Sample records for nanoribbon field effect

  1. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela

    Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on > 1 μA at V d = -1 V) and highmore » I on /I off ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.« less

  2. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons

    DOE PAGES

    Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela; ...

    2017-09-21

    Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on > 1 μA at V d = -1 V) and highmore » I on /I off ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.« less

  3. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons.

    PubMed

    Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela; Shi, Wu; Lee, Kyunghoon; Wu, Shuang; Yong Choi, Byung; Braganza, Rohit; Lear, Jordan; Kau, Nicholas; Choi, Wonwoo; Chen, Chen; Pedramrazi, Zahra; Dumslaff, Tim; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus; Fischer, Felix; Zettl, Alex; Ruffieux, Pascal; Yablonovitch, Eli; Crommie, Michael; Fasel, Roman; Bokor, Jeffrey

    2017-09-21

    Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch  ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on  > 1 μA at V d  = -1 V) and high I on /I off  ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.Graphene nanoribbons show promise for high-performance field-effect transistors, however they often suffer from short lengths and wide band gaps. Here, the authors use a bottom-up synthesis approach to fabricate 9- and 13-atom wide ribbons, enabling short-channel transistors with 10 5 on-off current ratio.

  4. Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors.

    PubMed

    Hur, Ji-Hyun; Kim, Deok-Kee

    2018-05-04

    In this paper, we theoretically investigate the highest possible expected performance for graphene nanoribbon field effect transistors (GNRFETs) for a wide range of operation voltages and device structure parameters, such as the width of the graphene nanoribbon and gate length. We formulated a self-consistent, non-equilibrium Green's function method in conjunction with the Poisson equation and modeled the operation of nanometer sized GNRFETs, of which GNR channels have finite bandgaps so that the GNRFET can operate as a switch. We propose a metric for competing with the current silicon CMOS high performance or low power devices and explain that this can vary greatly depending on the GNRFET structure parameters.

  5. Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors

    NASA Astrophysics Data System (ADS)

    Hur, Ji-Hyun; Kim, Deok-Kee

    2018-05-01

    In this paper, we theoretically investigate the highest possible expected performance for graphene nanoribbon field effect transistors (GNRFETs) for a wide range of operation voltages and device structure parameters, such as the width of the graphene nanoribbon and gate length. We formulated a self-consistent, non-equilibrium Green’s function method in conjunction with the Poisson equation and modeled the operation of nanometer sized GNRFETs, of which GNR channels have finite bandgaps so that the GNRFET can operate as a switch. We propose a metric for competing with the current silicon CMOS high performance or low power devices and explain that this can vary greatly depending on the GNRFET structure parameters.

  6. Field-Effect Transistors Based on Networks of Highly Aligned, Chemically Synthesized N = 7 Armchair Graphene Nanoribbons.

    PubMed

    Passi, Vikram; Gahoi, Amit; Senkovskiy, Boris V; Haberer, Danny; Fischer, Felix R; Grüneis, Alexander; Lemme, Max C

    2018-03-28

    We report on the experimental demonstration and electrical characterization of N = 7 armchair graphene nanoribbon (7-AGNR) field effect transistors. The back-gated transistors are fabricated from atomically precise and highly aligned 7-AGNRs, synthesized with a bottom-up approach. The large area transfer process holds the promise of scalable device fabrication with atomically precise nanoribbons. The channels of the FETs are approximately 30 times longer than the average nanoribbon length of 30 nm to 40 nm. The density of the GNRs is high, so that transport can be assumed well-above the percolation threshold. The long channel transistors exhibit a maximum I ON / I OFF current ratio of 87.5.

  7. Helicoidal graphene nanoribbons: Chiraltronics

    DOE PAGES

    Atanasov, Victor; Saxena, Avadh

    2015-07-29

    Here, we present a calculation of the effective geometry-induced quantum potential for the carriers in graphene shaped as a helicoidal nanoribbon. In this geometry the twist of the nanoribbon plays the role of an effective transverse electric field in graphene and this is reminiscent of the Hall effect. But, this effective electric field has a different sign for the two isospin states and translates into a mechanism to separate the two chiral species on the opposing rims of the nanoribbon. Finally, isospin transitions are expected with the emission or absorption of microwave radiation which could be adjusted to be inmore » the THz region.« less

  8. Strain-Induced Pseudomagnetic Fields in Twisted Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Bo; Seifert, Gotthard; Chang, Kai

    2014-03-01

    We present, for the first time, an atomic-level and quantitative study of a strain-induced pseudomagnetic field in graphene nanoribbons with widths of hundreds of nanometers. We show that twisting strongly affects the band structures of graphene nanoribbons with arbitrary chirality and generates well-defined pseudo-Landau levels, which mimics the quantization of massive Dirac fermions in a magnetic field up to 160 T. Electrons are localized either at ribbon edges forming the edge current or at the ribbon center forming the snake orbit current, both being valley polarized. Our result paves the way for the design of new graphene-based nanoelectronics.

  9. Bipolar magnetic semiconductor in silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Farghadan, Rouhollah

    2017-08-01

    A theoretical study was presented on generation of spin polarization in silicene nanoribbons using the single-band tight-binding approximation and the non-equilibrium Green's function formalism. We focused on the effect of electric and exchange magnetic fields on the spin-filter capabilities of zigzag-edge silicene nanoribbons in the presence of the intrinsic spin-orbit interaction. The results show that a robust bipolar magnetic semiconductor with controllable spin-flip and spin-conserved gaps can be obtained when exchange magnetic and electric field strengths are both larger than the intrinsic spin-orbit interaction. Therefore, zigzag silicene nanoribbons could act as bipolar and perfect spin filter devices with a large spin-polarized current and a reversible spin polarization in the vicinity of the Fermi energy. We also investigated the effect of edge roughness and found that the bipolar magnetic semiconductor features are robust against edge disorder in silicene nanoribbon junctions. These results may be useful in multifunctional spin devices based on silicene nanoribbons.

  10. A computational study of a novel graphene nanoribbon field effect transistor

    NASA Astrophysics Data System (ADS)

    Ghoreishi, Seyed Saleh; Yousefi, Reza

    2017-04-01

    In this paper, using gate structure engineering and modification of channel dopant profile, we propose a new double gate graphene nanoribbon field effect transistor (DG-GNRFET) mainly to suppress the band-to-band tunneling (BTBT) of carriers. In the new device, the intrinsic part of the channel is replaced by an intrinsic-lightly doped-intrinsic (I -N--I) configuration in a way that only the intrinsic parts are covered by the gate contact. Transport characteristics of the device are investigated theoretically using the nonequilibrium Green’s function (NEGF) formalism. Numerical simulations show that off-current, ambipolar behavior, on/off-current ratio and the switching characteristics such as intrinsic delay and power-delay product are improved. In addition, the new device demonstrates better sub-threshold swing and less drain-induced barrier lowering (DIBL).

  11. Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons

    NASA Astrophysics Data System (ADS)

    Koop, Cornelie; Wessel, Stefan

    2017-10-01

    We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.

  12. Effects of edge magnetism on the Kohn anomalies of zigzag graphene nanoribbons.

    PubMed

    Culchac, F J; Capaz, Rodrigo B

    2016-02-12

    The effects of edge magnetism on the Kohn anomaly (KA) of the G-band phonons of zigzag graphene nanoribbons (ZGNRs) are studied using a combination of the tight-binding and mean-field Hubbard models. We show that the opening of an energy gap, induced by magnetic ordering, significantly changes the KA effects, particularly for narrow ribbons in which the gap is larger than the phonon energy. Therefore, the G-band phonon frequency and lifetime are altered for a magnetically-ordered edge state with respect to an unpolarized edge state. The effects of temperature, ZGNR width, doping and transverse electric fields are systematically investigated. We propose using this effect to probe the magnetic order of edge states in graphene nanoribbons using Raman spectroscopy.

  13. Negative Differential Resistance and Steep Switching in Chevron Graphene Nanoribbon Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Smith, Samuel; Llinas, Juan-Pablo; Bokor, Jeffrey; Salahuddin, Sayeef

    2018-01-01

    Ballistic quantum transport calculations based on the non-equilbrium Green's function formalism show that field-effect transistor devices made from chevron-type graphene nanoribbons (CGNRs) could exhibit negative differential resistance with peak-to-valley ratios in excess of 4800 at room temperature as well as steep-slope switching with 6 mV/decade subtheshold swing over five orders of magnitude and ON-currents of 88$\\mu$A/$\\mu$m. This is enabled by the superlattice-like structure of these ribbons that have large periodic unit cells with regions of different effective bandgap, resulting in minibands and gaps in the density of states above the conduction band edge. The CGNR ribbon used in our proposed device has been previously fabricated with bottom-up chemical synthesis techniques and could be incorporated into an experimentally-realizable structure.

  14. Controllable spin polarization and spin filtering in a zigzag silicene nanoribbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farokhnezhad, Mohsen, E-mail: Mohsen-farokhnezhad@physics.iust.ac.ir; Esmaeilzadeh, Mahdi, E-mail: mahdi@iust.ac.ir; Pournaghavi, Nezhat

    2015-05-07

    Using non-equilibrium Green's function, we study the spin-dependent electron transport properties in a zigzag silicene nanoribbon. To produce and control spin polarization, it is assumed that two ferromagnetic strips are deposited on the both edges of the silicene nanoribbon and an electric field is perpendicularly applied to the nanoribbon plane. The spin polarization is studied for both parallel and anti-parallel configurations of exchange magnetic fields induced by the ferromagnetic strips. We find that complete spin polarization can take place in the presence of perpendicular electric field for anti-parallel configuration and the nanoribbon can work as a perfect spin filter. Themore » spin direction of transmitted electrons can be easily changed from up to down and vice versa by reversing the electric field direction. For parallel configuration, perfect spin filtering can occur even in the absence of electric field. In this case, the spin direction can be changed by changing the electron energy. Finally, we investigate the effects of nonmagnetic Anderson disorder on spin dependent conductance and find that the perfect spin filtering properties of nanoribbon are destroyed by strong disorder, but the nanoribbon retains these properties in the presence of weak disorder.« less

  15. Theory of nitrogen doping of carbon nanoribbons: Edge effects

    DOE PAGES

    Jiang, Jie; Turnbull, Joseph; Lu, Wenchang; ...

    2012-01-01

    Nitrogen doping of a carbon nanoribbon is profoundly affected by its one-dimensional character, symmetry, and interaction with edge states. Using state-of-the-art ab initio calculations, including hybrid exact-exchange density functional theory, we find that, for N-doped zigzag ribbons, the electronic properties are strongly dependent upon sublattice effects due to the non-equivalence of the two sublattices. For armchair ribbons, N-doping effects are different depending upon the ribbon family: for families 2 and 0, the N-induced levels are in the conduction band, while for family 1 the N levels are in the gap. In zigzag nanoribbons, nitrogen close to the edge is amore » deep center, while in armchair nanoribbons its behavior is close to an effective-mass-like donor with the ionization energy dependent on the value of the band gap. In chiral nanoribbons, we find strong dependence of the impurity level and formation energy upon the edge position of the dopant, while such site-specificity is not manifested in the magnitude of the magnetization.« less

  16. Sensory Organ Like Response of Zigzag Edge Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Shenoy, Vijay; Bhowmick, Somnath

    2011-03-01

    Using a continuum Dirac theory, we study the density and spin response of zigzag edge terminated graphene ribbons subjected to edge potentials and Zeeman fields. Our analytical calculations of the density and spin responses of the closed system (fixed particle number) to the static edge fields, show a highly nonlinear Weber-Fechner type behavior where the response depends logarithmically on the edge potential. The dependence of the response on the size of the system (e.g.~width of a nanoribbon) is also uncovered. Zigzag edge graphene nanoribbons, therefore, provide a realization of response of organs such as the eye and ear that obey Weber-Fechner law. We validate our analytical results with tight binding calculations. These results are crucial in understanding important effects of electron-electron interactions in graphene nanoribbons such as edge magnetism etc., and also suggest possibilities for device applications of graphene nanoribbons. Work supported by DST, India through MONAMI and Ramanujan grants.

  17. Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Chen, Xiaolong; Ye, Weiguang

    High-quality BN-Graphene-BN nanoribbon capacitors with double side-gates of graphene have been experimentally realized. The double side-gates can effectively modulate the electronic properties of graphene nanoribbon capacitors. By applying anti-symmetric side-gate voltages, we observed significant upward shifting and flattening of the V-shaped capacitance curve near the charge neutrality point. Symmetric side-gate voltages, however, only resulted in tilted upward shifting along the opposite direction of applied gate voltages. These modulation effects followed the behavior of graphene nanoribbons predicted theoretically for metallic side-gate modulation. The negative quantum capacitance phenomenon predicted by numerical simulations for graphene nanoribbons modulated by graphene side-gates was not observed,more » possibly due to the weakened interactions between the graphene nanoribbon and side-gate electrodes caused by the Ga{sup +} beam etching process.« less

  18. Improving performance of armchair graphene nanoribbon field effect transistors via boron nitride doping

    NASA Astrophysics Data System (ADS)

    Goharrizi, A. Yazdanpanah; Sanaeepur, M.; Sharifi, M. J.

    2015-09-01

    Device performance of 10 nm length armchair graphene nanoribbon field effect transistors with 1.5 nm and 4 nm width (13 and 33 atoms in width respectively) are compared in terms of Ion /Ioff , trans-conductance, and sub-threshold swing. While narrow devices suffer from edge roughness wider devices are subject to more substrate surface roughness and reduced bandgap. Boron Nitride doping is employed to compensate reduced bandgap in wider devices. Simultaneous effects of edge and substrate surface roughness are considered. Results show that in the presence of both the edge and substrate surface roughness the 4 nm wide device with boron nitride doping shows improved performance with respect to the 1.5 nm one (both of which incorporate the same bandgap AGNR as channel material). Electronic simulations are performed via NEGF method along with tight-binding Hamiltonian. Edge and surface roughness are created by means of one and two dimensional auto correlation functions respectively. Electronic characteristics are averaged over a large number of devices due to statistic nature of both the edge and surface roughness.

  19. Effect of ribbon width on electrical transport properties of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Bang, Kyuhyun; Chee, Sang-Soo; Kim, Kangmi; Son, Myungwoo; Jang, Hanbyeol; Lee, Byoung Hun; Baik, Kwang Hyeon; Myoung, Jae-Min; Ham, Moon-Ho

    2018-03-01

    There has been growing interest in developing nanoelectronic devices based on graphene because of its superior electrical properties. In particular, patterning graphene into a nanoribbon can open a bandgap that can be tuned by changing the ribbon width, imparting semiconducting properties. In this study, we report the effect of ribbon width on electrical transport properties of graphene nanoribbons (GNRs). Monolayer graphene sheets and Si nanowires (NWs) were prepared by chemical vapor deposition and a combination of nanosphere lithography and metal-assisted electroless etching from a Si wafer, respectively. Back-gated GNR field-effect transistors were fabricated on a heavily p-doped Si substrate coated with a 300 nm-thick SiO2 layer, by O2 reactive ion etching of graphene sheets using etch masks based on Si NWs aligned on the graphene between the two electrodes by a dielectrophoresis method. This resulted in GNRs with various widths in a highly controllable manner, where the on/off current ratio was inversely proportional to ribbon width. The field-effect mobility decreased with decreasing GNR widths due to carrier scattering at the GNR edges. These results demonstrate the formation of a bandgap in GNRs due to enhanced carrier confinement in the transverse direction and edge effects when the GNR width is reduced.

  20. A numerical study of the nanoribbon field-effect transistors under the ballistic and dissipative transport

    NASA Astrophysics Data System (ADS)

    Ghoreishi, Seyed Saleh; Yousefi, Reza; Saghafi, Kamyar; Aderang, Habib

    2017-08-01

    In this article, a detailed performance comparison is made between ballistic and dissipative quantum transport of metal oxide semicondutor-like graphene nanoribbon field-effect transistor, in ON and OFF-state conditions. By the self-consistent mode-space non-equilibrium Green's function approach, inter- and intraband scattering is accounted and the role of acoustic and optical phonon scattering on the performance of the devices is evaluated. We found that in this structure the dominant mechanism of scattering changes according to the ranges of voltage bias. Under large biasing conditions, the influence of optical phonon scattering becomes important. Also, the ambipolar and OFF-current are impressed by the phonon-assisted band-to-band tunneling and increased considerably compared to the ballistic conditions, although sub-threshold swing degrades due to optical phonon scattering.

  1. Effect of room temperature lattice vibration on the electron transport in graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Liu, Yue-Yang; Li, Bo-Lin; Chen, Shi-Zhang; Jiang, Xiangwei; Chen, Ke-Qiu

    2017-09-01

    We observe directly the lattice vibration and its multifold effect on electron transport in zigzag graphene nanoribbons in simulation by utilizing an efficient combined method. The results show that the electron transport fluctuates greatly due to the incessant lattice vibration of the nanoribbons. More interestingly, the lattice vibration behaves like a double-edged sword that it boosts the conductance of symmetric zigzag nanoribbons (containing an even number of zigzag chains along the width direction) while weakens the conductance of asymmetric nanoribbons. As a result, the reported large disparity between the conductances of the two kinds of nanoribbons at 0 K is in fact much smaller at room temperature (300 K). We also find that the spin filter effect that exists in perfect two-dimensional symmetric zigzag graphene nanoribbons is destroyed to some extent by lattice vibrations. Since lattice vibrations or phonons are usually inevitable in experiments, the research is very meaningful for revealing the important role of lattice vibrations play in the electron transport properties of two-dimensional materials and guiding the application of ZGNRs in reality.

  2. Grassy Silica Nanoribbons and Strong Blue Luminescence

    NASA Astrophysics Data System (ADS)

    Wang, Shengping; Xie, Shuang; Huang, Guowei; Guo, Hongxuan; Cho, Yujin; Chen, Jun; Fujita, Daisuke; Xu, Mingsheng

    2016-09-01

    Silicon dioxide (SiO2) is one of the key materials in many modern technological applications such as in metal oxide semiconductor transistors, photovoltaic solar cells, pollution removal, and biomedicine. We report the accidental discovery of free-standing grassy silica nanoribbons directly grown on SiO2/Si platform which is commonly used for field-effect transistors fabrication without other precursor. We investigate the formation mechanism of this novel silica nanostructure that has not been previously documented. The silica nanoribbons are flexible and can be manipulated by electron-beam. The silica nanoribbons exhibit strong blue emission at about 467 nm, together with UV and red emissions as investigated by cathodoluminescence technique. The origins of the luminescence are attributed to various defects in the silica nanoribbons; and the intensity change of the blue emission and green emission at about 550 nm is discussed in the frame of the defect density. Our study may lead to rational design of the new silica-based materials for a wide range of applications.

  3. Double gate graphene nanoribbon field effect transistor with single halo pocket in channel region

    NASA Astrophysics Data System (ADS)

    Naderi, Ali

    2016-01-01

    A new structure for graphene nanoribbon field-effect transistors (GNRFETs) is proposed and investigated using quantum simulation with a nonequilibrium Green's function (NEGF) method. Tunneling leakage current and ambipolar conduction are known effects for MOSFET-like GNRFETs. To minimize these issues a novel structure with a simple change of the GNRFETs by using single halo pocket in the intrinsic channel region, "Single Halo GNRFET (SH-GNRFET)", is proposed. An appropriate halo pocket at source side of channel is used to modify potential distribution of the gate region and weaken band to band tunneling (BTBT). In devices with materials like Si in channel region, doping type of halo and source/drain regions are different. But, here, due to the smaller bandgap of graphene, the mentioned doping types should be the same to reduce BTBT. Simulations have shown that in comparison with conventional GNRFET (C-GNRFET), an SH-GNRFET with appropriately halo doping results in a larger ON current (Ion), smaller OFF current (Ioff), a larger ON-OFF current ratio (Ion/Ioff), superior ambipolar characteristics, a reduced power-delay product and lower delay time.

  4. Nonlinear optical response in narrow graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Karimi, Farhad; Knezevic, Irena

    We present an iterative method to calculate the nonlinear optical response of armchair graphene nanoribbons (aGNRs) and zigzag graphene nanoribbons (zGNRs) while including the effects of dissipation. In contrast to methods that calculate the nonlinear response in the ballistic (dissipation-free) regime, here we obtain the nonlinear response of an electronic system to an external electromagnetic field while interacting with a dissipative environment (to second order). We use a self-consistent-field approach within a Markovian master-equation formalism (SCF-MMEF) coupled with full-wave electromagnetic equations, and we solve the master equation iteratively to obtain the higher-order response functions. We employ the SCF-MMEF to calculate the nonlinear conductance and susceptibility, as well as to calculate the dependence of the plasmon dispersion and plasmon propagation length on the intensity of the electromagnetic field in GNRs. The electron scattering mechanisms included in this work are scattering with intrinsic phonons, ionized impurities, surface optical phonons, and line-edge roughness. Unlike in wide GNRs, where ionized-impurity scattering dominates dissipation, in ultra-narrow nanoribbons on polar substrates optical-phonon scattering and ionized-impurity scattering are equally prominent. Support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0008712.

  5. WSe2 nanoribbons: new high-performance thermoelectric materials.

    PubMed

    Chen, Kai-Xuan; Luo, Zhi-Yong; Mo, Dong-Chuan; Lyu, Shu-Shen

    2016-06-28

    In this work, for the first time, we systematically investigate the ballistic transport properties of WSe2 nanoribbons using first-principles methods. Armchair nanoribbons with narrow ribbon width are mostly semiconductive but the zigzag nanoribbons are metallic. Surprisingly, an enhancement in thermoelectric performance is discovered moving from monolayers to nanoribbons, especially armchair ones. The maximum room-temperature thermoelectric figure of merit of 2.2 for an armchair nanoribbon is discovered. This may be contributed to by the effects of the disordered edges, owing to the existence of dangling bonds at the ribbon edge. H-passivation has turned out to be an effective way to stabilize the edge atoms, which enhances the thermodynamic stability of the nanoribbons. In addition, after H-passivation, all of the armchair nanoribbons exhibit semiconductive properties with similar band gaps (∼1.3 eV). Our work provides instructional theoretical evidence for the application of armchair WSe2 nanoribbons as promising thermoelectric materials. The enhancement mechanism of the disordered edge effect can also encourage further exploration to achieve outstanding thermoelectric materials.

  6. Magneto-electronic properties of graphene nanoribbons in the spatially modulated electric field

    NASA Astrophysics Data System (ADS)

    Chen, S. C.; Wang, T. S.; Lee, C. H.; Lin, M. F.

    2008-09-01

    The Peierls tight-binding model with the nearest-neighbor interactions is used to calculate the magneto-electronic structure of graphene nanoribbons under a spatially modulated electric field along the y-axis. A uniform perpendicular magnetic field could make energy dispersions change into the quasi-Landau levels. Such levels are composed of the dispersionless and parabolic energy bands. A spatially modulated electric field would further induce a lot of oscillating parabolic bands with several band-edge states. It drastically modifies energy dispersions, alters subband spacings, destroys symmetry of energy spectrum about k=0, and changes features of band-edge states (number and energy). The above-mentioned magneto-electronic structures are directly reflected in density of states (DOS). The modulation effect changes shape, number, positions, and intensities of peaks in DOS. The predicted result could be tested by the optical measurements.

  7. Field effect transistors based on phosphorene nanoribbon with selective edge-adsorption: A first-principles study

    NASA Astrophysics Data System (ADS)

    Hu, Mengli; Yang, Zhixiong; Zhou, Wenzhe; Li, Aolin; Pan, Jiangling; Ouyang, Fangping

    2018-04-01

    By using density functional theory (DFT) and nonequilibrium Green's function (NEGF), field effect transistor (FET) based on zigzag shaped phosphorene nanoribbons (ZPNR) are investigated. The FETs are constructed with bare-edged ZPNRs as electrodes and H, Cl or OH adsorbed ZPNRs as channel. It is found FETs with the three kinds of channel show similar transport properties. The FET is p-type with a maximum current on/off ratio of 104 and a minimum off-current of 1 nA. The working mode of FETs is dependent on the parity of channel length. It can be either enhancement mode or depletion mode and the off-state current shows an even-odd oscillation. The current oscillations are interpreted with density of states (DOS) analysis and methods of evolution operator and tight-binding Hamiltonian. Operating mechanism of the designed FETs is also presented with projected local density of states and band diagrams.

  8. Strain engineering of graphene nanoribbons: pseudomagnetic versus external magnetic fields

    NASA Astrophysics Data System (ADS)

    Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis

    2017-05-01

    Bandgap opening due to strain engineering is a key architect for making graphene's optoelectronic, straintronic, and spintronic devices. We study the bandgap opening due to strain induced ripple waves and investigate the interplay between pseudomagnetic fields and externally applied magnetic fields on the band structures and spin relaxation in graphene nanoribbons (GNRs). We show that electron-hole bands of GNRs are highly influenced (i.e. level crossing of the bands are possible) by coupling two combined effects: pseudomagnetic fields (PMF) originating from strain tensor and external magnetic fields. In particular, we show that the tuning of the spin-splitting band extends to large externally applied magnetic fields with increasing values of pseudomagnetic fields. Level crossings of the bands in strained GNRs can also be observed due to the interplay between pseudomagnetic fields and externally applied magnetic fields. We also investigate the influence of this interplay on the electromagnetic field mediated spin relaxation mechanism in GNRs. In particular, we show that the spin hot spot can be observed at approximately B = 65 T (the externally applied magnetic field) and B0 = 53 T (the magnitude of induced pseudomagnetic field due to ripple waves) which may not be considered as an ideal location for the design of straintronic devices. Our analysis might be used for tuning the bandgaps in strained GNRs and utilized to design the optoelectronic devices for straintronic applications.

  9. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications.

    PubMed

    Rahmani, Meisam; Ahmadi, Mohammad Taghi; Abadi, Hediyeh Karimi Feiz; Saeidmanesh, Mehdi; Akbari, Elnaz; Ismail, Razali

    2013-01-30

    Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current-voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption.

  10. Top-down nanofabrication of silicon nanoribbon field effect transistor (Si-NR FET) for carcinoembryonic antigen detection.

    PubMed

    Bao, Zengtao; Sun, Jialin; Zhao, Xiaoqian; Li, Zengyao; Cui, Songkui; Meng, Qingyang; Zhang, Ye; Wang, Tong; Jiang, Yanfeng

    2017-01-01

    Sensitive and quantitative detection of tumor markers is highly required in the clinic for cancer diagnosis and consequent treatment. A field-effect transistor-based (FET-based) nanobiosensor emerges with characteristics of being label-free, real-time, having high sensitivity, and providing direct electrical readout for detection of biomarkers. In this paper, a top-down approach is proposed and implemented to fulfill a novel silicon nano-ribbon FET, which acts as biomarker sensor for future clinical application. Compared with the bottom-up approach, a top-down fabrication approach can confine width and length of the silicon FET precisely to control its electrical properties. The silicon nanoribbon (Si-NR) transistor is fabricated on a Silicon-on-Insulator (SOI) substrate by a top-down approach with complementary metal oxide semiconductor (CMOS)-compatible technology. After the preparation, the surface of Si-NR is functionalized with 3-aminopropyltriethoxysilane (APTES). Glutaraldehyde is utilized to bind the amino terminals of APTES and antibody on the surface. Finally, a microfluidic channel is integrated on the top of the device, acting as a flowing channel for the carcinoembryonic antigen (CEA) solution. The Si-NR FET is 120 nm in width and 25 nm in height, with ambipolar electrical characteristics. A logarithmic relationship between the changing ratio of the current and the CEA concentration is measured in the range of 0.1-100 ng/mL. The sensitivity of detection is measured as 10 pg/mL. The top-down fabricated biochip shows feasibility in direct detecting of CEA with the benefits of real-time, low cost, and high sensitivity as a promising biosensor for tumor early diagnosis.

  11. Tunable resonances due to vacancies in graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Bahamon, D. A.; Pereira, A. L. C.; Schulz, P. A.

    2010-10-01

    The coherent electron transport along zigzag and metallic armchair graphene nanoribbons in the presence of one or two vacancies is investigated. Having in mind atomic scale tunability of the conductance fingerprints, the primary focus is on the effect of the distance to the edges and intervacancies spacing. An involved interplay of vacancies sublattice location and nanoribbon edge termination, together with the spacing parameters lead to a wide conductance resonance line-shape modification. Turning on a magnetic field introduces a new length scale that unveils counterintuitive aspects of the interplay between purely geometric aspects of the system and the underlying atomic scale nature of graphene.

  12. Graphene nanoribbon field-effect transistors fabricated by etchant-free transfer from Au(788)

    NASA Astrophysics Data System (ADS)

    Ohtomo, Manabu; Sekine, Yoshiaki; Hibino, Hiroki; Yamamoto, Hideki

    2018-01-01

    We report etching-free and iodine-free transfer of highly aligned array of armchair-edge graphene nanoribbons (ACGNRs) and their field-effect transistor (FET) characteristics. They were prepared by on-surface polymerization on Au(788) templates. The ACGNRs were mechanically delaminated and transferred onto insulating substrates with the aid of a nano-porous support layer composed of hydrogen silsesquioxane (HSQ). The key process in the mechanical delamination is the intercalation of octanethiol self-assembled monolayers (SAMs), which penetrate the HSQ layer and intercalate between the ACGNRs and Au(788). After the transfer, the octanethiol SAMs were removed with Piranha solution, enabling the reuse of the Au single crystals. The FETs fabricated with the transferred ACGNR array showed ambipolar behavior when the channel length was as long as 60 nm. Quasi-one-dimensional conductivity was observed, which implies a good alignment of GNRs after the transfer. In contrast, short-channel ACGNR FETs (channel length ˜20 nm) suffer from a geometry-dependent short-channel effect. This effect is more severe in the FETs with ACGNRs parallel to the channel, which is an ideal geometry, than in ones perpendicular to the channel. Since the ID-VD curve is well fitted by the power-law model, the short-channel effect likely stems from the space-charge limited current effect, while the wide charge-transfer region in the GNR channel can be another possible cause for the short-channel effect. These results provide us with important insights into the designing short-channel GNR-FETs with improved performance.

  13. Controllable spin-charge transport in strained graphene nanoribbon devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diniz, Ginetom S., E-mail: ginetom@gmail.com; Guassi, Marcos R.; Qu, Fanyao

    2014-09-21

    We theoretically investigate the spin-charge transport in two-terminal device of graphene nanoribbons in the presence of a uniform uniaxial strain, spin-orbit coupling, exchange field, and smooth staggered potential. We show that the direction of applied strain can efficiently tune strain-strength induced oscillation of band-gap of armchair graphene nanoribbon (AGNR). It is also found that electronic conductance in both AGNR and zigzag graphene nanoribbon (ZGNR) oscillates with Rashba spin-orbit coupling akin to the Datta-Das field effect transistor. Two distinct strain response regimes of electronic conductance as function of spin-orbit couplings magnitude are found. In the regime of small strain, conductance ofmore » ZGNR presents stronger strain dependence along the longitudinal direction of strain. Whereas for high values of strain shows larger effect for the transversal direction. Furthermore, the local density of states shows that depending on the smoothness of the staggered potential, the edge states of AGNR can either emerge or be suppressed. These emerging states can be determined experimentally by either spatially scanning tunneling microscope or by scanning tunneling spectroscopy. Our findings open up new paradigms of manipulation and control of strained graphene based nanostructure for application on novel topological quantum devices.« less

  14. Nanoribbon field-effect transistors as direct and label-free sensors of enzyme-substrate interactions

    NASA Astrophysics Data System (ADS)

    Mu, Luye; Droujinine, Ilia; Rajan, Nitin; Sawtelle, Sonya; Reed, Mark

    2015-03-01

    The ability to measure enzyme-substrate interactions is essential in areas such as diagnostics, treatment, and biochemical screens. Many enzymatic reactions alter the pH of its environment, suggesting of a simple and direct method for detection. We show the ability of Al2O3-coated Si nanoribbon field-effect transistor biosensors to sensitively measure various aspects of enzyme-substrate interactions through measuring the pH. Urea in phosphate buffered saline (PBS) and penicillinase in PBS and urine were measured to limits of <200 μM and 0.02 units/mL, respectively. We also show the ability to extract accurate kinetics from the interaction of acetylcholine and its esterase. Prior work on FET sensors has been limited by the use of surface functionalization, which not only alters enzyme-substrate affinity, but also makes enzyme activity quantification difficult. Our method involves direct detection of reactions in solution without requiring alteration to the reactants, allowing us to obtain repeatable results and sensitive limits of detection. This method is a simple, inexpensive, and effective platform for detection of enzymatic reactions, and can be readily generalized to many unrelated classes of reactants. This work was supported in part by U.S. Army Research Office and Air Force Research Laboratory.

  15. An efficient mechanism for enhancing the thermoelectricity of nanoribbons by blocking phonon transport in 2D materials.

    PubMed

    Liu, Yue-Yang; Zeng, Yu-Jia; Jia, Pin-Zhen; Cao, Xuan-Hao; Jiang, Xiangwei; Chen, Ke-Qiu

    2018-07-11

    Inspired by the novel mechanism of reducing thermal conductivity by local phonon resonance instead of by inducing structural defects, we investigate the effect of side branching on the thermoelectric properties of [Formula: see text] nanoribbons, and prove that side branching is a highly efficient mechanism for enhancing the thermoelectricity of different kinds of nanoribbons. For both armchair and zigzag [Formula: see text] nanoribbons, the side branches result in not only significant blocking of phonon transport but also notable increase of the Seebeck coefficient. Consequently, the thermoelectric figure of merit of the armchair [Formula: see text] nanoribbon is boosted from 0.72 to as high as 1.93, and the originally non-thermoelectric metallic zigzag [Formula: see text] nanoribbon is turned into a thermoelectric material due to the appearance of the band gap induced by the side branches. These results mean that the mechanism of branching is not only very efficient, but also takes effect regardless of the original properties of the nanoribbons, and thus will hold great promise for its application in the thermoelectric field.

  16. Electronic transport in disordered MoS2 nanoribbons

    NASA Astrophysics Data System (ADS)

    Ridolfi, Emilia; Lima, Leandro R. F.; Mucciolo, Eduardo R.; Lewenkopf, Caio H.

    2017-01-01

    We study the electronic structure and transport properties of zigzag and armchair monolayer molybdenum disulfide nanoribbons using an 11-band tight-binding model that accurately reproduces the material's bulk band structure near the band gap. We study the electronic properties of pristine zigzag and armchair nanoribbons, paying particular attention to the edges states that appear within the MoS2 bulk gap. By analyzing both their orbital composition and their local density of states, we find that in zigzag-terminated nanoribbons these states can be localized at a single edge for certain energies independent of the nanoribbon width. We also study the effects of disorder in these systems using the recursive Green's function technique. We show that for the zigzag nanoribbons, the conductance due to the edge states is strongly suppressed by short-range disorder such as vacancies. In contrast, the local density of states still shows edge localization. We also show that long-range disorder has a small effect on the transport properties of nanoribbons within the bulk gap energy window.

  17. Pseudospin Electronics in Phosphorene Nanoribbons

    DOE PAGES

    Soleimanikahnoj, S.; Knezevic, I.

    2017-12-19

    Zigzag phosphorene nanoribbons are metallic owing to the edge states, whose energies are inside the gap and far from the bulk bands. We show that -- through electrical manipulation of edge states -- electron propagation can be restricted to one of the ribbon edges or, in case of bilayer phosphorene nanoribbons, to one of the layers. This finding implies that edge and layer can be regarded as tunable equivalents of the spin-one-half degree of freedom, i.e., the pseudospin. In both layer- and edge-pseudospin schemes, we propose and characterize a pseudospin field-effect transistor, which can generate pseudospin-polarized current. Also, we proposemore » edge- and layer-pseudospin valves that operate analogously to conventional spin valves. The performance of valves in each pseudospin scheme is benchmarked by the pseudomagnetoresistance (PMR) ratio. The edge-pseudospin valve shows a nearly perfect PMR, with remarkable robustness against device parameters and disorder. Furthermore, these results may initiate new developments in pseudospin electronics.« less

  18. Silicene nanoribbon as a new DNA sequencing device

    NASA Astrophysics Data System (ADS)

    Alesheikh, Sara; Shahtahmassebi, Nasser; Roknabadi, Mahmood Rezaee; Pilevar Shahri, Raheleh

    2018-02-01

    The importance of applying DNA sequencing in different fields, results in looking for fast and cheap methods. Nanotechnology helps this development by introducing nanostructures used for DNA sequencing. In this work we study the interaction between zigzag silicene nanoribbon and DNA nucleobases using DFT and non equilibrium Green's function approach, to investigate the possibility of using zigzag silicene nanoribbons as a biosensor for DNA sequencing.

  19. Enhanced field emission properties of tilted graphene nanoribbons on aggregated TiO{sub 2} nanotube arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, Shang-Chao, E-mail: schung99@gmail.com; Chen, Yu-Jyun

    2016-07-15

    Highlights: • Graphene nanoribbons (GNBs) slanted on aggregate TiO{sub 2} nanotube (A-TNTs) as field-emitters. • Turn-on electric field and field enhancement factor β are dependent on the substrate morphology. • Various quantities of GNRs are deposited on top of A-TNTs (GNRs/A-TNTs) with different morphologies. • With an increase of GNBs compositions, the specimens' turn-on electric field is reduced to 2.8 V/μm. • The field enhancement factor increased rapidly to about 1964 with the addition of GNRs. - Abstract: Graphene nanoribbons (GNRs) slanted on aggregate TiO{sub 2} nanotube arrays (A-TNTs) with various compositions as field-emitters are reported. The morphology, crystalline structure,more » and composition of the as-obtained specimens were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Raman spectrometry. The dependence of the turn-on electric field and the field enhancement factor β on substrate morphology was studied. An increase of GNRs reduces the specimens’ turn-on electric field to 2.8 V/μm and the field enhancement factor increased rapidly to about 1964 with the addition of GNRs. Results show a strong dependence of the field emission on GNR composition aligned with the gradient on the top of the A-TNT substrate. Enhanced FE properties of the modified TNTs can be mainly attributed to their improved electrical properties and rougher surface morphology.« less

  20. Spin Seebeck effect and thermal colossal magnetoresistance in Christmas-tree silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Gao, Xiu-Jin; Zhao, Peng; Chen, Gang

    2018-05-01

    Based on the density functional theory and nonequilibrium Green's function method, we investigate the electronic structures and thermal spin transport properties of Christmas-tree silicene nanoribbons (CSiNRs). The results show that CSiNRs have ferromagnetic ground state with high Curie temperature far above the room temperature. Obvious spin Seebeck effect with spin-up and spin-down currents flowing in opposite directions by a temperature gradient can be observed in these systems. Furthermore, a thermal colossal magnetoresistance up to 109% can be realized by tuning the external magnetic field. The results show that CSiNRs hold great potential in designing spin caloritronic devices.

  1. Electronic structure and electric polarity of edge-functionalized graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Taira, Remi; Yamanaka, Ayaka; Okada, Susumu

    2017-08-01

    On the basis of the density functional theory combined with the effective screening medium method, we studied the electronic structure of graphene nanoribbons with zigzag edges, which are terminated by functional groups. The work function of the nanoribbons is sensitive to the functional groups. The edge state inherent in the zigzag edges is robust against edge functionalization. OH termination causes the injection of electrons into the nearly free electron states situated alongside the nanoribbons, resulting in the formation of free electron channels outside the nanoribbons. We also demonstrated that the polarity of zigzag graphene nanoribbons is controllable by the asymmetrical functionalization of their edges.

  2. Improving performance of Si/CdS micro-/nanoribbon p-n heterojunction light emitting diodes by trenched structure

    NASA Astrophysics Data System (ADS)

    Huang, Shiyuan; Wu, Yuanpeng; Ma, Xiangyang; Yang, Zongyin; Liu, Xu; Yang, Qing

    2018-05-01

    Realizing high performance silicon based light sources has been an unremitting pursuit for researchers. In this letter, we propose a simple structure to enhance electroluminescence emission and reduce the threshold of injected current of silicon/CdS micro-/nanoribbon p-n heterojunction visible light emitting diodes, by fabricating trenched structure on silicon substrate to mount CdS micro-/nanoribbon. A series of experiments and simulation analysis favors the rationality and validity of our mounting design. After mounting the CdS micro-/nanoribbon, the optical field confinement increases, and absorption and losses from high refractive silicon substrate are effectively reduced. Meanwhile the sharp change of silicon substrate near heterojunction also facilitates the balance between electron current and hole current, which substantially conduces to the stable amplification of electroluminescence emission in CdS micro-/nanoribbon.

  3. Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Shi, Jun-jie; Zhang, Min; Ding, Yi-min; Wang, Hui; Cen, Yu-lang; Guo, Wen-hui; Pan, Shu-hang; Zhu, Yao-hui

    2018-05-01

    Quite recently, the two-dimensional (2D) InSe nanosheet has become a hot material with great promise for advanced functional nano-devices. In this work, for the first time, we perform first-principles calculations on the structural, electronic, magnetic and transport properties of 1D InSe nanoribbons with/without hydrogen or halogen saturation. We find that armchair ribbons, with various edges and distortions, are all nonmagnetic semiconductors, with a direct bandgap of 1.3 (1.4) eV for bare (H-saturated) ribbons, and have the same high electron mobility of about 103 cm2V‑1s‑1 as the 2D InSe nanosheet. Zigzag InSe nanoribbons exhibit metallic behavior and diverse intrinsic ferromagnetic properties, with the magnetic moment of 0.5–0.7 μ B per unit cell, especially for their single-edge spin polarization. The edge spin orientation, mainly dominated by the unpaired electrons of the edge atoms, depends sensitively on the edge chirality. Hydrogen or halogen saturation can effectively recover the structural distortion, and modulate the electronic and magnetic properties. The binding energy calculations show that the stability of InSe nanoribbons is analogous to that of graphene and better than in 2D InSe nanosheets. These InSe nanoribbons, with novel electronic and magnetic properties, are thus very promising for use in electronic, spintronic and magnetoresistive nano-devices.

  4. Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect.

    PubMed

    Wu, Meng; Shi, Jun-Jie; Zhang, Min; Ding, Yi-Min; Wang, Hui; Cen, Yu-Lang; Guo, Wen-Hui; Pan, Shu-Hang; Zhu, Yao-Hui

    2018-05-18

    Quite recently, the two-dimensional (2D) InSe nanosheet has become a hot material with great promise for advanced functional nano-devices. In this work, for the first time, we perform first-principles calculations on the structural, electronic, magnetic and transport properties of 1D InSe nanoribbons with/without hydrogen or halogen saturation. We find that armchair ribbons, with various edges and distortions, are all nonmagnetic semiconductors, with a direct bandgap of 1.3 (1.4) eV for bare (H-saturated) ribbons, and have the same high electron mobility of about 10 3 cm 2 V -1 s -1 as the 2D InSe nanosheet. Zigzag InSe nanoribbons exhibit metallic behavior and diverse intrinsic ferromagnetic properties, with the magnetic moment of 0.5-0.7 μ B per unit cell, especially for their single-edge spin polarization. The edge spin orientation, mainly dominated by the unpaired electrons of the edge atoms, depends sensitively on the edge chirality. Hydrogen or halogen saturation can effectively recover the structural distortion, and modulate the electronic and magnetic properties. The binding energy calculations show that the stability of InSe nanoribbons is analogous to that of graphene and better than in 2D InSe nanosheets. These InSe nanoribbons, with novel electronic and magnetic properties, are thus very promising for use in electronic, spintronic and magnetoresistive nano-devices.

  5. Graphene FETs Based on High Resolution Nanoribbons for HF Low Power Applications

    NASA Astrophysics Data System (ADS)

    Mele, David; Mehdhbi, Sarah; Fadil, Dalal; Wei, Wei; Ouerghi, Abdelkarim; Lepilliet, Sylvie; Happy, Henri; Pallecchi, Emiliano

    2018-03-01

    In this paper we present high frequency field effect transistors based on graphene nanoribbons arrays (GNRFETs). The nanoribbons serve as a channel for the transistors and are fabricated with a process based on e-beam lithography and dry etching of high mobility hydrogen intercalated epitaxial graphene. The widths of the nanoribbons vary from 50 to 20 nm, less than half those measured in previous reports for GNRFETs. Hall measurements reveal that the devices are p-doped, with mobility on the order of 2300 cm2/Vs. From DC characteristics, we find that the maximum ratio IMAX/IMIN is 5 obtained at 50 nm ribbons width. The IV characteristics of the GNRFETs are slightly non-linear at high bias without a full saturation. Therefore, despite the aggressive scaling of the graphene nanoribbon width, a bandgap is still not observed in our measurements. The high frequency performances of our GNRFETs are already significant at low bias. At 300 mV drain source voltage, the highest intrinsic (extrinsic) cut-off frequency ft reaches 82 (18) GHz and the extrinsic maximum oscillation frequency fmax is 20 GHz, which is promising for low power applications.

  6. Piezo-antiferromagnetic effect of sawtooth-like graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shangqian; Lu, Yan; Zhang, Yuchun

    2014-05-19

    A type of sawtooth-like graphene nanoribbon (SGNR) with piezo-antiferromagnetic effect is studied numerically. The ground state of the studied SGNR changes from nonmagnetic state to antiferromagnetic state with uniaxial strain. The changes of the spin-charge distributions during the stretching are investigated. The Hubbard model reveals that the hopping integrals between the π-orbitals of the carbon atoms are responsible to the piezo-antiferromagnetic effect. The study sheds light on the application of graphene-based structures to nanosensors and spintronic devices.

  7. Scalable Patterning of MoS2 Nanoribbons by Micromolding in Capillaries.

    PubMed

    Hung, Yu-Han; Lu, Ang-Yu; Chang, Yung-Huang; Huang, Jing-Kai; Chang, Jeng-Kuei; Li, Lain-Jong; Su, Ching-Yuan

    2016-08-17

    In this study, we report a facile approach to prepare dense arrays of MoS2 nanoribbons by combining procedures of micromolding in capillaries (MIMIC) and thermolysis of thiosalts ((NH4)2MoS4) as the printing ink. The obtained MoS2 nanoribbons had a thickness reaching as low as 3.9 nm, a width ranging from 157 to 465 nm, and a length up to 2 cm. MoS2 nanoribbons with an extremely high aspect ratio (length/width) of ∼7.4 × 10(8) were achieved. The MoS2 pattern can be printed on versatile substrates, such as SiO2/Si, sapphire, Au film, FTO/glass, and graphene-coated glass. The degree of crystallinity of the as-prepared MoS2 was discovered to be adjustable by varying the temperature through postannealing. The high-temperature thermolysis (1000 °C) results in high-quality conductive samples, and field-effect transistors based on the patterned MoS2 nanoribbons were demonstrated and characterized, where the carrier mobility was comparable to that of thin-film MoS2. In contrast, the low-temperature-treated samples (170 °C) result in a unique nanocrystalline MoSx structure (x ≈ 2.5), where the abundant and exposed edge sites were obtained from highly dense arrays of nanoribbon structures by this MIMIC patterning method. The patterned MoSx was revealed to have superior electrocatalytic efficiency (an overpotential of ∼211 mV at 10 mA/cm(2) and a Tafel slope of 43 mV/dec) in the hydrogen evolution reaction (HER) when compared to the thin-film MoS2. The report introduces a new concept for rapidly fabricating cost-effective and high-density MoS2/MoSx nanostructures on versatile substrates, which may pave the way for potential applications in nanoelectronics/optoelectronics and frontier energy materials.

  8. Symmetric scrolled packings of multilayered carbon nanoribbons

    NASA Astrophysics Data System (ADS)

    Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.

    2016-06-01

    Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.

  9. Acoustoelectric photoresponse of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Poole, T.; Nash, G. R.

    2018-04-01

    The acoustoelectric current in graphene nanoribbons, with widths ranging between 350 nm and 600 nm, has been investigated as a function of illumination. For all nanoribbon widths, the acoustoelectric current was observed to decrease on illumination, in contrast to the increase in acoustoelectric current measured in unpatterned graphene sheet devices. This is thought to be due to the higher initial conductivities of the nanoribbons compared to unpatterned devices.

  10. Graphene nanoribbons production from flat carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melo, W. S.; Guerini, S.; Diniz, E. M., E-mail: eduardo.diniz@ufma.br

    2015-11-14

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that bymore » hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons.« less

  11. Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron

    NASA Astrophysics Data System (ADS)

    Huang, Hai; Zheng, Anmin; Gao, Guoying; Yao, Kailun

    2018-03-01

    Ab initio calculations based on density functional theory and non-equilibrium Green's function are performed to investigate the thermal spin transport properties of single-hydrogen-saturated zigzag graphene nanoribbon co-doped with non-metallic Nitrogen and Boron in parallel and anti-parallel spin configurations. The results show that the doped graphene nanoribbon is a full half-metal. The two-probe system based on the doped graphene nanoribbon exhibits various excellent spin transport properties, including the spin-filtering effect, the spin Seebeck effect, the single-spin negative differential thermal resistance effect and the sign-reversible giant magnetoresistance feature. Excellently, the spin-filtering efficiency can reach nearly 100% in the parallel configuration and the magnetoresistance ratio can be up to -1.5 × 1010% by modulating the electrode temperature and temperature gradient. Our findings indicate that the metal-free doped graphene nanoribbon would be a promising candidate for spin caloritronic applications.

  12. Width-Tuned Magnetic Order Oscillation on Zigzag Edges of Honeycomb Nanoribbons.

    PubMed

    Chen, Wen-Chao; Zhou, Yuan; Yu, Shun-Li; Yin, Wei-Guo; Gong, Chang-De

    2017-07-12

    Quantum confinement and interference often generate exotic properties in nanostructures. One recent highlight is the experimental indication of a magnetic phase transition in zigzag-edged graphene nanoribbons at the critical ribbon width of about 7 nm [ Magda , G. Z. et al. Nature 2014 , 514 , 608 ]. Here we show theoretically that with further increase in the ribbon width, the magnetic correlation of the two edges can exhibit an intriguing oscillatory behavior between antiferromagnetic and ferromagnetic, driven by acquiring the positive coherence between the two edges to lower the free energy. The oscillation effect is readily tunable in applied magnetic fields. These novel properties suggest new experimental manifestation of the edge magnetic orders in graphene nanoribbons and enhance the hopes of graphene-like spintronic nanodevices functioning at room temperature.

  13. Crystal Growth of Graphene Films and Graphene Nanoribbons via Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Jacobberger, Robert Michael

    Graphene is a two-dimensional carbon allotrope that has exceptional properties, including high charge carrier mobility, thermal conductivity, mechanical strength, and flexibility. Graphene is a semimetal, prohibiting its use in semiconductor applications in which a bandgap is required. However, graphene can be transformed from a semimetal into a semiconductor if it is confined into one-dimensional nanoribbons narrower than 10 nm with well-defined armchair edges. In this work, we study the crystal growth of graphene via chemical vapor deposition (CVD), which is the most promising method to produce graphene films on the industrial scale. We explore the growth of isolated graphene crystals, continuous graphene films, and narrow graphene nanoribbons with armchair edges. We gain key insight into the critical growth parameters and mechanisms that influence the crystal morphology, orientation, defect density, and evolution, providing an empirical understanding of the diverse growth behaviors observed in literature. Using this knowledge, we synthesize graphene with remarkably low pinhole density and achieve high-quality graphene at 750 °C on Cu(111), which is over 250 °C lower than the temperature typically used to grow graphene on copper from methane. We also describe our breakthrough in graphene nanoribbon synthesis. Highly anisotropic nanoribbons are formed on Ge(001) if an exceptionally slow growth rate is used. The nanoribbons are self-defining with predominantly smooth armchair edges, are self-aligning, and have tunable width to < 10 nm. High-performance field-effect transistors incorporating these nanoribbons as channels display high conductance modulation > 10,000 and high conductance > 5 muS. This directional and anisotropic growth enables the fabrication of semiconducting nanoribbons directly on conventional semiconductor wafers and, thus, promises to allow the integration of nanoribbons into future hybrid integrated circuits. We additionally report our

  14. BN-C Hybrid Nanoribbons as Gas Sensors

    NASA Astrophysics Data System (ADS)

    Darvishi Gilan, Mahdi; Chegel, Raad

    2018-02-01

    The effects of carbon monoxide (CO) and ammonia (NH3) molecules adsorption on the various composites of boron nitride and graphene BN-C hybrid nanoribbons are investigated using the non-equilibrium Green's function (NEGF) technique based on density functional theory (DFT). The effects of adsorption with possible random configurations on the average of the density of states (DOS), transmission coefficient, and the current-voltage ( I- V) characteristics are calculated. The results indicate that, by embedding armchair graphene nanoribbon (AGNR) with boron nitride nanoribbon (BNNR), the various electronic properties can be observed after gas molecule adsorption. The electronic structure and gap of hybrids system is modified due to gas adsorption, and the systems act like the n-type semiconductor by NH3 molecule adsorption. The hybrid structures due to their tunable band gap are better candidates for gas detecting compared to the pristine BNNRs and AGNRs.

  15. Performance analysis of boron nitride embedded armchair graphene nanoribbon metal-oxide-semiconductor field effect transistor with Stone Wales defects

    NASA Astrophysics Data System (ADS)

    Chanana, Anuja; Sengupta, Amretashis; Mahapatra, Santanu

    2014-01-01

    We study the performance of a hybrid Graphene-Boron Nitride armchair nanoribbon (a-GNR-BN) n-MOSFET at its ballistic transport limit. We consider three geometric configurations 3p, 3p + 1, and 3p + 2 of a-GNR-BN with BN atoms embedded on either side (2, 4, and 6 BN) on the GNR. Material properties like band gap, effective mass, and density of states of these H-passivated structures are evaluated using the Density Functional Theory. Using these material parameters, self-consistent Poisson-Schrodinger simulations are carried out under the Non Equilibrium Green's Function formalism to calculate the ballistic n-MOSFET device characteristics. For a hybrid nanoribbon of width ˜5 nm, the simulated ON current is found to be in the range of 265 μA-280 μA with an ON/OFF ratio 7.1 × 106-7.4 × 106 for a VDD = 0.68 V corresponding to 10 nm technology node. We further study the impact of randomly distributed Stone Wales (SW) defects in these hybrid structures and only 2.5% degradation of ON current is observed for SW defect density of 3.18%.

