed technique uses a uniform cylindrical phantom, made of ultra-high-molecular-weight polyethylene and positioned in an off-centered geometry. The projection data acquired with an axial scan have a twofold purpose. First, they serve as a reflection of the transmission measurements across different angular trajectories. Second, they are used to reconstruct the cross sectional image of the phantom, which is then utilized to compute the intersection length of each transmission measurement. With each CT detector element recording a range of transmission measurements for a single angular trajectory, the spectrum is estimated for that trajectory. A data conditioning procedure is used to combine information from hundreds of collected transmission measurements to accelerate the estimation speed, to reduce noise, and to improve estimation stability. The proposed spectral estimation technique was validated experimentally using a clinical scanner (Somatom Definition Flash, Siemens Healthcare, Germany) with spectra provided by the manufacturer serving as the comparison standard. Results obtained with the proposed technique were compared against those obtained from a second conventional transmission measurement technique with two materials (i.e., Cu and Al). After validation, the proposed technique was applied to measure spectra from the clinical system across a range of angular trajectories [−15°, 15°] and spectrum settings (80, 100, 120, 140 kVp). Results: At 140 kVp, the proposed technique was comparable to the conventional technique in terms of the mean energy difference (MED, −0.29 keV) and the normalized root mean square difference (NRMSD, 0.84%) from the comparison standard compared to 0.64 keV and 1.56%, respectively, with the conventional technique. The average absolute MEDs and NRMSDs across kVp settings and angular trajectories were less than 0.61 keV and 3.41%, respectively, which indicates a high level of estimation accuracy and stability. Conclusions: An angle-dependent estimation technique of CT x-ray spectra from rotational transmission measurements was proposed. Compared with the conventional technique, the proposed method simplifies the measurement procedures and enables incident spectral estimation for a wide range of angular trajectories. The proposed technique is suitable for rigorous research objectives as well as routine clinical quality control procedures.« less

  16. Hydrodynamical Modeling of Large Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kurfürst, P.; Krtǐcka, J.

    2016-11-01

    Direct centrifugal ejection from a critically or near-critically rotating surface forms a gaseous equatorial decretion disk. Anomalous viscosity provides the efficient mechanism for transporting the angular momentum outwards. The outer part of the disk can extend up to a very large distance from the parent star. We study the evolution of density, radial and azimuthal velocity, and angular momentum loss rate of equatorial decretion disks out to very distant regions. We investigate how the physical characteristics of the disk depend on the distribution of temperature and viscosity. We also study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. We use analytical calculations to study the stability of outflowing disks submerged to the magnetic field. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. Therefore, the disk sonic radius can be roughly considered as an outer disk radius.

  17. Thermally driven magnetic precession in spin valves

    NASA Astrophysics Data System (ADS)

    Luc, David; Waintal, Xavier

    2014-10-01

    We investigate the angular dependence of the spin torque generated when applying a temperature difference across a spin valve. Our study shows the presence of a nontrivial fixed point in this angular dependence. This fixed point opens the possibility for a temperature gradient to stabilize radio frequency oscillations without the need for an external magnetic field. This so-called "wavy" behavior can already be found upon applying a voltage difference across a spin valve but we find that this effect is much more pronounced with a temperature difference. We find that a spin asymmetry of the Seebeck coefficient of the order of 20 μ VK -1 should be large enough for a temperature gradient of a few degrees to trigger the radio-frequency oscillations. Our semiclassical theory is fully parametrized with experimentally measured(able) parameters and allows one to quantitatively predict the amplitude of the torque.

  18. Kelvin-Helmholtz instability of counter-rotating discs

    NASA Astrophysics Data System (ADS)

    Quach, Dan; Dyda, Sergei; Lovelace, Richard V. E.

    2015-01-01

    Observations of galaxies and models of accreting systems point to the occurrence of counter-rotating discs where the inner part of the disc (r < r0) is corotating and the outer part is counter-rotating. This work analyses the linear stability of radially separated co- and counter-rotating thin discs. The strong instability found is the supersonic Kelvin-Helmholtz instability. The growth rates are of the order of or larger than the angular rotation rate at the interface. The instability is absent if there is no vertical dependence of the perturbation. That is, the instability is essentially three dimensional. The non-linear evolution of the instability is predicted to lead to a mixing of the two components, strong heating of the mixed gas, and vertical expansion of the gas, and annihilation of the angular momenta of the two components. As a result, the heated gas will free-fall towards the disc's centre over the surface of the inner disc.

  19. Ion assisted deposition of SiO2 film from silicon

    NASA Astrophysics Data System (ADS)

    Pham, Tuan. H.; Dang, Cu. X.

    2005-09-01

    Silicon dioxide, SiO2, is one of the preferred low index materials for optical thin film technology. It is often deposited by electron beam evaporation source with less porosity and scattering, relatively durable and can have a good laser damage threshold. Beside these advantages the deposition of critical optical thin film stacks with silicon dioxide from an E-gun was severely limited by the stability of the evaporation pattern or angular distribution of the material. The even surface of SiO2 granules in crucible will tend to develop into groove and become deeper with the evaporation process. As the results, angular distribution of the evaporation vapor changes in non-predicted manner. This report presents our experiments to apply Ion Assisted Deposition process to evaporate silicon in a molten liquid form. By choosing appropriate process parameters we can get SiO2 film with good and stable property.

  20. Stable angular emission spectra in white organic light-emitting diodes using graphene/PEDOT:PSS composite electrode.

    PubMed

    Cho, Hyunsu; Lee, Hyunkoo; Lee, Jonghee; Sung, Woo Jin; Kwon, Byoung-Hwa; Joo, Chul-Woong; Shin, Jin-Wook; Han, Jun-Han; Moon, Jaehyun; Lee, Jeong-Ik; Cho, Seungmin; Cho, Nam Sung

    2017-05-01

    In this work, we suggest a graphene/ poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite as a transparent electrode for stabilizing white emission of organic light-emitting diodes (OLEDs). Graphene/PEDOT:PSS composite electrodes have increased reflectance when compared to graphene itself, but their reflectance is still lower than that of ITO itself. Changes in the reflectance of the composite electrode have the advantage of suppressing the angular spectral distortion of white emission OLEDs and achieving an efficiency of 16.6% for white OLEDs, comparable to that achieved by graphene-only electrodes. By controlling the OLED structure to compensate for the two-beam interference effect, the CIE color coordinate change (Δxy) of OLEDs based on graphene/PEDOT:PSS composite electrodes is 0.018, less than that based on graphene-only electrode, i.e.,0.027.

  1. Measurement of cosmic muon angular distribution and vertical integrated flux by 2 m × 2 m RPC stack at IICHEP-Madurai

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pethuraj, S.; Datar, V.M.; Majumder, G.

    2017-09-01

    The 50 kton INO-ICAL is a proposed underground high energy physics experiment at Theni, India (9{sup o}57' N , 77{sup o}16' E ) to study the neutrino oscillation parameters using atmospheric neutrinos. The Resistive Plate Chamber (RPC) has been chosen as the active detector element for the ICAL detector. An experimental setup consisting of 12 layers of glass RPCs of size 2 m × 2 m has been built at IICHEP, Madurai to study the long term stability and performance of RPCs which are produced on a large scale in Indian industry. In this paper, the studies on the performancemore » of RPCs are presented along with the angular distribution of muons at Madurai (9{sup o}56' N ,78{sup o}00' E and Altitude ≈ 160 m from sea level).« less

  2. Analysis of the effects of wing interference on the tail contributions to the rolling derivatives

    NASA Technical Reports Server (NTRS)

    Michael, William H , Jr

    1952-01-01

    An analysis of the effects of wing interference on the tail contributions to the rolling stability derivatives of complete airplane configurations is made by calculating the angularity of the air stream at the vertical tail due to rolling and determining the resulting forces and moments. Some of the important factors which affect the resultant angularity on the vertical tail are wing aspect ratio and sweepback, vertical-tail span, and considerations associated with angle of attack and airplane geometry. Some calculated sidewash results for a limited range of plan forms and vertical-tail sizes are presented. Equations taking into account the sidewash results are given for determining the tail contributions to the rolling derivatives. Comparisons of estimated and experimental results indicate that a consideration of wing interference effects improves the estimated values of the tail contributions to the rolling derivatives and that fair agreement with available experimental data is obtained.

  3. Processing and characterization of Al-Al3Nb prepared by mechanical alloying and equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Chandran, P.; Zafari, A.; Lui, E. W.; Xia, K.

    2017-05-01

    Mechanically alloyed Al with immiscible elements such as Nb can lead to a uniform distribution of nanoscaled precipitates which are highly stable compared to conventional alloying and with excellent interface, resulting in significant increase in strength without problems associated with nano ceramic particles in metal matrix composites. Although immiscible, Nb can be alloyed with Al through mechanical milling, forming trialuminide (Al3Nb), either directly or upon subsequent precipitation, which possesses high strength, stiffness and stability at elevated temperatures. In the present study, Al-5 at.% Nb supersaturated solid solution was achieved after prolonged ball milling and nano Al3Nb precipitates were formed during subsequent ageing at 530°C. The Al-Al3Nb powder was consolidated by equal channel angular pressing (ECAP) at 400°C, resulting in a fully dense material with a uniform distribution of nanoscaled Al3Nb precipitates in the Al matrix.

  4. Stability of the wobbling motion in the triaxially deformed odd-A nucleus

    NASA Astrophysics Data System (ADS)

    Tanabe, Kosai; Sugawara-Tanabe, Kazuko

    2017-12-01

    In order to analyze the content of the exact solutions for particle-rotor models with both the rigid and the hydrodynamical moments of inertia (MoI), as a theoretical probe we apply the Holstein-Primakoff (HP) boson expansion method to the total angular momentum I and the single-particle angular momentum j. We study the competition between Coriolis force and the single-particle potential by employing the different choices of the diagonal HP boson representations for the components of I and j along a common coordinate axis, and along perpendicular axes. We do not find any wobbling level sequence associated with the rotation around the principal axis with the medium MoI. The staggering in the alignments of I about the axis with the medium MoI is found in the limited range of I, while the vector R(=I-j) is confined about the axis with the largest MoI.

  5. 16-element photodiode array for the angular microdeflection detector and for stabilization of a laser radiation direction

    NASA Astrophysics Data System (ADS)

    Wegrzecki, Maciej; Piotrowski, Tadeusz; Bar, Jan; Dobrowolski, Rafał; Klimov, Andrii; Klos, Helena; Marchewka, Michał; Nieprzecki, Marek; Panas, Andrzej; Prokaryn, Piotr; Seredyński, Bartłomiej; Sierakowski, Andrzej; Słysz, Wojciech; Szmigiel, Dariusz; Zaborowski, Michal

    2016-12-01

    In this paper, the design and technology of two types of 16-element photodiode arrays is described. The arrays were developed by the ITE and are to be used in detection of microdeflection of laser radiation at the Institute of Metrology and Biomedical Engineering in the Faculty of Mechatronics of Warsaw University of Technology. The electrical and photoelectrical parameters of the arrays are presented.

  6. Microstructure and Mechanical Properties of Bulk Nanostructured Cu-Ta Alloys Consolidated by Equal Channel Angular Extrusion

    DTIC Science & Technology

    2014-07-01

    5,9], W [16], Zr [17] and Nb [18]. These systems have shown moderate to extraordinarily high microstructural stability at elevated temperatures...cans were then either serial sectioned for shear punch testing or cut into compression samples using wire electric discharge machining. Through SEM...to resist deformation, but do not necessarily alter the dislocation mechanism operating during plastic deformation. There are a number of challenges

  7. Stabilization of the Simplest Criegee Intermediate from the Reaction between Ozone and Ethylene: A High-Level Quantum Chemical and Kinetic Analysis of Ozonolysis.

    PubMed

    Nguyen, Thanh Lam; Lee, Hyunwoo; Matthews, Devin A; McCarthy, Michael C; Stanton, John F

    2015-06-04

    The fraction of the collisionally stabilized Criegee species CH2OO produced from the ozonolysis of ethylene is calculated using a two-dimensional (E, J)-grained master equation technique and semiclassical transition-state theory based on the potential energy surface obtained from high-accuracy quantum chemical calculations. Our calculated yield of 42 ± 6% for the stabilized CH2OO agrees well, within experimental error, with available (indirect) experimental results. Inclusion of angular momentum in the master equation is found to play an essential role in bringing the theoretical results into agreement with the experiment. Additionally, yields of HO and HO2 radical products are predicted to be 13 ± 6% and 17 ± 6%, respectively. In the kinetic simulation, the HO radical product is produced mostly from the stepwise decomposition mechanism of primary ozonide rather than from dissociation of hot CH2OO.

  8. JWST Point Spread Function Quality and Stability: Ground Testing, Integrated Modeling, and Space Validation

    NASA Technical Reports Server (NTRS)

    McElwain, Michael; Van Gorkom, Kyle; Bowers, Charles W.; Carnahan, Timothy M.; Kimble, Randy A.; Knight, J. Scott; Lightsey, Paul; Maghami, Peiman G.; Mustelier, David; Niedner, Malcolm B.; hide

    2017-01-01

    The James Webb Space Telescope (JWST) is a large (6.5 m) cryogenic segmented aperture telescope with science instruments that cover the near- and mid-infrared from 0.6-27 microns. The large aperture not only provides high photometric sensitivity, but it also enables high angular resolution across the bandpass, with a diffraction limited point spread function (PSF) at wavelengths longer than 2 microns. The JWST PSF quality and stability are intimately tied to the science capabilities as it is convolved with the astrophysical scene. However, the PSF evolves at a variety of timescales based on telescope jitter and thermal distortion as the observatory attitude is varied. We present the image quality and stability requirements, recent predictions from integrated modeling, measurements made during ground-based testing, and performance characterization activities that will be carried out as part of the commissioning process.

  9. Stability of a dragged viscous thread: Onset of ``stitching'' in a fluid-mechanical ``sewing machine''

    NASA Astrophysics Data System (ADS)

    Ribe, Neil M.; Lister, John R.; Chiu-Webster, Sunny

    2006-12-01

    A thin thread of viscous fluid that falls on a moving belt acts like a fluid-mechanical "sewing machine," exhibiting a rich variety of "stitch" patterns including meanders, translated coiling, slanted loops, braiding, figures-of-eight, W-patterns, side kicks, and period-doubled patterns. Using a numerical linear stability analysis, we determine the critical belt speed and oscillation frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to transverse oscillations or "meandering." The predictions of the stability analysis agree closely with the experimental measurements of Chiu-Webster and Lister [J. Fluid Mech. 569, 89 (2006)]. Moreover, the critical belt speed and onset frequency for meandering are nearly identical to the contact-point migration speed and angular frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.

  10. Experiment research on inertia-aided adaptive electronic image stabilization of optical stable platform

    NASA Astrophysics Data System (ADS)

    Lu, Xiaodong; Wu, Tianze; Zhou, Jun; Zhao, Bin; Ma, Xiaoyuan; Tang, Xiucheng

    2016-03-01

    An electronic image stabilization method compounded with inertia information, which can compensate the coupling interference caused by the pitch-yaw movement of the optical stable platform system, has been proposed in this paper. Firstly the mechanisms of coning rotation and lever-arm translation of line of sight (LOS) are analyzed during the stabilization process under moving carriers, and the mathematical model which describes the relationship between LOS rotation angle and platform attitude angle are derived. Then the image spin angle caused by coning rotation is estimated by using inertia information. Furthermore, an adaptive block matching method, which based on image edge and angular point, is proposed to smooth the jitter created by the lever-arm translation. This method optimizes the matching process and strategies. Finally, the results of hardware-in-the-loop simulation verified the effectiveness and real-time performance of the proposed method.

  11. Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy.

    PubMed

    Zelyak, O; Fallone, B G; St-Aubin, J

    2017-12-14

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy is shown to potentially increase the efficiency of the dose calculation.

  12. Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Zelyak, O.; Fallone, B. G.; St-Aubin, J.

    2018-01-01

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy is shown to potentially increase the efficiency of the dose calculation.

  13. Corrigendum to "Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy".

    PubMed

    Zelyak, Oleksandr; Fallone, B Gino; St-Aubin, Joel

    2018-03-12

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy is shown to potentially increase the efficiency of the dose calculation. © 2018 Institute of Physics and Engineering in Medicine.

  14. Trunk postural adjustments: Medium-term reliability and correlation with changes of clinical outcomes following an 8-week lumbar stabilization exercise program.

    PubMed

    Boucher, Jean-Alexandre; Preuss, Richard; Henry, Sharon M; Nugent, Marilee; Larivière, Christian

    2018-04-22

    Low back pain (LBP) has been previously associated with delayed anticipatory postural adjustments (APAs) determined by trunk muscle activation. Lumbar stabilization exercise programs (LSEP) for patients with LBP may restore the trunk neuromuscular control of the lumbar spine, and normalize APAs. This exploratory study aimed at testing the reliability of EMG and kinematics-based postural adjustment measures over an 8-week interval, assessing their sensitivity to LBP status and treatment and examining their relationship with clinical outcomes. Muscle activation of 10 trunk muscles, using surface electromyography (EMG), and lumbar angular kinematics were recorded during a rapid arm-raising/lowering task. Patients with LBP were tested before and after an 8-week LSEP. Healthy controls receiving no treatment were assessed over the same interval to determine the reliability of the measures and act as a control group at baseline. Muscle activation onsets and reactive range of motion, range of velocities and accelerations were assessed for between group differences at baseline and pre- to post-treatment effects within patients with LBP using t-tests. Correlations between these dependent variables and the change of clinical outcomes (pain, disability) over treatment were also explored. Kinematic-based measures showed comparable reliability to EMG-based measures. Between-group differences were found in lumbar lateral flexion ROM at baseline (patients < controls). In the patients with LBP, lateral flexion velocity and acceleration significantly increased following the LSEP. Correlational analyses revealed that lumbar angular kinematics were more sensitive to changes in pain intensity following the LSEP compared to EMG measures. These findings are interpreted in from the perspective of guarding behaviors and lumbar stability hypotheses. Future clinical trials are needed to target patients with and without delayed APAs at baseline and to explore the sensitivity of different outcome measures related to APAs. Different tasks more challenging to postural stability may need to be explored to more effectively reveal APA dysfunction. Copyright © 2018. Published by Elsevier Ltd.

  15. Thermal stability of Cu-Cr-Zr alloy processed by equal-channel angular pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abib, Khadidja

    Thermal stability of a Cu-Cr-Zr alloy processed by equal-channel angular pressing up to16 passes was investigated using isochronal annealing ranging from 250 to 850 °C for 1 h. The microstructure, crystallographic texture and micro hardness of samples were characterized through electron back scatter diffraction and Vickers micro hardness measurements. The recrystallized grain size was stable between 250 °C and 500 °C then increased quickly. The achieved mean grain size, after 1, 4 and 16 ECAP passes, was around 5.5 μm. A discontinuous mode of recrystallization was found to occur and a Particle Simulated Nucleation mechanism was evidenced. The evolution ofmore » the high angle grain boundary fraction increased notably after annealing above 550 °C. The crystallographic texture after isochronal annealing was similar to that of ECAP simple shear, no change of the texture during annealing was observed but only slight intensity variations. Micro hardness of all Cu–Cr–Zr samples showed a hardening with two peaks at 400 and 500 °C associated with precipitation of Cu cluster and Cu{sub 5}Zr phase respectively, followed by a subsequent softening upon increasing the annealing temperature due to recrystallization. - Highlight: •The Cu-1Cr-0.1Zr alloy shows a very good thermal stability up to 550 °C after ECAP. •A discontinuous recrystallization was found to occur and PSN mechanism was evidenced. •The annealing texture was found weak and some new components appear. •Hardening is attributed to the Cr clustering followed by the Cu{sub 51}Zr{sub 14} precipitation. •Softening is a result of recrystallization and grain growth progressing.« less

  16. Kinematic real-time feedback is more effective than traditional teaching method in learning ankle joint mobilisation: a randomised controlled trial.

    PubMed

    González-Sánchez, Manuel; Ruiz-Muñoz, Maria; Ávila-Bolívar, Ana Belén; Cuesta-Vargas, Antonio I

    2016-10-06

    To analyse the effect of real-time kinematic feedback (KRTF) when learning two ankle joint mobilisation techniques comparing the results with the traditional teaching method. Double-blind randomized trial. Faculty of Health Sciences. undergraduate students with no experience in manual therapy. Each student practised intensely for 90 min (45 min for each mobilisation) according to the random methodology assigned (G1: traditional method group and G2: KRTF group). G1: an expert professor supervising the student's practice, the professorstudent ratio was 1:8. G2: placed in front of a station where, while they performed the manoeuvre, they received a KRTF on a laptop. total time of mobilisation, time to reach maximum amplitude, maximum angular displacement in the three axes, maximum and average velocity to reach the maximum angular displacement, average velocity during the mobilisation. Among the pre-post intervention measurements, there were significant differences within the two groups for all outcome variables, however, G2 (KRTF) achieved significantly greater improvements in kinematic parameters for the two mobilisations (significant increase in displacement, velocity and significant reduction in the mobilisations runtime) than G1. Ankle plantar flexion: G1's measurement stability (post-intervention) ranged between 0.491 and 0.687, while G2's measurement stability ranged between 0.899 and 0.984. Ankle dorsal flexion mobilisation: G1 the measurement stability (post-intervention) ranged from 0.543 and 0.684 while G2 ranged between 0.899 and 0.974. KRTF was proven to be more effective tool than traditional teaching method in the teaching - learning process of two joint mobilisation techniques. NCT02504710.

  17. Selective contribution of each hamstring muscle to anterior cruciate ligament protection and tibiofemoral joint stability in leg-extension exercise: a simulation study.

    PubMed

    Biscarini, Andrea; Botti, Fabio Massimo; Pettorossi, Vito Enrico

    2013-09-01

    A biomechanical model was developed to simulate the selective effect of the co-contraction force provided by each hamstring muscle on the shear and compressive tibiofemoral joint reaction forces, during open kinetic-chain knee-extension exercises. This model accounts for instantaneous values of knee flexion angle [Formula: see text], angular velocity and acceleration, and for changes in magnitude, orientation, and application point of external resistance. The tibiofemoral shear force (TFSF) largely determines the tensile force on anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL). Biceps femoris is the most effective hamstring muscle in decreasing the ACL-loading TFSF developed by quadriceps contractions for [Formula: see text]. In this range, the semimembranosus generates the dominant tibiofemoral compressive force, which enhances joint stability, opposes anterior/posterior tibial translations, and protects cruciate ligaments. The semitendinosus force provides the greatest decreasing gradient of ACL-loading TFSF for [Formula: see text], and the greatest increasing gradient of tibiofemoral compressive force for [Formula: see text]. However, semitendinosus efficacy is strongly limited by its small physiological section. Hamstring muscles behave as a unique muscle in enhancing the PCL-loading TFSF produced by quadriceps contractions for [Formula: see text]. The levels of hamstrings co-activation that suppress the ACL-loading TFSF considerably shift when the knee angular acceleration is changed while maintaining the same level of knee extensor torque by a concurrent adjustment in the magnitude of external resistance. The knowledge of the specific role and the optimal activation level of each hamstring muscle in ACL protection and tibiofemoral stability are fundamental for planning safe and effective rehabilitative knee-extension exercises.

  18. Modulation of head movement control in humans during treadmill walking

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar P.; Verstraete, Mary C.; Bloomberg, Jacob J.

    2002-01-01

    The purpose of this study was to investigate the coordination of the head relative to the trunk within a gait cycle during gaze fixation. Nine normal subjects walked on a motorized treadmill driven at 1.79 m/s (20 s trials) while fixing their gaze on a centrally located earth-fixed target positioned at a distance of 2 m from their eyes. The net and relative angular motions of the head about the three axes of rotations, as well as the corresponding values for the moments acting on it relative to the trunk during the gait cycle were quantified and used as measures of coordination. The average net moment, as well as the average moments about the different axes were significantly different (P<0.01) between the high impact and low/no impact phases of the gait cycle. However, the average net angular displacement as well as the average angular displacement about the axial rotation axis of the head relative to the trunk was maintained uniform (P>0.01) throughout the gait cycle. The average angular displacement about the lateral bending axis was significantly increased (P<0.01) during the high impact phase while that about the flexion-extension axis was significantly decreased (P<0.01) throughout the gait cycle. Thus, the coordination of the motion of the head relative to the trunk during walking is dynamically modulated depending on the behavioral events occurring in the gait cycle. This modulation may serve to aid stabilization of the head by counteracting the force variations acting on the upper body that may aid in the visual fixation of targets during walking.

  19. The Hyper-Angular Rainbow Polarimeter (HARP) CubeSat Observatory and the Characterization of Cloud Properties

    NASA Astrophysics Data System (ADS)

    Neilsen, T. L.; Martins, J. V.; Fish, C. S.; Fernandez Borda, R. A.

    2014-12-01

    The Hyper-Angular Rainbow Polarimeter HARP instrument is a wide field-of-view imager that splits three spatially identical images into three independent polarizers and detector arrays. This technique achieves simultaneous imagery of the same ground target in three polarization states and is the key innovation to achieve high polarimetric accuracy with no moving parts. The spacecraft consists of a 3U CubeSat with 3-axis stabilization designed to keep the image optics pointing nadir during data collection but maximizing solar panel sun pointing otherwise. The hyper-angular capability is achieved by acquiring overlapping images at very fast speeds. An imaging polarimeter with hyper-angular capability can make a strong contribution to characterizing cloud properties. Non-polarized multi-angle measurements have been shown to be sensitive to thin cirrus and can be used to provide climatology of these clouds. Adding polarization and increasing the number of observation angles allows for the retrieval of the complete size distribution of cloud droplets, including accurate information on the width of the droplet distribution in addition to the currently retrieved e­ffective radius. The HARP mission is funded by the NASA Earth Science Technology Office as part of In-Space Validation of Earth Science Technologies (InVEST) program. The HARP instrument is designed and built by a team of students and professionals lead by Dr. Vanderlei Martines at University of Maryland, Baltimore County. The HARP spacecraft is designed and built by a team of students and professionals and The Space Dynamics Laboratory.

  20. Finite-time fault tolerant attitude stabilization control for rigid spacecraft.

    PubMed

    Huo, Xing; Hu, Qinglei; Xiao, Bing

    2014-03-01

    A sliding mode based finite-time control scheme is presented to address the problem of attitude stabilization for rigid spacecraft in the presence of actuator fault and external disturbances. More specifically, a nonlinear observer is first proposed to reconstruct the amplitude of actuator faults and external disturbances. It is proved that precise reconstruction with zero observer error is achieved in finite time. Then, together with the system states, the reconstructed information is used to synthesize a nonsingular terminal sliding mode attitude controller. The attitude and the angular velocity are asymptotically governed to zero with finite-time convergence. A numerical example is presented to demonstrate the effectiveness of the proposed scheme. © 2013 Published by ISA on behalf of ISA.

  1. A Revision on Classical Solutions to the Cauchy Boltzmann Problem for Soft Potentials

    NASA Astrophysics Data System (ADS)

    Alonso, Ricardo J.; Gamba, Irene M.

    2011-05-01

    This short note complements the recent paper of the authors (Alonso, Gamba in J. Stat. Phys. 137(5-6):1147-1165, 2009). We revisit the results on propagation of regularity and stability using L p estimates for the gain and loss collision operators which had the exponent range misstated for the loss operator. We show here the correct range of exponents. We require a Lebesgue's exponent α>1 in the angular part of the collision kernel in order to obtain finiteness in some constants involved in the regularity and stability estimates. As a consequence the L p regularity associated to the Cauchy problem of the space inhomogeneous Boltzmann equation holds for a finite range of p≥1 explicitly determined.

  2. High Temperature Deformation of Twin-Roll Cast Al-Mn-Based Alloys after Equal Channel Angular Pressing.

    PubMed

    Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav

    2015-11-12

    Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed-the strain rate dependence of the parameter m , the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range.

  3. Possible Vascular Injury Due to Screw Eccentricity in Minimally Invasive Total Hip Arthroplasty

    PubMed Central

    Singh, Nishant Kumar; Rai, Sanjay Kumar; Rastogi, Amit

    2017-01-01

    Background: Vascular injury during minimally invasive total hip arthroplasty (THA) is uncommon, yet a well-recognized and serious issue. It emerges because of non-visibility of vascular structures proximal to the pelvic bone during reaming, drilling holes, and fixing of screws. Numerous studies have found that screw fixation during cementless THA is beneficial for the initial stability of cup; yet, no anatomical guidelines support angular eccentric screw fixation. Materials and Methods: In this study, we obtained the pelvic arterial-phase computed tomographic data of thirty eight humans and reconstructed the three-dimensional models of osseous and vessel structures. We performed the surgical simulation to fix these structures with cementless cups and screws with angular eccentricities. Results: The effect of screw eccentricities (angular eccentricities of ±17° and ±34°) on the vascular injury was determined. Measurement between screw and adjoining vessels was performed and analyzed statistically to ascertain a comparative risk study for blood vessels that are not visible during surgery. Conclusion: Authors similarly discussed the significant absence of appreciation of quadrant systems proposed by Wasielewski et al. on eccentric screws. Adjustment of quadrant systems provided by Wasielewski et al. is required for acetabular implants with eccentric holes for fixation of acetabular screws. PMID:28790474

  4. High Temperature Deformation of Twin-Roll Cast Al-Mn-Based Alloys after Equal Channel Angular Pressing

    PubMed Central

    Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav

    2015-01-01

    Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed—the strain rate dependence of the parameter m, the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range. PMID:28793667

  5. Studies of torsional properties of DNA and nucleosomes using angular optical trapping

    NASA Astrophysics Data System (ADS)

    Sheinin, Maxim Y.

    DNA in vivo is subjected to torsional stress due to the action of molecular motors and other DNA-binding proteins. Several decades of research have uncovered the fascinating diversity of DNA transformations under torsion and the important role they play in the regulation of vital cellular processes such as transcription and replication. Recent studies have also suggested that torsion can influence the structure and stability of nucleosomes---basic building blocks of the eukaryotic genome. However, our understanding of the impact of torsion is far from being complete due to significant experimental challenges. In this work we have used a powerful single-molecule experimental technique, angular optical trapping, to address several long-standing issues in the field of DNA and nucleosome mechanics. First, we utilized the high resolution and direct torque measuring capability of the angular optical trapping to precisely measure DNA twist-stretch coupling. Second, we characterized DNA melting under tension and torsion. We found that torsionally underwound DNA forms a left-handed structure, significantly more flexible compared to the regular B-DNA. Finally, we performed the first comprehensive investigation of the single nucleosome behavior under torque and force. Importantly, we discovered that positive torque causes significant dimer loss, which can have implications for transcription through chromatin.

  6. Optical analysis of grazing incidence ring resonators for free-electron lasers

    NASA Astrophysics Data System (ADS)

    Gabardi, David R.; Shealy, David L.

    1990-06-01

    Two types of grazing incidence ring resonators for use with free-electron lasers have been investigated. These cavities utilize off-axis conical and flat mirrors and have been designed to operate in the extreme ultraviolet region of the spectrum. In this paper, a design algorithm that calculates the mirror parameters for propagation of Gaussian TEM mode beams in the two cavity types is presented. Results concerning the angular stability of each type are also shown.

  7. Model-Scale Experiment of the Seakeeping Performance for R/V Melville, Model 5720

    DTIC Science & Technology

    2012-07-01

    Angle 1 Y None Deg Sensor Bourns Rotary Potentiometer 6574S-1-103 NA 39596 KVH Sin 2 Y None volts Sensor KVH Fluxgate Compass C-100...NA Deg Sensor KVH Calc Heading NA N None DegM Calculated KVH Fluxgate Compass C-100 39449 Bow Tracker Sensor Bottom NA N None...3DM-3XI combined three axis of angular rate gyros, accelerometers, and magnetometers to provide various combinations of gyro stabilized Euler

  8. Thermal behavior of copper processed by ECAP at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Gonda, Viktor

    2018-05-01

    Large amount of strengthening can be achieved by equal channel angular pressing (ECAP), by the applied severe plastic deformation during the processing. For pure metals, this high strength is accompanied with low thermal stability due to the large activation energy for recrystallization. In the present paper, the chosen technological route was elevated temperature single pass ECAP processing of copper, and its effect on the thermal behavior during the restoration processes of the deformed samples was studied.

  9. High performance magnetic bearing systems using high temperature superconductors

    DOEpatents

    Abboud, Robert G.

    1998-01-01

    A magnetic bearing apparatus and a method for providing at least one stabilizing force in a magnetic bearing structure with a superconducting magnetic assembly and a magnetic assembly, by providing a superconducting magnetic member in the superconducting magnetic assembly with a plurality of domains and arranging said superconducting magnetic member such that at least one domain has a domain C-axis vector alignment angularly disposed relative to a reference axis of the magnetic member in the magnetic assembly.

  10. Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX–ECAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stráská, Jitka, E-mail: straska.jitka@gmail.com; Janeček, Miloš, E-mail: janecek@met.mff.cuni.cz; Čížek, Jakub, E-mail: jcizek@mbox.troja.mff.cuni.cz

    Thermal stability of the ultra-fine grained (UFG) microstructure of magnesium AZ31 alloy was investigated. UFG microstructure was achieved by a combined two-step severe plastic deformation process: the extrusion (EX) and subsequent equal-channel angular pressing (ECAP). This combined process leads to refined microstructure and enhanced microhardness. Specimens with UFG microstructure were annealed isochronally at temperatures 150–500 °C for 1 h. The evolution of microstructure, mechanical properties and dislocation density was studied by electron backscatter diffraction (EBSD), microhardness measurements and positron annihilation spectroscopy (PAS). The coarsening of the fine-grained structure at higher temperatures was accompanied by a gradual decrease of the microhardnessmore » and decrease of dislocation density. Mechanism of grain growth was studied by general equation for grain growth and Arrhenius equation. Activation energies for grain growth were calculated to be 115, 33 and 164 kJ/mol in temperature ranges of 170–210 °C, 210–400 °C and 400–500 °C (443–483 K, 483–673 K and 673–773 K), respectively. - Highlights: • Microhardness of UFG AZ31 alloy decreases with increasing annealing temperature. • This fact has two reasons: dislocation annihilations and/or grain growth. • The activation energies for grain growth were calculated for all temperature ranges.« less

  11. Resistive wall instabilities and tearing mode dynamics in the EXTRAP T2R thin shell reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Malmberg, J.-A.; Brunsell, P. R.

    2002-01-01

    Observations of resistive wall instabilities and tearing mode dynamics in the EXTRAP T2R thin shell (τw=6 ms) reversed field pinch are described. A nonresonant mode (m=1,n=-10) with the same handedness as the internal field grows nearly exponentially with an average growth time of about 2.6 ms (less than 1/2 of the shell time) consistent with linear stability theory. The externally nonresonant unstable modes (m=1,n>0), predicted by linear stability theory, are observed to have only low amplitudes (in the normal low-Θ operation mode of the device). The radial field of the dominant internally resonant tearing modes (m=1,n=-15 to n=-12) remain low due to spontaneous fast mode rotation, corresponding to angular phase velocities up to 280 krad/s. Phase aligned mode structures are observed to rotate toroidally with an average angular velocity of 40 krad/s, in the opposite direction of the plasma current. Toward the end of the discharge, the radial field of the internally resonant modes grows as the modes slow down and become wall-locked, in agreement with nonlinear computations. Fast rotation of the internally resonant modes has been observed only recently and is attributed to a change of the front-end system (vacuum vessel, shell, and TF coil) of the device.

  12. Stability of Gradient Field Corrections for Quantitative Diffusion MRI.

    PubMed

    Rogers, Baxter P; Blaber, Justin; Welch, E Brian; Ding, Zhaohua; Anderson, Adam W; Landman, Bennett A

    2017-02-11

    In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fields, we predicted the obtained b-values and applied gradient directions throughout a typical field of view for brain imaging for a typical 32-direction diffusion imaging sequence. We measured the stability of these predictions over time. At 80 mm from scanner isocenter, predicted b-value was 1-6% different than intended due to gradient nonlinearity, and predicted gradient directions were in error by up to 1 degree. Over the course of one month the change in these quantities due to calibration-related factors such as scanner drift and variation in phantom placement was <0.5% for b-values, and <0.5 degrees for angular deviation. The proposed calibration procedure allows the estimation of gradient nonlinearity to correct b-values and gradient directions ahead of advanced diffusion image processing for high angular resolution data, and requires only a five-minute phantom scan that can be included in a weekly or monthly quality assurance protocol.

  13. Percolative theories of strongly disordered ceramic high-temperature superconductors.

    PubMed

    Phillips, J C

    2010-01-26

    Optimally doped ceramic superconductors (cuprates, pnictides, etc.) exhibit transition temperatures T(c) much larger than strongly coupled metallic superconductors like Pb (T(c) = 7.2 K, E(g)/kT(c) = 4.5) and exhibit many universal features that appear to contradict the Bardeen, Cooper, and Schrieffer theory of superconductivity based on attractive electron-phonon pairing interactions. These complex materials are strongly disordered and contain several competing nanophases that cannot be described effectively by parameterized Hamiltonian models, yet their phase diagrams also exhibit many universal features in both the normal and superconductive states. Here we review the rapidly growing body of experimental results that suggest that these anomalously universal features are the result of marginal stabilities of the ceramic electronic and lattice structures. These dual marginal stabilities favor both electronic percolation of a dopant network and rigidity percolation of the deformed lattice network. This "double percolation" model has previously explained many features of the normal-state transport properties of these materials and is the only theory that has successfully predicted strict lowest upper bounds for T(c) in the cuprate and pnictide families. Here it is extended to include Coulomb correlations and percolative band narrowing, as well as an angular energy gap equation, which rationalizes angularly averaged gap/T(c) ratios, and shows that these are similar to those of conventional strongly coupled superconductors.

  14. Superconducting gravity gradiometer for space and terrestrial applications

    NASA Technical Reports Server (NTRS)

    Moody, M. V.; Chan, H. A.; Paik, H. J.

    1986-01-01

    A three-axis superconducting gravity gradiometer with a potential sensitivity better than Eotvos per sq root Hz is currently under development for applications in space. Although such a high sensitivity may be needed for only a limited number of terrestrial applications, superconductivity offers many extraordinary effects which can be used to obtain a gravity gradiometer with other characteristics necessary for operation in a hostile moving-base environment. Utilizing a number of recently devised techniques which rely on certain properties of superconductors, a design for a sensitive yet rugged gravity gradiometer with a high degree of stability and a common-mode rejection ratio greater than 10 to the 9th is produced. With a base line of 0.11 m, a sensitivity of 0.1 Eotvos per sq root Hz is expected in an environment monitored to a level of 0.01 m/sq sec sq root Hz for linear vibration and 7 x 10 to the -6th rad/s sq root Hz for angular vibration. A conventional stabilized platform can be used at this level. The intrinsic noise level, which is two orders of magnitude lower, could be achieved by monitoring the attitude with a superconducting angular accelerometer which is under development. In addition, the new gradiometer design has the versatility of adapting the instrument to different gravity biases by adjusting stored dc currents.

  15. TU-F-CAMPUS-I-04: A Novel Phantom to Evaluate Longitudinal and Angular Automatic Tube Current Modulation (ATCM) in CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merzan, D; Bujila, R; Nowik, P

    Purpose: To manufacture a phantom specifically designed for the purpose of evaluating the performance of the longitudinal and angular automatic tube current modulation (ATCM) on modern CT scanners. Methods: In order to evaluate angular ATCM, the phantom has an elliptical cross section (aspect ratio 3:2). To evaluate longitudinal ATCM, the phantom consists of 3 sections, with different major axes (25 cm, 30 cm and 35 cm). Each section is 15 cm long in the longitudinal direction. Between each section is a smooth transition. The phantom was milled from a solid block of PMMA. ATCM performance is evaluated by 1) analyzingmore » the applied tube current for each slice of the phantom and 2) analyzing the distribution of image noise (σ) along the scan direction at different positions in the phantom. A demonstration of the ATCM performance evaluation is given by investigating the effects of miscentering during a CT scan. Results: The developed phantom has proven useful for evaluating both the longitudinal and angular ATCM on modern CT scanners (spiral collimations ≥ 4 cm). Further benefits are the smooth transitions between the sections that prevent abnormal responses in the ATCM and the invariant sections that provide a means for investigating the stability of image noise. The homogeneity of the phantom makes image noise at different positions along the scan direction easy to quantify, which is crucial to understand how well the applied ATCM can produce a desired image quality. Conclusion: It is important to understand how the ATCM functions on CT scanners as it can directly affect dose and image quality. The phantom that has been developed is a most valuable tool to understand how different variables during a scan can affect the outcome of the longitudinal and angular ATCM.« less

  16. Approaching sub-50 nanoradian measurements by reducing the saw-tooth deviation of the autocollimator in the Nano-Optic-Measuring Machine

    NASA Astrophysics Data System (ADS)

    Qian, Shinan; Geckeler, Ralf D.; Just, Andreas; Idir, Mourad; Wu, Xuehui

    2015-06-01

    Since the development of the Nano-Optic-Measuring Machine (NOM), the accuracy of measuring the profile of an optical surface has been enhanced to the 100-nrad rms level or better. However, to update the accuracy of the NOM system to sub-50 nrad rms, the large saw-tooth deviation (269 nrad rms) of an existing electronic autocollimator, the Elcomat 3000/8, must be resolved. We carried out simulations to assess the saw-tooth-like deviation. We developed a method for setting readings to reduce the deviation to sub-50 nrad rms, suitable for testing plane mirrors. With this method, we found that all the tests conducted in a slowly rising section of the saw-tooth show a small deviation of 28.8 to <40 nrad rms. We also developed a dense-measurement method and an integer-period method to lower the saw-tooth deviation during tests of sphere mirrors. Further research is necessary for formulating a precise test for a spherical mirror. We present a series of test results from our experiments that verify the value of the improvements we made.