  16. Seed-mediated growth of patterned graphene nanoribbon arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Michael Scott; Way, Austin James; Jacobberger, Robert Michael

    Graphene nanoribbon arrays, methods of growing graphene nanoribbon arrays, and electronic and photonic devices incorporating the graphene nanoribbon arrays are provided. The graphene nanoribbons in the arrays are formed using a seed-mediated, bottom-up, chemical vapor deposition (CVD) technique in which the (001) facet of a semiconductor substrate and the orientation of the seed particles on the substrate are used to orient the graphene nanoribbon crystals preferentially along a single [110] direction of the substrate.

  17. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.

    PubMed

    Hu, Jiuning; Ruan, Xiulin; Chen, Yong P

    2009-07-01

    We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to approximately 4 nm wide and approximately 10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g., approximately 2000 W/m-K at 400 K for a 1.5 nm x 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among various triangularly shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30 degrees gives the maximal thermal rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.

  18. Impact of strain on electronic and transport properties of 6 nm hydrogenated germanane nano-ribbon channel double gate field effect transistor

    NASA Astrophysics Data System (ADS)

    Meher Abhinav, E.; Sundararaj, Anuraj; Gopalakrishnan, Chandrasekaran; Kasmir Raja, S. V.; Chokhra, Saurabh

    2017-11-01

    In this work, chair like fully hydrogenated germanane (CGeH) nano-ribbon 6 nm short channel double gate field effect transistor (DG-FET) has been modeled and the impact of strain on the I-V characteristics of CGeH channel has been examined. The bond lengths, binding and formation energies of various hydrogenated geometries of buckled germanane channel were calculated using local density approximation (LDA) with Perdew-Zunger (PZ) and generalized gradient approximation (GGA) with Perdew Burke Ernzerhof (PBE) parameterization. From four various geometries, chair like structure is found to be more stable compared to boat like obtuse, stiruup structure and table like structure. The bandgap versus width, bandgap versus strain characteristics and I-V characteristics had been analyzed at room temperature using density functional theory (DFT). Using self consistent calculation it was observed that the electronic properties of nano-ribbon is independent of length and band structure, but dependent on edge type, strain [Uni-axial (ɛ xx ), bi-axial (ɛ xx   =  ɛ yy )] and width of the ribbon. The strain engineered hydrogenated germanane (GeH) showed wide direct bandgap (2.3 eV) which could help to build low noise electronic devices that operates at high frequencies. The observed bi-axial compression has high impact on the device transport characteristics with peak to valley ratio (PVR) of 2.14 and 380% increase in peak current compared to pristine CGeH device. The observed strain in CGeH DG-FET could facilitate in designing novel multiple-logic memory devices due to multiple negative differential resistance (NDR) regions.

  19. Flexoelectricity in PZT Nanoribbons and Biomembranes

    DTIC Science & Technology

    2015-01-09

    Flexoelectricity in PZT Nanoribbons and Biomembranes The objective of this grant was to study flexoelectric phenomena in solids and in biomembranes...Flexoelectricity in PZT Nanoribbons and Biomembranes Report Title The objective of this grant was to study flexoelectric phenomena in solids and...producing PZT nanoribbons for energy harvesters. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers submitted or

  20. Improvement in the performance of graphene nanoribbon p-i-n tunneling field effect transistors by applying lightly doped profile on drain region

    NASA Astrophysics Data System (ADS)

    Naderi, Ali

    2017-12-01

    In this paper, an efficient structure with lightly doped drain region is proposed for p-i-n graphene nanoribbon field effect transistors (LD-PIN-GNRFET). Self-consistent solution of Poisson and Schrödinger equation within Nonequilibrium Green’s function (NEGF) formalism has been employed to simulate the quantum transport of the devices. In proposed structure, source region is doped by constant doping density, channel is an intrinsic GNR, and drain region contains two parts with lightly and heavily doped doping distributions. The important challenge in tunneling devices is obtaining higher current ratio. Our simulations demonstrate that LD-PIN-GNRFET is a steep slope device which not only reduces the leakage current and current ratio but also enhances delay, power delay product, and cutoff frequency in comparison with conventional PIN GNRFETs with uniform distribution of impurity and with linear doping profile in drain region. Also, the device is able to operate in higher drain-source voltages due to the effectively reduced electric field at drain side. Briefly, the proposed structure can be considered as a more reliable device for low standby-power logic applications operating at higher voltages and upper cutoff frequencies.

  1. Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Wang, Xuzhen; Wan, Wubo; Li, Lingli; Dong, Yanfeng; Zhao, Zongbin; Qiu, Jieshan

    2016-01-01

    Nitrogen-doped graphene nanoribbon aerogels (N-GNRAs) are fabricated through the self-assembly of graphene oxide nanoribbons (GONRs) combined with a thermal annealing process. Amino-groups are grafted to the surface of graphene nanoribbons (GNRs) by an epoxy ring-opening reaction. High nitrogen doping level (7.6 atm% as confirmed by elemental analysis) is achieved during thermal treatment resulting from functionalization and the rich edge structures of GNRs. The three dimensional (3D) N-GNRAs feature a hierarchical porous structure. The quasi-one dimensional (1D) GNRs act as the building blocks for the construction of fishnet-like GNR sheets, which further create 3D frameworks with micrometer-scale pores. The edge effect of GNRs combined with nitrogen doping and porosity give rise to good electrical conductivity, superhydrophilic, highly compressible and low density GNRAs. As a result, a high capacity of 910 mA h g-1 is achieved at a current density of 0.5 A g-1 when they are tested as anode materials for lithium ion batteries. Further cell culture experiments with the GNRAs as human medulloblastoma DAOY cell scaffolds demonstrate their good biocompatibility, inferring potential applications in the biomedical field.Nitrogen-doped graphene nanoribbon aerogels (N-GNRAs) are fabricated through the self-assembly of graphene oxide nanoribbons (GONRs) combined with a thermal annealing process. Amino-groups are grafted to the surface of graphene nanoribbons (GNRs) by an epoxy ring-opening reaction. High nitrogen doping level (7.6 atm% as confirmed by elemental analysis) is achieved during thermal treatment resulting from functionalization and the rich edge structures of GNRs. The three dimensional (3D) N-GNRAs feature a hierarchical porous structure. The quasi-one dimensional (1D) GNRs act as the building blocks for the construction of fishnet-like GNR sheets, which further create 3D frameworks with micrometer-scale pores. The edge effect of GNRs combined with nitrogen

  2. Performance analysis of boron nitride embedded armchair graphene nanoribbon metal–oxide–semiconductor field effect transistor with Stone Wales defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanana, Anuja; Sengupta, Amretashis; Mahapatra, Santanu

    2014-01-21

    We study the performance of a hybrid Graphene-Boron Nitride armchair nanoribbon (a-GNR-BN) n-MOSFET at its ballistic transport limit. We consider three geometric configurations 3p, 3p + 1, and 3p + 2 of a-GNR-BN with BN atoms embedded on either side (2, 4, and 6 BN) on the GNR. Material properties like band gap, effective mass, and density of states of these H-passivated structures are evaluated using the Density Functional Theory. Using these material parameters, self-consistent Poisson-Schrodinger simulations are carried out under the Non Equilibrium Green's Function formalism to calculate the ballistic n-MOSFET device characteristics. For a hybrid nanoribbon of widthmore » ∼5 nm, the simulated ON current is found to be in the range of 265 μA–280 μA with an ON/OFF ratio 7.1 × 10{sup 6}–7.4 × 10{sup 6} for a V{sub DD} = 0.68 V corresponding to 10 nm technology node. We further study the impact of randomly distributed Stone Wales (SW) defects in these hybrid structures and only 2.5% degradation of ON current is observed for SW defect density of 3.18%.« less

  3. Electronic components embedded in a single graphene nanoribbon.

    PubMed

    Jacobse, P H; Kimouche, A; Gebraad, T; Ervasti, M M; Thijssen, J M; Liljeroth, P; Swart, I

    2017-07-25

    The use of graphene in electronic devices requires a band gap, which can be achieved by creating nanostructures such as graphene nanoribbons. A wide variety of atomically precise graphene nanoribbons can be prepared through on-surface synthesis, bringing the concept of graphene nanoribbon electronics closer to reality. For future applications it is beneficial to integrate contacts and more functionality directly into single ribbons by using heterostructures. Here, we use the on-surface synthesis approach to fabricate a metal-semiconductor junction and a tunnel barrier in a single graphene nanoribbon consisting of 5- and 7-atom wide segments. We characterize the atomic scale geometry and electronic structure by combined atomic force microscopy, scanning tunneling microscopy, and conductance measurements complemented by density functional theory and transport calculations. These junctions are relevant for developing contacts in all-graphene nanoribbon devices and creating diodes and transistors, and act as a first step toward complete electronic devices built into a single graphene nanoribbon.Adding functional electronic components to graphene nanoribbons requires precise control over their atomic structure. Here, the authors use a bottom-up approach to build a metal-semiconductor junction and a tunnel barrier directly into a single graphene nanoribbon, an exciting development for graphene-based electronic devices.

  4. Oriented bottom-up growth of armchair graphene nanoribbons on germanium

    DOEpatents

    Arnold, Michael Scott; Jacobberger, Robert Michael

    2016-03-15

    Graphene nanoribbon arrays, methods of growing graphene nanoribbon arrays and electronic and photonic devices incorporating the graphene nanoribbon arrays are provided. The graphene nanoribbons in the arrays are formed using a scalable, bottom-up, chemical vapor deposition (CVD) technique in which the (001) facet of the germanium is used to orient the graphene nanoribbon crystals along the [110] directions of the germanium.

  5. Raman mapping probing of tip-induced anomalous polarization behavior in V2O5 waveguiding nanoribbons

    NASA Astrophysics Data System (ADS)

    Yan, Bin; Du, Chaoling; Liao, Lei; You, Yumeng; Cheng, Hao; Shen, Zexiang; Yu, Ting

    2010-02-01

    Spatially resolved and polarized micro-Raman spectroscopy has been performed on individual V2O5 waveguiding nanoribbons. The experimental results establish that the Raman-antenna patterns are strongly correlated with the local positions of the sample, which gives rise to a pronounced intensity contrast in the polarized mapping for certain phonon modes. The suppressed phonon signals at the body of a ribbon can be enhanced at the end facets, resulting from the effective waveguiding propagation along the nanoribbon and strong local electric field intensity at the ends. The phenomena reported here, in addition to providing insight into the tip effects on optoelectronic nanodevices, will facilitate the rational design of Raman detection in nanostructures.

  6. Width-Tuned Magnetic Order Oscillation on Zigzag Edges of Honeycomb Nanoribbons

    DOE PAGES

    Chen, Wen-Chao; Zhou, Yuan; Yu, Shun-Li; ...

    2017-06-24

    Quantum confinement and interference often generate exotic properties in nanostructures. One recent highlight is the experimental indication of a magnetic phase transition in zigzag-edged graphene nanoribbons at the critical ribbon width of about 7 nm [Magda, G. Z. et al. Nature 2014, 514, 608]. Here in this work, we show theoretically that with further increase in the ribbon width, the magnetic correlation of the two edges can exhibit an intriguing oscillatory behavior between antiferromagnetic and ferromagnetic, driven by acquiring the positive coherence between the two edges to lower the free energy. The oscillation effect is readily tunable in applied magneticmore » fields. In conclusion, these novel properties suggest new experimental manifestation of the edge magnetic orders in graphene nanoribbons and enhance the hopes of graphene-like spintronic nanodevices functioning at room temperature.« less

  7. Inner Surface Chirality of Single-Handed Twisted Carbonaceous Tubular Nanoribbons.

    PubMed

    Liu, Dan; Li, Baozong; Guo, Yongmin; Li, Yi; Yang, Yonggang

    2015-11-01

    Single-handed twisted 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and single-layered nanoribbons were prepared by tuning the water/ethanol volume ratio in the reaction mixture at pH = 11.6 through a supramolecular templating approach. The single-layered nanoribbons were formed by shrinking tubular nanoribbons after the removal of the templates. In addition, solvent-induced handedness inversion was achieved. The handedness of the polybissilsesquioxanes could be controlled by changing the ethanol/water volume ratio in the reaction mixture. After carbonization at 900 °C for 4.0 h and removal of silica, single-handed twisted carbonaceous tubular nanoribbons and single-layered nanoribbons with micropores in the walls were obtained. X-ray diffraction and Raman spectroscopy analyses indicated that the carbon is predominantly amorphous. The circular dichroism spectra show that the twisted tubular nanoribbons exhibit optical activity, while the twisted single-layered nanoribbons do not. The results shown here indicate that chirality is transferred from the organic self-assemblies to the inner surfaces of the 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and subsequently to those of the carbonaceous tubular nanoribbons. © 2015 Wiley Periodicals, Inc.

  8. Two-Dimensional Model of Scrolled Packings of Molecular Nanoribbons

    NASA Astrophysics Data System (ADS)

    Savin, A. V.; Mazo, M. A.

    2018-04-01

    A simplified model of the in-plane molecular chain, allowing the description of folded and scrolled packings of molecular nanoribbons of different structures, is proposed. Using this model, possible steady states of single-layer nanoribbons scrolls of graphene, graphane, fluorographene, and fluorographane (graphene hydrogenated on the one side and fluorinated on the other side) are obtained. Their stability is demonstrated and their energy is calculated as a function of the nanoribbon length. It is shown that the scrolled packing is the most energetically favorable nanoribbon conformation at long lengths. The existences of scrolled packings for fluorographene nanoribbons and the existence of two different scroll types corresponding to left- and right-hand Archimedean spirals for fluorographane nanoribbons in the chain model are shown for the first time. The simplicity of the proposed model makes it possible to consider the dynamics of scrolls of rather long molecular nanoribbons at long enough time intervals.

  9. Armchair and zigzag nanoribbons of gold and silver: A DFT study

    NASA Astrophysics Data System (ADS)

    Kapoor, Pooja; Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.

    2018-04-01

    This paper presents the results from a DFT-based computational study of structural and electronic properties of zigzag and armchair edge shaped nanoribbons of gold and silver in hexagonal phase. The cohesive energy of the considered nanoribbons are found to be more than the corresponding 2D counterpart, thereby, suggesting Au and Ag nanoribbons to be more stable in 1D as compared to 2D. All nanoribbons are found to be metallic with a modulation in quantum ballistic conductance with length and edge type of the nanoribbon. Au nanoribbons are found to have higher conductance than Ag nanoribbon. There is increase in conductance with increase in length of nanoribbon.

  10. Nonlinear optical response in graphene nanoribbons: The critical role of electron scattering

    NASA Astrophysics Data System (ADS)

    Karimi, F.; Davoody, A. H.; Knezevic, I.

    2018-06-01

    Nonlinear nanophotonics has many potential applications, such as in mode locking, frequency-comb generation, and all-optical switching. The development of materials with large nonlinear susceptibility is key to realizing nonlinear nanophotonics. Nanostructured graphene systems, such as graphene nanoribbons and nanoislands, have been predicted to have a strong plasmon-enhanced nonlinear optical behavior in the nonretarded regime. Plasmons concentrate the light field down to subwavelength scales and can enhance the nonlinear optical effects; however, plasmon resonances are narrowband and sensitive to the nanostructure geometry. Here we show that graphene nanoribbons, particularly armchair graphene nanoribbons, have a remarkably strong nonlinear optical response in the long-wavelength regime and over a broad frequency range, from terahertz to the near infrared. We use a quantum-mechanical master equation with a detailed treatment of scattering and show that, in the retarded regime, electron scattering has a critical effect on the optical nonlinearity of graphene nanoribbons, which cannot be captured via the commonly used relaxation-time approximation. At terahertz frequencies, where intraband optical transitions dominate, the strong nonlinearity (in particular, third-order Kerr nonlinearity) stems from the jagged shape of the electron energy distribution, caused by the interband electron scattering mechanisms along with the intraband inelastic scattering mechanisms. We show that the relaxation-time approximation fails to capture this quantum-mechanical phenomenon and results in a significant underestimation of the intraband nonlinearity. At the midinfrared to near infrared frequencies, where interband optical transitions dominate, the Kerr nonlinearity is significantly overestimated within the relaxation-time approximation. These findings unveil the critical effect of electron scattering on the optical nonlinearity of nanostructured graphene, and also underscore the

  11. Energy gap in graphene nanoribbons with structured external electric potentials

    NASA Astrophysics Data System (ADS)

    Apel, W.; Pal, G.; Schweitzer, L.

    2011-03-01

    The electronic properties of graphene zigzag nanoribbons with electrostatic potentials along the edges are investigated. Using the Dirac-fermion approach, we calculate the energy spectrum of an infinitely long nanoribbon of finite width w, terminated by Dirichlet boundary conditions in the transverse direction. We show that a structured external potential that acts within the edge regions of the ribbon can induce a spectral gap and thus switch the nanoribbon from metallic to insulating behavior. The basic mechanism of this effect is the selective influence of the external potentials on the spinorial wave functions that are topological in nature and localized along the boundary of the graphene nanoribbon. Within this single-particle description, the maximal obtainable energy gap is Emax∝πℏvF/w, i.e., ≈0.12 eV for w=15 nm. The stability of the spectral gap against edge disorder and the effect of disorder on the two-terminal conductance is studied numerically within a tight-binding lattice model. We find that the energy gap persists as long as the applied external effective potential is larger than ≃0.55×W, where W is a measure of the disorder strength. We argue that there is a transport gap due to localization effects even in the absence of a spectral gap.

  12. Electronic Structure and I- V Characteristics of InSe Nanoribbons

    NASA Astrophysics Data System (ADS)

    Yao, A.-Long; Wang, Xue-Feng; Liu, Yu-Shen; Sun, Ya-Na

    2018-04-01

    We have studied the electronic structure and the current-voltage ( I-V) characteristics of one-dimensional InSe nanoribbons using the density functional theory combined with the nonequilibrium Green's function method. Nanoribbons having bare or H-passivated edges of types zigzag (Z), Klein (K), and armchair (A) are taken into account. Edge states are found to play an important role in determining their electronic properties. Edges Z and K are usually metallic in wide nanoribbons as well as their hydrogenated counterparts. Transition from semiconductor to metal is observed in hydrogenated nanoribbons HZZH as their width increases, due to the strong width dependence of energy difference between left and right edge states. Nevertheless, electronic structures of other nanoribbons vary with the width in a very limited scale. The I-V characteristics of bare nanoribbons ZZ and KK show strong negative differential resistance, due to spatial mismatch of wave functions in energy bands around the Fermi energy. Spin polarization in these nanoribbons is also predicted. In contrast, bare nanoribbons AA and their hydrogenated counterparts HAAH are semiconductors. The band gaps of nanoribbons AA (HAAH) are narrower (wider) than that of two-dimensional InSe monolayer and increase (decrease) with the nanoribbon width.

  13. Dual-Mode Gas Sensor Composed of a Silicon Nanoribbon Field Effect Transistor and a Bulk Acoustic Wave Resonator: A Case Study in Freons

    PubMed Central

    Chang, Ye; Hui, Zhipeng; Wang, Xiayu; Qu, Hemi; Pang, Wei

    2018-01-01

    In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET) and a film bulk acoustic resonator (FBAR). We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBAR sensor. In this dual-mode system, qualitative discrimination can be achieved by analyzing polarity with the Si-NR FET and quantitative concentration information can be obtained using a polymer-coated FBAR with a detection limit at the ppm level. The complementary performance of the sensing elements provides higher analytical efficiency. Additionally, a dual mixture of two types of freons (CFC-113 and HCFC-141b) is further analyzed with the dual-mode gas sensor. Owing to the small size and complementary metal-oxide semiconductor (CMOS)-compatibility of the system, the dual-mode gas sensor shows potential as a portable integrated sensing system for the analysis of gas mixtures in the future. PMID:29370109

  14. Dual-Mode Gas Sensor Composed of a Silicon Nanoribbon Field Effect Transistor and a Bulk Acoustic Wave Resonator: A Case Study in Freons.

    PubMed

    Chang, Ye; Hui, Zhipeng; Wang, Xiayu; Qu, Hemi; Pang, Wei; Duan, Xuexin

    2018-01-25

    In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET) and a film bulk acoustic resonator (FBAR). We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBAR sensor. In this dual-mode system, qualitative discrimination can be achieved by analyzing polarity with the Si-NR FET and quantitative concentration information can be obtained using a polymer-coated FBAR with a detection limit at the ppm level. The complementary performance of the sensing elements provides higher analytical efficiency. Additionally, a dual mixture of two types of freons (CFC-113 and HCFC-141b) is further analyzed with the dual-mode gas sensor. Owing to the small size and complementary metal-oxide semiconductor (CMOS)-compatibility of the system, the dual-mode gas sensor shows potential as a portable integrated sensing system for the analysis of gas mixtures in the future.

  15. Effect of edge defects on band structure of zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Wadhwa, Payal; Kumar, Shailesh; Dhilip Kumar, T. J.; Shukla, Alok; Kumar, Rakesh

    2018-04-01

    In this article, we report band structure studies of zigzag graphene nanoribbons (ZGNRs) on introducing defects (sp3 hybridized carbon atoms) in different concentrations at edges by varying the ratio of sp3 to sp2 hybridized carbon atoms. On the basis of theoretical analyses, bandgap values of ZGNRs are found to be strongly dependent on the relative arrangement of sp3 to sp2 hybridized carbon atoms at the edges for a defect concentration; so the findings would greatly help in understanding the bandgap of nanoribbons for their electronic applications.

  16. Mechanical properties of graphene nanoribbons under uniaxial tensile strain

    NASA Astrophysics Data System (ADS)

    Yoneyama, Kazufumi; Yamanaka, Ayaka; Okada, Susumu

    2018-03-01

    Based on the density functional theory with the generalized gradient approximation, we investigated the mechanical properties of graphene nanoribbons in terms of their edge shape under a uniaxial tensile strain. The nanoribbons with armchair and zigzag edges retain their structure under a large tensile strain, while the nanoribbons with chiral edges are fragile against the tensile strain compared with those with armchair and zigzag edges. The fracture started at the cove region, which corresponds to the border between the zigzag and armchair edges for the nanoribbons with chiral edges. For the nanoribbons with armchair edges, the fracture started at one of the cove regions at the edges. In contrast, the fracture started at the inner region of the nanoribbons with zigzag edges. The bond elongation under the tensile strain depends on the mutual arrangement of covalent bonds with respect to the strain direction.

  17. Theory of Magnetic Edge States in Chiral Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Capaz, Rodrigo; Yazyev, Oleg; Louie, Steven

    2011-03-01

    Using a model Hamiltonian approach including electron Coulomb interactions, we systematically investigate the electronic structure and magnetic properties of chiral graphene nanoribbons. We show that the presence of magnetic edge states is an intrinsic feature of any smooth graphene nanoribbons with chiral edges, and discover a number of structure-property relations. Specifically, we describe how the edge-state energy gap, zone-boundary edge-state energy splitting, and magnetic moment per edge length depend on the nanoribbon width and chiral angle. The role of environmental screening effects is also studied. Our results address a recent experimental observation of signatures of magnetic ordering at smooth edges of chiral graphene nanoribbons and provide an avenue towards tuning their properties via the structural and environmental degrees of freedom. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the ONR MURI program. RBC acknowledges financial support from Brazilian agencies CNPq, FAPERJ and INCT-Nanomateriais de Carbono.

  18. A Helicene Nanoribbon with Greatly Amplified Chirality.

    PubMed

    Schuster, Nathaniel J; Hernández Sánchez, Raúl; Bukharina, Daria; Kotov, Nicholas A; Berova, Nina; Ng, Fay; Steigerwald, Michael L; Nuckolls, Colin

    2018-05-14

    We report the synthesis and characterization of a chiral, shape-persistent, perylene-diimide-based nanoribbon. Specifically, the fusion of three perylene-diimide monomers with intervening naphthalene subunits resulted in a helical superstructure with two [6]helicene subcomponents. This π-helix-of-helicenes exhibits very intense electronic circular dichroism, including one of the largest Cotton effects ever observed in the visible range. It also displays more than an order of magnitude increase in circular dichroism for select wavelengths relative to its smaller homologue. These impressive chiroptical properties underscore the potential of this new nanoribbon architecture in the context of chiral electronic materials.

  19. Magnetoexcitons and Faraday rotation in single-walled carbon nanotubes and graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Have, Jonas; Pedersen, Thomas G.

    2018-03-01

    The magneto-optical response of single-walled carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) is studied theoretically, including excitonic effects. Both diagonal and nondiagonal response functions are obtained and employed to compute Faraday rotation spectra. For single-walled CNTs in a parallel field, the results show field-dependent splitting of the exciton absorption peaks caused by brightening a dark exciton state. Similarly, for GNRs in a perpendicular magnetic field, we observe a field-dependent shift of the exciton peaks and the emergence of an absorption peak above the energy gap. Results show that excitonic effects play a significant role in the optical response of both materials, particularly for the off-diagonal tensor elements.

  20. Superconducting nanoribbon with a constriction: A quantum-confined Josephson junction

    NASA Astrophysics Data System (ADS)

    Flammia, L.; Zhang, L.-F.; Covaci, L.; Perali, A.; Milošević, M. V.

    2018-04-01

    Extended defects are known to strongly affect nanoscale superconductors. Here, we report the properties of superconducting nanoribbons with a constriction formed between two adjacent step edges by solving the Bogoliubov-de Gennes equations self-consistently in the regime where quantum confinement is important. Since the quantum resonances of the superconducting gap in the constricted area are different from the rest of the nanoribbon, such constriction forms a quantum-confined S-S'-S Josephson junction, with a broadly tunable performance depending on the length and width of the constriction with respect to the nanoribbon, and possible gating. These findings provide an intriguing approach to further tailor superconducting quantum devices where Josephson effect is of use.

  1. Direct oriented growth of armchair graphene nanoribbons on germanium

    PubMed Central

    Jacobberger, Robert M.; Kiraly, Brian; Fortin-Deschenes, Matthieu; Levesque, Pierre L.; McElhinny, Kyle M.; Brady, Gerald J.; Rojas Delgado, Richard; Singha Roy, Susmit; Mannix, Andrew; Lagally, Max G.; Evans, Paul G.; Desjardins, Patrick; Martel, Richard; Hersam, Mark C.; Guisinger, Nathan P.; Arnold, Michael S.

    2015-01-01

    Graphene can be transformed from a semimetal into a semiconductor if it is confined into nanoribbons narrower than 10 nm with controlled crystallographic orientation and well-defined armchair edges. However, the scalable synthesis of nanoribbons with this precision directly on insulating or semiconducting substrates has not been possible. Here we demonstrate the synthesis of graphene nanoribbons on Ge(001) via chemical vapour deposition. The nanoribbons are self-aligning 3° from the Ge〈110〉 directions, are self-defining with predominantly smooth armchair edges, and have tunable width to <10 nm and aspect ratio to >70. In order to realize highly anisotropic ribbons, it is critical to operate in a regime in which the growth rate in the width direction is especially slow, <5 nm h−1. This directional and anisotropic growth enables nanoribbon fabrication directly on conventional semiconductor wafer platforms and, therefore, promises to allow the integration of nanoribbons into future hybrid integrated circuits. PMID:26258594

  2. Superconducting properties and vortex dynamics of bismuth strontium calcium copper oxide nanoribbons with and without periodic array of nanoscale holes

    NASA Astrophysics Data System (ADS)

    Avci, Sevda

    The distinguishing features of high-temperature superconducting materials are the dynamics of vortex matter in the mixed state which are greatly affected by the high anisotropy and the Josephson coupling between layers. Experiments have focused on investigating melting and dynamic phases of vortex matter with random pinning. However, the advancements in sample preparation techniques have made it possible to investigate the vortex matter with periodic pinnings, since it can serve as a model system to study periodic elastic media such as electron crystals driven on substrates with arrays of defects. It also offers the possibility to increase the critical current of a superconductor through a matching effect which represents itself as peaks (dips) in the field dependences of the critical current (magnetoresisance). This effect is due to the enhanced pinning strength at matching fields where the density of the flux quanta is equal to or multiple times that of the pins. This dissertation reports investigation on the dynamics of vortex matter with periodic pinning array by utilizing BSCCO-2212 crystalline nanoribbons containing periodic arrays of nanoscale holes. Systematic transport measurements reveal the existence of possible intermediate phases of a soft solid and/or a mixture of solid and liquid during melting for the melting transition from solid to a pure liquid. The results of this research demonstrate that the matching effect can be an effective tool in revealing the nature of various vortex phases during melting transition. In addition, anomalous resistive peaks below Tc and the effect of magnetic field orientation on superconductivity of BSCCO-2212 nanoribbons with array of nanoscale holes are also investigated. Angle-dependent magnetoresistances are scaled as H=Hthetacostheta. Therefore, only the perpendicular component of the magnetic field affects the superconductivity. Moreover, layers in BSCCO nanoribbons are lying in the a-b plane parallel to each other

  3. Direct visualization of atomically precise nitrogen-doped graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yi; Zhang, Yanfang; Li, Geng

    2014-07-14

    We have fabricated atomically precise nitrogen-doped chevron-type graphene nanoribbons by using the on-surface synthesis technique combined with the nitrogen substitution of the precursors. Scanning tunneling microscopy and spectroscopy indicate that the well-defined nanoribbons tend to align with the neighbors side-by-side with a band gap of 1.02 eV, which is in good agreement with the density functional theory calculation result. The influence of the high precursor coverage on the quality of the nanoribbons is also studied. We find that graphene nanoribbons with sufficient aspect ratios can only be fabricated at sub-monolayer precursor coverage. This work provides a way to construct atomically precisemore » nitrogen-doped graphene nanoribbons.« less

  4. Anomalous Kondo resonance mediated by semiconducting graphene nanoribbons in a molecular heterostructure

    DOE PAGES

    Li, Yang; Ngo, Anh T.; DiLullo, Andrew; ...

    2017-10-16

    An unusually large spin-coupling of almost 100% is found in vertically stacked molecular hetrostructures composed of cobalt-porphyrin based magnetic molecules adsorbed on semiconducting armchair graphene nanoribbon on a Au(111) surface. Although the graphene nanoribbons are electronically decoupled from the gold substrate due to their band gaps and weak adsorption, they enable spin coupling between the magnetic moment of the molecule and the electrons from the substrate exhibiting a Kondo resonance. Surprisingly, the Kondo temperatures corresponding to three adsorption sites of the molecules on Au(111) surface are reproduced on the molecules adsorb on the graphene nanoribbons although the molecules are locatedmore » 7.5 Å away from the surface. This finding suggests that the molecules on graphene nanoribbons experience almost the same environment for spin-electron interactions as the ones directly adsorb on Au(111). This puzzling effect is further confirmed by density functional theory calculations that reveal no spin electron interactions if the molecule is left at the same height from the Au(111) surface without the graphene nanoribbon in between.« less

  5. Anomalous Kondo resonance mediated by semiconducting graphene nanoribbons in a molecular heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Ngo, Anh T.; DiLullo, Andrew

    An unusually large spin-coupling of almost 100% is found in vertically stacked molecular hetrostructures composed of cobalt-porphyrin based magnetic molecules adsorbed on semiconducting armchair graphene nanoribbon on a Au(111) surface. Although the graphene nanoribbons are electronically decoupled from the gold substrate due to their band gaps and weak adsorption, they enable spin coupling between the magnetic moment of the molecule and the electrons from the substrate exhibiting a Kondo resonance. Surprisingly, the Kondo temperatures corresponding to three adsorption sites of the molecules on Au(111) surface are reproduced on the molecules adsorb on the graphene nanoribbons although the molecules are locatedmore » 7.5 Å away from the surface. This finding suggests that the molecules on graphene nanoribbons experience almost the same environment for spin-electron interactions as the ones directly adsorb on Au(111). This puzzling effect is further confirmed by density functional theory calculations that reveal no spin electron interactions if the molecule is left at the same height from the Au(111) surface without the graphene nanoribbon in between.« less

  6. Thermoelectric characterization of individual bismuth selenide topological insulator nanoribbons.

    PubMed

    Tang, Hao; Wang, Xiaomeng; Xiong, Yucheng; Zhao, Yang; Zhang, Yin; Zhang, Yan; Yang, Juekuan; Xu, Dongyan

    2015-04-21

    Bismuth selenide (Bi2Se3) nanoribbons have attracted tremendous research interest recently to study the properties of topologically protected surface states that enable new opportunities to enhance the thermoelectric performance. However, the thermoelectric characterization of individual Bi2Se3 nanoribbons is rare due to the technological challenges in the measurements. One challenge is to ensure good contacts between the nanoribbon and electrodes in order to determine the thermal and electrical properties accurately. In this work, we report the thermoelectric characterization of individual Bi2Se3 nanoribbons via a suspended microdevice method. Through careful measurements, we have demonstrated that contact thermal resistance is negligible after the electron-beam-induced deposition (EBID) of platinum/carbon (Pt/C) composites at the contacts between the nanoribbon and electrodes. It is shown that the thermal conductivity of the Bi2Se3 nanoribbons is less than 50% of the bulk value over the whole measurement temperature range, which can be attributed to enhanced phonon boundary scattering. Our results indicate that intrinsic Bi2Se3 nanoribbons prepared in this work are highly doped n-type semiconductors, and therefore the Fermi level should be in the conduction band and no topological transport behavior can be observed in the intrinsic system.

  7. Zigzag nanoribbons of two-dimensional silicene-like crystals: magnetic, topological and thermoelectric properties.

    PubMed

    Wierzbicki, Michał; Barnaś, Józef; Swirkowicz, Renata

    2015-12-09

    The effects of electron-electron and spin-orbit interactions on the ground-state magnetic configuration and on the corresponding thermoelectric and spin thermoelectric properties in zigzag nanoribbons of two-dimensional hexagonal crystals are analysed theoretically. The thermoelectric properties of quasi-stable magnetic states are also considered. Of particular interest is the influence of Coulomb and spin-orbit interactions on the topological edge states and on the transition between the topological insulator and conventional gap insulator states. It is shown that the interplay of both interactions also has a significant impact on the transport and thermoelectric characteristics of the nanoribbons. The spin-orbit interaction also determines the in-plane magnetic easy axis. The thermoelectric properties of nanoribbons with in-plane magnetic moments are compared to those of nanoribbons with edge magnetic moments oriented perpendicularly to their plane. Nanoribbons with ferromagnetic alignment of the edge moments are shown to reveal spin thermoelectricity in addition to the conventional one.

  8. Anomalous length dependence of conductance of aromatic nanoribbons with amine anchoring groups

    NASA Astrophysics Data System (ADS)

    Bilić, Ante; Sanvito, Stefano

    2012-09-01

    Two sets of aromatic nanoribbons, based around a common hexagonal scaffolding, with single and dual terminal amine groups have been considered as potential molecular wires in a junction formed by gold leads. Charge transport through the two-terminal device has been modeled using density functional theory (with and without self-interaction correction) and the nonequilibrium Green's function method. The effects of wire length, multiple terminal contacts, and pathways across the junction have been investigated. For nanoribbons with the oligopyrene motif and conventional single amine terminal groups, an increase in the wire length causes an exponential drop in the conductance. In contrast, for the nanoribbons with the oligoperylene motif and dual amine anchoring groups the predicted conductance rises with the wire length over the whole range of investigated lengths. Only when the effects of self-interaction correction are taken into account, the conductance of the oligoperylene ribbons exhibits saturation for longer members of the series. The oligoperylene nanoribbons, with dual amine groups at both terminals, show the potential to fully harness the highly conjugated system of π molecular orbitals across the junction.

  9. Chirality of the 1,4-phenylene-silica nanoribbons at the nano and angstrom levels

    NASA Astrophysics Data System (ADS)

    Li, Yi; Wang, Sibing; Xiao, Min; Wang, Mingliang; Huang, Zhibin; Li, Baozong; Yang, Yonggang

    2013-01-01

    We reported the preparation of chiral 1,4-phenylene-silicas, using a sol-gel transcription approach, by self-assembly using low-molecular-weight gelators as templates. The silicas exhibited chirality at both the nano and angstrom levels. However, the relation between the chirality at the nano level and that at the angstrom levels has not been well studied. In this study, chiral 1,4-phenylene-silica nanoribbons were prepared by the self-assemblies of three chiral cationic gelators derived from amino acids as templates. These samples were characterized using field-emission scanning electron microscopy, transmission electron microscopy, x-ray diffraction, and circular dichroism. The results indicated that the handedness of the nanoribbons and the stacking of the aromatic rings were controllable. Although the nanoribbons exhibited left-handedness at the nano level, the stacking of the aromatic rings could exhibit left- or right-handedness. The handedness of the nanoribbons at the nano level was controlled by the organic self-assembly of the gelator. However, the stacking of the aromatic rings seemed to be controlled by the gelator itself.

  10. Origin of multiple band gap values in single width nanoribbons

    PubMed Central

    Goyal, Deepika; Kumar, Shailesh; Shukla, Alok; Kumar, Rakesh

    2016-01-01

    Deterministic band gap in quasi-one-dimensional nanoribbons is prerequisite for their integrated functionalities in high performance molecular-electronics based devices. However, multiple band gaps commonly observed in graphene nanoribbons of the same width, fabricated in same slot of experiments, remain unresolved, and raise a critical concern over scalable production of pristine and/or hetero-structure nanoribbons with deterministic properties and functionalities for plethora of applications. Here, we show that a modification in the depth of potential wells in the periodic direction of a supercell on relative shifting of passivating atoms at the edges is the origin of multiple band gap values in nanoribbons of the same width in a crystallographic orientation, although they carry practically the same ground state energy. The results are similar when calculations are extended from planar graphene to buckled silicene nanoribbons. Thus, the findings facilitate tuning of the electronic properties of quasi-one-dimensional materials such as bio-molecular chains, organic and inorganic nanoribbons by performing edge engineering. PMID:27808172

  11. Pressure-induced phase transition and fracture in α-MoO3 nanoribbons

    NASA Astrophysics Data System (ADS)

    Silveira, Jose V.; Vieira, Luciana L.; Aguiar, Acrisio L.; Freire, Paulo T. C.; Mendes Filho, Josue; Alves, Oswaldo L.; Souza Filho, Antonio G.

    2018-03-01

    MoO3 nanoribbons were studied under different pressure conditions ranging from 0 to 21 GPa at room temperature. The effect of the applied pressure on the spectroscopic and morphologic properties of the MoO3 nanoribbons was investigated by means of Raman spectroscopy and scanning electron microscopy techniques. The pressure dependent Raman spectra of the MoO3 nanoribbons indicate that a structural phase transition occurs at 5 GPa from the orthorhombic α-MoO3 phase (Pbnm) to the monoclinic MoO3-II phase (P21/m), which remains stable up to 21 GPa. Such phase transformation occurs at considerably lower pressure than the critical pressure for α-MoO3 microcrystals (12 GPa). We suggested that the applanate morphology combined with the presence of crystalline defects in the sample play an important role in the phase transition of the MoO3 nanoribbons. Frequencies and linewidths of the Raman bands as a function of pressure also suggest a pressure-induced morphological change and the decreasing of the nanocrystal size. The observed spectroscopic changes are supported by electron microscopy images, which clearly show a pressure-induced morphologic change in MoO3 nanoribbons.

  12. Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111).

    PubMed

    Deniz, O; Sánchez-Sánchez, C; Jaafar, R; Kharche, N; Liang, L; Meunier, V; Feng, X; Müllen, K; Fasel, R; Ruffieux, P

    2018-02-08

    Electronic and thermal properties of chevron-type graphene nanoribbons can be widely tuned, making them interesting candidates for electronic and thermoelectric applications. Here, we use post-growth silicon intercalation to unambiguously access nanoribbons' energy position of their electronic frontier states. These are otherwise obscured by substrate effects when investigated directly on the growth substrate. In agreement with first-principles calculations we find a band gap of 2.4 eV.

  13. Ferromagnetism in armchair graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Lin, Hsiu-Hau; Hikihara, Toshiya; Jeng, Horng-Tay; Huang, Bor-Luen; Mou, Chung-Yu; Hu, Xiao

    2009-01-01

    Due to the weak spin-orbit interaction and the peculiar relativistic dispersion in graphene, there are exciting proposals to build spin qubits in graphene nanoribbons with armchair boundaries. However, the mutual interactions between electrons are neglected in most studies so far and thus motivate us to investigate the role of electronic correlations in armchair graphene nanoribbon by both analytical and numerical methods. Here we show that the inclusion of mutual repulsions leads to drastic changes and the ground state turns ferromagnetic in a range of carrier concentrations. Our findings highlight the crucial importance of the electron-electron interaction and its subtle interplay with boundary topology in graphene nanoribbons. Furthermore, since the ferromagnetic properties sensitively depend on the carrier concentration, it can be manipulated at ease by electric gates. The resultant ferromagnetic state with metallic conductivity is not only surprising from an academic viewpoint, but also has potential applications in spintronics at nanoscale.

  14. Electronic structure and optical property of boron doped semiconducting graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Chen, Aqing; Shao, Qingyi; Wang, Li; Deng, Feng

    2011-08-01

    We present a system study on the electronic structure and optical property of boron doped semiconducting graphene nanoribbons using the density functional theory. Energy band structure, density of states, deformation density, Mulliken popular and optical spectra are considered to show the special electronic structure of boron doped semiconducting graphene nanoribbons. The C-B bond form is discussed in detail. From our analysis it is concluded that the Fermi energy of boron doped semiconducting graphene nanoribbons gets lower than that of intrinsic semiconducting graphene nanoribbons. Our results also show that the boron doped semiconducting graphene nanoribbons behave as p-type semiconducting and that the absorption coefficient of boron doped armchair graphene nanoribbons is generally enhanced between 2.0 eV and 3.3 eV. Therefore, our results have a great significance in developing nano-material for fabricating the nano-photovoltaic devices.

  15. Ultra-broad polypyrrole (PPy) nano-ribbons seeded by racemic surfactants aggregates and their high-performance electromagnetic radiation elimination.

    PubMed

    Jiao, Yingzhi; Wu, Fan; Zhang, Kun; Sun, Mengxiao; Xie, Aming; Dong, Wei

    2017-08-04

    Ribbon-like nano-structures possess high aspect ratios, and thus have great potential in the development of high-performance microwave absorption (MA) materials that can effectively eliminate adverse electromagnetic radiation. However, these nano-structures have been scarcely constructed in the field of MA, because of the lack of efficient synthetic routes. Herein, we developed an efficient method to successfully construct polypyrrole (PPy) nano-ribbons using the self-assembly aggregates of a racemic surfactant as the seeds. The frequency range with a reflection loss value of lower than -10 dB reached 7.68 GHz in the frequency range of 10.32-18.00 GHz, and surpassed all the currently reported PPy nano-structures, as well as most other MA nano-materials. Through changing the amount of surfactant, both the nano-structures and MA performance can be effectively regulated. Furthermore, the reason behind the high-performance MA of PPy nano-ribbons has been deeply explored. It opens up the opportunity for the application of conducting polymer nano-ribbons as a lightweight and tunable high-performance MA material, especially in applications of special aircraft and flexible electronics.

  16. Ultra-broad polypyrrole (PPy) nano-ribbons seeded by racemic surfactants aggregates and their high-performance electromagnetic radiation elimination

    NASA Astrophysics Data System (ADS)

    Jiao, Yingzhi; Wu, Fan; Zhang, Kun; Sun, Mengxiao; Xie, Aming; Dong, Wei

    2017-08-01

    Ribbon-like nano-structures possess high aspect ratios, and thus have great potential in the development of high-performance microwave absorption (MA) materials that can effectively eliminate adverse electromagnetic radiation. However, these nano-structures have been scarcely constructed in the field of MA, because of the lack of efficient synthetic routes. Herein, we developed an efficient method to successfully construct polypyrrole (PPy) nano-ribbons using the self-assembly aggregates of a racemic surfactant as the seeds. The frequency range with a reflection loss value of lower than -10 dB reached 7.68 GHz in the frequency range of 10.32-18.00 GHz, and surpassed all the currently reported PPy nano-structures, as well as most other MA nano-materials. Through changing the amount of surfactant, both the nano-structures and MA performance can be effectively regulated. Furthermore, the reason behind the high-performance MA of PPy nano-ribbons has been deeply explored. It opens up the opportunity for the application of conducting polymer nano-ribbons as a lightweight and tunable high-performance MA material, especially in applications of special aircraft and flexible electronics.

  17. Graphene Oxide Nanoribbon as Hole Extraction Layer to Enhance Efficiency and Stability of Polymer Solar Cells

    DTIC Science & Technology

    2013-01-01

    Oxide Nanoribbon as Hole Extraction Layer to Enhance Effi ciency and Stability of Polymer Solar Cells Jun Liu , Gi-Hwan Kim , Yuhua Xue , Jin...circumvented by oxidizing graphene with acids (e.g., H 2 SO 4 /KMnO 4 ) to produce graphene oxide (GO) with oxygen-containing groups (e.g., –COOH, –OH...introducing the oxygen-rich groups around a graphene nanoribbon, the resultant graphene oxide nanoribbon (GOR) should show a synergistic effect to have

  18. Plasmons in spatially separated double-layer graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Bagheri, Mehran; Bahrami, Mousa

    2014-05-01

    Motivated by innovative progresses in designing multi-layer graphene nanostructured materials in the laboratory, we theoretically investigate the Dirac plasmon modes of a spatially separated double-layer graphene nanoribbon system, made up of a vertically offset armchair and metallic graphene nanoribbon pair. We find striking features of the collective excitations in this novel Coulomb correlated system, where both nanoribbons are supposed to be either intrinsic (undoped/ungated) or extrinsic (doped/gated). In the former, it is shown the low-energy acoustical and the high-energy optical plasmon modes are tunable only by the inter-ribbon charge separation. In the later, the aforementioned plasmon branches are modified by the added doping factor. As a result, our model could be useful to examine the existence of a linear Landau-undamped low-energy acoustical plasmon mode tuned via the inter-ribbon charge separation as well as doping. This study might also be utilized for devising novel quantum optical waveguides based on the Coulomb coupled graphene nanoribbons.

  19. Symmetrical metallic and magnetic edge states of nanoribbon from semiconductive monolayer PtS2

    NASA Astrophysics Data System (ADS)

    Liu, Shan; Zhu, Heyu; Liu, Ziran; Zhou, Guanghui

    2018-03-01

    Transition metal dichalcogenides (TMD) MoS2 or graphene could be designed to metallic nanoribbons, which always have only one edge show metallic properties due to symmetric protection. In present work, a nanoribbon with two parallel metallic and magnetic edges was designed from a noble TMD PtS2 by employing first-principles calculations based on density functional theory (DFT). Edge energy, bonding charge density, band structure, density of states (DOS) and simulated scanning tunneling microscopy (STM) of four possible edge states of monolayer semiconductive PtS2 were systematically studied. Detailed calculations show that only Pt-terminated edge state among four edge states was relatively stable, metallic and magnetic. Those metallic and magnetic properties mainly contributed from 5d orbits of Pt atoms located at edges. What's more, two of those central symmetric edges coexist in one zigzag nanoribbon, which providing two atomic metallic wires thus may have promising application for the realization of quantum effects, such as Aharanov-Bohm effect and atomic power transmission lines in single nanoribbon.

  20. Controlled Sculpture of Black Phosphorus Nanoribbons

    DOE PAGES

    Masih Das, Paul; Danda, Gopinath; Cupo, Andrew; ...

    2016-05-18

    Black phosphorus (BP) is a highly anisotropic allotrope of phosphorus with high promise for fast functional electronics and optoelectronics. We demonstrate that high-resolution and controlled structural modification of few-layer BP along arbitrary crystal direction can be achieved with nanometer-scale precision on a few-minute timescales leading to the formation of sub-nm wide armchair and zigzag BP nanoribbons. The nanoribbons are assembled, along with nanopores and nanogaps, using a combination of mechanical-liquid exfoliation and in situ transmission electron microscope (TEM) and scanning TEM nanosculpting. Here we report time-dependent structural properties of the one-dimensional systems under electron irradiation and probe their oxidation propertiesmore » with electron energy-loss spectroscopy (EELS). Finally, we demonstrate the use of STEM to controllably narrow and thin the nanoribbons until they break into nanogaps. The observations are rationalized using density functional theory for transition state calculations and electronic band-structure evolution for the various stages of the narrowing procedure. In particular, we predict that the sub- and few-nm wide BP nanoribbons realized experimentally possess clear one-dimensional quantum confinement, even when the systems are made up of a few layers. We find the demonstration of this procedure is key for the development of BP-based electronic, optoelectronic, thermoelectric, and other applications in reduced dimensions.« less

  1. Closed-edged bilayer phosphorene nanoribbons producing from collapsing armchair phosphorene nanotubes.

    PubMed

    Liao, Xiangbiao; Xiao, Hang; Lu, Xiaobo; Chen, Youlong; Shi, Xiaoyang; Chen, Xi

    2018-02-23

    A new phosphorous allotrope, closed-edged bilayer phosphorene nanoribbon, is proposed via radially deforming armchair phosphorene nanotubes. Using molecular dynamics simulations, the transformation pathway from round PNTs falls into two types of collapsed structures: arc-like and sigmoidal bilayer nanoribbons, dependent on the number of phosphorene unit cells. The fabricated nanoribbions are energetically more stable than their parent nanotubes. It is also found via ab initio calculations that the band structure along tube axis substantially changes with the structural transformation. The direct-to-indirect transition of band gap is highlighted when collapsing into the arc-like nanoribbons but not the sigmoidal ones. Furthermore, the band gaps of these two types of nanoribbons show significant size-dependence of the nanoribbon width, indicative of wider tunability of their electrical properties.

  2. Plasmon Modes of Graphene Nanoribbons with Periodic Planar Arrangements

    NASA Astrophysics Data System (ADS)

    Vacacela Gomez, C.; Pisarra, M.; Gravina, M.; Pitarke, J. M.; Sindona, A.

    2016-09-01

    Among their amazing properties, graphene and related low-dimensional materials show quantized charge-density fluctuations—known as plasmons—when exposed to photons or electrons of suitable energies. Graphene nanoribbons offer an enhanced tunability of these resonant modes, due to their geometrically controllable band gaps. The formidable effort made over recent years in developing graphene-based technologies is however weakened by a lack of predictive modeling approaches that draw upon available ab initio methods. An example of such a framework is presented here, focusing on narrow-width graphene nanoribbons, organized in periodic planar arrays. Time-dependent density-functional calculations reveal unprecedented plasmon modes of different nature at visible to infrared energies. Specifically, semimetallic (zigzag) nanoribbons display an intraband plasmon following the energy-momentum dispersion of a two-dimensional electron gas. Semiconducting (armchair) nanoribbons are instead characterized by two distinct intraband and interband plasmons, whose fascinating interplay is extremely responsive to either injection of charge carriers or increase in electronic temperature. These oscillations share some common trends with recent nanoinfrared imaging of confined edge and surface plasmon modes detected in graphene nanoribbons of 100-500 nm width.

  3. N-Doped Hybrid Graphene and Boron Nitride Armchair Nanoribbons As Nonmagnetic Semiconductors with Widely Tunable Electronic Properties

    NASA Astrophysics Data System (ADS)

    Habibpour, Razieh; Kashi, Eslam; Vazirib, Raheleh

    2018-03-01

    The electronic and chemical properties of N-doped hybrid graphene and boron nitride armchair nanoribbons (N-doped a-GBNNRs) in comparison with graphene armchair nanoribbon (pristine a-GNR) and hybrid graphene and boron nitride armchair nanoribbon (C-3BN) are investigated using the density functional theory method. The results show that all the mentioned nanoribbons are nonmagnetic direct semiconductors and all the graphitic N-doped a-GBNNRs are n-type semiconductors while the rest are p-type semiconductors. The N-doped graphitic 2 and N-doped graphitic 3 structures have the lowest work function and the highest number of valence electrons (Lowdin charges) which confirms that they are effective for use in electronic device applications.

  4. All-Graphene Planar Self-Switching MISFEDs, Metal-Insulator-Semiconductor Field-Effect Diodes

    PubMed Central

    Al-Dirini, Feras; Hossain, Faruque M.; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2014-01-01

    Graphene normally behaves as a semimetal because it lacks a bandgap, but when it is patterned into nanoribbons a bandgap can be introduced. By varying the width of these nanoribbons this band gap can be tuned from semiconducting to metallic. This property allows metallic and semiconducting regions within a single Graphene monolayer, which can be used in realising two-dimensional (2D) planar Metal-Insulator-Semiconductor field effect devices. Based on this concept, we present a new class of nano-scale planar devices named Graphene Self-Switching MISFEDs (Metal-Insulator-Semiconductor Field-Effect Diodes), in which Graphene is used as the metal and the semiconductor concurrently. The presented devices exhibit excellent current-voltage characteristics while occupying an ultra-small area with sub-10 nm dimensions and an ultimate thinness of a single atom. Quantum mechanical simulation results, based on the Extended Huckel method and Nonequilibrium Green's Function Formalism, show that a Graphene Self-Switching MISFED with a channel as short as 5 nm can achieve forward-to-reverse current rectification ratios exceeding 5000. PMID:24496307

  5. Graphene nanoribbon as an elastic damper.

    PubMed

    Evazzade, Iman; Lobzenko, Ivan P; Saadatmand, Danial; Korznikova, Elena A; Zhou, Kun; Liu, Bo; Dmitriev, Sergey V

    2018-05-25

    Heterostructures composed of dissimilar two-dimensional nanomaterials can have nontrivial physical and mechanical properties which are potentially useful in many applications. Interestingly, in some cases, it is possible to create heterostructures composed of weakly and strongly stretched domains with the same chemical composition, as has been demonstrated for some polymer chains, DNA, and intermetallic nanowires supporting this effect of two-phase stretching. These materials, at relatively strong tension forces, split into domains with smaller and larger tensile strains. Within this region, average strain increases at constant tensile force due to the growth of the domain with the larger strain, at the expense of the domain with smaller strain. Here, the two-phase stretching phenomenon is described for graphene nanoribbons with the help of molecular dynamics simulations. This unprecedented feature of graphene that is revealed in our study is related to the peculiarities of nucleation and the motion of the domain walls separating the domains of different elastic strain. It turns out that the loading-unloading curves exhibit a hysteresis-like behavior due to the energy dissipation during the domain wall nucleation and motion. Here, we put forward the idea of implementing graphene nanoribbons as elastic dampers, efficiently converting mechanical strain energy into heat during cyclic loading-unloading through elastic extension where domains with larger and smaller strains coexist. Furthermore, in the regime of two-phase stretching, graphene nanoribbon is a heterostructure for which the fraction of domains with larger and smaller strain, and consequently its physical and mechanical properties, can be tuned in a controllable manner by applying elastic strain and/or heat.

  6. Graphene nanoribbon as an elastic damper

    NASA Astrophysics Data System (ADS)

    Evazzade, Iman; Lobzenko, Ivan P.; Saadatmand, Danial; Korznikova, Elena A.; Zhou, Kun; Liu, Bo; Dmitriev, Sergey V.

    2018-05-01

    Heterostructures composed of dissimilar two-dimensional nanomaterials can have nontrivial physical and mechanical properties which are potentially useful in many applications. Interestingly, in some cases, it is possible to create heterostructures composed of weakly and strongly stretched domains with the same chemical composition, as has been demonstrated for some polymer chains, DNA, and intermetallic nanowires supporting this effect of two-phase stretching. These materials, at relatively strong tension forces, split into domains with smaller and larger tensile strains. Within this region, average strain increases at constant tensile force due to the growth of the domain with the larger strain, at the expense of the domain with smaller strain. Here, the two-phase stretching phenomenon is described for graphene nanoribbons with the help of molecular dynamics simulations. This unprecedented feature of graphene that is revealed in our study is related to the peculiarities of nucleation and the motion of the domain walls separating the domains of different elastic strain. It turns out that the loading–unloading curves exhibit a hysteresis-like behavior due to the energy dissipation during the domain wall nucleation and motion. Here, we put forward the idea of implementing graphene nanoribbons as elastic dampers, efficiently converting mechanical strain energy into heat during cyclic loading–unloading through elastic extension where domains with larger and smaller strains coexist. Furthermore, in the regime of two-phase stretching, graphene nanoribbon is a heterostructure for which the fraction of domains with larger and smaller strain, and consequently its physical and mechanical properties, can be tuned in a controllable manner by applying elastic strain and/or heat.

  7. Ferromagnetism regulated by edged cutting and optical identification in monolayer PtSe2 nanoribbons

    NASA Astrophysics Data System (ADS)

    Meng, Ming; Zhang, QiZhen; Wang, Lifen; Shan, Yun; Du, Yuandong; Qin, Nan; Liu, Lizhe

    2018-06-01

    Regulation of ferromagnetism and electronic structure in PtSe2 nanostructures has attracted much attention because of its potential in spintronics. The magnetic and optical properties of PtSe2 nanoribbons with different edge reconstruction and external deformations are calculated by density function theory. In 1 T phase PtSe2 nanoribbons, the ferromagnetism induced by spin polarization of exposed Pt or Se atoms is decreased with the reducing nanoribbon width. For smaller nanoribbon, the magnetism can be regulated by external strain more easily. However, the magnetism cannot occur in 1 H phase PtSe2 nanoribbon. The absorption spectra are suggested to identify the nanoribbon structural changes in detail. Our results suggest the use of edge reconstruction and strain engineering in spintronics applications.

  8. Spin-dependent Seebeck effects in a graphene nanoribbon coupled to two square lattice ferromagnetic leads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Benhu, E-mail: zhoubenhu@163.com; Zeng, Yangsu; Zhou, Benliang

    We theoretically investigate spin-dependent Seebeck effects for a system consisting of a narrow graphene nanoribbon (GNR) contacted to square lattice ferromagnetic (FM) electrodes with noncollinear magnetic moments. Both zigzag-edge graphene nanoribbons (ZGNRs) and armchair-edge graphene nanoribbons (AGNRs) were considered. Compared with our previous work with two-dimensional honeycomb-lattice FM leads, a more realistic model of two-dimensional square-lattice FM electrodes is adopted here. Using the nonequilibrium Green's function method combining with the tight-binding Hamiltonian, it is demonstrated that both the charge Seebeck coefficient S{sub C} and the spin-dependent Seebeck coefficient S{sub S} strongly depend on the geometrical contact between the GNR andmore » the leads. In our previous work, S{sub C} for a semiconducting 15-AGNR system near the Dirac point is two orders of magnitude larger than that of a metallic 17-AGNR system. However, S{sub C} is the same order of magnitude for both metallic 17-AGNR and semiconducting 15-AGNR systems in the present paper because of the lack of a transmission energy gap for the 15-AGNR system. Furthermore, the spin-dependent Seebeck coefficient S{sub S} for the systems with 20-ZGNR, 17-AGNR, and 15-AGNR is of the same order of magnitude and its maximum absolute value can reach 8 μV/K. The spin-dependent Seebeck effects are not very pronounced because the transmission coefficient weakly depends on spin orientation. Moreover, the spin-dependent Seebeck coefficient is further suppressed with increasing angle between the relative alignments of magnetization directions of the two leads. Additionally, the spin-dependent Seebeck coefficient can be strongly suppressed for larger disorder strength. The results obtained here may provide valuable theoretical guidance in the experimental design of heat spintronic devices.« less

  9. Symmetries and band gaps in nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwei; Tian, Yiteng; Fernando, Gayanath; Kocharian, Armen

    In ideal graphene-like systems, time reversal and sublattice symmetries preserve the degeneracies at the Dirac point(s). We have examined such degeneracies in the band structure as well as the transport properties in various arm-twisted (graphene-related) nanoribbons. A twist angle is defined such that at 0 degrees the ribbon is a rectangular ribbon and at 60 degrees the ribbon is cut from a honeycomb lattice. Using model Hamiltonians and first principles calculations in these nanoribbons with Z2 topology, we have monitored the band structure as a function of the twist angle θ. In twisted ribbons, it turns out that the introduction of an extra hopping term leads to a gap opening. We have also calculated the size and temperature broadening effects in similar ribbons in addition to Rashba-induced transport properties. The authors acknowledge the computing facilities provided by the Center for Functional Nanomaterials, Brookhaven National Laboratory supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No.DE-AC02- 98CH10886.

  10. Sub-5 nm, globally aligned graphene nanoribbons on Ge(001)

    DOE PAGES

    Kiraly, Brian; Mannix, Andrew J.; Jacobberger, Robert M.; ...

    2016-05-23

    Graphene nanoribbons (GNRs) hold great promise for future electronics because of their edge and width dependent electronic bandgaps and exceptional transport properties. While significant progress toward such devices has been made, the field has been limited by difficulties achieving narrow widths, global alignment, and atomically pristine GNR edges on technologically relevant substrates. A recent advance has challenged these limits by using Ge(001) substrates to direct the bottom-up growth of GNRs with nearly pristine armchair edges and widths near ~10 nm via atmospheric pressure chemical vapor deposition. In this work, we extend the growth of GNRs on Ge(001) to ultra-high vacuummore » conditions and realize GNRs narrower than 5 nm. Armchair graphene nanoribbons directed along the Ge <110> surface directions are achieved with excellent width control and relatively large bandgaps. As a result, the bandgap magnitude and electronic uniformity make these new materials excellent candidates for future developments in nanoelectronics.« less

  11. Excellent Thermoelectric Properties in monolayer WSe2 Nanoribbons due to Ultralow Phonon Thermal Conductivity.

    PubMed

    Wang, Jue; Xie, Fang; Cao, Xuan-Hao; An, Si-Cong; Zhou, Wu-Xing; Tang, Li-Ming; Chen, Ke-Qiu

    2017-01-25

    By using first-principles calculations combined with the nonequilibrium Green's function method and phonon Boltzmann transport equation, we systematically investigate the influence of chirality, temperature and size on the thermoelectric properties of monolayer WSe 2 nanoribbons. The results show that the armchair WSe 2 nanoribbons have much higher ZT values than zigzag WSe 2 nanoribbons. The ZT values of armchair WSe 2 nanoribbons can reach 1.4 at room temperature, which is about seven times greater than that of zigzag WSe 2 nanoribbons. We also find that the ZT values of WSe 2 nanoribbons increase first and then decrease with the increase of temperature, and reach a maximum value of 2.14 at temperature of 500 K. It is because the total thermal conductance reaches the minimum value at 500 K. Moreover, the impact of width on the thermoelectric properties in WSe 2 nanoribbons is not obvious, the overall trend of ZT value decreases lightly with the increasing temperature. This trend of ZT value originates from the almost constant power factor and growing phonon thermal conductance.

  12. Finding the hidden valence band of N  =  7 armchair graphene nanoribbons with angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Senkovskiy, Boris V.; Usachov, Dmitry Yu; Fedorov, Alexander V.; Haberer, Danny; Ehlen, Niels; Fischer, Felix R.; Grüneis, Alexander

    2018-07-01

    To understand the optical and transport properties of graphene nanoribbons, an unambiguous determination of their electronic band structure is needed. In this work we demonstrate that the photoemission intensity of each valence sub-band, formed due to the quantum confinement in quasi-one-dimensional (1D) graphene nanoribbons, is a peaked function of the two-dimensional (2D) momentum. We resolve the long-standing discrepancy regarding the valence band effective mass () of armchair graphene nanoribbons with a width of N  =  7 carbon atoms (7-AGNRs). In particular, angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy report   ≈0.2 and  ≈0.4 of the free electron mass (m e ), respectively. ARPES mapping in the full 2D momentum space identifies the experimental conditions for obtaining a large intensity for each of the three highest valence 1D sub-bands. Our detail map reveals that previous ARPES experiments have incorrectly assigned the second sub-band as the frontier one. The correct frontier valence sub-band for 7-AGNRs is only visible in a narrow range of emission angles. For this band we obtain an ARPES derived effective mass of 0.4 m e , a charge carrier velocity in the linear part of the band of 0.63  ×  106 m s‑1 and an energy separation of only  ≈60 meV to the second sub-band. Our results are of importance not only for the growing research field of graphene nanoribbons but also for the community, which studies quantum confined systems.

  13. Negative differential resistance and magnetoresistance in zigzag borophene nanoribbons

    NASA Astrophysics Data System (ADS)

    Liu, Jiayi; Wu, Jiaxin; Chen, Changpeng; Han, Lu; Zhu, Ziqing; Wu, Jinping

    2018-02-01

    Since borophene has been grown experimentally, its extraordinary characteristics have attracted more and more attentions. In this paper, we construct pristine zigzag-edged borophene nanoribbons (ZBNRs) of different widths to study the transport properties, using the first-principles calculations. The differences of the quantum transport properties are discussed, where even-N ZBNRs and odd-N ZBNRs have different current-voltage relationships. Especially, the negative differential resistance (NDR) can be observed within certain bias range in 5-ZBNR and 7-ZBNR, while 6-ZBNR behaves like a metal whose current rises with the increase of the voltage. Moreover, borophene nanoribbon shows interesting magnetic transport properties. The spin-filtering effect can be revealed when the two electrodes have opposite magnetization directions. Besides, the magnetoresistance effect appears to exist in even-N ZBNRs and the maximum value can reach 70%. The mechanisms of these phenomena are proposed in detail.

  14. Pre-patterned ZnO nanoribbons on soft substrates for stretchable energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Ma, Teng; Wang, Yong; Tang, Rui; Yu, Hongyu; Jiang, Hanqing

    2013-05-01

    Three pre-patterned ZnO nanoribbons in different configurations were studied in this paper, including (a) straight ZnO nanoribbons uniformly bonded on soft substrates that form sinusoidal buckles, (b) straight ZnO nanoribbons selectively bonded on soft substrates that form pop-up buckles, and (c) serpentine ZnO nanoribbons bonded on soft substrates via anchors. The nonlinear dynamics and random analysis were conducted to obtain the fundamental frequencies and to evaluate their performance in energy harvesting applications. We found that pop-up buckles and overhanging serpentine structures are suitable for audio frequency energy harvesting applications. Remarkably, almost unchanged fundamental natural frequency upon strain is achieved by properly patterning ZnO nanoribbons, which initiates a new and exciting direction of stretchable energy harvesting using nano-scale materials in audio frequency range.

  15. Negative differential resistance and effect of defects and deformations in MoS{sub 2} armchair nanoribbon metal-oxide-semiconductor field effect transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Amretashis, E-mail: amretashis@dese.iisc.ernet.in; Mahapatra, Santanu

    In this work, we present a study on the negative differential resistance (NDR) behavior and the impact of various deformations (like ripple, twist, wrap) and defects like vacancies and edge roughness on the electronic properties of short-channel MoS{sub 2} armchair nanoribbon MOSFETs. The effect of deformation (3°–7° twist or wrap and 0.3–0.7 Å ripple amplitude) and defects on a 10 nm MoS2 ANR FET is evaluated by the density functional tight binding theory and the non-equilibrium Green's function approach. We study the channel density of states, transmission spectra, and the I{sub D}–V{sub D} characteristics of such devices under the varying conditions, withmore » focus on the NDR behavior. Our results show significant change in the NDR peak to valley ratio and the NDR window with such minor intrinsic deformations, especially with the ripple.« less

  16. Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition.

    PubMed

    Sokolov, Anatoliy N; Yap, Fung Ling; Liu, Nan; Kim, Kwanpyo; Ci, Lijie; Johnson, Olasupo B; Wang, Huiliang; Vosgueritchian, Michael; Koh, Ai Leen; Chen, Jihua; Park, Jinseong; Bao, Zhenan

    2013-01-01

    Graphene, laterally confined within narrow ribbons, exhibits a bandgap and is envisioned as a next-generation material for high-performance electronics. To take advantage of this phenomenon, there is a critical need to develop methodologies that result in graphene ribbons <10 nm in width. Here we report the use of metal salts infused within stretched DNA as catalysts to grow nanoscopic graphitic nanoribbons. The nanoribbons are termed graphitic as they have been determined to consist of regions of sp(2) and sp(3) character. The nanoscopic graphitic nanoribbons are micrometres in length, <10 nm in width, and take on the shape of the DNA template. The DNA strand is converted to a graphitic nanoribbon by utilizing chemical vapour deposition conditions. Depending on the growth conditions, metallic or semiconducting graphitic nanoribbons are formed. Improvements in the growth method have potential to lead to bottom-up synthesis of pristine single-layer graphene nanoribbons.

  17. Multiple heteroatom substitution to graphene nanoribbon

    PubMed Central

    Meyer, Ernst

    2018-01-01

    Substituting heteroatoms into nanostructured graphene elements, such as graphene nanoribbons, offers the possibility for atomic engineering of electronic properties. To characterize these substitutions, functionalized atomic force microscopy (AFM)—a tool to directly resolve chemical structures—is one of the most promising tools, yet the chemical analysis of heteroatoms has been rarely performed. We synthesized multiple heteroatom-substituted graphene nanoribbons and showed that AFM can directly resolve elemental differences and can be correlated to the van der Waals radii, as well as the modulated local electron density caused by the substitution. This elemental-sensitive measurement takes an important step in the analysis of functionalized two-dimensional carbon materials. PMID:29662955

  18. Graphene nanoribbon field effect transistor for nanometer-size on-chip temperature sensor

    NASA Astrophysics Data System (ADS)

    Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura

    2016-04-01

    Graphene has been extensively investigated as a promising material for various types of high performance sensors due to its large surface-to-volume ratio, remarkably high carrier mobility, high carrier density, high thermal conductivity, extremely high mechanical strength and high signal-to-noise ratio. The power density and the corresponding die temperature can be tremendously high in scaled emerging technology designs, urging the on-chip sensing and controlling of the generated heat in nanometer dimensions. In this paper, we have explored the feasibility of a thin oxide graphene nanoribbon (GNR) as nanometer-size temperature sensor for detecting local on-chip temperature at scaled bias voltages of emerging technology. We have introduced an analytical model for GNR FET for 22nm technology node, which incorporates both thermionic emission of high-energy carriers and band-to-band-tunneling (BTBT) of carriers from drain to channel regions together with different scattering mechanisms due to intrinsic acoustic phonons and optical phonons and line-edge roughness in narrow GNRs. The temperature coefficient of resistivity (TCR) of GNR FET-based temperature sensor shows approximately an order of magnitude higher TCR than large-area graphene FET temperature sensor by accurately choosing of GNR width and bias condition for a temperature set point. At gate bias VGS = 0.55 V, TCR maximizes at room temperature to 2.1×10-2 /K, which is also independent of GNR width, allowing the design of width-free GNR FET for room temperature sensing applications.

  19. Nano Peltier cooling device from geometric effects using a single graphene nanoribbon

    NASA Astrophysics Data System (ADS)

    Li, Wan-Ju; Yao, Dao-Xin; Carlson, Erica

    2012-02-01

    Based on the phenomenon of curvature-induced doping in graphene we propose a class of Peltier cooling devices, produced by geometrical effects, without gating. We show how a graphene nanoribbon laid on an array of curved nano cylinders can be used to create a targeted cooling device. Using theoretical calculations and experimental inputs, we predict that the cooling power of such a device can approach 1kW/cm^2, on par with the best known techniques using standard lithography methods. The structure proposed here helps pave the way toward designing graphene electronics which use geometry rather than gating to control devices.

  20. Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons

    PubMed Central

    Tan, Yuan-Zhi; Yang, Bo; Parvez, Khaled; Narita, Akimitsu; Osella, Silvio; Beljonne, David; Feng, Xinliang; Müllen, Klaus

    2013-01-01

    Chemical functionalization is one of the most powerful and widely used strategies to control the properties of nanomaterials, particularly in the field of graphene. However, the ill-defined structure of the present functionalized graphene inhibits atomically precise structural characterization and structure-correlated property modulation. Here we present a general edge chlorination protocol for atomically precise functionalization of nanographenes at different scales from 1.2 to 3.4 nm and its application in graphene nanoribbons. The well-defined edge chlorination is unambiguously confirmed by X-ray single-crystal analysis, which also discloses the characteristic non-planar molecular shape and detailed bond lengths of chlorinated nanographenes. Chlorinated nanographenes and graphene nanoribbons manifest enhanced solution processability associated with decreases in the optical band gap and frontier molecular orbital energy levels, exemplifying the structure-correlated property modulation by precise edge chlorination. PMID:24212200

  1. Magnetic, electronic and optical properties of different graphene, BN and BC2N nanoribbons

    NASA Astrophysics Data System (ADS)

    Guerra, T.; Leite, L.; Azevedo, S.; de Lima Bernardo, B.

    2017-04-01

    Graphene nanoribbons are predicted to be essential components in future nanoelectronics. The size, edge type, form, arrangement of atoms and width of nanoribbons drastically change their properties. However, magnetic, electronic and optical properties of armchair, chevron and sawtooth of graphene, BN and BC2N nanoribbons are not fully understood so far. Here, we make use of first-principles calculations based on the density functional theory (DFT) to investigate the structural, magnetic, electronic and optical properties of nanoribbons of graphene, boron nitride and BC2N with armchair edge, chevron-type and sawtooth forms. The lowest formation energies were found for the armchair and chevron nanoribbons of graphene and boron nitride. We have shown that the imbalance of carbon atoms between different sublattices generates a net magnetic moment. Chevron-type nanoribbons of BC2N and graphene showed a band gap comparable with silicon, and a high light absorption in the visible spectrum when compared to the other configurations.

  2. Optical properties of monolayer MoS2 nanoribbons

    NASA Astrophysics Data System (ADS)

    Wei, Guohua; Lenferink, Erik J.; Stern, Nathaniel P.

    Confinement of carriers in semiconductors is a powerful mechanism for manipulating optical and electronic properties of materials. Although atomically-thin monolayer semiconductors such as transition metal dichalcogenides naturally confine carriers in the out-of-plane direction, achieving appreciable confinement effects in the in-plane dimensions is less well-studied because their optical processes are dominated by tightly bound excitons. In earlier work, we have shown that lateral confinement effects can be controlled in monolayer MoS2 using high-resolution top-down nanopatterning. Here, we use similar techniques to create monolayer MoS2 nanoribbons that exhibit size-tunable photoluminescence and anisotropic Raman scattering. Our process also allows characterization of transport properties of the nanoribbons. This approach demonstrates how dimensionality influences monolayer semiconductors, which could impact charge and valley dynamics relevant to nano-scale opto-electronic devices. This work is supported by ISEN and ONR (N00014-16-1-3055). Use of the Center for Nanoscale Materials was supported by DOE Contract No. DE-AC02-06CH11357. N.P.S. is an Alfred P. Sloan Research Fellow.

  3. Electronic Structures of Silicene Nanoribbons: Two-Edge-Chemistry Modification and First-Principles Study.

    PubMed

    Yao, Yin; Liu, Anping; Bai, Jianhui; Zhang, Xuanmei; Wang, Rui

    2016-12-01

    In this paper, we investigate the structural and electronic properties of zigzag silicene nanoribbons (ZSiNRs) with edge-chemistry modified by H, F, OH, and O, using the ab initio density functional theory method and local spin-density approximation. Three kinds of spin polarized configurations are considered: nonspin polarization (NM), ferromagnetic spin coupling for all electrons (FM), ferromagnetic ordering along each edge, and antiparallel spin orientation between the two edges (AFM). The H, F, and OH groups modified 8-ZSiNRs have the AFM ground state. The directly edge oxidized (O1) ZSiNRs yield the same energy and band structure for NM, FM, and AFM configurations, owning to the same s p (2) hybridization. And replacing the Si atoms on the two edges with O atoms (O2) yields FM ground state. The edge-chemistry-modified ZSiNRs all exhibit metallic band structures. And the modifications introduce special edge state strongly localized at the Si atoms in the edge, except for the O1 form. The modification of the zigzag edges of silicene nanoribbons is a key issue to apply the silicene into the field effect transistors (FETs) and gives more necessity to better understand the experimental findings.

  4. Structural, electronic and magnetic properties of chevron-type graphene, BN and BC2N nanoribbons

    NASA Astrophysics Data System (ADS)

    Guerra, T.; Azevedo, S.; Kaschny, J. R.

    2017-04-01

    Graphene nanoribbons are predicted to be essential components in future nanoelectronics. The size, edge type, arrangement of atoms and width of nanoribbons drastically change their properties. Boronnitrogencarbon nanoribbons properties are not fully understood so far. In the present contribution it was investigated the structural, electronic and magnetic properties of chevron-type carbon, boron nitride and BC2N nanoribbons, using first-principles calculations. The results indicate that the structural stability is closely related to the discrepancies in the bond lengths, which can induce structural deformations and stress. Such nanoribbons present a wide range of electronic behaviors, depending on their composition and particularities of the atomic arrangement. A net magnetic moment is found for structures that present carbon atoms at the nanoribbon borders. Nevertheless, the calculated magnetic moment depends on the peculiarities of the symmetric arrangement of atoms and imbalance of carbon atoms between different sublattices. It was found that all structures which have a significant energy gap do not present magnetic moment, and vice-versa. Such result indicates the strong correlation between the electronic and magnetic properties of the chevron-type nanoribbons.

  5. Polarity control of h-BN nanoribbon edges by strain and edge termination.

    PubMed

    Yamanaka, Ayaka; Okada, Susumu

    2017-03-29

    We studied the polarity of h-BN nano-flakes in terms of their edge geometries, edge hydrogen termination, and uniaxial strain by evaluating their electrostatic potential using density functional theory. Our calculations have shown that the polarity of the nanoribbons is sensitive to their edge shape, edge termination, and uniaxial tensile strain. Polarity inversion of the ribbons can be induced by controlling the hydrogen concentration at the edges and the uniaxial tensile strain. The polarity inversion indicates that h-BN nanoribbons can exhibit non-polar properties at a particular edge hydrogen concentration and tensile strain, even though the nanoribbons essentially have polarity at the edge. We also found that the edge angle affects the polarity of nanoribbons with hydrogenated edges.

  6. Effect of edge modification on the zigzag BC2N nanoribbons

    NASA Astrophysics Data System (ADS)

    Xiao, Xiang; Li, Hong; Tie, Jun; Lu, Jing

    2016-08-01

    We use first principles calculations to investigate the effects of edge modification with nonmetal species on zigzag-edged BC2N nanoribbons (ZBC2NNRs). These ZBC2NNRs show either semiconducting or metallic behaviors depending on the edge modifications and ribbon widths. We find that the O-modification induces a ferromagnetic ground state with a metallic behavior for all the ribbon widths investigated. And when the ribbon width is more than 3.32 nm (NZ ⩾ 16), an antiferromagnetic ground state with a half-metallic behavior is realized in the H-passivated ZBC2NNRs. These versatile electronic properties render the ZBC2NNRs a promising candidate material in nanoelectronics and nanospintronics.

  7. Matching 4.7-Å XRD spacing in amelogenin nanoribbons and enamel matrix.

    PubMed

    Sanii, B; Martinez-Avila, O; Simpliciano, C; Zuckermann, R N; Habelitz, S

    2014-09-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. © International & American Associations for Dental Research.

  8. Matching 4.7-Å XRD Spacing in Amelogenin Nanoribbons and Enamel Matrix

    PubMed Central

    Sanii, B.; Martinez-Avila, O.; Simpliciano, C.; Zuckermann, R.N.; Habelitz, S.

    2014-01-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. PMID:25048248

  9. Buckling-dependent switching behaviours in shifted bilayer germanene nanoribbons: A computational study

    NASA Astrophysics Data System (ADS)

    Arjmand, T.; Tagani, M. Bagheri; Soleimani, H. Rahimpour

    2018-01-01

    Bilayer germanene nanoribbons are investigated in different stacks like buckled and flat armchair and buckled zigzag germanene nanoribbons by performing theoretical calculations using the nonequilibrium Greens function method combined with density functional theory. In these bilayer types, the current oscillates with change of interlayer distances or intra-layer overlaps and is dependent on the type of the bilayer. Band gap of AA-stacked of shifted flat bilayer armchair germanene nanoribbon oscillates by change of interlayer distance which is in contrast to buckled bilayer armchair germanene nanoribbon. So, results show the buckling makes system tend to be a semiconductor with wide band gap. Therefore, AA-stacked of shifted flat bilayer armchair germanene nanoribbon has properties between zigzag and armchair edges, the higher current under bias voltages similar to zigzag edge and also oscillations in current like buckled armchair edges. Also, it is found that HOMO-LUMO band gap strongly affects oscillation in currents and their I-V characteristic. This kind of junction improves the switching properties at low voltages around the band gap.

  10. Low-temperature growth and photoluminescence property of ZnS nanoribbons.

    PubMed

    Zhang, Zengxing; Wang, Jianxiong; Yuan, Huajun; Gao, Yan; Liu, Dongfang; Song, Li; Xiang, Yanjuan; Zhao, Xiaowei; Liu, Lifeng; Luo, Shudong; Dou, Xinyuan; Mou, Shicheng; Zhou, Weiya; Xie, Sishen

    2005-10-06

    At a low temperature of 450 degrees C, ZnS nanoribbons have been synthesized on Si and KCl substrates by a simple chemical vapor deposition (CVD) method with a two-temperature-zone furnace. Zinc and sulfur powders are used as sources in the different temperature zones. X-ray diffraction (XRD), selected area electron diffraction (SEAD), and transmission electron microscopy (TEM) analysis show that the ZnS nanoribbons are the wurtzite structure, and there are two types-single-crystal and bicrystal nanoribbons. Photoluminescence (PL) spectrum shows that the spectrum mainly includes two parts: a purple emission band centering at about 390 nm and a blue emission band centering at about 445 nm with a weak green shoulder around 510 nm.

  11. Enhanced thermoelectric performance of graphene nanoribbon-based devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Md Sharafat, E-mail: hossain@student.unimelb.edu.au; Huynh, Duc Hau; Nguyen, Phuong Duc

    There have been numerous theoretical studies on exciting thermoelectric properties of graphene nano-ribbons (GNRs); however, most of these studies are mainly based on simulations. In this work, we measure and characterize the thermoelectric properties of GNRs and compare the results with theoretical predictions. Our experimental results verify that nano-structuring and patterning graphene into nano-ribbons significantly enhance its thermoelectric power, confirming previous predictions. Although patterning results in lower conductance (G), the overall power factor (S{sup 2}G) increases for nanoribbons. We demonstrate that edge roughness plays an important role in achieving such an enhanced performance and support it through first principles simulations.more » We show that uncontrolled edge roughness, which is considered detrimental in GNR-based electronic devices, leads to enhanced thermoelectric performance of GNR-based thermoelectric devices. The result validates previously reported theoretical studies of GNRs and demonstrates the potential of GNRs for the realization of highly efficient thermoelectric devices.« less

  12. Electronic and magnetic properties of MoSe2 armchair nanoribbons controlled by the different edge structures

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zhao, Xu; Gao, Yonghui; Wang, Haiyang; Wang, Tianxing; Wei, Shuyi

    2018-03-01

    Tow-dimensional materials obviously have potential applications in next-generation nanodevices because of their extraordinary physical and chemical properties and the demands of the market. Using first-principle calculation based on density functional theory, we explore electronic and magnetic properties of the different nanoribbons with various edge structures, namely, with hydrogenation or not. In addition, we also calculate the binding energy to analyze the stability of the nanoribbon. Our calculations tell us that the passivated nanoribbons have the positive binding energies, which indicates the passivated nanoribbons are relative stable and hydrogenation can improve the stability of the bare nanoribbons due to the reduction of the dangling bonds. Among of them, full hydrogenation has the highest stability. We find all the nanoribbons with full and without hydrogenation are nonmagnetic semiconductors. It is worth mentioning that hydrogenation can induce the bare nanoribbons to transform gradually from indirect band gap semiconductor to direct band gap semiconductor, even to half-metal. In addition, the magnetic moment of the bare nanoribbon change bit by bit as the rate of hydrogenation increases. When the edge atoms are fully hydrogenated, the magnetic moment return to zero. What's more, our research results still confirm that electronic and magnetic properties of the nanorribons without and with different edge passivation are mainly contributed by the atoms at the edges. These studies about MoSe2 nanoribbons will shed light on the further development of the relevant nanodevices in versatile applications, such as spintronics and energy harvesting.

  13. On the buckling of hexagonal boron nitride nanoribbons via structural mechanics

    NASA Astrophysics Data System (ADS)

    Giannopoulos, Georgios I.

    2018-03-01

    Monolayer hexagonal boron nitride nanoribbons have similar crystal structure as graphene nanoribbons, have excellent mechanical, thermal insulating and dielectric properties and additionally present chemical stability. These allotropes of boron nitride can be used in novel applications, in which graphene is not compatible, to achieve remarkable performance. The purpose of the present work is to provide theoretical estimations regarding the buckling response of hexagonal boron nitride monolayer under compressive axial loadings. For this reason, a structural mechanics method is formulated which employs the exact equilibrium atomistic structure of the specific two-dimensional nanomaterial. In order to represent the interatomic interactions appearing between boron and nitrogen atoms, the Dreiding potential model is adopted which is realized by the use of three-dimensional, two-noded, spring-like finite elements of appropriate stiffness matrices. The critical compressive loads that cause the buckling of hexagonal boron nitride nanoribbons are computed with respect to their size and chirality while some indicative buckled shapes of them are illustrated. Important conclusions arise regarding the effect of the size and chirality on the structural stability of the hexagonal boron nitride monolayers. An analytical buckling formula, which provides good fitting of the numerical outcome, is proposed.

  14. From Kondo to local singlet state in graphene nanoribbons with magnetic impurities

    NASA Astrophysics Data System (ADS)

    Diniz, G. S.; Luiz, G. I.; Latgé, A.; Vernek, E.

    2018-03-01

    A detailed analysis of the Kondo effect of a magnetic impurity in a zigzag graphene nanoribbon is addressed. An adatom is coupled to the graphene nanoribbon via a hybridization amplitude Γimp in a hollow- or top-site configuration. In addition, the adatom is also weakly coupled to a metallic scanning tunnel microscope (STM) tip by a hybridization function Γtip that provides a Kondo screening of its magnetic moment. The entire system is described by an Anderson-like Hamiltonian whose low-temperature physics is accessed by employing the numerical renormalization-group approach, which allows us to obtain the thermodynamic properties used to compute the Kondo temperature of the system. We find two screening regimes when the adatom is close to the edge of the zigzag graphene nanoribbon: (1) a weak-coupling regime (Γimp≪Γtip ), in which the edge states produce an enhancement of the Kondo temperature TK, and (2) a strong-coupling regime (Γimp≫Γtip ), in which a local singlet is formed, to the detriment of the Kondo screening by the STM tip. These two regimes can be clearly distinguished by the dependence of their characteristic temperature T* on the coupling between the adatom and the carbon sites of the graphene nanoribbon Vimp. We observe that in the weak-coupling regime T* increases exponentially with Vimp2. Differently, in the strong-coupling regime, T* increases linearly with Vimp2.

  15. Scanning tunneling microscopy of atomically precise graphene nanoribbons exfoliated onto H:Si(100)

    NASA Astrophysics Data System (ADS)

    Radocea, Adrian; Mehdi Pour, Mohammad; Vo, Timothy; Shekhirev, Mikhail; Sinitskii, Alexander; Lyding, Joseph

    Atomically precise graphene nanoribbons (GNRs) are promising materials for next generation transistors due to their well-controlled bandgaps and the high thermal conductivity of graphene. The solution synthesis of graphene nanoribbons offers a pathway towards scalable manufacturing. While scanning tunneling microscopy (STM) can access size scales required for characterization, solvent residue increases experimental difficulty and precludes band-gap determination via scanning tunneling spectroscopy (STS). Our work addresses this challenge through a dry contact transfer method that cleanly transfers solution-synthesized GNRs onto H:Si(100) under UHV using a fiberglass applicator. The semiconducting silicon surface avoids problems with image charge screening enabling intrinsic bandgap measurements. We characterize the nanoribbons using STM and STS. For chevron GNRs, we find a 1.6 eV bandgap, in agreement with computational modeling, and map the electronic structure spatially with detailed spectra lines and current imaging tunneling spectroscopy. Mapping the electronic structure of graphene nanoribbons is an important step towards taking advantage of the ability to form atomically precise nanoribbons and finely tune their properties.

  16. Structural, electronic and magnetic properties of chevron-type graphene, BN and BC{sub 2}N nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerra, T.; Azevedo, S.; Kaschny, J.R.

    2017-04-15

    Graphene nanoribbons are predicted to be essential components in future nanoelectronics. The size, edge type, arrangement of atoms and width of nanoribbons drastically change their properties. Boronnitrogencarbon nanoribbons properties are not fully understood so far. In the present contribution it was investigated the structural, electronic and magnetic properties of chevron-type carbon, boron nitride and BC{sub 2}N nanoribbons, using first-principles calculations. The results indicate that the structural stability is closely related to the discrepancies in the bond lengths, which can induce structural deformations and stress. Such nanoribbons present a wide range of electronic behaviors, depending on their composition and particularities ofmore » the atomic arrangement. A net magnetic moment is found for structures that present carbon atoms at the nanoribbon borders. Nevertheless, the calculated magnetic moment depends on the peculiarities of the symmetric arrangement of atoms and imbalance of carbon atoms between different sublattices. It was found that all structures which have a significant energy gap do not present magnetic moment, and vice-versa. Such result indicates the strong correlation between the electronic and magnetic properties of the chevron-type nanoribbons. - Highlights: • Small discrepancies between distinct bond lengths can influence the formation energy of the BC{sub 2}N nanoribbons. • The electronic behavior of the BC{sub 2}N chevron-type nanoribbons depends on the atomic arrangement and structural symmetries. • There is a strong correlation between the electronic and magnetic properties for the BC{sub 2}N structures.« less

  17. Electronic transport in graphene: p-n junctions, shot noise, and nanoribbons

    NASA Astrophysics Data System (ADS)

    Williams, James Ryan

    2009-12-01

    inhomogeneous magnetic field is proposed and its relationship to the minimum conductivity in graphene is discussed. A final pair of experiments demonstrate how a helium ion microscope can be used to reduce the dimensionality of graphene one further, producing graphene nanoribbons. The effect of etching on transport and doping level of the graphene nanoribbons is discussed.

  18. Exploring the formation and electronic structure properties of the g-C3N4 nanoribbon with density functional theory

    NASA Astrophysics Data System (ADS)

    Wu, Hong-Zhang; Zhong, Qing-Hua; Bandaru, Sateesh; Liu, Jin; Lau, Woon Ming; Li, Li-Li; Wang, Zhenling

    2018-04-01

    The optical properties and condensation degree (structure) of polymeric g-C3N4 depend strongly on the process temperature. For polymeric g-C3N4, its structure and condensation degree depend on the structure of molecular strand(s). Here, the formation and electronic structure properties of the g-C3N4 nanoribbon are investigated by studying the polymerization and crystallinity of molecular strand(s) employing first-principle density functional theory. The calculations show that the width of the molecular strand has a significant effect on the electronic structure of polymerized and crystallized g-C3N4 nanoribbons, a conclusion which would be indirect evidence that the electronic structure depends on the structure of g-C3N4. The edge shape also has a distinct effect on the electronic structure of the crystallized g-C3N4 nanoribbon. Furthermore, the conductive band minimum and valence band maximum of the polymeric g-C3N4 nanoribbon show a strong localization, which is in good agreement with the quasi-monomer characters. In addition, molecular strands prefer to grow along the planar direction on graphene. These results provide new insight on the properties of the g-C3N4 nanoribbon and the relationship between the structure and properties of g-C3N4.

  19. Exploring the formation and electronic structure properties of the g-C3N4 nanoribbon with density functional theory.

    PubMed

    Wu, Hong-Zhang; Zhong, Qing-Hua; Bandaru, Sateesh; Liu, Jin; Lau, Woon Ming; Li, Li-Li; Wang, Zhenling

    2018-04-18

    The optical properties and condensation degree (structure) of polymeric g-C 3 N 4 depend strongly on the process temperature. For polymeric g-C 3 N 4 , its structure and condensation degree depend on the structure of molecular strand(s). Here, the formation and electronic structure properties of the g-C 3 N 4 nanoribbon are investigated by studying the polymerization and crystallinity of molecular strand(s) employing first-principle density functional theory. The calculations show that the width of the molecular strand has a significant effect on the electronic structure of polymerized and crystallized g-C 3 N 4 nanoribbons, a conclusion which would be indirect evidence that the electronic structure depends on the structure of g-C 3 N 4 . The edge shape also has a distinct effect on the electronic structure of the crystallized g-C 3 N 4 nanoribbon. Furthermore, the conductive band minimum and valence band maximum of the polymeric g-C 3 N 4 nanoribbon show a strong localization, which is in good agreement with the quasi-monomer characters. In addition, molecular strands prefer to grow along the planar direction on graphene. These results provide new insight on the properties of the g-C 3 N 4 nanoribbon and the relationship between the structure and properties of g-C 3 N 4 .

  20. Manipulating the one-dimensional topological edge state of Bi bilayer nanoribbons via magnetic orientation and electric field

    NASA Astrophysics Data System (ADS)

    Kim, Jeongwoo; Wu, Ruqian

    2018-03-01

    Despite the superiority of two-dimensional (2D) topological insulators (TIs) over their three-dimensional (3D) counterparts in various aspects and the essential distinction between them in structural symmetry, the variation of the topological one-dimensional (1D) edge states upon magnetic interaction and their application for spintronic devices have not been sufficiently illuminated. Here, we reveal that 1D edge states of 2D TIs have a unique magnetic response never observed in 2D surface states of 3D TIs, and using this exotic nature we propose a way to utilize the spin-polarized channel for spintronic applications. We investigate the effects of width and magnetic decoration on the 1D topological edge state of Bi bilayer nanoribbons (BNRs). Through the Zak phase, we find that the zero-energy states are enforced at the magnetic domain boundaries in the Cr-decorated BNR and directly examine their robustness using short-range magnetic domain structures. We also demonstrate that 1D edge states of BNRs can be selectively and reversibly controlled by the combination of magnetic reorientation and electric field without compromising their structural integrity. Our work provides a fundamental understanding of 1D topological edge states and shows the opportunity of using these features in spintronic devices.

  1. Negative differential resistance and bias-modulated metal-to-insulator transition in zigzag C2N-h2D nanoribbon

    NASA Astrophysics Data System (ADS)

    He, Jing-Jing; Guo, Yan-Dong; Yan, Xiao-Hong

    2017-04-01

    Motivated by the fabrication of layered two-dimensional material C2N-h2D [Nat. Commun. 6, 6486 (2015)], we cut the single-layer C2N-h2D into a zigzag nanoribbon and perform a theoretical study. The results indicate that the band structure changes from semiconducting to metallic and a negative differential resistance effect occurs in the I-V curve. Interestingly, the current can be reduced to zero and this insulator-like state can be maintained as the bias increases. We find this unique property is originated from a peculiar band morphology, with only two subbands appearing around the Fermi level while others being far away. Furthermore the width and symmetry of the zigzag C2N-h2D nanoribbon can be used to tune the transport properties, such as cut-off bias and the maximum current. We also explore the electron transport property of an aperiodic model composed of two nanoribbons with different widths and obtain the same conclusion. This mechanism can be extended to other systems, e.g., hybrid BCN nanoribbons. Our discoveries suggest that the zigzag C2N-h2D nanoribbon has great potential in nanoelectronics applications.

  2. Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study.

    PubMed

    Bilić, A; Sanvito, S

    2013-07-10

    Pyrene, the smallest two-dimensional mesh of aromatic rings, with various terminal thiol substitutions, has been considered as a potential molecular interconnect. Charge transport through two terminal devices has been modeled using density functional theory (with and without self interaction correction) and the non-equilibrium Green's function method. A tetra-substituted pyrene, with dual thiol terminal groups at opposite ends, has been identified as an excellent candidate, owing to its high conductance, virtually independent of bias voltage. The two possible extensions of its motif generate two series of graphene nanoribbons, with zigzag and armchair edges and with semimetallic and semiconducting electron band structure, respectively. The effects related to the wire length and the bias voltage on the charge transport have been investigated for both sets. The conductance of the nanoribbons with a zigzag edge does not show either length or voltage dependence, owing to an almost perfect electron transmission with a continuum of conducting channels. In contrast, for the armchair nanoribbons a slow exponential attenuation of the conductance with the length has been found, due to their semiconducting nature.

  3. Exciton–exciton annihilation and biexciton stimulated emission in graphene nanoribbons

    DOE PAGES

    Soavi, Giancarlo; Dal Conte, Stefano; Manzoni, Cristian; ...

    2016-03-17

    Graphene nanoribbons display extraordinary optical properties due to one-dimensional quantum-confinement, such as width-dependent bandgap and strong electron–hole interactions, responsible for the formation of excitons with extremely high binding energies. Here we use femtosecond transient absorption spectroscopy to explore the ultrafast optical properties of ultranarrow, structurally well-defined graphene nanoribbons as a function of the excitation fluence, and the impact of enhanced Coulomb interaction on their excited states dynamics. We show that in the high-excitation regime biexcitons are formed by nonlinear exciton–exciton annihilation, and that they radiatively recombine via stimulated emission. We obtain a biexciton binding energy of ≈250meV, in very goodmore » agreement with theoretical results from quantum Monte Carlo simulations. As a result, these observations pave the way for the application of graphene nanoribbons in photonics and optoelectronics.« less

  4. Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Li, Jingqiang; Wijeratne, Sithara; Penev, Evgeni; Lu, Wei; Duque, Amanda; Yakobson, Boris; Tour, James; Kiang, Ching-Hwa; Boris I. Yakobson Group Team; James M. Tour Group Team; Ching-Hwa Kiang Group Team

    Graphene nanoribbons (GNR), can be prepared in bulk quantities for large-area applications by reducing the product from the lengthwise oxidative unzipping of multiwalled carbon nanotubes (MWNT). Recently, the biomaterials application of GNR has been explored, for example, in the pore to be used for DNA sequencing. Therefore, understanding the polymer behavior of GNR in solution is essential in predicting GNR interaction with biomaterials. Here, we report experimental studies of the solutionbased mechanical properties of GNR and their parent products, graphene oxide nanoribbons (GONR). We used atomic force microscopy (AFM) to study their mechanical properties in solution and showed that GNR and GONR have similar force-extension behavior as in biopolymers such as proteins and DNA. The rigidity increases with reducing chemical functionalities. The similarities in rigidity and tunability between nanoribbons and biomolecules might enable the design and fabrication of GNR-biomimetic interfaces.

  5. Exciton–exciton annihilation and biexciton stimulated emission in graphene nanoribbons

    PubMed Central

    Soavi, Giancarlo; Dal Conte, Stefano; Manzoni, Cristian; Viola, Daniele; Narita, Akimitsu; Hu, Yunbin; Feng, Xinliang; Hohenester, Ulrich; Molinari, Elisa; Prezzi, Deborah; Müllen, Klaus; Cerullo, Giulio

    2016-01-01

    Graphene nanoribbons display extraordinary optical properties due to one-dimensional quantum-confinement, such as width-dependent bandgap and strong electron–hole interactions, responsible for the formation of excitons with extremely high binding energies. Here we use femtosecond transient absorption spectroscopy to explore the ultrafast optical properties of ultranarrow, structurally well-defined graphene nanoribbons as a function of the excitation fluence, and the impact of enhanced Coulomb interaction on their excited states dynamics. We show that in the high-excitation regime biexcitons are formed by nonlinear exciton–exciton annihilation, and that they radiatively recombine via stimulated emission. We obtain a biexciton binding energy of ≈250 meV, in very good agreement with theoretical results from quantum Monte Carlo simulations. These observations pave the way for the application of graphene nanoribbons in photonics and optoelectronics. PMID:26984281

  6. Electronic and Optical properties of Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Molinari, Elisa; Ferretti, Andrea; Cardoso, Claudia; Prezzi, Deborah; Ruini, Alice

    Narrow graphene nanoribbons (GNRs) exhibit substantial electronic band gaps, and optical properties expected to be fundamentally different from the ones of their parent material graphene. Unlike graphene the optical response of GNRs may be tuned by the ribbon width and the directly related electronic band gap. We have addressed the optical properties of chevron-like and finite-size armchair nanoribbons by computing the fundamental and optical gap from ab initio methods. Our results are in very good agreement with the experimental values obtained by STS, ARPES, and differential reflectance spectroscopy, indicating that this computational scheme can be quantitatively predictive for electronic and optical spectroscopies of nanostructures. These study has been partly supported by the EU Centre of Excellence ''MaX - MAterials design at the eXascale''.

  7. Strain manipulation of Majorana fermions in graphene armchair nanoribbons

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Hua; Castro, Eduardo V.; Lin, Hai-Qing

    2018-01-01

    Graphene nanoribbons with armchair edges are studied for externally enhanced but realistic parameter values: enhanced Rashba spin-orbit coupling due to proximity to a transition-metal dichalcogenide, such as WS2, and enhanced Zeeman field due to exchange coupling with a magnetic insulator, such as EuS under an applied magnetic field. The presence of s -wave superconductivity, induced either by proximity or by decoration with alkali-metal atoms, such as Ca or Li, leads to a topological superconducting phase with Majorana end modes. The topological phase is highly sensitive to the application of uniaxial strain with a transition to the trivial state above a critical strain well below 0.1%. This sensitivity allows for real-space manipulation of Majorana fermions by applying nonuniform strain profiles. Similar manipulation is also possible by applying an inhomogeneous Zeeman field or chemical potential.

  8. Transport properties and device-design of Z-shaped MoS2 nanoribbon planar junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Zhou, Wenzhe; Liu, Qi; Yang, Zhixiong; Pan, Jiangling; Ouyang, Fangping; Xu, Hui

    2017-09-01

    Based on MoS2 nanoribbons, metal-semiconductor-metal planar junction devices were constructed. The electronic and transport properties of the devices were studied by using density function theory (DFT) and nonequilibrium Green's functions (NEGF). It is found that a band gap about 0.4 eV occurs in the planar junction. The electron and hole transmissions of the devices are mainly contributed by the Mo atomic orbitals. The electron transport channel is located at the edge of armchair MoS2 nanoribbon, while the hole transport channel is delocalized in the channel region. The I-V curve of the two-probe device shows typical transport behavior of Schottky barrier, and the threshold voltage is of about 0.2 V. The field effect transistors (FET) based on the planar junction turn out to be good bipolar transistors, the maximum current on/off ratio can reach up to 1 × 104, and the subthreshold swing is 243 mV/dec. It is found that the off-state current is dependent on the length and width of the channel, while the on-state current is almost unaffected. The switching performance of the FET is improved with increasing the length of the channel, and shows oscillation behavior with the change of the channel width.

  9. Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Wijeratne, Sithara S.; Penev, Evgeni S.; Lu, Wei; Li, Jingqiang; Duque, Amanda L.; Yakobson, Boris I.; Tour, James M.; Kiang, Ching-Hwa

    2016-08-01

    Graphene nanoribbons (GNR), can be prepared in bulk quantities for large-area applications by reducing the product from the lengthwise oxidative unzipping of multiwalled carbon nanotubes (MWNT). Recently, the biomaterials application of GNR has been explored, for example, in the pore to be used for DNA sequencing. Therefore, understanding the polymer behavior of GNR in solution is essential in predicting GNR interaction with biomaterials. Here, we report experimental studies of the solution-based mechanical properties of GNR and their parent products, graphene oxide nanoribbons (GONR). We used atomic force microscopy (AFM) to study their mechanical properties in solution and showed that GNR and GONR have similar force-extension behavior as in biopolymers such as proteins and DNA. The rigidity increases with reducing chemical functionalities. The similarities in rigidity and tunability between nanoribbons and biomolecules might enable the design and fabrication of GNR-biomimetic interfaces.

  10. Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution

    PubMed Central

    Wijeratne, Sithara S.; Penev, Evgeni S.; Lu, Wei; Li, Jingqiang; Duque, Amanda L.; Yakobson, Boris I.; Tour, James M.; Kiang, Ching-Hwa

    2016-01-01

    Graphene nanoribbons (GNR), can be prepared in bulk quantities for large-area applications by reducing the product from the lengthwise oxidative unzipping of multiwalled carbon nanotubes (MWNT). Recently, the biomaterials application of GNR has been explored, for example, in the pore to be used for DNA sequencing. Therefore, understanding the polymer behavior of GNR in solution is essential in predicting GNR interaction with biomaterials. Here, we report experimental studies of the solution-based mechanical properties of GNR and their parent products, graphene oxide nanoribbons (GONR). We used atomic force microscopy (AFM) to study their mechanical properties in solution and showed that GNR and GONR have similar force-extension behavior as in biopolymers such as proteins and DNA. The rigidity increases with reducing chemical functionalities. The similarities in rigidity and tunability between nanoribbons and biomolecules might enable the design and fabrication of GNR-biomimetic interfaces. PMID:27503635

  11. Analytical Modeling of Acoustic Phonon-Limited Mobility in Strained Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Yousefvand, Ali; Ahmadi, Mohammad T.; Meshginqalam, Bahar

    2017-11-01

    Recent advances in graphene nanoribbon-based electronic devices encourage researchers to develop modeling and simulation methods to explore device physics. On the other hand, increasing the operating speed of nanoelectronic devices has recently attracted significant attention, and the modification of acoustic phonon interactions because of their important effect on carrier mobility can be considered as a method for carrier mobility optimization which subsequently enhances the device speed. Moreover, strain has an important influence on the electronic properties of the nanoelectronic devices. In this paper, the acoustic phonons mobility of armchair graphene nanoribbons ( n-AGNRs) under uniaxial strain is modeled analytically. In addition, strain, width and temperature effects on the acoustic phonon mobility of strained n-AGNRs are investigated. An increment in the strained AGNR acoustic phonon mobility by increasing the ribbon width is reported. Additionally, two different behaviors for the acoustic phonon mobility are verified by increasing the applied strain in 3 m, 3 m + 2 and 3 m + 1 AGNRs. Finally, the temperature effect on the modeled AGNR phonon mobility is explored, and mobility reduction by raising the temperature is reported.

  12. Clean WS2 and MoS2 Nanoribbons Generated by Laser-Induced Unzipping of the Nanotubes.

    PubMed

    Vasu, Kuraganti; Yamijala, Sharma S R K C; Zak, Alla; Gopalakrishnan, Kothandam; Pati, Swapan K; Rao, C N R

    2015-08-26

    The preparation of 1D WS(2) and MoS(2) flexible nanoribbons by laser-induced unzipping of the nanotubes is reported. The nanoribbons are of high quality, uniform width, and devoid of surface contamination. The zig-zag edges in WS(2) nanoribbons give rise to ferromagnetism at room temperature. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A high-efficiency spin polarizer based on edge and surface disordered silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Xu, Ning; Zhang, Haiyang; Wu, Xiuqiang; Chen, Qiao; Ding, Jianwen

    2018-07-01

    Using the tight-binding formalism, we explore the effect of weak disorder upon the conductance of zigzag edge silicene nanoribbons (SiNRs), in the limit of phase-coherent transport. We find that the fashion of the conductance varies with disorder, and depends strongly on the type of disorder. Conductance dips are observed at the Van Hove singularities, owing to quasilocalized states existing in surface disordered SiNRs. A conductance gap is observed around the Fermi energy for both edge and surface disordered SiNRs, because edge states are localized. The average conductance of the disordered SiNRs decreases exponentially with the increase of disorder, and finally tends to disappear. The near-perfect spin polarization can be realized in SiNRs with a weak edge or surface disorder, and also can be attained by both the local electric field and the exchange field.