  17. Short-Range Six-Axis Interferometer Controlled Positioning for Scanning Probe Microscopy

    PubMed Central

    Lazar, Josef; Klapetek, Petr; Valtr, Miroslav; Hrabina, Jan; Buchta, Zdenek; Cip, Onrej; Cizek, Martin; Oulehla, Jindrich; Sery, Mojmir

    2014-01-01

    We present a design of a nanometrology measuring setup which is a part of the national standard instrumentation for nanometrology operated by the Czech Metrology Institute (CMI) in Brno, Czech Republic. The system employs a full six-axis interferometric position measurement of the sample holder consisting of six independent interferometers. Here we report on description of alignment issues and accurate adjustment of orthogonality of the measuring axes. Consequently, suppression of cosine errors and reduction of sensitivity to Abbe offset is achieved through full control in all six degrees of freedom. Due to the geometric configuration including a wide basis of the two units measuring in y-direction and the three measuring in z-direction the angle resolution of the whole setup is minimize to tens of nanoradians. Moreover, the servo-control of all six degrees of freedom allows to keep guidance errors below 100 nrad. This small range system is based on a commercial nanopositioning stage driven by piezoelectric transducers with the range (200 × 200 × 10) μm. Thermally compensated miniature interferometric units with fiber-optic light delivery and integrated homodyne detection system were developed especially for this system and serve as sensors for othogonality alignment. PMID:24451463

  18. Optical bench development for LISA

    NASA Astrophysics Data System (ADS)

    d'Arcio, L.; Bogenstahl, J.; Dehne, M.; Diekmann, C.; Fitzsimons, E. D.; Fleddermann, R.; Granova, E.; Heinzel, G.; Hogenhuis, H.; Killow, C. J.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Shoda, A.; Sohmer, A.; Taylor, A.; Tröbs, M.; Wanner, G.; Ward, H.; Weise, D.

    2017-11-01

    For observation of gravitational waves at frequencies between 30 μHz and 1 Hz, the LISA mission will be implemented in a triangular constellation of three identical spacecraft, which are mutually linked by laser interferometry in an active transponder scheme over a 5 million kilometer arm length. On the end point of each laser link, remote and local beam metrology with respect to inertial proof masses inside the spacecraft is realized by the LISA Optical Bench. It implements further- more various ancillary functions such as point-ahead correction, acquisition sensing, transmit beam conditioning, and laser redundancy switching. A comprehensive design of the Optical Bench has been developed, which includes all of the above mentioned functions and at the same time ensures manufacturability on the basis of hydroxide catalysis bonding, an ultrastable integration technology already perfected in the context of LISA's technology demonstrator mission LISA Pathfinder. Essential elements of this design have been validated by dedicated pre-investigations. These include the demonstration of polarizing heterodyne interferometry at the required Picometer and Nanoradian performance levels, the investigation of potential non-reciprocal noise sources in the so-called backlink fiber, as well as the development of a laser redundancy switch breadboard.

  19. Straightness measurement using laser beam straight datum

    NASA Astrophysics Data System (ADS)

    Uchikoshi, Junichi; Shimada, Shoichi; Ikawa, Naoya; Komura, Akio

    1995-08-01

    Using the direction stabilized laser beam as a physical straight datum, instead of the tangible reference surface, a method is proposed for the measurement of an error motion of a slide table and/or surface profile of mechanical components. A specially designed 2D position sensor/compensator for laser beam center is developed combining a quadrant photo-diode (QPD) position sensor for beam center and the piezo-compensator which compensates the beam shift from the center of QPD. By the use the sensor/compensator proposed, the positional and angular fluctuations of laser beam path is evaluated with nanometric resolution. Combining the sensor with the piezo-driven mirror compensator, the directional stabilizer for the laser beam is also designed in the same manner as the sensor/compensator. The stabilized He-Ne laser beam can be used as the metrological datum of straightness within the accuracy of 2 X 10 -8 rad. By mounting the position sensor/compensator on a slide table, the carriage with working distance of 1 m is so designed and built as to move straight along the stabilized laser beam. The carriage can be used as a mechanical straight datum with the accuracy equivalent to the laser beam stability.

  20. Analytical study of magnetohydrodynamic propulsion stability

    NASA Astrophysics Data System (ADS)

    Abdollahzadeh Jamalabadi, M. Y.

    2014-09-01

    In this paper an analytical solution for the stability of the fully developed flow drive in a magneto-hydro-dynamic pump with pulsating transverse Eletro-magnetic fields is presented. To do this, a theoretical model of the flow is developed and the analytical results are obtained for both the cylindrical and Cartesian configurations that are proper to use in the propulsion of marine vessels. The governing parabolic momentum PDEs are transformed into an ordinary differential equation using approximate velocity distribution. The numerical results are obtained and asymptotic analyses are built to discover the mathematical behavior of the solutions. The maximum velocity in a magneto-hydro-dynamic pump versus time for various values of the Stuart number, electro-magnetic interaction number, Reynolds number, aspect ratio, as well as the magnetic and electrical angular frequency and the shift of the phase angle is presented. Results show that for a high Stuart number there is a frequency limit for stability of the fluid flow in a certain direction of the flow. This stability frequency is dependent on the geometric parameters of a channel.

  1. A Coupled Aeroelastic Model for Launch Vehicle Stability Analysis

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2010-01-01

    A technique for incorporating distributed aerodynamic normal forces and aeroelastic coupling effects into a stability analysis model of a launch vehicle is presented. The formulation augments the linear state-space launch vehicle plant dynamics that are compactly derived as a system of coupled linear differential equations representing small angular and translational perturbations of the rigid body, nozzle, and sloshing propellant coupled with normal vibration of a set of orthogonal modes. The interaction of generalized forces due to aeroelastic coupling and thrust can be expressed as a set of augmenting non-diagonal stiffness and damping matrices in modal coordinates with no penalty on system order. While the eigenvalues of the structural response in the presence of thrust and aeroelastic forcing can be predicted at a given flight condition independent of the remaining degrees of freedom, the coupled model provides confidence in closed-loop stability in the presence of rigid-body, slosh, and actuator dynamics. Simulation results are presented that characterize the coupled dynamic response of the Ares I launch vehicle and the impact of aeroelasticity on control system stability margins.

  2. High performance magnetic bearing systems using high temperature superconductors

    DOEpatents

    Abboud, R.G.

    1998-05-05

    Disclosed are a magnetic bearing apparatus and a method for providing at least one stabilizing force in a magnetic bearing structure with a superconducting magnetic assembly and a magnetic assembly, by providing a superconducting magnetic member in the superconducting magnetic assembly with a plurality of domains and arranging said superconducting magnetic member such that at least one domain has a domain C-axis vector alignment angularly disposed relative to a reference axis of the magnetic member in the magnetic assembly. 7 figs.

  3. Protecting the entanglement of twisted photons by adaptive optics

    NASA Astrophysics Data System (ADS)

    Leonhard, Nina; Sorelli, Giacomo; Shatokhin, Vyacheslav N.; Reinlein, Claudia; Buchleitner, Andreas

    2018-01-01

    We study the efficiency of adaptive optics (AO) correction for the free-space propagation of entangled photonic orbital-angular-momentum (OAM) qubit states to reverse moderate atmospheric turbulence distortions. We show that AO can significantly reduce crosstalk to modes within and outside the encoding subspace and thereby stabilize entanglement against turbulence. This method establishes a reliable quantum channel for OAM photons in turbulence, and it enhances the threshold turbulence strength for secure quantum communication by at least a factor 2.

  4. Beam-centroid tracking instrument for ion thrusters

    NASA Astrophysics Data System (ADS)

    Pollard, J. E.

    1995-03-01

    Thrust vector stability for an electrostatic ion engine can be measured with improved sensitivity and time resolution by the method described here. Four double-wire Langmuir probes, aligned in the form of a cross, are placed in the exhaust plume and are translated by a motorized positioning system to balance the currents collected along two orthogonal axes. The thrust vector position is thereby measured with an angular resolution of less than 0.01 deg and a response time of less than 5 sec.

  5. On the 'flip-flop' instability of Bondi-Hoyle accretion flows

    NASA Technical Reports Server (NTRS)

    Livio, Mario; Soker, Noam; Matsuda, Takuya; Anzer, Ulrich

    1991-01-01

    A simple physical interpretation is advanced by means of an analysis of the shock cone in the accretion flows past a compact object and with an examination of the accretion-line stability analyses. The stability of the conical shock is examined against small angular deflections with attention given to several simplifying assumptions. A line instability is identified in the Bondi-Hoyle accretion flows that leads to the formation of a large opening-angle shock. When the opening angle becomes large the instability becomes irregular oscillation. The analytical methodology is compared to previous numerical configurations that demonstrate different shock morphologies. The Bondi-Hoyle accretion onto a compact object is concluded to generate a range of nonlinear instabilities in both homogeneous and inhomogeneous cases with a quasiperiodic oscillation in the linear regime.

  6. Three Axes MEMS Combined Sensor for Electronic Stability Control System

    NASA Astrophysics Data System (ADS)

    Jeong, Heewon; Goto, Yasushi; Aono, Takanori; Nakamura, Toshiaki; Hayashi, Masahide

    A microelectromechanical systems (MEMS) combined sensor measuring two-axis accelerations and an angular rate (rotation) has been developed for an electronic stability control system of automobiles. With the recent trend to mount the combined sensors in the engine compartment, the operation temperature range increased drastically, with the request of immunity to environmental disturbances such as vibration. In this paper, we report the combined sensor which has a gyroscopic part and two acceleration parts in single die. A deformation-robust MEMS structure has been adopted to achieve stable operation under wide temperature range (-40 to 125°C) in the engine compartment. A package as small as 10 × 19 × 4 mm is achieved by adopting TSV (through silicon via) and WLP (wafer-level package) technologies with enough performance as automotive grade.

  7. Rotation and kinetic modifications of the tokamak ideal-wall pressure limit.

    PubMed

    Menard, J E; Wang, Z; Liu, Y; Bell, R E; Kaye, S M; Park, J-K; Tritz, K

    2014-12-19

    The impact of toroidal rotation, energetic ions, and drift-kinetic effects on the tokamak ideal wall mode stability limit is considered theoretically and compared to experiment for the first time. It is shown that high toroidal rotation can be an important destabilizing mechanism primarily through the angular velocity shear; non-Maxwellian fast ions can also be destabilizing, and drift-kinetic damping can potentially offset these destabilization mechanisms. These results are obtained using the unique parameter regime accessible in the spherical torus NSTX of high toroidal rotation speed relative to the thermal and Alfvén speeds and high kinetic pressure relative to the magnetic pressure. Inclusion of rotation and kinetic effects significantly improves agreement between measured and predicted ideal stability characteristics and may provide new insight into tearing mode triggering.

  8. Fast rotating neutron stars with realistic nuclear matter equation of state

    NASA Astrophysics Data System (ADS)

    Cipolletta, F.; Cherubini, C.; Filippi, S.; Rueda, J. A.; Ruffini, R.

    2015-07-01

    We construct equilibrium configurations of uniformly rotating neutron stars for selected relativistic mean-field nuclear matter equations of state (EOS). We compute, in particular, the gravitational mass (M ), equatorial (Req) and polar (Rpol) radii, eccentricity, angular momentum (J ), moment of inertia (I ) and quadrupole moment (M2) of neutron stars stable against mass shedding and secular axisymmetric instability. By constructing the constant frequency sequence f =716 Hz of the fastest observed pulsar, PSR J1748-2446ad, and constraining it to be within the stability region, we obtain a lower mass bound for the pulsar, Mmin=[1.2 - 1.4 ]M⊙ , for the EOS employed. Moreover, we give a fitting formula relating the baryonic mass (Mb) and gravitational mass of nonrotating neutron stars, Mb/M⊙=M /M⊙+(13 /200 )(M /M⊙)2 [or M /M⊙=Mb/M⊙-(1 /20 )(Mb/M⊙)2], which is independent of the EOS. We also obtain a fitting formula, although not EOS independent, relating the gravitational mass and the angular momentum of neutron stars along the secular axisymmetric instability line for each EOS. We compute the maximum value of the dimensionless angular momentum, a /M ≡c J /(G M2) (or "Kerr parameter"), (a /M )max≈0.7 , found to be also independent of the EOS. We then compare and contrast the quadrupole moment of rotating neutron stars with the one predicted by the Kerr exterior solution for the same values of mass and angular momentum. Finally, we show that, although the mass quadrupole moment of realistic neutron stars never reaches the Kerr value, the latter is closely approached from above at the maximum mass value, as physically expected from the no-hair theorem. In particular, the stiffer the EOS, the closer the mass quadrupole moment approaches the value of the Kerr solution.

  9. The effect of sinusoidal rolling ground motion on lifting biomechanics.

    PubMed

    Ning, Xiaopeng; Mirka, Gary A

    2010-12-01

    The objective of this study was to quantify the effects of ground surface motion on the biomechanical responses of a person performing a lifting task. A boat motion simulator (BMS) was built to provide a sinusoidal ground motion (simultaneous vertical linear translation and a roll angular displacement) that simulates the deck motion on a small fishing boat. Sixteen participants performed lifting, lowering and static holding tasks under conditions of two levels of mass (5 and 10 kg) and five ground moving conditions. Each ground moving condition was specified by its ground angular displacement and instantaneous vertical acceleration: A): +6°, -0.54 m/s(2); B): +3°, -0.27 m/s(2); C): 0°, 0m/s(2); D): -3°, 0.27 m/s(2); and E): -6°, 0.54 m/s(2). As they performed these tasks, trunk kinematics were captured using the lumbar motion monitor and trunk muscle activities were evaluated through surface electromyography. The results showed that peak sagittal plane angular acceleration was significantly higher in Condition A than in Conditions C, D and E (698°/s(2) vs. 612-617°/s(2)) while peak sagittal plane angular deceleration during lowering was significantly higher in moving conditions (conditions A and E) than in the stationary condition C (538-542°/s(2) vs. 487°/s(2)). The EMG results indicate that the boat motions tend to amplify the effects of the slant of the lifting surface and the external oblique musculature plays an important role in stabilizing the torso during these dynamic lifting tasks. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Design of stabilized platforms for deep space optical communications (DSOC)

    NASA Astrophysics Data System (ADS)

    Jacka, N.; Walter, R.; Laughlin, D.; McNally, J.

    2017-02-01

    Numerous Deep Space Optical Communications (DSOC) demonstrations are planned by NASA to provide the basis for future implementation of optical communications links in planetary science missions and eventually manned missions to Mars. There is a need for a simple, robust precision optical stabilization concept for long-range free space optical communications applications suitable for optical apertures and masses larger than the current state of the art. We developed a stabilization concept by exploiting the ultra-low noise and wide bandwidth of ATA-proprietary Magnetohydrodynamic (MHD) angular rate sensors and building on prior practices of flexure-based isolation. We detail a stabilization approach tailored for deep space optical communications, and present an innovative prototype design and test results. Our prototype system provides sub-micro radian stabilization for a deep space optical link such as NASA's integrated Radio frequency and Optical Communications (iROC) and NASA's DSOC programs. Initial test results and simulations suggest that >40 dB broadband jitter rejection is possible without placing unrealistic expectations on the control loop bandwidth and flexure isolation frequency. This approach offers a simple, robust method for platform stabilization without requiring a gravity offload apparatus for ground testing or launch locks to survive a typical launch environment. This paper reviews alternative stabilization concepts, their advantages and disadvantages, as well as, their applicability to various optical communications applications. We present results from testing that subjected the prototype system to realistic spacecraft base motion and confirmed predicted sub-micro radian stabilization performance with a realistic 20-cm aperture.

  11. Wavefront shaping with disorder-engineered metasurfaces

    NASA Astrophysics Data System (ADS)

    Jang, Mooseok; Horie, Yu; Shibukawa, Atsushi; Brake, Joshua; Liu, Yan; Kamali, Seyedeh Mahsa; Arbabi, Amir; Ruan, Haowen; Faraon, Andrei; Yang, Changhuei

    2018-02-01

    Recently, wavefront shaping with disordered media has demonstrated optical manipulation capabilities beyond those of conventional optics, including extended volume, aberration-free focusing and subwavelength focusing. However, translating these capabilities to useful applications has remained challenging as the input-output characteristics of the disordered media (P variables) need to be exhaustively determined via O(P) measurements. Here, we propose a paradigm shift where the disorder is specifically designed so its exact input-output characteristics are known a priori and can be used with only a few alignment steps. We implement this concept with a disorder-engineered metasurface, which exhibits additional unique features for wavefront shaping such as a large optical memory effect range in combination with a wide angular scattering range, excellent stability, and a tailorable angular scattering profile. Using this designed metasurface with wavefront shaping, we demonstrate high numerical aperture (NA > 0.5) focusing and fluorescence imaging with an estimated 2.2 × 108 addressable points in an 8 mm field of view.

  12. Hollow vortex Gaussian beams

    NASA Astrophysics Data System (ADS)

    Zhou, GuoQuan; Cai, YangJian; Dai, ChaoQing

    2013-05-01

    A kind of hollow vortex Gaussian beam is introduced. Based on the Collins integral, an analytical propagation formula of a hollow vortex Gaussian beam through a paraxial ABCD optical system is derived. Due to the special distribution of the optical field, which is caused by the initial vortex phase, the dark region of a hollow vortex Gaussian beam will not disappear upon propagation. The analytical expressions for the beam propagation factor, the kurtosis parameter, and the orbital angular momentum density of a hollow vortex Gaussian beam passing through a paraxial ABCD optical system are also derived, respectively. The beam propagation factor is determined by the beam order and the topological charge. The kurtosis parameter and the orbital angular momentum density depend on beam order n, topological charge m, parameter γ, and transfer matrix elements A and D. As a numerical example, the propagation properties of a hollow vortex Gaussian beam in free space are demonstrated. The hollow vortex Gaussian beam has eminent propagation stability and has crucial application prospects in optical micromanipulation.

  13. Lux in obscuro II: photon orbits of extremal AdS black holes revisited

    NASA Astrophysics Data System (ADS)

    Tang, Zi-Yu; Ong, Yen Chin; Wang, Bin

    2017-12-01

    A large class of spherically symmetric static extremal black hole spacetimes possesses a stable null photon sphere on their horizons. For the extremal Kerr-Newman family, the photon sphere only really coincides with the horizon in the sense clarified by Doran. The condition under which a photon orbit is stable on an asymptotically flat extremal Kerr-Newman black hole horizon has recently been clarified; it is found that a sufficiently large angular momentum destabilizes the photon orbit, whereas an electrical charge tends to stabilize it. We investigated the effect of a negative cosmological constant on this observation, and found the same behavior in the case of extremal asymptotically Kerr-Newman-AdS black holes in (3+1) -dimensions. In (2+1) -dimensions, in the presence of an electrical charge, the angular momentum never becomes large enough to destabilize the photon orbit. We comment on the instabilities of black hole spacetimes with a stable photon orbit.

  14. Universal relations for differentially rotating relativistic stars at the threshold to collapse

    NASA Astrophysics Data System (ADS)

    Bozzola, Gabriele; Stergioulas, Nikolaos; Bauswein, Andreas

    2018-03-01

    A binary neutron star merger produces a rapidly and differentially rotating compact remnant whose lifespan heavily affects the electromagnetic and gravitational emissions. Its stability depends on both the equation of state (EOS) and the rotation law and it is usually investigated through numerical simulations. Nevertheless, by means of a sufficient criterion for secular instability, equilibrium sequences can be used as a computational inexpensive way to estimate the onset of dynamical instability, which, in general, is close to the secular one. This method works well for uniform rotation and relies on the location of turning points: stellar models that are stationary points in a sequence of equilibrium solutions with constant rest mass or angular momentum. Here, we investigate differentially rotating models (using a large number of EOSs and different rotation laws) and find that several universal relations between properly scaled gravitational mass, rest mass and angular momentum of the turning-point models that are valid for uniform rotation are insensitive to the degree of differential rotation, to high accuracy.

  15. Quasi-Sun-Pointing of Spacecraft Using Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Spilker, Thomas

    2003-01-01

    A report proposes a method of utilizing solar-radiation pressure to keep the axis of rotation of a small spin-stabilized spacecraft pointed approximately (typically, within an angle of 10 deg to 20 deg) toward the Sun. Axisymmetry is not required. Simple tilted planar vanes would be attached to the outer surface of the body, so that the resulting spacecraft would vaguely resemble a rotary fan, windmill, or propeller. The vanes would be painted black for absorption of Solar radiation. A theoretical analysis based on principles of geometric optics and mechanics has shown that torques produced by Solar-radiation pressure would cause the axis of rotation to precess toward Sun-pointing. The required vane size would be a function of the angular momentum of the spacecraft and the maximum acceptable angular deviation from Sun-pointing. The analysis also shows that the torques produced by the vanes would slowly despin the spacecraft -- an effect that could be counteracted by adding specularly reflecting "spin-up" vanes.

  16. Exercise tricycle for paraplegics.

    PubMed

    Gföhler, M; Loicht, M; Lugner, P

    1998-01-01

    The work describes a tricycle that can be used by paraplegics without assistance. Paraplegics can get on and off the tricycle independently, using hydraulic adjustment of the saddle height. The two rear wheels can be swivelled with adjustable hydraulic damping, which avoids the stability problems of a standard tricycle when riding around bends. The principal driving power is assumed to be provided by functional electrical stimulation of the femoral muscles. A hub motor is integrated in the front wheel to increase the radius of action, as additional drive for cycling up gradients and in case muscle force is not sufficient. The desired drive power is adjusted by a throttle grip on the handlebar. The percentage of motor power can also be adjusted. The force applied to the pedal, the absolute angular position of the crank, and the angular velocity of the front wheel are continuously measured by a force measurement pedal and a goniometer. Based on this information, the motor and the functional electrical stimulation of the legs are controlled.

  17. The influence of gyroscopic forces on the dynamic behavior and flutter of rotating blades

    NASA Technical Reports Server (NTRS)

    Sisto, F.; Chang, A. T.

    1983-01-01

    The structural dynamics of a cantilever turbomachine blade mounted on a spinning and precessing rotor are investigated. Both stability and forced vibration are considered with a blade model that increases in complexity (and verisimilitude) from a spring-restrained point mass, to a uniform cantilever, to a twisted uniform cantilever turbomachine blade mounted on a spinning and precessing rotor are investigated. Both stability and forced vibration are considered with a blade model that increases in complexity (and verisimilitude) from a spring-restrained point mass, to a uniform cantilever, to a twisted uniform cantilever, to a tapered twisted cantilever of arbitrary cross-section. In every instance the formulation is from first principles using a finite element based on beam theory. Both ramp-type and periodic-type precessional angular displacements are considered. In concluding, forced vibrating and flutter are studied using the final and most sophisticated structural model. The analysis of stability is presented and a number of numerical examples are worked out.

  18. Magnetohydrodynamic stability of stochastically driven accretion flows.

    PubMed

    Nath, Sujit Kumar; Mukhopadhyay, Banibrata; Chattopadhyay, Amit K

    2013-07-01

    We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise.

  19. Optical Reflectance Measurements for Commonly Used Reflectors

    NASA Astrophysics Data System (ADS)

    Janecek, Martin; Moses, William W.

    2008-08-01

    When simulating light collection in scintillators, modeling the angular distribution of optical light reflectance from surfaces is very important. Since light reflectance is poorly understood, either purely specular or purely diffuse reflectance is generally assumed. In this paper we measure the optical reflectance distribution for eleven commonly used reflectors. A 440 nm, output power stabilized, un-polarized laser is shone onto a reflector at a fixed angle of incidence. The reflected light's angular distribution is measured by an array of silicon photodiodes. The photodiodes are movable to cover 2pi of solid angle. The light-induced current is, through a multiplexer, read out with a digital multimeter. A LabVIEW program controls the motion of the laser and the photodiode array, the multiplexer, and the data collection. The laser can be positioned at any angle with a position accuracy of 10 arc minutes. Each photodiode subtends 6.3deg, and the photodiode array can be positioned at any angle with up to 10 arc minute angular resolution. The dynamic range for the current measurements is 10 5:1. The measured light reflectance distribution was measured to be specular for several ESR films as well as for aluminum foil, mostly diffuse for polytetrafluoroethylene (PTFE) tape and titanium dioxide paint, and neither specular nor diffuse for Lumirrorreg, Melinexreg and Tyvekreg. Instead, a more complicated light distribution was measured for these three materials.

  20. A femtosecond Yb-doped fiber laser with generalized vector vortex beams output (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huo, Tiancheng; Qi, Li; Zhang, Buyun; Chen, Zhongping

    2017-03-01

    Light carries both spin and orbital angular momentum (OAM) and the superpositions of these two dynamical properties have found many applications. Many techniques exist to create such light sources but none allow their creation at the femtosecond fiber laser. Here we report on a novel mode-locked Ytterbium-doped fiber laser that generates femtosecond pulses with generalized vector vortex states. The controlled generation of such pulses such as azimuthally and radially polarized light with definite orbital angular momentum modes are demonstrated. A unidirectional ring cavity constructed with the Yb-doped fiber placed at the end of the fiber section to reduces unnecessary nonlinear effects is employed for self-starting operation. Pairs of diffraction gratings are used for compensating the normal group velocity dispersion of the fiber and other elements. Mode-locked operation is achieved based on nonlinear polarization evolution, which is mainly implemented with the single mode fiber, the bulk wave plates and the variable spiral plates (q-plate with topological charge q=0.5). The conversion from spin angular momentum to the OAM and reverse inside the laser cavity are realized by means of a quarter-wave plate and a q-plate so that the polarization control was mapped to OAM mode control. The fiber laser is diode pumped by a wavelength-division multiplexing coupler, which leads to excellent stability and portability.

  1. Mass transfer in white dwarf-neutron star binaries

    NASA Astrophysics Data System (ADS)

    Bobrick, Alexey; Davies, Melvyn B.; Church, Ross P.

    2017-05-01

    We perform hydrodynamic simulations of mass transfer in binaries that contain a white dwarf and a neutron star (WD-NS binaries), and measure the specific angular momentum of material lost from the binary in disc winds. By incorporating our results within a long-term evolution model, we measure the long-term stability of mass transfer in these binaries. We find that only binaries containing helium white dwarfs (WDs) with masses less than a critical mass of MWD, crit = 0.2 M⊙ undergo stable mass transfer and evolve into ultracompact X-ray binaries. Systems with higher mass WDs experience unstable mass transfer, which leads to tidal disruption of the WD. Our low critical mass compared to the standard jet-only model of mass-loss arises from the efficient removal of angular momentum in the mechanical disc winds, which develop at highly super-Eddington mass-transfer rates. We find that the eccentricities expected for WD-NS binaries when they come into contact do not affect the loss of angular momentum, and can only affect the long-term evolution if they change on shorter time-scales than the mass-transfer rate. Our results are broadly consistent with the observed numbers of both ultracompact X-ray binaries and radio pulsars with WD companions. The observed calcium-rich gap transients are consistent with the merger rate of unstable systems with higher mass WDs.

  2. Active Flow Control and Global Stability Analysis of Separated Flow Over a NACA 0012 Airfoil

    NASA Astrophysics Data System (ADS)

    Munday, Phillip M.

    The objective of this computational study is to examine and quantify the influence of fundamental flow control inputs in suppressing flow separation over a canonical airfoil. Most flow control studies to this date have relied on the development of actuator technology, and described the control input based on specific actuators. Taking advantage of a computational framework, we generalize the inputs to fundamental perturbations without restricting inputs to a particular actuator. Utilizing this viewpoint, generalized control inputs aim to aid in the quantification and support the design of separation control techniques. This study in particular independently introduces wall-normal momentum and angular momentum to the separated flow using swirling jets through model boundary conditions. The response of the flow field and the surface vorticity fluxes to various combinations of actuation inputs are examined in detail. By closely studying different variables, the influence of the wall-normal and angular momentum injections on separated flow is identified. As an example, open-loop control of fully separated, incompressible flow over a NACA 0012 airfoil at alpha = 6° and 9° with Re = 23,000 is examined with large-eddy simulations. For the shallow angle of attack alpha = 6°, the small recirculation region is primarily affected by wall-normal momentum injection. For a larger separation region at alpha = 9°, it is observed that the addition of angular momentum input to wall-normal momentum injection enhances the suppression of flow separation. Reducing the size of the separated flow region significantly impacts the forces, and in particular reduces drag and increases lift on the airfoil. It was found that the influence of flow control on the small recirculation region (alpha = 6°) can be sufficiently quantified with the traditional coefficient of momentum. At alpha = 9°, the effects of wall-normal and angular momentum inputs are captured by modifying the standard definition of the coefficient of momentum, which successfully characterizes suppression of separation and lift enhancement. The effect of angular momentum is incorporated into the modified coefficient of momentum by introducing a characteristic swirling jet velocity based on the non-dimensional swirl number. With the modified coefficient of momentum, this single value is able to categorize controlled flows into separated, transitional, and attached flows. With inadequate control input (separated flow regime), lift decreased compared to the baseline flow. Increasing the modified coefficient of momentum, flow transitions from separated to attached and accordingly results in improved aerodynamic forces. Modifying the spanwise spacing, it is shown that the minimum modified coefficient of momentum input required to begin transitioning the flow is dependent on actuator spacing. The growth (or decay) of perturbations can facilitate or inhibit the influence of flow control inputs. Biglobal stability analysis is considered to further analyze the behavior of control inputs on separated flow over a symmetric airfoil. Assuming a spanwise periodic waveform for the perturbations, the eigenvalues and eigenvectors about a base flow are solved to understand the influence of spanwise variation on the development of the flow. Two algorithms are developed and validated to solve for the eigenvalues of the flow: an algebraic eigenvalue solver (matrix based) and a time-stepping algorithm. The matrix based approach is formulated without ever storing the matrices, creating a computationally memory efficient algorithm. Increasing the Reynolds number to Re = 23,000 over a NACA 0012 airfoil, the time-stepper method is implemented due to rising computational cost of the matrix-based method. Stability analysis about the time-averaged flow is performed for spanwise wavenumbers of beta = 1/c, 10pi/ c and 20pi/c, which the latter two wavenumbers are representative of the spanwise spacing between the actuators. The largest spanwise wavelength (beta = 1/c) contained unstable modes that ranged from low to high frequency, and a particular unstable low-frequency mode corresponding to a frequency observed in the lift forces of the baseline large-eddy simulation. For the larger spanwise wavenumbers, beta = 10pi/ c (Lz/c = 0.2) and 20pi/c (Lz/c = 0.1), low-frequency modes were damped and only modes with f > 5were unstable. These results help us gain further insight into the influence of the flow control inputs. In conclusion, it was shown that the influence of wall-normal and angular momentum inputs on fully separated flow can adequately be described by the modified coefficient of momentum. Through further analysis and the development of a biglobal stability solver, spanwise spacing effects observed in the flow control study can be explained. The findings from this study should aid in the development of more intelligently designed flow control strategies and provide guidance in the selection of flow control actuators.

  3. Limits of Stability and Adaptation to Wearing Rocker Bottom Shoes.

    PubMed

    Vieira, Edgar Ramos; Guerrero, Gerardo; Holt, Daniel; Arreaza, Monica; Veroes, Valentina; Brunt, Denis

    2014-06-01

    Stability and balance are fundamental during static and dynamic activities. The effects of wearing rocker bottom sole (RBS) shoes on the limits of stability (LOS) and adaptation to wearing RBS shoes need to be investigated. The objectives of this study were to evaluate the LOS when wearing RBS shoes, and to evaluate if people improve their stability while wearing RBS shoes over time. Eleven female subjects with no lower extremity impairments participated in the study. The LOS were tested at baseline and weeks 3 and 6 using a Neurocom SMART EquiTest equipment. Center of pressure (CoP) was determined using force plates, and the center of gravity (CoG) position was estimated from the CoP measures and subjects' anthropometry. Subjects performed a series of tasks that involved leaning in different directions so as to move the vertical projection of their CoG. End-point excursions of the CoG floor projection were calculated as a percentage of the distance between the starting position and the target. Considering the body as an inverted pendulum, we recorded the average angular velocity of the inverted pendulum during the movements and quantified directional control as a percentage of movement toward versus away from the target. Shoe types were compared using paired t tests, and sessions were compared using repeated measures ANOVA. The angular velocities of the inverted pendulum (ie, CoG velocity) were not significantly different between shoe conditions in the front and back directions at baseline (4 ± 3 with RBS vs 5 ± 2 deg/sec with regular shoes, and 4 ± 1 vs 6 ± 4 deg/sec). Front directional control of the CoG was significantly worse with RBS shoes at weeks 3 and 6 ( P < .015). Front end-point excursions were also lower with RBS shoes both at baseline and week 6 ( P < .014). There were no significant changes over time. The findings indicate that the LOS were negatively affected by wearing RBS shoes and that people do not improve their stability while wearing these shoes even after a 6-week period of use. This study shows that wearing RBS shoes increase instability and the instability remains even after wearing these shoes for six weeks.

  4. Influence of vision on head stabilization strategies in older adults during walking.

    PubMed

    Cromwell, Ronita L; Newton, Roberta A; Forrest, Gail

    2002-07-01

    Maintaining balance during dynamic activities is essential for preventing falls in older adults. Head stabilization contributes to dynamic balance, especially during the functional task of walking. Head stability and the role of vision in this process have not been studied during walking in older adults. Seventeen older adults (76.2 +/- 6.9 years) and 20 young adults (26.0 +/- 3.4 years) walked with their eyes open (EO), with their eyes closed (EC), and with fixed gaze (FG). Participants performed three trials of each condition. Sagittal plane head and trunk angular velocities in space were obtained using an infrared camera system with passive reflective markers. Frequency analyses of head-on-trunk with respect to trunk gains and phases were examined for head-trunk movement strategies used for head stability. Average walking velocity, cadence, and peak head velocity were calculated for each condition. Differences between age groups demonstrated that older adults decreased walking velocity in EO (p =.022). FG (p = .021), and EC (p = .022). and decreased cadence during EC (p = .007). Peak head velocity also decreased across conditions (p < .0001) for older adults. Movement patterns demonstrated increased head stability during EO. diminished head stability with EC, and improved head stability with FG as older adult patterns resembled those of young adults. Increased stability of the lower extremity outcome measures for older adults was indicated by reductions in walking velocity and cadence. Concomitant increases in head stability were related to visual tasks. Increased stability may serve as a protective mechanism to prevent falls. Further, vision facilitates the head stabilization process for older adults to compensate for age-related decrements in other sensory systems subserving dynamic balance.

  5. Wavelength locking of single emitters and multi-emitter modules: simulation and experiments

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Rappaport, Noam; Peleg, Ophir; Berk, Yuri; Dahan, Nir; Klumel, Genady; Baskin, Ilya; Levy, Moshe

    2016-03-01

    Wavelength-stabilized high-brightness single emitters are commonly used in fiber-coupled laser diode modules for pumping Yb-doped lasers at 976 nm, and Nd-doped ones at 808 nm. We investigate the spectral behavior of single emitters under wavelength-selective feedback from a volume Bragg (or hologram) grating (VBG) in a multi-emitter module. By integrating a full VBG model as a multi-layer thin film structure with commercial raytracing software, we simulated wavelength locking conditions as a function of beam divergence and angular alignment tolerances. Good correlation between the simulated VBG feedback strength and experimentally measured locking ranges, in both VBG misalignment angle and laser temperature, is demonstrated. The challenges of assembling multi-emitter modules based on beam-stacked optical architectures are specifically addressed, where the wavelength locking conditions must be achieved simultaneously with high fiber coupling efficiency for each emitter in the module. It is shown that angular misorientation between fast and slow-axis collimating optics can have a dramatic effect on the spectral and power performance of the module. We report the development of our NEON-S wavelength-stabilized fiber laser pump module, which uses a VBG to provide wavelength-selective optical feedback in the collimated portion of the beam. Powered by our purpose-developed high-brightness single emitters, the module delivers 47 W output at 11 A from an 0.15 NA fiber and a 0.3 nm linewidth at 976 nm. Preliminary wavelength-locking results at 808 nm are also presented.

  6. Simultaneous frequency stabilization and high-power dense wavelength division multiplexing (HP-DWDM) using an external cavity based on volume Bragg gratings (VBGs)

    NASA Astrophysics Data System (ADS)

    Hengesbach, Stefan; Klein, Sarah; Holly, Carlo; Witte, Ulrich; Traub, Martin; Hoffmann, Dieter

    2016-03-01

    Multiplexing technologies enable the development of high-brightness diode lasers for direct industrial applications. We present a High-Power Dense Wavelength Division Multiplexer (HP-DWDM) with an average channel spacing of 1.7 (1.5) nm and a subsequent external cavity mirror to provide feedback for frequency stabilization and multiplexing in one step. The "self-optimizing" multiplexing unit consists of four reflective Volume Bragg Gratings (VBGs) with 99% diffraction efficiency and seven dielectric mirrors to overlay the radiation of five input channels with an adjustable channel spacing of 1-2 nm. In detail, we focus on the analysis of the overall optical efficiency, the change of the beam parameter product and the spectral width. The performance is demonstrated using five 90 μm multimode 9xx single emitters with M2<=17. Because of the feedback the lateral (multimodal) spatial and angular intensity distribution changes strongly and the beam parameter product decreases by a factor of 1.2 to 1.9. Thereby the angular intensity distribution is more affected than the width of the beam waist. The spectral width per emitter decreases to 3-200 pm (FWHM) depending on the injection current and the reflectance of the feedback mirror (0.75%, 1.5%, 4%, 6% or 8%). The overall optical multiplexing efficiency ranges between 77% and 86%. With some modifications (e.g. enhanced AR-coatings) we expect 90-95%.

  7. Are Covert Saccade Functionally Relevant in Vestibular Hypofunction?

    PubMed

    Hermann, R; Pelisson, D; Dumas, O; Urquizar, Ch; Truy, E; Tilikete, C

    2018-06-01

    The vestibulo-ocular reflex maintains gaze stabilization during angular or linear head accelerations, allowing adequate dynamic visual acuity. In case of bilateral vestibular hypofunction, patients use saccades to compensate for the reduced vestibulo-ocular reflex function, with covert saccades occurring even during the head displacement. In this study, we questioned whether covert saccades help maintain dynamic visual acuity, and evaluated which characteristic of these saccades are the most relevant to improve visual function. We prospectively included 18 patients with chronic bilateral vestibular hypofunction. Subjects underwent evaluation of dynamic visual acuity in the horizontal plane as well as video recording of their head and eye positions during horizontal head impulse tests in both directions (36 ears tested). Frequency, latency, consistency of covert saccade initiation, and gain of covert saccades as well as residual vestibulo-ocular reflex gain were calculated. We found no correlation between residual vestibulo-ocular reflex gain and dynamic visual acuity. Dynamic visual acuity performance was however positively correlated with the frequency and gain of covert saccades and negatively correlated with covert saccade latency. There was no correlation between consistency of covert saccade initiation and dynamic visual acuity. Even though gaze stabilization in space during covert saccades might be of very short duration, these refixation saccades seem to improve vision in patients with bilateral vestibular hypofunction during angular head impulses. These findings emphasize the need for specific rehabilitation technics that favor the triggering of covert saccades. The physiological origin of covert saccades is discussed.

  8. Dark-dark-soliton dynamics in two density-coupled Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Morera, I.; Mateo, A. Muñoz; Polls, A.; Juliá-Díaz, B.

    2018-04-01

    We study the one-dimensional dynamics of dark-dark solitons in the miscible regime of two density-coupled Bose-Einstein condensates having repulsive interparticle interactions within each condensate (g >0 ). By using an adiabatic perturbation theory in the parameter g12/g , we show that, contrary to the case of two solitons in scalar condensates, the interactions between solitons are attractive when the interparticle interactions between condensates are repulsive g12>0 . As a result, the relative motion of dark solitons with equal chemical potential μ is well approximated by harmonic oscillations of angular frequency wr=(μ /ℏ ) √{(8 /15 ) g12/g } . We also show that, in finite systems, the resonance of this anomalous excitation mode with the spin-density mode of lowest energy gives rise to alternating dynamical instability and stability fringes as a function of the perturbative parameter. In the presence of harmonic trapping (with angular frequency Ω ) the solitons are driven by the superposition of two harmonic motions at a frequency given by w2=(Ω/√{2 }) 2+wr2 . When g12<0 , these two oscillators compete to give rise to an overall effective potential that can be either single well or double well through a pitchfork bifurcation. All our theoretical results are compared with numerical solutions of the Gross-Pitaevskii equation for the dynamics and the Bogoliubov equations for the linear stability. A good agreement is found between them.

  9. Massive graviton geons

    NASA Astrophysics Data System (ADS)

    Aoki, Katsuki; Maeda, Kei-ichi; Misonoh, Yosuke; Okawa, Hirotada

    2018-02-01

    We find vacuum solutions such that massive gravitons are confined in a local spacetime region by their gravitational energy in asymptotically flat spacetimes in the context of the bigravity theory. We call such self-gravitating objects massive graviton geons. The basic equations can be reduced to the Schrödinger-Poisson equations with the tensor "wave function" in the Newtonian limit. We obtain a nonspherically symmetric solution with j =2 , ℓ=0 as well as a spherically symmetric solution with j =0 , ℓ=2 in this system where j is the total angular momentum quantum number and ℓ is the orbital angular momentum quantum number, respectively. The energy eigenvalue of the Schrödinger equation in the nonspherical solution is smaller than that in the spherical solution. We then study the perturbative stability of the spherical solution and find that there is an unstable mode in the quadrupole mode perturbations which may be interpreted as the transition mode to the nonspherical solution. The results suggest that the nonspherically symmetric solution is the ground state of the massive graviton geon. The massive graviton geons may decay in time due to emissions of gravitational waves but this timescale can be quite long when the massive gravitons are nonrelativistic and then the geons can be long-lived. We also argue possible prospects of the massive graviton geons: applications to the ultralight dark matter scenario, nonlinear (in)stability of the Minkowski spacetime, and a quantum transition of the spacetime.

  10. Stabilization and mobility of the head and trunk in wild monkeys during terrestrial and flat-surface walks and gallops.

    PubMed

    Dunbar, Donald C; Badam, Gyani L; Hallgrímsson, Benedikt; Vieilledent, Stéphane

    2004-02-01

    This study investigated the patterns of rotational mobility (> or =20 degrees ) and stability (< or =20 degrees ) of the head and trunk in wild Indian monkeys during natural locomotion on the ground and on the flat-topped surfaces of walls. Adult hanuman langurs (Semnopithecus entellus) and bonnet macaques (Macaca radiata) of either gender were cine filmed in lateral view. Whole-body horizontal linear displacement, head and trunk pitch displacement relative to space (earth horizontal), and vertical head displacement were measured from the cine films. Head-to-trunk pitch angle was calculated from the head-to-space and trunk-to-space measurements. Locomotor velocities, cycle durations, angular segmental velocities, mean segmental positions and mean peak frequencies of vertical and angular head displacements were then calculated from the displacement data. Yaw rotations were observed qualitatively. During quadrupedal walks by both species, the head was free to rotate in the pitch and yaw planes on a stabilized trunk. By contrast, during quadrupedal gallops by both species, the trunk pitched on a stabilized head. During both gaits in both species, head and trunk pitch rotations were symmetrical about comparable mean positions in both gaits, with mean head position aligning the horizontal semicircular canals near earth horizontal. Head pitch direction countered head vertical displacement direction to varying degrees during walks and only intermittently during gallops, providing evidence that correctional head pitch rotations are not essential for gaze stabilization. Head-to-space pitch velocities were below 350 deg. s(-1), the threshold above which, at least among humans, the vestibulo-ocular reflex (VOR) becomes saturated. Mean peak frequencies of vertical translations and pitch rotations of the head ranged from 1 Hz to 2 Hz, a lower frequency range than that in which inertia is predicted to be the major stabilizer of the head in these species. Some variables, which were common to both walks and gallops in both species, are likely to reflect constraints in sensorimotor control. Other variables, which differed between the two gaits in both species, are likely to reflect kinematic differences, whereas variables that differed between the two species are attributed primarily to morphological and behavioural differences. It is concluded that either the head or the trunk can provide the nervous system with a reference frame for spatial orientation and that the segment providing that reference can change, depending upon the kinematic characteristics of the chosen gait.

  11. Degradation nonuniformity in the solar diffuser bidirectional reflectance distribution function.

    PubMed

    Sun, Junqiang; Chu, Mike; Wang, Menghua

    2016-08-01

    The assumption of angular dependence stability of the solar diffuser (SD) throughout degradation is critical to the on-orbit calibration of the reflective solar bands (RSBs) in many satellite sensors. Recent evidence has pointed to the contrary, and in this work, we present a thorough investigative effort into the angular dependence of the SD degradation for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and for the twin Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua spacecrafts. One common key step in the RSB calibration is the use of the SD degradation performance measured by an accompanying solar diffuser stability monitor (SDSM) as a valid substitute for the SD degradation factor in the direction of the RSB view. If SD degradations between these two respective directions do not maintain the same relative relationship over time, then the unmitigated use of the SDSM-measured SD degradation factor in the RSB calibration calculation will generate bias, and consequently, long-term drift in derived science products. We exploit the available history of the on-orbit calibration events to examine the response of the SDSM and the RSB detectors to the incident illumination reflecting off SD versus solar declination angle and show that the angular dependency, particularly at short wavelengths, evolves with respect to time. The generalized and the decisive conclusion is that the bidirectional reflectance distribution function (BRDF) of the SD degrades nonuniformly with respect to both incident and outgoing directions. Thus, the SDSM-based measurements provide SD degradation factors that are biased relative to the RSB view direction with respect to the SD. The analysis also reveals additional interesting phenomena, for example, the sharp behavioral change in the evolving angular dependence observed in Terra MODIS and SNPP VIIRS. For SNPP VIIRS the mitigation for this "SD degradation nonuniformity effect" with respect to angles relies on a "hybrid methodology" using lunar-based calibration to set the reliable long-term baseline. For MODIS, the use of earth targets in the major release Collection 6 to improve calibration coefficients and time-dependent response-versus-scan-angle characterization inherently averts the use of SD and its associated issues. The work further supports that having an open-close operational capability for the space view door can minimize SD degradation and its associated effects due to solar exposure, and thus provide long-term benefits for maintaining calibration and science data accuracy.

  12. Wavelength stabilized multi-kW diode laser systems

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  13. The Effect of Systematic Error in Forced Oscillation Testing

    NASA Technical Reports Server (NTRS)

    Williams, Brianne Y.; Landman, Drew; Flory, Isaac L., IV; Murphy, Patrick C.

    2012-01-01

    One of the fundamental problems in flight dynamics is the formulation of aerodynamic forces and moments acting on an aircraft in arbitrary motion. Classically, conventional stability derivatives are used for the representation of aerodynamic loads in the aircraft equations of motion. However, for modern aircraft with highly nonlinear and unsteady aerodynamic characteristics undergoing maneuvers at high angle of attack and/or angular rates the conventional stability derivative model is no longer valid. Attempts to formulate aerodynamic model equations with unsteady terms are based on several different wind tunnel techniques: for example, captive, wind tunnel single degree-of-freedom, and wind tunnel free-flying techniques. One of the most common techniques is forced oscillation testing. However, the forced oscillation testing method does not address the systematic and systematic correlation errors from the test apparatus that cause inconsistencies in the measured oscillatory stability derivatives. The primary objective of this study is to identify the possible sources and magnitude of systematic error in representative dynamic test apparatuses. Sensitivities of the longitudinal stability derivatives to systematic errors are computed, using a high fidelity simulation of a forced oscillation test rig, and assessed using both Design of Experiments and Monte Carlo methods.

  14. Performance comparison of polarized white light emitting diodes using wire-grid polarizers with polymeric and glass substrates

    NASA Astrophysics Data System (ADS)

    Su, Jung-Chieh; Chou, Shih-Chieh

    2018-03-01

    Polarized white light emitting diodes (WLEDs) packaged with reflective metal wire-grid polarizer of polymeric and glass substrates were investigated. The performance comparison of polymeric wire-grid polarizer film (WGF) and nano wire-grid polarizer (NWGP) with glass substrate was evaluated. The transverse electric field (TE) polarization transmittance of WGF is less than that of NWGP due to its smaller grid parameters. Despite of the higher duty cycle of WGF, the angular-dependent extinction ratio (ER) of the polarized WLEDs (PWLEDs) with WGF is higher than that of with NWGP. Regarding increasing drive currents, the PWLEDs with NWGP had better color stability than that with WGF due to better substrate thermal stability. In summary, linewidth, period and substrate material are the crucial factors for the PWLED packaging using wire grid polarizer.

  15. Evaluation of a Treadmill with Vibration Isolation and Stabilization (TVIS) for Use on the International Space Station

    NASA Technical Reports Server (NTRS)

    McCrory, Jean L.; Lemmon, David R.; Sommer, H. Joseph; Prout, Brian; Smith, Damon; Korth, Deborah W.; Lucero, Javier; Greenisen, Michael; Moore, Jim

    1999-01-01

    A treadmill with vibration isolation and stabilization designed for the International Space Station (ISS) was evaluated during Shuttle mission STS-81. Three crew members ran and walked on the device, which floats freely in zero gravity. For the majority of the more than 2 hours of locomotion studied, the treadmill showed peak to peak linear and angular displacements of less than 2.5 cm and 2.5 deg, respectively. Vibration transmitted to the vehicle was within the microgravity allocation limits that are defined for the ISS. Refinements to the treadmill and harness system are discussed. This approach to treadmill design offers the possibility of generating 1G-like loads on the lower extremities while preserving the microgravity environment of the ISS for structural safety and vibration free experimental conditions.

  16. Evaluation of a Treadmill with Vibration Isolation and Stabilization (TVIS) for use on the International Space Station.

    PubMed

    McCrory, J L; Lemmon, D R; Sommer, H J; Prout, B; Smith, D; Korth, D W; Lucero, J; Greenisen, M; Moore, J; Kozlovskaya, I; Pestov, I; Stepansov, V; Miyakinchenko, Y; Cavanagh, P R

    1999-08-01

    A treadmill with vibration isolation and stabilization designed for the International Space Station (ISS) was evaluated during Shuttle mission STS-81. Three crew members ran and walked on the device, which floats freely in zero gravity. For the majority of the more than 2 hours of locomotion studied, the treadmill showed peak to peak linear and angular displacements of less than 2.5 cm and 2.5 degrees, respectively. Vibration transmitted to the vehicle was within the microgravity allocation limits that are defined for the ISS. Refinements to the treadmill and harness system are discussed. This approach to treadmill design offers the possibility of generating 1G-like loads on the lower extremities while preserving the microgravity environment of the ISS for structural safety and vibration free experimental conditions.

  17. Gravitational wave content and stability of uniformly, rotating, triaxial neutron stars in general relativity.

    PubMed

    Tsokaros, Antonios; Ruiz, Milton; Paschalidis, Vasileios; Shapiro, Stuart L; Baiotti, Luca; Uryū, Kōji

    2017-06-15

    Targets for ground-based gravitational wave interferometers include continuous, quasiperiodic sources of gravitational radiation, such as isolated, spinning neutron stars. In this work, we perform evolution simulations of uniformly rotating, triaxially deformed stars, the compressible analogs in general relativity of incompressible, Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave emission. We employ five models, both normal and supramassive, and track their evolution with different grid setups and resolutions, as well as with two different evolution codes. We find that all models are dynamically stable and produce a strain that is approximately one-tenth the average value of a merging binary system. We track their secular evolution and find that all our stars evolve toward axisymmetry, maintaining their uniform rotation, rotational kinetic energy, and angular momentum profiles while losing their triaxiality.

  18. Spacecraft attitude control using neuro-fuzzy approximation of the optimal controllers

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Woo; Park, Sang-Young; Park, Chandeok

    2016-01-01

    In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to approximate the SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the controller was analyzed in terms of approximation ability, steady-state error, cost, and execution time. The simulations and test results indicate that the developed NFC efficiently approximates the SDRE controller, with asymptotic stability in a bounded region of angular velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an approximated optimal feedback controller can be designed successfully through neuro-fuzzy approximation of the optimal open-loop controller.

  19. Effects of Energy Dissipation in the Sphere-Restricted Full Three-Body Problem

    NASA Astrophysics Data System (ADS)

    Gabriel, T. S. J.

    Recently, the classical N-Body Problem has been adjusted to account for celestial bodies made of constituents of finite density. By imposing a minima on the achievable distance between particles, minimum energy resting states are allowed by the problem. The Full N-Body Problem allows for the dissipation of mechanical energy through surface-surface interactions via impacts or by way of tidal deformation. Barring exogeneous forces and allowing for the dissipation of energy, these systems have discrete, and sometimes multiple, minimum energy states for a given angular momentum. Building the dynamical framework of such finite density systems is a necessary process in outlining the evolution of rubble pile asteroids and other gravitational-granular systems such as protoplanetary discs, and potentially planetary rings, from a theoretical point of view. In all cases, resting states are expected to occur as a necessary step in the ongoing processes of solar system formation and evolution. Previous studies of this problem have been performed in the N=3 case where the bodies are indistinguishable spheres, with all possible relative equilibria and their stability having been identified as a function of the angular momentum of the system. These studies uncovered that at certain levels of angular momentum there exists two minimum energy states, a global and local minimum. Thus a question of interest is in which of these states a dissipative system would preferentially settle and the sensitivity of results to changes in dissipation parameters. Assuming equal-sized, perfectly-rigid bodies, this study investigates the dynamical evolution of three spheres under the influence of mutual gravity and impact mechanics as a function of dissipation parameters. A purpose-written, C-based, Hard Sphere Discrete Element Method code has been developed to integrate trajectories and resolve contact mechanics as grains evolve into minimum energy configurations. By testing many randomized initial conditions, statistics are measured regarding minimum energy states for a given angular momentum range. A trend in the Sphere-Restricted Full Three-Body Problem producing an end state of one configuration over another is found as a function of angular momentum and restitution.

  20. The MAGSAT vector magnetometer: A precision fluxgate magnetometer for the measurement of the geomagnetic field

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Scearce, C. S.; Seek, J.; Scheifele, J.

    1978-01-01

    A description of the precision triaxial fluxgate magnetometer to be flown aboard the MAGSAT spacecraft is presented. The instrument covers the range of + or - 64,000 nT with a resolution of + or - 0.5 nT, an intrinsic accuracy of + or - 0.001% of full scale and an angular alignment stability of the order of 2 seconds of arc. It was developed at NASA's Goddard Space Flight Center and represents the state-of-the-art in precision vector magnetometers developed for spaceflight use.

  1. Ordered and disordered dynamics in monolayers of rolling particles.

    PubMed

    Kim, Byungsoo; Putkaradze, Vakhtang

    2010-12-10

    We consider the ordered and disordered dynamics for monolayers of rolling self-interacting particles modeling water molecules. The rolling constraint represents a simplified model of a strong, but rapidly decaying bond with the surface. We show the existence and nonlinear stability of ordered lattice states, as well as disturbance propagation through and chaotic vibrations of these states. We study the dynamics of disordered gas states and show that there is a surprising and universal linear connection between distributions of angular and linear velocity, allowing definition of temperature.

  2. Recombination of H3(+) and D3(+) Ions in a Flowing Afterglow Plasma

    NASA Technical Reports Server (NTRS)

    Gougousi, T.; Johnsen, R.; Golde, M. F.

    1995-01-01

    The analysis of flowing afterglow plasmas containing H3(+) or D3(+) ions indicates that the de-ionization of such plasmas does not occur by simple dissociative recombination of ions with electrons. An alternative model of de-ionization is proposed in which electrons are captured into H3(**) auto-ionization Rydberg states that are stabilized by collisional mixing of the Rydberg molecules' angular momenta. The proposed mechanism would enable de-ionization to occur without the need for dissociative recombination by the mechanisms of potential-surface crossings.

  3. NASA-ARC 91.5-cm airborne infrared telescope. [tracking mechanism

    NASA Technical Reports Server (NTRS)

    Mobley, R. E.; Brown, T. M.

    1979-01-01

    A 91.5 cm aperture telescope installed aboard NASA-Lockheed C-141A aircraft for the performance of infrared astronomy is described. A unique feature of the telescope is that its entire structure is supported by a 41 cm spherical air bearing which effectively uncouples it from aircraft angular motion, and with inertial stabilization and star tracking, limits tracking errors to less than 1 arc second in most applications. A general description of the system, a summary of its performance, and a detailed description of an offset tracking mechanism is presented.

  4. A new array for the study of ultra high energy gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Brooke, G.; Lambert, A.; Ogden, P. A.; Patel, M.; Ferrett, J. C.; Reid, R. J. O.; Watson, A. A.; West, A. A.

    1985-01-01

    The design and operation of a 32 x 1 10 to the 15th power sq m array of scintillation detectors for the detection of 10 to the 15th power eV cosmic rays is described with an expected angular resolution of 1 deg, thus improving the present signal/background ratio for gamma ray sources. Data are recorded on a hybrid CAMAC, an in-house system which uses a laser and Pockel-Cell arrangement to routinely calibrate the timing stability of the detectors.

  5. Staggered solution procedures for multibody dynamics simulation

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Chiou, J. C.; Downer, J. D.

    1990-01-01

    The numerical solution procedure for multibody dynamics (MBD) systems is termed a staggered MBD solution procedure that solves the generalized coordinates in a separate module from that for the constraint force. This requires a reformulation of the constraint conditions so that the constraint forces can also be integrated in time. A major advantage of such a partitioned solution procedure is that additional analysis capabilities such as active controller and design optimization modules can be easily interfaced without embedding them into a monolithic program. After introducing the basic equations of motion for MBD system in the second section, Section 3 briefly reviews some constraint handling techniques and introduces the staggered stabilized technique for the solution of the constraint forces as independent variables. The numerical direct time integration of the equations of motion is described in Section 4. As accurate damping treatment is important for the dynamics of space structures, we have employed the central difference method and the mid-point form of the trapezoidal rule since they engender no numerical damping. This is in contrast to the current practice in dynamic simulations of ground vehicles by employing a set of backward difference formulas. First, the equations of motion are partitioned according to the translational and the rotational coordinates. This sets the stage for an efficient treatment of the rotational motions via the singularity-free Euler parameters. The resulting partitioned equations of motion are then integrated via a two-stage explicit stabilized algorithm for updating both the translational coordinates and angular velocities. Once the angular velocities are obtained, the angular orientations are updated via the mid-point implicit formula employing the Euler parameters. When the two algorithms, namely, the two-stage explicit algorithm for the generalized coordinates and the implicit staggered procedure for the constraint Lagrange multipliers, are brought together in a staggered manner, they constitute a staggered explicit-implicit procedure which is summarized in Section 5. Section 6 presents some example problems and discussions concerning several salient features of the staggered MBD solution procedure are offered in Section 7.

  6. On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars

    NASA Astrophysics Data System (ADS)

    Fleming, David; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.

    2018-04-01

    To date, no binary star system with an orbital period less than 7.5 days has been observed to host a circumbinary planet (CBP), a puzzling observation given the thousands of binary stars with orbital periods < 10 days discovered by the Kepler mission (Kirk et al., 2016) and the observational biases that favor their detection (Munoz & Lai, 2015). We outline a mechanism that explains the observed lack of CBPs via coupled stellar-tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations, transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that in some cases, the stability semi-major axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that typically, at least one planet is ejected from the system. We apply our theory to the shortest period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar-tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.

  7. Progress report on nuclear spectroscopic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.

    1994-02-18

    The Nuclear Physics group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While the main emphasis is on experimental problems, the authors have maintained a strong collaboration with several theorists in order to best pursue the physics of their measurements. During the last year they have had several experiments at the ATLAS at Argonne National Laboratory, the GAMMASPHERE at the LBL 88 Cyclotron, and with the NORDBALL at the Niels Bohr Institute Tandem. Also, they continue to be very active in the WA93/98 collaboration studying ultra-relativisticmore » heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in the PHENIX Collaboration at the RHIC accelerator under construction at Brookhaven National Laboratory. During the last year their experimental work has been in three broad areas: (1) the structure of nuclei at high angular momentum, (2) the structure of nuclei far from stability, and (3) ultra-relativistic heavy-ion physics. The results of studies in these particular areas are described in this document. These studies concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Another area of research is heavy-ion-induced transfer reactions, which utilize the transfer of nucleons to states with high angular momentum to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions.« less

  8. The three-body problem with short-range interactions

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Fedorov, D. V.; Jensen, A. S.; Garrido, E.

    2001-06-01

    The quantum mechanical three-body problem is studied for general short-range interactions. We work in coordinate space to facilitate accurate computations of weakly bound and spatially extended systems. Hyperspherical coordinates are used in both the interpretation and as an integral part of the numerical method. Universal properties and model independence are discussed throughout the report. We present an overview of the hyperspherical adiabatic Faddeev equations. The wave function is expanded on hyperspherical angular eigenfunctions which in turn are found numerically using the Faddeev equations. We generalize the formalism to any dimension of space d greater or equal to two. We present two numerical techniques for solving the Faddeev equations on the hypersphere. These techniques are effective for short and intermediate/large distances including use for hard core repulsive potentials. We study the asymptotic limit of large hyperradius and derive the analytic behaviour of the angular eigenvalues and eigenfunctions. We discuss four applications of the general method. We first analyze the Efimov and Thomas effects for arbitrary angular momenta and for arbitrary dimensions d. Second we apply the method to extract the general behaviour of weakly bound three-body systems in two dimensions. Third we illustrate the method in three dimensions by structure computations of Borromean halo nuclei, the hypertriton and helium molecules. Fourth we investigate in three dimensions three-body continuum properties of Borromean halo nuclei and recombination reactions of helium atoms as an example of direct relevance for the stability of Bose-Einstein condensates.

  9. Linear stability analysis of collective neutrino oscillations without spurious modes

    NASA Astrophysics Data System (ADS)

    Morinaga, Taiki; Yamada, Shoichi

    2018-01-01

    Collective neutrino oscillations are induced by the presence of neutrinos themselves. As such, they are intrinsically nonlinear phenomena and are much more complex than linear counterparts such as the vacuum or Mikheyev-Smirnov-Wolfenstein oscillations. They obey integro-differential equations, for which it is also very challenging to obtain numerical solutions. If one focuses on the onset of collective oscillations, on the other hand, the equations can be linearized and the technique of linear analysis can be employed. Unfortunately, however, it is well known that such an analysis, when applied with discretizations of continuous angular distributions, suffers from the appearance of so-called spurious modes: unphysical eigenmodes of the discretized linear equations. In this paper, we analyze in detail the origin of these unphysical modes and present a simple solution to this annoying problem. We find that the spurious modes originate from the artificial production of pole singularities instead of a branch cut on the Riemann surface by the discretizations. The branching point singularities on the Riemann surface for the original nondiscretized equations can be recovered by approximating the angular distributions with polynomials and then performing the integrals analytically. We demonstrate for some examples that this simple prescription does remove the spurious modes. We also propose an even simpler method: a piecewise linear approximation to the angular distribution. It is shown that the same methodology is applicable to the multienergy case as well as to the dispersion relation approach that was proposed very recently.

  10. Attitude Stability of a Spacecraft with Slosh Mass Subject to Parametric Excitation

    NASA Astrophysics Data System (ADS)

    Kang, Ja-Young

    2003-09-01

    The attitude motion of a spin-stabilized, upper-stage spacecraft is investigated based on a two-body model, consisting of a symmetric body, representing the spacecraft, and a spherical pendulum, representing the liquid slag pool entrapped in the aft section of the rocket motor. Exact time-varying nonlinear equations are derived and used to eliminate the drawbacks of conventional linear models. To study the stability of the spacecraft's attitude motion, both the spacecraft and pendulum are assumed to be in states of steady spin about the symmetry axis of the spacecraft and the coupled time-varying nonlinear equation of the pendulum is simplified. A quasi-stationary solution to that equation and approximate resonance conditions are determined in terms of the system parameters. The analysis shows that the pendulum is subject to a combination of parametric and external-type excitation by the main body and that energy from the excited pendulum is fed into the main body to develop the coning instability. In this paper, numerical examples are presented to explain the mechanism of the coning angle growth and how angular momenta and disturbance moments are generated.

  11. SU-F-R-21: The Stability of Radiomics Features On 4D FDG-PET/CT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C

    2016-06-15

    Purpose: The aim of our study was to perform a stability analysis of 4D PET-derived features in non-small cell lung carcinoma (NSCLC) based on six different respiratory phases. Methods: The 4D FDG-PET/CT respiratory phases were labeled as T0%, T17%, T33%,T50%, T67%, T83% phases, with the T0% phase approximately corresponding to the normal end-inspiration. Lesions were manually delineated based on fused PET-CT, using a standardized clinical delineation protocol. Six texture parameters were analyzed. Results: Results showed that the majority of assessed features had a low stability such as Homogeneity (0.385–0.416), Dissimilarity (3.707–3.861), Angular two moments (0.013–0.019), Contrast (39.782–49.562), Entropy(4.683–5.002) and Inversemore » differential moment (0.317–0.362) on different respiratory phases. Conclusion: This study suggest that further research of quantitative PET imaging features is warranted with respect to respiratory motion.« less

  12. Design and manufacturing considerations for high-performance gimbals used for land, sea, air, and space

    NASA Astrophysics Data System (ADS)

    Sweeney, Mike; Redd, Lafe; Vettese, Tom; Myatt, Ray; Uchida, David; Sellers, Del

    2015-09-01

    High performance stabilized EO/IR surveillance and targeting systems are in demand for a wide variety of military, law enforcement, and commercial assets for land, sea, air, and space. Operating ranges, wavelengths, and angular resolution capabilities define the requirements for EO/IR optics and sensors, and line of sight stabilization. Many materials and design configurations are available for EO/IR pointing gimbals depending on trade-offs of size, weight, power (SWaP), performance, and cost. Space and high performance military aircraft applications are often driven toward expensive but exceptionally performing beryllium and aluminum beryllium components. Commercial applications often rely on aluminum and composite materials. Gimbal design considerations include achieving minimized mass and inertia simultaneous with demanding structural, thermal, optical, and scene stabilization requirements when operating in dynamic operational environments. Manufacturing considerations include precision lapping and honing of ball bearing interfaces, brazing, welding, and casting of complex aluminum and beryllium alloy structures, and molding of composite structures. Several notional and previously developed EO/IR gimbal platforms are profiled that exemplify applicable design and manufacturing technologies.

  13. Influence of virtual reality on postural stability during movements of quiet stance.

    PubMed

    Horlings, Corinne G C; Carpenter, Mark G; Küng, Ursula M; Honegger, Flurin; Wiederhold, Brenda; Allum, John H J

    2009-02-27

    Balance problems during virtual reality (VR) have been mentioned in the literature but seldom investigated despite the increased use of VR systems as a training or rehabilitation tool. We examined the influence of VR on body sway under different stance conditions. Seventeen young subjects performed four tasks (standing with feet close together or tandem stance on firm and foam surfaces for 60s) under three visual conditions: eyes open without VR, eyes closed, or while viewing a virtual reality scene which moved with body movements. Angular velocity transducers mounted on the shoulder provided measures of body sway in the roll and pitch plane. VR caused increased pitch and roll angles and angular velocities compared to EO. The effects of VR were, for the most part, indistinguishable from eyes closed conditions. Use of a foam surface increased sway compared to a firm surface under eyes closed and VR conditions. During the movements of quiet stance, VR causes an increase in postural sway in amplitude similar to that caused by closing the eyes. This increased sway was present irrespective of stance surface, but was greatest on foam.

  14. Kinematic properties of the helicopter in coordinated turns

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Jeske, J. A.

    1981-01-01

    A study on the kinematic relationship of the variables of helicopter motion in steady, coordinated turns involving inherent sideslip is described. A set of exact kinematic equations which govern a steady coordinated helical turn about an Earth referenced vertical axis is developed. A precise definition for the load factor parameter that best characterizes a coordinated turn is proposed. Formulas are developed which relate the aircraft angular rates and pitch and roll attitudes to the turn parameters, angle of attack, and inherent sideslip. A steep, coordinated helical turn at extreme angles of attack with inherent sideslip is of primary interest. The bank angle of the aircraft can differ markedly from the tilt angle of the normal load factor. The normal load factor can also differ substantially from the accelerometer reading along the vertical body axis of the aircraft. Sideslip has a strong influence on the pitch attitude and roll rate of the helicopter. Pitch rate is independent of angle of attack in a coordinated turn and in the absence of sideslip, angular rates about the stability axes are independent of the aerodynamic characteristics of the aircraft.

  15. Effect of Aerogel Anisotropy in Superfluid 3He-A

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. M.; Li, J. I. A.; Pollanen, J.; Collett, C. A.; Gannon, W. J.; Halperin, W. P.

    2014-03-01

    Two theories have been advanced to describe the effects of anisotropic impurity introduced by stretched silica aerogel on the orientation of the orbital angular momentum l& circ; in superfluid 3He-A. These theories disagree on whether the anisotropy will orient l& circ; perpendicular[2] or parallel[3] to the strain axis. In order to examine this question we have produced and characterized a homogeneous aerogel sample with uniaxial anisotropy introduced during growth, corresponding to stretching of the aerogel. These samples have been shown to stabilize two new chiral states;[4] the higher temperature state being the subject of the present study. Using pulsed NMR we have performed experiments on 3He-A imbibed in this sample in two orientations: strain parallel and perpendicular to the applied magnetic field. From the NMR frequency shifts as a function of tip angle and temperature, we find that the angular momentum l& circ; is oriented along the strain axis, providing evidence for the theory advanced by Sauls. This work was supported by the National Science Foundation, DMR-1103625.

  16. Cosmic censorship conjecture in Kerr-Sen black hole

    NASA Astrophysics Data System (ADS)

    Gwak, Bogeun

    2017-06-01

    The validity of the cosmic censorship conjecture for the Kerr-Sen black hole, which is a solution to the low-energy effective field theory for four-dimensional heterotic string theory, is investigated using charged particle absorption. When the black hole absorbs the particle, the charge on it changes owing to the conserved quantities of the particle. Changes in the black hole are constrained to the equation for the motion of the particle and are consistent with the laws of thermodynamics. Particle absorption increases the mass of the Kerr-Sen black hole to more than that of the absorbed charges such as angular momentum and electric charge; hence, the black hole cannot be overcharged. In the near-extremal black hole, we observe a violation of the cosmic censorship conjecture for the angular momentum in the first order of expansion and the electric charge in the second order. However, considering an adiabatic process carrying the conserved quantities as those of the black hole, we prove the stability of the black hole horizon. Thus, we resolve the violation. This is consistent with the third law of thermodynamics.

  17. Equilibium and Stability of Spherical Vlasov Systems

    NASA Astrophysics Data System (ADS)

    Barnes, D. C.; Chacon, L.; Finn, J. M.

    2002-04-01

    Collisionless systems with inverse square interaction potentials and possible background confining potentials are considered for the case of spherical symmetry and in the Vlasov limit. The equilibrium is the most general, with single-particle distribution function dependence on both total energy E and total angular momentum L. A new formulation of the full integral-equation stability problem is developed. For a general spherical harmonic perturbation potential, the 3D stability problem is reduced to a 2D problem in an arbitrary central plane of motion, then to a small number of coupled 1D problems involving only the radius. Normal modes depend only on the total mode number l, as is shown directly by this new formulation, with all m degenerate. This method has been used for the Coulomb (repulsive) case.[1] An equilibrium family with uniform central (electron) density is found, and the low-frequency response computed to show that these solutions may provide stable confinement of a massive second (ion) species. These methods may be applied to a particle bunch in the beam frame, and some stability results appropriate to this case are presented. Application to the gravitational (attractive) case is also described, and some initial analytic results are presented. [1] D. C. Barnes, L. Chacón, J. M. Finn, “Equilibrium and Low-frequency Stability of a Uniform Density, Collisionless, Spherical Vlasov System,” submitted to Phys. of Plasmas (2002).

  18. Double closed-loop control of integrated optical resonance gyroscope with mean-square exponential stability.

    PubMed

    Li, Hui; Liu, Liying; Lin, Zhili; Wang, Qiwei; Wang, Xiao; Feng, Lishuang

    2018-01-22

    A new double closed-loop control system with mean-square exponential stability is firstly proposed to optimize the detection accuracy and dynamic response characteristic of the integrated optical resonance gyroscope (IORG). The influence mechanism of optical nonlinear effects on system detection sensitivity is investigated to optimize the demodulation gain, the maximum sensitivity and the linear work region of a gyro system. Especially, we analyze the effect of optical parameter fluctuation on the parameter uncertainty of system, and investigate the influence principle of laser locking-frequency noise on the closed-loop detection accuracy of angular velocity. The stochastic disturbance model of double closed-loop IORG is established that takes the unfavorable factors such as optical effect nonlinearity, disturbed disturbance, optical parameter fluctuation and unavoidable system noise into consideration. A robust control algorithm is also designed to guarantee the mean-square exponential stability of system with a prescribed H ∞ performance in order to improve the detection accuracy and dynamic performance of IORG. The conducted experiment results demonstrate that the IORG has a dynamic response time less than 76us, a long-term bias stability 7.04°/h with an integration time of 10s over one-hour test, and the corresponding bias stability 1.841°/h based on Allan deviation, which validate the effectiveness and usefulness of the proposed detection scheme.

  19. Compact fiber optic gyroscopes for platform stabilization

    NASA Astrophysics Data System (ADS)

    Dickson, William C.; Yee, Ting K.; Coward, James F.; McClaren, Andrew; Pechner, David A.

    2013-09-01

    SA Photonics has developed a family of compact Fiber Optic Gyroscopes (FOGs) for platform stabilization applications. The use of short fiber coils enables the high update rates required for stabilization applications but presents challenges to maintain high performance. We are able to match the performance of much larger FOGs by utilizing several innovative technologies. These technologies include source noise reduction to minimize Angular Random Walk (ARW), advanced digital signal processing that minimizes bias drift at high update rates, and advanced passive thermal packaging that minimizes temperature induced bias drift while not significantly affecting size, weight, or power. In addition, SA Photonics has developed unique distributed FOG packaging technologies allowing the FOG electronics and photonics to be packaged remotely from the sensor head or independent axis heads to minimize size, weight, and power at the sensing location(s). The use of these technologies has resulted in high performance, including ARW less than 0.001 deg/rt-hr and bias drift less than 0.004 deg/hr at an update rate of 10 kHz, and total packaged volume less than 30 cu. in. for a 6 degree of freedom FOG-based IMU. Specific applications include optical beam stabilization for LIDAR and LADAR, beam stabilization for long-range free-space optical communication, Optical Inertial Reference Units for HEL stabilization, and Ka band antenna pedestal pointing and stabilization. The high performance of our FOGs also enables their use in traditional navigation and positioning applications. This paper will review the technologies enabling our high-performance compact FOGs, and will provide performance test results.

  20. Biomechanical comparison of anterior cervical plating and combined anterior/lateral mass plating.

    PubMed

    Adams, M S; Crawford, N R; Chamberlain, R H; Bse; Sonntag, V K; Dickman, C A

    2001-01-01

    Previous studies showed anterior plates of older design to be inadequate for stabilizing the cervical spine in all loading directions. No studies have investigated enhancement in stability obtained by combining anterior and posterior plates. To determine which modes of loading are stabilized by anterior plating after a cervical burst fracture and to determine whether adding posterior plating further significantly stabilizes the construct. A repeated-measures in vitro biomechanical flexibility experiment was performed to investigate how surgical destabilization and subsequent addition of hardware components alter spinal stability. Six human cadaveric specimens were studied. Angular range of motion (ROM) and neutral zone (NZ) were quantified during flexion, extension, lateral bending, and axial rotation. Nonconstraining, nondestructive torques were applied while recording three-dimensional motion optoelectronically. Specimens were tested intact, destabilized by simulated burst fracture with posterior distraction, plated anteriorly with a unicortical locking system, and plated with a combined anterior/posterior construct. The anterior plate significantly (p<.05) reduced the ROM relative to normal in all modes of loading and significantly reduced the NZ in flexion and extension. Addition of the posterior plates further significantly reduced the ROM in all modes of loading and reduced the NZ in lateral bending. Anterior plating systems are capable of substantially stabilizing the cervical spine in all modes of loading after a burst fracture. The combined approach adds significant stability over anterior plating alone in treating this injury but may be unnecessary clinically. Further study is needed to assess the added clinical benefits of the combined approach and associated risks.

  1. Changes in Head Stability Control in Response to a Lateral Perturbation while Walking in Older Adults

    NASA Technical Reports Server (NTRS)

    Buccello, Regina R.; Cromwell, Ronita L.; Bloomberg, Jacob J.

    2008-01-01

    Falling is a main contributor of injury in older adults. The decline in sensory systems associated with aging limits information needed to successfully compensate for unexpected perturbations. Therefore, sensory changes result in older adults having problems maintaining balance stability when experiencing an unexpected lateral perturbation (e.g. slip) in the environment. The goal of this study was to determine head stability movement strategies used by older adults when experiencing an unexpected lateral perturbation during walking. A total of 16 healthy adults, aged 66-81 years, walked across a foam pathway 6 times. One piece of the foam pathway covered a movable platform that translated to the left when the subject stepped on the foam. Three trials were randomized in which the platform shifted. Angular rate sensors were placed on the center of mass for the head and trunk segments to collect head and trunk movement in all three planes of motion. The predominant movement strategies for maintaining head stability were determined from the results of the cross-correlation analyses between the head and trunk segments. The Chi square test of independence was used to evaluate the movement pattern distributions of head-trunk coordination during perturbed and non-perturbed walking. When perturbed, head stabilization was significantly challenged in the yaw and roll planes of motion. Subjects demonstrated a movement pattern of the head leading the trunk in an effort to stabilize the head. The older adult subjects used this head stabilization movement pattern to compensate for sensory changes when experiencing the unexpected lateral perturbation.

  2. Sitnikov cyclic configuration of N+1-body problem

    NASA Astrophysics Data System (ADS)

    Shahbaz Ullah, M.; Hassan, M. R.

    2014-12-01

    This manuscript deals with the generalisation of all previous works on series solutions and linear stability of equilibrium points of the Sitnikov problem. Following Giacaglia (1967), in Sect. 2 we have derived the equation of motion of the infinitesimal mass moving along the z-axis about which the plane of motion is rotating with unit angular velocity. In Sects. 3, 4 and 5 the series solutions of the Sitnikov problem have been developed by the method of MacMillan, Lindstedt-Poincaré and iteration of Green's function respectively. In Sect. 6 the three series solutions have been compared graphically by putting N=2, 3, 4. In Sect. 7 the coordinates of equilibrium points have been calculated. In Sect. 8 the linear stability of equilibrium points has been examined by the method of Murray and Dermott (Solar System Dynamics, Cambridge University Press, Cambridge, 1999) and it was found that the equilibrium points are stable in Sitnikov problem.

  3. Orbital operations with the Shuttle Infrared Telescope Facility /SIRTF/

    NASA Technical Reports Server (NTRS)

    Werner, M. W.; Lorell, K. R.

    1981-01-01

    The Shuttle Infrared Telescope Facility (SIRTF) is a cryogenically-cooled, 1-m-class telescope that will be operated from the Space Shuttle as an observatory for infrared astronomy. This paper discusses the scientific constraints on and the requirements for pointing and controlling SIRTF as well as several aspects of SIRTF orbital operations. The basic pointing requirement is for an rms stability of 0.25 arcsec, which is necessary to realize the full angular resolution of the 5-micron diffraction-limited SIRTF. Achieving this stability requires the use of hardware and software integral to SIRTF working interactively with the gyrostabilized Shuttle pointing-mount. The higher sensitivity of SIRTF, together with orbital and time constraints, puts a premium on rapid target acquisition and on efficient operational and observational procedures. Several possible acquisition modes are discussed, and the importance of source acquisition by maximizing the output of an infrared detector is emphasized.

  4. Aircraft body-axis rotation measurement system

    NASA Technical Reports Server (NTRS)

    Cowdin, K. T. (Inventor)

    1983-01-01

    A two gyro four gimbal attitude sensing system having gimbal lock avoidance is provided with continuous azimuth information, rather than roll information, relative to the magnetic cardinal headings while in near vertical attitudes to allow recovery from vertical on a desired heading. The system is comprised of a means for stabilizing an outer roll gimbal that is common to a vertical gyro and a directional gyro with respect to the aircraft platform which is being angularly displaced about an axis substantially parallel to the outer roll gyro axis. A means is also provided for producing a signal indicative of the magnitude of such displacement as an indication of aircraft heading. Additional means are provided to cause stabilization of the outer roll gimbal whenever the pitch angle of the aircraft passes through a threshold prior to entering vertical flight and destabilization of the outer roll gimbal upon passing through the threshold when departing vertical flight.

  5. A Gyroless Safehold Control Law Using Angular Momentum as an Inertial Reference Vector

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lebsock, Ken

    2008-01-01

    A novel safehold control law was developed for the nadir-pointing Vegetation Canopy Lidar (VCL) spacecraft, necessitated by a challenging combination of constraints. The instrument optics did not have a recloseable cover to protect them form potentially catastrophic damage if they were exposed to direct sunlight. The baseline safehold control law relied on a single-string inertial reference unit. A gyroless safehold law was developed to give a degree of robustness to gyro failures. Typical safehold solutions were not viable; thermal constraints made spin stabilization unsuitable, and an inertial hold based solely on magnetometer measurements wandered unaceptably during eclipse. The novel approach presented here maintains a momentum bias vector not for gyroscopic stiffness, but to use as an inertial reference direction during eclipse. The control law design is presented. The effect on stability of the rank-deficiency of magnetometer-based rate derivation is assessed. The control law's performance is evaluated by simulation.

  6. A Gyroless Safehold Control Law using Angular Momentum as an Inertial Reference Vector

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lebsock, Ken

    2008-01-01

    A novel safehold control law was developed for the nadir-pointing Vegetation Canopy Lidar (VCL) spacecraft, necessitated by a challenging combination of constraints. The instrument optics did not have a reclosable cover to protect them from potentially catastrophic damage if they were exposed to direct sunlight. The baseline safehold control law relied on a single-string inertial reference unit. A gyroless safehold law was developed to give a degree of rebustness to gyro failures. Typical safehold solutions were not viable; thermal constraints made spin stabilization unsuitable, and an inertial hold based solely on magnetometer measurements wandered unacceptably during eclipse. The novel approach presented here maintains a momentum bias vector not for gyroscopic stiffness, but to use as an inertial reference direction during eclipse. The control law design is presented. The effect on stability of the rate-deficiency of magnetometer-based rate derivation is assessed. The control law's performance is evaluated by simulation.

  7. Combining Charge Couple Devices and Rate Sensors for the Feedforward Control System of a Charge Coupled Device Tracking Loop.

    PubMed

    Tang, Tao; Tian, Jing; Zhong, Daijun; Fu, Chengyu

    2016-06-25

    A rate feed forward control-based sensor fusion is proposed to improve the closed-loop performance for a charge couple device (CCD) tracking loop. The target trajectory is recovered by combining line of sight (LOS) errors from the CCD and the angular rate from a fiber-optic gyroscope (FOG). A Kalman filter based on the Singer acceleration model utilizes the reconstructive target trajectory to estimate the target velocity. Different from classical feed forward control, additive feedback loops are inevitably added to the original control loops due to the fact some closed-loop information is used. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability. The bandwidth of the Kalman filter is the major factor affecting the control stability and close-loop performance. Both simulations and experiments are provided to demonstrate the benefits of the proposed algorithm.

  8. Use of LS-DYNA(Registered TradeMark) to Assess the Energy Absorption Performance of a Shell-Based Kevlar(TradeMark)/Epoxy Composite Honeycomb

    NASA Technical Reports Server (NTRS)

    Polanco, Michael

    2010-01-01

    The forward and vertical impact stability of a composite honeycomb Deployable Energy Absorber (DEA) was evaluated during a full-scale crash test of an MD-500 helicopter at NASA Langley?s Landing and Impact Research Facility. The lower skin of the helicopter was retrofitted with DEA components to protect the airframe subfloor upon impact and to mitigate loads transmitted to Anthropomorphic Test Device (ATD) occupants. To facilitate the design of the DEA for this test, an analytical study was conducted using LS-DYNA(Registered TradeMark) to evaluate the performance of a shell-based DEA incorporating different angular cell orientations as well as simultaneous vertical and forward impact conditions. By conducting this study, guidance was provided in obtaining an optimum design for the DEA that would dissipate the kinetic energy of the airframe while maintaining forward and vertical impact stability.

  9. VA-LCP anterior clavicle plate: the anatomically precontoured fixation system with angular stability for clavicle shaft.