  14. First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Li, Jian-Wei; Wang, Bin; Nie, Yi-Hang

    2018-06-01

    Two-dimensional (2D) GeP3 has recently been theoretically proposed as a new low-dimensional material [ Nano Lett. 17(3), 1833 (2017)]. In this manuscript, we propose a first-principles calculation to investigate the quantum transport properties of several GeP3 nanoribbon-based atomic tunneling junctions. Numerical results indicate that monolayer GeP3 nanoribbons show semiconducting behavior, whereas trilayer GeP3 nanoribbons express metallic behavior owing to the strong interaction between each of the layers. This behavior is in accordance with that proposed in two-dimensional GeP3 layers. The transmission coefficient T( E) of tunneling junctions is sensitive to the connecting formation between the central monolayer GeP3 nanoribbon and the trilayer GeP3 nanoribbon at both ends. The T( E) value of the bottom-connecting tunneling junction is considerably larger than those of the middle-connecting and top-connecting ones. With increases in gate voltage, the conductances increase for the bottom-connecting and middle-connecting tunneling junctions, but decrease for the top-connecting tunneling junctions. In addition, the conductance decreases exponentially with respect to the length of the central monolayer GeP3 nanoribbon for all the tunneling junctions. I-V curves show approximately linear behavior for the bottom-connecting and middle-connecting structures, but exhibit negative differential resistance for the top-connecting structures. The physics of each phenomenon is analyzed in detail.

  15. Tunable nano Peltier cooling device from geometric effects using a single graphene nanoribbon

    NASA Astrophysics Data System (ADS)

    Li, Wan-Ju; Yao, Dao-Xin; Carlson, E. W.

    2014-08-01

    Based on the phenomenon of curvature-induced doping in graphene we propose a class of Peltier cooling devices, produced by geometrical effects, without gating. We show how a graphene nanoribbon laid on an array of curved nano cylinders can be used to create a targeted and tunable cooling device. Using two different approaches, the Nonequilibrium Green's Function (NEGF) method and experimental inputs, we predict that the cooling power of such a device can approach the order of kW/cm2, on par with the best known techniques using standard superlattice structures. The structure proposed here helps pave the way toward designing graphene electronics which use geometry rather than gating to control devices.

  16. Analysis of Carbon Nanotubes and Graphene Nanoribbons with Folded Racket Shapes

    NASA Astrophysics Data System (ADS)

    Borum, Andy; Plaut, Raymond; Dillard, David

    2011-10-01

    When carbon nanotubes and graphene nanoribbons become long, they may self-fold and form tennis racket-like shapes. This phenomenon is analyzed in two ways by treating a nanotube or nanoribbon as an elastica. First, an approach from adhesion science is used, in which the two sides of the racket handle are assumed to be straight and bonded together with constant or no separation. New analytical results are obtained involving the shape, bending energy, and adhesion energy of the self-folded structures. These relations show that the dimensions of the racket loop are proportional to the square root of the flexural rigidity. The second analysis uses the Lennard-Jones potential to model the van der Waals forces between the two sides of the racket. A nanoribbon is considered, and the interatomic forces are integrated along the length and across the width of the nanoribbon. The resulting integro-differential equations are solved using the finite difference method. The racket handle is found to be in compression and the separation between the two sides of the racket handle decreases in the direction of the racket loop. The results for the Lennard-Jones model approximately satisfy the relationship between the dimensions and the flexural rigidity found using the adhesion model.

  17. A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons

    PubMed Central

    Sevinçli, Hâldun; Sevik, Cem; Çaın, Tahir; Cuniberti, Gianaurelio

    2013-01-01

    We propose a hybrid nano-structuring scheme for tailoring thermal and thermoelectric transport properties of graphene nanoribbons. Geometrical structuring and isotope cluster engineering are the elements that constitute the proposed scheme. Using first-principles based force constants and Hamiltonians, we show that the thermal conductance of graphene nanoribbons can be reduced by 98.8% at room temperature and the thermoelectric figure of merit, ZT, can be as high as 3.25 at T = 800 K. The proposed scheme relies on a recently developed bottom-up fabrication method, which is proven to be feasible for synthesizing graphene nanoribbons with an atomic precision. PMID:23390578

  18. Adsorption Site of Gas Molecules on Defective Armchair Graphene Nanoribbon Formed Through Ion Bombardment

    NASA Astrophysics Data System (ADS)

    Auzar, Zuriana; Johari, Zaharah; Sakina, S. H.; Alias, N. Ezaila

    2018-02-01

    High sensitivity and selectivity is desired in sensing devices. The aim of this study is to investigate the use of the ion bombardment process in creating a defect on graphene nanoribbons (GNR), which significantly affects sensing properties, in particular adsorption energy, charge transfer and sensitivity. A process has been developed to form the defect on the GNR surface using molecular dynamic (MD) with a reactive force field with nitrogen ion. The sensing properties were calculated using the extended Huckel theory when oxygen (O2) and ammonia (NH3) molecules are exposed to different areas on the defective site. Through simulation, it was found that the ion bombardment process formed various types of defects on the GNR surface. Most notably, molecules adsorbed on the ripple area considerably improve the sensitivity by more than 50%. This indicates that the defect on the armchair graphene nanoribbon (AGNR) surface can be a method to enhance graphene-based sensing performance.

  19. Thermoelectric Properties of Novel One-dimensional and Two-dimensional Systems Based on MoS2 Nanoribbons and Sheets

    NASA Astrophysics Data System (ADS)

    Arab, Abbas

    case of MoS2 sheets, thermoelectric properties of monolayer, bilayer, trilayer and quadlayer in armchair and zigzag directions have been studied. Our results show that as number of layers increase from monolayer to quadlayer, both transmission spectrum and phonon thermal conductance increase. In addition, strong electronic and thermal anisotropy is found between zigzag and armchair orientations. Transmission coefficient and phonon thermal conductance of zigzag orientation is higher than those of armchair with the same number of layers. Electrical conductance and phonon thermal conductance are competing forces in achieving a high thermoelectric figure of merit. Advantage of having a higher electrical conductance in zigzag orientation has been nullified by having a higher phonon thermal conductance. In fact, our results show higher thermoelectric xifigure of merit for armchair oriented than zigzag oriented sheets. Also as number of layer decreases from quadlayer to monolayer, we are witnessing a higher thermoelectric figure of merit for both armchair and zigzag oriented sheets. Hence, the highest achieved thermoelectric figure of merit was obtained by monolayer armchair MoS2 sheet for both p-type and n-type semiconducting behavior. In case of MoS2 armchair nanoribbons, effect of several factors has been studied; width of nanoribbon, Sulfur vacancy and edge roughness. The electronic properties of nanoribbons are dominated by the presence of edge states that are dependent on the number of zigzag chains across the nanoribbon. In addition, it is found that the phonon thermal conductance of monolayer MoS2 armchair nanoribbon is smaller compared to MoS2 monolayer armchair sheet. This outcome can be explained by phonon edge scattering. The effect of this phonon edge scattering is more pronounced in narrower nanoribbons compared to wide ones which leads to higher thermoelectric figure of merit for narrow nanoribbons. The effect of edge roughness and sulfur vacancy on

  20. Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires

    NASA Astrophysics Data System (ADS)

    Li, Z. J.; Chen, X. L.; Li, H. J.; Tu, Q. Y.; Yang, Z.; Xu, Y. P.; Hu, B. Q.

    Low-dimensional GaN materials, including nanorings, nanoribbons and smooth nanowires have been synthesized by reacting gallium and ammonia using Ag particles as a catalyst on the substrate of MgO single crystals. They were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). EDX, XRD indicated that the low-dimensional nanomaterials were wurtzite GaN. New features are found in Raman scatterings for these low-dimensional GaN materials, which are different from the previous observations of GaN materials.

  1. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges

    NASA Astrophysics Data System (ADS)

    Wu, Shuang; Liu, Bing; Shen, Cheng; Li, Si; Huang, Xiaochun; Lu, Xiaobo; Chen, Peng; Wang, Guole; Wang, Duoming; Liao, Mengzhou; Zhang, Jing; Zhang, Tingting; Wang, Shuopei; Yang, Wei; Yang, Rong; Shi, Dongxia; Watanabe, Kenji; Taniguchi, Takashi; Yao, Yugui; Wang, Weihua; Zhang, Guangyu

    2018-05-01

    The determination of the electronic structure by edge geometry is unique to graphene. In theory, an evanescent nonchiral edge state is predicted at the zigzag edges of graphene. Up to now, the approach used to study zigzag-edged graphene has mostly been limited to scanning tunneling microscopy. The transport properties have not been revealed. Recent advances in hydrogen plasma-assisted "top-down" fabrication of zigzag-edged graphene nanoribbons (Z-GNRs) have allowed us to investigate edge-related transport properties. In this Letter, we report the magnetotransport properties of Z-GNRs down to ˜70 nm wide on an h -BN substrate. In the quantum Hall effect regime, a prominent conductance peak is observed at Landau ν =0 , which is absent in GNRs with nonzigzag edges. The conductance peak persists under perpendicular magnetic fields and low temperatures. At a zero magnetic field, a nonlocal voltage signal, evidenced by edge conduction, is detected. These prominent transport features are closely related to the observable density of states at the hydrogen-etched zigzag edge of graphene probed by scanning tunneling spectroscopy, which qualitatively matches the theoretically predicted electronic structure for zigzag-edged graphene. Our study gives important insights for the design of new edge-related electronic devices.

  2. Zinc oxide nanoring embedded lacey graphene nanoribbons in symmetric/asymmetric electrochemical capacitive energy storage

    NASA Astrophysics Data System (ADS)

    Sahu, Vikrant; Goel, Shubhra; Sharma, Raj Kishore; Singh, Gurmeet

    2015-12-01

    This article describes the synthesis and characterization of ZnO nanoring embedded graphene nanoribbons. Patterned holes (mesopore dia.) in graphene nanoribbons are chemically generated, leading to a high density of the edge planes. These planes carry negatively charged surface groups (like -COOH and -OH) and therefore anchor the metal ions in a cordial fashion forming a string of metal ions along the edge planes. These strings of imbibed metal ions precipitate as tiny ZnO nanorings over lacey graphene nanoribbons. The thus obtained graphene nanoribbon (GNR) based hierarchical ZnO mesoporous structures are three dimensionally accessible to the electrolyte and demonstrate high performance in capacitive energy storage. The ZnO/GNR nanocomposite electrode in an asymmetric supercapacitor device with lacey reduced graphene oxide nanoribbons (LRGONRs) as a negative electrode exhibits a 2.0 V potential window in the aqueous electrolyte and an ultra-short time constant (0.08 s). The wide potential window consequently increased the energy density from 6.8 Wh kg-1 (ZnO/GNR symmetric) to 9.4 Wh kg-1 (ZnO/GNR||LRGONR asymmetric). The relaxation time constant obtained for the asymmetric supercapacitor device was three orders of magnitude less compared to the ZnO (symmetric, 33 s) supercapacitor device. The high cycling stability of ZnO/GNR||LRGONR up to 96.7% capacitance retention, after 5000 GCD cycles at 2 mA cm-2, paves the way to a high performance aqueous electrochemical supercapacitive energy storage.This article describes the synthesis and characterization of ZnO nanoring embedded graphene nanoribbons. Patterned holes (mesopore dia.) in graphene nanoribbons are chemically generated, leading to a high density of the edge planes. These planes carry negatively charged surface groups (like -COOH and -OH) and therefore anchor the metal ions in a cordial fashion forming a string of metal ions along the edge planes. These strings of imbibed metal ions precipitate as tiny Zn

  3. On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons

    DOE PAGES

    Talirz, Leopold; Söde, Hajo; Dumslaff, Tim; ...

    2017-01-27

    The bottom-up approach to synthesize graphene nanoribbons strives not only to introduce a band gap into the electronic structure of graphene but also to accurately tune its value by designing both the width and edge structure of the ribbons with atomic precision. Within this paper, we report the synthesis of an armchair graphene nanoribbon with a width of nine carbon atoms on Au(111) through surface-assisted aryl–aryl coupling and subsequent cyclodehydrogenation of a properly chosen molecular precursor. By combining high-resolution atomic force microscopy, scanning tunneling microscopy, and Raman spectroscopy, we demonstrate that the atomic structure of the fabricated ribbons is exactlymore » as designed. Angle-resolved photoemission spectroscopy and Fourier-transformed scanning tunneling spectroscopy reveal an electronic band gap of 1.4 eV and effective masses of ≈0.1 m e for both electrons and holes, constituting a substantial improvement over previous efforts toward the development of transistor applications. We use ab initio calculations to gain insight into the dependence of the Raman spectra on excitation wavelength as well as to rationalize the symmetry-dependent contribution of the ribbons’ electronic states to the tunneling current. Lastly, we propose a simple rule for the visibility of frontier electronic bands of armchair graphene nanoribbons in scanning tunneling spectroscopy.« less

  4. Spin density waves predicted in zigzag puckered phosphorene, arsenene and antimonene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiaohua; Zhang, Xiaoli; Wang, Xianlong

    2016-04-15

    The pursuit of controlled magnetism in semiconductors has been a persisting goal in condensed matter physics. Recently, Vene (phosphorene, arsenene and antimonene) has been predicted as a new class of 2D-semiconductor with suitable band gap and high carrier mobility. In this work, we investigate the edge magnetism in zigzag puckered Vene nanoribbons (ZVNRs) based on the density functional theory. The band structures of ZVNRs show half-filled bands crossing the Fermi level at the midpoint of reciprocal lattice vectors, indicating a strong Peierls instability. To remove this instability, we consider two different mechanisms, namely, spin density wave (SDW) caused by electron-electronmore » interaction and charge density wave (CDW) caused by electron-phonon coupling. We have found that an antiferromagnetic Mott-insulating state defined by SDW is the ground state of ZVNRs. In particular, SDW in ZVNRs displays several surprising characteristics:1) comparing with other nanoribbon systems, their magnetic moments are antiparallelly arranged at each zigzag edge and almost independent on the width of nanoribbons; 2) comparing with other SDW systems, its magnetic moments and band gap of SDW are unexpectedly large, indicating a higher SDW transition temperature in ZVNRs; 3) SDW can be effectively modified by strains and charge doping, which indicates that ZVNRs have bright prospects in nanoelectronic device.« less

  5. Ballistic transport in graphene Y-junctions in transverse electric field.

    PubMed

    Nemnes, G A; Mitran, T L; Dragoman, Daniela

    2018-06-05

    We investigate the prospects for current modulation in single layer graphene Y-junctions in the ballistic regime, under an external electric field. Overcoming the inability of inducing field effect in graphene nanoribbons by a stacked gate, the proposed in-plane electric field setup enables a controlled current transfer between the branches of the Y-junction. This behavior is further confirmed by changing the angular incidence of the electric field. The ballistic transmission functions are calculated for the three terminal system using the non-equilibrium Green's function formalism, in the framework of density functional theory, under finite bias conditions. The edge currents dominating the transport in zigzag nanoribbons are strongly influenced by the induced dipole charge, facilitating the current modulation even for the metallic-like character of the Y-junctions. Spin polarization effects indicate the possibility of achieving spin filtering even in the absence of the external field provided the antiferromagnetic couplings between the edges are asymptotically set. Overall, our results indicate a robust behavior regarding the tunability of the charge current in the two outlet ports, showing the possibility of inducing field effect control in a single layer graphene system.

  6. First principles calculations of optical properties of the armchair SiC nanoribbons with O, F and H termination

    NASA Astrophysics Data System (ADS)

    Lu, Dao-Bang; Song, Yu-Ling

    2018-03-01

    Based on density functional theory, we perform first-principles investigations to study the optical properties of the O-, F- and H-terminated SiC nanoribbons with armchair edges (ASiCNRs). By irradiating with an external electromagnetic field, we calculate the dielectric function, reflection spectra, energy loss coefficient and the real part of the conductance. It is demonstrated that the optical constants are sensitive to the low-energy range, different terminal atoms do not make much difference in the shape of the curves of the optical constants for the same-width ASiCNR, and the optical constants of wider nanoribbons usually have higher peaks than that of the narrower ones in low energy range. We hope that our study helps in experimental technology of fabricating high-quality SiC-based nanoscale photoelectric device.

  7. Thermo-mechanical properties of boron nitride nanoribbons: A molecular dynamics simulation study.

    PubMed

    Mahdizadeh, Sayyed Jalil; Goharshadi, Elaheh K; Akhlamadi, Golnoosh

    2016-07-01

    Thermo-mechanical properties of boron nitride nanoribbons (BNNRs) were computed using molecular dynamics simulation with optimized Tersoff empirical potential. Thermal conductivity (TC) and heat transport properties of BNNRs were calculated as functions of both temperature and nanoribbon's length. The results show that TC of BNNRs decreases with raising temperature by T(-1.5) up to 1000K. The phonon-phonon scattering relaxation time, mean free path of phonons, and contribution of high frequency optical phonons in TC of BNNRs were calculated at various temperatures. TC decreases as nanoribbon size increases and it converges to ∼500Wm(-1)K(-1) for nanoribbons with length longer than 30nm. The mechanical properties, including Gruneisen parameter, stress-strain response curves, Young's modulus, intrinsic strength, critical strain, and poisson's ratio were calculated in the temperature range of 137-1000K. The simulation results show that Gruneisen parameter and poisson's ratio of BNNRs are -0.092 and 0.245, respectively. The Young's modulus of BNNRs decreases with raising temperature and its value is 630GPa at 300K. According to the results, BNNRs duo to their extraordinary thermo-mechanical properties, are the promising candidate for the future nano-device manufacturing. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Enhanced thermoelectric performance of defected silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Guo, Z. X.; Zhang, Y.; Ding, J. W.; Zheng, X. J.

    2016-02-01

    Based on non-equilibrium Green's function method, we investigate the thermoelectric performance for both zigzag (ZSiNRs) and armchair (ASiNRs) silicene nanoribbons with central or edge defects. For perfect silicene nanoribbons (SiNRs), it is shown that with its width increasing, the maximum of ZT values (ZTM) decreases monotonously while the phononic thermal conductance increases linearly. For various types of edges and defects, with increasing defect numbers in longitudinal direction, ZTM increases monotonously while the phononic thermal conductance decreases. Comparing with ZSiNRs, defected ASiNRs possess higher thermoelectric performance due to higher Seebeck coefficient and lower thermal conductance. In particular, about 2.5 times enhancement to ZT values is obtained in ASiNRs with edge defects. Our theoretical simulations indicate that by controlling the type and number of defects, ZT values of SiNRs could be enhanced greatly which suggests their very appealing thermoelectric applications.

  9. Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction

    DOE PAGES

    Gong, Yongji; Fei, Huilong; Zou, Xiaolong; ...

    2015-02-02

    Here, we show that nanoribbons of boron- and nitrogen-substituted graphene can be used as efficient electrocatalysts for the oxygen reduction reaction (ORR). Optimally doped graphene nanoribbons made into three-dimensional porous constructs exhibit the highest onset and half-wave potentials among the reported metal-free catalysts for this reaction and show superior performance compared to commercial Pt/C catalyst. Moreover, this catalyst possesses high kinetic current density and four-electron transfer pathway with low hydrogen peroxide yield during the reaction. Finally, first-principles calculations suggest that such excellent electrocatalytic properties originate from the abundant edges of boron- and nitrogen-codoped graphene nanoribbons, which significantly reduce the energymore » barriers of the rate-determining steps of the ORR reaction.« less

  10. Core-protective half-metallicity in trilayer graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Jeon, Gi Wan; Lee, Kyu Won; Lee, Cheol Eui

    2017-07-01

    Half-metals, playing an important role in spintronics, can be described as materials that enable fully spin-polarized electrical current. Taking place in graphene-based materials, half-metallicity has been shown in zigzag-edged graphene nanoribbons (ZGNRs) under an electric field. Localized electron states on the edge carbons are a key to enabling half-metallicity in ZGNRs. Thus, modification of the localized electron states is instrumental to the carbon-based spintronics. Our simple model shows that in a trilayer ZGNRs (triZGNRs) only the middle layer may become half-metallic leaving the outer layers insulating in an electric field, as confirmed by our density functional theory (DFT) calculations. Due to the different circumstances of the edge carbons, the electron energies at the edge carbons are different near the Fermi level, leading to a layer-selective half-metallicity. We believe that triZGNRs can be the tiniest electric cable (nanocable) form and can open a route to graphene-based spintronics applications.

  11. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor

    NASA Astrophysics Data System (ADS)

    Nguyen, Giang D.; Tsai, Hsin-Zon; Omrani, Arash A.; Marangoni, Tomas; Wu, Meng; Rizzo, Daniel J.; Rodgers, Griffin F.; Cloke, Ryan R.; Durr, Rebecca A.; Sakai, Yuki; Liou, Franklin; Aikawa, Andrew S.; Chelikowsky, James R.; Louie, Steven G.; Fischer, Felix R.; Crommie, Michael F.

    2017-11-01

    The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.

  12. Silver vanadate nanoribbons: A label-free bioindicator in the conversion between human serum transferrin and apotransferrin via surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Shao, Mingwang; Que, Ronghui; Cheng, Liang; Zhuo, Shujuan; Tong, Yanhua; Lee, Shuit-Tong

    2011-05-01

    Silver vanadate nanoribbons were synthesized via a hydrothermal process, which exhibited surface-enhanced Raman scattering effect. This surface-enhanced substrate was stable and reproducible for identifying human serum transferrin and human serum apotransferrin in the concentration of 1×10-5 M, which further exhibited significant sensitivity in monitoring the conversion of these two proteins in turn. This result showed that the silver vanadate nanoribbon might be employed as biomonitor in such systems.

  13. Narrowband noise study of sliding charge density waves in NbSe 3 nanoribbons

    DOE PAGES

    Onishi, Seita; Jamei, Mehdi; Zettl, Alex

    2017-01-12

    Transport properties (dc electrical resistivity, threshold electric field, and narrow-band noise) are reported for nanoribbon specimens of NbSe 3 with thicknesses as low as 18 nm. As the sample thickness decreases, the resistive anomalies characteristic of the charge density wave (CDW) state are suppressed and the threshold fields for nonlinear CDW conduction apparently diverge. Narrow-band noise measurements allow determination of the concentration of carriers condensed in the CDW state n c , reflective of the CDW order parameter Δ. Although the CDW transition temperatures are relatively independent of sample thickness, in the lower CDW state Δ decreases dramatically with decreasingmore » sample thickness.« less

  14. Narrowband noise study of sliding charge density waves in NbSe3 nanoribbons

    NASA Astrophysics Data System (ADS)

    Onishi, Seita; Jamei, Mehdi; Zettl, Alex

    2017-02-01

    Transport properties (dc electrical resistivity, threshold electric field, and narrow-band noise) are reported for nanoribbon specimens of NbSe3 with thicknesses as low as 18 nm. As the sample thickness decreases, the resistive anomalies characteristic of the charge density wave (CDW) state are suppressed and the threshold fields for nonlinear CDW conduction apparently diverge. Narrow-band noise measurements allow determination of the concentration of carriers condensed in the CDW state n c , reflective of the CDW order parameter Δ. Although the CDW transition temperatures are relatively independent of sample thickness, in the lower CDW state Δ decreases dramatically with decreasing sample thickness.

  15. Spin transport in oxygen adsorbed graphene nanoribbon

    NASA Astrophysics Data System (ADS)

    Kumar, Vipin

    2018-04-01

    The spin transport properties of pristine graphene nanoribbons (GNRs) have been most widely studied using theoretical and experimental tools. The possibilities of oxidation of fabricated graphene based nano electronic devices may change the device characteristics, which motivates to further explore the properties of graphene oxide nanoribbons (GONRs). Therefore, we present a systematic computational study on the spin polarized transport in surface oxidized GNR in antiferromagnetic (AFM) spin configuration using density functional theory combined with non-equilibrium Green's function (NEGF) method. It is found that the conductance in oxidized GNRs is significantly suppressed in the valance band and the conduction band. A further reduction in the conductance profile is seen in presence of two oxygen atoms on the ribbon plane. This change in the conductance may be attributed to change in the surface topology of the ribbon basal plane due to presence of the oxygen adatoms, where the charge transfer take place between the ribbon basal plane and the oxygen atoms.

  16. Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Tao; Hong, Jisang, E-mail: hongj@pknu.ac.kr

    2015-08-07

    We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same asmore » that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.« less

  17. Adiabatic quantum pump in a zigzag graphene nanoribbon junction

    NASA Astrophysics Data System (ADS)

    Zhang, Lin

    2015-11-01

    The adiabatic electron transport is theoretically studied in a zigzag graphene nanoribbon (ZGNR) junction with two time-dependent pumping electric fields. By modeling a ZGNR p-n junction and applying the Keldysh Green’s function method, we find that a pumped charge current is flowing in the device at a zero external bias, which mainly comes from the photon-assisted tunneling process and the valley selection rule in an even-chain ZGNR junction. The pumped charge current and its ON and OFF states can be efficiently modulated by changing the system parameters such as the pumping frequency, the pumping phase difference, and the Fermi level. A ferromagnetic ZGNR device is also studied to generate a pure spin current and a fully polarized spin current due to the combined spin pump effect and the valley valve effect. Our finding might pave the way to manipulate the degree of freedom of electrons in a graphene-based electronic device. Project supported by the National Natural Science Foundation of China (Grant No. 110704033), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010416), and the Natural Science Foundation for Colleges and Universities in Jiangsu Province, China (Grant No. 13KJB140005).

  18. Crystal structures and optical properties of new quaternary strontium europium aluminate luminescent nanoribbons

    DOE PAGES

    Li, Xufan; Budai, John D.; Liu, Feng; ...

    2014-11-12

    We report the synthesis and characterizations of three series of quaternary strontium europium aluminate (Sr-Eu-Al-O; SEAO) luminescent nanoribbons that show blue, green, and yellow luminescence from localized Eu2+ luminescent centers. These three series of SEAO nanoribbons are: blue luminescent, tetragonal Sr1-xEuxAl6O10 (01-xEu xAl 2O 4 (01-xEu xAl 2O 4 (0

  19. A 50/50 electronic beam splitter in graphene nanoribbons as a building block for electron optics.

    PubMed

    Lima, Leandro R F; Hernández, Alexis R; Pinheiro, Felipe A; Lewenkopf, Caio

    2016-12-21

    Based on the investigation of the multi-terminal conductance of a system composed of two graphene nanoribbons, in which one is on top of the other and rotated by [Formula: see text], we propose a setup for a 50/50 electronic beam splitter that neither requires large magnetic fields nor ultra low temperatures. Our findings are based on an atomistic tight-binding description of the system and on the Green function method to compute the Landauer conductance. We demonstrate that this system acts as a perfect 50/50 electronic beam splitter, in which its operation can be switched on and off by varying the doping (Fermi energy). We show that this device is robust against thermal fluctuations and long range disorder, as zigzag valley chiral states of the nanoribbons are protected against backscattering. We suggest that the proposed device can be applied as the fundamental element of the Hong-Ou-Mandel interferometer, as well as a building block of many devices in electron optics.

  20. Tunable transport gap in narrow bilayer graphene nanoribbons

    PubMed Central

    Yu, Woo Jong; Duan, Xiangfeng

    2013-01-01

    The lack of a bandgap makes bulk graphene unsuitable for room temperature transistors with a sufficient on/off current ratio. Lateral constriction of charge carriers in graphene nanostructures or vertical inversion symmetry breaking in bilayer graphene are two potential strategies to mitigate this challenge, but each alone is insufficient to consistently achieve a large enough on/off ratio (e.g. > 1000) for typical logic applications. Herein we report the combination of lateral carrier constriction and vertical inversion symmetry breaking in bilayer graphene nanoribbons (GNRs) to tune their transport gaps and improve the on/off ratio. Our studies demonstrate that the on/off current ratio of bilayer GNRs can be systematically increased upon applying a vertical electric field, to achieve a largest on/off current ratio over 3000 at room temperature. PMID:23409239

  1. Shaping van der Waals nanoribbons via torsional constraints: Scrolls, folds and supercoils

    NASA Astrophysics Data System (ADS)

    Shahabi, Alireza; Wang, Hailong; Upmanyu, Moneesh

    2014-11-01

    Interplay between structure and function in atomically thin crystalline nanoribbons is sensitive to their conformations yet the ability to prescribe them is a formidable challenge. Here, we report a novel paradigm for controlled nucleation and growth of scrolled and folded shapes in finite-length nanoribbons. All-atom computations on graphene nanoribbons (GNRs) and experiments on macroscale magnetic thin films reveal that decreasing the end distance of torsionally constrained ribbons below their contour length leads to formation of these shapes. The energy partitioning between twisted and bent shapes is modified in favor of these densely packed soft conformations due to the non-local van der Waals interactions in these 2D crystals; they subvert the formation of supercoils that are seen in their natural counterparts such as DNA and filamentous proteins. The conformational phase diagram is in excellent agreement with theoretical predictions. The facile route can be readily extended for tailoring the soft conformations of crystalline nanoscale ribbons, and more general self-interacting filaments.

  2. On the intra- and interband plasmon modes in doped armchair graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Davoudiniya, Masoumeh; Yarmohammadi, Mohsen

    2018-01-01

    With the help of the simple tight-binding Hamiltonian and Green's function technique, we study how intraband and interband plasmon modes of both semiconducting and metallic armchair graphene nanoribbons are influenced by the width, chemical doping, and incident momentum direction. In particular, we investigate the behavior of the frequency-dependent susceptibility when the system is exposed to photons or electrons. Injecting electrons by doping creates a new collective mode due to new states between the valence and conduction bands corresponding to intraband transition for which the effect of ribbon width on these transitions in the semiconducting case is much more sensitive than metallic ones. Furthermore, some critical chemical potential and momentum values for both intraband and interband modes lead to different behaviors for resonant peaks. Another remarkable point is the high sensitivity of intraband plasmons to the direction of incident momentum. In particular, the susceptibility of doped nanoribbons vanishes at perpendicular directions, i.e., the intraband plasmons disappear.

  3. Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons

    NASA Astrophysics Data System (ADS)

    De Padova, Paola; Ottaviani, Carlo; Ronci, Fabio; Colonna, Stefano; Olivieri, Bruno; Quaresima, Claudio; Cricenti, Antonio; Dávila, Maria E.; Hennies, Franz; Pietzsch, Annette; Shariati, Nina; Le Lay, Guy

    2013-01-01

    The growth of Mn nanostructures on a 1D grating of silicon nano-ribbons is investigated at atomic scale by means of scanning tunneling microscopy, low energy electron diffraction and core level photoelectron spectroscopy. The grating of silicon nano-ribbons represents an atomic scale template that can be used in a surface-driven route to control the combination of Si with Mn in the development of novel materials for spintronics devices. The Mn atoms show a preferential adsorption site on silicon atoms, forming one-dimensional nanostructures. They are parallel oriented with respect to the surface Si array, which probably predetermines the diffusion pathways of the Mn atoms during the process of nanostructure formation.

  4. Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons.

    PubMed

    De Padova, Paola; Ottaviani, Carlo; Ronci, Fabio; Colonna, Stefano; Olivieri, Bruno; Quaresima, Claudio; Cricenti, Antonio; Dávila, Maria E; Hennies, Franz; Pietzsch, Annette; Shariati, Nina; Le Lay, Guy

    2013-01-09

    The growth of Mn nanostructures on a 1D grating of silicon nano-ribbons is investigated at atomic scale by means of scanning tunneling microscopy, low energy electron diffraction and core level photoelectron spectroscopy. The grating of silicon nano-ribbons represents an atomic scale template that can be used in a surface-driven route to control the combination of Si with Mn in the development of novel materials for spintronics devices. The Mn atoms show a preferential adsorption site on silicon atoms, forming one-dimensional nanostructures. They are parallel oriented with respect to the surface Si array, which probably predetermines the diffusion pathways of the Mn atoms during the process of nanostructure formation.

  5. Electronic structure of graphene nanoribbons doped with nitrogen atoms: a theoretical insight.

    PubMed

    Torres, A E; Fomine, S

    2015-04-28

    The electronic structure of graphene nanoribbons doped with a graphitic type of nitrogen atoms has been studied using B3LYP, B2PLYP and CAS methods. In all but one case the restricted B3LYP solutions were unstable and the CAS calculations provided evidence for the multiconfigurational nature of the ground state with contributions from two dominant configurations. The relative stability of the doped nanoribbons depends mostly on the mutual position of the dopant atoms and notably less on the position of nitrogen atoms within the nanoribbon. N-graphitic doping affects cationic states much more than anionic ones due the participation of the nitrogen atoms in the stabilization of the positive charge, resulting in a drop in ionization energies (IPs) for N-graphitic doped systems. Nitrogen atoms do not participate in the negative charge stabilization of anionic species and, therefore, the doping does not affect the electron affinities (EAs). The unrestricted B3LYP method is the method of choice for the calculation of IPs and EAs. Restricted B3LYP and B2PLYP produces unreliable results for both IPs and EAs while CAS strongly underestimates the electron affinities. This is also true for the reorganization energies where restricted B3LYP produces qualitatively incorrect results. Doping changes the reorganization energy of the nanoribbons; the hole reorganization energy is generally higher than the corresponding electron reorganization energy due to the participation of nitrogen atoms in the stabilization of the positive charge.

  6. Imaging the Localized Plasmon Resonance Modes in Graphene Nanoribbons

    DOE PAGES

    Hu, F.; Luan, Y.; Fei, Z.; ...

    2017-08-14

    Here, we report a nanoinfrared (IR) imaging study of the localized plasmon resonance modes of graphene nanoribbons (GNRs) using a scattering-type scanning near-field optical microscope (s-SNOM). By comparing the imaging data of GNRs that are aligned parallel and perpendicular to the in-plane component of the excitation laser field, we observed symmetric and asymmetric plasmonic interference fringes, respectively. Theoretical analysis indicates that the asymmetric fringes are formed due to the interplay between the localized surface plasmon resonance (SPR) mode excited by the GNRs and the propagative surface plasmon polariton (SPP) mode launched by the s-SNOM tip. And with rigorous simulations, wemore » reproduce the observed fringe patterns and address quantitatively the role of the s-SNOM tip on both the SPR and SPP modes. Moreover, we have seen real-space signatures of both the dipole and higher-order SPR modes by varying the ribbon width.« less

  7. Nanoribbons: From fundamentals to state-of-the-art applications

    NASA Astrophysics Data System (ADS)

    Yagmurcukardes, M.; Peeters, F. M.; Senger, R. T.; Sahin, H.

    2016-12-01

    Atomically thin nanoribbons (NRs) have been at the forefront of materials science and nanoelectronics in recent years. State-of-the-art research on nanoscale materials has revealed that electronic, magnetic, phononic, and optical properties may differ dramatically when their one-dimensional forms are synthesized. The present article aims to review the recent advances in synthesis techniques and theoretical studies on NRs. The structure of the review is organized as follows: After a brief introduction to low dimensional materials, we review different experimental techniques for the synthesis of graphene nanoribbons (GNRs) with their advantages and disadvantages. In addition, theoretical investigations on width and edge-shape-dependent electronic and magnetic properties, functionalization effects, and quantum transport properties of GNRs are reviewed. We then devote time to the NRs of the transition metal dichalcogenides (TMDs) family. First, various synthesis techniques, E-field-tunable electronic and magnetic properties, and edge-dependent thermoelectric performance of NRs of MoS2 and WS2 are discussed. Then, strongly anisotropic properties, growth-dependent morphology, and the weakly width-dependent bandgap of ReS2 NRs are summarized. Next we discuss TMDs having a T-phase morphology such as TiSe2 and stable single layer NRs of mono-chalcogenides. Strong edge-type dependence on characteristics of GaS NRs, width-dependent Seebeck coefficient of SnSe NRs, and experimental analysis on the stability of ZnSe NRs are reviewed. We then focus on the most recently emerging NRs belonging to the class of transition metal trichalcogenides which provide ultra-high electron mobility and highly anisotropic quasi-1D properties. In addition, width-, edge-shape-, and functionalization-dependent electronic and mechanical properties of blackphosphorus, a monoatomic anisotropic material, and studies on NRs of group IV elements (silicene, germanene, and stanene) are reviewed

  8. Thermally induced spin-dependent current based on Zigzag Germanene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Majidi, Danial; Faez, Rahim

    2017-02-01

    In this paper, using first principle calculation and non-equilibrium Green's function, the thermally induced spin current in Hydrogen terminated Zigzag-edge Germanene Nanoribbon (ZGeNR-H) is investigated. In this model, because of the difference between the source and the drain temperature of ZGeNR device, the spin up and spin down currents flow in the opposite direction with two different threshold temperatures (Tth). Hence, a pure spin polarized current which belongs to spin down is obtained. It is shown that, for temperatures above the threshold temperature spin down current increases with the increasing temperature up to 75 K and then decreases. But spin up current rises steadily and in the high temperature we can obtain polarized spin up current. In addition, we show an acceptable spin current around the room temperature for ZGeNR. The transmission peaks in ZGeNR which are closer to the Fermi level rather than Zigzag Graphene Nanoribbon (ZGNRS) which causes ZGeNR to have spin current at higher temperatures. Finally, it is indicated that by tuning the back gate voltage, the spin current can be completely modulated and polarized. Simulation results verify the Zigzag Germanene Nanoribbon as a promising candidate for spin caloritronics devices, which can be applied in future low power consumption technology.

  9. Large negative differential resistance in graphene nanoribbon superlattices

    NASA Astrophysics Data System (ADS)

    Tseng, P.; Chen, C. H.; Hsu, S. A.; Hsueh, W. J.

    2018-05-01

    A graphene nanoribbon superlattice with a large negative differential resistance (NDR) is proposed. Our results show that the peak-to-valley ratio (PVR) of the graphene superlattices can reach 21 at room temperature with bias voltages between 90-220 mV, which is quite large compared with the one of traditional graphene-based devices. It is found that the NDR is strongly influenced by the thicknesses of the potential barrier. Therefore, the NDR effect can be optimized by designing a proper barrier thickness. The large NDR effect can be attributed to the splitting of the gap in transmission spectrum (segment of Wannier-Stark ladder) with larger thicknesses of barrier when the applied voltage increases.

  10. All-zigzag graphene nanoribbons for planar interconnect application

    NASA Astrophysics Data System (ADS)

    Chen, Po-An; Chiang, Meng-Hsueh; Hsu, Wei-Chou

    2017-07-01

    A feasible "lightning-shaped" zigzag graphene nanoribbon (ZGNR) structure for planar interconnects is proposed. Based on the density functional theory and non-equilibrium Green's function, the electron transport properties are evaluated. The lightning-shaped structure increases significantly the conductance of the graphene interconnect with an odd number of zigzag chains. This proposed technique can effectively utilize the linear I-V characteristic of asymmetric ZGNRs for interconnect application. Variability study accounting for width/length variation and the edge effect is also included. The transmission spectra, transmission eigenstates, and transmission pathways are analyzed to gain the physical insights. This lightning-shaped ZGNR enables all 2D material-based devices and circuits on flexible and transparent substrates.

  11. Densely Aligned Graphene Nanoribbon Arrays and Bandgap Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Justin; Chen, Changxin; Gong, Ming

    Graphene has attracted great interest for future electronics due to its high mobility and high thermal conductivity. However, a two-dimensional graphene sheet behaves like a metal, lacking a bandgap needed for the key devices components such as field effect transistors (FETs) in digital electronics. It has been shown that, partly due to quantum confinement, graphene nanoribbons (GNRs) with ~2 nm width can open up sufficient bandgaps and evolve into semiconductors to exhibit high on/off ratios useful for FETs. However, a challenging problem has been that, such ultra-narrow GNRs (~2 nm) are difficult to fabricate, especially for GNRs with smooth edgesmore » throughout the ribbon length. Despite high on/off ratios, these GNRs show very low mobility and low on-state conductance due to dominant scattering effects by imperfections and disorders at the edges. Wider GNRs (>5 nm) show higher mobility, higher conductance but smaller bandgaps and low on/off ratios undesirable for FET applications. It is highly desirable to open up bandgaps in graphene or increase the bandgaps in wide GNRs to afford graphene based semiconductors for high performance (high on-state current and high on/off ratio) electronics. Large scale ordering and dense packing of such GNRs in parallel are also needed for device integration but have also been challenging thus far. It has been shown theoretically that uniaxial strains can be applied to a GNR to engineer its bandgap. The underlying physics is that under uniaxial strain, the Dirac point moves due to stretched C-C bonds, leading to an increase in the bandgap of armchair GNRs by up to 50% of its original bandgap (i.e. bandgap at zero strain). For zigzag GNRs, due to the existence of the edge states, changes of bandgap are smaller under uniaxial strain and can be increased by ~30%. This work proposes a novel approach to the fabrication of densely aligned graphene nanoribbons with highly smooth edges afforded by anisotropic etching and uniaxial

  12. The electrical and thermal transport properties of hybrid zigzag graphene-BN nanoribbons

    NASA Astrophysics Data System (ADS)

    Gao, Song; Lu, Wei; Zheng, Guo-Hui; Jia, Yalei; Ke, San-Huang

    2017-06-01

    The electron and phonon transport in hybrid graphene-BN zigzag nanoribbons are investigated by the nonequilibrium Green’s function method combined with density functional theory calculations. A 100% spin-polarized electron transport in a large energy window around the Fermi level is found and this behavior is independent of the ribbon width as long as there contain 3 zigzag carbon chains. The phonon transport calculations show that the ratio of C-chain number to BN-chain number will modify the thermal conductance of the hybrid nanoribbon in a complicated manner.

  13. Plasmons in graphene nanoribbons

    DOE PAGES

    Karimi, F.; Knezevic, I.

    2017-09-12

    We calculate the dielectric function and plasmonic response of armchair (aGNRs) and zigzag (zGNRs) graphene nanoribbons using the self-consistent-field approach within the Markovian master equation formalism (SCF-MMEF). We accurately account for electron scattering with phonons, ionized impurities, and line-edge roughness and show that electron scattering with surface optical phonons is much more prominent in GNRs than in graphene. We calculate the loss function, plasmon dispersion, and the plasmon propagation length in supported GNRs. Midinfrared plasmons in supported (3N+2)-aGNRs can propagate as far as several microns at room temperature, with 4–5-nm-wide ribbons having the longest propagation length. In other types ofmore » aGNRs and in zGNRs, the plasmon propagation length seldom exceeds 100 nm. Plasmon propagation lengths are much longer on nonpolar (e.g., diamondlike carbon) than on polar substrates (e.g., SiO 2 or hBN), where electrons scatter strongly with surface optical phonons. In conclusion, we also show that the aGNR plasmon density is nearly uniform across the ribbon, while in zGNRs, because of the highly localized edge states, plasmons of different spin polarization are accumulated near the opposite edges.« less

  14. Highly fluorescent peptide nanoribbon impregnated with Sn-porphyrin as a potent DNA sensor.

    PubMed

    Parayil, Sreenivasan Koliyat; Lee, Jooran; Yoon, Minjoong

    2013-05-01

    Highly fluorescent and thermo-stable peptide nanoribbons (PNRs) were fabricated by solvothermal self-assembly of a single peptide (D,D-diphenyl alanine peptides) with Sn-porphyrin (trans-dihydroxo[5,10,15,20-tetrakis(p-tolyl)porphyrinato] Sn(IV) (SnTTP(OH)2)). The structural characterization of the as-prepared nanoribbons was performed by transmitting electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), FT-IR and Raman spectroscopy, indicating that the lipophilic Sn-porphyrins are impregnated into the porous surface formed in the process of nanoribbon formation through intermolecular hydrogen bonding of the peptide main chains. Consequently the Sn-porphyrin-impregnated peptide nanoribbons (Sn-porphyrin-PNRs) exhibited typical UV-visible absorption spectrum of the monomer porphyrin with a red shifted Q-band, and their fluorescence quantum yield was observed to be enhanced compared to that of free Sn-porphyrin. Interestingly the fluorescence intensity and lifetimes of Sn-porphyrin-PNRs were selectively affected upon interaction with nucleotide base sequences of DNA while those of free Sn-porphyrins were not affected by binding with any of the DNA studied, indicating that DNA-induced changes in the fluorescence properties of Sn-porphyrin-PNRs are due to interaction between DNA and the PNR scaffold. These results imply that Sn-porphyrin-PNR will be useful as a potent fluorescent protein analogue and as a biocompatible DNA sensor.

  15. Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices

    DOEpatents

    Yang, Peidong; Law, Matt; Sirbuly, Donald J.; Johnson, Justin C.; Saykally, Richard; Fan, Rong; Tao, Andrea

    2012-10-02

    Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.

  16. Electronic and transport properties of BCN alloy nanoribbons

    NASA Astrophysics Data System (ADS)

    Darvishi Gilan, Mahdi; Chegel, Raad

    2018-03-01

    The dependence of the carbon (C) concentration on the electronic and transport properties of boron carbonitride (BCN) alloy nanoribbons have been investigated using surface Green's functions technique and random Hamiltonian model by considering random hopping parameters including first and second nearest neighbors. Our calculations indicate that substituting boron (nitrogen) sites with carbon atoms induces a new band close to conduction (valence) band and carbon atoms behave like a donor (acceptor) dopants. Also, while both nitrogen and boron sites are substituted randomly by carbon atoms, new bands are induced close to both valence and conduction bands. The band gap decreases with C substituting and the number of charge carriers increases in low bias voltage. Far from Fermi level in the higher range of energy, transmission coefficient and current of the system are reduced by increasing the C concentration. Based on our results, tuning the electronic and transport properties of BCN alloy nanoribbons by random carbon dopants could be applicable to design nanoelectronics devices.

  17. Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111)

    DOE PAGES

    Deniz, O.; Sánchez-Sánchez, C.; Jaafar, R.; ...

    2018-01-08

    Electronic and thermal properties of chevron-type graphene nanoribbons can be widely tuned, making them interesting candidates for electronic and thermoelectric applications. In this paper, we use post-growth silicon intercalation to unambiguously access nanoribbons’ energy position of their electronic frontier states. These are otherwise obscured by substrate effects when investigated directly on the growth substrate. Finally, in agreement with first-principles calculations we find a band gap of 2.4 eV.

  18. Electronic transport properties of suspended few-nm black phosphorus nanoribbons

    NASA Astrophysics Data System (ADS)

    Masih Das, Paul; Danda, Gopinath; Cupo, Andrew; Jothi Thiruraman, Priyanka; Meunier, Vincent; Drndic, Marija

    Theoretical studies of few-nm wide black phosphorus nanoribbons have revealed highly tunable, width-dependent properties such as modulation of bandgap magnitude and carrier mobility. Due to the atmospheric instability of black phosphorus in the few-layer regime and a lack of suitable lithographic patterning techniques, these structures have yet to be reported. Here, we demonstrate the fabrication of few-nm wide and thick black phosphorus nanoribbons via in situ electron beam nanosculpting. We also present in situ orientation- and width-dependent two-terminal electronic transport measurements of these structures. These measurements yield valuable insight into the semiconducting properties of black phosphorus and its associated lower-dimensional nanostructures. NIH Grant R21HG007856, NSF Grant EFRI 2-DARE (EFRI-1542707).

  19. Transformation from Nanofibers to Nanoribbons in Poly(3-hexylthiophene) Solution by Adding Alkylthiols.

    PubMed

    Pan, Shuang; Zhu, Mingjing; He, Luze; Zhang, Hongdong; Qiu, Feng; Lin, Zhiqun; Peng, Juan

    2018-05-10

    An intriguing morphological transition from poly(3-hexylthiophene) (P3HT) 1D nanofibers to 2D nanoribbons enabled by the addition of a series of alkylthiols is reported. First, P3HT 1D nanofibers are formed due to strong anisotropic π-π stacking between planar rigid backbones. Upon the addition of alkylthiols, P3HT nanofibers are transformed into nanoribbons associated with the crystallographic transition from edge-on orientation to flat-on orientation. The content of alkylthiols has a great influence on the P3HT morphology in the solution. The mechanism of such a morphological transformation is discussed based on the interaction between alkylthiols and P3HT chains. This work offers an effective strategy to tailor the crystal morphology and dimension of P3HT, which not only improves the understanding of P3HT crystallization but also may enable such discovery into conjugated polymer-based optoelectronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Spin Seebeck Effect and Thermal Colossal Magnetoresistance in Graphene Nanoribbon Heterojunction

    PubMed Central

    Ni, Yun; Yao, Kailun; Fu, Huahua; Gao, Guoying; Zhu, Sicong; Wang, Shuling

    2013-01-01

    Spin caloritronics devices are very important for future development of low-power-consumption technology. We propose a new spin caloritronics device based on zigzag graphene nanoribbon (ZGNR), which is a heterojunction consisting of single-hydrogen-terminated ZGNR (ZGNR-H) and double-hydrogen-terminated ZGNR (ZGNR-H2). We predict that spin-up and spin-down currents flowing in opposite directions can be induced by temperature difference instead of external electrical bias. The thermal spin-up current is considerably large and greatly improved compared with previous work in graphene. Moreover, the thermal colossal magnetoresistance is obtained in our research, which could be used to fabricate highly-efficient spin caloritronics MR devices. PMID:23459307

  1. A grand canonical Monte Carlo study of SO2 capture using functionalized bilayer graphene nanoribbons.

    PubMed

    Maurya, Manish; Singh, Jayant K

    2017-01-28

    Grand canonical Monte Carlo (GCMC) simulation is used to study the adsorption of pure SO 2 using a functionalized bilayer graphene nanoribbon (GNR) at 303 K. The functional groups considered in this work are OH, COOH, NH 2 , NO 2 , and CH 3 . The mole percent of functionalization considered in this work is in the range of 3.125%-6.25%. GCMC simulation is further used to study the selective adsorption of SO 2 from binary and ternary mixtures of SO 2 , CO 2 , and N 2 , of variable composition using the functionalized bilayer graphene nanoribbon at 303 K. This study shows that the adsorption and selectivity of SO 2 increase after the functionalization of the nanoribbon compared to the hydrogen terminated nanoribbon. The order of adsorption capacity and selectivity of the functionalized nanoribbon is found to follow the order COOH > NO 2 > NH 2 > CH 3 > OH > H. The selectivity of SO 2 is found to be maximum at a pressure less than 0.2 bar. Furthermore, SO 2 selectivity and adsorption capacity decrease with increase in the molar ratio of SO 2 /N 2 mixture from 1:1 to 1:9. In the case of ternary mixture of SO 2 , CO 2 , N 2 , having compositions of 0.05, 0.15, 0.8, the selectivity of SO 2 over N 2 is higher than that of CO 2 over N 2 . The maximum selectivity of SO 2 over CO 2 is observed for the COOH functionalized GNR followed by NO 2 and other functionalized GNRs.

  2. Topological crystalline insulator SnTe nanoribbons

    NASA Astrophysics Data System (ADS)

    Dahal, Bishnu R.; Dulal, Rajendra P.; Pegg, Ian L.; Philip, John

    2017-03-01

    Topological crystalline insulators are systems in which a band inversion that is protected by crystalline mirror symmetry gives rise to nontrivial topological surface states. SnTe is a topological crystalline insulator. It exhibits p-type conductivity due to Sn vacancies and Te antisites, which leads to high carrier density in the bulk. Thus growth of high quality SnTe is a prerequisite for understanding the topological crystalline insulating behavior. We have grown SnTe nanoribbons using a solution method. The width of the SnTe ribbons varies from 500 nm to 2 μm. They exhibit rock salt crystal structure with a lattice parameter of 6.32 Å. The solution method that we have adapted uses low temperature, so the Sn vacancies can be controlled. The solution grown SnTe nanoribbons exhibit strong semiconducting behavior with an activation energy of 240 meV. This activation energy matches with the calculated band gap for SnTe with a lattice parameter of 6.32 Å, which is higher than that reported for bulk SnTe. The higher activation energy makes the thermal excitation of bulk charges very difficult on the surface. As a result, the topological surfaces will be free from the disturbance caused by the thermal excitations

  3. Experimental studies on hybrid superconductor-topological insulator nanoribbon Josephson devices

    NASA Astrophysics Data System (ADS)

    Kayyalha, Morteza; Jauregui, Luis; Kazakov, Aleksander; Miotkowski, Ireneusz; Rokhinson, Leonid; Chen, Yong

    The spin-helical topological surface states (TSS) of topological insulators in proximity with an s-wave superconductor are predicted to demonstrate signatures of topological superconductivity and host Majorana fermions. Here, we report on the observation of gate-tunable proximity-induced superconductivity in an intrinsic BiSbTeSe2 topological insulator nanoribbon (TINR) based Josephson junction (JJ) with Nb contacts. We observe a gate-tunable critical current (IC) with an anomalous behavior in the temperature (T) dependence of IC. We discuss various possible scenarios that could be relevant to this anomalous behavior, such as (i) the different temperature dependence of supercurrent generated by in-gap, where phase slip plays an important role, and out-of-gap Andreev bound states or (ii) the different critical temperatures associated with the top and bottom topological surface states. Our modeling of IC vs. T suggests the possible existence of one pair of in-gap Andreev bound states in our TINR. We have also studied the effects of magnetic fields on the critical current in our TINR Josephson junctions.