    PubMed

    van Olden, G D J

    2014-12-01

    The aim of this investigation was to evaluate the introduction of the VA-LCP anterior clavicle plate in the treatment of clavicle fractures. From March 2011 to March 2013, 42 clavicle fractures were treated; 40 were middle-third and 2 lateral-third, and 13/42 (31 %) patients were treated due to painful nonunion. Patient age ranged from 16 to 81 years. Complications were screw placement through the AC-joint, one superficial wound infection and one neuropraxia of the nervus radialis with dropping hand. We had some difficulties prebending both lateral to low and lateral to high but without clinical consequences. In all cases, the fracture healed with full functionality. After 1 year, 4 patients underwent a removal of the hardware. The VA-LCP anterior plate showed good reliability and sufficient stability with both middle-third, lateral and nonunion fractures of the clavicle.

  10. Report of the facility definition team spacelab UV-Optical Telescope Facility

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Scientific requirements for the Spacelab Ultraviolet-Optical Telescope (SUOT) facility are presented. Specific programs involving high angular resolution imagery over wide fields, far ultraviolet spectroscopy, precisely calibrated spectrophotometry and spectropolarimetry over a wide wavelength range, and planetary studies, including high resolution synoptic imagery, are recommended. Specifications for the mounting configuration, instruments for the mounting configuration, instrument mounting system, optical parameters, and the pointing and stabilization system are presented. Concepts for the focal plane instruments are defined. The functional requirements of the direct imaging camera, far ultraviolet spectrograph, and the precisely calibrated spectrophotometer are detailed, and the planetary camera concept is outlined. Operational concepts described in detail are: the makeup and functions of shuttle payload crew, extravehicular activity requirements, telescope control and data management, payload operations control room, orbital constraints, and orbital interfaces (stabilization, maneuvering requirements and attitude control, contamination, utilities, and payload weight considerations).

  11. Dual-wavelength vortex beam with high stability in a diode-pumped Yb:CaGdAlO4 laser

    NASA Astrophysics Data System (ADS)

    Shen, Yijie; Meng, Yuan; Fu, Xing; Gong, Mali

    2018-05-01

    We present a stable dual-wavelength vortex beam carrying orbital angular momentum (OAM) with two spectral peaks separated by a few terahertz in a diode-pumped Yb:CaGdAlO4 (CALGO) laser. The dual-wavelength spectrum is controlled by the pump power and off-axis loss in a laser resonator, arising from the broad emission bandwidth of Yb:CALGO. The OAM beam is obtained by a pair of cylindrical lenses serving as a π/2 convertor for high-order Hermite–Gaussian modes. The stability is verified by the fact that a 1\\hbar OAM beam with two spectral peaks at 1046.1 nm and 1057.2 nm (3.01 THz interval) can steadily operate for more than 3 h. It has great potential for scaling the application of OAM beams in terahertz spectroscopy, high-resolution interferometry, and so on.

  12. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    NASA Astrophysics Data System (ADS)

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to the actual angular velocity. Numerical results are presented to demonstrate the effectiveness of the proposed scheme in tracking the desired attitude, as well as suppressing the elastic deflection effects of solar arrays during maneuver.

  13. The discriminant capabilities of stability measures, trunk kinematics, and step kinematics in classifying successful and failed compensatory stepping responses by young adults.

    PubMed

    Crenshaw, Jeremy R; Rosenblatt, Noah J; Hurt, Christopher P; Grabiner, Mark D

    2012-01-03

    This study evaluated the discriminant capability of stability measures, trunk kinematics, and step kinematics to classify successful and failed compensatory stepping responses. In addition, the shared variance between stability measures, step kinematics, and trunk kinematics is reported. The stability measures included the anteroposterior distance (d) between the body center of mass and the stepping limb toe, the margin of stability (MOS), as well as time-to-boundary considering velocity (TTB(v)), velocity and acceleration (TTB(a)), and MOS (TTB(MOS)). Kinematic measures included trunk flexion angle and angular velocity, step length, and the time after disturbance onset of recovery step completion. Fourteen young adults stood on a treadmill that delivered surface accelerations necessitating multiple forward compensatory steps. Thirteen subjects fell from an initial disturbance, but recovered from a second, identical disturbance. Trunk flexion velocity at completion of the first recovery step and trunk flexion angle at completion of the second step had the greatest overall classification of all measures (92.3%). TTB(v) and TTB(a) at completion of both steps had the greatest classification accuracy of all stability measures (80.8%). The length of the first recovery step (r ≤ 0.70) and trunk flexion angle at completion of the second recovery step (r ≤ -0.54) had the largest correlations with stability measures. Although TTB(v) and TTB(a) demonstrated somewhat smaller discriminant capabilities than trunk kinematics, the small correlations between these stability measures and trunk kinematics (|r| ≤ 0.52) suggest that they reflect two important, yet different, aspects of a compensatory stepping response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effect of scapular stabilization during horizontal adduction stretching on passive internal rotation and posterior shoulder tightness in young women volleyball athletes: a randomized controlled trial.

    PubMed

    Salamh, Paul A; Kolber, Morey J; Hanney, William J

    2015-02-01

    To evaluate the effect of scapular stabilization during horizontal adduction stretching (cross-body) on posterior shoulder tightness (PST) and passive internal rotation (IR). Randomized controlled trial with single blinding. Athletic club. Asymptomatic volleyball players who are women with glenohumeral internal rotation deficit (N=60). Subjects were randomly assigned to either horizontal adduction stretching with manual scapular stabilization (n=30) or horizontal adduction stretching without stabilization (n=30). Passive stretching was performed for 3- to 30-second holds in both groups. Range of motion measurements of PST and IR were performed on the athlete's dominant shoulder prior to and immediately after the intervention. Baseline mean angular measurements of PST and IR for all athletes involved in the study were 62°±14° and 40°±10°, respectively, with no significant difference between groups (P=.598 and P=.734, respectively). Mean PST measurements were significantly different between groups after the horizontal adduction stretch, with a mean angle of 83°±17° among the scapular stabilization group and 65°±13° among the nonstabilization group (P<.001). Measurements of IR were also significantly different between groups, with a mean angle of 51°±14° among the scapular stabilization group and 43°±9° among the nonstabilization group (P=.006). Horizontal adduction stretches performed with scapular stabilization produced significantly greater improvements in IR and PST than horizontal adduction stretching without scapular stabilization. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Dynamical stability of the one-dimensional rigid Brownian rotator: the role of the rotator’s spatial size and shape

    NASA Astrophysics Data System (ADS)

    Jeknić-Dugić, Jasmina; Petrović, Igor; Arsenijević, Momir; Dugić, Miroljub

    2018-05-01

    We investigate dynamical stability of a single propeller-like shaped molecular cogwheel modelled as the fixed-axis rigid rotator. In the realistic situations, rotation of the finite-size cogwheel is subject to the environmentally-induced Brownian-motion effect that we describe by utilizing the quantum Caldeira-Leggett master equation. Assuming the initially narrow (classical-like) standard deviations for the angle and the angular momentum of the rotator, we investigate the dynamics of the first and second moments depending on the size, i.e. on the number of blades of both the free rotator as well as of the rotator in the external harmonic field. The larger the standard deviations, the less stable (i.e. less predictable) rotation. We detect the absence of the simple and straightforward rules for utilizing the rotator’s stability. Instead, a number of the size-related criteria appear whose combinations may provide the optimal rules for the rotator dynamical stability and possibly control. In the realistic situations, the quantum-mechanical corrections, albeit individually small, may effectively prove non-negligible, and also revealing subtlety of the transition from the quantum to the classical dynamics of the rotator. As to the latter, we detect a strong size-dependence of the transition to the classical dynamics beyond the quantum decoherence process.

  16. Gaze and viewing angle influence visual stabilization of upright posture

    PubMed Central

    Ustinova, KI; Perkins, J

    2011-01-01

    Focusing gaze on a target helps stabilize upright posture. We investigated how this visual stabilization can be affected by observing a target presented under different gaze and viewing angles. In a series of 10-second trials, participants (N = 20, 29.3 ± 9 years of age) stood on a force plate and fixed their gaze on a figure presented on a screen at a distance of 1 m. The figure changed position (gaze angle: eye level (0°), 25° up or down), vertical body orientation (viewing angle: at eye level but rotated 25° as if leaning toward or away from the participant), or both (gaze and viewing angle: 25° up or down with the rotation equivalent of a natural visual perspective). Amplitude of participants’ sagittal displacement, surface area, and angular position of the center of gravity (COG) were compared. Results showed decreased COG velocity and amplitude for up and down gaze angles. Changes in viewing angles resulted in altered body alignment and increased amplitude of COG displacement. No significant changes in postural stability were observed when both gaze and viewing angles were altered. Results suggest that both the gaze angle and viewing perspective may be essential variables of the visuomotor system modulating postural responses. PMID:22398978

  17. Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli

    PubMed Central

    Fuller, Sawyer B.; Karpelson, Michael; Censi, Andrea; Ma, Kevin Y.; Wood, Robert J.

    2014-01-01

    Scaling a flying robot down to the size of a fly or bee requires advances in manufacturing, sensing and control, and will provide insights into mechanisms used by their biological counterparts. Controlled flight at this scale has previously required external cameras to provide the feedback to regulate the continuous corrective manoeuvres necessary to keep the unstable robot from tumbling. One stabilization mechanism used by flying insects may be to sense the horizon or Sun using the ocelli, a set of three light sensors distinct from the compound eyes. Here, we present an ocelli-inspired visual sensor and use it to stabilize a fly-sized robot. We propose a feedback controller that applies torque in proportion to the angular velocity of the source of light estimated by the ocelli. We demonstrate theoretically and empirically that this is sufficient to stabilize the robot's upright orientation. This constitutes the first known use of onboard sensors at this scale. Dipteran flies use halteres to provide gyroscopic velocity feedback, but it is unknown how other insects such as honeybees stabilize flight without these sensory organs. Our results, using a vehicle of similar size and dynamics to the honeybee, suggest how the ocelli could serve this role. PMID:24942846

  18. Exploratory investigation of the incipient spinning characteristics of a typical light general aviation airplane

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.

    1977-01-01

    The incipient spinning characteristics of general aviation airplanes were studied. Angular rates in pitch, yaw, and roll were measured through the stall during the incipient spin and throughout the recovery along with control positions, angle of attack, and angle of sideslip. The characteristic incipient spinning motion was determined from a given set of entry conditions. The sequence of recovery controls were varied at two distinct points during the incipient spin, and the effect on recovery characteristics was examined. Aerodynamic phenomena associated with flow over the aft portion of the fuselage, vertical stabilizer, and rubber are described.

  19. New algorithm and system for measuring size distribution of blood cells

    NASA Astrophysics Data System (ADS)

    Yao, Cuiping; Li, Zheng; Zhang, Zhenxi

    2004-06-01

    In optical scattering particle sizing, a numerical transform is sought so that a particle size distribution can be determined from angular measurements of near forward scattering, which has been adopted in the measurement of blood cells. In this paper a new method of counting and classification of blood cell, laser light scattering method from stationary suspensions, is presented. The genetic algorithm combined with nonnegative least squared algorithm is employed to inverse the size distribution of blood cells. Numerical tests show that these techniques can be successfully applied to measuring size distribution of blood cell with high stability.

  20. Magnetic bearing momentum wheels with magnetic gimballing capability for 3-axis active attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Sindlinger, R. S.

    1977-01-01

    Magnetic bearings used for the suspension of momentum wheels provide conclusive advantages: the low friction torques and the absence of abrasion allow the realization of lightweight high speed wheels with high angular momentum and energy storage capacity and virtually unlimited lifetime. The use of actively controlled bearings provides a magnetic gimballing capability by applying the external signals to the two servo loops controlling the rotational degrees of freedom. Thus, an attitude control system can be realized by using only one rotating mass for 3-axis active satellite stabilization.

  1. Edge-dip air core fiber for improvement of the transmission of higher-order OAM modes

    NASA Astrophysics Data System (ADS)

    Sun, Xibo; Geng, Yuanchao; Zhu, Qihua; Feng, Xi; Huang, Wanqing; Zhang, Ying; Wang, Wenyi; Liu, Lanqin

    2018-03-01

    We presented a novel scheme to improve the stability of the orbital angular momentum (OAM) modes transmission by adding a dip at the edge of the annular high-index region of the air-core fiber. The simulation indicated a larger effective index difference of the vector modes that composed OAM modes in the same order, promising a stable transmission of the OAM modes. The intensity of the modes was concentrated better in this scheme decreasing the crosstalk between adjacent fibers. The propagation properties of the OAM modes in bent fiber were investigated.

  2. Proteus-MOC: A 3D deterministic solver incorporating 2D method of characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marin-Lafleche, A.; Smith, M. A.; Lee, C.

    2013-07-01

    A new transport solution methodology was developed by combining the two-dimensional method of characteristics with the discontinuous Galerkin method for the treatment of the axial variable. The method, which can be applied to arbitrary extruded geometries, was implemented in PROTEUS-MOC and includes parallelization in group, angle, plane, and space using a top level GMRES linear algebra solver. Verification tests were performed to show accuracy and stability of the method with the increased number of angular directions and mesh elements. Good scalability with parallelism in angle and axial planes is displayed. (authors)

  3. Buoyancy instability of homologous implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B. M.

    2015-06-15

    With this study, I consider the hydrodynamic stability of imploding ideal gases as an idealized model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes (short-wavelength incompressive modes elongated in the direction of the mean flow), a second-order ordinary differential equation is derived that can be used to assess the stability of any time-dependent flow with planar, cylindrical or spherical symmetry. Upon further restricting the analysis to homologous flows, it is shown that a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, both entropy andmore » vorticity fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and, in the absence of dissipative effects, is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor (2C) |N0|ti, where C is the convergence ratio of the implosion, N 0 is the initial buoyancy frequency and t i is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor exp(π|N 0|t s), where N 0 is the buoyancy frequency at stagnation and t s is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular momentum as the gas is compressed. For non-monatomic gases, this additional growth due to compression results in weak oscillatory growth under conditions that would otherwise be buoyantly stable; this over-stability is consistent with the conservation of wave action in the fluid frame. The above analytical results are verified by evolving the complete set of linear equations as an initial value problem, and it is demonstrated that oblate modes are the fastest-growing modes and that high mode numbers are required to reach this limit (Legendre mode ℓ ≳ 100 for spherical flows). Finally, comparisons are made with a Lagrangian hydrodynamics code, and it is found that a numerical resolution of ~30 zones per wavelength is required to capture these solutions accurately. This translates to an angular resolution of ~(12/ℓ)°, or ≲ 0.1° to resolve the fastest-growing modes.« less

  4. Three-Dimensional Trunk and Lower Limbs Characteristics during Gait in Patients with Huntington's Disease.

    PubMed

    Mirek, Elzbieta; Filip, Magdalena; Chwała, Wiesław; Banaszkiewicz, Krzysztof; Rudzinska-Bar, Monika; Szymura, Jadwiga; Pasiut, Szymon; Szczudlik, Andrzej

    2017-01-01

    Objective: A number of studies on gait disturbances have been conducted, however, no clear pattern of gait disorders was described. The aim of the study was to characterize the gait pattern in HD patients by conducting analysis of mean angular movement changes the lower limb joints and trunk (kinematics parameters). Methods: The study group consisted of 30 patients with HD (17 women and 13 men). The reference data include the results of 30 healthy subjects (17 women and 13 men). Registration of gait with the Vicon 250 system was performed using passive markers attached to specific anthropometric points directly on the skin, based on the Golem biomechanical model (Oxford Metrics Ltd.). The research group and the control group were tested once. Results: Statistically significant ( p < 0.05) angular changes in gait cycle for HD patients were observed in: insufficient plantar flexion during Loading Response and Pre-swing phases; insufficient flexion of the knee joint during Initial Swing and Mid Swing phases; excessive flexion of the hip in Terminal Stance and Pre-swing phases and over-normative forward inclination of the trunk in all gait phases. It should be noted that the group of patients with HD obtained, for all the mean angular movement changes higher standard deviation. Conclusion: A characteristic gait disorder common to all patients with HD occurring throughout the whole duration of the gait cycle is a pathological anterior tilt of the trunk. The results will significantly contribute to programming physiotherapy for people with HD, aimed at stabilizing the trunk in a position of extension during gait.

  5. Determination of the SNPP VIIRS SDSM Screen Relative Transmittance From Both Yaw Maneuver and Regular On-Orbit Data

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Chen, Xuexia; Xiong, Xiaoxiong

    2015-01-01

    The Visible Infrared Imaging Radiometer Suiteaboard the Suomi National Polar-orbiting Partnership (SNPP) satellite performs radiometric calibration of its reflective solar bands primarily through observing a sunlit onboard solar diffuser (SD). The SD bidirectional reflectance distribution function(BRDF) degradation factor is determined by an onboard SD stability monitor (SDSM), which observes the Sun through a pinhole screen and the sunlit SD. The transmittance of the SDSM pinhole screen over a range of solar angles was determined prelaunch and used initially to determine the BRDF degradation factor.The degradation-factor-versus-time curves were found to have a number of very large unphysical undulations likely due to the inaccuracy in the prelaunch determined SDSM screen transmittance.To refine the SDSM screen transmittance, satellite yaw maneuvers were carried out. With the SDSM screen relative transmittance determined from the yaw maneuver data, the computed BRDFdegradation factor curves still have large unphysical ripples, indicating that the projected solar horizontal angular step size in the yaw maneuver data is too large to resolve the transmittance at a fine angular scale. We develop a methodology to use both the yaw maneuver and a small portion of regular on-orbit data to determine the SDSM screen relative transmittance at a fine angular scale. We determine that the error standard deviation of the calculated relative transmittance ranges from 0.00030 (672 nm) to 0.00092 (926 nm). With the newly determined SDSM screen relative transmittance, the computed BRDF degradation factor behaves much more smoothly over time.

  6. Prophylactic Ankle Braces and the Kinematics and Kinetics of Half-Squat Parachute Landing.

    PubMed

    Wu, Di; Zheng, Chao; Wu, Ji; Hu, Tan; Huang, Rongrong; Wang, Lizhen; Fan, Yubo

    2018-02-01

    The objective of the study was to investigate the effects of dropping heights and prophylactic ankle braces on ankle joint biomechanics during half-squat parachute landing from two different heights. There were 30 male elite paratroopers with formal parachute landing training and more than 2 yr of parachute jumping experience who were recruited for this study. The subjects tested three different ankle brace conditions (no-brace, elastic brace, semirigid brace). Each subject was instructed to jump off a platform from two different heights of 0.4 m and 0.8 m, and land on a force plate in a half-squat posture. The Vicon 3D motion capture system and force plate were used to record and calculate kinematic and kinetic data. Dropping height had a significant effect on peak vertical ground reaction force (vGRF), maximum ankle angular displacement, and time to vGRF. As compared with the no-brace group, use of an elastic ankle brace significantly reduced peak vGRF by 18.57% and both braces significantly reduced the maximal angular displacements of dorsiflexion. The semirigid brace provided greater restriction against maximal angular displacement of inversion. The elastic and semirigid ankle braces both effectively restricted motion stability of the ankle joint in the sagittal plane, and the semirigid ankle brace prevented excessive inversion, although the comfort of this device should be improved overall.Wu D, Zheng C, Wu J, Hu T, Huang R, Wang L, Fan Y. Prophylactic ankle braces and the kinematics and kinetics of half-squat parachute landing. Aerosp Med Hum Perform. 2018; 89(2):141-146.

  7. Constraint treatment techniques and parallel algorithms for multibody dynamic analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chiou, Jin-Chern

    1990-01-01

    Computational procedures for kinematic and dynamic analysis of three-dimensional multibody dynamic (MBD) systems are developed from the differential-algebraic equations (DAE's) viewpoint. Constraint violations during the time integration process are minimized and penalty constraint stabilization techniques and partitioning schemes are developed. The governing equations of motion, a two-stage staggered explicit-implicit numerical algorithm, are treated which takes advantage of a partitioned solution procedure. A robust and parallelizable integration algorithm is developed. This algorithm uses a two-stage staggered central difference algorithm to integrate the translational coordinates and the angular velocities. The angular orientations of bodies in MBD systems are then obtained by using an implicit algorithm via the kinematic relationship between Euler parameters and angular velocities. It is shown that the combination of the present solution procedures yields a computationally more accurate solution. To speed up the computational procedures, parallel implementation of the present constraint treatment techniques, the two-stage staggered explicit-implicit numerical algorithm was efficiently carried out. The DAE's and the constraint treatment techniques were transformed into arrowhead matrices to which Schur complement form was derived. By fully exploiting the sparse matrix structural analysis techniques, a parallel preconditioned conjugate gradient numerical algorithm is used to solve the systems equations written in Schur complement form. A software testbed was designed and implemented in both sequential and parallel computers. This testbed was used to demonstrate the robustness and efficiency of the constraint treatment techniques, the accuracy of the two-stage staggered explicit-implicit numerical algorithm, and the speed up of the Schur-complement-based parallel preconditioned conjugate gradient algorithm on a parallel computer.

  8. Caudal Septal Stabilization Suturing Technique to Treat Crooked Noses.

    PubMed

    Baykal, Bahadir; Erdim, Ibrahim; Guvey, Ali; Oghan, Fatih; Kayhan, Fatma Tulin

    2016-10-01

    To rotate the nasal axis and septum to the midline using an L-strut graft and a novel caudal septal stabilization suturing technique to treat crooked noses. Thirty-six patients were included in the study. First, an L-strut graft was prepared by excising the deviated cartilage site in all patients. Second, multiple stabilization suturing, which we describe as a caudal septal stabilization suturing technique with a "fishing net"-like appearance, was applied between the anterior nasal spine and caudal septum in all patients. This new surgical technique, used to rotate the caudal septum, was applied to 22 I-type and 14 C-type crooked noses. Correction rates for the crooked noses were compared between the 2 inclination types with angular estimations. Deviation angles were measured using the AutoCAD 2012 software package and frontal (anterior) views, with the Frankfurt horizontal line parallel to the ground. Nasal axis angles showing angle improvement graded 4 categories as excellent, good, acceptable, and unsuccessful for evaluations at 6 months after surgery in the study. The success rate in the C-type nasal inclination was 86.7% (±21.9) and 88% (±16.7) in the I-type. The overall success rate of L-strut grafting and caudal septal stabilization suturing in crooked nose surgeries was 87.5% (±18.6). "Unsuccessful" results were not reported in any of the patients. L-strut grafting and caudal septal stabilization suturing techniques are efficacious in crooked noses according to objective measurement analysis results. However, a longer follow-up duration in a larger patient population is needed.

  9. The environmental influence on tropical cyclone precipitation

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Baik, Jong-Jin; Pierce, Harold F.

    1994-01-01

    The intensity, spatial, and temporal changes in precipitation were examined in three North Atlantic hurricanes during 1989 (Dean, Gabrielle, and Hugo) using precipitation estimates made from Special Sensor Microwave/Imager (SSM/I) measurements. In addition, analyses from a barotropic hurricane forecast model and the European Centre for Medium-Range Weather Forecast model were used to examine the relationship between the evolution of the precipitation in these tropical cyclones and external forcing. The external forcing parameters examined were (1) mean climatological sea surface temperatures, (2) vertical wind shear, (3) environmental tropospheric water vapor flux, and (4) upper-tropospheric eddy relative angular momentum flux convergence. The analyses revealed that (1) the SSM/I precipitation estimates were able to delineate and monitor convective ring cycles similar to those observed with land-based and aircraft radar and in situ measurements; (2) tropical cyclone intensification was observed to occur when these convective rings propagated into the inner core of these systems (within 111 km of the center) and when the precipitation rates increased; (3) tropical cyclone weakening was observed to occur when these inner-core convective rings dissipated; (4) the inward propagation of the outer convective rings coincided with the dissipation of the inner convective rings when they came within 55 km of each other; (5) in regions with the combined warm sea surface temperatures (above 26 C) and low vertical wind shear (less than 5 m/s), convective rings outside the region of strong lower-tropospheric inertial stability could be initiated by strong surges of tropospheric moisture, while convective rings inside the region of strong lower-tropospheric inertial stability could be enhanced by upper-tropospheric eddy relative angular momentum flux convergence.

  10. The Environmental Influence on Tropical Cyclone Precipitation.

    NASA Astrophysics Data System (ADS)

    Rodgers, Edward B.; Baik, Jong-Jin; Pierce, Harold F.

    1994-05-01

    The intensity, spatial, and temporal changes in precipitation were examined in three North Atlantic hurricanes during 1989 (Dean, Gabrielle, and Hugo) using precipitation estimates made from Special Sensor Microwave/Imager (SSM/I) measurements. In addition, analyses from a barotropic hurricane forecast model and the European Centre for Medium-Range Weather Forecast model were used to examine the relationship between the evolution of the precipitation in these tropical cyclones and external forcing. The external forcing parameters examined were 1) mean climatological sea surface temperatures, 2) vertical wind shear, 3) environmental tropospheric water vapor flux, and 4) upper-tropospheric eddy relative angular momentum flux convergence.The analyses revealed that 1) the SSM/I precipitation estimates were able to delineate and monitor convective ring cycles similar to those observed with land-based and aircraft radar and in situ measurements; 2) tropical cyclone intensification was observed to occur when these convective rings propagated into the inner core of these systems (within 111 km of the center) and when the precipitation rates increased; 3) tropical cyclone weakening was observed to occur when these inner-core convective rings dissipated; 4) the inward propagation of the outer convective rings coincided with the dissipation of the inner convective rings when they came within 55 km of each other; 5) in regions with the combined warm sea surface temperatures (above 26°C) and low vertical wind shear (less than 5 m s1), convective rings outside the region of strong lower-tropospheric inertial stability could be initiated by strong surges of tropospheric moisture, while convective rings inside the region of strong lower-tropospheric inertial stability could be enhanced by upper-tropospheric eddy relative angular momentum flux convergence.

  11. Assessment of ankle and hindfoot stability and joint pressures using a human cadaveric model of a large lateral talar process excision: a biomechanical study.

    PubMed

    Sands, Andrew; White, Charles; Blankstein, Michael; Zderic, Ivan; Wahl, Dieter; Ernst, Manuela; Windolf, Markus; Hagen, Jennifer E; Richards, R Geoff; Stoffel, Karl; Gueorguiev, Boyko

    2015-03-01

    Lateral talar process fragment excision may be followed by hindfoot instability and altered biomechanics. There is controversy regarding the ideal fragment size for internal fixation versus excision and a concern that excision of a large fragment may lead to significant instability. The aim of this study was to assess the effect of a simulated large lateral talar process excision on ankle and subtalar joint stability.A custom-made seesaw rig was designed to apply inversion/eversion stress loading on 7 fresh-frozen human cadaveric lower legs and investigate them in pre-excision, 5 cm and 10 cm lateral talar process fragment excision states. Anteroposterior radiographs were taken to assess ankle and subtalar joint tilt and calculate angular change from neutral hindfoot alignment to 10-kg forced inversion/eversion. Ankle joint pressures and contact areas were measured under 30-kg axial load in neutral hindfoot alignment.In comparison to the pre-excision state, no significantly different mediolateral angular change was observed in the subtalar joint after 5 and 10 cm lateral talar process fragment excision in inversion and eversion. With respect to the ankle joint, 10-cm fragment excision produced significantly bigger inversion tibiotalar tilt compared with the pre-excision state, P = .04. No significant change of the ankle joint pressure and contact area was detected after 5 and 10-cm excision in comparison with the pre-excison state.An excision of up to 10 cm of the lateral talar process does not cause a significant instability at the level of the subtalar joint but might be a destabilizing factor at the ankle joint under inversion stress. The latter could be related to extensive soft tissue dissection required for resection.

  12. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides

    PubMed Central

    Tseng, Kuang-Hung; Lin, Po-Yu

    2014-01-01

    The purpose of this study was to investigate the difference between tungsten inert gas (TIG) welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO2 and Al2O3 were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO2 leads to a satisfactory surface appearance compared to that of the TIG weld made with Al2O3. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO2, the TIG welding with nanoparticle SiO2 has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al2O3 does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO2 uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al2O3 results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides. PMID:28788704

  13. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides.

    PubMed

    Tseng, Kuang-Hung; Lin, Po-Yu

    2014-06-20

    The purpose of this study was to investigate the difference between tungsten inert gas (TIG) welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO₂ and Al₂O₃ were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO₂ leads to a satisfactory surface appearance compared to that of the TIG weld made with Al₂O₃. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO₂, the TIG welding with nanoparticle SiO₂ has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al₂O₃ does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO₂ uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al₂O₃ results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides.

  14. The High Altitude Balloon Experiment demonstration of acquisition, tracking, and pointing technologies (HABE-ATP)

    NASA Astrophysics Data System (ADS)

    Dimiduk, D.; Caylor, M.; Williamson, D.; Larson, L.

    1995-01-01

    The High Altitude Balloon Experiment demonstration of Acquisition, Tracking, and Pointing (HABE-ATP) is a system built around balloon-borne payload which is carried to a nominal 26-km altitude. The goal is laser tracking thrusting theater and strategic missiles, and then pointing a surrogate laser weapon beam, with performance levels end a timeline traceable to operational laser weapon system requirements. This goal leads to an experiment system design which combines hardware from many technology areas: an optical telescope and IR sensors; an advanced angular inertial reference; a flexible multi-level of actuation digital control system; digital tracking processors which incorporate real-time image analysis and a pulsed, diode-pumped solid state tracking laser. The system components have been selected to meet the overall experiment goals of tracking unmodified boosters at 50- 200 km range. The ATP system on HABE must stabilize and control a relative line of sight between the platform and the unmodified target booster to a 1 microrad accuracy. The angular pointing reference system supports both open loop and closed loop track modes; GPS provides absolute position reference. The control system which positions the line of sight for the ATP system must sequence through accepting a state vector handoff, closed-loop passive IR acquisition, passive IR intermediate fine track, active fine track, and then finally aimpoint determination and maintenance modes. Line of sight stabilization to fine accuracy levels is accomplished by actuating wide bandwidth fast steering mirrors (FSM's). These control loops off-load large-amplitude errors to the outer gimbal in order to remain within the limited angular throw of the FSM's. The SWIR acquisition and MWIR intermediate fine track sensors (both PtSi focal planes) image the signature of the rocket plume. After Hard Body Handover (HBHO), active fine tracking is conducted with a visible focal plane viewing the laser-illuminated target rocket body. The track and fire control performance must be developed to the point that an aimpoint can be selected, maintained, and then track performance scored with a low-power 'surrogate' weapon beam. Extensive instrumentation monitors not only the optical sensors and the video data, but all aspects of each of the experiment subsystems such as the control system, the experiment flight vehicle, and the tracker. Because the system is balloon-borne and recoverable, it is expected to fly many times during its development program.

  15. Increasing the stability of the articulated lorry at braking by locking the fifth wheel coupling

    NASA Astrophysics Data System (ADS)

    Skotnikov, G. I.; Jileykin, M. M.; Komissarov, A. I.

    2018-02-01

    The jackknifing of the articulated lorry is determined by the loss of stability with respect to the vertical axis of the fifth wheel coupling, which can be caused by the failure of the brake system, the displacement of the center of mass of the semitrailer or tractor from the longitudinal axis of the vehicle, the road parameters (longitudinal and transverse slopes), the difference in the friction coefficients under the sides of the articulated lorry. In this regard, the issue of creating devices that prevent the jackknifing, and their control systems is important. A method is proposed for maintaining the stability of the movement of articulated lorry when braking both on a straight line and in a turn by blocking the relative rotation of the tractor and the trailer. Blocking occurs due to the creation of a stabilizing moment in the direction opposite to the angular rate of folding. To test the developed algorithm for locking the fifth wheel coupling, a mathematical model of the spatial motion of the articulated lorry was developed, including the models of interaction of an elastic tire with a rigid terrain, suspension systems, transmission, steering, fifth-wheel coupling. The efficiency and effectiveness of the coupling locking control system is proved by comparing the results of the simulation of a straight-line braking and braking in turn. It is shown that the application of the control system significantly increases the stability of the road train.

  16. The impact of environmental inertial stability on the secondary circulation of axisymmetric tropical cyclones

    NASA Astrophysics Data System (ADS)

    O'Neill, M. E.; Chavas, D. R.

    2017-12-01

    In f-plane numerical simulations and analytical theory, tropical cyclones completely recycle their exhausted outflow air back into the boundary layer. This low-angular momentum air must experience cyclonic torque at the sea surface for cyclone to reach equilibrium. On Earth, however, it is not clear that tropical cyclones recycle all of the outflow air in a closed secondary circulation, and strong asymmetric outflow-jet interactions suggest that much of the air may be permanently evacuated from the storm over its lifetime. The fraction of outflow air that is returned to the near-storm boundary layer is in part a function of the environmental inertial stability, which controls the size and strength of the upper anticyclone. We run a suite of idealized axisymmetric tropical cyclone simulations at constant latitude while varying the outer domain's inertial stability profile. Fixing the latitude allows the gradient wind balance of the storm core to remain constant except for changes due to the far environment. By varying both the outer inertial stability and its location with respect to the Rossby radius of deformation, we show how the tropical cyclone's area-of-influence is controlled by the nature and strength of the upper anticyclone. Parcel tracking additionally demonstrates the likelihood of outflow air parcels to be quickly re-consumed by the secondary circulation as a function of inertial stability. These experiments demonstrate the sensitivity of the tropical cyclone's secondary circulation, typically assumed to be closed, to the dynamics of the far environment.

  17. Hidden vorticity in binary Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brtka, Marijana; Gammal, Arnaldo; Malomed, Boris A.

    We consider a binary Bose-Einstein condensate (BEC) described by a system of two-dimensional (2D) Gross-Pitaevskii equations with the harmonic-oscillator trapping potential. The intraspecies interactions are attractive, while the interaction between the species may have either sign. The same model applies to the copropagation of bimodal beams in photonic-crystal fibers. We consider a family of trapped hidden-vorticity (HV) modes in the form of bound states of two components with opposite vorticities S{sub 1,2}={+-}1, the total angular momentum being zero. A challenging problem is the stability of the HV modes. By means of a linear-stability analysis and direct simulations, stability domains aremore » identified in a relevant parameter plane. In direct simulations, stable HV modes feature robustness against large perturbations, while unstable ones split into fragments whose number is identical to the azimuthal index of the fastest growing perturbation eigenmode. Conditions allowing for the creation of the HV modes in the experiment are discussed too. For comparison, a similar but simpler problem is studied in an analytical form, viz., the modulational instability of an HV state in a one-dimensional (1D) system with periodic boundary conditions (this system models a counterflow in a binary BEC mixture loaded into a toroidal trap or a bimodal optical beam coupled into a cylindrical shell). We demonstrate that the stabilization of the 1D HV modes is impossible, which stresses the significance of the stabilization of the HV modes in the 2D setting.« less

  18. Sliding mode based trajectory linearization control for hypersonic reentry vehicle via extended disturbance observer.

    PubMed

    Xingling, Shao; Honglun, Wang

    2014-11-01

    This paper proposes a novel hybrid control framework by combing observer-based sliding mode control (SMC) with trajectory linearization control (TLC) for hypersonic reentry vehicle (HRV) attitude tracking problem. First, fewer control consumption is achieved using nonlinear tracking differentiator (TD) in the attitude loop. Second, a novel SMC that employs extended disturbance observer (EDO) to counteract the effect of uncertainties using a new sliding surface which includes the estimation error is integrated to address the tracking error stabilization issues in the attitude and angular rate loop, respectively. In addition, new results associated with EDO are examined in terms of dynamic response and noise-tolerant performance, as well as estimation accuracy. The key feature of the proposed compound control approach is that chattering free tracking performance with high accuracy can be ensured for HRV in the presence of multiple uncertainties under control constraints. Based on finite time convergence stability theory, the stability of the resulting closed-loop system is well established. Also, comparisons and extensive simulation results are presented to demonstrate the effectiveness of the control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. HR-EBSD as a new tool for quantifying geometrically necessary dislocations in quartz: Application to chessboard subgrain boundaries

    NASA Astrophysics Data System (ADS)

    Wallis, D.; Parsons, A. J.; Hansen, L. N.

    2017-12-01

    Chessboard subgrains in quartz, with boundaries composed of {m}[c] edge dislocations, are widely used as evidence for high-temperature deformation and have been suggested to form only in β-quartz. However, the origins and dislocation structure of chessboard subgrains remain poorly constrained and, without precise constraints on axes of misorientations across subgrain boundaries, other subgrain types formed at lower temperatures can be misidentified as chessboard subgrains. The technique most commonly employed to investigate subgrain structures, electron backscatter diffraction, can only resolve misorientation angles and axes for a portion of the substructure. This limitation hinders detailed interpretation of the dislocation types, densities, and processes that generate characteristic subgrain structures. We overcome these limitations by employing high-angular resolution electron backscatter diffraction (HR-EBSD), which employs cross-correlation of diffraction patterns to achieve angular resolution on the order of 0.01° with well-constrained misorientation axes. We analyse chessboard subgrains in samples from the Greater Himalayan Sequence, Nepal, which were deformed along well constrained pressure-temperature paths confined to the stability field of α-quartz. HR-EBSD analysis demonstrates that the subgrain boundaries consist of two sets. One set consists primarily of {m}[c] edge dislocations and the other consists of dislocations primarily with Burgers vectors. Apparent densities of geometrically necessary dislocations vary from > 1013 m-2 within some subgrain boundaries to < 1012 m-2 within subgrain interiors. This analysis provides new insight into the structure of chessboard subgrain boundaries, and a new tool to distinguish them from superficially similar deformation microstructures formed by other dislocation types at lower temperatures. Application of HR-EBSD to quartz from the Greater Himalayan Sequence confirms the activity of {m}[c] slip in the α-quartz stability field and demonstrates that formation of chessboard subgrains is not restricted to the stability field of β-quartz. Most importantly, this study demonstrates the potential of HR-EBSD as an improved method for analysis of quartz microstructures used as indicators of deformation conditions.

  20. Finding a spherically symmetric cosmology from observations in observational coordinates — advantages and challenges

    NASA Astrophysics Data System (ADS)

    Araújo, M. E.; Stoeger, W. R.

    2011-07-01

    One of the continuing challenges in cosmology has been to determine the large-scale space-time metric from observations with a minimum of assumptions — without, for instance, assuming that the universe is almost Friedmann-Lemaître-Robertson-Walker (FLRW). If we are lucky enough this would be a way of demonstrating that our universe is FLRW, instead of presupposing it or simply showing that the observations are consistent with FLRW. Showing how to do this within the more general spherically symmetric, inhomogeneous space-time framework takes us a long way towards fulfilling this goal. In recent work researchers have shown how this can be done both in the traditional Lemaître-Tolman-Bondi (LTB) 3 + 1 coordinate framework, and in the observational coordinate (OC) framework, in which the radial coordinate y is null (light-like) and measured down the past light cone of the observer. In this paper we investigate the stability of solutions, and the use of data in the OC field equations including their time evolution — i.e. our procedure is not restricted to our past light cone — and compare both approaches with respect to the singularity problem at the maximum of the angular-diameter distance, the stability of solutions, and the use of data in the field equations. We also compare the two approaches with regard to determining the cosmological constant Λ. This allows a more detailed account and assessment of the OC integration procedure, and enables a comparison of the relative advantages of the two equivalent solution frameworks. Both formulations and integration procedures should, in principle, lead to the same results. However, as we show in this paper, the OC procedure manifests certain advantages, particularly in the avoidance of coordinate singularities at the maximum of the angular-diameter distance, and in the stability of the solutions obtained. This particular feature is what allows us to do the best fitting of the data to smooth data functions and the possibility of constructing analytic solutions to the field equations. Smoothed data functions enable us to include properties that data must have within the model.

  1. Rolling and tumbling: status of the SuperAGILE experiment

    NASA Astrophysics Data System (ADS)

    Del Monte, E.; Costa, E.; di Persio, G.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Lapshov, I.; Lazzarotto, F.; Mastropietro, M.; Morelli, E.; Pacciani, L.; Rapisarda, M.; Rubini, A.; Soffitta, P.; Tavani, M.; Argan, A.; Trois, A.

    2010-07-01

    The SuperAGILE experiment is the hard X-ray monitor of the AGILE mission. It is a 2 x one-dimensional imager, with 6-arcmin angular resolution in the energy range 18 - 60 keV and a field of view in excess of 1 steradian. SuperAGILE is successfully operating in orbit since Summer 2007, providing long-term monitoring of bright sources and prompt detection and localization of gamma-ray bursts. Starting on October 2009 the AGILE mission lost its reaction wheel and the satellite attitude is no longer stabilized. The current mode of operation of the AGILE satellite is a Spinning Mode, around the Sun-pointing direction, with an angular velocity of about 0.8 degree/s (corresponding to 8 times the SuperAGILE point spread function every second). In these new conditions, SuperAGILE continuously scans a much larger fraction of the sky, with much smaller exposure to each region. In this paper we review some of the results of the first 2.5 years of "standard" operation of SuperAGILE, and show how new implementations in the data analysis software allows to continue the hard X-ray sky monitoring by SuperAGILE also in the new attitude conditions.

  2. Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri; Hall, Charles; Jackson, Mark

    2000-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.

  3. Rapidly rotating neutron stars in general relativity: Realistic equations of state

    NASA Technical Reports Server (NTRS)

    Cook, Gregory B.; Shapiro, Stuart L.; Teukolsky, Saul A.

    1994-01-01

    We construct equilibrium sequences of rotating neutron stars in general relativity. We compare results for 14 nuclear matter equations of state. We determine a number of important physical parameters for such stars, including the maximum mass and maximum spin rate. The stability of the configurations to quasi-radial perturbations is assessed. We employ a numerical scheme particularly well suited to handle rapid rotation and large departures from spherical symmetry. We provide an extensive tabulation of models for future reference. Two classes of evolutionary sequences of fixed baryon rest mass and entropy are explored: normal sequences, which behave very much like Newtonian sequences, and supramassive sequences, which exist for neutron stars solely because of general relativistic effects. Adiabatic dissipation of energy and angular momentum causes a star to evolve in quasi-stationary fashion along an evolutionary sequence. Supramassive sequences have masses exceeding the maximum mass of a nonrotating neutron star. A supramassive star evolves toward eventual catastrophic collapse to a black hole. Prior to collapse, the star actually spins up as it loses angular momentum, an effect that may provide an observable precursor to gravitational collapse to a black hole.

  4. A medium-scale measurement of the cosmic microwave background at 3.3 millimeters

    NASA Technical Reports Server (NTRS)

    Meinhold, Peter; Lubin, Philip

    1991-01-01

    A system has been developed for making measurements of spatial fluctuations in the cosmic microwave background radiation, on an angular scale of 5 arcmin to a few degrees. The system consists of an off-axis Gregorian telescope with a nearly Gaussian response with FWHM adjustable from 20 to 50 arcmin, an SIS coherent receiver operating at 3.3 mm, and a pointing system capable of better than 1 arcmin rms stabilization. This paper reports on results from the system's first balloon flight in August 1988, and ground-based measurements made from the South Pole in December 1988. A portion of the South Pole data is used to place a 95-percent confidence level upper limit of Delta T/T less than 0.000035 for Gaussian sky fluctuations in the background radiation at 20-arcmin angular scale and a limit of Delta T/T less than 0.000033 on overall excess intrinsic sky noise. In addition, dust contamination in cosmic background radiation data is estimated using measurements of the Galaxy from this flight and a previous one, along with the IRAS 100-micron map. These anisotropy results give the most stringent limits on cold dark matter theories to date.

  5. Development and application of a local linearization algorithm for the integration of quaternion rate equations in real-time flight simulation problems

    NASA Technical Reports Server (NTRS)

    Barker, L. E., Jr.; Bowles, R. L.; Williams, L. H.

    1973-01-01

    High angular rates encountered in real-time flight simulation problems may require a more stable and accurate integration method than the classical methods normally used. A study was made to develop a general local linearization procedure of integrating dynamic system equations when using a digital computer in real-time. The procedure is specifically applied to the integration of the quaternion rate equations. For this application, results are compared to a classical second-order method. The local linearization approach is shown to have desirable stability characteristics and gives significant improvement in accuracy over the classical second-order integration methods.

  6. Quasinormal modes of scale dependent black holes in (1 +2 )-dimensional Einstein-power-Maxwell theory

    NASA Astrophysics Data System (ADS)

    Rincón, Ángel; Panotopoulos, Grigoris

    2018-01-01

    We study for the first time the stability against scalar perturbations, and we compute the spectrum of quasinormal modes of three-dimensional charged black holes in Einstein-power-Maxwell nonlinear electrodynamics assuming running couplings. Adopting the sixth order Wentzel-Kramers-Brillouin (WKB) approximation we investigate how the running of the couplings change the spectrum of the classical theory. Our results show that all modes corresponding to nonvanishing angular momentum are unstable both in the classical theory and with the running of the couplings, while the fundamental mode can be stable or unstable depending on the running parameter and the electric charge.

  7. VizieR Online Data Catalog: Hα emitting sources around MWC758 (Huelamo+, 2018)

    NASA Astrophysics Data System (ADS)

    Huelamo, N.; Chauvin, G.; Schmid, H. M.; Quanz, S. P.; Whelan, E.; Lillo-Box, J.; Barrado, D.; Montesinos, B.; Alcala, J. M.; Benisty, M.; de Gregorio-Monsalvo, I.; Mendigutia, I.; Bouy, H.; Merin, B.; de Boer, J.; Garufi, A.; Pantin, E.

    2018-06-01

    The SPHERE Open Time observations (096.C-0267.A) were obtained on December 30, 2015. The ZIMPOL instrument of SPHERE was used in spectral and angular differential imaging modes. In addition to the pupil stabilized mode, ZIMPOL simultaneously imaged MWC758 in two different filters: B_Ha (λc=655.6nm and δλ=5.5nm) and Cnt_Ha (λc=644.9nm and δλ=4.1nm). We obtained 190 individual exposures of 60 seconds each, resulting in a total exposure time of 3 hours on-source (from 02:20UT to 05:24 UT). (2 data files).

  8. Sensor fault detection and recovery in satellite attitude control

    NASA Astrophysics Data System (ADS)

    Nasrolahi, Seiied Saeed; Abdollahi, Farzaneh

    2018-04-01

    This paper proposes an integrated sensor fault detection and recovery for the satellite attitude control system. By introducing a nonlinear observer, the healthy sensor measurements are provided. Considering attitude dynamics and kinematic, a novel observer is developed to detect the fault in angular rate as well as attitude sensors individually or simultaneously. There is no limit on type and configuration of attitude sensors. By designing a state feedback based control signal and Lyapunov stability criterion, the uniformly ultimately boundedness of tracking errors in the presence of sensor faults is guaranteed. Finally, simulation results are presented to illustrate the performance of the integrated scheme.

  9. Deployment Testing of Flexible Composite Hinges in Bi-Material Beams

    NASA Technical Reports Server (NTRS)

    Sauder, Jonathan F.; Trease, Brian

    2016-01-01

    Composites have excellent properties for strength, thermal stability, and weight. However, they are traditionally highly rigid, and when used in deployable structures require hinges bonded to the composite material, which increases complexity and opportunities for failure. Recent research in composites has found by adding an elastomeric soft matrix, often silicone instead of an epoxy, the composite becomes flexible. This work explores the deployment repeatability of silicone matrix composite hinges which join rigid composite beams. The hinges were found to have sub-millimeter linear deployment repeatability, and sub-degree angular deployment repeatability. Also, an interesting relaxation effect was discovered, as a hinges deployment error would decrease with time.

  10. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Barbera, M.; Ayers, T.; Collura, A.; Nasillo, G.; Pareschi, G.; Tagliaferri, G.

    2009-05-01

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  11. Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small Reynolds numbers.

    PubMed

    Rosén, T; Einarsson, J; Nordmark, A; Aidun, C K; Lundell, F; Mehlig, B

    2015-12-01

    We numerically analyze the rotation of a neutrally buoyant spheroid in a shear flow at small shear Reynolds number. Using direct numerical stability analysis of the coupled nonlinear particle-flow problem, we compute the linear stability of the log-rolling orbit at small shear Reynolds number Re(a). As Re(a)→0 and as the box size of the system tends to infinity, we find good agreement between the numerical results and earlier analytical predictions valid to linear order in Re(a) for the case of an unbounded shear. The numerical stability analysis indicates that there are substantial finite-size corrections to the analytical results obtained for the unbounded system. We also compare the analytical results to results of lattice Boltzmann simulations to analyze the stability of the tumbling orbit at shear Reynolds numbers of order unity. Theory for an unbounded system at infinitesimal shear Reynolds number predicts a bifurcation of the tumbling orbit at aspect ratio λ(c)≈0.137 below which tumbling is stable (as well as log rolling). The simulation results show a bifurcation line in the λ-Re(a) plane that reaches λ≈0.1275 at the smallest shear Reynolds number (Re(a)=1) at which we could simulate with the lattice Boltzmann code, in qualitative agreement with the analytical results.

  12. Mechanical and Histological Effects of Resorbable Blasting Media Surface Treatment on the Initial Stability of Orthodontic Mini-Implants

    PubMed Central

    2016-01-01

    Introduction. This study aimed to evaluate the effects of resorbable blasting media (RBM) treatment on early stability of orthodontic mini-implants by mechanical, histomorphometric, and histological analyses. Methods. Ninety-six (64 for mechanical study and 32 for histological study and histomorphometric analysis) titanium orthodontic mini-implants (OMIs) with machined (machined group) or RBM-treated (CaP) surface (RBM group) were implanted in the tibiae of 24 rabbits. Maximum initial torque (MIT) was measured during insertion, and maximum removal torque (MRT) and removal angular momentum (RAM) were measured at 2 and 4 weeks after implantation. Bone-to-implant contact (BIC) and bone area (BA) were analyzed at 4 weeks after implantation. Results. RBM group exhibited significantly lower MIT and significantly higher MRT and RAM at 2 weeks than machined group. No significant difference in MRT, RAM, and BIC between the two groups was noted at 4 weeks, although BA was significantly higher in RBM group than in machined group. RBM group showed little bone resorption, whereas machined group showed new bone formation after bone resorption. Conclusions. RBM surface treatment can provide early stability of OMIs around 2 weeks after insertion, whereas stability of machined surface OMIs may decrease in early stages because of bone resorption, although it can subsequently recover by new bone apposition. PMID:26942200

  13. The study of the structural stability of the spiral laser beams propagation through inhomogeneous phase medium

    NASA Astrophysics Data System (ADS)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2015-06-01

    This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.

  14. Salter-Harris type II metacarpal and metatarsal fracture in three foals. Treatment by minimally-invasive lag screw osteosynthesis combined with external coaptation.

    PubMed

    Klopfenstein Bregger, Micaël D; Fürst, Anton E; Kircher, Patrick R; Kluge, Katharina; Kummer, Martin

    2016-05-18

    To describe minimally-invasive lag screw osteosynthesis combined with external coaptation for the treatment of Salter-Harris type II third metacarpal and third metatarsal bone fractures. Three foals aged two weeks to four months with a Salter-Harris type II third metacarpal or third metatarsal fracture. Surgery was carried out under general anaesthesia in lateral recumbency. After fracture reduction, the metaphyseal fragment was stabilized with two cortical screws placed in lag fashion under fluoroscopic control. A cast was applied for at least two weeks. All foals had a good outcome with complete fracture healing and return to complete soundness without any angular limb deformity. All foals had moderate transient digital hyperextension after cast removal. Internal fixation of Salter-Harris type II third metacarpal or third metatarsal fractures with two cortical screws in lag fashion, combined with external coaptation provided good stabilization and preserved the longitudinal growth potential of the injured physis.

  15. Retrograde spreading of hydrocortisone enema in inflammatory bowel disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jay, M.; Digenis, G.A.; Foster, T.S.

    A hydrocortisone suspension enema was radiolabeled with (/sup 99m/Tc)technetium sulfur colloid and administered to four normal subjects and eight patients with varying degrees of inflammatory bowel disease. The extent of enema spreading was monitored using external scintigraphy for a period of up to 4 hr after administration. Pretreatment of normal subjects with an evacuation enema resulted in spreading of the radiolabeled enema throughout the entire colon. In seven of the eight patients studied, the enema migrated a distance equal to or greater than the extent of disease involvement. An in vivo stability study with an indium-111-labeled enema, using the perturbedmore » angular correlation technique, revealed that the enema retains its stability for up to 90 min after administration. These results indicate that the use of hydrocortisone enemas may not be restricted to distal bowel disease, but may also be effective in inflammatory bowel diseases involving proximal regions of the colon.« less

  16. A piloted simulator investigation of augmentation systems to improve helicopter nap-of-the-earth handling qualities

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Talbot, P. D.; Gerdes, R. M.; Dugan, D. C.

    1978-01-01

    A piloted simulation study assessed various levels of stability and control augmentation designed to improve the handling qualities of several helicopters in nap-of-the-earth (NOE) flight. Five basic single rotor helicopters - one teetering, two articulated, and two hingeless - which were found to have a variety of major deficiencies in a previous fixed-based simulator study were selected as baseline configurations. The stability and control augmentation systems (SCAS) include simple control augmentation systems (CAS) to decouple pitch and yaw responses due to collective input and to quicken the pitch and roll control responses; SCAS of rate command type designed to optimize the sensitivity and damping and to decouple the pitch-roll due to aircraft angular rate; and attitude command type SCAS. Pilot ratings and commentary are presented as well as performance data related to the task. SCAS control usage and their gain levels associated with specific rotor type are also discussed.

  17. Mathematical and computational studies of the stability of axisymmetric annular capillary free surfaces

    NASA Technical Reports Server (NTRS)

    Albright, N.; Concus, P.; Karasalo, I.

    1977-01-01

    Of principal interest is the stability of a perfectly wetting liquid in an inverted, vertical, right circular-cylindrical container having a concave spheroidal bottom. The mathematical conditions that the contained liquid be in stable static equilibrium are derived, including those for the limiting case of zero contact angle. Based on these results, a computational investigation is carried out for a particular container that is used for the storage of liquid fuels in NASA Centaur space vehicles, for which the axial ratio of the container bottom is 0.724. It is found that for perfectly wetting liquids the qualitative nature of the onset of instability changes at a critical liquid volume, which for the Centaur fuel tank corresponds to a mean fill level of approximately 0.503 times the tank's radius. Small-amplitude periodic sloshing modes for this tank were calculated; oscillation frequencies or growth rates are given for several Bond numbers and liquid volumes, for normal modes having up to six angular nodes.

  18. The stability of perfect elliptic disks. 1: The maximum streaming case

    NASA Technical Reports Server (NTRS)

    Levine, Stephen E.; Sparke, Linda S.

    1994-01-01

    Self-consistent distribution functions are constructed for two-dimensional perfect elliptic disks (for which the potential is exactly integrable) in the limit of maximum streaming; these are tested for stability by N-body integration. To obtain a discrete representation for each model, simulated annealing is used to choose a set of orbits which sample the distribution function and reproduce the required density profile while carrying the greatest possible amount of angular momentum. A quiet start technique is developed to place particles on these orbits uniformly in action-angle space, making the initial conditions as smooth as possible. The roundest models exhibit spiral instabilities similar to those of cold axisymmetric disks; the most elongated models show bending instabilities like those seen in prolate systems. Between these extremes, there is a range of axial ratios 0.25 approximately less than b/a approximately less than 0.6 within which these models appear to be stable. All the methods developed in this investigation can easily be extended to integrable potentials in three dimensions.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, Ben Chung; Wollaber, Allan Benton; Haut, Terry Scot

    The high-order low-order (HOLO) method is a recently developed moment-based acceleration scheme for solving time-dependent thermal radiative transfer problems, and has been shown to exhibit orders of magnitude speedups over traditional time-stepping schemes. However, a linear stability analysis by Haut et al. (2015 Haut, T. S., Lowrie, R. B., Park, H., Rauenzahn, R. M., Wollaber, A. B. (2015). A linear stability analysis of the multigroup High-Order Low-Order (HOLO) method. In Proceedings of the Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method; Nashville, TN, April 19–23, 2015. American Nuclear Society.)more » revealed that the current formulation of the multigroup HOLO method was unstable in certain parameter regions. Since then, we have replaced the intensity-weighted opacity in the first angular moment equation of the low-order (LO) system with the Rosseland opacity. Furthermore, this results in a modified HOLO method (HOLO-R) that is significantly more stable.« less

  20. A stable 1D multigroup high-order low-order method

    DOE PAGES

    Yee, Ben Chung; Wollaber, Allan Benton; Haut, Terry Scot; ...

    2016-07-13

    The high-order low-order (HOLO) method is a recently developed moment-based acceleration scheme for solving time-dependent thermal radiative transfer problems, and has been shown to exhibit orders of magnitude speedups over traditional time-stepping schemes. However, a linear stability analysis by Haut et al. (2015 Haut, T. S., Lowrie, R. B., Park, H., Rauenzahn, R. M., Wollaber, A. B. (2015). A linear stability analysis of the multigroup High-Order Low-Order (HOLO) method. In Proceedings of the Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method; Nashville, TN, April 19–23, 2015. American Nuclear Society.)more » revealed that the current formulation of the multigroup HOLO method was unstable in certain parameter regions. Since then, we have replaced the intensity-weighted opacity in the first angular moment equation of the low-order (LO) system with the Rosseland opacity. Furthermore, this results in a modified HOLO method (HOLO-R) that is significantly more stable.« less

  1. Role of polarizer-tilting-angle in zero-field spin-transfer nano-oscillators with perpendicular anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Fuentes, C.; Gallardo, R. A., E-mail: rodolfo.gallardo@usm.cl; Landeros, P.

    2015-10-05

    An analytical model for studying the stability of a single domain ferromagnetic layer under the influence of a spin-polarized current is presented. The theory is applied to bias-field-free nano-oscillators with perpendicular anisotropy, which allows to obtain a polarizer-angle vs. current phase diagram that describes the stability of magnetic states. Explicit formulae for the critical current densities unveil the influence of the relative orientation between free and polarizer layers, allowing the emergence of precessional steady-states, and also the possibility to reduce the magnitude of the threshold current density to produce microwave oscillations. It is shown that oscillating steady-states arise in amore » broad angular region, and the dependence of their boundaries is fully specified by the model. The reliability of the analytical results has been corroborated by comparison to numerical calculations. Such structures are currently under intense research because of remarkable properties offering new prospects for microwave applications in communication technologies.« less

  2. Torque modulates nucleosome stability and facilitates H2A/H2B dimer loss

    PubMed Central

    Sheinin, Maxim Y.; Li, Ming; Soltani, Mohammad; Luger, Karolin; Wang, Michelle D.

    2013-01-01

    The nucleosome, the fundamental packing unit of chromatin, has a distinct chirality: 147 bp of DNA are wrapped around the core histones in a left-handed, negative superhelix. It has been suggested that this chirality has functional significance, particularly in the context of the cellular processes that generate DNA supercoiling, such as transcription and replication. However, the impact of torsion on nucleosome structure and stability is largely unknown. Here we perform a detailed investigation of single nucleosome behavior on the high affinity 601 positioning sequence under tension and torque using the angular optical trapping technique. We find that torque has only a moderate effect on nucleosome unwrapping. In contrast, we observe a dramatic loss of H2A/H2B dimers upon nucleosome disruption under positive torque, while (H3/H4)2 tetramers are efficiently retained irrespective of torsion. These data indicate that torque could regulate histone exchange during transcription and replication. PMID:24113677

  3. Roto-orbital dynamics of a triaxial rigid body around a sphere. Relative equilibria and stability

    NASA Astrophysics Data System (ADS)

    Crespo, F.; Ferrer, S.

    2018-06-01

    We study the roto-orbital motion of a triaxial rigid body around a sphere, which is assumed to be much more massive than the triaxial body. The associated dynamics of this system, which consists of a normalized Hamiltonian with respect to the fast angles (partial averaging), is investigated making use of variables referred to the total angular momentum. The first order approximation of this model is integrable. We carry out the analysis of the relative equilibria, which hinges principally in the dihedral angle between the orbital and rotational planes and the ratio among the moments of inertia ρ = (B - A) / (2 C - B - A) . In particular, the dynamics of the body frame, though formally given by the classical Euler equations, experiences changes of stability in the principal directions related to the roto-orbital coupling. When ρ = 1 / 3 , we find a family of relative equilibria connected to the unstable equilibria of the free rigid body.

  4. Accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Abramowicz, M. A.

    1994-01-01

    The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.

  5. Modeling of Driver Steering Operations in Lateral Wind Disturbances toward Driver Assistance System

    NASA Astrophysics Data System (ADS)

    Kurata, Yoshinori; Wada, Takahiro; Kamiji, Norimasa; Doi, Shun'ichi

    Disturbances decrease vehicle stability and increase driver's mental and physical workload. Especially unexpected disturbances such as lateral winds have severe effect on vehicle stability and driver's workload. This study aims at building a driver model of steering operations in lateral wind toward developing effective driver assistance system. First, the relationship between the driver's lateral motion and its reactive quick steering behavior is investigated using driving simulator with lateral 1dof motion. In the experiments, four different wind patterns are displayed by the simulator. As the results, strong correlation was found between the driver's head lateral jerk by the lateral disturbance and the angular acceleration of the steering wheel. Then, we build a mathematical model of driver's steering model from lateral disturbance input to steering torque of the reactive quick feed-forward steering based on the experimental results. Finally, validity of the proposed model is shown by comparing the steering torque of experimental results and that of simulation results.

  6. Canonical formalism for modelling and control of rigid body dynamics.

    PubMed

    Gurfil, P

    2005-12-01

    This paper develops a new paradigm for stabilization of rigid-body dynamics. The state-space model is formulated using canonical elements, known as the Serret-Andoyer (SA) variables, thus far scarcely used for engineering applications. The main feature of the SA formalism is the reduction of the dynamics via the underlying symmetry stemming from conservation of angular momentum and rotational kinetic energy. The controllability of the system model is examined using the notion of accessibility, and is shown to be accessible from all points. Based on the accessibility proof, two nonlinear asymptotic feedback stabilizers are developed: a damping feedback is designed based on the Jurdjevic-Quinn method, and a Hamiltonian controller is derived by using the Hamiltonian as a natural Lyapunov function for the closed-loop dynamics. It is shown that the Hamiltonian control is both passive and inverse optimal with respect to a meaningful performance index. The performance of the new controllers is examined and compared using simulations of realistic scenarios from the satellite attitude dynamics field.

  7. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine β-Lactamases by Relieving Steric Strain

    DOE PAGES

    Stojanoski, Vlatko; Adamski, Carolyn J.; Hu, Liya; ...

    2016-04-12

    Serine β-lactamases are bacterial enzymes that hydrolyze β- lactam antibiotics. They utilize an active-site serine residue as a nucleophile, forming an acyl-enzyme intermediate during hydrolysis. Here, thermal denaturation experiments as well as X-ray crystallography were performed to test the effect of substitution of the catalytic serine with glycine on protein stability in serine β-lactamases. Six different enzymes comprising representatives from each of the three classes of serine β-lactamases were examined, including TEM-1, CTX-M- 14, and KPC-2 of class A, P99 of class C, and OXA-48 and OXA-163 of class D. For each enzyme, the wild type and a serine-to-glycine mutantmore » were evaluated for stability. The glycine mutants all exhibited enhanced thermostability compared to that of the wild type. In contrast, alanine substitutions of the catalytic serine in TEM-1, OXA-48, and OXA-163 did not alter stability, suggesting removal of the Cβ atom is key to the stability increase associated with the glycine mutants. The X-ray crystal structures of P99 S64G, OXA-48 S70G and S70A, and OXA-163 S70G suggest that removal of the side chain of the catalytic serine releases steric strain to improve enzyme stability. In addition, analysis of the torsion angles at the nucleophile position indicates that the glycine mutants exhibit improved distance and angular parameters of the intrahelical hydrogen bond network compared to those of the wild-type enzymes, which is also consistent with increased stability. The increased stability of the mutants indicates that the enzyme pays a price in stability for the presence of a side chain at the catalytic serine position but that the cost is necessary in that removal of the serine drastically impairs function. Our findings support the stability-function hypothesis, which states that active-site residues are optimized for substrate binding and catalysis but that the requirements for catalysis are often not consistent with the requirements for optimal stability.« less

  8. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine β-Lactamases by Relieving Steric Strain

    PubMed Central

    Stojanoski, Vlatko; Adamski, Carolyn J.; Hu, Liya; Mehta, Shrenik C.; Sankaran, Banumathi; Zwart, Peter; Prasad, B.V. Venkataram; Palzkill, Timothy

    2016-01-01

    Serine β-lactamases are bacterial enzymes that hydrolyze β-lactam antibiotics. They utilize an active-site serine residue as a nucleophile, forming an acyl-enzyme intermediate during hydrolysis. In this study, thermal denaturation experiments as well as X-ray crystallography were performed to test the effect of substitution of the catalytic serine by glycine on protein stability in serine β-lactamases. Six different enzymes comprising representatives from each of the three classes of serine β-lactamases were examined including TEM-1, CTX-M-14, and KPC-2 of class A, P99 of class C, and OXA-48 and OXA-163 of class D. For each enzyme, the wild type and a serine-to-glycine mutant were evaluated for stability. The glycine mutants all exhibited enhanced thermostability compared to the wild type. In contrast, alanine substitutions of the catalytic serine in TEM-1, OXA-48 and OXA-163 did not alter stability, suggesting removal of the Cβ atom is key to the stability increase associated with the glycine mutants. The X-ray crystal structures of P99 S64G, OXA-48 S70G and S70A, and OXA-163 S70G suggest that removal of the side chain of the catalytic serine releases steric strain to improve enzyme stability. Additionally, analysis of the torsion angles at the nucleophile position indicates that the glycine mutants exhibit improved distance and angular parameters of the intra-helical hydrogen bond network compared to the wild-type enzymes, which is also consistent with increased stability. The increased stability of the mutants indicates that the enzyme pays a price in stability for the presence of a side chain at the catalytic serine position but that the cost is necessary in that removal of the serine drastically impairs function. These findings support the stability-function hypothesis, which states that active-site residues are optimized for substrate binding and catalysis but that the requirements for catalysis are often not consistent with the requirements for optimal stability. PMID:27073009

  9. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine β-Lactamases by Relieving Steric Strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stojanoski, Vlatko; Adamski, Carolyn J.; Hu, Liya

    Serine β-lactamases are bacterial enzymes that hydrolyze β- lactam antibiotics. They utilize an active-site serine residue as a nucleophile, forming an acyl-enzyme intermediate during hydrolysis. Here, thermal denaturation experiments as well as X-ray crystallography were performed to test the effect of substitution of the catalytic serine with glycine on protein stability in serine β-lactamases. Six different enzymes comprising representatives from each of the three classes of serine β-lactamases were examined, including TEM-1, CTX-M- 14, and KPC-2 of class A, P99 of class C, and OXA-48 and OXA-163 of class D. For each enzyme, the wild type and a serine-to-glycine mutantmore » were evaluated for stability. The glycine mutants all exhibited enhanced thermostability compared to that of the wild type. In contrast, alanine substitutions of the catalytic serine in TEM-1, OXA-48, and OXA-163 did not alter stability, suggesting removal of the Cβ atom is key to the stability increase associated with the glycine mutants. The X-ray crystal structures of P99 S64G, OXA-48 S70G and S70A, and OXA-163 S70G suggest that removal of the side chain of the catalytic serine releases steric strain to improve enzyme stability. In addition, analysis of the torsion angles at the nucleophile position indicates that the glycine mutants exhibit improved distance and angular parameters of the intrahelical hydrogen bond network compared to those of the wild-type enzymes, which is also consistent with increased stability. The increased stability of the mutants indicates that the enzyme pays a price in stability for the presence of a side chain at the catalytic serine position but that the cost is necessary in that removal of the serine drastically impairs function. Our findings support the stability-function hypothesis, which states that active-site residues are optimized for substrate binding and catalysis but that the requirements for catalysis are often not consistent with the requirements for optimal stability.« less

  10. The Effect of Polymethyl Methacrylate Augmentation on the Primary Stability of Cannulated Bone Screws in an Anterolateral Plate in Osteoporotic Vertebrae: A Human Cadaver Study

    PubMed Central

    Rüger, Matthias; Sellei, Richard M.; Stoffel, Marcus; von Rüden, Christian

    2015-01-01

    Study Design Cohort study. Objective Expandable anterolateral plates facilitate the reduction of posttraumatic deformities of thoracolumbar spine injuries and are commonly used in cases of unstable injuries or compromised bone quality. In this in vitro study, the craniocaudal yield load of the osseous fixation of an anterior angular stable plate fixation system and the effect of polymethyl methacrylate (PMMA) screw augmentation on the primary stability of the screw–bone interface during kyphosis reduction was evaluated in 12 osteoporotic human thoracolumbar vertebrae. Methods The anterolateral stabilization device used for this study is comprised of two swiveling flanges and an expandable midsection. It facilitates the controlled reduction of kyphotic deformities in situ with a geared distractor. Single flanges were attached to 12 thoracolumbar vertebrae. Six specimens were augmented with PMMA by means of cannulated bone screws. The constructs were subjected to static, displacement-controlled craniocaudal loading to failure in a servohydraulic testing machine. Results The uncemented screws cut out at a mean 393 ± 66 N, whereas the cemented screws showed significantly higher yield load of 966 ± 166 N (p < 0.02). We detected no significant correlation between bone mineral density and yield load in this setting. Conclusion Our results indicate that PMMA augmentation is an effective method to increase two- to threefold the primary stability of the screw–bone interface of an anterolateral spine stabilization system in osteoporotic bone. We recommend it in cases of severely compromised bone quality to reduce the risk of screw loosening during initial kyphosis correction and to increase long-term construct stability. PMID:26835201

  11. The Effect of Polymethyl Methacrylate Augmentation on the Primary Stability of Cannulated Bone Screws in an Anterolateral Plate in Osteoporotic Vertebrae: A Human Cadaver Study.

    PubMed

    Rüger, Matthias; Sellei, Richard M; Stoffel, Marcus; von Rüden, Christian

    2016-02-01

    Study Design Cohort study. Objective Expandable anterolateral plates facilitate the reduction of posttraumatic deformities of thoracolumbar spine injuries and are commonly used in cases of unstable injuries or compromised bone quality. In this in vitro study, the craniocaudal yield load of the osseous fixation of an anterior angular stable plate fixation system and the effect of polymethyl methacrylate (PMMA) screw augmentation on the primary stability of the screw-bone interface during kyphosis reduction was evaluated in 12 osteoporotic human thoracolumbar vertebrae. Methods The anterolateral stabilization device used for this study is comprised of two swiveling flanges and an expandable midsection. It facilitates the controlled reduction of kyphotic deformities in situ with a geared distractor. Single flanges were attached to 12 thoracolumbar vertebrae. Six specimens were augmented with PMMA by means of cannulated bone screws. The constructs were subjected to static, displacement-controlled craniocaudal loading to failure in a servohydraulic testing machine. Results The uncemented screws cut out at a mean 393 ± 66 N, whereas the cemented screws showed significantly higher yield load of 966 ± 166 N (p < 0.02). We detected no significant correlation between bone mineral density and yield load in this setting. Conclusion Our results indicate that PMMA augmentation is an effective method to increase two- to threefold the primary stability of the screw-bone interface of an anterolateral spine stabilization system in osteoporotic bone. We recommend it in cases of severely compromised bone quality to reduce the risk of screw loosening during initial kyphosis correction and to increase long-term construct stability.

  12. A novel shock and heat tolerant gyrosensor utilizing a one-port surface acoustic wave reflective delay line

    NASA Astrophysics Data System (ADS)

    Oh, Haekwan; Fu, Chen; Yang, Sang Sik; Wang, Wen; Lee, Keekeun

    2012-04-01

    A surface acoustic wave (SAW)-based gyroscope with an 80 MHz central frequency was fabricated on a 128° YX LiNbO3 piezoelectric substrate. The fabricated gyroscope is composed of a SAW resonator, metallic dots and a SAW reflective delay line. The SAW resonator, which is activated by a voltage-controlled oscillator, generates a stable standing wave with a large amplitude at an 80 MHz resonant frequency, and the metallic dots induce a Coriolis force and generate a secondary SAW in the direction orthogonal to the propagating standing wave. The SAW reflective delay line is employed to measure the Coriolis effect by analyzing the deviations in the resonant frequency of the SAW reflective delay line. A combined finite element method/boundary element method was utilized to extract the optimal device parameters prior to fabrication. The device was fabricated according to the modeling results and then measured on a rate table. When the device was subjected to an angular rotation, a secondary SAW from the vibrating metallic dots was generated owing to the Coriolis force, resulting in a perturbation of the propagating SAW in the SAW reflective delay line. Depending on the angular velocity, the reflection peak of SAW reflective delay line was changed linearly, and this change was measured by the network analyzer. The measured results matched the modeling results well. The obtained sensitivity was approximately 1.23 deg/(deg/s) in an angular rate range of 0-2000 deg s-1. Good thermal and shock stabilities were observed during the evaluation process proving the shock and heat robustness of the fabricated SAW gyroscope.

  13. Angular Stable Miniplate Fixation of Chronic Unstable Scaphoid Nonunion.

    PubMed

    Schormans, Philip M J; Brink, Peter R G; Poeze, Martijn; Hannemann, Pascal F W

    2018-02-01

    Background  Around 5 to 15% of all scaphoid fractures result in nonunion. Treatment of long-lasting scaphoid nonunion remains a challenge for the treating surgeon. Healing of scaphoid nonunion is essential for prevention of scaphoid nonunion advanced collapse and the subsequent predictable pattern of radiocarpal osteoarthritis. Purpose  The purpose of this study was to investigate the feasibility of fixation of the scaphoid nonunion with a volar angular stable miniplate and cancellous bone grafting. We hypothesized that this technique could be successful, even in patients with previous surgery for nonunion and in patients with a long duration of nonunion. Patients and Methods  A total of 21 patients enrolled in a single-center prospective cohort study. Healing of nonunion was assessed on multiplanar computed tomography scan of the wrist at a 3-month interval. Functional outcome was assessed by measuring grip strength, range of motion, and by means of the patient-rated wrist and hand evaluation (PRWHE) questionnaire. Results  During follow-up, 19 out of 21 patients (90%) showed radiological healing of the nonunion. The range of motion did not improve significantly. Postoperative PRWHE scores decreased by 34 points. Healing occurred regardless of the length of time of the nonunion (range: 6-183 months) and regardless of previous surgery (38% of patients). Conclusion  Volar angular stable miniplate fixation with autologous cancellous bone grafting is a successful technique for the treatment of chronic unstable scaphoid nonunion, even in patients with long-lasting nonunion and in patients who underwent previous surgery for a scaphoid fracture. Rotational interfragmentary stability might be an important determining factor for the successful treatment of unstable scaphoid nonunion. Level of Evidence  Level IV.

  14. Dimensional accuracy of pickup implant impression: an in vitro comparison of novel modular versus standard custom trays.

    PubMed

    Simeone, Piero; Valentini, Pier Paolo; Pizzoferrato, Roberto; Scudieri, Folco

    2011-01-01

    The purpose of this in vitro study was to compare the dimensional accuracy of the pickup impression technique using a modular individual tray (MIT) and using a standard individual tray (ST) for multiple internal-connection implants. The roles of both materials and geometric misfits were considered. First, because the MIT relies on the stiffness and elasticity of acrylic resin material, a preliminary investigation of the resin volume contraction during curing and polymerization was done. Then, two sets of specimens were tested to compare the accuracy of the MIT (test group) to that of the ST (control group). The linear and angular displacements of the transfer copings were measured and compared during three different stages of the impression procedure. Experimental measurements were performed with a computerized coordinate measuring machine. The curing dynamic of the acrylic resin was strongly dependent on the physical properties of the acrylic material and the powder/liquid ratio. Specifically, an increase in the powder/liquid ratio accelerated resin polymerization (curing time decreases by 70%) and reduced the final volume contraction by 45%. However, the total shrinkage never exceeded the elastic limits of the material; hence, it did not affect the coping's stability. In the test group, linear errors were reduced by 55% and angular errors were reduced by 65%. Linear and angular displacements of the transfer copings were significantly reduced with the MIT technique, which led to higher dimensional accuracy versus the ST group. The MIT approach, in combination with a thin and uniform amount of acrylic resin in the pickup impression technique, showed no significant permanent distortions in multiple misalignment internal-connection implants compared to the ST technique.

  15. Biomechanical analysis of a newly designed bioabsorbable anterior cervical plate. Invited submission from the joint section meeting on disorders of the spine and peripheral nerves, March 2005.

    PubMed

    Ames, Christopher P; Acosta, Frank L; Chamberlain, Robert H; Larios, Adolfo Espinoza; Crawford, Neil R

    2005-12-01

    The authors present a biomechanical analysis of a newly designed bioabsorbable anterior cervical plate (ACP) for the treatment of one-level cervical degenerative disc disease. They studied anterior cervical discectomy and fusion (ACDF) in a human cadaveric model, comparing the stability of the cervical spine after placement of the bioabsorbable fusion plate, a bioabsorbable mesh, and a more traditional metallic ACP. Seven human cadaveric specimens underwent a C6-7 fibular graft-assisted ACDF placement. A one-level resorbable ACP was then placed and secured with bioabsorbable screws. Flexibility testing was performed on both intact and instrumented specimens using a servohydraulic system to create flexion-extension, lateral bending, and axial rotation motions. After data analysis, three parameters were calculated: angular range of motion, lax zone, and stiff zone. The results were compared with those obtained in a previous study of a resorbable fusion mesh and with those acquired using metallic fusion ACPs. For all parameters studied, the resorbable plate consistently conferred greater stability than the resorbable mesh. Moreover, it offered comparable stability with that of metallic fusion ACPs. Bioabsorbable plates provide better stability than resorbable mesh. Although the results of this study do not necessarily indicate that a resorbable plate confers equivalent stability to a metal plate, the resorbable ACP certainly yielded better results than the resorbable mesh. Bioabsorbable fusion ACPs should therefore be considered as alternatives to metal plates when a graft containment device is required.

  16. Stern-Gerlach-like approach to electron orbital angular momentum measurement

    DOE PAGES

    Harvey, Tyler R.; Grillo, Vincenzo; McMorran, Benjamin J.

    2017-02-28

    Many methods now exist to prepare free electrons into orbital-angular-momentum states, and the predicted applications of these electron states as probes of materials and scattering processes are numerous. The development of electron orbital-angular-momentum measurement techniques has lagged behind. We show that coupling between electron orbital angular momentum and a spatially varying magnetic field produces an angular-momentum-dependent focusing effect. We propose a design for an orbital-angular-momentum measurement device built on this principle. As the method of measurement is noninterferometric, the device works equally well for mixed, superposed, and pure final orbital-angular-momentum states. The energy and orbital-angular-momentum distributions of inelastically scattered electronsmore » may be simultaneously measurable with this technique.« less

  17. Stern-Gerlach-like approach to electron orbital angular momentum measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Tyler R.; Grillo, Vincenzo; McMorran, Benjamin J.

    Many methods now exist to prepare free electrons into orbital-angular-momentum states, and the predicted applications of these electron states as probes of materials and scattering processes are numerous. The development of electron orbital-angular-momentum measurement techniques has lagged behind. We show that coupling between electron orbital angular momentum and a spatially varying magnetic field produces an angular-momentum-dependent focusing effect. We propose a design for an orbital-angular-momentum measurement device built on this principle. As the method of measurement is noninterferometric, the device works equally well for mixed, superposed, and pure final orbital-angular-momentum states. The energy and orbital-angular-momentum distributions of inelastically scattered electronsmore » may be simultaneously measurable with this technique.« less

  18. Linear and angular control of circular walking in healthy older adults and subjects with cerebellar ataxia.

    PubMed

    Goodworth, Adam D; Paquette, Caroline; Jones, Geoffrey Melvill; Block, Edward W; Fletcher, William A; Hu, Bin; Horak, Fay B

    2012-05-01

    Linear and angular control of trunk and leg motion during curvilinear navigation was investigated in subjects with cerebellar ataxia and age-matched control subjects. Subjects walked with eyes open around a 1.2-m circle. The relationship of linear to angular motion was quantified by determining the ratios of trunk linear velocity to trunk angular velocity and foot linear position to foot angular position. Errors in walking radius (the ratio of linear to angular motion) also were quantified continuously during the circular walk. Relative variability of linear and angular measures was compared using coefficients of variation (CoV). Patterns of variability were compared using power spectral analysis for the trunk and auto-covariance analysis for the feet. Errors in radius were significantly increased in patients with cerebellar damage as compared to controls. Cerebellar subjects had significantly larger CoV of feet and trunk in angular, but not linear, motion. Control subjects also showed larger CoV in angular compared to linear motion of the feet and trunk. Angular and linear components of stepping differed in that angular, but not linear, foot placement had a negative correlation from one stride to the next. Thus, walking in a circle was associated with more, and a different type of, variability in angular compared to linear motion. Results are consistent with increased difficulty of, and role of the cerebellum in, control of angular trunk and foot motion for curvilinear locomotion.

  19. Gravity-oriented satellite dynamics subject to gravitational and active damping torques

    NASA Astrophysics Data System (ADS)

    Sarychev, V. A.; Gutnik, S. A.

    2018-01-01

    The dynamics of the rotational motion of a satellite moving in the central Newtonian field of force over a circular orbit under the effect of gravitational and active damping torques, which depend on the satellite angular velocity projections, has been investigated. The paper proposes a method of determining all equilibrium positions (equilibrium orientations) of a satellite in the orbital coordinate system for specified values of damping coefficients and principal central moments of inertia. The conditions of their existence have been obtained. For a zero equilibrium position where the axes of the satellite-centered coordinate system coincide with the axes of the orbital coordinate system, the necessary and sufficient conditions for asymptotic stability are obtained using the Routh-Hurwitz criterion. A detailed analysis of the regions where the conditions of the asymptotic stability of a zero equilibrium position are fulfilled have been obtained depending on three dimensionless parameters of the problem, and the numerical study of the process of attenuation of satellite's spatial oscillations for various damping coefficients has been carried out. It has been shown that there is a wide range of damping parameters from which, by choosing the necessary values, one can provide the asymptotic stability of satellite's zero equilibrium position in the orbital coordinate system.

  20. On the stability and maximum mass of differentially rotating relativistic stars

    NASA Astrophysics Data System (ADS)

    Weih, Lukas R.; Most, Elias R.; Rezzolla, Luciano

    2018-01-01

    The stability properties of rotating relativistic stars against prompt gravitational collapse to a black hole are rather well understood for uniformly rotating models. This is not the case for differentially rotating neutron stars, which are expected to be produced in catastrophic events such as the merger of binary system of neutron stars or the collapse of a massive stellar core. We consider sequences of differentially rotating equilibrium models using the j-constant law and by combining them with their dynamical evolution, we show that a sufficient stability criterion for differentially rotating neutron stars exists similar to the one of their uniformly rotating counterparts. Namely: along a sequence of constant angular momentum, a dynamical instability sets in for central rest-mass densities slightly below the one of the equilibrium solution at the turning point. In addition, following Breu & Rezzolla, we show that `quasi-universal' relations can be found when calculating the turning-point mass. In turn, this allows us to compute the maximum mass allowed by differential rotation, Mmax,dr, in terms of the maximum mass of the non-rotating configuration, M_{_TOV}, finding that M_{max, dr} ˜eq (1.54 ± 0.05) M_{_TOV} for all the equations of state we have considered.

  1. Design of a Bearingless Blood Pump

    NASA Technical Reports Server (NTRS)

    Barletta, Natale; Schoeb, Reto

    1996-01-01

    In the field of open heart surgery, centrifugal blood pumps have major advantages over roller pumps. The main drawbacks to centrifugal pumps are however problems with the bearings and with the sealing of the rotor shaft. In this paper we present a concept for a simple, compact and cost effective solution for a blood pump with a totally magnetically suspended impeller. It is based on the new technology of the 'Bearingless Motor' and is therefore called the 'Bearingless Blood Pump.' A single bearingless slice motor is at the same time a motor and a bearing system and is able to stabilize the six degrees of freedom of the pump impeller in a very simple way. Three degrees of freedom are stabilized actively (the rotation and the radial displacement of the motor slice). The axial and the angular displacement are stabilized passively. The pump itself (without the motor-stator and the control electronics) is built very simply. It consists of two parts only: the impeller with the integrated machine rotor and the housing. So the part which gets in contact with blood and has therefore to be disposable, is cheap. Fabricated in quantities, it will cost less than $10 and will therefore be affordable for the use in a heart-lung-machine.