  4. Influence of quasi-particle density over polaron mobility in armchair graphene nanoribbons.

    PubMed

    Silva, Gesiel Gomes; da Cunha, Wiliam Ferreira; de Sousa Junior, Rafael Timóteo; Almeida Fonseca, Antonio Luciano; Ribeiro Júnior, Luiz Antônio; E Silva, Geraldo Magela

    2018-06-20

    An important aspect concerning the performance of armchair graphene nanoribbons (AGNRs) as materials for conceiving electronic devices is related to the mobility of charge carriers in these systems. When several polarons are considered in the system, a quasi-particle wave function can be affected by that of its neighbor provided the two are close enough. As the overlap may affect the transport of the carrier, the question concerning how the density of polarons affect its mobility arises. In this work, we investigate such dependence for semiconducting AGNRs in the scope of nonadiabatic molecular dynamics. Our results unambiguously show an impact of the density on both the stability and average velocity of the quasi-particles. We have found a phase transition between regimes where increasing density stops inhibiting and starts promoting mobility; densities higher than 7 polarons per 45 Å present increasing mean velocity with increasing density. We have also established three different regions relating electric field and average velocity. For the lowest electric field regime, surpassing the aforementioned threshold results in overcoming the 0.3 Å fs-1 limit, thus representing a transition between subsonic and supersonic regimes. For the highest of the electric fields, density effects alone are responsible for a stunning difference of 1.5 Å fs-1 in the mean carrier velocity.

  5. Enhancing the thermoelectric performance of gamma-graphyne nanoribbons by introducing edge disorder.

    PubMed

    Cui, Xiao; Ouyang, Tao; Li, Jin; He, Chaoyu; Tang, Chao; Zhong, Jianxin

    2018-03-07

    Structure disorder especially edge disorder is unavoidable during the fabrication of nanomaterials. In this paper, using the non-equilibrium Green's function method, we investigate the influence of edge disorder on the thermoelectric performance of gamma(γ)-graphyne nanoribbons (GYNRs). Our results show that the high Seebeck coefficient in pristine γ-GYNR could still be preserved although edge disorder is introduced into the structure. Meanwhile, in these edge-disordered nanoribbons the suppression of thermal conductance including electronic and phononic contributions outweighs the reduction of electronic conductance. These two positive effects combine together, and finally boost the thermoelectric conversion efficiency of γ-GYNRs. The thermoelectric figure of merit ZT in the edge-disordered γ-GYNRs (the length and width are about 55.68 and 1.41 nm) could approach 2.5 at room temperature, and can even reach as high as 4.0 at 700 K, which is comparable to the efficiency of conventional energy conversion methods. The findings in this paper indicate that the edge-disordered γ-GYNRs are a promising candidate for efficient thermoelectric energy conversion and thermal management of nanodevices.

  6. How to realize a spin-dependent Seebeck diode effect in metallic zigzag γ-graphyne nanoribbons?

    PubMed

    Wu, Dan-Dan; Liu, Qing-Bo; Fu, Hua-Hua; Wu, Ruqian

    2017-11-30

    The spin-dependent Seebeck effect (SDSE) is one of the core topics of spin caloritronics. In the traditional device designs of spin-dependent Seebeck rectifiers and diodes, finite spin-dependent band gaps of materials are required to realize the on-off characteristic in thermal spin currents, and nearly zero charge current should be achieved to reduce energy dissipation. Here, we propose that two ferromagnetic zigzag γ-graphyne nanoribbons (ZγGNRs) without any spin-dependent band gaps around the Fermi level can not only exhibit the SDSE, but also display rectifier and diode effects in thermal spin currents characterized by threshold temperatures, which originates from the compensation effect occurring in spin-dependent transmissions but not from the spin-splitting band gaps in materials. The metallic characteristics of ZγGNRs bring about an advantage that the gate voltage is an effective route to adjust the symmetry of spin-splitting bands to obtain pure thermal spin currents. The results provide a new mechanism to realize spin-Seebeck rectifier and diode effects in 2D materials and expand material candidates towards spin-Seebeck device applications.

  7. Structural and electronic properties of armchair graphene nanoribbons under uniaxial strain

    NASA Astrophysics Data System (ADS)

    Qu, Li-Hua; Zhang, Jian-Min; Xu, Ke-Wei; Ji, Vincent

    2014-02-01

    We theoretically investigate the structures, relative stabilities and electronic properties of the armchair graphene nanoribbons (AGNRs) under uniaxial strain via first-principles calculations. The results show that, although each bond length decreases (increases) with increasing compression (tension) strain especially for the axial bonds a1, a4 and a7, the ribbon geometrical width d increases (decreases) with increasing compression (tension) strain due to the rotation of the zigzag bonds a2, a3, a5 and a6. For each nanoribbon, as expected, the lowest average energy corresponds to the unstrained state and the larger contract (elongate) deformation corresponds to the higher average energy. At a certain strain, the average energy increases with decreasing the ribbon width n. The average energy increases quadratically with the absolute value of the uniaxial strain, showing an elastic behavior. The dependence of the band gap on the strain is sensitive to the ribbon width n which can be classified into three distinct families n=3I, 3I+1 and 3I+2, where I is an integer. The ribbon width leads to oscillatory band gaps due to quantum confinement effect.

  8. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2016-02-01

    Modern society is hungry for electrical power. To improve the efficiency of energy harvesting from heat, extensive efforts seek high-performance thermoelectric materials that possess large differences between electronic and thermal conductance. Here we report a super high-performance material of consisting of MoS2/WS2 hybrid nanoribbons discovered from a theoretical investigation using nonequilibrium Green’s function methods combined with first-principles calculations and molecular dynamics simulations. The hybrid nanoribbons show higher efficiency of energy conversion than the MoS2 and WS2 nanoribbons due to the fact that the MoS2/WS2 interface reduces lattice thermal conductivity more than the electron transport. By tuning the number of the MoS2/WS2 interfaces, a figure of merit ZT as high as 5.5 is achieved at a temperature of 600 K. Our results imply that the MoS2/WS2 hybrid nanoribbons have promising applications in thermal energy harvesting.

  9. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons

    PubMed Central

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2016-01-01

    Modern society is hungry for electrical power. To improve the efficiency of energy harvesting from heat, extensive efforts seek high-performance thermoelectric materials that possess large differences between electronic and thermal conductance. Here we report a super high-performance material of consisting of MoS2/WS2 hybrid nanoribbons discovered from a theoretical investigation using nonequilibrium Green’s function methods combined with first-principles calculations and molecular dynamics simulations. The hybrid nanoribbons show higher efficiency of energy conversion than the MoS2 and WS2 nanoribbons due to the fact that the MoS2/WS2 interface reduces lattice thermal conductivity more than the electron transport. By tuning the number of the MoS2/WS2 interfaces, a figure of merit ZT as high as 5.5 is achieved at a temperature of 600 K. Our results imply that the MoS2/WS2 hybrid nanoribbons have promising applications in thermal energy harvesting. PMID:26884123

  10. Controlled Growth of Large-Area Aligned Single-Crystalline Organic Nanoribbon Arrays for Transistors and Light-Emitting Diodes Driving

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wang, Liang; Dai, Gaole; Deng, Wei; Zhang, Xiujuan; Jie, Jiansheng; Zhang, Xiaohong

    2017-10-01

    Organic field-effect transistors (OFETs) based on organic micro-/nanocrystals have been widely reported with charge carrier mobility exceeding 1.0 cm2 V-1 s-1, demonstrating great potential for high-performance, low-cost organic electronic applications. However, fabrication of large-area organic micro-/nanocrystal arrays with consistent crystal growth direction has posed a significant technical challenge. Here, we describe a solution-processed dip-coating technique to grow large-area, aligned 9,10-bis(phenylethynyl) anthracene (BPEA) and 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PEN) single-crystalline nanoribbon arrays. The method is scalable to a 5 × 10 cm2 wafer substrate, with around 60% of the wafer surface covered by aligned crystals. The quality of crystals can be easily controlled by tuning the dip-coating speed. Furthermore, OFETs based on well-aligned BPEA and TIPS-PEN single-crystalline nanoribbons were constructed. By optimizing channel lengths and using appropriate metallic electrodes, the BPEA and TIPS-PEN-based OFETs showed hole mobility exceeding 2.0 cm2 V-1 s-1 (average mobility 1.2 cm2 V-1 s-1) and 3.0 cm2 V-1 s-1 (average mobility 2.0 cm2 V-1 s-1), respectively. They both have a high on/off ratio ( I on/ I off) > 109. The performance can well satisfy the requirements for light-emitting diodes driving.

  11. Ultra-Flexibility and Unusual Electronic, Magnetic and Chemical Properties of Waved Graphenes and Nanoribbons

    PubMed Central

    Pan, Hui; Chen, Bin

    2014-01-01

    Two-dimensional materials have attracted increasing attention because of their particular properties and potential applications in next-generation nanodevices. In this work, we investigate the physical and chemical properties of waved graphenes/nanoribbons based on first-principles calculations. We show that waved graphenes are compressible up to a strain of 50% and ultra-flexible because of the vanishing in-plane stiffness. The conductivity of waved graphenes is reduced due to charge decoupling under high compression. Our analysis of pyramidalization angles predicts that the chemistry of waved graphenes can be easily controlled by modulating local curvatures. We further demonstrate that band gaps of armchair waved graphene nanoribbons decrease with the increase of compression if they are asymmetrical in geometry, while increase if symmetrical. For waved zigzag nanoribbons, their anti-ferromagnetic states are strongly enhanced by increasing compression. The versatile functions of waved graphenes enable their applications in multi-functional nanodevices and sensors. PMID:24569444

  12. Water in Inhomogeneous Nanoconfinement: Coexistence of Multilayered Liquid and Transition to Ice Nanoribbons.

    PubMed

    Qiu, Hu; Zeng, Xiao Cheng; Guo, Wanlin

    2015-10-27

    Phase behavior and the associated phase transition of water within inhomogeneous nanoconfinement are investigated using molecular dynamics simulations. The nanoconfinement is constructed by a flat bottom plate and a convex top plate. At 300 K, the confined water can be viewed as a coexistence of monolayer, bilayer, and trilayer liquid domains to accommodate the inhomogeneous confinement. With increasing liquid density, the confined water with uneven layers transforms separately into two-dimensional ice crystals with unchanged layer number and rhombic in-plane symmetry for oxygen atoms. The monolayer water undergoes the transition first into a puckered ice nanoribbon, and the bilayer water transforms into a rhombic ice nanoribbon next, followed by the transition of trilayer water into a trilayer ice nanoribbon. The sequential localized liquid-to-solid transition within the inhomogeneous confinement can also be achieved by gradually decreasing the temperature at low liquid densities. These findings of phase behaviors of water under the inhomogeneous nanoconfinement not only extend the phase diagram of confined water but also have implications for realistic nanofluidic systems and microporous materials.

  13. Phase transition and field effect topological quantum transistor made of monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F. M.

    2018-06-01

    We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q 2) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q 2 diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q 2 diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.

  14. Edge effects on the electronic properties of phosphorene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Xihong, E-mail: xihong.peng@asu.edu; Copple, Andrew; Wei, Qun

    2014-10-14

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs)more » show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p{sub z} orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.« less

  15. Rectification induced in N2AA-doped armchair graphene nanoribbon device

    NASA Astrophysics Data System (ADS)

    Chen, Tong; Li, Xiao-Fei; Wang, Ling-Ling; Luo, Kai-Wu; Xu, Liang

    2014-07-01

    By using non-equilibrium Green function formalism in combination with density functional theory, we investigated the electronic transport properties of armchair graphene nanoribbon devices in which one lead is undoped and the other is N2AA-doped with two quasi-adjacent substitutional nitrogen atoms incorporating pairs of neighboring carbon atoms in the same sublattice A. Two kinds of N2AA-doped style are considered, for N dopants substitute the center or the edge carbon atoms. Our results show that the rectification behavior with a large rectifying ratio can be found in these devices and the rectifying characteristics can be modulated by changing the width of graphene nanoribbons or the position of the N2AA dopant. The mechanisms are revealed to explain the rectifying behaviors.

  16. Functionalization of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Genorio, Bostjan; Znidarsic, Andrej

    2014-03-01

    Graphene nanoribbon (GNR) is a recently discovered carbon allotrope, which can be described as a stripe of graphene. Pseudo-one-dimensionality exerts additional confinement on the electrons resulting in the formation of a band gap relevant for electronic devices. Due to distinct physical and chemical properties it is a promising material for several applications. To expand the range of potential applications and to improve processability, chemical functionalization of GNRs is required. This review aims to provide a concise and systematic coverage of recent work in chemical functionalization of GNRs. We will focus on longitudinal carbon nanotube unzipping, functionalization with aryl diazonium salts, non-covalent functionalization, bottom-up synthesis and one pot carbon nanotube unzipping with in situ edge functionalization.

  17. The interplay between the Aharonov-Bohm interference and parity selective tunneling in graphene nanoribbon rings.

    PubMed

    Nguyen, V Hung; Niquet, Y-M; Dollfus, P

    2014-05-21

    We report on a numerical study of the Aharonov-Bohm (AB) effect and parity selective tunneling in pn junctions based on rectangular graphene rings where the contacts and ring arms are all made of zigzag nanoribbons. We find that when applying a magnetic field to the ring, the AB interference can reverse the parity symmetry of incoming waves and hence can strongly modulate the parity selective transmission through the system. Therefore, the transmission between two states of different parity exhibits the AB oscillations with a π-phase shift, compared to the case of states of the same parity. On this basis, it is shown that interesting effects, such as giant (both positive and negative) magnetoresistance and strong negative differential conductance, can be achieved in this structure. Our study thus presents a new property of the AB interference in graphene nanorings, which could be helpful for further understanding the transport properties of graphene mesoscopic systems.

  18. Oxygen vacancy effect on dielectric and hysteretic properties of zigzag ferroelectric iron dioxide nanoribbon

    NASA Astrophysics Data System (ADS)

    Zriouel, S.; Taychour, B.; Yahyaoui, F. El; Drissi, L. B.

    2017-07-01

    Zigzag FeO2 nanoribbon defected by the removal of oxygen atoms is simulated using Monte Carlo simulations. All possible arrangements of positions and number of oxygen vacancy are investigated. Temperature dependence of polarization, dielectric susceptibility, internal energy, specific heat and dielectric hysteresis loops are all studied. Results show the presence of second order phase transition and Q - type behavior. Dielectric properties dependence on ribbon's edge, positions and number of oxygen vacancy are discussed in detail. Moreover, single and square hysteresis loops are observed whatever the number of oxygen vacancy in the system.

  19. Edge-Dependent Electronic and Magnetic Characteristics of Freestanding β 12-Borophene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Izadi Vishkayi, Sahar; Bagheri Tagani, Meysam

    2018-03-01

    This work presents an investigation of nanoribbons cut from β 12-borophene sheets by applying the density functional theory. In particular, the electronic and magnetic properties of borophene nanoribbons (BNR) are studied. It is found that all the ribbons considered in this work behave as metals, which is in good agreement with the recent experimental results. β 12-BNR has significant diversity due to the existence of five boron atoms in a unit cell of the sheet. The magnetic properties of the ribbons are strongly dependent on the cutting direction and edge profile. It is interesting that a ribbon with a specific width can behave as a normal or a ferromagnetic metal with magnetization at just one edge or two edges. Spin anisotropy is observed in some ribbons, and the magnetic moment is not found to be the same in both edges in an antiferromagnetic configuration. This effect stems from the edge asymmetry of the ribbons and results in the breaking of spin degeneracy in the band structure. Our findings show that β 12 BNRs are potential candidates for next-generation spintronic devices. [Figure not available: see fulltext.

  20. Giant rectification in graphene nanoflake molecular devices with asymmetric graphene nanoribbon electrodes

    NASA Astrophysics Data System (ADS)

    Ji, Xiao-Li; Xie, Zhen; Zuo, Xi; Zhang, Guang-Ping; Li, Zong-Liang; Wang, Chuan-Kui

    2016-09-01

    By applying density functional theory based nonequilibrium Green's function method, we theoretically investigate the electron transport properties of a zigzag-edged trigonal graphene nanoflake (ZTGNF) sandwiched between two asymmetric zigzag graphene nanoribbon (zGNR) and armchair graphene nanoribbon (aGNR) electrodes with carbon atomic chains (CACs) as the anchoring groups. Significant rectifying effects have been observed for these molecular devices in low bias voltage regions. Interestingly, the rectifying performance of molecular devices can be optimized by changing the width of the aGNR electrode and the number of anchoring CACs. Especially, the molecular device displays giant rectification ratios up to the order of 104 when two CACs are used as the anchoring group between the ZTGNF and the right aGNR electrode. Further analysis indicates that the asymmetric shift of the perturbed molecular energy levels and the spatial parity of the electron wavefunctions in the electrodes around the Fermi level play key roles in determining the rectification performance. And the spatial distributions of tunneling electron wavefunctions under negative bias voltages can be modified to be very localized by changing the number of anchoring CACs, which is found to be the origin of the giant rectification ratios.

  1. Solution Synthesis of Atomically Precise Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Shekhirev, Mikhail; Sinitskii, Alexander

    2017-05-01

    Bottom-up fabrication of narrow strips of graphene, also known as graphene nanoribbons or GNRs, is an attractive way to open a bandgap in semimetallic graphene. In this chapter, we review recent progress in solution-based synthesis of GNRs with atomically precise structures. We discuss a variety of atomically precise GNRs and highlight theoretical and practical aspects of their structural design and solution synthesis. These GNRs are typically synthesized through a polymerization of rationally designed molecular precursors followed by a planarization through a cyclodehydrogenation reaction. We discuss various synthetic techniques for polymerization and planarization steps, possible approaches for chemical modification of GNRs, and compare the properties of GNRs that could be achieved by different synthetic methods. We also discuss the importance of the rational design of molecular precursors to avoid isomerization during the synthesis and achieve GNRs that have only one possible structure. Significant attention in this chapter is paid to the methods of material characterization of solution-synthesized GNRs. The chapter is concluded with the discussion of the most significant challenges in the field and the future outlook.

  2. Band gap tuning of armchair silicene nanoribbons using periodic hexagonal holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehdi Aghaei, Sadegh; Calizo, Irene, E-mail: icalizo@fiu.edu

    2015-09-14

    The popularity of graphene owing to its unique and exotic properties has triggered a great deal of interest in other two-dimensional nanomaterials. Among them silicene shows considerable promise for electronic devices with a carrier mobility comparable to graphene, flexible buckled structure, and expected compatibility with silicon electronics. Using first-principle calculations based on density functional theory, the electronic properties of armchair silicene nanoribbons perforated with periodic nanoholes (ASiNRPNHs) are investigated. Two different configurations of mono-hydrogenated (:H) and di-hydrogenated (:2H) silicene edges are considered. Pristine armchair silicene nanoribbons (ASiNRs) can be categorized into three branches with width W = 3P − 1, 3P, andmore » 3P + 1, P is an integer. The order of their energy gaps change from “E{sub G} (3P − 1) < E{sub G} (3P) < E{sub G} (3P + 1)” for W-ASiNRs:H to “E{sub G} (3P + 1) < E{sub G} (3P − 1) < E{sub G} (3P)” for W-ASiNRs:2H. We found the band gaps of W-ASiNRs:H and (W + 2)-ASiNRs:2H are slightly different, giving larger band gaps for wider ASiNRs:2H. ASiNRPNHs' band gaps changed based on the nanoribbon's width, nanohole's repeat periodicity and position relative to the nanoribbon's edge compared to pristine ASiNRs because of changes in quantum confinement strength. ASiNRPNHs:2H are more stable than ASiNRPNHs:H and their band gaps are noticeably greater than ASiNRPNHs:H. We found that the value of energy band gap for 12-ASiNRPNHs:2H with repeat periodicity of 2 is 0.923 eV. This value is about 2.2 times greater than pristine ASiNR:2H and double that of the 12-ASiNRPNHs:H with repeat periodicity of 2.« less

  3. Electronic, magnetic and transport properties of transition metal-doped holely C2N-h2D nanoribbons

    NASA Astrophysics Data System (ADS)

    He, Jing-Jing; Guo, Yan-Dong; Yan, Xiao-Hong; Zeng, Hong-Li

    2018-01-01

    A novel layered two-dimensional graphene-like material C2N-h2D with evenly distributed holes and nitrogen atoms has been synthesized via a bottom-up wet-chemical reaction [Nat. Commun. 6, 6486 (2015)]. The presence of holes provides a ground for further functionalization by doping. By performing a first-principles study, we have doped transition metals at the center of the holes of C2N-h2D nanoribbons and explored their doping effects on electronic, magnetic and transport properties. It is found that the doping can essentially regulate the electronic properties of C2N-h2D nanoribbons. The metallic zigzag ribbon is tuned into a semiconductor for Mn, Fe and Co-doped cases, but half-metal for Ni-doping. This transition is derived from the peculiar band morphology which has a big band gap between the edge state and the higher band, so when the energy of the edge state is reduced by the impurity state, the band gap falls too and crosses the Fermi level. In contrast, the pristine semiconducting armchair C2N-h2D nanoribbon is changed into metallic. Different from the zigzag case, its physical mechanism originates from the hybridization of 3 d orbitals of transition metal atoms and the p orbitals of carbon and nitrogen atoms which introduces several resonant peaks at the Fermi level in the density of states. Furthermore, the magnetic moments of all doped materials are enhanced compared to the pristine structures but decrease as the atomic number of the transition metal atom increases. And the spin polarization of armchair C2N-h2D nanoribbon is increased, while that of the zigzag structure is decreased except the Ni-doped one which is completely spin-polarized suggesting great prospects in the future of spintronics and nanoelectronics.

  4. Methods of fabrication of graphene nanoribbons

    DOEpatents

    Zhang, Yuegang

    2015-06-23

    Methods of fabricating graphene nanoribbons include depositing a catalyst layer on a substrate. A masking layer is deposited on the catalyst layer. The masking layer and the catalyst layer are etched to form a structure on the substrate, the structure comprising a portion of the catalyst layer and a portion of the masking layer disposed on the catalyst layer, with sidewalls of the catalyst layer being exposed. A graphene layer is formed on a sidewall of the catalyst layer with a carbon-containing gas.

  5. Quantum interference in DNA bases probed by graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Jeong, Heejeong; Seul Kim, Han; Lee, Sung-Hoon; Lee, Dongho; Hoon Kim, Yong; Huh, Nam

    2013-07-01

    Based on first-principles nonequilibrium Green's function calculations, we demonstrate quantum interference (QI) effects on the tunneling conductance of deoxyribonucleic acid bases placed between zigzag graphene nanoribbon electrodes. With the analogy of QI in hydrocarbon ring structures, we hypothesize that QI can be well preserved in the π-π coupling between the carbon-based electrode and a single DNA base. We demonstrate indications of QI, such as destructively interfered anti-resonance or Fano-resonance, that affect the variation of tunneling conductance depending on the orientation of a base. We find that guanine, with a 10-fold higher transverse conductance, can be singled out from the other bases.

  6. Electrochemical performances of graphene nanoribbons interlacing hollow NiCo oxide nanocages

    NASA Astrophysics Data System (ADS)

    Zhao, Xiyu; Li, Xinlu; Huang, Yanchun; Su, Zelong; Long, Junjun; Zhang, Shilei; Sha, Junwei; Wu, Tianli; Wang, Ronghua

    2017-12-01

    A hybrid of graphene nanoribbons (GNRs) interlacing hollow NiCoO2 (G-HNCO) nanocages in a size range of 300 500 nm with rough surface is synthesized by a chemical etching Cu2O templates and followed by GNR interlacing process. The G-HNCO showed high electrochemical performance of oxygen evolution reaction (OER), which exhibited small onset potential of 1.50 V and achieved current densities of 10 mA cm-2 at potentials of 1.62 V. Also, the hybrid delivered high capacitance of 937.8 F g-1 at 1 A g-1 in supercapacitor (SC) tests as well as stable cycling performance in both OER and SC measurements. The approach to synthesize the hybrid is simple and scalable for other graphene nanoribbon-based electrocatalysts. [Figure not available: see fulltext.

  7. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K

    DOE PAGES

    Lee, Sangwook; Yang, Fan; Suh, Joonki; ...

    2015-10-16

    Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of steady-state longitudinal heat flow using suspended-pad micro-devices. We discovered increasing thermal conductivity anisotropy, up to a factor of two, with temperatures above 100 K. A size effect in thermal conductivity was also observed in which thinner nanoribbons show lower thermal conductivity. Analysed with the relaxation time approximation model using phononmore » dispersions obtained based on density function perturbation theory, the high anisotropy is attributed mainly to direction-dependent phonon dispersion and partially to phonon–phonon scattering. Lastly, our results revealing the intrinsic, orientation-dependent thermal conductivity of black phosphorus are useful for designing devices, as well as understanding fundamental physical properties of layered materials.« less

  8. A Novel "Off-On" Fluorescent Probe Based on Carbon Nitride Nanoribbons for the Detection of Citrate Anion and Live Cell Imaging.

    PubMed

    Hu, Yanling; Yang, Donlgliang; Yang, Chen; Feng, Ning; Shao, Zhouwei; Zhang, Lei; Wang, Xiaodong; Weng, Lixing; Luo, Zhimin; Wang, Lianhui

    2018-04-11

    A novel fluorescent "off-on" probe based on carbon nitride (C₃N₄) nanoribbons was developed for citrate anion (C₆H₅O₇ 3- ) detection. The fluorescence of C₃N₄ nanoribbons can be quenched by Cu 2+ and then recovered by the addition of C₆H₅O₇ 3- , because the chelation between C₆H₅O₇ 3- and Cu 2+ blocks the electron transfer between Cu 2+ and C₃N₄ nanoribbons. The turn-on fluorescent sensor using this fluorescent "off-on" probe can detect C₆H₅O₇ 3- rapidly and selectively, showing a wide detection linear range (1~400 μM) and a low detection limit (0.78 μM) in aqueous solutions. Importantly, this C₃N₄ nanoribbon-based "off-on" probe exhibits good biocompatibility and can be used as fluorescent visualizer for exogenous C₆H₅O₇ 3- in HeLa cells.

  9. Bondonic effects in group-IV honeycomb nanoribbons with Stone-Wales topological defects.

    PubMed

    Putz, Mihai V; Ori, Ottorino

    2014-04-03

    This work advances the modeling of bondonic effects on graphenic and honeycomb structures, with an original two-fold generalization: (i) by employing the fourth order path integral bondonic formalism in considering the high order derivatives of the Wiener topological potential of those 1D systems; and (ii) by modeling a class of honeycomb defective structures starting from graphene, the carbon-based reference case, and then generalizing the treatment to Si (silicene), Ge (germanene), Sn (stannene) by using the fermionic two-degenerate statistical states function in terms of electronegativity. The honeycomb nanostructures present η-sized Stone-Wales topological defects, the isomeric dislocation dipoles originally called by authors Stone-Wales wave or SWw. For these defective nanoribbons the bondonic formalism foresees a specific phase-transition whose critical behavior shows typical bondonic fast critical time and bonding energies. The quantum transition of the ideal-to-defect structural transformations is fully described by computing the caloric capacities for nanostructures triggered by η-sized topological isomerisations. Present model may be easily applied to hetero-combinations of Group-IV elements like C-Si, C-Ge, C-Sn, Si-Ge, Si-Sn, Ge-Sn.

  10. FAST TRACK COMMUNICATION: Preferential functionalization on zigzag graphene nanoribbons: first-principles calculations

    NASA Astrophysics Data System (ADS)

    Lee, Hoonkyung

    2010-09-01

    We investigate the functionalization of functional groups to graphene nanoribbons with zigzag and armchair edges using first-principles calculations. We find that the formation energy for the configuration of the functional groups functionalized to the zigzag edge is ~ 0.2 eV per functional group lower than that to the armchair edge. The formation energy difference arises from a structural deformation on the armchair edge by the functionalization whereas there is no structural deformation on the zigzag edge. Selective functionalization on the zigzag edge takes place at a condition of the temperature and the pressure of ~ 25 °C and 10 - 5 atm. Our findings show that selective functionalization can offer the opportunity for an approach to the separation of zigzag graphene nanoribbons with their solubility change.

  11. Energy band gaps in graphene nanoribbons with corners

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, Dominik; Durajski, Artur P.; Khater, Antoine; Ghader, Doried

    2016-05-01

    In the present paper, we study the relation between the band gap size and the corner-corner length in representative chevron-shaped graphene nanoribbons (CGNRs) with 120° and 150° corner edges. The direct physical insight into the electronic properties of CGNRs is provided within the tight-binding model with phenomenological edge parameters, developed against recent first-principle results. We show that the analyzed CGNRs exhibit inverse relation between their band gaps and corner-corner lengths, and that they do not present a metal-insulator transition when the chemical edge modifications are introduced. Our results also suggest that the band gap width for the CGNRs is predominantly governed by the armchair edge effects, and is tunable through edge modifications with foreign atoms dressing.

  12. Quasiparticle Energies and Band Gaps in Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Yang, Li; Park, Cheol-Hwan; Son, Young-Woo; Cohen, Marvin L.; Louie, Steven G.

    2007-11-01

    We present calculations of the quasiparticle energies and band gaps of graphene nanoribbons (GNRs) carried out using a first-principles many-electron Green’s function approach within the GW approximation. Because of the quasi-one-dimensional nature of a GNR, electron-electron interaction effects due to the enhanced screened Coulomb interaction and confinement geometry greatly influence the quasiparticle band gap. Compared with previous tight-binding and density functional theory studies, our calculated quasiparticle band gaps show significant self-energy corrections for both armchair and zigzag GNRs, in the range of 0.5 3.0 eV for ribbons of width 2.4 0.4 nm. The quasiparticle band gaps found here suggest that use of GNRs for electronic device components in ambient conditions may be viable.

  13. Tuning the deposition of molecular graphene nanoribbons by surface functionalization.

    PubMed

    Konnerth, R; Cervetti, C; Narita, A; Feng, X; Müllen, K; Hoyer, A; Burghard, M; Kern, K; Dressel, M; Bogani, L

    2015-08-14

    We show that individual, isolated graphene nanoribbons, created with a molecular synthetic approach, can be assembled on functionalised wafer surfaces treated with silanes. The use of surface groups with different hydrophobicities allows tuning the density of the ribbons and assessing the products of the polymerisation process.

  14. Tuning the deposition of molecular graphene nanoribbons by surface functionalization

    NASA Astrophysics Data System (ADS)

    Konnerth, R.; Cervetti, C.; Narita, A.; Feng, X.; Müllen, K.; Hoyer, A.; Burghard, M.; Kern, K.; Dressel, M.; Bogani, L.

    2015-07-01

    We show that individual, isolated graphene nanoribbons, created with a molecular synthetic approach, can be assembled on functionalised wafer surfaces treated with silanes. The use of surface groups with different hydrophobicities allows tuning the density of the ribbons and assessing the products of the polymerisation process.

  15. Adsorption and dissociation of sulfur-based toxic gas molecules on silicene nanoribbons: a quest for high-performance gas sensors and catalysts.

    PubMed

    Walia, Gurleen Kaur; Randhawa, Deep Kamal Kaur

    2018-03-16

    The adsorption behavior of sulfur-based toxic gases (H 2 S and SO 2 ) on armchair silicene nanoribbons (ASiNRs) was investigated using first-principles density functional theory (DFT). Being a zero band gap material, application of bulk silicene is limited in nanoelectronics, despite its high carrier mobility. By restricting its dimensions into one dimension, construction of nanoribbons, and by introduction of a defect, its band gap can be tuned. Pristine armchair silicene nanoribbons (P-ASiNRs) have a very low sensitivity to gas molecules. Therefore, a defect was introduced by removal of one Si atom, leading to increased sensitivity. To deeply understand the impact of the aforementioned gases on silicene nanoribbons, electronic band structures, density of states, charge transfers, adsorption energies, electron densities, current-voltage characteristics and most stable adsorption configurations were calculated. H 2 S is dissociated completely into HS and H species when adsorbed onto defective armchair silicene nanoribbons (D-ASiNRs). Thus, D-ASiNR is a likely catalyst for dissociation of the H 2 S gas molecule. Conversely, upon SO 2 adsorption, P-ASiNR acts as a suitable sensor, whereas D-ASiNR provides enhanced sensitivity compared with P-ASiNR. On the basis of these results, D-ASiNR can be expected to be a disposable sensor for SO 2 detection as well as a catalyst for H 2 S reduction. Graphical abstract Comparison of I-V characteristics of pristine and defective armchair silicene nanoribbons with H 2 S and SO 2 adsorbed on them.

  16. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.

    PubMed

    Alaal, Naresh; Medhekar, Nikhil; Shukla, Alok

    2018-04-18

    We employ a first-principles calculations based density-functional-theory (DFT) approach to study the electronic properties of partially and fully edge-hydrogenated armchair boron-nitrogen-carbon (BNC) nanoribbons (ABNCNRs), with widths between 0.85 nm to 2.3 nm. Due to the partial passivation of edges, the electrons, which do not participate in the bonding, form new energy states located near the Fermi-level. Because of these additional bands, some ABNCNRs exhibit metallic behavior, which is quite uncommon in armchair nanoribbons. Our calculations reveal that metallic behavior is observed for the following passivation patterns: (i) when the B atom from one edge and the N atom from another edge are unpassivated. (ii) when the N atoms from both the edges are unpassivated. (iii) when the C atom from one edge and the N atom from another edge are unpassivated. Furthermore, spin-polarization is also observed for certain passivation schemes, which is also quite uncommon for armchair nanoribbons. Thus, our results suggest that the ABNCNRs exhibit a wide range of electronic and magnetic properties in that the fully edge-hydrogenated ABNCNRs are direct band gap semiconductors, while the partially edge-hydrogenated ones are either semiconducting, or metallic, while simultaneously exhibiting spin polarization, based on the nature of passivation. We also find that the ribbons with larger widths are more stable as compared to the narrower ones.

  17. Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons.

    PubMed

    Liu, Qing-Bo; Wu, Dan-Dan; Fu, Hua-Hua

    2017-10-11

    By using the first-principle calculations combined with the non-equilibrium Green's function approach, we have studied spin caloritronic properties of graphene nanoribbons (GNRs) with different edge defects. The theoretical results show that the edge-defected GNRs with sawtooth shapes can exhibit spin-dependent currents with opposite flowing directions by applying temperature gradients, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). The edge defects bring about two opposite effects on the thermal spin currents: the enhancement of the symmetry of thermal spin-dependent currents, which contributes to the realization of pure thermal spin currents, and the decreasing of the spin thermoelectric conversion efficiency of the devices. It is fortunate that applying a gate voltage is an efficient route to optimize these two opposite spin thermoelectric properties towards realistic device applications. Moreover, due to the existence of spin-splitting band gaps, the edge-defected GNRs can be designed as spin-dependent Seebeck diodes and rectifiers, indicating that the edge-defected GNRs are potential candidates for room-temperature spin caloritronic devices.

  18. Electron doping effects on the electrical conductivity of zigzag carbon nanotubes and corresponding unzipped armchair graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Mousavi, Hamze; Jalilvand, Samira; Kurdestany, Jamshid Moradi; Grabowski, Marek

    2017-10-01

    The Kubo formula is used to extract the electrical conductivity (EC) of different diameters of doped zigzag carbon nanotubes and their corresponding unzipped armchair graphene nanoribbons, as a function of temperature and chemical potential, within the tight-binding Hamiltonian model and Green's functions approach. The results reveal more sensitivity to temperature for semiconducting systems in addition to a decrease in EC of all systems with increasing cross-sections.

  19. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K

    PubMed Central

    Lee, Sangwook; Yang, Fan; Suh, Joonki; Yang, Sijie; Lee, Yeonbae; Li, Guo; Sung Choe, Hwan; Suslu, Aslihan; Chen, Yabin; Ko, Changhyun; Park, Joonsuk; Liu, Kai; Li, Jingbo; Hippalgaonkar, Kedar; Urban, Jeffrey J.; Tongay, Sefaattin; Wu, Junqiao

    2015-01-01

    Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of steady-state longitudinal heat flow using suspended-pad micro-devices. We discovered increasing thermal conductivity anisotropy, up to a factor of two, with temperatures above 100 K. A size effect in thermal conductivity was also observed in which thinner nanoribbons show lower thermal conductivity. Analysed with the relaxation time approximation model using phonon dispersions obtained based on density function perturbation theory, the high anisotropy is attributed mainly to direction-dependent phonon dispersion and partially to phonon–phonon scattering. Our results revealing the intrinsic, orientation-dependent thermal conductivity of black phosphorus are useful for designing devices, as well as understanding fundamental physical properties of layered materials. PMID:26472285

  20. Graphene nanoribbons on gold: understanding superlubricity and edge effects

    NASA Astrophysics Data System (ADS)

    Gigli, L.; Manini, N.; Benassi, A.; Tosatti, E.; Vanossi, A.; Guerra, R.

    2017-12-01

    We address the atomistic nature of the longitudinal static friction against sliding of graphene nanoribbons (GNRs) deposited on gold, a system whose structural and mechanical properties have been recently the subject of intense experimental investigation. By means of numerical simulations and modeling we show that the GNR interior is structurally lubric (‘superlubric’) so that the static friction is dominated by the front/tail regions of the GNR, where the residual uncompensated lateral forces arising from the interaction with the underneath gold surface opposes the free sliding. As a result of this edge pinning the static friction does not grow with the GNR length, but oscillates around a fairly constant mean value. These friction oscillations are explained in terms of the GNR-Au(111) lattice mismatch: at certain GNR lengths close to an integer number of the beat (or moiré) length there is good force compensation and superlubric sliding; whereas close to half odd-integer periods there is significant pinning of the edge with larger friction. These results make qualitative contact with recent state-of-the-art atomic force microscopy experiment, as well as with the sliding of other different incommensurate systems.

  1. Electrical controllable spin pump based on a zigzag silicene nanoribbon junction.

    PubMed

    Zhang, Lin; Tong, Peiqing

    2017-12-13

    We propose a possible electrical controllable spin pump based on a zigzag silicene nanoribbon ferromagnetic junction by applying two time-dependent perpendicular electric fields. By using the Keldysh Green's function method, we derive the analytic expression of the spin-resolved current at the adiabatic approximation and demonstrate that two asymmetric spin up and spin down currents can be pumped out in the device without an external bias. The pumped currents mainly come from the interplay between the photon-assisted spin pump effect and the electrically-modulated energy band structure of the tunneling junction. The spin valve phenomena are not only related to the energy gap opened by two perpendicular staggered potentials, but also dependent on the system parameters such as the pumping frequency, the pumping phase difference, the spin-orbit coupling and the Fermi level, which can be tuned by the electrical methods. The proposed device can also be used to produce a pure spin current and a 100% polarized spin current through the photon-assisted pumping process. Our investigations may provide an electrical manipulation of spin-polarized electrons in graphene-like pumping devices.

  2. Electronic structure and transport properties of zigzag MoS2 nanoribbons

    NASA Astrophysics Data System (ADS)

    Sharma, Uma Shankar; Shah, Rashmi; Mishra, Pankaj Kumar

    2018-05-01

    In present study, electronic and transport properties of the 8zigzag MoS2 nanoribbons (8ZMoS2NRs) are investigated using ab-initio density functional theory [DFT]. The calculations were performed using nonequilibrium Green's function (NEGF) formalism based on DFT as implemented in the TranSiesta code. Results show that the defect can introduces few extra states into the energy gap, which lead nanoribbons to reveal a metallic characteristic. The voltage-current (VI) graph of 8ZMoS2NRs show a threshold current increases after introducing Mo defect in the devices. when introducing a Mo vacancy under low biases, the current will be suppressed—whereas under high biases, the current through the defected 8ZMoS2NRs will increases rapidly, due to the other channel being opened, that make possibility of 8ZMoS2NRs application in electronic devices such as voltage regulation.

  3. Ultrafast carrier dynamics and optical pumping of lasing from Ar-plasma treated ZnO nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Ketaki; Mukherjee, Souvik; Wiederrecht, Gary

    We report that it is a well-known fact that ZnO has been one of the most studied wide bandgap II-VI materials by the scientific community specifically due to its potential for being used as exciton-related optical devices. Hence, realizing ways to increase the efficiency of these devices is important. We discuss a plasma treatment technique to enhance the near-band-edge (NBE) excitonic emission from ZnO based nanoribbons. We observed an enhancement of the NBE peak and simultaneous quenching of the visible emission peak resulting from the removal of surface traps on these ZnO nanoribbons. More importantly, we report here the associatedmore » ultrafast carrier dynamics resulting from this surface treatment. Femtosecond transient absorption spectroscopy was performed using pump-probe differential transmission measurements shedding new light on these improved dynamics with faster relaxation times. The knowledge obtained is important for improving the application of ZnO based optoelectronic devices. Finally, we also observed how these improved carrier dynamics have a direct effect on the threshold and efficiency of random lasing from the material.« less

  4. Ultrafast carrier dynamics and optical pumping of lasing from Ar-plasma treated ZnO nanoribbons

    DOE PAGES

    Sarkar, Ketaki; Mukherjee, Souvik; Wiederrecht, Gary; ...

    2018-01-04

    We report that it is a well-known fact that ZnO has been one of the most studied wide bandgap II-VI materials by the scientific community specifically due to its potential for being used as exciton-related optical devices. Hence, realizing ways to increase the efficiency of these devices is important. We discuss a plasma treatment technique to enhance the near-band-edge (NBE) excitonic emission from ZnO based nanoribbons. We observed an enhancement of the NBE peak and simultaneous quenching of the visible emission peak resulting from the removal of surface traps on these ZnO nanoribbons. More importantly, we report here the associatedmore » ultrafast carrier dynamics resulting from this surface treatment. Femtosecond transient absorption spectroscopy was performed using pump-probe differential transmission measurements shedding new light on these improved dynamics with faster relaxation times. The knowledge obtained is important for improving the application of ZnO based optoelectronic devices. Finally, we also observed how these improved carrier dynamics have a direct effect on the threshold and efficiency of random lasing from the material.« less

  5. Dependence of phase configurations, microstructures and magnetic properties of iron-nickel (Fe-Ni) alloy nanoribbons on deoxidization temperature in hydrogen

    NASA Astrophysics Data System (ADS)

    Jing, Panpan; Liu, Mengting; Pu, Yongping; Cui, Yongfei; Wang, Zhuo; Wang, Jianbo; Liu, Qingfang

    2016-11-01

    Iron-nickel (Fe-Ni) alloy nanoribbons were reported for the first time by deoxidizing NiFe2O4 nanoribbons, which were synthesized through a handy route of electrospinning followed by air-annealing at 450 °C, in hydrogen (H2) at different temperatures. It was demonstrated that the phase configurations, microstructures and magnetic properties of the as-deoxidized samples closely depended upon the deoxidization temperature. The spinel NiFe2O4 ferrite of the precursor nanoribbons were firstly deoxidized into the body-centered cubic (bcc) Fe-Ni alloy and then transformed into the face-centered cubic (fcc) Fe-Ni alloy of the deoxidized samples with the temperature increasing. When the deoxidization temperature was in the range of 300 ~ 500 °C, although each sample possessed its respective morphology feature, all of them completely reserved the ribbon-like structures. When it was further increased to 600 °C, the nanoribbons were evolved completely into the fcc Fe-Ni alloy nanochains. Additionally, all samples exhibited typical ferromagnetism. The saturation magnetization (Ms) firstly increased, then decreased, and finally increased with increasing the deoxidization temperature, while the coercivity (Hc) decreased monotonously firstly and then basically stayed unchanged. The largest Ms (~145.7 emu·g-1) and the moderate Hc (~132 Oe) were obtained for the Fe-Ni alloy nanoribbons with a mixed configuration of bcc and fcc phases.

  6. Dependence of phase configurations, microstructures and magnetic properties of iron-nickel (Fe-Ni) alloy nanoribbons on deoxidization temperature in hydrogen.

    PubMed

    Jing, Panpan; Liu, Mengting; Pu, Yongping; Cui, Yongfei; Wang, Zhuo; Wang, Jianbo; Liu, Qingfang

    2016-11-23

    Iron-nickel (Fe-Ni) alloy nanoribbons were reported for the first time by deoxidizing NiFe 2 O 4 nanoribbons, which were synthesized through a handy route of electrospinning followed by air-annealing at 450 °C, in hydrogen (H 2 ) at different temperatures. It was demonstrated that the phase configurations, microstructures and magnetic properties of the as-deoxidized samples closely depended upon the deoxidization temperature. The spinel NiFe 2 O 4 ferrite of the precursor nanoribbons were firstly deoxidized into the body-centered cubic (bcc) Fe-Ni alloy and then transformed into the face-centered cubic (fcc) Fe-Ni alloy of the deoxidized samples with the temperature increasing. When the deoxidization temperature was in the range of 300 ~ 500 °C, although each sample possessed its respective morphology feature, all of them completely reserved the ribbon-like structures. When it was further increased to 600 °C, the nanoribbons were evolved completely into the fcc Fe-Ni alloy nanochains. Additionally, all samples exhibited typical ferromagnetism. The saturation magnetization (M s ) firstly increased, then decreased, and finally increased with increasing the deoxidization temperature, while the coercivity (H c ) decreased monotonously firstly and then basically stayed unchanged. The largest M s (~145.7 emu·g -1 ) and the moderate H c (~132 Oe) were obtained for the Fe-Ni alloy nanoribbons with a mixed configuration of bcc and fcc phases.

  7. Optical Properties of a Single Carbon Chain-Doped Silicene Nanoribbon

    NASA Astrophysics Data System (ADS)

    Lu, Dao-Bang; Song, Yu-Ling; Huang, Xiao-yu; Wang, Chong

    2018-05-01

    Using first-principles spin polarization density function theory calculations, we have studied the electronic and optical properties of zigzag-edge silicene nanoribbons (ZSiNRs) doped with a single carbon chain. Because of the doped carbon chain, there are several defect states in the band structures of ZSiNRs across the Fermi level, and the ferromagnetic ground state is metallic. The dielectric functions in all three dimensions are completely different from each other, and thus the system exhibits strong optical anisotropism. The carbon chain influenced the dielectric functions most at low energy. The first peak in the E//x direction of the dielectric spectrum exhibits a significant blueshift, and its value has changed as well. The main absorption wavelength depends on the polarization direction of the incident light, but occurs within the UV region for all polarization directions. The peaks of the energy loss spectra correspond to the trailing edges in the reflectivity spectrum, and the highest peak corresponds to a plasmon frequency. Our results could be useful for investigating nanodevices based on silicene nanoribbons.

  8. Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100).

    PubMed

    Radocea, Adrian; Sun, Tao; Vo, Timothy H; Sinitskii, Alexander; Aluru, Narayana R; Lyding, Joseph W

    2017-01-11

    There has been tremendous progress in designing and synthesizing graphene nanoribbons (GNRs). The ability to control the width, edge structure, and dopant level with atomic precision has created a large class of accessible electronic landscapes for use in logic applications. One of the major limitations preventing the realization of GNR devices is the difficulty of transferring GNRs onto nonmetallic substrates. In this work, we developed a new approach for clean deposition of solution-synthesized atomically precise chevron GNRs onto H:Si(100) under ultrahigh vacuum. A clean transfer allowed ultrahigh-vacuum scanning tunneling microscopy (STM) to provide high-resolution imaging and spectroscopy and reveal details of the electronic structure of chevron nanoribbons that have not been previously reported. We also demonstrate STM nanomanipulation of GNRs, characterization of multilayer GNR cross-junctions, and STM nanolithography for local depassivation of H:Si(100), which allowed us to probe GNR-Si interactions and revealed a semiconducting-to-metallic transition. The results of STM measurements were shown to be in good agreement with first-principles computational modeling.

  9. Selective interface transparency in graphene nanoribbon based molecular junctions.

    PubMed

    Dou, K P; Kaun, C C; Zhang, R Q

    2018-03-08

    A clear understanding of electrode-molecule interfaces is a prerequisite for the rational engineering of future generations of nanodevices that will rely on single-molecule coupling between components. With a model system, we reveal a peculiar dependence on interfaces in all graphene nanoribbon-based carbon molecular junctions. The effect can be classified into two types depending on the intrinsic feature of the embedded core graphene nanoflake (GNF). For metallic GNFs with |N A - N B | = 1, good/poor contact transparency occurs when the core device aligns with the center/edge of the electrode. The situation is reversed when a semiconducting GNF is the device, where N A = N B . These results may shed light on the design of real connecting components in graphene-based nanocircuits.

  10. Electronic structure changes during the on-surface synthesis of nitrogen-doped chevron-shaped graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Maaß, Friedrich; Utecht, Manuel; Stremlau, Stephan; Gille, Marie; Schwarz, Jutta; Hecht, Stefan; Klamroth, Tillmann; Tegeder, Petra

    2017-07-01

    Utilizing suitable precursor molecules, a thermally activated and surface-assisted synthesis results in the formation of defect-free graphene nanoribbons (GNRs), which exhibit electronic properties that are not present in extended graphene. Most importantly, they have a band gap in the order of a few electron volts, depending on the nanoribbon width. In this study, we investigate the electronic structure changes during the formation of GNRs, nitrogen-doped (singly and doubly N-doped) as well as non-N-doped chevron-shaped CGNRs on Au(111). Thus we determine the optical gaps of the precursor molecules, the intermediate nonaromatic polymers, and finally the aromatic GNRs, using high-resolution electron energy loss spectroscopy and density functional theory calculations. As expected, we find no influence of N-doping on the size of the optical gaps. The gap of the precursor molecules is around 4.5 eV. Polymerization leads to a reduction of the gap to a value of 3.2 eV due to elongation and thus enhanced delocalization. The CGNRs exhibit a band gap of 2.8 eV, thus the gap is further reduced in the nanoribbons, since they exhibit an extended delocalized π -electron system.

  11. Raman fingerprints of atomically precise graphene nanoribbons

    DOE PAGES

    Verzhbitskiy, Ivan A.; Corato, Marzio De; Ruini, Alice; ...

    2016-02-23

    Bottom-up approaches allow the production of ultranarrow and atomically precise graphene nanoribbons (GNRs) with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab initio simulations, we show that GNR width, edge geometry, and functional groups all influence their Raman spectra. As a result, the low-energy spectral region below 1000 cm –1 is particularly sensitive to edge morphology and functionalization, while the D peak dispersion can be used to uniquely fingerprint the presence of GNRs and differentiates them from other sp 2 carbon nanostructures.

  12. Efficient spin-filter and negative differential resistance behaviors in FeN4 embedded graphene nanoribbon device

    NASA Astrophysics Data System (ADS)

    Liu, N.; Liu, J. B.; Yao, K. L.; Ni, Y.; Wang, S. L.

    2016-03-01

    In this paper, we propose a new device of spintronics by embedding two FeN4 molecules into armchair graphene nanoribbon and sandwiching them between N-doped graphene nanoribbon electrodes. Our first-principle quantum transport calculations show that the device is a perfect spin filter with high spin-polarizations both in parallel configuration (PC) and antiparallel configuration (APC). Moreover, negative differential resistance phenomena are obtained for the spin-down current in PC, and the spin-up and spin-down currents in APC. These transport properties are explained by the bias-dependent evolution of molecular orbitals and the transmission spectra.

  13. Top-down Fabrication and Enhanced Active Area Electronic Characteristics of Amorphous Oxide Nanoribbons for Flexible Electronics.

    PubMed

    Jang, Hyun-June; Joong Lee, Ki; Jo, Kwang-Won; Katz, Howard E; Cho, Won-Ju; Shin, Yong-Beom

    2017-07-18

    Inorganic amorphous oxide semiconductor (AOS) materials such as amorphous InGaZnO (a-IGZO) possess mechanical flexibility and outstanding electrical properties, and have generated great interest for use in flexible and transparent electronic devices. In the past, however, AOS devices required higher activation energies, and hence higher processing temperatures, than organic ones to neutralize defects. It is well known that one-dimensional nanowires tend to have better carrier mobility and mechanical strength along with fewer defects than the corresponding two-dimensional films, but until now it has been difficult, costly, and impractical to fabricate such nanowires in proper alignments by either "bottom-up" growth techniques or by "top-down" e-beam lithography. Here we show a top-down, cost-effective, and scalable approach for the fabrication of parallel, laterally oriented AOS nanoribbons based on lift-off and nano-imprinting. High mobility (132 cm 2 /Vs), electrical stability, and transparency are obtained in a-IGZO nanoribbons, compared to the planar films of the same a-IGZO semiconductor.

  14. Resonant tunneling through S- and U-shaped graphene nanoribbons.

    PubMed

    Zhang, Z Z; Wu, Z H; Chang, Kai; Peeters, F M

    2009-10-14

    We theoretically investigate resonant tunneling through S- and U-shaped nanostructured graphene nanoribbons. A rich structure of resonant tunneling peaks is found emanating from different quasi-bound states in the middle region. The tunneling current can be turned on and off by varying the Fermi energy. Tunability of resonant tunneling is realized by changing the width of the left and/or right leads and without the use of any external gates.

  15. Enhancement of thermoelectric figure of merit in zigzag graphene nanoribbons with periodic edge vacancies

    NASA Astrophysics Data System (ADS)

    Kolesnikov, D. V.; Sadykova, O. G.; Osipov, V. A.

    2017-06-01

    The influence of periodic edge vacancies and antidot arrays on the thermoelectric properties of zigzag graphene nanoribbons (ZGNRs) are investigated. Using Green’s function method, the tight-binding approximation for the electron Hamiltonian and the 4th nearest neighbor approximation for the phonon dynamical matrix, we calculate the Seebeck coefficient and the thermoelectric figure of merit. It is found that, at a certain periodic arrangement of vacancies on both edges of zigzag nanoribbon, a finite band gap opens and almost twofold degenerate energy levels appear. As a result, a marked increase in the Seebeck coefficient takes place. It is shown that an additional enhancement of the thermoelectric figure of merit can be achieved by a combination of periodic edge defects with an antidot array.

  16. The improved electrochemical performance of cross-linked 3D graphene nanoribbon monolith electrodes

    NASA Astrophysics Data System (ADS)

    Vineesh, Thazhe Veettil; Alwarappan, Subbiah; Narayanan, Tharangattu N.