  2. Picometer stable scan mechanism for gravitational wave detection in space: LISA PAAM

    NASA Astrophysics Data System (ADS)

    Pijnenburg, J. A. C. M.; Rijnveld, N.

    2017-11-01

    Detection and observation of gravitational waves requires extreme stability in the frequency range 0.03 mHz to 1 Hz. The Laser Interferometer Space Antenna (LISA) mission will attain this by creating a giant interferometer in space, based on free floating proof masses in three spacecrafts. Due to orbit evolution and time delay in the interferometer arms, the direction of transmitted light changes. To solve this problem, a picometer stable Point-Ahead Angle Mechanism (PAAM) was designed, realized and successfully tested. The PAAM concept is based on a rotatable mirror. The critical requirements are the contribution to the optical path length (less than 1.4 pm / rt Hz) and the angular jitter (less than 8 nrad / rt Hz). Extreme dimensional stability is achieved by manufacturing a monolithical Haberland hinge mechanism out of Ti6Al4V, through high precision wire erosion. Extreme thermal stability is realized by placing the thermal center on the surface of the mirror. Because of piezo actuator noise and leakage, the PAAM has to be controlled in closed-loop. To meet the requirements in the low frequencies, an active target capacitance-to-digital converter is used. Interferometric measurements with a triangular resonant cavity in vacuum proved that the PAAM meets the requirements.

  3. Stability of a family of uniform vortices related to vortex configurations before merging

    NASA Astrophysics Data System (ADS)

    Luzzatto-Fegiz, P.; Williamson, C. H. K.

    2006-11-01

    Motivated by the merger of two corotating vortices, Cerretelli & Williamson (JFM 2003) discovered a family of uniform vorticity patches representing the continuation of two corotating vortices into a single ``dumbbell'' shape. This branch of solutions passes through a bifurcation from the Kirchhoff ellipses (discovered by Kamm 1987 and Saffman 1988) and ends into a cat's eye shape. By using a more accurate method for equilibrium shape calculation, we find some differences in the equilibrium shapes to those discovered by Cerretelli & Williamson, particularly near the topological change (from a two-vortex to a single vortex shape). We implement the approach of Dritschel (1985), and show that all the simply connected shapes are unstable to a three-fold perturbation, while a regime of the two-vortex shapes nearing the topological change is unstable to a two-fold antisymmetric perturbation. The stability of two patches has been source of debate in the literature. Saffman & Szeto (1980) predicted exchange of stability at an extremum in energy and angular momentum; on the other hand, Dritschel (1985) found that conditions for instability from linear analysis did not match those coming from the energy criterion. In the present work, we find precise agreement between results from linear analysis and energy criterion, in accordance with the more recent work of Kamm (1987) and Dritschel (1995).

  4. Astronomy and Space Science from the Moon: Proceedings of Symposium E4 of the COSPAR 29th Plenary Meeting held in Washington, DC, 28 Aug.-5 Sep., 1992

    NASA Technical Reports Server (NTRS)

    Foing, B. H. (Editor)

    1994-01-01

    The goal of the conference was to assess the moon as a base for conducting astronomy, solar system observations, and space sciences. The lunar vacuum allows a complete opening of the electromagnetic window and distortion-free measurements at the highest angular resolution, precision, and temporal stability. The moon is perfect for continuous monitoring of the Sun, Solar System targets, and for deep observations of galactic and extragalactic objects. It is an in-situ laboratory for selenophysics, chemistry, and exobiology. The moon contains useful resources and is accessible from Earth for installation, operations maintenance, robotics, and human activities.

  5. A new mathematical adjoint for the modified SAAF -SN equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunert, Sebastian; Wang, Yaqi; Martineau, Richard

    2015-01-01

    We present a new adjoint FEM weak form, which can be directly used for evaluating the mathematical adjoint, suitable for perturbation calculations, of the self-adjoint angular flux SN equations (SAAF -SN) without construction and transposition of the underlying coefficient matrix. Stabilization schemes incorporated in the described SAAF -SN method make the mathematical adjoint distinct from the physical adjoint, i.e. the solution of the continuous adjoint equation with SAAF -SN . This weak form is implemented into RattleSnake, the MOOSE (Multiphysics Object-Oriented Simulation Environment) based transport solver. Numerical results verify the correctness of the implementation and show its utility both formore » fixed source and eigenvalue problems.« less

  6. Biomechanical Assessment of Locked Plating for the Fixation of Patella Fractures.

    PubMed

    Wurm, Simone; Augat, Peter; Bühren, Volker

    2015-09-01

    To analyze the mechanical stability of locked plating in comparison with tension-band wiring for the fixation of fractures of the patella. Biomechanical tests were performed on artificial foam patella specimens comparing an angular stable plate and monocortical screws with tension-band wiring. Tests were performed under combined tension and bending until failure simulating physiological loading of the tibia during walking. Tension-band wiring failed at 66% of the failure load of plating (1052 N, P = 0.002) and had 5 times larger fracture gap displacements (P = 0.002). Based on the biomechanical advantages, locked plating of the patella may constitute a reasonable alternative in the treatment of patella fractures.

  7. Water metamaterial for ultra-broadband and wide-angle absorption.

    PubMed

    Xie, Jianwen; Zhu, Weiren; Rukhlenko, Ivan D; Xiao, Fajun; He, Chong; Geng, Junping; Liang, Xianling; Jin, Ronghong; Premaratne, Malin

    2018-02-19

    A subwavelength water metamaterial is proposed and analyzed for ultra-broadband perfect absorption at microwave frequencies. We experimentally demonstrate that this metamaterial shows over 90% absorption within almost the entire frequency band of 12-29.6 GHz. It is also shown that the proposed metamaterial exhibits a good thermal stability with its absorption performance almost unchanged for the temperature range from 0 to 100°C. The study of the angular tolerance of the metamaterial absorber shows its ability of working at wide angles of incidence. Given that the proposed water metamaterial absorber is low-cost and easy for manufacture, we envision it may find numerous applications in electromagnetics such as broadband scattering reduction and electromagnetic energy harvesting.

  8. The Lunar Transit Telescope (LTT) - An early lunar-based science and engineering mission

    NASA Technical Reports Server (NTRS)

    Mcgraw, John T.

    1992-01-01

    The Sentinel, the soft-landed lunar telescope of the LTT project, is described. The Sentinel is a two-meter telescope with virtually no moving parts which accomplishes an imaging survey of the sky over almost five octaves of the electromagnetic spectrum from the ultraviolet into the infrared, with an angular resolution better than 0.1 arsec/pixel. The Sentinel will incorporate innovative techniques of interest for future lunar-based telescopes and will return significant engineering data which can be incorporated into future lunar missions. The discussion covers thermal mapping of the Sentinel, measurement of the cosmic ray flux, lunar dust, micrometeoroid flux, the lunar atmosphere, and lunar regolith stability and seismic activity.

  9. Nonlinear dynamo action in a precessing cylindrical container.

    PubMed

    Nore, C; Léorat, J; Guermond, J-L; Luddens, F

    2011-07-01

    It is numerically demonstrated by means of a magnetohydrodynamics code that precession can trigger the dynamo effect in a cylindrical container. When the Reynolds number, based on the radius of the cylinder and its angular velocity, increases, the flow, which is initially centrosymmetric, loses its stability and bifurcates to a quasiperiodic motion. This unsteady and asymmetric flow is shown to be capable of sustaining dynamo action in the linear and nonlinear regimes. The magnetic field thus generated is unsteady and quadrupolar. These numerical evidences of dynamo action in a precessing cylindrical container may be useful for an experiment now planned at the Dresden sodium facility for dynamo and thermohydraulic studies in Germany.

  10. Whole-body angular momentum during stair ascent and descent.

    PubMed

    Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M

    2014-04-01

    The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Analytical stability criteria for the Caledonian Symmetric Four and Five Body Problems

    NASA Astrophysics Data System (ADS)

    Steves, Bonnie; Shoaib Afridi, Mohammad; Sweatman, Winston

    2017-06-01

    Analytical studies of the stability of three or more body gravitational systems are difficult because of the greater number of variables involved with the increasing number of bodies and the limitation of 10 integrals that exist in the gravitational n-body problem. Utilisation of symmetries or the neglecting of the masses of some of the bodies compared to others can simplify the dynamical problem and enable global analytical stability solutions to be derived. These symmetric and restricted few body systems with their analytical stability criterion can then provide useful information on the stability of the general few body system when near symmetry or the restricted situation. Even with symmetrical reductions, analytical stability derivations for four and five body problems are rare. In this paper, we develop an analytical stability criterion for the Caledonian Symmetric Five Body Problem (CS5BP) , a dynamically symmetrical planar problem with two pairs of equal masses and a fifth mass located at the centre of mass. Sundman’s inequality is applied to derive boundary surfaces to the allowed real motion of the system. This enables the derivation of a stability criterion valid for all time for the hierarchical stability of the CS5BP and its subset the Caledonian Symmetric Four Body Problem (CSFBP), where the central mass is taken to be equal to zero. We show that the hierarchical stability depends solely on the Szebehely constant C0, which is a function of the total energy H and angular momentum c. The critical value Ccrit at which the system becomes hierarchically stable for all time depends only on the two mass ratios of the symmetric five body system. We then explore the effect on the stability of the whole system of adding an increasing massive central body. It is shown both analytically and numerically that all CS5BPs and CSFBPs of different mass ratios are hierarchically stable if C0 > 0.0659 and C0 > 0.0465, respectively. The Caledonian Symmetric Four and Five Body gravitational models are relevant to the study of the stability and evolution of symmetric quadruple/quintuple stellar clusters and symmetric exoplanetary systems of two planets orbiting a binary/triplet of stars.

  12. A proposed measurement of optical orbital and spin angular momentum and its implications for photon angular momentum

    NASA Astrophysics Data System (ADS)

    Leader, Elliot

    2018-04-01

    The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam.

  13. Pulsed recording of anisotropy and holographic polarization gratings in azo-polymethacrylates with different molecular architectures

    NASA Astrophysics Data System (ADS)

    Forcén, Patricia; Oriol, Luis; Sánchez, Carlos; Alcalá, Rafael; Jankova, Katja; Hvilsted, Søren

    2008-06-01

    Recording of anisotropy and holographic polarization gratings using 532nm, 4ns light pulses has been carried out in thin films of polymers with the same azobenzene content (20wt%) and different molecular architectures. Random and block copolymers comprising azobenzene and methylmethacrylate (MMA) moieties as well as statistical terpolymers with azobenzene, biphenyl, and MMA units have been compared in terms of recording sensitivity and stability upon pulsed excitation. Photoinduced anisotropy just after the pulse was significantly higher in the case of the block copolymers than in the two statistical copolymers. The stability of the recorded anisotropy has also been studied. While a stationary value of the photoinduced anisotropy (approximately 50% of the initial photoinduced value) is reached for the block copolymer, photoinduced anisotropy almost vanished after a few hours in the statistical copolymers. Polarization holographic gratings have been registered using two orthogonally circularly polarized light beams. The results are qualitatively similar to those of photoinduced anisotropy, that is, stability of the registered grating and larger values of diffraction efficiency for the block copolymer as compared with the random copolymers. The recording of holographic gratings with submicron period in films several microns thick, showing both polarization and angular selectivity, has also been demonstrated. Block copolymers showed a lamellar block nanosegregated morphology. The interaction among azo chromophores within the nanosegregated azo blocks seems to be the reason for the stability and the photoresponse enhancement in the block copolymer as compared with the statistical ones.

  14. Tactile pavement for guiding walking direction: An assessment of heading direction and gait stability.

    PubMed

    Pluijter, Nanda; de Wit, Lieke P W; Bruijn, Sjoerd M; Plaisier, Myrthe A

    2015-10-01

    For maintaining heading direction while walking we heavily rely on vision. Therefore, walking in the absence of vision or with visual attention directed elsewhere potentially leads to dangerous situations. Here we investigated whether tactile information from the feet can be used as a (partial) substitute for vision in maintaining a stable heading direction. If so, participants should be better able to keep a constant heading direction on tactile pavement that indicates directionality than on regular flat pavement. However, such a pavement may also be destabilizing. Thus we asked participants to walk straight ahead on regular pavement, and on tactile pavement (tiles with ridges along the walking direction) while varying the amount of vision. We assessed the effects of the type of pavement as well as the amount of vision on the variability of the heading direction as well as gait stability. Both of these measures were calculated from accelerations and angular velocities recorded from a smartphone attached to the participants trunk. Results showed that on tactile pavement participants had a less variations in their heading direction than on regular pavement. The drawback, however, was that the tactile pavement used in this study decreased gait stability. In sum, tactile pavement can be used as a partial substitute for vision in maintaining heading direction, but it can also decrease gait stability. Future work should focus on designing tactile pavement that does provided directional clues, but is less destabilizing. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A Computational Technique to Determine the Angular Displacement, Velocity and Momentum of a Human Body.

    ERIC Educational Resources Information Center

    Hay, James G.; Wilson, Barry D.

    The angular momentum of a human body derived from both the angular velocity and angular displacement, utilizing cinematographic records has not been adequately assessed, prior to this study. Miller (1970) obtained the angular momentum but only during the airborne phase of activity. The method used by Ramey (1973) involved a force platform, but…

  16. Difference in perception of angular displacement according to applied waveforms.

    PubMed

    Kushiro, Keisuke; Goto, Fumiyuki

    2013-05-01

    This study shows that the differences in the waveforms of angular rotation affect the perception and memory of angular displacement. During daily life, when we turn our head during various activities, our brain calculates how much angular displacement our head has undergone. However, how we obtain an accurate estimation of this angular displacement remains unclarified. This study aims to clarify this issue by investigating the perception and memory of passive rotation for three different waveforms of angular velocity rotation (sinusoidal (sine), triangle, and step). Thirteen healthy young subjects sitting on a servo-controlled chair were passively rotated at 60° or 120° about the earth-vertical axis by using one of these three angular velocity waveforms. They then attempted to reproduce the rotation angle by rotating the chair in the same direction in which they had been passively rotated using a handheld controller. The gain (reproduced angle/passively rotated angle) was calculated and used for the evaluation of the perception and memory of angular rotation. The gain for step rotation was larger than that for sine and triangle rotations, with statistical significance. This confirms that the difference in the waveforms of angular rotation affects the perception and memory of angular displacement.

  17. Optimal Design of Miniaturized Reflecting Metasurfaces for Ultra-Wideband and Angularly Stable Polarization Conversion.

    PubMed

    Borgese, Michele; Costa, Filippo; Genovesi, Simone; Monorchio, Agostino; Manara, Giuliano

    2018-05-16

    An ultra-wideband linear polarization converter based on a reflecting metasurface is presented. The polarizer is composed by a periodic arrangement of miniaturized metallic elements printed on a grounded dielectric substrate. In order to achieve broadband polarization converting properties, the metasurface is optimized by employing a genetic algorithm (GA) which imposes the minimization of the amplitude of the co-polar reflection coefficient over a wide frequency band. The enhanced angular stability of the polarization converter is due to the miniaturized unit cell which is obtained by imposing the maximum periodicity of the metasurface in the GA optimization process. The pixelated polarization converter obtained by the GA exhibits a relative bandwidth of 102% working from 8.12 GHz to 25.16 GHz. The analysis of the surface current distribution of the metasurface led to a methodology for refining the optimized GA solution based on the sequential removal of pixels of the unit cell on which surface currents are not excited. The relative bandwidth of the refined polarizer is extended up to 117.8% with a unit cell periodicity of 0.46 mm, corresponding to λ/20 at the maximum operating frequency. The performance of the proposed ultra-wideband polarization metasurface has been confirmed through full-wave simulations and measurements.

  18. Localization of quenches and mechanical disturbances in the Mu2e transport solenoid prototype using acoustic emission technique

    DOE PAGES

    Marchevsky, M.; Ambrosio, G.; Lamm, M.; ...

    2016-02-12

    Acoustic emission (AE) detection is a noninvasive technique allowing the localization of the mechanical events and quenches in superconducting magnets. Application of the AE technique is especially advantageous in situations where magnet integrity can be jeopardized by the use of voltage taps or inductive pickup coils. As the prototype module of the transport solenoid (TS) for the Mu2e experiment at Fermilab represents such a special case, we have developed a dedicated six-channel AE detection system and accompanying software aimed at localizing mechanical events during the coil cold testing. The AE sensors based on transversely polarized piezoceramic washers combined with cryogenicmore » preamplifiers were mounted at the outer surface of the solenoid aluminum shell, with a 60° angular step around the circumference. Acoustic signals were simultaneously acquired at a rate of 500 kS/s, prefiltered and sorted based on their arrival time. Next, based on the arrival timing, angular and axial coordinates of the AE sources within the magnet structure were calculated. Furthermore, we present AE measurement results obtained during cooldown, spot heater firing, and spontaneous quenching of the Mu2e TS module prototype and discuss their relevance for mechanical stability assessment and quench localization.« less

  19. Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Sanner, Robert M.

    2005-01-01

    In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a nonlinear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. The development includes an analysis of the estimator stability given errors in the measured attitude. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given, including scenarios with erroneous measured attitudes. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft.

  20. Assessing Videogrammetry for Static Aeroelastic Testing of a Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Spain, Charles V.; Heeg, Jennifer; Ivanco, Thomas G.; Barrows, Danny A.; Florance, James R.; Burner, Alpheus W.; DeMoss, Joshua; Lively, Peter S.

    2004-01-01

    The Videogrammetric Model Deformation (VMD) technique, developed at NASA Langley Research Center, was recently used to measure displacements and local surface angle changes on a static aeroelastic wind-tunnel model. The results were assessed for consistency, accuracy and usefulness. Vertical displacement measurements and surface angular deflections (derived from vertical displacements) taken at no-wind/no-load conditions were analyzed. For accuracy assessment, angular measurements were compared to those from a highly accurate accelerometer. Shewhart's Variables Control Charts were used in the assessment of consistency and uncertainty. Some bad data points were discovered, and it is shown that the measurement results at certain targets were more consistent than at other targets. Physical explanations for this lack of consistency have not been determined. However, overall the measurements were sufficiently accurate to be very useful in monitoring wind-tunnel model aeroelastic deformation and determining flexible stability and control derivatives. After a structural model component failed during a highly loaded condition, analysis of VMD data clearly indicated progressive structural deterioration as the wind-tunnel condition where failure occurred was approached. As a result, subsequent testing successfully incorporated near- real-time monitoring of VMD data in order to ensure structural integrity. The potential for higher levels of consistency and accuracy through the use of statistical quality control practices are discussed and recommended for future applications.

  1. Balance Maintenance in High-Speed Motion of Humanoid Robot Arm-Based on the 6D Constraints of Momentum Change Rate

    PubMed Central

    Zhang, Da-song; Chu, Jian

    2014-01-01

    Based on the 6D constraints of momentum change rate (CMCR), this paper puts forward a real-time and full balance maintenance method for the humanoid robot during high-speed movement of its 7-DOF arm. First, the total momentum formula for the robot's two arms is given and the momentum change rate is defined by the time derivative of the total momentum. The author also illustrates the idea of full balance maintenance and analyzes the physical meaning of 6D CMCR and its fundamental relation to full balance maintenance. Moreover, discretization and optimization solution of CMCR has been provided with the motion constraint of the auxiliary arm's joint, and the solving algorithm is optimized. The simulation results have shown the validity and generality of the proposed method on the full balance maintenance in the 6 DOFs of the robot body under 6D CMCR. This method ensures 6D dynamics balance performance and increases abundant ZMP stability margin. The resulting motion of the auxiliary arm has large abundance in joint space, and the angular velocity and the angular acceleration of these joints lie within the predefined limits. The proposed algorithm also has good real-time performance. PMID:24883404

  2. Satellite attitude motion models for capture and retrieval investigations

    NASA Technical Reports Server (NTRS)

    Cochran, John E., Jr.; Lahr, Brian S.

    1986-01-01

    The primary purpose of this research is to provide mathematical models which may be used in the investigation of various aspects of the remote capture and retrieval of uncontrolled satellites. Emphasis has been placed on analytical models; however, to verify analytical solutions, numerical integration must be used. Also, for satellites of certain types, numerical integration may be the only practical or perhaps the only possible method of solution. First, to provide a basis for analytical and numerical work, uncontrolled satellites were categorized using criteria based on: (1) orbital motions, (2) external angular momenta, (3) internal angular momenta, (4) physical characteristics, and (5) the stability of their equilibrium states. Several analytical solutions for the attitude motions of satellite models were compiled, checked, corrected in some minor respects and their short-term prediction capabilities were investigated. Single-rigid-body, dual-spin and multi-rotor configurations are treated. To verify the analytical models and to see how the true motion of a satellite which is acted upon by environmental torques differs from its corresponding torque-free motion, a numerical simulation code was developed. This code contains a relatively general satellite model and models for gravity-gradient and aerodynamic torques. The spacecraft physical model for the code and the equations of motion are given. The two environmental torque models are described.

  3. Prospects of using a permanent magnetic end effector to despin and detumble an uncooperative target

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoguang; Lu, Yong; Zhou, Yu; Yin, Yuanhao

    2018-04-01

    Space debris, such as defunct satellites and upper stages of rockets, becomes an uncooperative target after losing its attitude control and communication ability. In addition, tumbling motion can occur due to environmental perturbations and residual angular momentum prior to the object's end-of-mission. To minimize the collision risk during docking and capturing of the tumbling target, a non-contact method based on the eddy current effect is put forward to transmit the control torque to the tumbling target. The main idea is to induce a controllable torque on the conducting surface of the tumbling target using a rotational magnetic field generated by a Halbach rotor. The radial and axial Halbach rotors are used to damp the spinning and nutation motions of the target, respectively. The normal and tangential force are evaluated concerning the relative pose between the chaser and the target. A simplified dynamic model of the nutation damping and despinning processes is developed and the influences of the asymmetrical principal moments of inertia and transverse angular velocity are discussed. The numerical simulation results show that the designed Halbach rotor stabilized the target attitude within an acceptable time. The electromagnetic nutation damping and despinning method provides new solutions for the development of on-orbit capture technology.

  4. Effect of Spaceflight on Vestibulo-Ocular Reflexes (VORS) During Angular Head Motion

    NASA Technical Reports Server (NTRS)

    Tomko, David L.; Clifford, James O.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Vestibulo-ocular reflexes (VORs) stabilize the eyes during head motion. During Earth-horizontal (E-H) pitch or roll rotations, canal and otolith stimuli occur together. In Earth-vertical (E-V) pitch or roll rotations, only canal signals occur. In cats and squirrel monkeys, pitch/roll VOR gains during E-H motion have been shown to be larger than during E-V motion, implying that otolith modulation plays a role in producing angular VORs (aVORs). The present experiments replicated this experiment in rhesus monkeys, and examined how spaceflight affected AVOR gain. During yaw, pitch and roll (0.5 - 1.0 Hz, 40-50 deg/s pk) motion, 3-d eye movements were recorded in four Rhesus monkeys using scleral search coils. Mean E-H and E-V pitch VOR gains were 0.85 and 0.71. Torsional VOR gains during E-H and E-V were 0.47 and 0.39. Gains are more compensatory during E-H pitch or roll. Two of the four monkeys flew for 11 days on the COSMOS 2229 Biosatellite. E-H pitch VOR gains were attenuated immediately (72 hrs) post-flight, with similar values to pre-flight E-V pitch gains. Horizontal yaw VOR gains were similar pre- and post-flight.

  5. A Real-time, Borehole, Geophysical Observatory Above The Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Collins, J. A.; McGuire, J. J.; Becker, K.; O'Brien, J. K.; von der Heydt, K.; Heesemann, M.; Davis, E. E.

    2017-12-01

    In July 2016, a team from WHOI and RSMAS installed a suite of seismic, geodetic and geothermal sensors in IODP borehole U1364A on the Cascadia Accretionary Prism offshore Vancouver Island. The borehole observatory was connected to the Clayoquot Slope node of the Ocean Networks Canada NEPTUNE Observatory in June 2017. The 3 km long extension cable provides power, timing, and internet connectivity. The borehole sits 4 km above the subduction zone thrust interface, and when drilled in 2010 was instrumented with an ACORK (Advanced Circulation Obviation Retrofit Kit) that allows monitoring and sampling of fluids from multiple zones within the 330 m drilled formation. The borehole ground-motion sensors consist of a broadband seismometer and two geodetic-quality (nano-radian resolution) two-axis tilt sensors clamped to the borehole casing wall at a depth of 277 m below the seafloor. The tilt sensors were selected to detect non-seismic, strain-related transients. A 24-thermistor cable extends from the seafloor to just above the seismometer and tilt-sensor package. The seismic and geodetic data have been flowing from the observatory (network code NV, station code CQS64, location codes B1, B2, and B3) since June and are available from the IRIS DMC. Initial inspection of the seismic and geodetic data shows that all sensors are operating well. We will report on station performance and detection thresholds using an anticipated 5 month duration data set.

  6. CONNECTING ANGULAR MOMENTUM AND GALACTIC DYNAMICS: THE COMPLEX INTERPLAY BETWEEN SPIN, MASS, AND MORPHOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teklu, Adelheid F.; Remus, Rhea-Silvia; Dolag, Klaus

    The evolution and distribution of the angular momentum of dark matter (DM) halos have been discussed in several studies over the past decades. In particular, the idea arose that angular momentum conservation should allow us to infer the total angular momentum of the entire DM halo from measuring the angular momentum of the baryonic component, which is populating the center of the halo, especially for disk galaxies. To test this idea and to understand the connection between the angular momentum of the DM halo and its galaxy, we use a state-of-the-art, hydrodynamical cosmological simulation taken from the set of Magneticummore » Pathfinder simulations. Thanks to the inclusion of the relevant physical processes, the improved underlying numerical methods, and high spatial resolution, we successfully produce populations of spheroidal and disk galaxies self-consistently. Thus, we are able to study the dependence of galactic properties on their morphology. We find that (1) the specific angular momentum of stars in disk and spheroidal galaxies as a function of their stellar mass compares well with observational results; (2) the specific angular momentum of the stars in disk galaxies is slightly smaller compared to the specific angular momentum of the cold gas, in good agreement with observations; (3) simulations including the baryonic component show a dichotomy in the specific stellar angular momentum distribution when splitting the galaxies according to their morphological type (this dichotomy can also be seen in the spin parameter, where disk galaxies populate halos with slightly larger spin compared to spheroidal galaxies); (4) disk galaxies preferentially populate halos in which the angular momentum vector of the DM component in the central part shows a better alignment to the angular momentum vector of the entire halo; and (5) the specific angular momentum of the cold gas in disk galaxies is approximately 40% smaller than the specific angular momentum of the total DM halo and shows a significant scatter.« less

  7. Optical angular momentum and atoms

    PubMed Central

    2017-01-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766

  8. Vibration signal correction of unbalanced rotor due to angular speed fluctuation

    NASA Astrophysics Data System (ADS)

    Cao, Hongrui; He, Dong; Xi, Songtao; Chen, Xuefeng

    2018-07-01

    The rotating speed of a rotor is hardly constant in practice due to angular speed fluctuation, which affects the balancing accuracy of the rotor. In this paper, the effect of angular speed fluctuation on vibration responses of the unbalanced rotor is analyzed quantitatively. Then, a vibration signal correction method based on zoom synchrosqueezing transform (ZST) and tacholess order tracking is proposed. The instantaneous angular speed (IAS) of the rotor is extracted by the ZST firstly and then used to calculate the instantaneous phase. The vibration signal is further resampled in angular domain to reduce the effect of angular speed fluctuation. The signal obtained in angular domain is transformed into order domain using discrete Fourier transform (DFT) to estimate the amplitude and phase of the vibration signal. Simulated and experimental results show that the proposed method can successfully correct the amplitude and phase of the vibration signal due to angular speed fluctuation.

  9. Angular-Rate Estimation Using Quaternion Measurements

    NASA Technical Reports Server (NTRS)

    Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.

    1998-01-01

    In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.

  10. The clinical features of angular cheilitis occurring during orthodontic treatment: a multi-centre observational study.

    PubMed

    Cross, David; Eide, May L; Kotinas, Anastasios

    2010-06-01

    To report the prevalence and clinical features of angular cheilitis occurring in patients undergoing orthodontic treatment. Cross-sectional, observational study. Three centres were involved; Glasgow Dental Hospital and two specialist orthodontic practices, one in Scotland and one in Greece. Six hundred and sixty consecutive patients undergoing orthodontic treatment were examined over a 9 month period. The presence and absence of angular cheilitis was recorded. A six-point clinical scale was used to describe the clinical features of angular cheilitis when present. Chi-squared tests were used to investigate the association between the presence of angular cheilitis and oral hygiene level/appliance type. Eleven per cent of orthodontic patients in this Western European population, showed signs of angular cheilitis. No correlation was found between the presence of angular cheilitis and gender. Good oral hygiene was associated with a reduced prevalence (P<0.01). Angular cheilitis is a multifactorial condition that can occur in a small percentage of patients during orthodontic treatment. Good oral hygiene may be associated with a reduced risk. A new clinical grade of angular cheilitis is suggested that may help future research. Further studies are required to investigate the microbiological features associated with angular cheilitis occurring in orthodontic patients, as well as associations with medical conditions, such as asthma.

  11. High-velocity angular vestibulo-ocular reflex adaptation to position error signals.

    PubMed

    Scherer, Matthew; Schubert, Michael C

    2010-06-01

    Vestibular rehabilitation strategies including gaze stabilization exercises have been shown to increase gain of the angular vestibulo-ocular reflex (aVOR) using a retinal slip error signal (ES). The identification of additional ESs capable of promoting substitution strategies or aVOR adaptation is an important goal in the management of vestibular hypofunction. Position ESs have been shown to increase both aVOR gain and recruitment of compensatory saccades (CSs) during passive whole body rotation. This may be a useful compensatory strategy for gaze instability during active head rotation as well. In vestibular rehabilitation, the imaginary target exercise is often prescribed to improve gaze stability. This exercise uses a position ES; however, the mechanism for its effect has not been investigated. We compared aVOR gain adaptation using 2 types of small position ES: constant versus incremental. Ten subjects with normal vestibular function were assessed with unpredictable and active head rotations before and after a 20-minute training session. Subjects performed 9 epochs of 40 active, high-velocity head impulses using a position ES stimulus to increase aVOR gain. Five subjects demonstrated significant aVOR gain increases with the constant-position ES (mean, 2%; range, -18% to 12%) compared with another 5 subjects showing significant aVOR gain increases to the incremental-position ES (mean, 3.7%; range, -2% to 22.6%). There was no difference in aVOR gain adaptation or CS recruitment between the 2 paradigms. These findings suggest that some subjects can increase their aVOR gain in response to high-velocity active head movement training using a position ES. The primary mechanism for this seems to be aVOR gain adaptation because CS use was not modified. The overall low change in aVOR gain adaptation with position ES suggests that retinal slip is a more powerful aVOR gain modifier.

  12. Locomotor skills and balance strategies in adolescents idiopathic scoliosis.

    PubMed

    Mallau, Sophie; Bollini, Gérard; Jouve, Jean-Luc; Assaiante, Christine

    2007-01-01

    Locomotor balance control assessment was performed to study the effect of idiopathic scoliosis on head-trunk coordination in 17 patients with adolescent idiopathic scoliosis (AIS) and 16 control subjects. The aim of this study was to explore the functional effects of structural spinal deformations like idiopathic scoliosis on the balance strategies used during locomotion. Up to now, the repercussion of the idiopathic scoliosis on head-trunk coordination and balance strategies during locomotion is relatively unknown. Seventeen patients with AIS (mean age 14 years 3 months, 10 degrees < Cobb angle > 30 degrees) and 16 control subjects (mean age 14 years 1 month) were tested during various locomotor tasks: walking on the ground, walking on a line, and walking on a beam. Balance control was examined in terms of rotation about the vertical axis (yaw) and on a frontal plane (roll). Kinematics of foot, pelvis, trunk, shoulder, and head rotations were measured with an automatic optical TV image processor in order to calculate angular dispersions and segmental stabilizations. Decreasing the walking speed is the main adaptive strategy used in response to balance problems in control subjects as well as patients with AIS. However, patients with AIS performed walking tasks more slowly than normal subjects (around 15%). Moreover, the pelvic stabilization is preserved, despite the structural changes affecting the spine. Lastly, the biomechanical defect resulting from idiopathic scoliosis mainly affects the yaw head stabilization during locomotion. Patients with AIS show substantial similarities with control subjects in adaptive strategies relative to locomotor velocity as well as balance control based on segmental stabilization. In contrast, the loss of the yaw head stabilization strategies, mainly based on the use of vestibular information, probably reflects the presence of vestibular deficits in the patients with AIS.

  13. Rotation in a reversed field pinch with active feedback stabilization of resistive wall modes

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Menmuir, S.; Brunsell, P. R.; Kuldkepp, M.

    2006-09-01

    Active feedback stabilization of multiple resistive wall modes (RWMs) has been successfully proven in the EXTRAP T2R reversed field pinch. One of the features of plasma discharges operated with active feedback stabilization, in addition to the prolongation of the plasma discharge, is the sustainment of the plasma rotation. Sustained rotation is observed both for the internally resonant tearing modes (TMs) and the intrinsic impurity oxygen ions. Good quantitative agreement between the toroidal rotation velocities of both is found: the toroidal rotation is characterized by an acceleration phase followed, after one wall time, by a deceleration phase that is slower than in standard discharges. The TMs and the impurity ions rotate in the same poloidal direction with also similar velocities. Poloidal and toroidal velocities have comparable amplitudes and a simple model of their radial profile reproduces the main features of the helical angular phase velocity. RWMs feedback does not qualitatively change the TMs behaviour and typical phenomena such as the dynamo and the 'slinky' are still observed. The improved sustainment of the plasma and TMs rotation occurs also when feedback only acts on internally non-resonant RWMs. This may be due to an indirect positive effect, through non-linear coupling between TMs and RWMs, of feedback on the TMs or to a reduced plasma-wall interaction affecting the plasma flow rotation. Electromagnetic torque calculations show that with active feedback stabilization the TMs amplitude remains well below the locking threshold condition for a thick shell. Finally, it is suggested that active feedback stabilization of RWMs and current profile control techniques can be employed simultaneously thus improving both the plasma duration and its confinement properties.

  14. Characterization of the Head Stabilization Response to a Lateral Perturbation During Walking in Older Adults

    NASA Technical Reports Server (NTRS)

    Buccello-Stout, Regina R.; Cromwell, Ronita L.; Bloomberg, Jacob J.

    2009-01-01

    A main contributor of fractures in older adults is from a lateral fall. The decline in sensory systems results in difficulty maintaining balance stability. Head stabilization contributes to postural control by serving as a stable platform for the sensory systems. The purpose of this study was to characterize the head stabilization response to a lateral perturbation while walking. A total of 16 healthy older adults, aged 66-81 years, walked across a foam pathway 6 times. One piece of the foam pathway covered a movable platform that translated to the left when the subject stepped on the foam. Three trials were randomized in which the platform shifted. Angular rate sensors placed on the center of mass of the head and trunk collected head and trunk movement in all three planes of motion. The roll plane was analyzed to examine motion in the plane of the perturbation. Subjects stepped onto the platform with the right foot. Recovery step time and distance were recorded. The first trial was analyzed to capture the novelty of the perturbation. Results indicate a significant difference in footfall distance t=0.004, p<0.05, as well as the speed of foot recovery t=0.001, p<0.05, between natural and perturbed walking. Results indicate that the head t=0.005, p<0.05, and trunk t=0.0001, p<0.05, velocities increase during perturbed compared to natural walking. Older adults place their recovery foot down faster when perturbed to re-establish their base of support. Head and trunk segments are less stable and move with greater velocities to reestablish stability when perturbed.

  15. SU-E-T-472: Improvement of IMRT QA Passing Rate by Correcting Angular Dependence of MatriXX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Q; Watkins, W; Kim, T

    2015-06-15

    Purpose: Multi-channel planar detector arrays utilized for IMRT-QA, such as the MatriXX, exhibit an incident-beam angular dependent response which can Result in false-positive gamma-based QA results, especially for helical tomotherapy plans which encompass the full range of beam angles. Although MatriXX can use with gantry angle sensor to provide automatically angular correction, this sensor does not work with tomotherapy. The purpose of the study is to reduce IMRT-QA false-positives by correcting for the MatriXX angular dependence. Methods: MatriXX angular dependence was characterized by comparing multiple fixed-angle irradiation measurements with corresponding TPS computed doses. For 81 Tomo-helical IMRT-QA measurements, two differentmore » correction schemes were tested: (1) A Monte-Carlo dose engine was used to compute MatriXX signal based on the angular-response curve. The computed signal was then compared with measurement. (2) Uncorrected computed signal was compared with measurements uniformly scaled to account for the average angular dependence. Three scaling factor (+2%, +2.5%, +3%) were tested. Results: The MatriXX response is 8% less than predicted for a PA beam even when the couch is fully accounted for. Without angular correction, only 67% of the cases pass the >90% points γ<1 (3%, 3mm). After full angular correction, 96% of the cases pass the criteria. Of three scaling factors, +2% gave the highest passing rate (89%), which is still less than the full angular correction method. With a stricter γ(2%,3mm) criteria, the full angular correction method was still able to achieve the 90% passing rate while the scaling method only gives 53% passing rate. Conclusion: Correction for the MatriXX angular dependence reduced the false-positives rate of our IMRT-QA process. It is necessary to correct for the angular dependence to achieve the IMRT passing criteria specified in TG129.« less

  16. Integrated optical gyroscopes offering low cost, small size and vibration immunity

    NASA Astrophysics Data System (ADS)

    Monovoukas, Christos; Swiecki, Andrew; Maseeh, Fariborz

    2000-03-01

    IntelliSense has developed an integrated optic gyro technology that provides the sensitivity of fiber optic gyros while utilizing batch microfabrication techniques to achieve the low cost of mechanical MEMS gyros. The base technology consists of an optical resonating waveguide chip, sensor electronics and an optical bench. The sensing element is based on an integrated optic waveguide chip in which counter-propagating optical fields are used to sense rotation in the plane of the waveguide through the Sagnac effect. It is powered by a semiconductor laser light source, which is coupled into a waveguide and split into two waveguide arms. Both signals are probed through the out coupled light at each waveguide arm, and rate information is derived from the difference in phase between these two signals. Measuring angular rotation is important for proper operation of a variety of systems such as: missile guidance systems, satellites, energy exploration, camera stabilization, robotics positioning, platform stabilization and space craft guidance to mention a few. This technology overcomes the limitations that previous commercially available gyros for this purpose have had including limitations in size, sensitivity, durability, and premium price.

  17. Gold atoms and clusters on MgO(100) films; an EPR and IRAS study

    NASA Astrophysics Data System (ADS)

    Yulikov, M.; Sterrer, M.; Risse, T.; Freund, H.-J.

    2009-06-01

    Single gold atoms deposited on single crystalline MgO(1 0 0) films grown on Mo(1 0 0) are characterized by electron paramagnetic resonance spectroscopy as well as IR spectroscopy using CO as probe molecules. In this article we describe the first angular dependent measurements to determine the principal hyperfine components of a secondary hyperfine interaction, namely, with 17O of the MgO. The values determined here are in perfect agreement with theoretical expectations and corroborate the previously reported binding mechanism of Au atoms on the oxygen anions of the MgO terrace. The temperature dependent EPR data reveal an onset of Au atom mobility at about 80 K while the formation of Au particles occurs only above 125 K. By an analysis of the EPR line width in combination with STM measurements it is possible to deduce an increase of the interatomic distance above 80 K. The Au/CO complexes show a somewhat smaller temperature stability as compared to the Au atoms. The observed thermal stability is in perfect agreement with theoretical predictions for CO desorption.

  18. Long-wave theory for a new convective instability with exponential growth normal to the wall.

    PubMed

    Healey, J J

    2005-05-15

    A linear stability theory is presented for the boundary-layer flow produced by an infinite disc rotating at constant angular velocity in otherwise undisturbed fluid. The theory is developed in the limit of long waves and when the effects of viscosity on the waves can be neglected. This is the parameter regime recently identified by the author in a numerical stability investigation where a curious new type of instability was found in which disturbances propagate and grow exponentially in the direction normal to the disc, (i.e. the growth takes place in a region of zero mean shear). The theory describes the mechanisms controlling the instability, the role and location of critical points, and presents a saddle-point analysis describing the large-time evolution of a wave packet in frames of reference moving normal to the disc. The theory also shows that the previously obtained numerical solutions for numerically large wavelengths do indeed lie in the asymptotic long-wave regime, and so the behaviour and mechanisms described here may apply to a number of cross-flow instability problems.

  19. [Mechanical testing of implant properties of thoracoscopic implantation of ventral spinal stabilizing systems. Comparative study with the ISO/DIS 12189-2 corpectomy model and an improved synthetic model].

    PubMed

    Grupp, T M; Beisse, R; Potulski, M; Marnay, T; Beger, J; Blömer, W

    2002-04-01

    A new modular anterior fixation system MACS TL (modular anterior construct system for the thoracic and lumbar spine) has been developed for use in thoracoscopic spondylodesis. This system demonstrates high angular stability and meets the surgical requirements for an endoscopic approach. The objective of the current study was fatigue testing of the MACS TL implant system using a corpectomy model according to ISO/DIS 12189-2 and a synthetic model recently developed by Kotani et al. [6]. The MACS TL system demonstrated good mechanical properties with a high stiffness compared to the published data reviewed. The importance of dynamic testing in a corpectomy model has been demonstrated by comparing the MACS TL plate system with an early prototype, which has not yet been clinically evaluated. The corpectomy model according to Kotani et al. offers an interesting alternative to the ISO/DIS 12189-2 test method for asymmetrically designed and antero-laterally positioned spinal implants due to the unconstrained ball joint.

  20. Operational Support for Instrument Stability through ODI-PPA Metadata Visualization and Analysis

    NASA Astrophysics Data System (ADS)

    Young, M. D.; Hayashi, S.; Gopu, A.; Kotulla, R.; Harbeck, D.; Liu, W.