    2015-04-01

    Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes - [Ru(NH3)6]3+/2+, [Fe(CN)6]3-/4- and important bio-analytes - dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm-2) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices.Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes - [Ru(NH3)6]3+/2+, [Fe(CN)6]3-/4- and important bio-analytes - dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm-2) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c

  17. Rectification induced in N{sub 2}{sup AA}-doped armchair graphene nanoribbon device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tong; Wang, Ling-Ling, E-mail: llwang@hnu.edu.cn; Luo, Kai-Wu

    2014-07-07

    By using non-equilibrium Green function formalism in combination with density functional theory, we investigated the electronic transport properties of armchair graphene nanoribbon devices in which one lead is undoped and the other is N{sub 2}{sup AA}-doped with two quasi-adjacent substitutional nitrogen atoms incorporating pairs of neighboring carbon atoms in the same sublattice A. Two kinds of N{sub 2}{sup AA}-doped style are considered, for N dopants substitute the center or the edge carbon atoms. Our results show that the rectification behavior with a large rectifying ratio can be found in these devices and the rectifying characteristics can be modulated by changingmore » the width of graphene nanoribbons or the position of the N{sub 2}{sup AA} dopant. The mechanisms are revealed to explain the rectifying behaviors.« less

  18. Modeling of the photodetector based on the multilayer graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Liu, Haiyue; Niu, Yanxiong; Yin, Yiheng; Liu, Shuai

    2016-07-01

    Graphene nanoribbon (GNR), which has unique properties and advantages, is a crucial component of nanoelectornic devices, especially in the development of photoelectric detectors. In this work, an infrared photodetector based on the structure of stacked multiple-GNRs, which is separated by a little thick barrier layers (made of tungsten disulfide or related materials) to prevent tunneling current, is proposed and modeled. Operation of photoelectric detector is related to the electron cascaded radiative transition in the adjacent GNRs strengthened by the electrons heated due to the incident light. With a developed model, the working principle is analyzed and the relationships for the photocurrent and dark current as functions of the intensity of the incident radiation are derived. The spectral dependence of the responsivity and detectivity for graphene nanoribbons photodetector (GNRs-PT) with different Fermi energy, band gaps and numbers of GNRs layers are analyzed as well. The results demonstrate that the spectral characteristics depend on the GNRs band gap, which shows a potential on GNRs-PT application in the multi-wavelength systems. In addition, GNRs-PT has a better spectrum property and higher responsivity compared to photodetectors based on InxGaxAs in room temperature.

  19. A guide to the design of electronic properties of graphene nanoribbons.

    PubMed

    Yazyev, Oleg V

    2013-10-15

    Graphene nanoribbons (GNRs) are one-dimensional nanostructures predicted to display a rich variety of electronic behaviors. Depending on their structure, GNRs realize metallic and semiconducting electronic structures with band gaps that can be tuned across broad ranges. Certain GNRs also exhibit a peculiar gapped magnetic phase for which the half-metallic state can be induced as well as the topologically nontrivial quantum spin Hall electronic phase. Because their electronic properties are highly tunable, GNRs have quickly become a popular subject of research toward the design of graphene-based nanostructures for technological applications. This Account presents a pedagogical overview of the various degrees of freedom in the atomic structure and interactions that researchers can use to tailor the electronic structure of these materials. The Account provides a broad picture of relevant physical concepts that would facilitate the rational design of GNRs with desired electronic properties through synthetic techniques. We start by discussing a generic model of zigzag GNR within the tight-binding model framework. We then explain how different modifications and extensions of the basic model affect the electronic band structures of GNRs. We classify the modifications based on the following categories: (1) electron-electron and spin-orbit interactions, (2) GNR configuration, which includes width and the crystallographic orientation of the nanoribbon (chirality), and (3) the local structure of the edge. We subdivide this last category into two groups: the effects of the termination of the π-electron system and the variations of electrostatic potential at the edge. This overview of the structure-property relationships provides a view of the many different electronic properties that GNRs can realize. The second part of this Account reviews three recent experimental methods for the synthesis of structurally well-defined GNRs. We describe a family of techniques that use

  20. Warping Armchair Graphene Nanoribbon Curvature Effect on Sensing Properties: A Computational Study

    NASA Astrophysics Data System (ADS)

    Sakina, S. H.; Johari, Zaharah; Auzar, Zuriana; Alias, N. Ezaila; Mohamad, Azam; Zakaria, N. Aini

    2018-02-01

    The aim of this paper is to investigate the interaction between gas molecules and warped armchair graphene nanoribbons (AGNRs) using Extended-Huckel Theory. There are two types of warping known as inward and upward. The sensing properties including binding energy, charge transfer and sensitivity were examined for both warped AGNR cases for 3m+1 configuration and were compared with previous work. Through simulation, it was found that a substantial increase in binding energy by more than 50% was achieved when warped at a higher angle. It is also showed that there was a significant difference in sensitivity for both warping cases when reacting with O2 and NH3 molecules. Interestingly, the ability of the inward warped in sensing O2 and NH3 considerably increases upon warping angle. By applying back gate bias, this shows that current conductivity of the inward warped is twice as high as the upward warped AGNR.

  1. Designing of spin-filtering devices in zigzag graphene nanoribbons heterojunctions by asymmetric hydrogenation and B-N doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Dan; Zhang, Xiaojiao; Ouyang, Fangping

    2015-01-07

    Using nonequilibrium Green's function in combination with the spin-polarized density functional theory, the spin-dependent transport properties of boron and nitrogen doped zigzag graphene nanoribbons (ZGNRs) heterojunctions with single or double edge-saturated hydrogen have been investigated. Our results show that the perfect spin-filtering effect (100%), rectifying behavior and negative differential resistance can be realized in the ZGNRs-based systems. And the corresponding physical analysis has been given.

  2. Enhanced thermoelectric efficiency of porous silicene nanoribbons.

    PubMed

    Sadeghi, Hatef; Sangtarash, Sara; Lambert, Colin J

    2015-03-30

    There is a critical need to attain new sustainable materials for direct upgrade of waste heat to electrical energy via the thermoelectric effect. Here we demonstrate that the thermoelectric performance of silicene nanoribbons can be improved dramatically by introducing nanopores and tuning the Fermi energy. We predict that values of electronic thermoelectric figure of merit ZTe up to 160 are achievable, provided the Fermi energy is located approximately 100 meV above the charge neutrality point. Including the effect of phonons yields a value for the full figure of merit of ZT = 3.5. Furthermore the sign of the thermopower S can be varied with achievable values as high as S = +/- 500 μV/K. As a method of tuning the Fermi energy, we analyse the effect of doping the silicene with either a strong electron donor (TTF) or a strong electron acceptor (TCNQ) and demonstrate that adsorbed layers of the former increases ZTe to a value of 3.1, which is insensitive to temperature over the range 100 K - 400 K. This combination of a high, temperature-insensitive ZTe, and the ability to choose the sign of the thermopower identifies nanoporous silicene as an ideal thermoelectric material with the potential for unprecedented performance.

  3. The role of electronic dopant on full band in-plane RKKY coupling in armchair graphene nanoribbons-magnetic impurity system

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen

    2018-05-01

    Motivated by the growing interest in solving the obstacles of spintronics applications, we study the Ruderman-Kittel-Kasuya-Yosida (RKKY) effective pairwise interaction between magnetic impurities interacting through the π -electrons embedded in both electronically doped-semiconducting and metallic armchair graphene nanoribbons. In terms of the Green's function formalism, treated in a tight-binding approximation with hopping beyond Dirac cone approximation, the RKKY coupling is an attraction or a repulsion depending on the magnetic impurities distances. Our results show that the RKKY coupling in semiconducting nanoribbons is much more affected by doping than metallic ones. Furthermore, we found that the RKKY coupling increases with ribbon width, while there exist some critical electronic concentrations in RKKY interaction oscillations. On the other hand, we find an unusual incoming wave-vector direction for electrons which describes more clearly the ferro- and antiferromagnetic spin configurations in such system. Also, the RKKY coupling at low and high-temperature regions has been addressed for both ferro- and antiferromagnetic spin arrangements.

  4. First-principles investigation on structural and electronic properties of antimonene nanoribbons and nanotubes

    NASA Astrophysics Data System (ADS)

    Nagarajan, V.; Chandiramouli, R.

    2018-03-01

    The electronic properties of antimonene nanotubes and nanoribbons hydrogenated along the zigzag and armchair borders are investigated with the help of density functional theory (DFT) method. The structural stability of antimonene nanostructures is confirmed with the formation energy. The electronic properties of hydrogenated zigzag and armchair antimonene nanostructures are studied in terms of highest occupied molecular orbital (HOMO) & lowest unoccupied molecular orbital (LUMO) gap and density of states (DOS) spectrum. Moreover, due to the influence of buckled orientation, hydrogen passivation and width of antimonene nanostructures, the HOMO-LUMO gap widens in the range of 0.15-0.41 eV. The findings of the present study confirm that the electronic properties of antimonene nanostructures can be tailored with the influence of width, orientation of the edges, passivation with hydrogen and morphology of antimonene nanostructures (nanoribbons, nanotubes), which can be used as chemical sensor and for spintronic devices.

  5. Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors.

    PubMed

    Li, Lei; Raji, Abdul-Rahman O; Fei, Huilong; Yang, Yang; Samuel, Errol L G; Tour, James M

    2013-07-24

    A facile and cost-effective approach to the fabrication of a nanocomposite material of polyaniline (PANI) and graphene nanoribbons (GNRs) has been developed. The morphology of the composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron microscopy, and X-ray diffraction analysis. The resulting composite has a high specific capacitance of 340 F/g and stable cycling performance with 90% capacitance retention over 4200 cycles. The high performance of the composite results from the synergistic combination of electrically conductive GNRs and highly capacitive PANI. The method developed here is practical for large-scale development of pseudocapacitor electrodes for energy storage.

  6. First principles study on the electronic structures and transport properties of armchair/zigzag edge hybridized graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Yi, Xiuying; Long, Mengqiu; Liu, Anhua; Li, Mingjun; Xu, Hui

    2018-05-01

    Graphene nanoribbons (GNRs) can be mainly classified into armchair graphene nanoribbons (aGNRs) and zigzag graphene nanoribbons (zGNRs) by different edge chiral directions. In this work, by introducing Stone-Wales defects on the edges of the V-shaped aGNRs, we propose a kind of armchair/zigzag edge hybridized GNRs (a/zHGNRs) and using the density functional theory and the nonequilibrium Green's function method, the band structures and electronic transport properties of the a/zHGNRs have been calculated. Our results show that an indirect bandgap appears in the band structures of the a/zHGNRs, which is very different from the direct bandgap of aGNRs and gapless of zGNRs. We also find that the valance band is mainly derived from the armchair partial atoms on the hybridized edge, while the conduction band comes mainly from the zigzag partial atoms of the hybridized edge. Meanwhile, the bandgap also oscillates with a period of three when the ribbon width increases. In addition, our quantum transport calculations show that there is a remarkable transition between the semiconductor and the metal with different ribbon widths in the a/zHGNRs devices, and the corresponding physical analysis is given.

  7. Investigating the Mobility of Trilayer Graphene Nanoribbon in Nanoscale FETs

    NASA Astrophysics Data System (ADS)

    Rahmani, Meisam; Ghafoori Fard, Hassan; Ahmadi, Mohammad Taghi; Rahbarpour, Saeideh; Habibiyan, Hamidreza; Varmazyari, Vali; Rahmani, Komeil

    2017-10-01

    The aim of the present paper is to investigate the scaling behaviors of charge carrier mobility as one of the most remarkable characteristics for modeling of nanoscale field-effect transistors (FETs). Many research groups in academia and industry are contributing to the model development and experimental identification of multi-layer graphene FET-based devices. The approach in the present work is to provide an analytical model for carrier mobility of tri-layer graphene nanoribbon (TGN) FET. In order to do so, one starts by identifying the analytical modeling of TGN carrier velocity and ballistic conductance. At the end, a model of charge carrier mobility with numerical solution is analytically derived for TGN FET, in which the carrier concentration, temperature and channel length characteristics dependence are highlighted. Moreover, variation of band gap and gate voltage during the proposed device operation and its effect on carrier mobility is investigated. To evaluate the nanoscale FET performance, the carrier mobility model is also adopted to obtain the I-V characteristics of the device. In order to verify the accuracy of the proposed analytical model for TGN mobility, it is compared to the existing experimental data, and a satisfactory agreement is reported for analogous ambient conditions. Moreover, the proposed model is compared with the published data of single-layer graphene and bi-layer graphene, in which the obtained results demonstrate significant insights into the importance of charge carrier mobility impact in high-performance TGN FET. The work presented here is one step towards an applicable model for real-world nanoscale FETs.

  8. Spectroscopic characterization of N = 9 armchair graphene nanoribbons

    DOE PAGES

    Senkovskiy, B. V.; Haberer, D.; Usachov, D. Yu.; ...

    2017-07-03

    In this study, we investigate the N = 9 atoms wide armchair-type graphene nanoribbons (9-AGNRs) by performing a comprehensive spectroscopic and microscopic characterization of this novel material. In particular, we use X-ray photoelectron, near edge X-ray absorption fine structure, scanning tunneling, polarized Raman and angle-resolved photoemission (ARPES) spectroscopies. The ARPES measurements are aided by calculations of the photoemission matrix elements which yield the position in k space having the strongest photoemission cross section. Comparison with well-studied narrow N = 7 AGNRs shows that the effective electron mass in 9-AGNRs is reduced by two times and the valence band maximum ismore » shifted to lower binding energy by ~0.6 eV. In polarized Raman measurements of the aligned 9-AGNR, we reveal anisotropic signal depending upon the phonon symmetry. To conclude, our results indicate the 9-AGNRs are a novel 1D semiconductor with a high potential in nanoelectronic applications.« less

  9. Modeling of the photodetector based on the multilayer graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Haiyue; Key Laboratory of Micro-nano Measurement-Manipulation and Physics Ministry of Education, Beijing University of Aeronautics and Astronautics, Beijing 100191; Niu, Yanxiong, E-mail: niuyx@buaa.edu.cn

    2016-07-15

    Graphene nanoribbon (GNR), which has unique properties and advantages, is a crucial component of nanoelectornic devices, especially in the development of photoelectric detectors. In this work, an infrared photodetector based on the structure of stacked multiple-GNRs, which is separated by a little thick barrier layers (made of tungsten disulfide or related materials) to prevent tunneling current, is proposed and modeled. Operation of photoelectric detector is related to the electron cascaded radiative transition in the adjacent GNRs strengthened by the electrons heated due to the incident light. With a developed model, the working principle is analyzed and the relationships for themore » photocurrent and dark current as functions of the intensity of the incident radiation are derived. The spectral dependence of the responsivity and detectivity for graphene nanoribbons photodetector (GNRs-PT) with different Fermi energy, band gaps and numbers of GNRs layers are analyzed as well. The results demonstrate that the spectral characteristics depend on the GNRs band gap, which shows a potential on GNRs-PT application in the multi-wavelength systems. In addition, GNRs-PT has a better spectrum property and higher responsivity compared to photodetectors based on In{sub x}Ga{sub x}As in room temperature.« less

  10. Transforming graphene nanoribbons into nanotubes by use of point defects.

    PubMed

    Sgouros, A; Sigalas, M M; Papagelis, K; Kalosakas, G

    2014-03-26

    Using molecular dynamics simulations with semi-empirical potentials, we demonstrate a method to fabricate carbon nanotubes (CNTs) from graphene nanoribbons (GNRs), by periodically inserting appropriate structural defects into the GNR crystal structure. We have found that various defect types initiate the bending of GNRs and eventually lead to the formation of CNTs. All kinds of carbon nanotubes (armchair, zigzag, chiral) can be produced with this method. The structural characteristics of the resulting CNTs, and the dependence on the different type and distribution of the defects, were examined. The smallest (largest) CNT obtained had a diameter of ∼ 5 Å (∼ 39 Å). Proper manipulation of ribbon edges controls the chirality of the CNTs formed. Finally, the effect of randomly distributed defects on the ability of GNRs to transform into CNTs is considered.

  11. Identification of pristine and defective graphene nanoribbons by phonon signatures in the electron transport characteristics

    NASA Astrophysics Data System (ADS)

    Christensen, Rasmus B.; Frederiksen, Thomas; Brandbyge, Mads

    2015-02-01

    Inspired by recent experiments where electron transport was measured across graphene nanoribbons (GNRs) suspended between a metal surface and the tip of a scanning tunneling microscope [Koch et al., Nat. Nanotechnol. 7, 713 (2012), 10.1038/nnano.2012.169], we present detailed first-principles simulations of inelastic electron tunneling spectroscopy (IETS) of long pristine and defective armchair and zigzag nanoribbons under a range of charge carrier conditions. For the armchair ribbons we find two robust IETS signals around 169 and 196 mV corresponding to the D and G modes of Raman spectroscopy as well as additional fingerprints due to various types of defects in the edge passivation. For the zigzag ribbons we show that the spin state strongly influences the spectrum and thus propose IETS as an indirect proof of spin polarization.

  12. Study of Defect Behaviour in Ga2O3 Nanowires and Nano-Ribbons under Reducing Gas Annealing Conditions: Applications to Sensing

    DTIC Science & Technology

    2007-01-01

    Study of defect behaviour in Ga2O3 nanowires and nano-ribbons under reducing gas annealing conditions: applications to...estd.nrl.navy.mil E-mail: Carlos@bloch.nrl.navy.mil E-mail: Glaser@ bloch.nrl.navy.mil *Corresponding author Abstract: The growth of monoclinic Ga2O3 ...an Au catalyst, while single crystal nano-ribbons and nano-sheets require no metal catalyst for growth. Since bulk Ga2O3 is a promising material

  13. Extrinsic Rashba spin-orbit coupling effect on silicene spin polarized field effect transistors

    NASA Astrophysics Data System (ADS)

    Pournaghavi, Nezhat; Esmaeilzadeh, Mahdi; Abrishamifar, Adib; Ahmadi, Somaieh

    2017-04-01

    Regarding the spin field effect transistor (spin FET) challenges such as mismatch effect in spin injection and insufficient spin life time, we propose a silicene based device which can be a promising candidate to overcome some of those problems. Using non-equilibrium Green’s function method, we investigate the spin-dependent conductance in a zigzag silicene nanoribbon connected to two magnetized leads which are supposed to be either in parallel or anti-parallel configurations. For both configurations, a controllable spin current can be obtained when the Rashba effect is present; thus, we can have a spin filter device. In addition, for anti-parallel configuration, in the absence of Rashba effect, there is an intrinsic energy gap in the system (OFF-state); while, in the presence of Rashba effect, electrons with flipped spin can pass through the channel and make the ON-state. The current voltage (I-V) characteristics which can be tuned by changing the gate voltage or Rashba strength, are studied. More importantly, reducing the mismatch conductivity as well as energy consumption make the silicene based spin FET more efficient relative to the spin FET based on two-dimensional electron gas proposed by Datta and Das. Also, we show that, at the same conditions, the current and {{I}\\text{on}}/{{I}\\text{off}} ratio of silicene based spin FET are significantly greater than that of the graphene based one.

  14. Enhanced MRI relaxivity of aquated Gd3+ ions by carboxyphenylated water-dispersed graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Gizzatov, Ayrat; Keshishian, Vazrik; Guven, Adem; Dimiev, Ayrat M.; Qu, Feifei; Muthupillai, Raja; Decuzzi, Paolo; Bryant, Robert G.; Tour, James M.; Wilson, Lon J.

    2014-02-01

    The present study demonstrates that highly water-dispersed graphene nanoribbons dispersed by carboxyphenylated substituents and conjugated to aquated Gd3+ ions can serve as a high-performance contrast agent (CA) for applications in T1- and T2-weighted magnetic resonance imaging (MRI) with relaxivity (r1,2) values outperforming currently-available clinical CAs by up to 16 times for r1 and 21 times for r2.The present study demonstrates that highly water-dispersed graphene nanoribbons dispersed by carboxyphenylated substituents and conjugated to aquated Gd3+ ions can serve as a high-performance contrast agent (CA) for applications in T1- and T2-weighted magnetic resonance imaging (MRI) with relaxivity (r1,2) values outperforming currently-available clinical CAs by up to 16 times for r1 and 21 times for r2. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06026h

  15. Spin-dependent Seebeck Effect, Thermal Colossal Magnetoresistance and Negative Differential Thermoelectric Resistance in Zigzag Silicene Nanoribbon Heterojunciton.

    PubMed

    Fu, Hua-Hua; Wu, Dan-Dan; Zhang, Zu-Quan; Gu, Lei

    2015-05-22

    Spin-dependent Seebeck effect (SDSE) is one of hot topics in spin caloritronics, which examine the relationships between spin and heat transport in materials. Meanwhile, it is still a huge challenge to obtain thermally induced spin current nearly without thermal electron current. Here, we construct a hydrogen-terminated zigzag silicene nanoribbon heterojunction, and find that by applying a temperature difference between the source and the drain, spin-up and spin-down currents are generated and flow in opposite directions with nearly equal magnitudes, indicating that the thermal spin current dominates the carrier transport while the thermal electron current is much suppressed. By modulating the temperature, a pure thermal spin current can be achieved. Moreover, a thermoelectric rectifier and a negative differential thermoelectric resistance can be obtained in the thermal electron current. Through the analysis of the spin-dependent transport characteristics, a phase diagram containing various spin caloritronic phenomena is provided. In addition, a thermal magnetoresistance, which can reach infinity, is also obtained. Our results put forward an effective route to obtain a spin caloritronic material which can be applied in future low-power-consumption technology.

  16. On the channel width-dependence of the thermal conductivity in ultra-narrow graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karamitaheri, Hossein; Neophytou, Neophytos, E-mail: N.Neophytou@warwick.ac.uk

    The thermal conductivity of low-dimensional materials and graphene nanoribbons, in particular, is limited by the strength of line-edge-roughness scattering. One way to characterize the roughness strength is the dependency of the thermal conductivity on the channel's width in the form W{sup β}. Although in the case of electronic transport, this dependency is very well studied, resulting in W{sup 6} for nanowires and quantum wells and W{sup 4} for nanoribbons, in the case of phonon transport it is not yet clear what this dependence is. In this work, using lattice dynamics and Non-Equilibrium Green's Function simulations, we examine the width dependencemore » of the thermal conductivity of ultra-narrow graphene nanoribbons under the influence of line edge-roughness. We show that the exponent β is in fact not a single well-defined number, but it is different for different parts of the phonon spectrum depending on whether phonon transport is ballistic, diffusive, or localized. The exponent β takes values β < 1 for semi-ballistic phonon transport, values β ≫ 1 for sub-diffusive or localized phonons, and β = 1 only in the case where the transport is diffusive. The overall W{sup β} dependence of the thermal conductivity is determined by the width-dependence of the dominant phonon modes (usually the acoustic ones). We show that due to the long phonon mean-free-paths, the width-dependence of thermal conductivity becomes a channel length dependent property, because the channel length determines whether transport is ballistic, diffusive, or localized.« less

  17. Ultrathin gold nanoribbons synthesized within the interior cavity of a self-assembled peptide nanoarchitecture.

    PubMed

    Tomizaki, Kin-ya; Wakizaka, Shota; Yamaguchi, Yuichi; Kobayashi, Akitsugu; Imai, Takahito

    2014-01-28

    There is increasing interest in gold nanocrystals due to their unique physical, chemical, and biocompatible properties. In order to develop a template-assisted method for the fabrication of gold nanocrystals, we demonstrate here the de novo design and synthesis of a β-sheet-forming nonapeptide (RU006: Ac-AIAKAXKIA-NH2, X = L-2-naphthylalanine) which undergoes self-assembly to form disk-like nanoarchitectures approximately 100 nm wide and 2.5 nm high. These self-assemblies tend to form a network of higher-order assemblies in ultrapure water. Using RU006 as a template molecule, we fabricated ultrathin gold nanoribbons 50-100 nm wide, 2.5 nm high, and micrometers long without external reductants. Furthermore, in order to determine the mechanism of ultrathin gold nanoribbon formation, we synthesized four different RU006 analogues. On the basis of the results obtained using RU006 and these analogues, we propose the following mechanism for the self-assembly of RU006. First, RU006 forms a network by the cooperative association of disk-like assemblies in the presence of AuCl4(-) ions that are encapsulated and concentrated within the interior cavity of the network architectures. This is followed by electron transfer from the naphthalene rings to Au(III), resulting in slow growth to form ultrathin gold nanoribbons along the template network architectures under ambient conditions. The resulting ribbons retain the dimensions of the cavity of the template architecture. Our approach will allow the construction of diverse template architectural morphologies and will find applications in the construction of a variety of metallic nanoarchitectures.

  18. Quantum correlations in chiral graphene nanoribbons.

    PubMed

    Tan, Xiao-Dong; Koop, Cornelie; Liao, Xiao-Ping; Sun, Litao

    2016-11-02

    We compute the entanglement and the quantum discord (QD) between two edge spins in chiral graphene nanoribbons (CGNRs) thermalized with a reservoir at temperature T (canonical ensemble). We show that the entanglement only exists in inter-edge coupled spin pairs, and there is no entanglement between any two spins at the same ribbon edge. By contrast, almost all edge spin pairs can hold non-zero QD, which strongly depends on the ribbon width and the Coulomb repulsion among electrons. More intriguingly, the dominant entanglement always occurs in the pair of nearest abreast spins across the ribbon, and even at room temperature this type of entanglement is still very robust, especially for narrow CGNRs with the weak Coulomb repulsion. These remarkable properties make CGNRs very promising for possible applications in spin-quantum devices.

  19. Graphene nanoribbons: Relevance of etching process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonet, P., E-mail: psimonet@phys.ethz.ch; Bischoff, D.; Moser, A.

    2015-05-14

    Most graphene nanoribbons in the experimental literature are patterned using plasma etching. Various etching processes induce different types of defects and do not necessarily result in the same electronic and structural ribbon properties. This study focuses on two frequently used etching techniques, namely, O{sub 2} plasma ashing and O{sub 2 }+ Ar reactive ion etching (RIE). O{sub 2} plasma ashing represents an alternative to RIE physical etching for sensitive substrates, as it is a more gentle chemical process. We find that plasma ashing creates defective graphene in the exposed trenches, resulting in instabilities in the ribbon transport. These are probably caused bymore » more or larger localized states at the edges of the ashed device compared to the RIE defined device.« less

  20. Tip-Based Nanofabrication of Arbitrary Shapes of Graphene Nanoribbons for Device Applications

    PubMed Central

    Estrada, David; Bashir, Rashid; King, William P.

    2015-01-01

    Graphene nanoribbons (GNRs) have promising applications in future nanoelectronics, chemical sensing and electrical interconnects. Although there are quite a few GNR nanofabrication methods reported, a rapid and low-cost fabrication method that is capable of fabricating arbitrary shapes of GNRs with good-quality is still in demand for using GNRs for device applications. In this paper, we present a tip-based nanofabrication method capable of fabricating arbitrary shapes of GNRs. A heated atomic force microscope (AFM) tip deposits polymer nanowires atop a CVD-grown graphene surface. The polymer nanowires serve as an etch mask to define GNRs through one step of oxygen plasma etching similar to a photoresist in conventional photolithography. Various shapes of GNRs with either linear or curvilinear features are demonstrated. The width of the GNR is around 270 nm and is determined by the width of the depositing polymer nanowire, which we estimate can be scaled down 15 nms. We characterize our TBN-fabricated GNRs using Raman spectroscopy and I-V measurements. The measured sheet resistances of our GNRs fall within the range of 1.65 kΩ/□−1 – 2.64 kΩ/□−1, in agreement with previously reported values. Furthermore, we determined the high-field breakdown current density of GNRs to be approximately 2.94×108 A/cm2. This TBN process is seamlessly compatible with existing nanofabrication processes, and is particularly suitable for fabricating GNR based electronic devices including next generation DNA sequencing technologies and beyond silicon field effect transistors. PMID:26257891

  1. Giant Stark effect in double-stranded porphyrin ladder polymers

    NASA Astrophysics Data System (ADS)

    Pramanik, Anup; Kang, Hong Seok

    2011-03-01

    Using the first-principles calculations, we have investigated the stability and the electronic structure of two types of recently synthesized one-dimensional nanoribbons, i.e., double-stranded zinc(II) porphyrin ladder polymer (LADDER) arrays. First, electronic structure calculations were used to show that the LADDER is a semiconductor. Most importantly, the application of a transverse electric field significantly reduces the band gap of the LADDER, ultimately converting the LADDER to a metal at a field strength of 0.1 V/Å. The giant Stark effect in this case is almost as strong as that in boron nitride nanotubes and nanoribbons. In the presence of an electric field, hole conduction and electronic conduction will occur entirely through spatially separated strands, rendering these materials useful for nanoelectronic devices. Second, the substitution of hydrogen atoms in the porphyrin units or that of zinc ions with other kinds of chemical species is found to increase the binding strength of the LADDER and reduce the band gap.

  2. New Ferroelectric Phase in Atomic-Thick Phosphorene Nanoribbons: Existence of in-Plane Electric Polarization.

    PubMed

    Hu, Ting; Wu, Haiping; Zeng, Haibo; Deng, Kaiming; Kan, Erjun

    2016-12-14

    Ferroelectrics have many significant applications in electric devices, such as capacitor or random-access memory, tuning the efficiency of solar cell. Although atomic-thick ferroelectrics are the necessary components for high-density electric devices or nanoscale devices, the development of such materials still faces a big challenge because of the limitation of intrinsic mechanism. Here, we reported that in-plane atomic-thick ferroelectricity can be induced by vertical electric field in phosphorene nanoribbons (PNRs). Through symmetry arguments, we predicted that ferroelectric direction is perpendicular to the direction of external electric field and lies in the plane. Further confirmed by the comprehensive first-principles calculations, we showed that such ferroelectricity is induced by the electron-polarization, which is different from the structural distortion in traditional ferroelectrics and the recent experimental discovery of in-plane atomic-thick ferroelectrics (Science 2016, 353, 274). Moreover, we found that the value of electronic polarization in bilayer is much larger than that in monolayer. Our results show that electron-polarization ferroelectricity maybe the most promising candidate for atomic-thick ferroelectrics.

  3. Tunable electronic properties of CdS nanoribbons by edge effects

    NASA Astrophysics Data System (ADS)

    Ma, Ruican; Zhao, Hui; Wang, Yaping; Ji, Weixiao; Li, Ping

    2017-08-01

    Based on first-principles calculations, the electronic properties of Cadmium Sulfide nanoribbons (CdSNRs) have been studied with both zigzag (Z-CdSNRs) and armchair shaped edges (A-CdSNRs). For Z-CdSNRs, the structures with both edges decorated by H or F atoms show half-metallic or semiconducting properties, respectively. Only S-dominated edge decorated by H/F atoms, Z-CdSNRs show metallic properties. Only Cd-dominated edge is hydrogenated, Z-CdSNRs can be observed from a metallic to half metallic transition. But instead of fluorinated, the structures show the metallic properties. However, either edge or both edges are hydrogenated or fluorinated, A-CdSNRs exhibit semiconducting properties, and their band gap decreases monotonically with increasing ribbons width (n). When a stress is applied on the half-hydrogenated A-CdSNRs, their band gap displays a steady decrease trend. Moreover, A-CdSNRs are more stable than Z-CdSNRs, while the hydrogenated systems are more stable than fluorinated systems. The results show that different structures of CdSNRs decorated with the different edges can play different nature as semiconducting - half-metallic - metallic properties. The research has important theoretical significance for the electronic design and assembly of CdSNRs structures, and provides a new perspective for the potential application of CdSNRs in nanoelectronics.

  4. Spin-polarized electron transport in hybrid graphene-BN nanoribbons

    NASA Astrophysics Data System (ADS)

    Gao, Song; Lu, Wei; Zheng, Guo-Hui; Jia, Yalei; Ke, San-Huang

    2017-05-01

    The experimental realization of hybrid graphene and h-BN provides a new way to modify the electronic and transport properties of graphene-based materials. In this work, we investigate the spin-polarized electron transport in hybrid graphene-BN zigzag nanoribbons by performing first-principles nonequilibrium Green’s function method calculations. A 100% spin-polarized electron transport in a large energy window around the Fermi level is found and this behavior is independent of the ribbon width as long as there contain 3 zigzag carbon chains. This behavior may be useful in making perfect spin filters.

  5. Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles.

    PubMed

    Goh, Madeline Shuhua; Pumera, Martin

    2011-01-01

    The detection of explosives in seawater is of great interest. We compared response single-, few-, and multilayer graphene nanoribbons and graphite microparticle-based electrodes toward the electrochemical reduction of 2,4,6-trinitrotoluene (TNT). We optimized parameters such as accumulation time, accumulation potential, and pH. We found that few-layer graphene exhibits about 20% enhanced signal for TNT after accumulation when compared to multilayer graphene nanoribbons. However, graphite microparticle-modified electrode provides higher sensitivity, and there was no significant difference in the performance of single-, few-, and multilayer graphene nanoribbons and graphite microparticles for the electrochemical detection of TNT. We established the limit of detection of TNT in untreated seawater at 1 μg/mL.

  6. Invalidity of the Fermi liquid theory and magnetic phase transition in quasi-1D dopant-induced armchair-edged graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Davoudiniya, Masoumeh; Yarmohammadi, Mohsen

    2018-04-01

    Based on theoretically tight-binding calculations considering nearest neighbors and Green's function technique, we show that the magnetic phase transition in both semiconducting and metallic armchair graphene nanoribbons with width ranging from 9.83 Å to 69.3 Å would be observed in the presence of injecting electrons by doping. This transition is explained by the temperature-dependent static charge susceptibility through calculation of the correlation function of charge density operators. This work showed that charge concentration of dopants in such system plays a crucial role in determining the magnetic phase. A variety of multicritical points such as transition temperatures and maximum susceptibility are compared in undoped and doped cases. Our findings show that there exist two different transition temperatures and maximum susceptibility depending on the ribbon width in doped structures. Another remarkable point refers to the invalidity (validity) of the Fermi liquid theory in nanoribbons-based systems at weak (strong) concentration of dopants. The obtained interesting results of magnetic phase transition in such system create a new potential for magnetic graphene nanoribbon-based devices.

  7. First-principles investigation of armchair boron nitride nanoribbons for sensing PH3 gas molecules

    NASA Astrophysics Data System (ADS)

    Srivastava, Pankaj; Jaiswal, Neeraj K.; Sharma, Varun

    2014-09-01

    The present work exhibits density functional theory (DFT) based first-principles calculations to explore the sensing properties of bare armchair boron nitride nanoribbons (ABNNR) for PH3 gas molecules. Edges of the ribbon were considered as the sites of possible adsorption with two different configurations i.e. adsorption at one edge and adsorption at both edges of the ribbon. It is revealed that B atoms of the ribbons are more energetically favorable sites for the adsorption of PH3 molecules as compared with N atoms. The adsorption of PH3 affects the electronic properties of nanoribbons. One edge PH3 adsorbed ribbons are metallic whereas in both edges PH3 adsorption, the band gap is decreased than that of bare ribbon. The changes in electronic properties caused by PH3 adsorption are further supported by the current-voltage (I-V) characteristics of the considered configurations. The results show that ABNNR can serve as a potential candidate for PH3 sensing applications.

  8. Negative differential resistance and rectifying performance induced by doped graphene nanoribbons p-n device

    NASA Astrophysics Data System (ADS)

    Zhou, Yuhong; Qiu, Nianxiang; Li, Runwei; Guo, Zhansheng; Zhang, Jian; Fang, Junfeng; Huang, Aisheng; He, Jian; Zha, Xianhu; Luo, Kan; Yin, Jingshuo; Li, Qiuwu; Bai, Xiaojing; Huang, Qing; Du, Shiyu

    2016-03-01

    Employing nonequilibrium Green's Functions in combination with density functional theory, the electronic transport properties of armchair graphene nanoribbon (GNR) devices with various widths are investigated in this work. In the adopted model, two semi-infinite graphene electrodes are periodically doped with boron or nitrogen atoms. Our calculations reveal that these devices have a striking nonlinear feature and show notable negative differential resistance (NDR). The results also indicate the diode-like properties are reserved and the rectification ratios are high. It is found the electronic transport properties are strongly dependent on the width of doped nanoribbons and the positions of dopants and three distinct families are elucidated for the current armchair GNR devices. The NDR as well as rectifying properties can be well explained by the variation of transmission spectra and the relative shift of discrete energy states with applied bias voltage. These findings suggest that the doped armchair GNR is a promising candidate for the next generation nanoscale device.

  9. Investigation of electronic transport through a ladder-like graphene nanoribbon including random distributed impurities

    NASA Astrophysics Data System (ADS)

    Esmaili, Esmat; Mardaani, Mohammad; Rabani, Hassan

    2018-01-01

    The electronic transport of a ladder-like graphene nanoribbon which the on-site or hopping energies of a small part of it can be random is modeled by using the Green's function technique within the nearest neighbor tight-binding approach. We employ a unitary transformation in order to convert the Hamiltonian of the nanoribbon to the Hamiltonian of a tight-binding ladder-like network. In this case, the disturbed part of the system includes the second neighbor hopping interactions. While, the converted Hamiltonian of each ideal part is equivalent to the Hamiltonian of two periodic on-site chains. Therefore, we can insert the self-energies of the alternative on-site tight-binding chains to the inverse of the Green's function matrix of the ladder-like part. In this viewpoint, the conductance is constructed from two trans and cis contributions. The results show that increasing the disorder strength causes the increase and decrease of the conductance of the trans and cis contributions, respectively.

  10. Competing Gap Opening Mechanisms of Monolayer Graphene and Graphene Nanoribbons on Strong Topological Insulators.

    PubMed

    Lin, Zhuonan; Qin, Wei; Zeng, Jiang; Chen, Wei; Cui, Ping; Cho, Jun-Hyung; Qiao, Zhenhua; Zhang, Zhenyu

    2017-07-12

    Graphene is a promising material for designing next-generation electronic and valleytronic devices, which often demand the opening of a bandgap in the otherwise gapless pristine graphene. To date, several conceptually different mechanisms have been extensively exploited to induce bandgaps in graphene, including spin-orbit coupling and inversion symmetry breaking for monolayer graphene, and quantum confinement for graphene nanoribbons (GNRs). Here, we present a multiscale study of the competing gap opening mechanisms in a graphene overlayer and GNRs proximity-coupled to topological insulators (TIs). We obtain sizable graphene bandgaps even without inversion symmetry breaking and identify the Kekulé lattice distortions caused by the TI substrates to be the dominant gap opening mechanism. Furthermore, Kekulé distorted armchair GNRs display intriguing nonmonotonous gap dependence on the nanoribbon width, resulting from the coexistence of quantum confinement, edge passivation, and Kekulé distortions. The present study offers viable new approaches for tunable bandgap engineering in graphene and GNRs.

  11. Nonsymmorphic symmetry-protected topological modes in plasmonic nanoribbon lattices

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Liang; Wu, Raymond P. H.; Kumar, Anshuman; Si, Tieyan; Fung, Kin Hung

    2018-04-01

    Using a dynamic eigenresponse theory, we study the topological edge plasmon modes in dispersive plasmonic lattices constructed by unit cells of multiple nanoribbons. In dipole approximation, the bulk-edge correspondence in the lattices made of dimerized unit cell and one of its square-root daughter with nonsymmorphic symmetry are demonstrated. Calculations with consideration of dynamic long-range effects and retardation are compared to those given by nearest-neighbor approximations. It is shown that nonsymmorphic symmetry opens up two symmetric gaps where versatile topological edge plasmon modes are found. Unprecedented spectral shifts of the edge states with respect to the zero modes due to long-range coupling are found. The proposed ribbon structure is favorable to electrical gating and thus could serve as an on-chip platform for electrically controllable subwavelength edge states at optical wavelengths. Our eigenresponse approach provides a powerful tool for the radiative topological mode analysis in strongly coupled plasmonic lattices.

  12. Cytotoxicity of protein corona-graphene oxide nanoribbons on human epithelial cells

    NASA Astrophysics Data System (ADS)

    Mbeh, Doris A.; Akhavan, Omid; Javanbakht, Taraneh; Mahmoudi, Morteza; Yahia, L.'Hocine

    2014-11-01

    Graphene oxide nanoribbons (GONRs) were synthesized using an oxidative unzipping of multi-walled carbon nanotubes. The interactions of the GONRs with various concentrations of fetal bovine serum or human plasma serum indicated that the GONRs were functionalized substantially by the albumin originated from the two different protein sources. Then, concentration-dependent cytotoxicity of the protein-functionalized GONRs on human epithelial cells was studied. Although the GONRs with concentrations ≤50 μg/mL did not exhibit significant cytotoxicity on the cells (with the cell viability >85%), the concentration of 100 μg/mL exhibited significant cytotoxicity including prevention of cell proliferation and induction of cell apoptosis. These results can provide more in-depth understanding about cytotoxic effects of graphene nanostructures which can be functionalized by the proteins of media.

  13. Charge transport in doped zigzag phosphorene nanoribbons

    NASA Astrophysics Data System (ADS)

    Nourbakhsh, Zahra; Asgari, Reza

    2018-06-01

    The effects of lattice distortion and chemical disorder on charge transport properties of two-terminal zigzag phosphorene nanoribbons (zPNRs), which shows resonant tunneling behavior under an electrical applied bias, are studied. Our comprehensive study is based on ab initio quantum transport calculations on the basis of the Landauer theory. We use nitrogen and silicon substitutional dopant atoms, and employ different physical quantities such as the I -V curve, voltage drop behavior, transmission spectrum, transmission pathway, and atomic current to explore the transport mechanism of zPNR devices under a bias voltage. The calculated transmission pathways show the transition from a ballistic transport regime to a diffusive and in some particular cases to localized transport regimes. Current flowing via the chemical bonds and hopping are monitored; however, the conductance originates mainly from the charge traveling through the chemical bonds in the vicinity of the zigzag edges. Our results show that in the doped systems, the device conductance decreases and the negative differential resistance characteristic becomes weak or is eliminated. Besides, the conductance in a pure zPNR system is almost independent of the ribbon width.

  14. A first-principles study of electronic properties of H and F-terminated zigzag BNC nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alaal, Naresh; Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.; Department of Materials Engineering, Monash University, Clayton, Victoria -3800, Australia.

    2016-05-06

    Nanoribbons are quasi one-dimensional structures which have interesting electronic properties on the basis of their edge geometries, and width. We studied the electronic properties of hydrogen and fluorine-terminated zigzag BNC nanoribbons (BNCNRs) using a first-principles based density functional theory approach. We considered BNCNRs that were composed of an equal number of C-C and B-N dimers; one of the edges ends with an N atom and opposite edge ends with a C atom. These two edge atoms are passivated by H or F atoms. Our results suggest that hydrogen-terminated BNCNRs (H-BNCNRs) and flourine-terminated BNCNRs (F-BNCNRs) have different electronic properties. H-BNCNRs exhibitmore » intrinsic half-metallic behavior while F-BNCNRs are indirect band gap semiconductors. Chemical functionalization of BNCNRs with H and F atoms show that BNCNRs have a diverse range of electronic properties.« less

  15. Negative differential resistance and rectification effects in zigzag graphene nanoribbon heterojunctions: Induced by edge oxidation and symmetry concept

    NASA Astrophysics Data System (ADS)

    Nazirfakhr, Maryam; Shahhoseini, Ali

    2018-03-01

    By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of H-terminated zigzag graphene nanoribbon (H/ZGNR) and O-terminated ZGNR/H-terminated ZGNR (O/ZGNR-H/ZGNR) heterostructure under finite bias. Moreover, the effect of width and symmetry on the electronic transport properties of both models is also considered. The results reveal that asymmetric H/ZGNRs have linear I-V characteristics in whole bias range, but symmetric H-ZGNRs show negative differential resistance (NDR) behavior which is inversely proportional to the width of the H/ZGNR. It is also shown that the I-V characteristic of O/ZGNR-H/ZGNR heterostructure shows a rectification effect, whether the geometrical structure is symmetric or asymmetric. The fewer the number of zigzag chains, the bigger the rectification ratio. It should be mentioned that, the rectification ratios of symmetric heterostructures are much bigger than asymmetric one. Transmission spectrum, density of states (DOS), molecular projected self-consistent Hamiltonian (MPSH) and molecular eigenstates are analyzed subsequently to understand the electronic transport properties of these ZGNR devices. Our findings could be used in developing nanoscale rectifiers and NDR devices.

  16. Si Nanoribbons on Ag(110) Studied by Grazing-Incidence X-Ray Diffraction, Scanning Tunneling Microscopy, and Density-Functional Theory: Evidence of a Pentamer Chain Structure.

    PubMed

    Prévot, Geoffroy; Hogan, Conor; Leoni, Thomas; Bernard, Romain; Moyen, Eric; Masson, Laurence

    2016-12-30

    We report a combined grazing incidence x-ray diffraction (GIXD), scanning tunneling microscopy (STM), and density-functional theory (DFT) study which clearly elucidates the atomic structure of the Si nanoribbons grown on the missing-row reconstructed Ag(110) surface. Our study allows us to discriminate between the theoretical models published in the literature, including the most stable atomic configurations and those based on a missing-row reconstructed Ag(110) surface. GIXD measurements unambiguously validate the pentamer model grown on the reconstructed surface, obtained from DFT. This pentamer atomistic model accurately matches the high-resolution STM images of the Si nanoribbons adsorbed on Ag(110). Our study closes the long-debated atomic structure of the Si nanoribbons grown on Ag(110) and definitively excludes a honeycomb structure similar to that of freestanding silicene.

  17. Efficient spin-filtering, magnetoresistance and negative differential resistance effects of a one-dimensional single-molecule magnet Mn(dmit)2-based device with graphene nanoribbon electrodes

    NASA Astrophysics Data System (ADS)

    Liu, N.; Liu, J. B.; Yao, K. L.

    2017-12-01

    We present first-principle spin-dependent quantum transport calculations in a molecular device constructed by one single-molecule magnet Mn(dmit)2 and two graphene nanoribbon electrodes. Our results show that the device could generate perfect spin-filtering performance in a certain bias range both in the parallel configuration (PC) and the antiparallel configuration (APC). At the same time, a magnetoresistance effect, up to a high value of 103%, can be realized. Moreover, visible negative differential resistance phenomenon is obtained for the spin-up current of the PC. These results suggest that our one-dimensional molecular device is a promising candidate for multi-functional spintronics devices.

  18. Mechanical properties and electronic structure of edge-doped graphene nanoribbons with F, O, and Cl atoms.

    PubMed

    Piriz, Sebastián; Fernández-Werner, Luciana; Pardo, Helena; Jasen, Paula; Faccio, Ricardo; Mombrú, Álvaro W

    2017-08-16

    In this study, we present the structural, electronic, and mechanical properties of edge-doped zigzag graphene nanoribbons (ZGNRs) doped with fluorine, oxygen, and chlorine atoms. To the best of our knowledge, to date, no experimental results concerning the mechanical properties of graphene-derived nanoribbons have been reported in the literature. Simulations indicate that Cl- and F-doped ZGNRs present an equivalent 2-dimensional Young's modulus E 2D , which seems to be higher than those of graphene and H-doped ZGNRs. This is a consequence of the electronic structure of the system, particularly originating from strong interactions between the dopant atoms localized at the edges. The interaction between dopant atoms located at the edges is higher for Cl and lower for F and O atoms. This is the origin of the observed trend, in which E > E > E for all the analyzed ZGNRs.

  19. Probing optical excitations in chevron-like armchair graphene nanoribbons.

    PubMed

    Denk, Richard; Lodi-Rizzini, Alberto; Wang, Shudong; Hohage, Michael; Zeppenfeld, Peter; Cai, Jinming; Fasel, Roman; Ruffieux, Pascal; Berger, Reinhard Franz Josef; Chen, Zongping; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus; Biagi, Roberto; De Renzi, Valentina; Prezzi, Deborah; Ruini, Alice; Ferretti, Andrea

    2017-11-30

    The bottom-up fabrication of graphene nanoribbons (GNRs) has opened new opportunities to specifically tune their electronic and optical properties by precisely controlling their atomic structure. Here, we address excitation in GNRs with periodic structural wiggles, the so-called chevron GNRs. Based on reflectance difference and high-resolution electron energy loss spectroscopies together with ab initio simulations, we demonstrate that their excited-state properties are of excitonic nature. The spectral fingerprints corresponding to different reaction stages in their bottom-up fabrication are also unequivocally identified, allowing us to follow the exciton build-up from the starting monomer precursor to the final GNR structure.

  20. Direct, rapid, and label-free detection of enzyme-substrate interactions in physiological buffers using CMOS-compatible nanoribbon sensors.

    PubMed

    Mu, Luye; Droujinine, Ilia A; Rajan, Nitin K; Sawtelle, Sonya D; Reed, Mark A

    2014-09-10

    We demonstrate the versatility of Al2O3-passivated Si nanowire devices ("nanoribbons") in the analysis of enzyme-substrate interactions via the monitoring of pH change. Our approach is shown to be effective through the detection of urea in phosphate buffered saline (PBS), and penicillinase in PBS and urine, at limits of detection of <200 μM and 0.02 units/mL, respectively. The ability to extract accurate enzyme kinetics and the Michaelis-Menten constant (Km) from the acetylcholine-acetylcholinesterase reaction is also demonstrated.

  1. Density functional theory calculations for armchair stanene nanoribbons with fluorine and sulfur functionalization

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lang, X. Y.; Jiang, Q.

    2018-07-01

    A systematic density functional theory calculation has been carried out to study the effect of edge terminating of F and S elements with different edge natures on the structure and electronic properties of armchair stanene nanoribbons (ASnNRs). Moreover, the corresponding size (ribbon width Na) dependence on these properties is also considered. The energy gap was found to be oscillated as a function of Na and could be classified into three distinct groups of 3m, 3m + 1 and 3m + 2. In addition, the energy gaps of ASnNRs saturated by S atoms differ from that did by F and H atoms in vibration trends as well VBM and CBM changes, where the energy gap is a direct energy gap with a moderate size.

  2. Half-metallic properties, single-spin negative differential resistance, and large single-spin Seebeck effects induced by chemical doping in zigzag-edged graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi-Feng; Zhou, Wen-Qian; Hong, Xue-Kun

    2015-01-14

    Ab initio calculations combining density-functional theory and nonequilibrium Green’s function are performed to investigate the effects of either single B atom or single N atom dopant in zigzag-edged graphene nanoribbons (ZGNRs) with the ferromagnetic state on the spin-dependent transport properties and thermospin performances. A spin-up (spin-down) localized state near the Fermi level can be induced by these dopants, resulting in a half-metallic property with 100% negative (positive) spin polarization at the Fermi level due to the destructive quantum interference effects. In addition, the highly spin-polarized electric current in the low bias-voltage regime and single-spin negative differential resistance in the highmore » bias-voltage regime are also observed in these doped ZGNRs. Moreover, the large spin-up (spin-down) Seebeck coefficient and the very weak spin-down (spin-up) Seebeck effect of the B(N)-doped ZGNRs near the Fermi level are simultaneously achieved, indicating that the spin Seebeck effect is comparable to the corresponding charge Seebeck effect.« less

  3. Simulations of Propane and Butane Gas Sensor Based on Pristine Armchair Graphene Nanoribbon

    NASA Astrophysics Data System (ADS)

    Rashid, Haroon; Koel, Ants; Rang, Toomas

    2018-05-01

    Over the last decade graphene and its derivatives have gained a remarkable place in research field. As silicon technology is approaching to its geometrical limits so there is a need of alternate that can replace it. Graphene has emerged as a potential candidate for future nano-electronics applications due to its exceptional and extraordinary chemical, optical, electrical and mechanical properties. Graphene based sensors have gained significance for a wide range of sensing applications like detection of biomolecules, chemicals and gas molecules. It can be easily used to make electrical contacts and manipulate them according to the requirements as compared to the other nanomaterials. The intention of the work presented in this article is to contribute in this field by simulating a novel and cheap graphene nanoribbon sensor for the household gas leakage detection. QuantumWise Atomistix (ATK) software is used for the simulations of propane and butane gas sensor. Projected device density of the states (PDDOS) and the transmission spectrum of the device in the proximity of gas molecules are calculated and discussed. The change in the electric current through the device in the presence of the gas molecules is used as a gas detection mechanism for the simulated sensor.

  4. Dual-channel current valve in a three terminal zigzag graphene nanoribbon junction

    NASA Astrophysics Data System (ADS)

    Zhang, L.

    2017-02-01

    We theoretically propose a dual-channel current valve based on a three terminal zigzag graphene nanoribbon (ZGNR) junction driven by three asymmetric time-dependent pumping potentials. By means of the Keldysh Green’s function method, we show that two asymmetric charge currents can be pumped in the different left-right terminals of the device at a zero bias, which mainly stems from the single photon-assisted pumping approximation and the valley valve effect in a ZGNR p-n junction. The ON and OFF states of pumped charge currents are crucially dependent on the even-odd chain widths of the three electrodes, the pumping frequency, the lattice potential and the Fermi level. Two-tunneling spin valves are also considered to spatially separate and detect 100% polarized spin currents owing to the combined spin pump effect and the valley selective transport in a three terminal ZGNR ferromagnetic junction. Our investigations might be helpful to control the spatial and spin degrees of freedom of electrons in graphene pumping devices.

  5. Aspects of electron transport in zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Bhalla, Pankaj; Pratap, Surender

    2018-05-01

    In this paper, we investigate the aspects of electron transport in the zigzag graphene nanoribbons (ZGNRs) using the nonequilibrium Green’s function (NEGF) formalism. The latter is an esoteric tool in mesoscopic physics. It is used to perform an analysis of ZGNRs by considering potential well. Within this potential, the dependence of transmission coefficient, local density of states (LDOS) and electron transport properties on number of atoms per unit cell is discussed. It is observed that there is an increment in electron and thermal conductance with increasing number of atoms. In addition to these properties, the dependence of same is also studied in figure of merit. The results infer that the contribution of electrons to enhance the figure of merit is important above the crossover temperature.

  6. The magneto-optical properties of non-uniform graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Chung, Hsien-Ching; Lin, Ming-Fa

    2015-03-01

    When synthesizing few-layer graphene nanoribbons (GNRs), non-uniform GNRs would be made simultaneously. Recently, the non-uniform GNRs, which is a stack of two GNRs with unequal widths, have been fabricated by mechanically exfoliated from bulk graphite. Some theoretical predictions have been reported, such as gap opening and transport properties. Under the influence of magnetic fields, magnetic quantization takes place and drastically changes the electronic properties. By tuning the geometric configuration, four categories of magneto-electronic spectra are exhibited. (1) The spectrum is mostly contributed by quasi-Landau levels (QLLs) of monolayer GNRs. (2) The spectrum displays two groups of QLLs, and the non-uniform GNR behaves like a bilayer one. (3) An intermediate category, the spectrum is composite disordered. (4) The spectrum presents the coexistence of monolayer and bilayer spectra. In this work, the magneto-electronic and optical properties for different geometric configurations are given, such as energy dispersions, density of states, wave functions, and magneto-absorption spectra are presented. Furthermore, the transformation between monolayer and bilayer spectra as well as the coexistence of monolayer and bilayer spectra are discussed in detail. One of us (Hsien-Ching Chung) thanks Ming-Hui Chung and Su-Ming Chen for financial support. This work was supported in part by the National Science Council of Taiwan under Grant Number 98-2112-M-006-013-MY4.

  7. The switching behaviors induced by torsion angle in a diblock co-oligomer molecule with tailoring graphene nanoribbon electrodes

    NASA Astrophysics Data System (ADS)

    Yang, Aiyun; Xia, Caijuan; Zhang, Boqun; Wang, Jun; Su, Yaoheng; Tu, Zheyan

    2018-02-01

    By applying first-principles method based on density functional theory combined with nonequilibrium Green’s function, we investigate the effect of torsion angle on the electronic transport properties in dipyrimidinyl-diphenyl co-oligomer molecular device with tailoring graphene nanoribbon electrodes. The results show that the torsion angle plays an important role on the electronic transport properties of the molecular device. When the torsion angle rotates from 0∘ to 90∘, the molecular devices exhibit very different current-voltage characteristics which can realize the on and off states of the molecular switch.

  8. Chemical growth of ZnO nanorod arrays on textured nanoparticle nanoribbons and its second-harmonic generation performance

    NASA Astrophysics Data System (ADS)

    Gui, Zhou; Wang, Xian; Liu, Jian; Yan, Shanshan; Ding, Yanyan; Wang, Zhengzhou; Hu, Yuan

    2006-07-01

    On the basis of the highly oriented ZnO nanoparticle nanoribbons as the growth seed layer (GSL) and solution growth technique, we have synthesized vertical ZnO nanorod arrays with high density over a large area and multi-teeth brush nanostructure, respectively, according to the density degree of the arrangement of nanoparticle nanoribbons GSL on the glass substrate. This controllable and convenient technique opens the possibility of creating nanostructured film for industrial fabrication and may represent a facile way to get similar structures of other compounds by using highly oriented GSL to promote the vertical arrays growth. The growth mechanism of the formation of the ordered nanorod arrays is also discussed. The second-order nonlinear optical coefficient d31 of the vertical ZnO nanorod arrays measured by the Maker fringes technique is 11.3 times as large as that of d36 KH 2PO 4 (KDP).

  9. Energy gap opening by crossing drop cast single-layer graphene nanoribbons.

    PubMed

    Yamada, Toyo Kazu; Fukuda, Hideto; Fujiwara, Taizo; Liu, Polin; Nakamura, Kohji; Kasai, Seiya; Vazquez de Parga, Amadeo L; Tanaka, Hirofumi

    2018-08-03

    Band gap opening of a single-layer graphene nanoribbon (sGNR) sitting on another sGNR, fabricated by drop casting GNR solution on Au(111) substrate in air, was studied by means of scanning tunneling microscopy and spectroscopy in an ultra-high vacuum at 78 K and 300 K. GNRs with a width of ∼45 nm were prepared by unzipping double-walled carbon nanotubes (diameter ∼15 nm) using the ultrasonic method. In contrast to atomically-flat GNRs fabricated via the bottom-up process, the drop cast sGNRs were buckled on Au(111), i.e., some local points of the sGNR are in contact with the substrate (d ∼ 0.5 nm), but other parts float (d ∼ 1-3 nm), where d denotes the measured distance between the sGNR and the substrate. In spite of the fact that the nanoribbons were buckled, dI/dV maps confirmed that each buckled sGNR had a metallic character (∼3.5 G o ) with considerable uniform local density of states, comparable to a flat sGNR. However, when two sGNRs crossed each other, the crossed areas showed a band gap between -50 and +200 meV around the Fermi energy, i.e., the only upper sGNR electronic property changed from metallic to p-type semiconducting, which was not due to the bending, but the electronic interactions between the up and down sGNRs.

  10. Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; Stesmans, Andre; van Tol, Johan; Kosynkin, D. V.; Tour, James M.

    2014-04-01

    Electronic spin transport properties of graphene nanoribbons (GNRs) are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element) spin-sensitive techniques such as electron spin resonance (ESR) spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW), pulse and hyperfine sublevel correlation (HYSCORE) ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs), which were subsequently chemically converted (CCGNRs) with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH3 adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns) and fast (39 ns) components. HYSCORE ESR data demonstrate the explicit presence of protons and 13C atoms. With the provided identification of intrinsic point magnetic defects such as proton and 13C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic)-based transport properties of CCGNRs.

  11. Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore

    PubMed Central

    2018-01-01

    Many theoretical studies predict that DNA sequencing should be feasible by monitoring the transverse current through a graphene nanoribbon while a DNA molecule translocates through a nanopore in that ribbon. Such a readout would benefit from the special transport properties of graphene, provide ultimate spatial resolution because of the single-atom layer thickness of graphene, and facilitate high-bandwidth measurements. Previous experimental attempts to measure such transverse inplane signals were however dominated by a trivial capacitive response. Here, we explore the feasibility of the approach using a custom-made differential current amplifier that discriminates between the capacitive current signal and the resistive response in the graphene. We fabricate well-defined short and narrow (30 nm × 30 nm) nanoribbons with a 5 nm nanopore in graphene with a high-temperature scanning transmission electron microscope to retain the crystallinity and sensitivity of the graphene. We show that, indeed, resistive modulations can be observed in the graphene current due to DNA translocation through the nanopore, thus demonstrating that DNA sensing with inplane currents in graphene nanostructures is possible. The approach is however exceedingly challenging due to low yields in device fabrication connected to the complex multistep device layout. PMID:29474060

  12. Ab-Initio Calculation of the Magnetic Properties of Metal-Doped Boron-Nitrogen Nanoribbon

    NASA Astrophysics Data System (ADS)

    Rufinus, J.

    2017-10-01

    The field of spintronics has been continuously attracting researchers. Tremendous efforts have been made in the quest to find good candidates for future spintronic devices. One particular type of material called graphene is under extensive theoretical study as a feasible component for practical applications. However, pristine graphene is diamagnetic. Thus, a lot of research has been performed to modify the graphene-based structure to achieve meaningful magnetic properties. Recently, a new type of graphene-based one-dimensional material called Boron Nitrogen nanoribbon (BNNR) has been of interest, due to the theoretical predictions that this type of material shows half-metallic property. Here we present the results of the theoretical and computational study of M-doped (M = Cr, Mn) Zigzag BNNR (ZBNNR), the objective of which is to determine whether the presence of these dopants will give rise to ferromagnetism. We have found that the concentration and the atomic distance among the dopants affect the magnetic ordering of this type of material. These results provide a meaningful theoretical prediction of M-doped ZBNNR as a basic candidate of future spintronic devices.

  13. Interfacial Thermal Conductance Limit and Thermal Rectification Across Vertical Carbon Nanotube/Graphene Nanoribbon-Silicon Interfaces

    DTIC Science & Technology

    2013-01-01

    Interfacial thermal conductance limit and thermal rectification across vertical carbon nanotube/graphene nanoribbon-silicon interfaces Ajit K...054308 (2013) Investigation on interfacial thermal resistance and phonon scattering at twist boundary of silicon J. Appl. Phys. 113, 053513 (2013...2013 to 00-00-2013 4. TITLE AND SUBTITLE Interfacial thermal conductance limit and thermal rectification across vertical carbon nanotube/graphene

  14. Effect of channel-width and chirality on graphene field-effect transistor based real-time biomolecule sensing

    NASA Astrophysics Data System (ADS)

    Lyu, Letian; Jaswal, Perveshwer; Xu, Guangyu

    2018-03-01

    Graphene field-effect transistors (GFET) hold promise in biomolecule sensing due to the outstanding properties of graphene materials. Charges in biomolecules are transduced into a change in the GFET current, which allows real-time monitoring of the biomolecule concentrations. Here we theoretically evaluate the performance of GFET based real-time biomolecule sensing, aiming to better understand the width-scaling limit in GFET based biosensors. In particular, we study the effect of the channel-width and the chirality on FET sensitivity by taking the percentage change of the FET current per unit charge density as the sensing signal. Firstly, GFETs made of graphene nanoribbons (GNR) and graphene sheets (GS) show comparable sensing signals to each other when gated at 1011 - 1012 cm-2 carrier densities. Sensing signals in GNRs are enhanced when gated near the sub-band thresholds, and increase their values in wider GNRs due to the change in device conductance and quantum capacitance. Secondly, the GNR chirality is found to fine tune the sensing signals. Armchair GNRs with smaller energy bandgaps appear to have an enhanced sensing signal close to 1011 cm-2 carrier densities. These results may help understand the scaling limit in GFET based biosensors along the width direction, and shed light on forming all-electrical bio-arrays.

  15. Functionalized low defect graphene nanoribbons and polyurethane composite film for improved gas barrier and mechanical performances.

    PubMed

    Xiang, Changsheng; Cox, Paris J; Kukovecz, Akos; Genorio, Bostjan; Hashim, Daniel P; Yan, Zheng; Peng, Zhiwei; Hwang, Chih-Chau; Ruan, Gedeng; Samuel, Errol L G; Sudeep, Parambath M; Konya, Zoltan; Vajtai, Robert; Ajayan, Pulickel M; Tour, James M

    2013-11-26

    A thermoplastic polyurethane (TPU) composite film containing hexadecyl-functionalized low-defect graphene nanoribbons (HD-GNRs) was produced by solution casting. The HD-GNRs were well distributed within the polyurethane matrix, leading to phase separation of the TPU. Nitrogen gas effective diffusivity of TPU was decreased by 3 orders of magnitude with only 0.5 wt % HD-GNRs. The incorporation of HD-GNRs also improved the mechanical properties of the composite films, as predicted by the phase separation and indicated by tensile tests and dynamic mechanical analyses. The improved properties of the composite film could lead to potential applications in food packaging and lightweight mobile gas storage containers.

  16. Stretchable silicon nanoribbon electronics for skin prosthesis.

    PubMed

    Kim, Jaemin; Lee, Mincheol; Shim, Hyung Joon; Ghaffari, Roozbeh; Cho, Hye Rim; Son, Donghee; Jung, Yei Hwan; Soh, Min; Choi, Changsoon; Jung, Sungmook; Chu, Kon; Jeon, Daejong; Lee, Soon-Tae; Kim, Ji Hoon; Choi, Seung Hong; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2014-12-09

    Sensory receptors in human skin transmit a wealth of tactile and thermal signals from external environments to the brain. Despite advances in our understanding of mechano- and thermosensation, replication of these unique sensory characteristics in artificial skin and prosthetics remains challenging. Recent efforts to develop smart prosthetics, which exploit rigid and/or semi-flexible pressure, strain and temperature sensors, provide promising routes for sensor-laden bionic systems, but with limited stretchability, detection range and spatio-temporal resolution. Here we demonstrate smart prosthetic skin instrumented with ultrathin, single crystalline silicon nanoribbon strain, pressure and temperature sensor arrays as well as associated humidity sensors, electroresistive heaters and stretchable multi-electrode arrays for nerve stimulation. This collection of stretchable sensors and actuators facilitate highly localized mechanical and thermal skin-like perception in response to external stimuli, thus providing unique opportunities for emerging classes of prostheses and peripheral nervous system interface technologies.

  17. Spin Transport in Electric-Barrier-Modulated Ferromagnetic/Normal/Ferromagnetic Monolayer Zigzag MoS2 Nanoribbon Junction

    NASA Astrophysics Data System (ADS)

    Xia, Y.-Y.; Yuan, R.-Y.; Yang, Q.-J.; Sun, Q.; Zheng, J.; Guo, Y.

    In this paper, with the three-band tight-binding model and non-equilibrium Green’s function technique, we investigate spin transport in electric-barrier-modulated Ferromagnetic/Normal/Ferromagnetic (F/N/F) monolayer (ML) zigzag MoS2 nanoribbon junction. The results demonstrate that once the double electric barriers structure emerges, the oscillations of spin conductances become violent, especially for spin-down conductance, the numbers of resonant peaks increase obviously, thus we can obtain 100% spin polarization in the low energy region. It is also found that with the intensity of the exchange field enhancement, the resonant peaks of spin-up and spin-down conductances move in the opposite direction in a certain energy region. As a consequence, the spin-down conductance can be filtered out completely. The findings here indicate that the present structure may be considered as a good candidate for spin filter.

  18. Engineer-able optical properties of trilayer graphene nanoribbon

    NASA Astrophysics Data System (ADS)

    Meshginqalam, Bahar; T, Hamid Toloue A.; Taghi Ahmadi, Mohammad; Sabatyan, Arash

    2016-03-01

    Graphene with a single atomic layer of carbon indicates two-dimensional behavior which plays an important role in sensor application, because of its high surface-to-volume ratio. Its interesting optical properties lead to low-cost and accurate optical devices as well. In the presented work trilayer graphene nanoribbon (TGN) with focus on its optical property for different incident wave lengths in the presence of applied voltage is explored. In low bias condition the optical conductance is modeled and dielectric constant and refractive index based on the estimated conductance are calculated theoretically; finally the obtained results are investigated numerically. Controllable optical properties supported by applied voltage on TGN are proved. Consequently, the proposed model indicates TGN as a possible candidate on surface plasmon based sensors, which needs to be explored.

  19. Electronic transport in armchair graphene nanoribbon under double magnetic barrier modulation

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Wu, Chao; Xie, Fang; Zhang, Xiaojiao; Zhou, Guanghui

    2018-03-01

    We present a theoretical investigation of the transport properties and the magnetoresistance effect in armchair graphene nanoribbons (AGNRs) under modulation by two magnetic barriers. The energy levels are found to be degenerate for a metallic AGNR but are not degenerate for a semiconducting AGNR. However, the conductance characteristics show quantized plateaus in both the metallic and semiconducting cases. When the magnetization directions of the barriers change from parallel to antiparallel, the conductance plateau in the metallic AGNR shows a degenerate feature due to matching between the transport modes in different regions. As the barrier height increases, the conductance shows more oscillatory behavior with sharp peaks and troughs. Specifically, the initial position of nonzero conductance for the metallic AGNR system moves towards a higher energy regime, which indicates that an energy gap has been opened. In addition, the magnetoresistance ratio also shows plateau structures in certain specific energy regions. These results may be useful in the design of electron devices based on AGNR nanostructures.

  20. Kinks and antikinks of buckled graphene: A testing ground for the φ4 field model

    NASA Astrophysics Data System (ADS)

    Yamaletdinov, R. D.; Slipko, V. A.; Pershin, Y. V.

    2017-09-01

    Kinks and antikinks of the classical φ4 field model are topological solutions connecting its two distinct ground states. Here we establish an analogy between the excitations of a long graphene nanoribbon buckled in the transverse direction and φ4 model results. Using molecular dynamics simulations, we investigated the dynamics of a buckled graphene nanoribbon with a single kink and with a kink-antikink pair. Several features of the φ4 model have been observed including the kink-antikink capture at low energies, kink-antikink reflection at high energies, and a bounce resonance. Our results pave the way towards the experimental observation of a rich variety of φ4 model predictions based on graphene.

  1. The opposite induced magnetic moment in narrow zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Hu, Bian; Liu, Na

    2016-11-01

    Based on the analysis of band structure and edge states on zigzag graphene nanoribbons (ZGNRs), we can study theoretically the origination of two minimal quantum conductance. At the two energy points - 0.20 eV and 0.15 eV corresponding to the two dips of quantum conductance, the spin-polarized quantum conductance is about 45%. Furthermore, the two types of edge-localized carriers in the opposite transport directions along the two opposite edge sides form the quantum internal loop current, which can generate one big magnetic moment. At these two energy points - 0.17 eV and 0.15 eV the two induced magnetic moments are in opposite signals.

  2. Graphene nanoribbons epitaxy on boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaobo; Wang, Shuopei; Wu, Shuang

    2016-03-14

    In this letter, we report a pilot study on epitaxy of monolayer graphene nanoribbons (GNRs) on hexagonal boron nitride (h-BN). We found that GNRs grow preferentially from the atomic steps of h-BN, forming in-plane heterostructures. GNRs with well-defined widths ranging from ∼15 nm to ∼150 nm can be obtained reliably. As-grown GNRs on h-BN have high quality with a carrier mobility of ∼20 000 cm{sup 2} V{sup −1} s{sup −1} for ∼100-nm-wide GNRs at a temperature of 1.7 K. Besides, a moiré pattern induced quasi-one-dimensional superlattice with a periodicity of ∼15 nm for GNR/h-BN was also observed, indicating zero crystallographic twisting angle between GNRs and h-BNmore » substrate. The superlattice induced band structure modification is confirmed by our transport results. These epitaxial GNRs/h-BN with clean surfaces/interfaces and tailored widths provide an ideal platform for high-performance GNR devices.« less

  3. Twin lead ballistic conductor based on nanoribbon edge transport

    NASA Astrophysics Data System (ADS)

    Konôpka, Martin; Dieška, Peter

    2018-03-01

    If a device like a graphene nanoribbon (GNR) has all its four corners attached to electric current leads, the device becomes a quantum junction through which two electrical circuits can interact. We study such system theoretically for stationary currents. The 4-point energy-dependent conductance matrix of the nanostructure and the classical resistors in the circuits are parameters of the model. The two bias voltages in the circuits are the control variables of the studied system while the electrochemical potentials at the device's terminals are non-trivially dependent on the voltages. For the special case of the linear-response regime analytical formulae for the operation of the coupled quantum-classical device are derived and applied. For higher bias voltages numerical solutions are obtained. The effects of non-equilibrium Fermi levels are captured using a recursive algorithm in which self-consistency between the electrochemical potentials and the currents is reached within few iterations. The developed approach allows to study scenarios ranging from independent circuits to strongly coupled ones. For the chosen model of the GNR with highly conductive zigzag edges we determine the regime in which the single device carries two almost independent currents.

  4. Electronic properties of graphene nanoribbons: A density functional investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sandeep, E-mail: skumar198712@gmail.com; Sharma, Hitesh, E-mail: dr.hitesh.phys@gmail.com

    2015-05-15

    Density functional theory calculations have been performed on graphene nano ribbons (GNRs) to investigate the electronic properties as a function of chirality, size and hydrogenation on the edges. The calculations were performed on GNRs with armchair and zigzag configurations with 28, 34, 36, 40, 50, 56, 62, 66 carbon atoms. The structural stability of AGNR and ZGNR increases with the size of nanoribbon where as hydrogenation of GNR tends to lowers their structural stability. All GNRs considered have shown semiconducting behavior with HOMO-LUMO gap decreasing with the increase in the GNR size. The hydrogenation of GNR decreases its HOMO-LUMO gapmore » significantly. The results are in agreement with the available experimental and theoretical results.« less

  5. Spin relaxation in graphene nanoribbons in the presence of substrate surface roughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaghazardi, Zahra; Faez, Rahim; Touski, Shoeib Babaee

    2016-08-07

    In this work, spin transport in corrugated armchair graphene nanoribbons (AGNRs) is studied. We survey combined effects of spin-orbit interaction and surface roughness, employing the non-equilibrium Green's function formalism and multi-orbitals tight-binding model. Rough substrate surfaces have been statistically generated and the hopping parameters are modulated based on the bending and distance of corrugated carbon atoms. The effects of surface roughness parameters, such as roughness amplitude and correlation length, on spin transport in AGNRs are studied. The increase of surface roughness amplitude results in the coupling of σ and π bands in neighboring atoms, leading to larger spin flipping ratemore » and therefore reduction of the spin-polarization, whereas a longer correlation length makes AGNR surface smoother and increases spin-polarization. Moreover, spin diffusion length of carriers is extracted and its dependency on the roughness parameters is investigated. In agreement with experimental data, the spin diffusion length for various substrate ranges between 2 and 340 μm. Our results indicate the importance of surface roughness on spin-transport in graphene.« less

  6. Design evaluation of graphene nanoribbon nanoelectromechanical devices

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Tak; Stephen Leo, Marie; Lee, Chengkuo; Liang, Gengchiau

    2011-07-01

    Computational studies on nanoelectromechanical switches based on bilayer graphene nanoribbons (BGNRs) with different designs are presented in this work. By varying the interlayer distance via electrostatic means, the conductance of the BGNR can be changed in order to achieve ON-states and OFF-states, thereby mimicking the function of a switch. Two actuator designs based on the modified capacitive parallel plate (CPP) model and the electrostatic repulsive force (ERF) model are discussed for different applications. Although the CPP design provides a simple electrostatic approach to changing the interlayer distance of the BGNR, their switching gate bias VTH strongly depends on the gate area, which poses a limitation on the size of the device. In addition, there exists a risk of device failure due to static fraction between the mobile and fixed electrodes. In contrast, the ERF design can circumvent both issues with a more complex structure. Finally, optimizations of the devices are carried out in order to provide insights into the design considerations of these nanoelectromechanical switches.

  7. Band-selective filter in a zigzag graphene nanoribbon.

    PubMed

    Nakabayashi, Jun; Yamamoto, Daisuke; Kurihara, Susumu

    2009-02-13

    Electric transport of a zigzag graphene nanoribbon through a steplike potential and a barrier potential is investigated by using the recursive Green's function method. In the case of the steplike potential, we demonstrate numerically that scattering processes obey a selection rule for the band indices when the number of zigzag chains is even; the electrons belonging to the "even" ("odd") bands are scattered only into the even (odd) bands so that the parity of the wave functions is preserved. In the case of the barrier potential, by tuning the barrier height to be an appropriate value, we show that it can work as the "band-selective filter", which transmits electrons selectively with respect to the indices of the bands to which the incident electrons belong. Finally, we suggest that this selection rule can be observed in the conductance by applying two barrier potentials.

  8. Electron transport property of cobalt-centered porphyrin-armchair graphene nanoribbon (AGNR) junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, Rajkumar; Sarkar, Utpal, E-mail: utpalchemiitkgp@yahoo.com

    2015-06-24

    We have investigated the electron transport properties of Cobalt-centered (Co-centered) porphyrin molecule using the density functional theory and non-equilibrium greens function method. Here we have reported transmission coefficient as well as current voltage characteristics of Co-centered porphyrine molecule connected between armchair graphene nanoribbons. It has been found that at low bias region i.e., 0 V to 0.3 V it does not contribute any current. Gradual increase of bias voltage results different order of magnitude of current in different bias region.

  9. Spin-exciton interaction and related micro-photoluminescence spectra of ZnSe:Mn DMS nanoribbon

    NASA Astrophysics Data System (ADS)

    Hou, Lipeng; Zhou, Weichang; Zou, Bingsuo; Zhang, Yu; Han, Junbo; Yang, Xinxin; Gong, Zhihong; Li, Jingbo; Xie, Sishen; Shi, Li-Jie

    2017-03-01

    For their spintronic applications the magnetic and optical properties of diluted magnetic semiconductors (DMS) have been studied widely. However, the exact relationships between the magnetic interactions and optical emission behaviors in DMS are not well understood yet due to their complicated microstructural and compositional characters from different growth and preparation techniques. Manganese (Mn) doped ZnSe nanoribbons with high quality were obtained by using the chemical vapor deposition (CVD) method. Successful Mn ion doping in a single ZnSe nanoribbon was identified by elemental energy-dispersive x-ray spectroscopy mapping and micro-photoluminescence (PL) mapping of intrinsic d-d optical transition at 580 nm, i.e. the transition of 4 T 1(4 G) → 6 A 1(6 s),. Besides the d-d transition PL peak at 580 nm, two other PL peaks related to Mn ion aggregates in the ZnSe lattice were detected at 664 nm and 530 nm, which were assigned to the d-d transitions from the Mn2+-Mn2+ pairs with ferromagnetic (FM) coupling and antiferromagnetic (AFM) coupling, respectively. Moreover, AFM pair formation goes along with strong coupling with acoustic phonon or structural defects. These arguments were supported by temperature-dependent PL spectra, power-dependent PL lifetimes, and first-principle calculations. Due to the ferromagnetic pair existence, an exciton magnetic polaron (EMP) is formed and emits at 460 nm. Defect existence favors the AFM pair, which also can account for its giant enhancement of spin-orbital coupling and the spin Hall effect observed in PRL 97, 126603(2006) and PRL 96, 196404(2006). These emission results of DMS reflect their relation to local sp-d hybridization, spin-spin magnetic coupling, exciton-spin or phonon interactions covering structural relaxations. This kind of material can be used to study the exciton-spin interaction and may find applications in spin-related photonic devices besides spintronics.

  10. The electronic transport properties of defected bilayer sliding armchair graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Mohammadi, Amin; Haji-Nasiri, Saeed

    2018-04-01

    By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of perfect and defected bilayer armchair graphene nanoribbons (BAGNRs) under finite bias. Two typical defects which are placed in the middle of top layer (i.e. single vacancy (SV) and stone wale (SW) defects) are examined. The results reveal that in both perfect and defected bilayers, the maximum current refers to β-AB, AA and α-AB stacking orders, respectively, since the intermolecular interactions are stronger in them. Moreover it is observed that a SV decreases the current in all stacking orders, but the effects of a SW defect is nearly unpredictable. Besides, we introduced a sequential switching behavior and the effects of defects on the switching performance is studied as well. We found that a SW defect can significantly improve the switching behavior of a bilayer system. Transmission spectrum, band structure, molecular energy spectrum and molecular projected self-consistent Hamiltonian (MPSH) are analyzed subsequently to understand the electronic transport properties of these bilayer devices which can be used in developing nano-scale bilayer systems.

  11. Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons

    PubMed Central

    Pan, Meiyan; Liang, Zhaoxing; Wang, Yu; Chen, Yihang

    2016-01-01

    We propose a novel mechanism to construct a tunable and ultracompact refractive index sensor by using the Fano resonance in metal-graphene hybrid nanostructure. Plasmon modes in graphene nanoribbons and waveguide resonance modes in the slits of metal strip array coexist in this system. Strong interference between the two different modes occurs when they are spectrally overlapped, resulting in a Fano-type asymmetrically spectral lineshape which can be used for detecting the variations of ambient refractive index. The proposed sensor has a relatively high figure of merit (FOM) over 20 and its sensing performance shows a good tolerance to roughness. In addition to the wide range measurement enabled by the electrical tuning of graphene plasmon modes, such ultracompact system also provides an angle-independent operation and therefore, it can efficiently work for the detection of gas, liquid, or solids. Such optical nanostructure may also be applied to diverse fields such as temperature/pressure metering, medical detection, and mechanical precision measurement. PMID:27439964

  12. Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons.

    PubMed

    Pan, Meiyan; Liang, Zhaoxing; Wang, Yu; Chen, Yihang

    2016-07-21

    We propose a novel mechanism to construct a tunable and ultracompact refractive index sensor by using the Fano resonance in metal-graphene hybrid nanostructure. Plasmon modes in graphene nanoribbons and waveguide resonance modes in the slits of metal strip array coexist in this system. Strong interference between the two different modes occurs when they are spectrally overlapped, resulting in a Fano-type asymmetrically spectral lineshape which can be used for detecting the variations of ambient refractive index. The proposed sensor has a relatively high figure of merit (FOM) over 20 and its sensing performance shows a good tolerance to roughness. In addition to the wide range measurement enabled by the electrical tuning of graphene plasmon modes, such ultracompact system also provides an angle-independent operation and therefore, it can efficiently work for the detection of gas, liquid, or solids. Such optical nanostructure may also be applied to diverse fields such as temperature/pressure metering, medical detection, and mechanical precision measurement.

  13. Comparative structural and electronic studies of hydrogen interaction with isolated versus ordered silicon nanoribbons grown on Ag(110)

    NASA Astrophysics Data System (ADS)

    Dávila, M. E.; Marele, A.; De Padova, P.; Montero, I.; Hennies, F.; Pietzsch, A.; Shariati, M. N.; Gómez-Rodríguez, J. M.; Le Lay, G.

    2012-09-01

    We have investigated the geometry and electronic structure of two different types of self-aligned silicon nanoribbons (SiNRs), forming either isolated SiNRs or a self-assembled 5 × 2/5 × 4 grating on an Ag(110) substrate, by scanning tunnelling microscopy and high resolution x-ray photoelectron spectroscopy. At room temperature we further adsorb on these SiNRs either atomic or molecular hydrogen. The hydrogen absorption process and hydrogenation mechanism are similar for isolated or 5 × 2/5 × 4 ordered SiNRs and are not site selective; the main difference arises from the fact that the isolated SiNRs are more easily attacked and destroyed faster. In fact, atomic hydrogen strongly interacts with any Si atoms, modifying their structural and electronic properties, while molecular hydrogen has first to dissociate. Hydrogen finally etches the Si nanoribbons and their complete removal from the Ag(110) surface could eventually be expected.

  14. Asymmetrical edges induced strong current-polarization in embedded graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Li, Kuanhong; Zhang, Xiang-Hua

    2018-05-01

    We investigate the electronic structures and transport properties of the embedded zigzag graphene nanoribbon (E-ZGNR) in hexagonal boron nitride trenches, which are achievable in recent experiments. Our first principles results show that the E-ZGNR has a significant enhanced conductivity relative to common ZGNRs due to the existence of asymmetrical edge structures. Moreover, only one spin-orientation electrons possess a widely opened band gap at the magnetic ground state with anti-ferromagnetic configuration, resulting in a full current-polarization at low bias region. Our findings indicate that the state-of-the-art embedding technology is quite useful for tuning the electronic structure of ZGNR and building possible spin injection and spin filter devices in spintronics.

  15. Dual-gate polysilicon nanoribbon biosensors enable high sensitivity detection of proteins.

    PubMed

    Zeimpekis, I; Sun, K; Hu, C; Ditshego, N M J; Thomas, O; de Planque, M R R; Chong, H M H; Morgan, H; Ashburn, P

    2016-04-22

    We demonstrate the advantages of dual-gate polysilicon nanoribbon biosensors with a comprehensive evaluation of different measurement schemes for pH and protein sensing. In particular, we compare the detection of voltage and current changes when top- and bottom-gate bias is applied. Measurements of pH show that a large voltage shift of 491 mV pH(-1) is obtained in the subthreshold region when the top-gate is kept at a fixed potential and the bottom-gate is varied (voltage sweep). This is an improvement of 16 times over the 30 mV pH(-1) measured using a top-gate sweep with the bottom-gate at a fixed potential. A similar large voltage shift of 175 mV is obtained when the protein avidin is sensed using a bottom-gate sweep. This is an improvement of 20 times compared with the 8.8 mV achieved from a top-gate sweep. Current measurements using bottom-gate sweeps do not deliver the same signal amplification as when using bottom-gate sweeps to measure voltage shifts. Thus, for detecting a small signal change on protein binding, it is advantageous to employ a double-gate transistor and to measure a voltage shift using a bottom-gate sweep. For top-gate sweeps, the use of a dual-gate transistor enables the current sensitivity to be enhanced by applying a negative bias to the bottom-gate to reduce the carrier concentration in the nanoribbon. For pH measurements, the current sensitivity increases from 65% to 149% and for avidin sensing it increases from 1.4% to 2.5%.

  16. Dual-gate polysilicon nanoribbon biosensors enable high sensitivity detection of proteins

    NASA Astrophysics Data System (ADS)

    Zeimpekis, I.; Sun, K.; Hu, C.; Ditshego, N. M. J.; Thomas, O.; de Planque, M. R. R.; Chong, H. M. H.; Morgan, H.; Ashburn, P.

    2016-04-01

    We demonstrate the advantages of dual-gate polysilicon nanoribbon biosensors with a comprehensive evaluation of different measurement schemes for pH and protein sensing. In particular, we compare the detection of voltage and current changes when top- and bottom-gate bias is applied. Measurements of pH show that a large voltage shift of 491 mV pH-1 is obtained in the subthreshold region when the top-gate is kept at a fixed potential and the bottom-gate is varied (voltage sweep). This is an improvement of 16 times over the 30 mV pH-1 measured using a top-gate sweep with the bottom-gate at a fixed potential. A similar large voltage shift of 175 mV is obtained when the protein avidin is sensed using a bottom-gate sweep. This is an improvement of 20 times compared with the 8.8 mV achieved from a top-gate sweep. Current measurements using bottom-gate sweeps do not deliver the same signal amplification as when using bottom-gate sweeps to measure voltage shifts. Thus, for detecting a small signal change on protein binding, it is advantageous to employ a double-gate transistor and to measure a voltage shift using a bottom-gate sweep. For top-gate sweeps, the use of a dual-gate transistor enables the current sensitivity to be enhanced by applying a negative bias to the bottom-gate to reduce the carrier concentration in the nanoribbon. For pH measurements, the current sensitivity increases from 65% to 149% and for avidin sensing it increases from 1.4% to 2.5%.

  17. Stable and null current hysteresis perovskite solar cells based nitrogen doped graphene oxide nanoribbons hole transport layer

    PubMed Central

    Kim, Jeongmo; Mat Teridi, Mohd Asri; Mohd Yusoff, Abd. Rashid bin; Jang, Jin

    2016-01-01

    Perovskite solar cells are becoming one of the leading technologies to reduce our dependency on traditional power sources. However, the frequently used component poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) has several shortcomings, such as an easily corroded indium-tin-oxide (ITO) interface at elevated temperatures and induced electrical inhomogeneity. Herein, we propose solution-processed nitrogen-doped graphene oxide nanoribbons (NGONRs) as a hole transport layer (HTL) in perovskite solar cells, replacing the conducting polymer PEDOT:PSS. The conversion efficiency of NGONR-based perovskite solar cells has outperformed a control device constructed using PEDOT:PSS. Moreover, our proposed NGONR-based devices also demonstrate a negligible current hysteresis along with improved stability. This work provides an effective route for substituting PEDOT:PSS as the effective HTL. PMID:27277388

  18. Tunable Multiple Plasmon-Induced Transparencies Based on Asymmetrical Graphene Nanoribbon Structures

    PubMed Central

    Lu, Chunyu; Wang, Jicheng; Yan, Shubin; Hu, Zheng-Da; Zheng, Gaige; Yang, Liu

    2017-01-01

    We present plasmonic devices, consisting of periodic arrays of graphene nanoribbons (GNRs) and a graphene sheet waveguide, to achieve controllable plasmon-induced transparency (PIT) by numerical simulation. We analyze the bright and dark elements of the GNRs and graphene-sheet waveguide structure. Results show that applying the gate voltage can electrically tune the PIT spectrum. Adjusting the coupling distance and widths of GNRs directly results in a shift of transmission dips. In addition, increased angle of incidence causes the transmission to split into multiple PIT peaks. We also demonstrate that PIT devices based on graphene plasmonics may have promising applications as plasmonic sensors in nanophotonics. PMID:28773062

  19. Non-equilibrium tunneling in zigzag graphene nanoribbon break-junction results in spin filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Liming; Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville 3010; National ICT Australia, The University of Melbourne, Parkville 3010

    Spintronic devices promise new faster and lower energy-consumption electronic systems. Graphene, a versatile material and candidate for next generation electronics, is known to possess interesting spintronic properties. In this paper, by utilizing density functional theory and non-equilibrium green function formalism, we show that Fano resonance can be generated by introducing a break junction in a zigzag graphene nanoribbon (ZGNR). Using this effect, we propose a new spin filtering device that can be used for spin injection. Our theoretical results indicate that the proposed device could achieve high spin filtering efficiency (over 90%) at practical fabrication geometries. Furthermore, our results indicatemore » that the ZGNR break junction lattice configuration can dramatically affect spin filtering efficiency and thus needs to be considered when fabricating real devices. Our device can be fabricated on top of spin transport channel and provides good integration between spin injection and spin transport.« less

  20. Optical properties and magnetic flux-induced electronic band tuning of a T-graphene sheet and nanoribbon.

    PubMed

    Bandyopadhyay, Arka; Nandy, Atanu; Chakrabarti, Arunava; Jana, Debnarayan

    2017-08-16

    Tetragonal graphene (T-graphene) is a theoretically proposed dynamically stable, metallic allotrope of graphene. In this theoretical investigation, a tight binding (TB) model is used to unravel the metal to semiconductor transition of this 2D sheet under the influence of an external magnetic flux. In addition, the environment under which the sheet exposes an appreciable direct band gap of 1.41 ± 0.01 eV is examined. Similarly, the electronic band structure of the narrowest armchair T-graphene nanoribbon (NATGNR) also gets modified with different combinations of magnetic fluxes through the elementary rings. The band tuning parameters are critically identified for both systems. It is observed that the induced band gaps vary remarkably with the tuning parameters. We have also introduced an exact analytical approach to address the band structure of the NATGNR in the absence of any magnetic flux. Finally, the optical properties of the sheet and NATGNR are also critically analysed for both parallel and perpendicular polarizations with the help of density functional theory (DFT). Our study predicts that this material and its nanoribbons can be used in optoelectronic devices.

  1. Shear Strength of Square Graphene Nanoribbons beyond Wrinkling

    NASA Astrophysics Data System (ADS)

    Ragab, Tarek; Basaran, Cemal

    2018-04-01

    Atomistic modeling of armchair and zigzag graphene nanoribbons (GNRs) has been performed to investigate the post-wrinkling behavior under in-plane (x-y) shear deformation. Simulations were performed at 300 K for square GNRs with size ranging from 2.5 nm to 20 nm. Shear stresses led only to diagonal tension, and wrinkling was not accompanied by any diagonal compressive force. Once the diagonal tension reached its ultimate elastic level, three major stress-relaxing phenomena were observed. The type of stress-relaxing phenomenon involved greatly affected the mechanical behavior in terms of the slope of the stress-strain diagram beyond the elastic range. The results showed that the average slope of the stress-strain relation beyond the ultimate elastic stress decreased with the increase of the GNR size. Moreover, the slope of the shear stress-strain curve beyond the ultimate elastic stress was always greater for armchair than for zigzag GNRs. GNRs can sustain very high plastic shear strains beyond 100% before failure. The ultimate elastic stress can range from 20 GPa to 50 GPa, occurring at shear strain ranging from 52% to 19%. The ultimate elastic stress and strain were inversely proportional to the size of the GNR with a power factor ranging from 0.261 for armchair GNRs to 0.354 for zigzag GNRs due to the decrease in the effective width for diagonal tension.

  2. Shear Strength of Square Graphene Nanoribbons beyond Wrinkling

    NASA Astrophysics Data System (ADS)

    Ragab, Tarek; Basaran, Cemal

    2018-07-01

    Atomistic modeling of armchair and zigzag graphene nanoribbons (GNRs) has been performed to investigate the post-wrinkling behavior under in-plane ( x- y) shear deformation. Simulations were performed at 300 K for square GNRs with size ranging from 2.5 nm to 20 nm. Shear stresses led only to diagonal tension, and wrinkling was not accompanied by any diagonal compressive force. Once the diagonal tension reached its ultimate elastic level, three major stress-relaxing phenomena were observed. The type of stress-relaxing phenomenon involved greatly affected the mechanical behavior in terms of the slope of the stress-strain diagram beyond the elastic range. The results showed that the average slope of the stress-strain relation beyond the ultimate elastic stress decreased with the increase of the GNR size. Moreover, the slope of the shear stress-strain curve beyond the ultimate elastic stress was always greater for armchair than for zigzag GNRs. GNRs can sustain very high plastic shear strains beyond 100% before failure. The ultimate elastic stress can range from 20 GPa to 50 GPa, occurring at shear strain ranging from 52% to 19%. The ultimate elastic stress and strain were inversely proportional to the size of the GNR with a power factor ranging from 0.261 for armchair GNRs to 0.354 for zigzag GNRs due to the decrease in the effective width for diagonal tension.

  3. Time-dependent density-functional theory simulation of local currents in pristine and single-defect zigzag graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shenglai, E-mail: shenglai.he@vanderbilt.edu; Russakoff, Arthur; Li, Yonghui

    2016-07-21

    The spatial current distribution in H-terminated zigzag graphene nanoribbons (ZGNRs) under electrical bias is investigated using time-dependent density-functional theory solved on a real-space grid. A projected complex absorbing potential is used to minimize the effect of reflection at simulation cell boundary. The calculations show that the current flows mainly along the edge atoms in the hydrogen terminated pristine ZGNRs. When a vacancy is introduced to the ZGNRs, loop currents emerge at the ribbon edge due to electrons hopping between carbon atoms of the same sublattice. The loop currents hinder the flow of the edge current, explaining the poor electric conductancemore » observed in recent experiments.« less

  4. Chemical Makeup and Hydrophilic Behavior of Graphene Oxide Nanoribbons after Low-Temperature Fluorination.

    PubMed

    Romero Aburto, Rebeca; Alemany, Lawrence B; Weldeghiorghis, Thomas K; Ozden, Sehmus; Peng, Zhiwei; Lherbier, Aurélien; Botello Méndez, Andrés Rafael; Tiwary, Chandra Sekhar; Taha-Tijerina, Jaime; Yan, Zheng; Tabata, Mika; Charlier, Jean-Christophe; Tour, James M; Ajayan, Pulickel M

    2015-07-28

    Here we investigated the fluorination of graphene oxide nanoribbons (GONRs) using H2 and F2 gases at low temperature, below 200 °C, with the purpose of elucidating their structure and predicting a fluorination mechanism. The importance of this study is the understanding of how fluorine functional groups are incorporated in complex structures, such as GONRs, as a function of temperature. The insight provided herein can potentially help engineer application-oriented materials for several research and industrial sectors. Direct (13)C pulse magic angle spinning (MAS) nuclear magnetic resonance (NMR) confirmed the presence of epoxy, hydroxyl, ester and ketone carbonyl, tertiary alkyl fluorides, as well as graphitic sp(2)-hybridized carbon. Moreover, (19)F-(13)C cross-polarization MAS NMR with (1)H and (19)F decoupling confirmed the presence of secondary alkyl fluoride (CF2) groups in the fluorinated graphene oxide nanoribbon (FGONR) structures fluorinated above 50 °C. First-principles density functional theory calculations gained insight into the atomic arrangement of the most dominant chemical groups. The fluorinated GONRs present atomic fluorine percentages in the range of 6-35. Interestingly, the FGONRs synthesized up to 100 °C, with 6-19% of atomic fluorine, exhibit colloidal similar stability in aqueous environments when compared to GONRs. This colloidal stability is important because it is not common for materials with up to 19% fluorine to have a high degree of hydrophilicity.

  5. Epitaxial growth of aligned atomically precise chevron graphene nanoribbons on Cu(111).

    PubMed

    Teeter, Jacob D; Costa, Paulo S; Mehdi Pour, Mohammad; Miller, Daniel P; Zurek, Eva; Enders, Axel; Sinitskii, Alexander

    2017-07-25

    Atomically precise chevron graphene nanoribbons (GNRs) have been synthesized on Cu(111) substrates by the surface-assisted coupling of 6,11-dibromo-1,2,3,4-tetraphenyltriphenylene (C 42 Br 2 H 26 ) and thermal cyclodehydrogenation of the resulting polymer. The GNRs form on Cu(111) epitaxially along the 〈112〉 crystallographic directions, which was found to be in agreement with the computational results, and at lower temperatures than on Au(111). This work demonstrates that the substrate plays an important role in the on-surface synthesis of GNRs and can result in new assembly modes of GNR structures.

  6. Infrared to ultraviolet optical response for armchair-edge silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Liao, Wenhu; Bao, Hairui; Zhang, Xincheng; Yang, Xuexian; Zhang, Zheng; Zhao, Heping

    2016-04-01

    We investigate the infrared to ultraviolet optical response for perfect armchair-edge silicene nanoribbons (N-ASiNRs) with N atomic chains under the irradiation of an external electromagnetic field at low temperatures, in the method of dipole-transition theorem for semiconductors. The electronic structure for N-ASiNRs has been manifested from the tight-binding calculations to two distinct families, that is the semiconducting one for N=3l or 3l+1 (l is a positive integer) and metallic one for N=3l+2. The dipole-transition probabilities from the valence subbands to the smaller indexed conduction ones for semiconducting 9-/10- and metallic 11-ASiNRs have been demonstrated to be continuously increasing, while those to the larger indexed conduction subbands are firstly increasing and then decreasing. Both the semiconducting 9-/10- and metallic 11-ASiNRs have been found to have a wide (from 0.50 to 3.20 eV) absorption spectrum, refractive index, and extinction coefficient at the vicinity of K-point. The optical response for semiconducting 9-/10-ASiNRs is observed to be from the transitions between the valence and conduction subbands with the same and/or different indices, while that for metallic 11-ASiNR may be originated from the different indexed valence and conduction subbands. The obtained results are believed to be of importance in the design of the silicene-based nano-optoelectronic devices.

  7. Atomistic full-quantum transport model for zigzag graphene nanoribbon-based structures: Complex energy-band method

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Nan; Luo, Win-Jet; Shyu, Feng-Lin; Chung, Hsien-Ching; Lin, Chiun-Yan; Wu, Jhao-Ying

    2018-01-01

    Using a non-equilibrium Green’s function framework in combination with the complex energy-band method, an atomistic full-quantum model for solving quantum transport problems for a zigzag-edge graphene nanoribbon (zGNR) structure is proposed. For transport calculations, the mathematical expressions from the theory for zGNR-based device structures are derived in detail. The transport properties of zGNR-based devices are calculated and studied in detail using the proposed method.

  8. Tuning the band structure of graphene nanoribbons through defect-interaction-driven edge patterning

    NASA Astrophysics Data System (ADS)

    Du, Lin; Nguyen, Tam N.; Gilman, Ari; Muniz, André R.; Maroudas, Dimitrios

    2017-12-01

    We report a systematic analysis of pore-edge interactions in graphene nanoribbons (GNRs) and their outcomes based on first-principles calculations and classical molecular-dynamics simulations. We find a strong attractive interaction between nanopores and GNR edges that drives the pores to migrate toward and coalesce with the GNR edges, which can be exploited to form GNR edge patterns that impact the GNR electronic band structure and tune the GNR band gap. Our analysis introduces a viable physical processing strategy for modifying GNR properties by combining defect engineering and thermal annealing.

  9. Bright Electroluminescence from Single Graphene Nanoribbon Junctions

    NASA Astrophysics Data System (ADS)

    Chong, Michael C.; Afshar-Imani, Nasima; Scheurer, Fabrice; Cardoso, Claudia; Ferretti, Andrea; Prezzi, Deborah; Schull, Guillaume

    2018-01-01

    Thanks to their highly tunable band gaps, graphene nanoribbons (GNRs) with atomically precise edges are emerging as mechanically and chemically robust candidates for nanoscale light emitting devices of modulable emission color. While their optical properties have been addressed theoretically in depth, only few experimental studies exist, limited to ensemble measurements and without any attempt to integrate them in an electronic-like circuit. Here we report on the electroluminescence of individual GNRs suspended between the tip of a scanning tunneling microscope (STM) and a Au(111) substrate, constituting thus a realistic opto-electronic circuit. Emission spectra of such GNR junctions reveal a bright and narrow band emission of red light, whose energy can be tuned with the bias voltage applied to the junction, but always lying below the gap of infinite GNRs. Comparison with {\\it ab initio} calculations indicate that the emission involves electronic states localized at the GNR termini. Our results shed light on unpredicted optical transitions in GNRs and provide a promising route for the realization of bright, robust and controllable graphene-based light emitting devices.

  10. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation

    PubMed Central

    Zhang, Chao; Hao, Xiao-Li; Wang, Cui-Xia; Wei, Ning; Rabczuk, Timon

    2017-01-01

    Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12–16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications. PMID:28120921

  11. Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches

    PubMed Central

    Chen, Lingxiu; He, Li; Wang, Hui Shan; Wang, Haomin; Tang, Shujie; Cong, Chunxiao; Xie, Hong; Li, Lei; Xia, Hui; Li, Tianxin; Wu, Tianru; Zhang, Daoli; Deng, Lianwen; Yu, Ting; Xie, Xiaoming; Jiang, Mianheng

    2017-01-01

    Graphene nanoribbons (GNRs) are ultra-narrow strips of graphene that have the potential to be used in high-performance graphene-based semiconductor electronics. However, controlled growth of GNRs on dielectric substrates remains a challenge. Here, we report the successful growth of GNRs directly on hexagonal boron nitride substrates with smooth edges and controllable widths using chemical vapour deposition. The approach is based on a type of template growth that allows for the in-plane epitaxy of mono-layered GNRs in nano-trenches on hexagonal boron nitride with edges following a zigzag direction. The embedded GNR channels show excellent electronic properties, even at room temperature. Such in-plane hetero-integration of GNRs, which is compatible with integrated circuit processing, creates a gapped channel with a width of a few benzene rings, enabling the development of digital integrated circuitry based on GNRs. PMID:28276532

  12. Carbon nanotube and graphene nanoribbon-coated conductive Kevlar fibers.

    PubMed

    Xiang, Changsheng; Lu, Wei; Zhu, Yu; Sun, Zhengzong; Yan, Zheng; Hwang, Chi-Chau; Tour, James M

    2012-01-01

    Conductive carbon material-coated Kevlar fibers were fabricated through layer-by-layer spray coating. Polyurethane was used as the interlayer between the Kevlar fiber and carbon materials to bind the carbon materials to the Kevlar fiber. Strongly adhering single-walled carbon nanotube coatings yielded a durable conductivity of 65 S/cm without significant mechanical degradation. In addition, the properties remained stable after bending or water washing cycles. The coated fibers were analyzed using scanning electron microcopy and a knot test. The as-produced fiber had a knot efficiency of 23%, which is more than four times higher than that of carbon fibers. The spray-coating of graphene nanoribbons onto Kevlar fibers was also investigated. These flexible coated-Kevlar fibers have the potential to be used for conductive wires in wearable electronics and battery-heated armors. © 2011 American Chemical Society

  13. Homochiral polymerization-driven selective growth of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hiroshi; Song, Shaotang; Kojima, Takahiro; Nakae, Takahiro

    2017-01-01

    The surface-assisted bottom-up fabrication of graphene nanoribbons (GNRs), which consists of the radical polymerization of precursors followed by dehydrogenation, has attracted attention because of the method's ability to control the edges and widths of the resulting ribbon. Although these reactions on a metal surface are believed to be catalytic, the mechanism has remained unknown. Here, we demonstrate 'conformation-controlled surface catalysis': the two-zone chemical vapour deposition of a 'Z-bar-linkage' precursor, which represents two terphenyl units linked in a 'Z' shape, results in the efficient formation of acene-type GNRs with a width of 1.45 nm through optimized cascade reactions. These precursors exhibit flexibility that allows them to adopt chiral conformations with height asymmetry on a Au(111) surface, which enables the production of self-assembled homochiral polymers in a chain with a planar conformation, followed by dehydrogenation via a conformation-controlled mechanism. This is conceptually analogous to enzymatic catalysis and will be useful for the fabrication of new nanocarbon materials.

  14. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.

    PubMed

    Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun

    2017-06-21

    Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.

  15. Electrochemical behaviour of manganese & ruthenium mixed oxide@ reduced graphene oxide nanoribbon composite in symmetric and asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Ahuja, Preety; Ujjain, Sanjeev Kumar; Kanojia, Rajni

    2018-01-01

    This paper reports the interaction of 3d-4d transition metal mixed oxide as simultaneous existence of M(3d) and M(4d) expectedly enhance the electrochemical performance of the resulting composite. Electrochemical performance of MnO2-RuO2 nanoflakes reduced graphene oxide nanoribbon composite (MnO2-RuO2@GNR) is intensively explored in symmetric and asymmetric supercapacitor assembly. In situ incorporation of graphene oxide nanoribbon (GONR) during synthesis provides efficient binding sites for growth of MnO2-RuO2 nanoflakes via their surface functionalities. The interconnected MnO2-RuO2 nanoflakes via GNR form a network with enhanced diffusion kinetics leading to efficient supercapacitor performance. Fabricated asymmetric supercapacitor reveals energy density 60 Wh kg-1 at power density 14 kW kg-1. Based on the analysis of impedance data in terms of complex power, quick response time of supercapacitor reveals excellent power delivery of the device. Improved cycling stability after 7000 charge discharge cycles for symmetric and asymmetric supercapacitor highlights the buffering action of GNR and can be generalized for next generation high performance supercapacitor.