    2015-09-01

    Over long time scales, quality assurance metrics taken from calibration and calibrated data products can aid observatory operations in quantifying the performance and stability of the instrument, and identify potential areas of concern or guide troubleshooting and engineering efforts. Such methods traditionally require manual SQL entries, assuming the requisite metadata has even been ingested into a database. With the ODI-PPA system, QA metadata has been harvested and indexed for all data products produced over the life of the instrument. In this paper we will describe how, utilizing the industry standard Highcharts Javascript charting package with a customized AngularJS-driven user interface, we have made the process of visualizing the long-term behavior of these QA metadata simple and easily replicated. Operators can easily craft a custom query using the powerful and flexible ODI-PPA search interface and visualize the associated metadata in a variety of ways. These customized visualizations can be bookmarked, shared, or embedded externally, and will be dynamically updated as new data products enter the system, enabling operators to monitor the long-term health of their instrument with ease.

  1. Linear Approximation to Optimal Control Allocation for Rocket Nozzles with Elliptical Constraints

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.; Wall, Johnm W.

    2011-01-01

    In this paper we present a straightforward technique for assessing and realizing the maximum control moment effectiveness for a launch vehicle with multiple constrained rocket nozzles, where elliptical deflection limits in gimbal axes are expressed as an ensemble of independent quadratic constraints. A direct method of determining an approximating ellipsoid that inscribes the set of attainable angular accelerations is derived. In the case of a parameterized linear generalized inverse, the geometry of the attainable set is computationally expensive to obtain but can be approximated to a high degree of accuracy with the proposed method. A linear inverse can then be optimized to maximize the volume of the true attainable set by maximizing the volume of the approximating ellipsoid. The use of a linear inverse does not preclude the use of linear methods for stability analysis and control design, preferred in practice for assessing the stability characteristics of the inertial and servoelastic coupling appearing in large boosters. The present techniques are demonstrated via application to the control allocation scheme for a concept heavy-lift launch vehicle.

  2. Twisted molecular excitons as mediators for changing the angular momentum of light

    NASA Astrophysics Data System (ADS)

    Zang, Xiaoning; Lusk, Mark T.

    2017-07-01

    Molecules with CN or CN h symmetry can absorb quanta of optical angular momentum to generate twisted excitons with well-defined quasiangular momenta of their own. Angular momentum is conserved in such interactions at the level of a paraxial approximation for the light beam. A sequence of absorption events can thus be used to create a range of excitonic angular momenta. Subsequent decay can produce radiation with a single angular momentum equal to that accumulated. Such molecules can thus be viewed as mediators for changing the angular momentum of light. This sidesteps the need to exploit nonlinear light-matter interactions based on higher-order susceptibilities. A tight-binding paradigm is used to verify angular momentum conservation and demonstrate how it can be exploited to change the angular momentum of light. The approach is then extended to a time-dependent density functional theory setting where the key results are shown to hold in a many-body, multilevel setting.

  3. Factors influencing perceived angular velocity.

    PubMed

    Kaiser, M K; Calderone, J B

    1991-11-01

    The assumption that humans are able to perceive and process angular kinematics is critical to many structure-from-motion and optical flow models. The current studies investigate this sensitivity, and examine several factors likely to influence angular velocity perception. In particular, three factors are considered: (1) the extent to which perceived angular velocity is determined by edge transitions of surface elements, (2) the extent to which angular velocity estimates are influenced by instantaneous linear velocities of surface elements, and (3) whether element-velocity effects are related to three-dimensional (3-D) tangential velocities or to two-dimensional (2-D) image velocities. Edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities influenced perceived angular velocity; this bias was related to 2-D image velocity rather than 3-D tangential velocity. Despite these biases, however, judgments were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter was surprisingly good, for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).

  4. Quadratic Finite Element Method for 1D Deterministic Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolar, Jr., D R; Ferguson, J M

    2004-01-06

    In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.

  5. Mitigation of radiation-pressure-induced angular instability of a Fabry-Perot cavity consisting of suspended mirrors

    NASA Astrophysics Data System (ADS)

    Nagano, Koji; Enomoto, Yutaro; Nakano, Masayuki; Furusawa, Akira; Kawamura, Seiji

    2016-12-01

    To observe radiation pressure noise in optical cavities consisting of suspended mirrors, high laser power is necessary. However, because the radiation pressure on the mirrors could cause an angular anti-spring effect, the high laser power could induce angular instability to the cavity. An angular control system using radiation pressure as an actuator, which was previously invented to reduce the anti-spring effect for the low power case, was applied to the higher power case where the angular instability would occur. As a result the angular instability was mitigated. It was also demonstrated that the cavity was unstable without this control system.

  6. Break-technique handheld dynamometry: relation between angular velocity and strength measurements.

    PubMed

    Burns, Stephen P; Spanier, David E

    2005-07-01

    To determine whether the muscle strength, as measured with break-technique handheld dynamometry (HHD), is dependent on the angular velocity achieved during testing and to compare reliability at different angular velocities. Repeated-measures study. Participants underwent HHD by using make-technique (isometric) and break-technique (eccentric) dynamometry at 3 prespecified angular velocities. Elbow movement was recorded with an electrogoniometer. Inpatient spinal cord injury unit. Convenience sample of 20 persons with tetraplegia with weakness of elbow flexors or extensors. Not applicable. Elbow angular velocity and muscle strength recorded during HHD. With the break technique, angular velocities averaging 15 degrees , 33 degrees , and 55 degrees /s produced 16%, 30%, and 51% greater strength measurements, respectively, than velocities recorded by using the make technique (all P < .006 for comparisons between successive techniques). The intraclass correlation coefficient for intrarater reliability was .89 or greater for all testing techniques. Greater strength is recorded with faster angular velocities during HHD. Differences in angular velocity may explain the wide range previously reported for break- versus make-technique strength measurements. Variation in angular velocity is a potential source of variability in serial HHD strength measurements, and for this reason the make technique may be preferable.

  7. Rapidly-Indexing Incremental-Angle Encoder

    NASA Technical Reports Server (NTRS)

    Christon, Philip R.; Meyer, Wallace W.

    1989-01-01

    Optoelectronic system measures relative angular position of shaft or other device to be turned, also measures absolute angular position after device turned through small angle. Relative angular position measured with fine resolution by optoelectronically counting finely- and uniformly-spaced light and dark areas on encoder disk as disk turns past position-sensing device. Also includes track containing coarsely- and nonuniformly-spaced light and dark areas, angular widths varying in proportion to absolute angular position. This second track provides gating and indexing signal.

  8. Binary star formation: gravitational fragmentation followed by capture

    NASA Astrophysics Data System (ADS)

    Turner, J. A.; Chapman, S. J.; Bhattal, A. S.; Disney, M. J.; Pongracic, H.; Whitworth, A. P.

    1995-11-01

    We describe in detail one of a sequence of numerical simulations which realize the mechanism of binary star formation proposed by Pringle. In these simulations, collisions between stable molecular cloud clumps produce dense shocked layers, which cool radiatively and fragment gravitationally. The resulting fragments then condense to form protostellar discs, which at the same time fall together and, as a result of tidal and viscous interactions, capture one another to form binary systems. We refer to this mechanism as shock-induced gravitational fragmentation followed by capture, or SGF+C. When the initial clumps are sufficiently massive and/or the Mach number of the collision is sufficiently high, a large number (>~10) of protostellar discs is produced; under these circumstances, the layer fragments first into filaments, and then into beads along the filaments. The marriage of two protostellar discs in this way is `arranged' in the sense that the protostellar discs involved do not form independently. First, they both condense out of the same layer, and probably also out of the same filament within this layer; this significantly increases the likelihood of them interacting dynamically. Secondly, there tends to be alignment between the orbital and spin angular momenta of the interacting protostellar discs, reflecting the fact that these angular momenta derive mainly from the systematic global angular momentum of the off-axis collision which produced the layer; this alignment of the various angular momenta pre-disposes the discs to very dissipative interactions, thereby increasing the probability of producing a strongly bound, long-lasting union. It is a marriage because the binary orbit stabilizes itself rather quickly. Any subsequent orbit evolution, as the protostellar discs `mop up' the surrounding residual gas and interact tidally, tends to harden the orbit. Therefore, as long as a third body does not intervene, the union is binding. Even if a third body does intervene, provided the binary components are well matched (i.e. of comparable mass) and the third body is not too massive, such interventions will - more often than not - harden the orbit further. In two appendices we describe the code used in the simulations presented in this and the companion paper, and the tests performed to demonstrate the code's ability to handle the physical processes involved.

  9. Kinetic magnetic resonance imaging analysis of abnormal segmental motion of the functional spine unit.

    PubMed

    Kong, Min Ho; Hymanson, Henry J; Song, Kwan Young; Chin, Dong Kyu; Cho, Yong Eun; Yoon, Do Heum; Wang, Jeffrey C

    2009-04-01

    The authors conducted a retrospective observational study using kinetic MR imaging to investigate the relationship between instability, abnormal sagittal segmental motion, and radiographic variables consisting of intervertebral disc degeneration, facet joint osteoarthritis (FJO), degeneration of the interspinous ligaments, ligamentum flavum hypertrophy (LFH), and the status of the paraspinal muscles. Abnormal segmental motion, defined as > 10 degrees angulation and > 3 mm of translation in the sagittal plane, was investigated in 1575 functional spine units (315 patients) in flexion, neutral, and extension postures using kinetic MR imaging. Each segment was assessed based on the extent of disc degeneration (Grades I-V), FJO (Grades 1-4), interspinous ligament degeneration (Grades 1-4), presence of LFH, and paraspinal muscle fatty infiltration observed on kinetic MR imaging. These factors are often noted in patients with degenerative disease, and there are grading systems to describe these changes. For the first time, the authors attempted to address the relationship between these radiographic observations and the effects on the motion and instability of the functional spine unit. The prevalence of abnormal translational motion was significantly higher in patients with Grade IV degenerative discs and Grade 3 arthritic facet joints (p < 0.05). In patients with advanced disc degeneration and FJO, there was a lesser amount of motion in both segmental translation and angulation when compared with lower grades of degeneration, and this difference was statistically significant for angular motion (p < 0.05). Patients with advanced degenerative Grade 4 facet joint arthritis had a significantly lower percentage of abnormal angular motion compared to patients with normal facet joints (p < 0.001). The presence of LFH was strongly associated with abnormal translational and angular motion. Grade 4 interspinous ligament degeneration and the presence of paraspinal muscle fatty infiltration were both significantly associated with excessive abnormal angular motion (p < 0.05). This kinetic MR imaging analysis showed that the lumbar functional unit with more disc degeneration, FJO, and LFH had abnormal sagittal plane translation and angulation. These findings suggest that abnormal segmental motion noted on kinetic MR images is closely associated with disc degeneration, FJO, and the pathological characteristics of interspinous ligaments, ligamentum flavum, and paraspinal muscles. Kinetic MR imaging in patients with mechanical back pain may prove a valuable source of information about the stability of the functional spine unit by measuring abnormal segmental motion and grading of radiographic parameters simultaneously.

  10. Jitter reduction of a reaction wheel by management of angular momentum using magnetic torquers in nano- and micro-satellites

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Wang, Jihe; Saisutjarit, Phongsatorn; Nakasuka, Shinichi

    2013-07-01

    Nowadays, nano- and micro-satellites, which are smaller than conventional large satellites, provide access to space to many satellite developers, and they are attracting interest as an application of space development because development is possible over shorter time period at a lower cost. In most of these nano- and micro-satellite missions, the satellites generally must meet strict attitude requirements for obtaining scientific data under strict constraints of power consumption, space, and weight. In many satellite missions, the jitter of a reaction wheel degrades the performance of the mission detectors and attitude sensors; therefore, jitter should be controlled or isolated to reduce its effect on sensor devices. In conventional standard-sized satellites, tip-tilt mirrors (TTMs) and isolators are used for controlling or isolating the vibrations from reaction wheels; however, it is difficult to use these devices for nano- and micro-satellite missions under the strict power, space, and mass constraints. In this research, the jitter of reaction wheels is reduced by using accurate sensors, small reaction wheels, and slow rotation frequency reaction wheel instead of TTMs and isolators. The objective of a reaction wheel in many satellite missions is the management of the satellite's angular momentum, which increases because of attitude disturbances. If the magnitude of the disturbance is reduced in orbit or on the ground, the magnitude of the angular momentum that the reaction wheels gain from attitude disturbances in orbit becomes smaller; therefore, satellites can stabilize their attitude using only smaller reaction wheels or slow rotation speed, which cause relatively smaller vibration. In nano- and micro-satellite missions, the dominant attitude disturbance is a magnetic torque, which can be cancelled by using magnetic actuators. With the magnetic compensation, the satellite reduces the angular momentum that the reaction wheels gain, and therefore, satellites do not require large reaction wheels and higher rotation speed, which cause jitter. As a result, the satellite can reduce the effect of jitter without using conventional isolators and TTMs. Hence, the satellites can achieve precise attitude control under low power, space, and mass constraints using this proposed method. Through the example of an astronomical observation mission using nano- and micro-satellites, it is demonstrated that the jitter reduction using small reaction wheels is feasible in nano- and micro-satellites.

  11. Maximum angular accuracy of pulsed laser radar in photocounting limit.

    PubMed

    Elbaum, M; Diament, P; King, M; Edelson, W

    1977-07-01

    To estimate the angular position of targets with pulsed laser radars, their images may be sensed with a fourquadrant noncoherent detector and the image photocounting distribution processed to obtain the angular estimates. The limits imposed on the accuracy of angular estimation by signal and background radiation shot noise, dark current noise, and target cross-section fluctuations are calculated. Maximum likelihood estimates of angular positions are derived for optically rough and specular targets and their performances compared with theoretical lower bounds.

  12. Measures and models for angular correlation and angular-linear correlation. [correlation of random variables

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.; Wehrly, T.

    1976-01-01

    Population models for dependence between two angular measurements and for dependence between an angular and a linear observation are proposed. The method of canonical correlations first leads to new population and sample measures of dependence in this latter situation. An example relating wind direction to the level of a pollutant is given. Next, applied to pairs of angular measurements, the method yields previously proposed sample measures in some special cases and a new sample measure in general.

  13. Effect of the Inclination of Baffles on the Power Consumption and Fluid Flows in a Vessel Stirred by a Rushton Turbine

    NASA Astrophysics Data System (ADS)

    Kamla, Youcef; Bouzit, Mohamed; Ameur, Houari; Arab, Mohammed Ilies; Hadjeb, Abdessalam

    2017-07-01

    The role of baffles in mechanically stirred tanks is to promote the stability of power drawn by the impeller and to avoid the fluid swirling, thus enhancing mixing. The present paper numerically investigates the baffles effects in a vessel stirred by a Rushton turbine. The geometric factor of interest is the baffle inclination which is varying between 25°, 32.5°, 45°, 70° and 90° at different impeller rotational speeds. The impeller rotational direction has also been varied. The vortex size and power consumption were evaluated for each geometrical configuration. It was found that the best configuration is the baffle inclination by α = 70° at a negative angular velocity.

  14. Adaptive optics for array telescopes using piston-and-tilt wave-front sensing

    NASA Technical Reports Server (NTRS)

    Wizinowich, P.; Mcleod, B.; Lloyd-Yhart, M.; Angel, J. R. P.; Colucci, D.; Dekany, R.; Mccarthy, D.; Wittman, D.; Scott-Fleming, I.

    1992-01-01

    A near-infrared adaptive optics system operating at about 50 Hz has been used to control phase errors adaptively between two mirrors of the Multiple Mirror Telescope by stabilizing the position of the interference fringe in the combined unresolved far-field image. The resultant integrated images have angular resolutions of better than 0.1 arcsec and fringe contrasts of more than 0.6. Measurements of wave-front tilt have confirmed the wavelength independence of image motion. These results show that interferometric sensing of phase errors, when combined with a system for sensing the wave-front tilt of the individual telescopes, will provide a means of achieving a stable diffraction-limited focus with segmented telescopes or arrays of telescopes.

  15. Gravitational instabilities of superspinars

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Barausse, Enrico; Berti, Emanuele; Cardoso, Vitor

    2010-08-01

    Superspinars are ultracompact objects whose mass M and angular momentum J violate the Kerr bound (cJ/GM2>1). Recent studies analyzed the observable consequences of gravitational lensing and accretion around superspinars in astrophysical scenarios. In this paper we investigate the dynamical stability of superspinars to gravitational perturbations, considering either purely reflecting or perfectly absorbing boundary conditions at the “surface” of the superspinar. We find that these objects are unstable independently of the boundary conditions, and that the instability is strongest for relatively small values of the spin. Also, we give a physical interpretation of the various instabilities that we find. Our results (together with the well-known fact that accretion tends to spin superspinars down) imply that superspinars are very unlikely astrophysical alternatives to black holes.

  16. Indexing system for optical beam steering

    NASA Technical Reports Server (NTRS)

    Sullivan, Mark T.; Cannon, David M.; Debra, Daniel B.; Young, Jeffrey A.; Mansfield, Joseph A.; Carmichael, Roger E.; Lissol, Peter S.; Pryor, G. M.; Miklosy, Les G.; Lee, Jeffrey H.

    1990-01-01

    This paper describes the design and testing of an indexing system for optical-beam steering. The cryogenic beam-steering mechanism is a 360-degree rotation device capable of discrete, high-precision alignment positions. It uses low-precision components for its rough alignment and kinematic design to meet its stringent repeatability and stability requirements (of about 5 arcsec). The principal advantages of this design include a decoupling of the low-precision, large angular motion from the high-precision alignment, and a power-off alignment position that potentially extends the life or hold time of cryogenic systems. An alternate design, which takes advantage of these attributes while reducing overall motion, is also presented. Preliminary test results show the kinematic mount capable of sub-arc second repeatability.

  17. Mechanical swirler for a low-NO{sub x}, weak-swirl burner

    DOEpatents

    Cheng, R.K.; Yegian, D.T.

    1999-03-09

    Disclosed is a mechanical swirler for generating diverging flow in lean premixed fuel burners. The swirler of the present invention includes a central passage with an entrance for accepting a feed gas, a flow balancing insert that introduces additional pressure drop beyond that occurring in the central passage in the absence of the flow balancing insert, and an exit aligned to direct the feed gas into a combustor. The swirler also has an annular passage about the central passage and including one or more vanes oriented to impart angular momentum to feed gas exiting the annular passage. The diverging flow generated by the swirler stabilizes lean combustion thus allowing for lower production of pollutants, particularly oxides of nitrogen. 16 figs.

  18. Mechanical swirler for a low-NO.sub.x, weak-swirl burner

    DOEpatents

    Cheng, Robert K.; Yegian, Derek T.

    1999-01-01

    Disclosed is a mechanical swirler for generating diverging flow in lean premixed fuel burners. The swirler of the present invention includes a central passage with an entrance for accepting a feed gas, a flow balancing insert that introduces additional pressure drop beyond that occurring in the central passage in the absence of the flow balancing insert, and an exit aligned to direct the feed gas into a combustor. The swirler also has an annular passage about the central passage and including one or more vanes oriented to impart angular momentum to feed gas exiting the annular passage. The diverging flow generated by the swirler stabilizes lean combustion thus allowing for lower production of pollutants, particularly oxides of nitrogen.

  19. Identification of market trends with string and D2-brane maps

    NASA Astrophysics Data System (ADS)

    Bartoš, Erik; Pinčák, Richard

    2017-08-01

    The multidimensional string objects are introduced as a new alternative for an application of string models for time series forecasting in trading on financial markets. The objects are represented by open string with 2-endpoints and D2-brane, which are continuous enhancement of 1-endpoint open string model. We show how new object properties can change the statistics of the predictors, which makes them the candidates for modeling a wide range of time series systems. String angular momentum is proposed as another tool to analyze the stability of currency rates except the historical volatility. To show the reliability of our approach with application of string models for time series forecasting we present the results of real demo simulations for four currency exchange pairs.

  20. Long Term Quadrotor Stabilization

    DTIC Science & Technology

    2011-03-01

    funtion Hmotor Motor transfer function Hsampler Sampler transfer function i An integer indexing variable Ix x-axis moment of inertia Iy y-axis moment...following relationship : ⎡⎢⎢⎢⎢⎢⎢⎢⎣ up uq ur utℎrust ⎤⎥⎥⎥⎥⎥⎥⎥⎦ = ⎡⎢⎢⎢⎢⎢⎢⎢⎣ 0 −1 0 1 1 0 −1 0 1 −1 1 −1 1 1 1 1 ⎤⎥⎥⎥⎥⎥⎥⎥⎦ ⎡⎢⎢⎢⎢⎢⎢⎢⎣ u1 u2 u3 u4...method only captures the magnitude of the angular rate and not the sign. because of the square root relationship and the need to have a positive value

  1. LSD (Landing System Development) Impact Simulation

    NASA Astrophysics Data System (ADS)

    Ullio, R.; Riva, N.; Pellegrino, P.; Deloo, P.

    2012-07-01

    In the frame of the Exploration Programs, a soft landing on the planet surface is foreseen. To ensure a successful final landing phase, a landing system by using leg tripod design landing legs with adequate crushable damping system was selected, capable of absorbing the residual velocities (vertical, horizontal and angular) at touch- down, insuring stability. TAS-I developed a numerical non linear dynamic methodology for the landing impact simulation of the Lander system by using a commercial explicit finite element analysis code (i.e. Altair RADIOSS). In this paper the most significant FE modeling approaches and results of the analytical simulation of landing impact are reported, especially with respect to the definition of leg dimensioning loads and the design update of selected parts (if necessary).

  2. [Closing wedge osteotomy of the tibial head in treatment of single compartment arthrosis].

    PubMed

    Jakob, R P; Jacobi, M

    2004-02-01

    Closing wedge high tibial osteotomy is an efficient method for the treatment of medial osteoarthritis of the knee. Prerequisites of successful surgery are proper indication and planning as well as the understanding of biomechanics and pathophysiology. The technique of osteotomy to choose (opening or closing wedge) depends on the type of malalignment and on additional pathologies. The surgical technique demands high precision to realize the planned correction and to avoid complications. Implants with angular stability provide advantages compared to traditional implants. Correct indication and surgical technique results in a desirable follow-up, which often lasts for at least 10 years. The effect on the prognosis of the young patient with cartilage damage is still unclear.

  3. Motion Simulation Analysis of Rail Weld CNC Fine Milling Machine

    NASA Astrophysics Data System (ADS)

    Mao, Huajie; Shu, Min; Li, Chao; Zhang, Baojun

    CNC fine milling machine is a new advanced equipment of rail weld precision machining with high precision, high efficiency, low environmental pollution and other technical advantages. The motion performance of this machine directly affects its machining accuracy and stability, which makes it an important consideration for its design. Based on the design drawings, this article completed 3D modeling of 60mm/kg rail weld CNC fine milling machine by using Solidworks. After that, the geometry was imported into Adams to finish the motion simulation analysis. The displacement, velocity, angular velocity and some other kinematical parameters curves of the main components were obtained in the post-processing and these are the scientific basis for the design and development for this machine.

  4. Adaptive infrared-reflecting systems inspired by cephalopods

    NASA Astrophysics Data System (ADS)

    Xu, Chengyi; Stiubianu, George T.; Gorodetsky, Alon A.

    2018-03-01

    Materials and systems that statically reflect radiation in the infrared region of the electromagnetic spectrum underpin the performance of many entrenched technologies, including building insulation, energy-conserving windows, spacecraft components, electronics shielding, container packaging, protective clothing, and camouflage platforms. The development of their adaptive variants, in which the infrared-reflecting properties dynamically change in response to external stimuli, has emerged as an important unmet scientific challenge. By drawing inspiration from cephalopod skin, we developed adaptive infrared-reflecting platforms that feature a simple actuation mechanism, low working temperature, tunable spectral range, weak angular dependence, fast response, stability to repeated cycling, amenability to patterning and multiplexing, autonomous operation, robust mechanical properties, and straightforward manufacturability. Our findings may open opportunities for infrared camouflage and other technologies that regulate infrared radiation.

  5. Design and testing of a rotational brake with shear thickening fluids

    NASA Astrophysics Data System (ADS)

    Tian, Tongfei; Nakano, Masami

    2017-03-01

    A rotational brake working with shear thickening fluid (STF) was designed and tested in this study. With the optimisation in design, most of the STF in the brake can receive the same shear rate when the brake rotates. The parts of this brake were fabricated with a 3D printer and then assembled manually. Three types of STFs with various carrier fluids and different particles were fabricated and tested with a rheometer. Then the brake with each STF was separately tested with the rheometer. The estimated and measured torques as a function of the angular velocity fit each other well. The stability of the rotational STF brake was investigated in repeated tests, which proved the function of the brake for a long time.

  6. Motion fading is driven by perceived, not actual angular velocity.

    PubMed

    Kohler, P J; Caplovitz, G P; Hsieh, P-J; Sun, J; Tse, P U

    2010-06-01

    After prolonged viewing of a slowly drifting or rotating pattern under strict fixation, the pattern appears to slow down and then momentarily stop. Here we examine the relationship between such 'motion fading' and perceived angular velocity. Using several different dot patterns that generate emergent virtual contours, we demonstrate that whenever there is a difference in the perceived angular velocity of two patterns of dots that are in fact rotating at the same angular velocity, there is also a difference in the time to undergo motion fading for those two patterns. Conversely, whenever two patterns show no difference in perceived angular velocity, even if in fact rotating at different angular velocities, we find no difference in the time to undergo motion fading. Thus, motion fading is driven by the perceived rather than actual angular velocity of a rotating stimulus. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Angular Positioning Sensor for Space Mechanisms

    NASA Astrophysics Data System (ADS)

    Steiner, Nicolas; Chapuis, Dominique

    2013-09-01

    Angular position sensors are used on various rotating mechanisms such as solar array drive mechanisms, antenna pointing mechanisms, scientific instruments, motors or actuators.Now a days, potentiometers and encoders are mainly used for angular measurement purposes. Both of them have their own pros and cons.As alternative, Ruag Space Switzerland Nyon (RSSN) is developing and qualifying two innovative technologies of angular position sensors which offer easy implementation, medium to very high lifetime and high flexibility with regards to the output signal shape/type.The Brushed angular position sensor uses space qualified processes which are already flying on RSSN's sliprings for many years. A large variety of output signal shape can be implemented to fulfill customer requirements (digital, analog, customized, etc.).The contactless angular position sensor consists in a new radiation hard Application Specific Integrated Circuit (ASIC) based on the Hall effect and providing the angular position without complex processing algorithm.

  8. Variation in Angular Velocity and Angular Acceleration of a Particle in Rectilinear Motion

    ERIC Educational Resources Information Center

    Mashood, K. K.; Singh, V. A.

    2012-01-01

    We discuss the angular velocity ([image omitted]) and angular acceleration ([image omitted]) associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a…

  9. 47 CFR 73.128 - AM stereophonic broadcasting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... magnitude of the nth term of the difference signal ωsn=the nth order angular velocity of the sum signal ωdn=the nth order angular velocity of the difference signal ωc=the angular velocity of the carrier... presence of envelope modulation. (5) Maximum angular modulation, which occurs on negative peaks of the left...

  10. System and method for correcting attitude estimation

    NASA Technical Reports Server (NTRS)

    Josselson, Robert H. (Inventor)

    2010-01-01

    A system includes an angular rate sensor disposed in a vehicle for providing angular rates of the vehicle, and an instrument disposed in the vehicle for providing line-of-sight control with respect to a line-of-sight reference. The instrument includes an integrator which is configured to integrate the angular rates of the vehicle to form non-compensated attitudes. Also included is a compensator coupled across the integrator, in a feed-forward loop, for receiving the angular rates of the vehicle and outputting compensated angular rates of the vehicle. A summer combines the non-compensated attitudes and the compensated angular rates of the to vehicle to form estimated vehicle attitudes for controlling the instrument with respect to the line-of-sight reference. The compensator is configured to provide error compensation to the instrument free-of any feedback loop that uses an error signal. The compensator may include a transfer function providing a fixed gain to the received angular rates of the vehicle. The compensator may, alternatively, include a is transfer function providing a variable gain as a function of frequency to operate on the received angular rates of the vehicle.

  11. Aerodynamic Stability and Performance of Next-Generation Parachutes for Mars Descent

    NASA Technical Reports Server (NTRS)

    Gonyea, Keir C.; Tanner, Christopher L.; Clark, Ian G.; Kushner, Laura K.; Schairer, Edward T.; Braun, Robert D.

    2013-01-01

    The Low Density Supersonic Decelerator Project is developing a next-generation supersonic parachute for use on future Mars missions. In order to determine the new parachute configuration, a wind tunnel test was conducted at the National Full-scale Aerodynamics Complex 80- by 120-foot Wind Tunnel at the NASA Ames Research Center. The goal of the wind tunnel test was to quantitatively determine the aerodynamic stability and performance of various canopy configurations in order to help select the design to be flown on the Supersonic Flight Dynamics tests. Parachute configurations included the diskgap- band, ringsail, and ringsail-variant designs referred to as a disksail and starsail. During the wind tunnel test, digital cameras captured synchronized image streams of the parachute from three directions. Stereo hotogrammetric processing was performed on the image data to track the position of the vent of the canopy throughout each run. The position data were processed to determine the geometric angular history of the parachute, which were then used to calculate the total angle of attack and its derivatives at each instant in time. Static and dynamic moment coefficients were extracted from these data using a parameter estimation method involving the one-dimensional equation of motion for a rotation of parachute. The coefficients were calculated over all of the available canopy states to reconstruct moment coefficient curves as a function of total angle of attack. From the stability curves, useful metrics such as the trim total angle of attack and pitch stiffness at the trim angle could be determined. These stability metrics were assessed in the context of the parachute's drag load and geometric porosity. While there was generally an inverse relationship between the drag load and the stability of the canopy, the data showed that it was possible to obtain similar stability properties as the disk-gap-band with slightly higher drag loads by appropriately tailoring the geometric porosity distribution.

  12. Analysis of a Precambrian Resonance-Stabilized Day Length

    NASA Astrophysics Data System (ADS)

    Bartlett, B. C.; Stevenson, D. J.

    2014-12-01

    Calculations indicate the average rate of decrease of Earth's angular momentum must have been less than its present value in the past; otherwise, the Earth should have a longer day length. Existing stromatolite data suggests the Earth's rotational frequency would have been near that of the atmospheric resonance frequency toward the end of the Precambrian era, approximately 600Ma. The semidiurnal atmospheric tidal torque would have reached a maximum near this day length of 21hr. At this point, the atmospheric torque would have been comparable in magnitude but opposite in direction to the lunar torque, creating a stabilizing effect which could preserve a constant day length while trapped in this resonant state, as suggested by Zahnle and Walker (1987). We examine the hypothesis that this resonant stability was encountered and sustained for a large amount of time during the Precambrian era and was broken by a large and relatively fast increase in global temperature, possibly in the deglaciation period following a snowball event. Computational simulations of this problem were performed, indicating that a persistent increase in temperature larger than around 10K over a period of time less than 107 years will break resonance (though these values vary with Q), but that the resonant stability is not easily broken by random high-amplitude high-frequency atmospheric temperature fluctuation or other forms of thermal noise. Further work also indicates it is possible to escape resonance simply by increasing the lunar tidal torque on the much longer timescale of plate tectonics, particularly for low atmospheric Q-factors, or that resonance could have never formed in the first place, had the lunar torque been very high or Q been very low when the Earth's rotational frequency was near the atmospheric resonance frequency. However, the need to explain the present day length given the current lunar torque favors the interpretation we offer, in which Earth's length of day was stabilized for hundreds of millions of years, escaping this stability in the aftermath of a sudden global temperature change.

  13. Becoming angular momentum density flow through nonlinear mass transfer into a gravitating spheroidal body

    NASA Astrophysics Data System (ADS)

    Krot, A. M.

    2009-04-01

    A statistical theory for a cosmological body forming based on the spheroidal body model has been proposed in the works [1]-[4]. This work studies a slowly evolving process of gravitational condensation of a spheroidal body from an infinitely distributed gas-dust substance in space. The equation for an initial evolution of mass density function of a gas-dust cloud is considered here. It is found this equation coincides completely with the analogous equation for a slowly gravitational compressed spheroidal body [5]. A conductive flow in dissipative systems was investigated by I. Prigogine in his works (see, for example, [6], [7]). As it has been found in [2], [5], there exists a conductive antidiffusion flow in a slowly compressible gravitating spheroidal body. Applying the equation of continuity to this conductive flow density we obtain a linear antidiffusion equation [5]. However, if an intensity of conductive flow density increases sharply then the linear antidiffusion equation becomes a nonlinear one. Really, it was pointed to [6] analogous linear equations of diffusion or thermal conductivity transform in nonlinear equations respectively. In this case, the equation of continuity describes a nonlinear mass flow being a source of instabilities into a gravitating spheroidal body because the gravitational compression factor G is a function of not only time but a mass density. Using integral substitution we can reduce a nonlinear antidiffusion equation to the linear antidiffusion equation relative to a new function. If the factor G can be considered as a specific angular momentum then the new function is an angular momentum density. Thus, a nonlinear momentum density flow induces a flow of angular momentum density because streamlines of moving continuous substance come close into a gravitating spheroidal body. Really, the streamline approach leads to more tight interactions of "liquid particles" that implies a superposition of their specific angular momentums. This superposition forms an antidiffusion flow of an angular momentum density into a gravitating spheroidal body. References: [1] Krot, A.M. The statistical model of gravitational interaction of particles. Achievement in Modern Radioelectronics (spec.issue"Cosmic Radiophysics", Moscow), 1996, no.8, pp. 66-81 (in Russian). [2] Krot, A.M. Statistical description of gravitational field: a new approach. Proc. SPIE's 14th Annual Intern.Symp. "AeroSense", Orlando, Florida, USA, 2000, vol.4038, pp.1318-1329. [3] Krot, A.M. The statistical model of rotating and gravitating spheroidal body with the point of view of general relativity. Proc.35th COSPAR Scientific Assembly, Paris, France, 2004, Abstract A-00162. [4] Krot, A. The statistical approach to exploring formation of Solar system. Proc.EGU General Assembly, Vienna, Austria, 2006, Geophys.Res.Abstracts, vol.8, A-00216; SRef-ID: 1607-7962/gra/. [5] Krot, A.M. A statistical approach to investigate the formation of the solar system. Chaos, Solitons and Fractals, 2008, doi:10.1016/j.chaos.2008.06.014. [6] Glansdorff, P. and Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuations. London, 1971. [7] Nicolis, G. and Prigogine, I. Self-organization in Nonequilibrium Systems:From Dissipative Structures to Order through Fluctuation. John Willey and Sons, New York etc., 1977.

  14. The effects of obesity on balance recovery using an ankle strategy.

    PubMed

    Matrangola, Sara L; Madigan, Michael L

    2011-06-01

    Obesity is associated with an increased risk of falls. The purpose of this study was to investigate the effects of obesity on balance recovery using an ankle strategy. In addition, computer simulations to understand how increased inertia and weight associated with obesity independently influence balance recovery. Ten normal weight (BMI: 22.7±0.6 kg/m(2)) and ten obese (BMI: 32.2±2.2 kg/m(2)) adult male subjects participated in the study. Subjects recovered balance using an ankle strategy after three types of postural perturbations: an initial angular displacement, an initial angular velocity from the natural stance, and an initial angular velocity from a prescribed position. Balance recovery was quantified by the largest initial angular displacement or angular velocity from which balance could be recovered. Obesity impaired balance recovery from perturbations involving an initial angular velocity, but not from an initial angular displacement. Similarly, computer simulations determined that increased inertia is beneficial to balance recovery when there is little to no initial angular velocity. These findings indicate that the effects of obesity on balance recovery are dependent on the type of perturbation, and that increased inertia associated with obesity can be beneficial for perturbations that involve little to no initial angular velocity. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Generation of vertical angular momentum in single, double, and triple-turn pirouette en dehors in ballet.

    PubMed

    Kim, Jemin; Wilson, Margaret A; Singhal, Kunal; Gamblin, Sarah; Suh, Cha-Young; Kwon, Young-Hoo

    2014-09-01

    The purpose of this study was to investigate the vertical angular momentum generation strategies used by skilled ballet dancers in pirouette en dehors. Select kinematic parameters of the pirouette preparation (stance depth, vertical center-of-mass motion range, initial shoulder line position, shoulder line angular displacement, and maximum trunk twist angle) along with vertical angular momentum parameters during the turn (maximum momentums of the whole body and body parts, and duration and rate of generation) were obtained from nine skilled collegiate ballet dancers through a three-dimensional motion analysis and compared among three turn conditions (single, double, and triple). A one-way ('turn') multivariate analysis of variance of the kinematic parameters and angular momentum parameters of the whole body and a two-way analysis of variance ('turn' × 'body') of the maximum angular momentums of the body parts were conducted. Significant 'turn' effects were observed in the kinematic/angular momentum parameters (both the preparation and the turn) (p <  0.05). As the number of turns increased, skilled dancers generated larger vertical angular momentums by predominantly increasing the rate of momentum generation using rotation of the upper trunk and arms. The trail (closing) arm showed the largest contribution to whole-body angular momentum followed by the lead arm.

  16. Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.

    2017-06-01

    Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.

  17. Characterization of thigh and shank segment angular velocity during jump landing tasks commonly used to evaluate risk for ACL injury.

    PubMed

    Dowling, Ariel V; Favre, Julien; Andriacchi, Thomas P

    2012-09-01

    The dynamic movements associated with anterior cruciate ligament (ACL) injury during jump landing suggest that limb segment angular velocity can provide important information for understanding the conditions that lead to an injury. Angular velocity measures could provide a quick and simple method of assessing injury risk without the constraints of a laboratory. The objective of this study was to assess the inter-subject variations and the sensitivity of the thigh and shank segment angular velocity in order to determine if these measures could be used to characterize jump landing mechanisms. Additionally, this study tested the correlation between angular velocity and the knee abduction moment. Thirty-six healthy participants (18 male) performed drop jumps with bilateral and unilateral landing. Thigh and shank angular velocities were measured by a wearable inertial-based system, and external knee moments were measured using a marker-based system. Discrete parameters were extracted from the data and compared between systems. For both jumping tasks, the angular velocity curves were well defined movement patterns with high inter-subject similarity in the sagittal plane and moderate to good similarity in the coronal and transverse planes. The angular velocity parameters were also able to detect differences between the two jumping tasks that were consistent across subjects. Furthermore, the coronal angular velocities were significantly correlated with the knee abduction moment (R of 0.28-0.51), which is a strong indicator of ACL injury risk. This study suggested that the thigh and shank angular velocities, which describe the angular dynamics of the movement, should be considered in future studies about ACL injury mechanisms.

  18. Intramedullary nailing in opening wedge high tibial osteotomy-in vitro test for validation of a method of fixation.

    PubMed

    Burchard, Rene; Katerla, Denise; Hammer, Marina; Pahlkötter, Anke; Soost, Christian; Dietrich, Gerhard; Ohrndorf, Arne; Richter, Wolfgang; Lengsfeld, Markus; Christ, Hans-Jürgen; Graw, Jan Adriaan; Fritzen, Claus-Peter

    2018-02-01

    Opening wedge high tibial osteotomy (HTO) as a treatment in unicompartimental osteoarthritis of the knee can significantly relieve pain and prevent or at least delay an early joint replacement. The fixation of the osteotomy has undergone development and refinements during the last years. The angle-stable plate fixator is currently one of the most commonly used plates in HTOs. The angular stable fixation between screws and the plate offers a high primary stability to retain the correction with early weight-bearing protocols. This surgical technique is performed as a standard of care and generally well tolerated by the patients. Nevertheless, some studies observed that many patients complained about discomfort related to the implant. Therefore, the stability of two different intramedullary nails, a short implant used in humeral fractures and a long device used in tibial fractures for stabilization in valgus HTOs, was investigated as an alternative fixation technique. The plate fixator was defined as reference standard. Nine synthetic tibia models were standardly osteotomized and stabilized by one of the fixation devices. Axial compression was realized using a special testing machine and two protocols were performed: a multi-step fatigue test and a load-to-failure test. Overall motion, medial, and lateral displacements were documented. Fractures always occurred at the lateral cortex. Axial cyclic loading up to 800 N was tolerated by all implants without failure. The tibia nail provided highest fatigue strength under the load-to-failure conditions. The results suggest that intramedullary nailing might be used as an alternative concept in HTO.

  19. On the orbital stability of pendulum-like vibrations of a rigid body carrying a rotor

    NASA Astrophysics Data System (ADS)

    Yehia, Hamad M.; El-Hadidy, E. G.

    2013-09-01

    One of the most notable effects in mechanics is the stabilization of the unstable upper equilibrium position of a symmetric body fixed from one point on its axis of symmetry, either by giving the body a suitable angular velocity or by adding a suitably spinned rotor along its axis. This effect is widely used in technology and in space dynamics. The aim of the present article is to explore the effect of the presence of a rotor on a simple periodic motion of the rigid body and its motion as a physical pendulum. The equation in the variation for pendulum vibrations takes the form in which α depends on the moments of inertia, ρ on the gyrostatic momentum of the rotor and ν (the modulus of the elliptic function) depends on the total energy of the motion. This equation, which reduces to Lame's equation when ρ = 0, has not been studied to any extent in the literature. The determination of the zones of stability and instability of plane motion reduces to finding conditions for the existence of primitive periodic solutions (with periods 4 K( ν), 8 K( ν)) with those parameters. Complete analysis of primitive periodic solutions of this equation is performed analogously to that of Ince for Lame's equation. Zones of stability and instability are determined analytically and illustrated in a graphical form by plotting surfaces separating them in the three-dimensional space of parameters. The problem is also solved numerically in certain regions of the parameter space, and results are compared to analytical ones.

  20. Stabilization and mobility of the head, neck and trunk in horses during overground locomotion: comparisons with humans and other primates

    PubMed Central

    Dunbar, Donald C.; Macpherson, Jane M.; Simmons, Roger W.; Zarcades, Athina

    2009-01-01

    SUMMARY Segmental kinematics were investigated in horses during overground locomotion and compared with published reports on humans and other primates to determine the impact of a large neck on rotational mobility (>20deg.) and stability (≤20deg.) of the head and trunk. Three adult horses (Equus caballus) performing walks, trots and canters were videotaped in lateral view. Data analysis included locomotor velocity, segmental positions, pitch and linear displacements and velocities, and head displacement frequencies. Equine, human and monkey skulls and cervical spines were measured to estimate eye and vestibular arc length during head pitch displacements. Horses stabilized all three segments in all planes during all three gaits, unlike monkeys and humans who make large head pitch and yaw rotations during walks, and monkeys that make large trunk pitch rotations during gallops. Equine head angular displacements and velocities, with some exceptions during walks, were smaller than in humans and other primates. Nevertheless, owing to greater off-axis distances, orbital and vestibular arc lengths remained larger in horses, with the exception of head–neck axial pitch during trots, in which equine arc lengths were smaller than in running humans. Unlike monkeys and humans, equine head peak-frequency ranges fell within the estimated range in which inertia has a compensatory stabilizing effect. This inertial effect was typically over-ridden, however, by muscular or ligamentous intervention. Thus, equine head pitch was not consistently compensatory, as reported in humans. The equine neck isolated the head from the trunk enabling both segments to provide a spatial reference frame. PMID:19043061

  1. Interchange Method in Compressible Magnetized Couette Flow: Magnetorotational and Magnetoconvective Instabilities

    NASA Astrophysics Data System (ADS)

    Christodoulou, Dimitris M.; Contopoulos, John; Kazanas, Demosthenes

    2003-03-01

    We obtain the general forms of the axisymmetric stability criteria in a magnetized compressible Couette flow using an energy variational principle, the so-called interchange or Chandrasekhar's method, which we applied successfully in the incompressible case. This formulation accounts for the simultaneous presence of gravity, rotation, a toroidal magnetic field, a weak axial magnetic field, entropy gradients, and density gradients in the initial equilibrium state. The power of the method lies in its simplicity, which allows us to derive extremely compact and physically clear expressions for the relevant stability criteria despite the inclusion of so many physical effects. In the implementation of the method, all the applicable conservation laws are explicitly taken into account during the variations of a quantity with dimensions of energy that we call the ``free-energy function.'' As in the incompressible case, the presence of an axial field invalidates the conservation laws of angular momentum and azimuthal magnetic flux and introduces instead isorotation and axial current conservation along field lines. Our results are therefore markedly different depending on whether an axial magnetic field is present, and they generalize in two simple expressions all previously known, partial stability criteria for the appearance of magnetorotational instability. Furthermore, the coupling between magnetic tension and buoyancy and its influence to the dynamics of nonhomoentropic magnetized flows become quite clear from our results. In the limits of plane-parallel atmospheres and homoentropic flows, our formulation easily recovers the stability criteria for suppression of convective and Parker instabilities, as well as some related special cases studied over 40 years ago by Newcomb and Tserkovnikov via laborious variational techniques.

  2. Stabilization and mobility of the head, neck and trunk in horses during overground locomotion: comparisons with humans and other primates.

    PubMed

    Dunbar, Donald C; Macpherson, Jane M; Simmons, Roger W; Zarcades, Athina

    2008-12-01

    Segmental kinematics were investigated in horses during overground locomotion and compared with published reports on humans and other primates to determine the impact of a large neck on rotational mobility (> 20 deg.) and stability (< or = 20 deg.) of the head and trunk. Three adult horses (Equus caballus) performing walks, trots and canters were videotaped in lateral view. Data analysis included locomotor velocity, segmental positions, pitch and linear displacements and velocities, and head displacement frequencies. Equine, human and monkey skulls and cervical spines were measured to estimate eye and vestibular arc length during head pitch displacements. Horses stabilized all three segments in all planes during all three gaits, unlike monkeys and humans who make large head pitch and yaw rotations during walks, and monkeys that make large trunk pitch rotations during gallops. Equine head angular displacements and velocities, with some exceptions during walks, were smaller than in humans and other primates. Nevertheless, owing to greater off-axis distances, orbital and vestibular arc lengths remained larger in horses, with the exception of head-neck axial pitch during trots, in which equine arc lengths were smaller than in running humans. Unlike monkeys and humans, equine head peak-frequency ranges fell within the estimated range in which inertia has a compensatory stabilizing effect. This inertial effect was typically over-ridden, however, by muscular or ligamentous intervention. Thus, equine head pitch was not consistently compensatory, as reported in humans. The equine neck isolated the head from the trunk enabling both segments to provide a spatial reference frame.

  3. The Biomechanical Study of Extraforaminal Lumbar Interbody Fusion: A Three-Dimensional Finite-Element Analysis.

    PubMed

    Yang, Mingjie; Sun, Guixin; Guo, Song; Zeng, Cheng; Yan, Meijun; Han, Yingchao; Xia, Dongdong; Zhang, Jingjie; Li, Xinhua; Xiang, Yang; Pan, Jie; Li, Lijun; Tan, Jun

    2017-01-01

    Finite-element method was used to evaluate biomechanics stability of extraforaminal lumbar interbody fusion (ELIF) under different internal fixation. The L3-L5 level finite-element model was established to simulate decompression and internal fixation at L4-L5 segment. The intact finite model was treated in accordance with the different internal fixation. The treatment groups were exerted 400 N load and 6 N·m additional force from motion to calculate the angular displacement of L4-L5. The ROMs were smaller in all internal fixation groups than those in the intact model. Furthermore, the ROMs were smaller in ELIF + UPS group than in TLIF + UPS group under all operating conditions, especially left lateral flexion and right rotation. The ROMs were higher in ELIF + UPS group than in TLIF + BPS group. The ROMs of ELIF + UPS + TLFS group were much smaller than those in ELIF + UPS group, and as compared with TLIF + BPS group, there was no significant difference in the range of experimental loading. The biomechanical stability of ELIF with unilateral pedicle screw fixation is superior to that of TLIF with unilateral pedicle screw fixation but lower than that of TLIF with bilateral pedicle screws fixation. The stability of ELIF with unilateral fixation can be further improved by supplementing a translaminar facet screw.

  4. Tests on a model of the D.F.W. airplane T-29 of the "Deutsche Flugzeug derke" (German airplane works)

    NASA Technical Reports Server (NTRS)

    Molthan, Wilhelm

    1924-01-01

    Experiments similar to those carried out with the A.E.G (Allgemeine Elektrizitats-Gesellschaft) were made in the small wind tunnel of the Gottingen laboratory on a model of the D.F.W. airplane T-29. Three series of tests were carried out on the model with a velocity head (or dynamic pressure) of 5 kg/sq m (1.02 lb/sq ft), during which one of the movable surfaces was deflected at various angles, while both the others were retained in their central positions. Of special interest among the results of the tests is the different run of the elevating moments. The curves for the A.E.G. model, rising to the right, denote stability with the elevator locked, while the slight inclination to the left with the D.F.W model denotes a slight instability. For the maximum C(sub L) values, the stability of A.E.G. model continues to increase and the instability of the D.F.W. model is converted into stability. The rolling moments shown when the angular deflection of the ailerons is 0 degrees are due, in both series of tests, to the unequal distribution of the air velocity over the cross section of the wind tunnel, rather than to a lack of symmetry in the model.

  5. Singularity in the Laboratory Frame Angular Distribution Derived in Two-Body Scattering Theory

    ERIC Educational Resources Information Center

    Dick, Frank; Norbury, John W.

    2009-01-01

    The laboratory (lab) frame angular distribution derived in two-body scattering theory exhibits a singularity at the maximum lab scattering angle. The singularity appears in the kinematic factor that transforms the centre of momentum (cm) angular distribution to the lab angular distribution. We show that it is caused in the transformation by the…

  6. Stellar Rotation on the Main Sequence

    NASA Astrophysics Data System (ADS)

    Soderblom, D.; Murdin, P.

    2000-11-01

    The conservation of ANGULAR MOMENTUM is the one effective counterbalance to the inexorable pull of gravity in the universe, and so everything rotates. Stars acquire their angular momentum when they form, and, indeed, the manner in which nearly all this initial angular momentum is dissipated remains poorly understood, but without substantial angular momentum loss an interstellar cloud could never ...

  7. Spin-to-orbit conversion at acousto-optic diffraction of light: conservation of optical angular momentum.

    PubMed

    Skab, Ihor; Vlokh, Rostyslav

    2012-04-01

    Acousto-optic diffraction of light in optically active cubic crystals is analyzed from the viewpoint of conservation of optical angular momentum. It is shown that the availability of angular momentum in the diffracted optical beam can be necessarily inferred from the requirements of angular momentum conservation law. As follows from our analysis, a circularly polarized diffracted wave should bear an orbital angular momentum. The efficiency of the spin-to-orbit momentum conversion is governed by the efficiency of acousto-optic diffraction.

  8. Angular behavior of synchrotron radiation harmonics.

    PubMed

    Bagrov, V G; Bulenok, V G; Gitman, D M; Jara, Jose Acosta; Tlyachev, V B; Jarovoi, A T

    2004-04-01

    The detailed analysis of angular dependence of the synchrotron radiation (SR) is presented. Angular distributions of linear and circular polarization integrated over all harmonics, well known for relativistic electron energies, are extended to include radiation from electrons that are not fully relativistic. In particular, we analyze the angular dependence of the integral SR intensity and peculiarities of the angular dependence of the first harmonics SR. Studying spectral SR intensities, we have discovered their unexpected angular behavior, completely different from that of the integral SR intensity; namely, for any given synchrotron frequency, maxima of the spectral SR intensities recede from the orbit plane with increasing particle energy. Thus, in contrast with the integral SR intensity, the spectral ones have the tendency to deconcentrate themselves on the orbit plane.

  9. There are many ways to spin a photon: Half-quantization of a total optical angular momentum

    PubMed Central

    Ballantine, Kyle E.; Donegan, John F.; Eastham, Paul R.

    2016-01-01

    The angular momentum of light plays an important role in many areas, from optical trapping to quantum information. In the usual three-dimensional setting, the angular momentum quantum numbers of the photon are integers, in units of the Planck constant ħ. We show that, in reduced dimensions, photons can have a half-integer total angular momentum. We identify a new form of total angular momentum, carried by beams of light, comprising an unequal mixture of spin and orbital contributions. We demonstrate the half-integer quantization of this total angular momentum using noise measurements. We conclude that for light, as is known for electrons, reduced dimensionality allows new forms of quantization. PMID:28861467

  10. Physical angular momentum separation for QED

    NASA Astrophysics Data System (ADS)

    Sun, Weimin

    2017-04-01

    We study the non-uniqueness problem of the gauge-invariant angular momentum separation for the case of QED, which stems from the recent controversy concerning the proper definitions of the orbital angular momentum and spin operator of the individual parts of a gauge field system. For the free quantum electrodynamics without matter, we show that the basic requirement of Euclidean symmetry selects a unique physical angular momentum separation scheme from the multitude of the possible angular momentum separation schemes constructed using the various gauge-invariant extensions (GIEs). Based on these results, we propose a set of natural angular momentum separation schemes for the case of interacting QED by invoking the formalism of asymptotic fields. Some perspectives on such a problem for the case of QCD are briefly discussed.

  11. The Mushroom: A half-sky energetic ion and electron detector

    NASA Astrophysics Data System (ADS)

    Hill, M. E.; Mitchell, D. G.; Andrews, G. B.; Cooper, S. A.; Gurnee, R. S.; Hayes, J. R.; Layman, R. S.; McNutt, R. L.; Nelson, K. S.; Parker, C. W.; Schlemm, C. E.; Stokes, M. R.; Begley, S. M.; Boyle, M. P.; Burgum, J. M.; Do, D. H.; Dupont, A. R.; Gold, R. E.; Haggerty, D. K.; Hoffer, E. M.; Hutcheson, J. C.; Jaskulek, S. E.; Krimigis, S. M.; Liang, S. X.; London, S. M.; Noble, M. W.; Roelof, E. C.; Seifert, H.; Strohbehn, K.; Vandegriff, J. D.; Westlake, J. H.

    2017-02-01

    We present a time-of-flight mass spectrometer design for the measurement of ions in the 30 keV to 10 MeV range for protons (up to 40 MeV and 150 MeV for He and heavy ions, respectively) and 30 keV to 1 MeV range for electrons, covering half of the sky with 80 apertures. The instrument, known as the "Mushroom," owing to its shape, solves the field of view problem for magnetospheric and heliospheric missions that employ three-axis stabilized spacecraft, yet still require extended angular coverage; the Mushroom is also compatible with a spinning spacecraft. The most important new feature of the Mushroom is the method through which uncomplicated electrostatic optics and clean position sensing combine to permit many apertures to fit into a compact, low-mass sensor head (or wedge), several of which (ideally eight) compose a full instrument. Most of the sensor head's volume is an empty, equipotential region, resulting in the modest 250 g mass of each 10-aperture wedge. The Mushroom is capable of separating ion species across most of its energy range and angular field of view. For example, separation of the neighboring 3He and 4He isotopes is excellent; the full width at half maximum mass resolution has been measured to be 0.24 amu to 0.32 amu, respectively. Converting this to a Gaussian width σm in mass m, this represents a σm/m mass resolution better than 0.04. This separation is highly desirable for the flight program for which the first Mushroom was built, the Solar Probe Plus mission. More generally, we estimate the mass resolution to be σm/m ≈ 0.1, but this is energy, mass, and angularly dependent. We also discuss the solid-state detector stack capability, which extends the energy range of protons and helium, with composition, to 100 MeV.

  12. Implementing a Low-Cost Long-Range Unmanned Underwater Vehicle: The SeaDiver Glider

    DTIC Science & Technology

    2007-01-09

    25 2. Position estimation.............................................................................26 3. Angular ...calculation velocity..............................................................27 4. Angular calculation position...25 Figure 14. Angular Positions.............................................................................................27

  13. Suppression of the multi-azimuthal-angle instability in dense neutrino gas during supernova accretion phase

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sovan; Mirizzi, Alessandro; Saviano, Ninetta; Seixas, David de Sousa

    2014-05-01

    It has been recently pointed out that by removing the axial symmetry in the "multi-angle effects" associated with the neutrino-neutrino interactions for supernova (SN) neutrinos a new multi-azimuthal-angle (MAA) instability would arise. In particular, for a flux ordering Fνe>Fν ¯e>Fνx, as expected during the SN accretion phase, this instability occurs in the normal neutrino mass hierarchy. However, during this phase, the ordinary matter density can be larger than the neutrino one, suppressing the self-induced conversions. In this regard, we investigate the matter suppression of the MAA effects, performing a linearized stability analysis of the neutrino equations of motion, in the presence of realistic SN density profiles. We compare these results with the numerical solution of the SN neutrino nonlinear evolution equations. Assuming axially symmetric distributions of neutrino momenta, we find that the large matter term strongly inhibits the MAA effects. In particular, the hindrance becomes stronger including realistic forward-peaked neutrino angular distributions. As a result, in our model for a 10.8 M⊙ iron-core SNe, MAA instability does not trigger any flavor conversion during the accretion phase. Instead, for a 8.8 M⊙ O-Ne-Mg core SN model, with lower matter density profile and less forward-peaked angular distributions, flavor conversions are possible also at early times.

  14. Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy.

    PubMed

    Minárik, Peter; Jablonská, Eva; Král, Robert; Lipov, Jan; Ruml, Tomáš; Blawert, Carsten; Hadzima, Branislav; Chmelík, František

    2017-04-01

    Effect of processing by equal channel angular pressing (ECAP) on the degradation behaviour of extruded LAE442 magnesium alloy was investigated in a 0.1M NaCl solution, Kirkland's biocorrosion medium (KBM) and Minimum Essential Medium (MEM), both with and without 10% of foetal bovine serum (FBS). Uniform degradation of as extruded and ECAP processed samples in NaCl solution was observed, nevertheless higher corrosion resistance was found in the latter material. The increase of corrosion resistance due to ECAP was observed also after 14-days immersion in all media used. Higher compactness of the corrosion layer formed on the samples after ECAP was responsible for the observed decrease of corrosion resistance, which was proven by scanning electron microscope investigation. Lower corrosion rate in media with FBS was observed and was explained by additional effect of protein incorporation on the corrosion layer stability. A cytotoxicity test using L929 cells was carried out to investigate possible effect of processing on the cell viability. Sufficient cytocompatibility of the extruded samples was observed with no adverse effects of the subsequent ECAP processing. In conclusion, this in vitro study proved that the degradation behaviour of the LAE442 alloy could be improved by subsequent ECAP processing and this material is a good candidate for future in vivo investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Equal channel angular pressing (ECAP) and forging of commercially pure titanium (CP-Ti)

    NASA Astrophysics Data System (ADS)

    Krystian, Maciej; Huber, Daniel; Horky, Jelena

    2017-10-01

    Pure titanium with ultra-fine grained (UFG) microstructure is an exceptionally interesting material for biomedical and dental applications due to its very good biocompatibility and high strength. Such bulk, high-strength UFG materials are commonly produced by different Severe Plastic Deformation (SPD) techniques, whereof Equal Channel Angular Pressing (ECAP) is the most commonly used one. In this investigation commercially pure (CP) titanium (grade 2) was processed by ECAP using a die with a channel diameter of 20mm and an intersection angle of 105°. Six passes using route B120 (in which the billet is rotated between subsequent passes by 120°) at a temperature of 400°C were performed leading to a substantial grain refinement and an increase of strength and hardness. Subsequently, a thermal treatment study on ECAP-processed samples at different temperatures and for different time periods was carried out revealing the stability limit for ECAP CP-Ti as well as the best conditions leading to an improvement in both, strength and ductility. Furthermore, room temperature forging of the as-received (AR; hot-rolled and annealed) as well as ECAP-processed material was conducted. Tensile tests and hardness mappings revealed that forging is capable to further increase the strength of ECAP CP-Ti by more than 20%. Moreover, the mechanical properties are significantly more homogenous than after forging only.

  16. The possible effect of reaction wheel unloading on orbit determination for Chang'E-1 lunar mission

    NASA Astrophysics Data System (ADS)

    Jianguo, Yan; Jingsong, Ping; Fei, Li

    During the flight of 3-axis stabilized lunar orbiter i e SELENE main orbiter Chang E-1 due to the overflow of the accumulated angular momentum the reaction-wheel will be unloaded during certain period so as to release the angular momentum for initialization Then the momentum wheel will be reloaded for satellite attitude measurement and control Above action will not only change the attitude but also change the orbit of the spacecraft Assuming the reaction-wheel unloading is carried out twice a day according to the current engineering designation and plan for SELENE main orbiter and Chang E-1 missions considering the algebra configuration of the tracking stations the Moon and the lunar orbiter the orbit determination is simulated for 14 days evolution of lunar orbiter In the simulation the satellite orbit is generated using GEODYNII code Based on the generated orbit the common view time period of the satellite by VLBI and USB network in every day is computed the orbit determination is processed for all the arcs of the orbit The orbit determination result of 28 orbits in 14 days is provided The orbits cover most of the possible geometrical configuration among orbiter the Moon and the tracking network The analysis here can benefit the tracking designation and plan for Chang E-1 mission

  17. End-State Relative Equilibria in the Sphere-Restricted Full Three-Body Problem

    NASA Astrophysics Data System (ADS)

    Gabriel, Travis; Scheeres, Daniel J.

    2015-05-01

    The Sphere-Restricted Full Three-Body Problem studies the motion of three finite density spheres as they interact under surface and gravitational forces. When accounting for the dissipation of energy, full-body systems may achieve minimum energy states that are unatainable in the classic treatment of the N-Body Problem. This serves as a simple model for the mechanics of rubble pile asteroids, interacting grains in a protoplanetary disk, and potentially the interactions of planetary ring particles. Previous studies of this problem have been performed in the case where the three spheres are of equal size and mass, with all possible relative equilibria and their stability having been identified as a function of the total angular momentum of the system. These studies uncovered that at certain levels of angular momentum there exists more than one stable relative equilibrium state. Thus a question of interest is which of these states a dissipative system would preferentially settle in provided some domain of initial conditions, and whether this would be a function of the dissipation parameters. Using perfectly-rigid dynamics, three-equal-sphere systems are simulated in a purpose-written C-based code to uncover these details. Results from this study are relevant to the mechanics and dynamics in small solar system bodies where relative forces are not great enough to compromise the rigidity of the constituents.

  18. Sliding Mode Control of the X-33 with an Engine Failure

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri B.; Hall, Charles E.

    2000-01-01

    Ascent flight control of the X-3 is performed using two XRS-2200 linear aerospike engines. in addition to aerosurfaces. The baseline control algorithms are PID with gain scheduling. Flight control using an innovative method. Sliding Mode Control. is presented for nominal and engine failed modes of flight. An easy to implement, robust controller. requiring no reconfiguration or gain scheduling is demonstrated through high fidelity flight simulations. The proposed sliding mode controller utilizes a two-loop structure and provides robust. de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of engine failure, bounded external disturbances (wind gusts) and uncertain matrix of inertia. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues. Conditions that restrict engine failures to robustness domain of the sliding mode controller are derived. Overall stability of a two-loop flight control system is assessed. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in the presence of external disturbances and vehicle inertia uncertainties, as well as the single engine failed case. The designed robust controller will significantly reduce the time and cost associated with flying new trajectory profiles or orbits, with new payloads, and with modified vehicles

  19. Angular momentum of dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Kurapati, Sushma; Chengalur, Jayaram N.; Pustilnik, Simon; Kamphuis, Peter

    2018-05-01

    Mass and specific angular momentum are two fundamental physical parameters of galaxies. We present measurements of the baryonic mass and specific angular momentum of 11 void dwarf galaxies derived from neutral hydrogen (HI) synthesis data. Rotation curves were measured using 3D and 2D tilted ring fitting routines, and the derived curves generally overlap within the error bars, except in the central regions where, as expected, the 3D routines give steeper curves. The specific angular momentum of void dwarfs is found to be high compared to an extrapolation of the trends seen for higher mass bulge-less spirals, but comparable to that of other dwarf irregular galaxies that lie outside of voids. As such, our data show no evidence for a dependence of the specific angular momentum on the large scale environment. Combining our data with the data from the literature, we find a baryonic threshold of ˜109.1 M⊙ for this increase in specific angular momentum. Interestingly, this threshold is very similar to the mass threshold below which the galaxy discs start to become systematically thicker. This provides qualitative support to the suggestion that the thickening of the discs, as well as the increase in specific angular momentum, are both results of a common physical mechanism, such as feedback from star formation. Quantitatively, however, the amount of star formation observed in our dwarfs appears insufficient to produce the observed increase in specific angular momentum. It is hence likely that other processes, such as cold accretion of high angular momentum gas, also play a role in increasing the specific angular momentum.

  20. Identification of trunk and pelvis movement compensations in patients with transtibial amputation using angular momentum separation.

    PubMed

    Gaffney, Brecca M; Murray, Amanda M; Christiansen, Cory L; Davidson, Bradley S

    2016-03-01

    Patients with unilateral dysvascular transtibial amputation (TTA) have a higher risk of developing low back pain than their healthy counterparts, which may be related to movement compensations used in the absence of ankle function. Assessing components of segmental angular momentum provides a unique framework to identify and interpret these movement compensations alongside traditional observational analyses. Angular momentum separation indicates two components of total angular momentum: (1) transfer momentum and (2) rotational momentum. The objective of this investigation was to assess movement compensations in patients with dysvascular TTA, patients with diabetes mellitus (DM), and healthy controls (HC) by examining patterns of generating and arresting trunk and pelvis segmental angular momenta during gait. We hypothesized that all groups would demonstrate similar patterns of generating/arresting total momentum and transfer momentum in the trunk and pelvis in reference to the groups (patients with DM and HC). We also hypothesized that patients with amputation would demonstrate different (larger) patterns of generating/arresting rotational angular momentum in the trunk. Patients with amputation demonstrated differences in trunk and pelvis transfer angular momentum in the sagittal and transverse planes in comparison to the reference groups, which indicates postural compensations adopted during walking. However, patients with amputation demonstrated larger patterns of generating and arresting of trunk and pelvis rotational angular momentum in comparison to the reference groups. These segmental rotational angular momentum patterns correspond with high eccentric muscle demands needed to arrest the angular momentum, and may lead to consequential long-term effects such as low back pain. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.

    Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that ismore » capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.« less

  2. Analysis of the geodetic residuals as differences between geodetic and sum of the atmospheric and ocean excitation of polar motion

    NASA Astrophysics Data System (ADS)

    Kolaczek, B.; Pasnicka, M.; Nastula, J.

    2012-12-01

    Up to now studies of geophysical excitation of polar motion containing AAM (Atmospheric Angular Momentum), OAM (Oceanic Angular Momentum) and HAM (Hydrological Angular Momentum) excitation functions of polar motion have not achieved the total agreement between geophysical and determined geodetic excitation (GAM, Geodetic AngularMomentum) functions of polar motion...

  3. A goal-based angular adaptivity method for thermal radiation modelling in non grey media

    NASA Astrophysics Data System (ADS)

    Soucasse, Laurent; Dargaville, Steven; Buchan, Andrew G.; Pain, Christopher C.

    2017-10-01

    This paper investigates for the first time a goal-based angular adaptivity method for thermal radiation transport, suitable for non grey media when the radiation field is coupled with an unsteady flow field through an energy balance. Anisotropic angular adaptivity is achieved by using a Haar wavelet finite element expansion that forms a hierarchical angular basis with compact support and does not require any angular interpolation in space. The novelty of this work lies in (1) the definition of a target functional to compute the goal-based error measure equal to the radiative source term of the energy balance, which is the quantity of interest in the context of coupled flow-radiation calculations; (2) the use of different optimal angular resolutions for each absorption coefficient class, built from a global model of the radiative properties of the medium. The accuracy and efficiency of the goal-based angular adaptivity method is assessed in a coupled flow-radiation problem relevant for air pollution modelling in street canyons. Compared to a uniform Haar wavelet expansion, the adapted resolution uses 5 times fewer angular basis functions and is 6.5 times quicker, given the same accuracy in the radiative source term.

  4. Analysis of angular momentum properties of photons emitted in fundamental atomic processes

    NASA Astrophysics Data System (ADS)

    Zaytsev, V. A.; Surzhykov, A. S.; Shabaev, V. M.; Stöhlker, Th.

    2018-04-01

    Many atomic processes result in the emission of photons. Analysis of the properties of emitted photons, such as energy and angular distribution as well as polarization, is regarded as a powerful tool for gaining more insight into the physics of corresponding processes. Another characteristic of light is the projection of its angular momentum upon propagation direction. This property has attracted a special attention over the past decades due to studies of twisted (or vortex) light beams. Measurements being sensitive to this projection may provide valuable information about the role of angular momentum in the fundamental atomic processes. Here we describe a simple theoretical method for determination of the angular momentum properties of the photons emitted in various atomic processes. This method is based on the evaluation of expectation value of the total angular momentum projection operator. To illustrate the method, we apply it to the textbook examples of plane-wave, spherical-wave, and Bessel light. Moreover, we investigate the projection of angular momentum for the photons emitted in the process of the radiative recombination with ionic targets. It is found that the recombination photons do carry a nonzero projection of the orbital angular momentum.

  5. Angular Spacing Control for Segmented Data Pages in Angle-Multiplexed Holographic Memory

    NASA Astrophysics Data System (ADS)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Kikuchi, Hiroshi; Shimidzu, Naoki; Ando, Toshio; Masaki, Kazuyoshi; Shimizu, Takehiro

    2011-09-01

    To improve the recording density of angle-multiplexed holographic memory, it is effective to increase the numerical aperture of the lens and to shorten the wavelength of the laser source as well as to increase the multiplexing number. The angular selectivity of a hologram, which determines the multiplexing number, is dependent on the incident angle of not only the reference beam but also the signal beam to the holographic recording medium. The actual signal beam, which is a convergent or divergent beam, is regarded as the sum of plane waves that have different propagation directions, angular selectivities, and optimal angular spacings. In this paper, focusing on the differences in the optimal angular spacing, we proposed a method to control the angular spacing for each segmented data page. We investigated the angular selectivity of a hologram and crosstalk for segmented data pages using numerical simulation. The experimental results showed a practical bit-error rate on the order of 10-3.

  6. Amplification of Angular Rotations Using Weak Measurements

    NASA Astrophysics Data System (ADS)

    Magaña-Loaiza, Omar S.; Mirhosseini, Mohammad; Rodenburg, Brandon; Boyd, Robert W.

    2014-05-01

    We present a weak measurement protocol that permits a sensitive estimation of angular rotations based on the concept of weak-value amplification. The shift in the state of a pointer, in both angular position and the conjugate orbital angular momentum bases, is used to estimate angular rotations. This is done by an amplification of both the real and imaginary parts of the weak-value of a polarization operator that has been coupled to the pointer, which is a spatial mode, via a spin-orbit coupling. Our experiment demonstrates the first realization of weak-value amplification in the azimuthal degree of freedom. We have achieved effective amplification factors as large as 100, providing a sensitivity that is on par with more complicated methods that employ quantum states of light or extremely large values of orbital angular momentum.

  7. Angular-domain scattering interferometry.

    PubMed

    Shipp, Dustin W; Qian, Ruobing; Berger, Andrew J

    2013-11-15

    We present an angular-scattering optical method that is capable of measuring the mean size of scatterers in static ensembles within a field of view less than 20 μm in diameter. Using interferometry, the method overcomes the inability of intensity-based models to tolerate the large speckle grains associated with such small illumination areas. By first estimating each scatterer's location, the method can model between-scatterer interference as well as traditional single-particle Mie scattering. Direct angular-domain measurements provide finer angular resolution than digitally transformed image-plane recordings. This increases sensitivity to size-dependent scattering features, enabling more robust size estimates. The sensitivity of these angular-scattering measurements to various sizes of polystyrene beads is demonstrated. Interferometry also allows recovery of the full complex scattered field, including a size-dependent phase profile in the angular-scattering pattern.

  8. Dynamo magnetic field-induced angular momentum transport in protostellar nebulae - The 'minimum mass' protosolar nebula

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Levy, E. H.

    1990-01-01

    Magnetic torques can produce angular momentum redistribution in protostellar nebulas. Dynamo magnetic fields can be generated in differentially rotating and turbulent nebulas and can be the source of magnetic torques that transfer angular momentum from a protostar to a disk, as well as redistribute angular momentum within a disk. A magnetic field strength of 100-1000 G is needed to transport the major part of a protostar's angular momentum into a surrounding disk in a time characteristic of star formation, thus allowing formation of a solar-system size protoplanetary nebula in the usual 'minimum-mass' model of the protosolar nebula. This paper examines the possibility that a dynamo magnetic field could have induced the needed angular momentum transport from the proto-Sun to the protoplanetary nebula.

  9. Separation of spin and orbital angular coherence momenta in the second-order coherence theory of vector electromagnetic fields.

    PubMed

    Wang, Wei; Takeda, Mitsuo

    2007-09-15

    In analogy with the separation of the total optical angular momentum into a spin and an orbital part in electrodynamics, we introduce a new concept of spin and orbital angular coherence momenta into the general coherence theory of vector electromagnetic fields. The properties of the newly introduced spin and orbital angular coherence momenta are investigated through the decomposition of the total coherence angular momentum into the sum of these two components, and their separate conservations have been derived for what is believed to be the first time.

  10. Ferrofluids: Modeling, numerical analysis, and scientific computation

    NASA Astrophysics Data System (ADS)

    Tomas, Ignacio

    This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a simplified version of this model and the corresponding numerical scheme we prove (in addition to stability) convergence and existence of solutions as by-product . Throughout this dissertation, we will provide numerical experiments, not only to validate mathematical results, but also to help the reader gain a qualitative understanding of the PDE models analyzed in this dissertation (the MNSE, the Rosenweig's model, and the Two-phase model). In addition, we also provide computational experiments to illustrate the potential of these simple models and their ability to capture basic phenomenological features of ferrofluids, such as the Rosensweig instability for the case of the two-phase model. In this respect, we highlight the incisive numerical experiments with the two-phase model illustrating the critical role of the demagnetizing field to reproduce physically realistic behavior of ferrofluids.

  11. Angular multiplexing holograms of four images recorded on photopolymer films with recording-film-thickness-dependent holographic characteristics

    NASA Astrophysics Data System (ADS)

    Osabe, Keiichi; Kawai, Kotaro

    2017-03-01

    In this study, angular multiplexing hologram recording photopolymer films were studied experimentally. The films contained acrylamide as a monomer, eosin Y as a sensitizer, and triethanolamine as a promoter in a polyvinyl alcohol matrix. In order to determine the appropriate thickness of the photopolymer films for angular multiplexing, photopolymer films with thicknesses of 29-503 μm were exposed to two intersecting beams of a YVO laser at a wavelength of 532 nm to form a holographic grating with a spatial frequency of 653 line/mm. The diffraction efficiencies as a function of the incident angle of reconstruction were measured. A narrow angular bandwidth and high diffraction efficiency are required for angular multiplexing; hence, we define the Q value, which is the diffraction efficiency divided by half the bandwidth. The Q value of the films depended on the thickness of the films, and was calculated based on the measured diffraction efficiencies. The Q value of a 297-μm-thick film was the highest of the all films. Therefore, the angular multiplexing experiments were conducted using 300-μm-thick films. In the angular multiplexing experiments, the object beam transmitted by a square aperture was focused by a Fourier transform lens and interfered with a reference beam. The maximum order of angular multiplexing was four. The signal intensity that corresponds to the squared-aperture transmission and the noise intensity that corresponds to transmission without the square aperture were measured. The signal intensities decreased as the order of angular multiplexing increased, and the noise intensities were not dependent on the order of angular multiplexing.

  12. A Detailed Motion Analysis of the Angular Velocity Between the Vocal Folds During Throat Clearing Using High-speed Digital Imaging.

    PubMed

    Iwahashi, Toshihiko; Ogawa, Makoto; Hosokawa, Kiyohito; Kato, Chieri; Inohara, Hidenori

    2016-11-01

    To assess the angular velocity between the vocal folds just before the compression phase of throat clearing (TC) using high-speed digital imaging (HSDI) of the larynx. Twenty normal healthy adults (13 males and seven females) were enrolled in the study. Each participant underwent transnasal laryngo-fiberscopy, and was asked to perform weak/strong TC followed by a comfortable, sustained vowel phonation while recording an HSDI movie (4000 frames/s) of the larynx. Using a motion analysis, the changes in the vocal fold angle and angular velocity during vocal fold adduction were assessed. Subsequently, we calculated the average angular velocities in the ranges of 100-80%, 80-20%, and 20-0% from all of the angular changes. The motion analysis demonstrated that the changes in the angular velocity resulted in polynomial-like and sigmoid curves during TC and vowel phonation, respectively. The angular velocities during weak TC were significantly higher in the 20-0%, 80-20%, and 100-80% regions (in order); the 80-20% angular velocity in vocal fold adduction during phonation was highest. The 20-0% angular velocity during strong TC was more than twofold higher than 20-0% angular velocity during phonation. The present results confirmed that the closing motions of the vocal folds accelerate throughout the precompression closing phase of a TC episode, and decelerate just before the impact between the vocal folds at the onset of phonation, suggesting that the vocal fold velocity generated by TC is sufficient to damage the laryngeal tissues. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  13. Jet angularity measurements for single inclusive jet production

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Lee, Kyle; Ringer, Felix

    2018-04-01

    We study jet angularity measurements for single-inclusive jet production at the LHC. Jet angularities depend on a continuous parameter a allowing for a smooth interpolation between different traditional jet shape observables. We establish a factorization theorem within Soft Collinear Effective Theory (SCET) where we consistently take into account in- and out-of-jet radiation by making use of semi-inclusive jet functions. For comparison, we elaborate on the differences to jet angularities measured on an exclusive jet sample. All the necessary ingredients for the resummation at next-to-leading logarithmic (NLL) accuracy are presented within the effective field theory framework. We expect semiinclusive jet angularity measurements to be feasible at the LHC and we present theoretical predictions for the relevant kinematic range. In addition, we investigate the potential impact of jet angularities for quark-gluon discrimination.

  14. A new open-loop fiber optic gyro error compensation method based on angular velocity error modeling.

    PubMed

    Zhang, Yanshun; Guo, Yajing; Li, Chunyu; Wang, Yixin; Wang, Zhanqing

    2015-02-27

    With the open-loop fiber optic gyro (OFOG) model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage u and temperature T as the input variables and angular velocity error Δω as the output variable. Firstly, the angular velocity error Δω is extracted from OFOG output signals, and then the output voltage u, temperature T and angular velocity error Δω are used as the learning samples to train a Radial-Basis-Function (RBF) neural network model. Then the nonlinear mapping model over T, u and Δω is established and thus Δω can be calculated automatically to compensate OFOG errors according to T and u. The results of the experiments show that the established model can be used to compensate the nonlinear OFOG errors. The maximum, the minimum and the mean square error of OFOG angular velocity are decreased by 97.0%, 97.1% and 96.5% relative to their initial values, respectively. Compared with the direct modeling of gyro angular velocity, which we researched before, the experimental results of the compensating method proposed in this paper are further reduced by 1.6%, 1.4% and 1.42%, respectively, so the performance of this method is better than that of the direct modeling for gyro angular velocity.

  15. A New Open-Loop Fiber Optic Gyro Error Compensation Method Based on Angular Velocity Error Modeling

    PubMed Central

    Zhang, Yanshun; Guo, Yajing; Li, Chunyu; Wang, Yixin; Wang, Zhanqing

    2015-01-01

    With the open-loop fiber optic gyro (OFOG) model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage u and temperature T as the input variables and angular velocity error Δω as the output variable. Firstly, the angular velocity error Δω is extracted from OFOG output signals, and then the output voltage u, temperature T and angular velocity error Δω are used as the learning samples to train a Radial-Basis-Function (RBF) neural network model. Then the nonlinear mapping model over T, u and Δω is established and thus Δω can be calculated automatically to compensate OFOG errors according to T and u. The results of the experiments show that the established model can be used to compensate the nonlinear OFOG errors. The maximum, the minimum and the mean square error of OFOG angular velocity are decreased by 97.0%, 97.1% and 96.5% relative to their initial values, respectively. Compared with the direct modeling of gyro angular velocity, which we researched before, the experimental results of the compensating method proposed in this paper are further reduced by 1.6%, 1.4% and 1.2%, respectively, so the performance of this method is better than that of the direct modeling for gyro angular velocity. PMID:25734642

  16. Closed-form integrator for the quaternion (euler angle) kinematics equations

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A. (Inventor)

    2000-01-01

    The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of the vehicle, which includes computing an integrating factor matrix from quantities corresponding to the 3-dimensional angular velocities, computing a total integrated angular rate from the quantities corresponding to a 3-dimensional angular velocities, computing a state transition matrix as a sum of (a) a first complementary function of the total integrated angular rate and (b) the integrating factor matrix multiplied by a second complementary function of the total integrated angular rate, and updating the set of vehicle attitude angles using the state transition matrix. Preferably, the method further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried out by (a) updating the quanternion vector by multiplying the quanternion vector by the state transition matrix to produce an updated quanternion vector and (b) computing an updated set of vehicle attitude angles from the updated quanternion vector. The first and second trigonometric functions are complementary, such as a sine and a cosine. The quantities corresponding to the 3-dimensional angular velocities include respective averages of the 3-dimensional angular velocities over plural time frames. The updating of the quanternion vector preserves the norm of the vector, whereby the updated set of vehicle attitude angles are virtually error-free.

  17. Design and Calibration of the ARL Mach 3 High Reynolds Number Facility

    DTIC Science & Technology

    1975-01-01

    degrees Rankine. Test rhombus determinations included lateral and longitudinal Mach number distributions and flow angularity measurements. A...43 3. THE TUNNEL EMPTY MACH NUMBER DISTRIBUTION 45 4. THE CENTERLINE RMS MACH NUMBER 46 5. FLOW ANGULARITY MEASUREMENTS 46 6. BLOCKAGE TESTS... Angularity Wedge Scale Drawing of Flow Angularity Cone Normalized Surface Pressure Difference versus Angle of Attack at xp/xr = - 0.690 for po

  18. On Angular Momentum

    DOE R&D Accomplishments Database

    Schwinger, J.

    1952-01-26

    The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.

  19. GALACTIC ANGULAR MOMENTUM IN THE ILLUSTRIS SIMULATION: FEEDBACK AND THE HUBBLE SEQUENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genel, Shy; Fall, S. Michael; Snyder, Gregory F.

    We study the stellar angular momentum of thousands of galaxies in the Illustris cosmological simulation, which captures gravitational and gas dynamics within galaxies, as well as feedback from stars and black holes. We find that the angular momentum of the simulated galaxies matches observations well, and in particular two distinct relations are found for late-type versus early-type galaxies. The relation for late-type galaxies corresponds to the value expected from full conservation of the specific angular momentum generated by cosmological tidal torques. The relation for early-type galaxies corresponds to retention of only ∼30% of that, but we find that those early-typemore » galaxies with low angular momentum at z = 0 nevertheless reside at high redshift on the late-type relation. Some of them abruptly lose angular momentum during major mergers. To gain further insight, we explore the scaling relations in simulations where the galaxy formation physics is modified with respect to the fiducial model. We find that galactic winds with high mass-loading factors are essential for obtaining the high angular momentum relation typical for late-type galaxies, while active galactic nucleus feedback largely operates in the opposite direction. Hence, feedback controls the stellar angular momentum of galaxies, and appears to be instrumental for establishing the Hubble sequence.« less

  20. Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach

    PubMed Central

    Zeng, Xiaozheng; McGough, Robert J.

    2009-01-01

    The angular spectrum approach is evaluated for the simulation of focused ultrasound fields produced by large thermal therapy arrays. For an input pressure or normal particle velocity distribution in a plane, the angular spectrum approach rapidly computes the output pressure field in a three dimensional volume. To determine the optimal combination of simulation parameters for angular spectrum calculations, the effect of the size, location, and the numerical accuracy of the input plane on the computed output pressure is evaluated. Simulation results demonstrate that angular spectrum calculations performed with an input pressure plane are more accurate than calculations with an input velocity plane. Results also indicate that when the input pressure plane is slightly larger than the array aperture and is located approximately one wavelength from the array, angular spectrum simulations have very small numerical errors for two dimensional planar arrays. Furthermore, the root mean squared error from angular spectrum simulations asymptotically approaches a nonzero lower limit as the error in the input plane decreases. Overall, the angular spectrum approach is an accurate and robust method for thermal therapy simulations of large ultrasound phased arrays when the input pressure plane is computed with the fast nearfield method and an optimal combination of input parameters. PMID:19425640

Top