  16. Achieving Superior Two-Way Actuation by the Stress-Coupling of Nanoribbons and Nanocrystalline Shape Memory Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Shijie; Liu, Yinong; Ren, Yang

    2016-06-08

    Inspired by the driving principle of traditional bias-type two-way actuators, we developed a novel two-way actuation nanocomposite wire in which a massive number of Nb nanoribbons with ultra-large elastic strains are loaded inside a shape memory alloy (SMA) matrix to form a continuous array of nano bias actuation pairs for two-way actuation. The composite exhibits a two-way actuation strain of 3.2% during a thermal cycle and an actuation stress of 934 MPa upon heating, which is about twice higher than that (~500 MPa) found in reported two-way SMAs. Upon cooling, the composite shows an actuation stress of 134 MPa andmore » a mechanical work output of 1.08*106 J/ m3, which are about three and five times higher than that of reported two-way SMAs, respectively. It is revealed that the massive number of Nb nanoribbons in compressive state provides the high actuation stress and high work output upon cooling and the SMA matrix with high yield strength offers the high actuation stress upon heating. Compared to traditional bias-type two-way actuators, the two-way actuation composite with small volume and simple construct is in favour of the miniaturization and simplification of actuators.« less

  17. Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene.

    PubMed

    Lin, Yi; Connell, John W

    2012-11-21

    The recent surge in graphene research has stimulated interest in the investigation of various 2-dimensional (2D) nanomaterials. Among these materials, the 2D boron nitride (BN) nanostructures are in a unique position. This is because they are the isoelectric analogs to graphene structures and share very similar structural characteristics and many physical properties except for the large band gap. The main forms of the 2D BN nanostructures include nanosheets (BNNSs), nanoribbons (BNNRs), and nanomeshes (BNNMs). BNNRs are essentially BNNSs with narrow widths in which the edge effects become significant; BNNMs are also variations of BNNSs, which are supported on certain metal substrates where strong interactions and the lattice mismatch between the substrate and the nanosheet result in periodic shallow regions on the nanosheet surface. Recently, the hybrids of 2D BN nanostructures with graphene, in the form of either in-plane hybrids or inter-plane heterolayers, have also drawn much attention. In particular, the BNNS-graphene heterolayer architectures are finding important electronic applications as BNNSs may serve as excellent dielectric substrates or separation layers for graphene electronic devices. In this article, we first discuss the structural basics, spectroscopic signatures, and physical properties of the 2D BN nanostructures. Then, various top-down and bottom-up preparation methodologies are reviewed in detail. Several sections are dedicated to the preparation of BNNRs, BNNMs, and BNNS-graphene hybrids, respectively. Following some more discussions on the applications of these unique materials, the article is concluded with a summary and perspectives of this exciting new field.

  18. Transport gap engineering by contact geometry in graphene nanoribbons: Experimental and theoretical studies on artificial materials

    NASA Astrophysics Data System (ADS)

    Stegmann, Thomas; Franco-Villafañe, John A.; Kuhl, Ulrich; Mortessagne, Fabrice; Seligman, Thomas H.

    2017-01-01

    Electron transport in small graphene nanoribbons is studied by microwave emulation experiments and tight-binding calculations. In particular, it is investigated under which conditions a transport gap can be observed. Our experiments provide evidence that armchair ribbons of width 3 m +2 with integer m are metallic and otherwise semiconducting, whereas zigzag ribbons are metallic independent of their width. The contact geometry, defining to which atoms at the ribbon edges the source and drain leads are attached, has strong effects on the transport. If leads are attached only to the inner atoms of zigzag edges, broad transport gaps can be observed in all armchair ribbons as well as in rhomboid-shaped zigzag ribbons. All experimental results agree qualitatively with tight-binding calculations using the nonequilibrium Green's function method.

  19. Development of Self-Assembled Nanoribbon Bound Peptide-Polyaniline Composite Scaffolds and Their Interactions with Neural Cortical Cells

    PubMed Central

    Smith, Andrew M.; Pajovich, Harrison T.; Banerjee, Ipsita A.

    2018-01-01

    Degenerative neurological disorders and traumatic brain injuries cause significant damage to quality of life and often impact survival. As a result, novel treatments are necessary that can allow for the regeneration of neural tissue. In this work, a new biomimetic scaffold was designed with potential for applications in neural tissue regeneration. To develop the scaffold, we first prepared a new bolaamphiphile that was capable of undergoing self-assembly into nanoribbons at pH 7. Those nanoribbons were then utilized as templates for conjugation with specific proteins known to play a critical role in neural tissue growth. The template (Ile-TMG-Ile) was prepared by conjugating tetramethyleneglutaric acid with isoleucine and the ability of the bolaamphiphile to self-assemble was probed at a pH range of 4 through 9. The nanoribbons formed under neutral conditions were then functionalized step-wise with the basement membrane protein laminin, the neurotropic factor artemin and Type IV collagen. The conductive polymer polyaniline (PANI) was then incorporated through electrostatic and π–π stacking interactions to the scaffold to impart electrical properties. Distinct morphology changes were observed upon conjugation with each layer, which was also accompanied by an increase in Young’s Modulus as well as surface roughness. The Young’s Modulus of the dried PANI-bound biocomposite scaffolds was found to be 5.5 GPa, indicating the mechanical strength of the scaffold. Thermal phase changes studied indicated broad endothermic peaks upon incorporation of the proteins which were diminished upon binding with PANI. The scaffolds also exhibited in vitro biodegradable behavior over a period of three weeks. Furthermore, we observed cell proliferation and short neurite outgrowths in the presence of rat neural cortical cells, confirming that the scaffolds may be applicable in neural tissue regeneration. The electrochemical properties of the scaffolds were also studied by

  20. Chirality of Single-Handed Twisted Titania Tubular Nanoribbons Prepared Through Sol-gel Transcription.

    PubMed

    Wang, Sibing; Zhang, Chuanyong; Li, Yi; Li, Baozong; Yang, Yonggang

    2015-08-01

    Single-handed twisted titania tubular nanoribbons were prepared through sol-gel transcription using a pair of enantiomers. Handedness was controlled by that of the template. The obtained samples were characterized using field-emission electron microscopy, transmission electron microscopy, diffuse reflectance circular dichroism (DRCD), and X-ray diffraction. The DRCD spectra indicated that the titania nanotubes exhibit optical activity. Although the tubular structure was destroyed after being calcined at 700 °C for 2.0 h, DRCD signals were still identified. However, the DRCD signals disappeared after being calcined at 1000 °C for 2.0 h. The optical activity of titania was proposed to be due to chiral defects. Previous results showed that straight titania tubes could be used as asymmetric autocatalysts, indicating that titania exhibit chirality at the angstrom level. Herein, it was found that they also exhibit DRCD signals, indicating that there are no obvious relationships between morphology at the nano level and chirality at the angstrom level. The nanotube chirality should originate from the chiral defects on the nanotube inner surface. The Fourier transform infrared spectra indicated that the chirality of the titania was transferred from the gelators through the hydrogen bonding between N-H and Ti-OH. © 2015 Wiley Periodicals, Inc.

  1. Interplay of relativistic and nonrelativistic transport in atomically precise segmented graphene nanoribbons

    DOE PAGES

    Yannouleas, Constantine; Romanovsky, Igor; Landman, Uzi

    2015-01-20

    Graphene's isolation launched explorations of fundamental relativistic physics originating from the planar honeycomb lattice arrangement of the carbon atoms, and of potential technological applications in nanoscale electronics. Bottom-up fabricated atomically-precise segmented graphene nanoribbons, SGNRs, open avenues for studies of electrical transport, coherence, and interference effects in metallic, semiconducting, and mixed GNRs, with different edge terminations. Conceptual and practical understanding of electric transport through SGNRs is gained through nonequilibrium Green's function (NEGF) conductance calculations and a Dirac continuum model that absorbs the valence-to-conductance energy gaps as position-dependent masses, including topological-in-origin mass-barriers at the contacts between segments. The continuum model reproduces themore » NEGF results, including optical Dirac Fabry-Pérot (FP) equidistant oscillations for massless relativistic carriers in metallic armchair SGNRs, and an unequally-spaced FP pattern for mixed armchair-zigzag SGNRs where carriers transit from a relativistic (armchair) to a nonrelativistic (zigzag) regime. This provides a unifying framework for analysis of coherent transport phenomena and interpretation of forthcoming experiments in SGNRs.« less

  2. Bulk properties of solution-synthesized chevron-like graphene nanoribbons.

    PubMed

    Vo, Timothy H; Shekhirev, Mikhail; Lipatov, Alexey; Korlacki, Rafal A; Sinitskii, Alexander

    2014-01-01

    Graphene nanoribbons (GNRs) have received a great deal of attention due to their promise for electronic and optoelectronic applications. Several recent studies have focused on the synthesis of GNRs by the bottom-up approaches that could yield very narrow GNRs with atomically precise edges. One type of GNRs that has received a considerable attention is the chevron-like GNR with a very distinct periodic structure. Surface-assisted and solution-based synthetic approaches for the chevron-like GNRs have been developed, but their electronic properties have not been reported yet. In this work, we synthesized chevron-like GNRs in bulk by a solution-based method, characterized them by a number of spectroscopic techniques and measured their bulk conductivity. We demonstrate that solution-synthesized chevron-like GNRs are electrically conductive in bulk, which makes them a potentially promising material for applications in organic electronics and photovoltaics.

  3. Mechanics of rolling of nanoribbon on tube and sphere.

    PubMed

    Yin, Qifang; Shi, Xinghua

    2013-06-21

    The configuration of graphene nano-ribbon (GNR) assembly on carbon nanotube (CNT) and sphere is studied through theoretical modeling and molecular simulation. The GNR can spontaneously wind onto the CNT due to van der Waals (vdW) interaction and form two basic configurations: helix and scroll. The final configuration arises from the competition among three energy terms: the bending energy of the GNR, the vdW interaction between GNR and CNT, the vdW between the GNR itself. We derive analytical solutions by accounting for the three energy parts, with which we draw phase diagrams and predict the final configuration (helix or scroll) based on the selected parameters. The molecular simulations are conducted to verify the model with the results agree well with the model predicted. Our work can be used to actively control and transfer the tube-like nanoparticles and viruses as well as to assemble ribbon-like nanomaterials.

  4. Hydrothermal preparation of blue molybdenum bronze nanoribbons: structural changes in mother crystals, related to solid-state conversion and crystallite splitting to nanomorphology

    NASA Astrophysics Data System (ADS)

    Nishida, Takamasa; Eda, Kazuo

    2018-02-01

    Hydrothermal syntheses of alkali-metal blue molybdenum bronze nanoribbons, which are expected to exhibit unique properties induced by a combined effect of extrinsic and intrinsic low-dimensionalities, from hydrated-alkali-metal molybdenum bronzes were investigated. Nanoribbons grown along the quasi-one-dimensional (1D) conductive direction of Cs0.3MoO3, which is difficult to prepare by the conventional methods, were first synthesized. The nanomorphology formation is achieved by a solid-state conversion (or crystallite splitting) and subsequent crystallite growth, and the structural changes of the starting material related to the conversion were first observed by powder X-ray diffraction and scanning transmission electron microscopy as a result of finely tuned reaction system and preparation conditions. The structural changes were analyzed by model simulations and were attributed to the structural modulations that were concerned with the intralayer packing disorder and with two-dimensional long-range ordered structure, formed in MoO3 sheets of the hydrated molybdenum bronze. Moreover, the modulations were related to displacement defects of the Mo-O framework units generated along the [100] direction in the hydrated molybdenum bronze. Then, it was suggested that the solid-state conversion into blue molybdenum bronze and the crystallite splitting to nanomorphology were initiated by the breaking of the Mo-O-Mo bonds at the defects. [Figure not available: see fulltext.

  5. Stability and carrier transport properties of phosphorene-based polymorphic nanoribbons

    NASA Astrophysics Data System (ADS)

    Kaur, Sumandeep; Kumar, Ashok; Srivastava, Sunita; Pandey, Ravindra; Tankeshwar, K.

    2018-04-01

    Few-layer black phosphorene has recently attracted significant interest in the scientific community. In this paper, we consider several polymorphs of phosphorene nanoribbons (PNRs) and employ deformation potential theory within the effective mass approximation, together with density functional theory, to investigate their structural, mechanical and electronic properties. The results show that the stability of a PNR strongly depends on the direction along which it can be cut from its 2D counterpart. PNRs also exhibit a wide range of line stiffnesses ranging from 6 × 1010 eV m-1 to 18 × 1011 eV m-1, which has little dependence on the edge passivation. Likewise, the calculated electronic properties of PNRs show them to be either a narrow-gap semiconductor (E g < 1 eV) or a wide-gap semiconductor (E g > 1 eV). The carrier mobility of PNRs is found to be comparable to that of black phosphorene. Some of the PNRs show an n-type (p-type) semiconducting character owing to their higher electron (hole) mobility. Passivation of the edges leads to n-type ↔ p-type transition in many of the PNRs considered. The predicted novel characteristics of PNRs, with a wide range of mechanical and electronic properties, make them potentially suitable for use in nanoscale devices.

  6. Phonon transport in single-layer boron nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2016-11-01

    Inspired by the successful synthesis of three two-dimensional (2D) allotropes, the boron sheet has recently been one of the hottest 2D materials around. However, to date, phonon transport properties of these new materials are still unknown. By using the non-equilibrium Green’s function (NEGF) combined with the first principles method, we study ballistic phonon transport in three types of boron sheets; two of them correspond to the structures reported in the experiments, while the third one is a stable structure that has not been synthesized yet. At room temperature, the highest thermal conductance of the boron nanoribbons is comparable with that of graphene, while the lowest thermal conductance is less than half of graphene’s. Compared with graphene, the three boron sheets exhibit diverse anisotropic transport characteristics. With an analysis of phonon dispersion, bonding charge density, and simplified models of atomic chains, the mechanisms of the diverse phonon properties are discussed. Moreover, we find that many hybrid patterns based on the boron allotropes can be constructed naturally without doping, adsorption, and defects. This provides abundant nanostructures for thermal management and thermoelectric applications.

  7. Electronic and magnetic properties of bare armchair BC2N nanoribbons

    NASA Astrophysics Data System (ADS)

    Li, Hong; Xiao, Xiang; Tie, Jun; Lu, Jing

    2017-03-01

    We present the electronic and magnetic properties of bare armchair BC2N nanoribbons (ABC2NNRs) in the view of density functional calculations. We consider three types of edge terminations with a width of 0.75 2.10 nm. All the investigated ribbons exhibit magnetic ground states with the magnetic moments mainly located on the edge C atoms. Room temperature accessible magnetic stabilities are obtained for ABC2NNRs with NC-NC and NC-BC edge alignments. We find the ABC2NNRs have various electronic structures, where half-metal, metal, and semiconductor are all acquired depend on the edge alignment and magnetic coupling state. The results show the ABC2NNRs can be a promising candidate material in nanoelectronics and nanospintronics.

  8. FAST TRACK COMMUNICATION: Thermoelectric properties of graphene nanoribbons, junctions and superlattices

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Jayasekera, T.; Calzolari, A.; Kim, K. W.; Buongiorno Nardelli, M.

    2010-09-01

    Using model interaction Hamiltonians for both electrons and phonons and Green's function formalism for ballistic transport, we have studied the thermal conductance and the thermoelectric properties of graphene nanoribbons (GNR), GNR junctions and periodic superlattices. Among our findings we have established the role that interfaces play in determining the thermoelectric response of GNR systems both across single junctions and in periodic superlattices. In general, increasing the number of interfaces in a single GNR system increases the peak ZT values that are thus maximized in a periodic superlattice. Moreover, we proved that the thermoelectric behavior is largely controlled by the width of the narrower component of the junction. Finally, we have demonstrated that chevron-type GNRs recently synthesized should display superior thermoelectric properties.

  9. Structural analysis, electronic properties, and band gaps of a graphene nanoribbon: A new 2D materials

    NASA Astrophysics Data System (ADS)

    Dass, Devi

    2018-03-01

    Graphene nanoribbon (GNR), a new 2D carbon nanomaterial, has some unique features and special properties that offer a great potential for interconnect, nanoelectronic devices, optoelectronics, and nanophotonics. This paper reports the structural analysis, electronic properties, and band gaps of a GNR considering different chirality combinations obtained using the pz orbital tight binding model. In structural analysis, the analytical expressions for GNRs have been developed and verified using the simulation for the first time. It has been found that the total number of unit cells and carbon atoms within an overall unit cell and molecular structure of a GNR have been changed with the change in their chirality values which are similar to the values calculated using the developed analytical expressions thus validating both the simulation as well as analytical results. Further, the electronic band structures at different chirality values have been shown for the identification of metallic and semiconductor properties of a GNR. It has been concluded that all zigzag edge GNRs are metallic with very small band gaps range whereas all armchair GNRs show both the metallic and semiconductor nature with very small and high band gaps range. Again, the total number of subbands in each electronic band structure is equal to the total number of carbon atoms present in overall unit cell of the corresponding GNR. The semiconductors GNRs can be used as a channel material in field effect transistor suitable for advanced CMOS technology whereas the metallic GNRs could be used for interconnect.

  10. Morphological Transformation between Nanocoils and Nanoribbons via Defragmentation Structural Rearrangement or Fragmentation-recombination Mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Yibin; Zheng, Yingxuan; Xiong, Wei; Peng, Cheng; Zhang, Yifan; Duan, Ran; Che, Yanke; Zhao, Jincai

    2016-06-01

    Kinetic control over the assembly pathways towards novel metastable functional materials or far-from-equilibrium systems has been much less studied compared to the thermodynamic equilibrium self-assembly. Herein, we report the distinct morphological transformation between nanocoils and nanoribbons in the self-assembly of unsymmetric perylene diimide (PDI) molecules. We demonstrate that the morphological transformation of the kinetically trapped assemblies into the thermodynamically stable forms proceeds via two distinct mechanisms, i.e., a direct structural rearrangement (molecule 1 or 2) and a fragmentation-recombination mechanism (molecule 4), respectively. The subtle interplay of the steric hindrance of the bulky substituents and the flexibility of the linker structure between the bulky moiety and the perylene core was demonstrated to enable the effective modulation of the energetic landscape of the assemblies and thus modulation of the assembly pathways. Herein, our work presents a new approach to control the self-assembly pathways and thereby can be used to achieve novel far-from-equilibrium systems.

  11. Insulator-semimetallic transition in quasi-1D charged impurity-infected armchair boron-nitride nanoribbons

    NASA Astrophysics Data System (ADS)

    Dinh Hoi, Bui; Yarmohammadi, Mohsen

    2018-04-01

    We address control of electronic phase transition in charged impurity-infected armchair-edged boron-nitride nanoribbons (ABNNRs) with the local variation of Fermi energy. In particular, the density of states of disordered ribbons produces the main features in the context of pretty simple tight-binding model and Green's functions approach. To this end, the Born approximation has been implemented to find the effect of π-band electron-impurity interactions. A modulation of the π-band depending on the impurity concentrations and scattering potentials leads to the phase transition from insulator to semimetallic. We present here a detailed physical meaning of this transition by studying the treatment of massive Dirac fermions. From our findings, it is found that the ribbon width plays a crucial role in determining the electronic phase of disordered ABNNRs. The obtained results in controllable gap engineering are useful for future experiments. Also, the observations in this study have also fueled interest in the electronic properties of other 2D materials.

  12. Negative differential resistance in oxidized zigzag graphene nanoribbons.

    PubMed

    Wang, Min; Li, Chang Ming

    2011-01-28

    A theoretical study of zigzag graphene nanoribbons (ZGNRs) with an epoxy-pair chain (ZGO) is performed. The electronic transport properties are mainly evaluated by non-equilibrium Green's functions using the TRANSIESTA package. The results indicate that the graphene oxide can have a negative differential resistance (NDR) phenomenon, supported by bias-dependent transmission curves of different spin orientations. Applying non-zero bias voltages makes the density of states (DOS) of the right electrodes shift down. Due to an energy gap between the LUMO and LUMO+1 in ZGOs, with a certain bias, the conduction band of the right electrode cannot match the LUMO of the scattering region, then NDR occurs. With a larger bias, NDR ends when the second conduction band of the right electrode's DOS covers the LUMO of the scattering region. Since most of proposed ZGO systems possess such a gap between the LUMO and LUMO+1, NDR can be widely observed and this discovery may provide great potential applications in NDR-based nanoelectronics by using modified graphene materials.

  13. Methyl parathion detection in vegetables and fruits using silver@graphene nanoribbons nanocomposite modified screen printed electrode

    NASA Astrophysics Data System (ADS)

    Govindasamy, Mani; Mani, Veerappan; Chen, Shen-Ming; Chen, Tse-Wei; Sundramoorthy, Ashok Kumar

    2017-04-01

    We have developed a sensitive electrochemical sensor for Organophosphorus pesticide methyl parathion (MP) using silver particles supported graphene nanoribbons (Ag@GNRs). The Ag@GNRs nanocomposite was prepared through facile wet chemical strategy and characterized by TEM, EDX, XRD, Raman, UV-visible, electrochemical and impedance spectroscopies. The Ag@GNRs film modified screen printed carbon electrode (SPCE) delivers excellent electrocatalytic ability to the reduction of MP. The Ag@GNRs/SPCE detects sub-nanomolar concentrations of MP with excellent selectivity. The synergic effects between special electrocatalytic ability of Ag and excellent physicochemical properties of GNRs (large surface area, high conductivity, high area-normalized edge-plane structures and abundant catalytic sites) make the composite highly suitable for MP sensing. Most importantly, the method is successfully demonstrated in vegetables and fruits which revealed its potential real-time applicability in food analysis.

  14. Manipulation of local optical properties and structures in molybdenum-disulfide monolayers using electric field-assisted near-field techniques.

    PubMed

    Nozaki, Junji; Fukumura, Musashi; Aoki, Takaaki; Maniwa, Yutaka; Yomogida, Yohei; Yanagi, Kazuhiro

    2017-04-05

    Remarkable optical properties, such as quantum light emission and large optical nonlinearity, have been observed in peculiar local sites of transition metal dichalcogenide monolayers, and the ability to tune such properties is of great importance for their optoelectronic applications. For that purpose, it is crucial to elucidate and tune their local optical properties simultaneously. Here, we develop an electric field-assisted near-field technique. Using this technique we can clarify and tune the local optical properties simultaneously with a spatial resolution of approximately 100 nm due to the electric field from the cantilever. The photoluminescence at local sites in molybdenum-disulfide (MoS 2 ) monolayers is reversibly modulated, and the inhomogeneity of the charge neutral points and quantum yields is suggested. We successfully etch MoS 2 crystals and fabricate nanoribbons using near-field techniques in combination with an electric field. This study creates a way to tune the local optical properties and to freely design the structural shapes of atomic monolayers using near-field optics.

  15. Optical properties of graphene nanoribbons encapsulated in single-walled carbon nanotubes.

    PubMed

    Chernov, Alexander I; Fedotov, Pavel V; Talyzin, Alexandr V; Suarez Lopez, Inma; Anoshkin, Ilya V; Nasibulin, Albert G; Kauppinen, Esko I; Obraztsova, Elena D

    2013-07-23

    We report the photoluminescence (PL) from graphene nanoribbons (GNRs) encapsulated in single-walled carbon nanotubes (SWCNTs). New PL spectral features originating from GNRs have been detected in the visible spectral range. PL peaks from GNRs have resonant character, and their positions depend on the ribbon geometrical structure in accordance with the theoretical predictions. GNRs were synthesized using confined polymerization and fusion of coronene molecules. GNR@SWCNTs material demonstrates a bright photoluminescence both in infrared (IR) and visible regions. The photoluminescence excitation mapping in the near-IR spectral range has revealed the geometry-dependent shifts of the SWCNT peaks (up to 11 meV in excitation and emission) after the process of polymerization of coronene molecules inside the nanotubes. This behavior has been attributed to the strain of SWCNTs induced by insertion of the coronene molecules.

  16. Counter-ion Dependent, Longitudinal Unzipping of Multi-Walled Carbon Nanotubes to Highly Conductive and Transparent Graphene Nanoribbons

    PubMed Central

    Shinde, Dhanraj B.; Majumder, Mainak; Pillai, Vijayamohanan K.

    2014-01-01

    Here we report for the first time, a simple hydrothermal approach for the bulk production of highly conductive and transparent graphene nanoribbons (GNRs) using several counter ions from K2SO4, KNO3, KOH and H2SO4 in aqueous media, where, selective intercalation followed by exfoliation gives highly conducting GNRs with over 80% yield. In these experiments, sulfate and nitrate ions act as a co-intercalant along with potassium ions resulting into exfoliation of multi-walled carbon nanotubes (MWCNTs) in an effective manner. The striking similarity of experimental results in KOH and H2SO4 that demonstrates partially damaged MWCNTs, implies that no individual K+, SO42− ion plays a key role in unwrapping of MWCNTs, rather this process is largely effective in the presence of both cations and anions working in a cooperative manner. The GNRs can be used for preparing conductive 16 kΩsq−1, transparent (82%) and flexible thin films using low cost fabrication method. PMID:24621526

  17. The spin-dependent electronic transport properties of M(dcdmp)2 (M = Cu, Au, Co, Ni) molecular devices based on zigzag graphene nanoribbon electrodes

    NASA Astrophysics Data System (ADS)

    Li, Dongde; Wu, Di; Zhang, Xiaojiao; Zeng, Bowen; Li, Mingjun; Duan, Haiming; Yang, Bingchu; Long, Mengqiu

    2018-05-01

    The spin-dependent electronic transport properties of M(dcdmp)2 (M = Cu, Au, Co, Ni; dcdmp = 2,3-dicyano-5,6-dimercaptopyrazyne) molecular devices based on zigzag graphene nanoribbon (ZGNR) electrodes were investigated by density functional theory combined nonequilibrium Green's function method (DFT-NEGF). Our results show that the spin-dependent transport properties of the M(dcdmp)2 molecular devices can be controlled by the spin configurations of the ZGNR electrodes, and the central 3d-transition metal atom can introduce a larger magnetism than that of the nonferrous metal one. Moreover, the perfect spin filtering effect, negative differential resistance, rectifying effect and magnetic resistance phenomena can be observed in our proposed M(dcdmp)2 molecular devices.

  18. Edge reconstruction in armchair phosphorene nanoribbons revealed by discontinuous Galerkin density functional theory.

    PubMed

    Hu, Wei; Lin, Lin; Yang, Chao

    2015-12-21

    With the help of our recently developed massively parallel DGDFT (Discontinuous Galerkin Density Functional Theory) methodology, we perform large-scale Kohn-Sham density functional theory calculations on phosphorene nanoribbons with armchair edges (ACPNRs) containing a few thousands to ten thousand atoms. The use of DGDFT allows us to systematically achieve a conventional plane wave basis set type of accuracy, but with a much smaller number (about 15) of adaptive local basis (ALB) functions per atom for this system. The relatively small number of degrees of freedom required to represent the Kohn-Sham Hamiltonian, together with the use of the pole expansion the selected inversion (PEXSI) technique that circumvents the need to diagonalize the Hamiltonian, results in a highly efficient and scalable computational scheme for analyzing the electronic structures of ACPNRs as well as their dynamics. The total wall clock time for calculating the electronic structures of large-scale ACPNRs containing 1080-10,800 atoms is only 10-25 s per self-consistent field (SCF) iteration, with accuracy fully comparable to that obtained from conventional planewave DFT calculations. For the ACPNR system, we observe that the DGDFT methodology can scale to 5000-50,000 processors. We use DGDFT based ab initio molecular dynamics (AIMD) calculations to study the thermodynamic stability of ACPNRs. Our calculations reveal that a 2 × 1 edge reconstruction appears in ACPNRs at room temperature.

  19. Controllable conversion of quasi-freestanding polymer chains to graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Ma, Chuanxu; Xiao, Zhongcan; Zhang, Honghai; Liang, Liangbo; Huang, Jingsong; Lu, Wenchang; Sumpter, Bobby G.; Hong, Kunlun; Bernholc, J.; Li, An-Ping

    2017-03-01

    In the bottom-up synthesis of graphene nanoribbons (GNRs) from self-assembled linear polymer intermediates, surface-assisted cyclodehydrogenations usually take place on catalytic metal surfaces. Here we demonstrate the formation of GNRs from quasi-freestanding polymers assisted by hole injections from a scanning tunnelling microscope (STM) tip. While catalytic cyclodehydrogenations typically occur in a domino-like conversion process during the thermal annealing, the hole-injection-assisted reactions happen at selective molecular sites controlled by the STM tip. The charge injections lower the cyclodehydrogenation barrier in the catalyst-free formation of graphitic lattices, and the orbital symmetry conservation rules favour hole rather than electron injections for the GNR formation. The created polymer-GNR intraribbon heterostructures have a type-I energy level alignment and strongly localized interfacial states. This finding points to a new route towards controllable synthesis of freestanding graphitic layers, facilitating the design of on-surface reactions for GNR-based structures.

  20. Edge modulation of electronics and transport properties of cliff-edge phosphorene nanoribbons

    NASA Astrophysics Data System (ADS)

    Guo, Caixia; Wang, Tianxing; Xia, Congxin; Liu, Yufang

    2017-12-01

    Based on the first-principles calculations, we study the electronic structures and transport properties of cliff-like edge phosphorene nanoribbons (CPNRs), considering different types of edge passivation. The band structures of bare CPNRs possess the metallic features; while hydrogen (H), fluorine (F), chlorine (Cl) and oxygen (O) atoms-passivated CPNRs are semiconductor materials, and the band gap values monotonically decrease when the ribbon width increases. Moreover, the H and F-passivated CPNRs exhibit the direct band gap characteristics, while the Cl and O-passivated cases show the features of indirect band gap. In addition, the edge passivated CPNRs are more energetically stable than bare edge case. Meanwhile, our results also show that the transport properties of the CPNRs can be obviously influenced by the different edge passivation.

  1. Semiconductor to metal transition by tuning the location of N{sub 2}{sup AA} in armchair graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tong; Wang, Ling-Ling, E-mail: llwang@hnu.edu.cn; Li, Quan

    2014-02-07

    The electronic band structures and transport properties of N{sub 2}{sup AA}-doped armchair graphene nanoribbons (aGNRs) with two quasi-adjacent substitutional nitrogen atoms incorporated in pairs of neighboring carbon atoms in the same sublattice A are investigated by using non-equilibrium Green function formalism in combination with density functional theory. The results show that the coupling effect between the Pz orbitals of carbon and nitrogen atoms plays an important role in the transition between semiconductor and metal by different locations of N{sub 2}{sup AA}-doped aGNRs. And the striking negative differential resistance behaviors can be found in such devices. These tremendous properties suggest potentialmore » application of N{sub 2}{sup AA}-doped aGNRs in graphene-based nanoelectronic devices.« less

  2. Electronic transport across a junction between armchair graphene nanotube and zigzag nanoribbon. Transmission in an armchair nanotube without a zigzag half-line of dimers

    NASA Astrophysics Data System (ADS)

    Sharma, Basant Lal

    2018-05-01

    Based on the well known nearest-neighbor tight-binding approximation for graphene, an exact expression for the electronic conductance across a zigzag nanoribbon/armchair nanotube junction is presented for non-interacting electrons. The junction results from the removal of a half-row of zigzag dimers in armchair nanotube, or equivalently by partial rolling of zigzag nanoribbon and insertion of a half-row of zigzag dimers in between. From the former point of view, a discrete form of Dirichlet condition is imposed on a zigzag half-line of dimers assuming the vanishing of wave function outside the physical structure. A closed form expression is provided for the reflection and transmission moduli for the outgoing wave modes for each given electronic wave mode incident from either side of the junction. It is demonstrated that such a contact junction between the nanotube and nanoribbon exhibits negligible backscattering, and the transmission has been found to be nearly ballistic. In contrast to the previously reported studies for partially unzipped carbon nanotubes (CNTs), using the same tight binding model, it is found that due to the "defect" there is certain amount of mixing between the electronic wave modes with even and odd reflection symmetries. But the junction remains a perfect valley filter for CNTs at certain energy ranges. Applications aside from the electronic case, include wave propagation in quasi-one-dimensional honeycomb structures of graphene-like constitution. The paper includes several numerical calculations, analytical derivations, and graphical results, which complement the provision of succinct closed form expressions.

  3. Band alignment in atomically precise graphene nanoribbon junctions

    NASA Astrophysics Data System (ADS)

    Ma, Chuanxu; Liang, Liangbo; Hong, Kunlun; Li, An-Ping; Xiao, Zhongcan; Lu, Wenchang; Bernholc, Jerry

    Building atomically precise graphene nanoribbon (GNR) heterojunctions down to molecular level opens a new realm to functional graphene-based devices. By employing a surface-assisted self-assembly process, we have synthesized heterojunctions of armchair GNRs (aGNR) with widths of seven, fourteen and twenty-one carbon atoms, denoted 7, 14 and 21-aGNR respectively. A combined study with scanning tunneling microscopy (STM) and density functional theory (DFT) allows the visualization of electronic band structures and energy level alignments at the heterojunctions with varying widths. A wide bandgap ( 2.6 eV) has been identified on semiconducting 7-aGNR, while the 14-aGNR appears nearly metallic and the 21-aGNR possesses a narrow bandgap. The spatially modulations of the energy bands are strongly confined at the heterojunctions within a width of about 2 nm. Clear band bending of about 0.4 eV and 0.1 eV are observed at the 7-14 and 14-21 aGNR heterojunctions, respectively. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  4. Synthesis of graphene nanoribbons from amyloid templates by gallium vapor-assisted solid-phase graphitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Katsuhisa, E-mail: k.murakami@bk.tsukuba.ac.jp; Dong, Tianchen; Kajiwara, Yuya

    2014-06-16

    Single- and double-layer graphene nanoribbons (GNRs) with widths of around 10 nm were synthesized directly onto an insulating substrate by solid-phase graphitization using a gallium vapor catalyst and carbon templates made of amyloid fibrils. Subsequent investigation revealed that the crystallinity, conductivity, and carrier mobility were all improved by increasing the temperature of synthesis. The carrier mobility of the GNR synthesized at 1050 °C was 0.83 cm{sup 2}/V s, which is lower than that of mechanically exfoliated graphene. This is considered to be most likely due to electron scattering by the defects and edges of the GNRs.

  5. An electronic beam splitter realized with crossed graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Frederiksen, Thomas; Brandimarte, Pedro; Engelund, Mads; Papior, Nick; Garcia-Lekue, Aran; Sanchez-Portal, Daniel

    Graphene nanoribbons (GNRs) are promising components in future nanoelectronics. We have explored a prototype 4-terminal semiconducting device formed by two crossed armchair GNRs (AGNRs) using state-of-the-art first-principles transport methods. We analyze in detail the roles of intersection angle, stacking order, inter-GNR separation, and finite voltages on the transport characteristics. Interestingly, when the AGNRs intersect at θ =60° , electrons injected from one terminal can be split into two outgoing waves with a tunable ratio around 50 % and with almost negligible back-reflection. The splitted electron wave is found to propagate partly straight across the intersection region in one ribbon and partly in one direction of the other ribbon, i.e., in analogy of an optical beam splitter. Our simulations further identify realistic conditions for which this semiconducting device can act as a mechanically controllable electronic beam splitter with possible applications in carbon-based quantum electronic circuits and electron optics. FP7-FET-ICT PAMS (610446), MAT2013-46593-C6-2-P, IT-756-13.

  6. High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores

    PubMed Central

    Sharafat Hossain, Md; Al-Dirini, Feras; Hossain, Faruque M.; Skafidas, Efstratios

    2015-01-01

    Thermoelectric properties of Graphene nano-ribbons (GNRs) with nanopores (NPs) are explored for a range of pore dimensions in order to achieve a high performance two-dimensional nano-scale thermoelectric device. We reduce thermal conductivity of GNRs by introducing pores in them in order to enhance their thermoelectric performance. The electrical properties (Seebeck coefficient and conductivity) of the device usually degrade with pore inclusion; however, we tune the pore to its optimal dimension in order to minimize this degradation, enhancing the overall thermoelectric performance (high ZT value) of our device. We observe that the side channel width plays an important role to achieve optimal performance while the effect of pore length is less pronounced. This result is consistent with the fact that electronic conduction in GNRs is dominated along its edges. Ballistic transport regime is assumed and a semi-empirical method using Huckel basis set is used to obtain the electrical properties, while the phononic system is characterized by Tersoff empirical potential model. The proposed device structure has potential applications as a nanoscale local cooler and as a thermoelectric power generator. PMID:26083450

  7. High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores.

    PubMed

    Hossain, Md Sharafat; Al-Dirini, Feras; Hossain, Faruque M; Skafidas, Efstratios

    2015-06-17

    Thermoelectric properties of Graphene nano-ribbons (GNRs) with nanopores (NPs) are explored for a range of pore dimensions in order to achieve a high performance two-dimensional nano-scale thermoelectric device. We reduce thermal conductivity of GNRs by introducing pores in them in order to enhance their thermoelectric performance. The electrical properties (Seebeck coefficient and conductivity) of the device usually degrade with pore inclusion; however, we tune the pore to its optimal dimension in order to minimize this degradation, enhancing the overall thermoelectric performance (high ZT value) of our device. We observe that the side channel width plays an important role to achieve optimal performance while the effect of pore length is less pronounced. This result is consistent with the fact that electronic conduction in GNRs is dominated along its edges. Ballistic transport regime is assumed and a semi-empirical method using Huckel basis set is used to obtain the electrical properties, while the phononic system is characterized by Tersoff empirical potential model. The proposed device structure has potential applications as a nanoscale local cooler and as a thermoelectric power generator.

  8. Carbon-doping-induced negative differential resistance in armchair phosphorene nanoribbons

    NASA Astrophysics Data System (ADS)

    Guo, Caixia; Xia, Congxin; Wang, Tianxing; Liu, Yufang

    2017-03-01

    By using a combined method of density functional theory and non-equilibrium Green’s function formalism, we investigate the electronic transport properties of carbon-doped armchair phosphorene nanoribbons (APNRs). The results show that C atom doping can strongly affect the electronic transport properties of the APNR and change it from semiconductor to metal. Meanwhile, obvious negative differential resistance (NDR) behaviors are obtained by tuning the doping position and concentration. In particular, with reducing doping concentration, NDR peak position can enter into mV bias range. These results provide a theoretical support to design the related nanodevice by tuning the doping position and concentration in the APNRs. Project supported by the National Natural Science Foundation of China (No. 11274096), the University Science and Technology Innovation Team Support Project of Henan Province (No. 13IRTSTHN016), the University key Science Research Project of Henan Province (No.16A140043). The calculation about this work was supported by the High Performance Computing Center of Henan Normal University.

  9. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors.

    PubMed

    Hwang, Suk-Won; Lee, Chi Hwan; Cheng, Huanyu; Jeong, Jae-Woong; Kang, Seung-Kyun; Kim, Jae-Hwan; Shin, Jiho; Yang, Jian; Liu, Zhuangjian; Ameer, Guillermo A; Huang, Yonggang; Rogers, John A

    2015-05-13

    Transient electronics represents an emerging class of technology that exploits materials and/or device constructs that are capable of physically disappearing or disintegrating in a controlled manner at programmed rates or times. Inorganic semiconductor nanomaterials such as silicon nanomembranes/nanoribbons provide attractive choices for active elements in transistors, diodes and other essential components of overall systems that dissolve completely by hydrolysis in biofluids or groundwater. We describe here materials, mechanics, and design layouts to achieve this type of technology in stretchable configurations with biodegradable elastomers for substrate/encapsulation layers. Experimental and theoretical results illuminate the mechanical properties under large strain deformation. Circuit characterization of complementary metal-oxide-semiconductor inverters and individual transistors under various levels of applied loads validates the design strategies. Examples of biosensors demonstrate possibilities for stretchable, transient devices in biomedical applications.

  10. Conductance fluctuation of edge-disordered graphene nanoribbons: Crossover from diffusive transport to Anderson localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takashima, Kengo; Yamamoto, Takahiro, E-mail: takahiro@rs.tus.ac.jp; Department of Liberal Arts

    Conductance fluctuation of edge-disordered graphene nanoribbons (ED-GNRs) is examined using the non-equilibrium Green's function technique combined with the extended Hückel approximation. The mean free path λ and the localization length ξ of the ED-GNRs are determined to classify the quantum transport regimes. In the diffusive regime where the length L{sub c} of the ED-GNRs is much longer than λ and much shorter than ξ, the conductance histogram is given by a Gaussian distribution function with universal conductance fluctuation. In the localization regime where L{sub c}≫ξ, the histogram is no longer the universal Gaussian distribution but a lognormal distribution that characterizesmore » Anderson localization.« less

  11. Composites of Graphene Nanoribbon Stacks and Epoxy for Joule Heating and Deicing of Surfaces.

    PubMed

    Raji, Abdul-Rahman O; Varadhachary, Tanvi; Nan, Kewang; Wang, Tuo; Lin, Jian; Ji, Yongsung; Genorio, Bostjan; Zhu, Yu; Kittrell, Carter; Tour, James M

    2016-02-10

    A conductive composite of graphene nanoribbon (GNR) stacks and epoxy is fabricated. The epoxy is filled with the GNR stacks, which serve as a conductive additive. The GNR stacks are on average 30 nm thick, 250 nm wide, and 30 μm long. The GNR-filled epoxy composite exhibits a conductivity >100 S/m at 5 wt % GNR content. This permits application of the GNR-epoxy composite for deicing of surfaces through Joule (voltage-induced) heating generated by the voltage across the composite. A power density of 0.5 W/cm(2) was delivered to remove ∼1 cm-thick (14 g) monolith of ice from a static helicopter rotor blade surface in a -20 °C environment.

  12. Coherent control of the route of magnetic phases in quasi-1D armchair graphene nanoribbons via doping in the presence of electronic correlations

    NASA Astrophysics Data System (ADS)

    Dinh Hoi, Bui; Yarmohammadi, Mohsen; Davoudiniya, Masoumeh

    2018-03-01

    In this work, we show that the magnetic phase transition in both semiconducting and metallic armchair graphene nanoribbons would be observed in the presence of electronic dopant. However, the mutual interactions between electrons are also considered based on theoretically tight-binding and Hubbard model calculations considering nearest neighbors within the framework of Green's function technique. This work showed that charge concentration of dopant in such system depending on the weak and strong mutual repulsions plays a crucial role in determining the magnetic phase. It follows from the obtained results that the ground state turns paramagnetic in a range of carrier concentrations by neglecting the electronic correlations. The inclusion of a Coulombic repulsion between electrons stops the phase transition and system remains in its ground state antiferromagnetic phase. Furthermore, we concluded that magnetic phases are insensitive to the electron-electron interaction at all weak and strong concentrations of dopant. In addition, this paper provides a controllable gap engineering by doping and inclusion of electron-electron repulsions for further studies on such system as a new potential nanomaterial for magnetic graphene nanoribbon-based applications.

  13. One-step oxidation preparation of unfolded and good soluble graphene nanoribbons by longitudinal unzipping of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolin; Hu, Yizhen; Huang, Jindan; Zhou, Ning; Liu, Yuhan; Wei, Lin; Chen, Xin; Zhuang, Naifeng

    2018-04-01

    A simple one-step method to prepare graphene nanoribbon (GNR) is reported in this paper. Compared with water steam etching, the oxidation and co-etching of dilute sulfuric acid can result in the more complete longitudinal unzipping of carbon nanotube, although there is no other strong oxidant. As-prepared GNRs are more flat and have more oxygenated functional groups along the edge. Moreover, they can steadily disperse in a water system. These make them suitable as a carrier for supporting palladium (Pd) nanoparticles. The Pd/GNR composite exhibits a superior electrocatalytic activity for ethanol oxidation.

  14. Uniform and perfectly linear current-voltage characteristics of nitrogen-doped armchair graphene nanoribbons for nanowires.

    PubMed

    Liu, Lingling; Li, Xiao-Fei; Yan, Qing; Li, Qin-Kun; Zhang, Xiang-Hua; Deng, Mingsen; Qiu, Qi; Luo, Yi

    2016-12-21

    Metallic nanowires with desired properties for molecular integrated circuits (MICs) are especially significant in molectronics, but preparing such wires at a molecular level still remains challenging. Here, we propose, from first principles calculations, experimentally realizable edge-nitrogen-doped graphene nanoribbons (N-GNRs) as promising candidates for nanowires. Our results show that edge N-doping has distinct effects on the electronic structures and transport properties of the armchair GNRs and zigzag GNRs (AGNRs, ZGNRs), due to the formation of pyridazine and pyrazole rings at the edges. The pyridazine rings raise the Fermi level and introduce delocalized energy bands near the Fermi level, resulting in a highly enhanced conductance in N-AGNRs at the stable nonmagnetic ground state. Especially for the family of AGNRs with widths of n = 3p + 2, their semiconducting characteristics are transformed to metallic characteristics via N-doping, and they exhibit perfectly linear current-voltage (I-V) behaviors. Such uniform and excellent features indicate bright application prospects of the N-AGNRs as nanowires and electrodes in molectronics.

  15. A facile and sensitive peptide-modulating graphene oxide nanoribbon catalytic nanoplasmon analytical platform for human chorionic gonadotropin.

    PubMed

    Liang, Aihui; Li, Chongning; Li, Dan; Luo, Yanghe; Wen, Guiqing; Jiang, Zhiliang

    2017-01-01

    The nanogold reaction between HAuCl 4 and citrate is very slow, and the catalyst graphene oxide nanoribbon (GONR) enhanced the nanoreaction greatly to produce gold nanoparticles (AuNPs) that exhibited strong surface plasmon resonance (SPR) absorption (Abs) at 550 nm and resonance Rayleigh scattering (RRS) at 550 nm. Upon addition of the peptide of human chorionic gonadotropin (hCG), the peptide could adsorb on the GONR surface, which inhibited the catalysis. When hCG was added, peptides were separated from the GONR surface due to the formation of stable peptide-hCG complex, which led to the activation of GONR catalytic effect. With the increase in hCG concentration, the RRS and Abs signal enhanced linearly. The enhanced RRS value showed a good linear relationship with hCG concentration in the range of 0.2-20 ng/mL, with a detection limit of 70 pg/mL. Accordingly, two new GONR catalytic RRS/Abs methods were established for detecting hCG in serum samples.

  16. Sulfur-doped Graphene Nanoribbons with a Sequence of Distinct Band Gaps

    NASA Astrophysics Data System (ADS)

    Du, Shi-Xuan; Zhang, Yan-Fang; Zhang, Yi; Berger, Reinhard; Feng, Xinliang; Mullen, Klaus; Lin, Xiao; Zhang, Yu-Yang; Pantelides, Sokrates T.; Gao, Hong-Jun

    Unlike free-standing graphene, graphene nanoribbons (GNRs) can possess semiconducting band gap. However, achieving such control has been a major challenge in the fabrication of GNRs. Chevron-type GNRs were recently achieved by surface-assisted polymerization of pristine or N-substituted oligophenylene monomers. By mixing two different monomers, GNR heterojunctions can in principle be fabricated. Here we report fabrication and characterization of chevron-type GNRs by using sulfur-substituted oligophenylene monomers to achieve GNRs and related heterostructures for the first time. Importantly, our first-principles calculations show that the band gaps of GNRs can be tailored by different S configurations in cyclodehydrogenated isomers through debromination and intramolecular cyclodehydrogenation. This feature should open up new avenues to create multiple GNR heterojunctions by engineering the sulfur configurations. These predictions have been confirmed by Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS). The unusual sequence of intraribbon heterojunctions may be useful for nanoscale optoelectronic applications based on quantum dots

  17. Developing ultrasensitive pressure sensor based on graphene nanoribbon: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Kwon, Oh Kuen; Lee, Jun Ha; Kim, Ki-Sub; Kang, Jeong Won

    2013-01-01

    We propose schematics for an ultra-sensitive pressure sensor based on graphene-nanoribbon (GNR) and investigate its electromechanical properties using classical molecular dynamics simulations and piezo-electricity theory. Since the top plate applied to the actual pressure is large whereas the contact area on the GNR is very small, both the sensitivity and the sensing range can be adjusted by controlling the aspect ratio between the top plate and the contact point areas. Our calculation shows that the electrical conductivity of GNRs can be tuned by the applied pressure and the electric conductance of the deflected GNR linearly increases with increasing applied pressure for the linear elastic region in low pressure below the cut-off point. In the curves for both the deflection and potential energy, the linear elastic regime in low pressure was explicitly separated with the non-linear elastic regime in high pressure. The proposed GNR-based nanoelectromechanical devices have great potential for application as electromechanical memory, relay or switching devices.

  18. Half-metallicity and spin-contamination of the electronic ground state of graphene nanoribbons and related systems: An impossible compromise?

    NASA Astrophysics Data System (ADS)

    Huzak, M.; Deleuze, M. S.; Hajgató, B.

    2011-09-01

    An analysis using the formalism of crystalline orbitals for extended systems with periodicity in one dimension demonstrates that any antiferromagnetic and half-metallic spin-polarization of the edge states in n-acenes, and more generally in zigzag graphene nanoislands and nanoribbons of finite width, would imply a spin contamination ⟨S2⟩ that increases proportionally to system size, in sharp and clear contradiction with the implications of Lieb's theorem for compensated bipartite lattices and the expected value for a singlet (S = 0) electronic ground state. Verifications on naphthalene, larger n-acenes (n = 3-10) and rectangular nanographene islands of increasing size, as well as a comparison using unrestricted Hartree-Fock theory along with basis sets of improving quality against various many-body treatments demonstrate altogether that antiferromagnetism and half-metallicity in extended graphene nanoribbons will be quenched by an exact treatment of electron correlation, at the confines of non-relativistic many-body quantum mechanics. Indeed, for singlet states, symmetry-breakings in spin-densities are necessarily the outcome of a too approximate treatment of static and dynamic electron correlation in single-determinantal approaches, such as unrestricted Hartree-Fock or Density Functional Theory. In this context, such as the size-extensive spin-contamination to which it relates, half-metallicity is thus nothing else than a methodological artefact.

  19. Half-metallicity and spin-contamination of the electronic ground state of graphene nanoribbons and related systems: an impossible compromise?

    PubMed

    Huzak, M; Deleuze, M S; Hajgató, B

    2011-09-14

    An analysis using the formalism of crystalline orbitals for extended systems with periodicity in one dimension demonstrates that any antiferromagnetic and half-metallic spin-polarization of the edge states in n-acenes, and more generally in zigzag graphene nanoislands and nanoribbons of finite width, would imply a spin contamination S(2) that increases proportionally to system size, in sharp and clear contradiction with the implications of Lieb's theorem for compensated bipartite lattices and the expected value for a singlet (S = 0) electronic ground state. Verifications on naphthalene, larger n-acenes (n = 3-10) and rectangular nanographene islands of increasing size, as well as a comparison using unrestricted Hartree-Fock theory along with basis sets of improving quality against various many-body treatments demonstrate altogether that antiferromagnetism and half-metallicity in extended graphene nanoribbons will be quenched by an exact treatment of electron correlation, at the confines of non-relativistic many-body quantum mechanics. Indeed, for singlet states, symmetry-breakings in spin-densities are necessarily the outcome of a too approximate treatment of static and dynamic electron correlation in single-determinantal approaches, such as unrestricted Hartree-Fock or Density Functional Theory. In this context, such as the size-extensive spin-contamination to which it relates, half-metallicity is thus nothing else than a methodological artefact. © 2011 American Institute of Physics

  20. Anisotropy of magnetic interactions and spin filter behavior in hexagonal (Ga,Mn)As nanoribbons

    NASA Astrophysics Data System (ADS)

    Nie, Ya; Lan, Mu; Zhang, Xi; Xiang, Gang

    2017-09-01

    The electronic and magnetic properties of Mn doped hexagonal GaAs nanoribbons ((Ga,Mn)As NRs) have been investigated using spin-polarized density functional theory (DFT), and the spin-resolved transport behaviors of (Ga,Mn)As NRs have also been studied with non-equilibrium Green function theory. The calculations show that every Mn dopant brings 4 Bohr magneton (μB) magnetic moment and the ground states of (Ga,Mn)As NRs are ferromagnetic (FM). The investigation of magnetic anisotropies shows that magnetic interactions are dependent on both the distribution directions of Mn atoms and the edge effect of the NRs. The studies of electronic structures and transport properties show that incorporation of Mn atom turns GaAs NR from semiconducting to half-metallic, which significantly enhances the spin-up conductivity and strongly weakens the spin-down conductivity, resulting in non-monatomic variations of spin-dependent conductivities. The nearly 100% spin polarization shown in (Ga,Mn)As NR may be used for low dimensional spin filters, even with as large a bias as 0.9 V. Also, (Ga,Mn)As NR can be used to generate a relatively stable spin-polarized current in a wide bias interval.

  1. Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Sayan Mullick; Surhland, Cassandra; Sanchez, Zina

    We report use of PEG-DSPE coated oxidized graphene nanoribbons (O-GNR-PEG-DSPE) as agent for delivery of anti-tumor drug Lucanthone (Luc) into Glioblastoma Multiformae (GBM) cells targeting base excision repair enzyme APE-1 (Apurinic endonuclease-1). Lucanthone, an endonuclease inhibitor of APE-1, was loaded onto O-GNR-PEG-DSPEs using a simple non-covalent method. We found its uptake by GBM cell line U251 exceeding 67% and 60% in APE-1-overexpressing U251, post 24 hours (h). However, their uptake was ~38% and 29% by MCF-7 and rat glial progenitor cells (CG-4), respectively. TEM analysis of U251 showed large aggregates of O-GNR-PEG-DSPE in vesicles. Luc-O-GNR-PEG-DSPE was significantly toxic to U251more » but showed little / no toxicity when exposed to MCF-7/CG-4 cells. This differential uptake effect can be exploited to use O-GNR-PEG-DSPEs as a vehicle for Luc delivery to GBM, while reducing nonspecific cytotoxicity to the surrounding healthy tissue. In conclusion, cell death in U251 was necrotic, probably due to oxidative degradation of APE-1.« less

  2. Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme

    DOE PAGES

    Chowdhury, Sayan Mullick; Surhland, Cassandra; Sanchez, Zina; ...

    2014-08-13

    We report use of PEG-DSPE coated oxidized graphene nanoribbons (O-GNR-PEG-DSPE) as agent for delivery of anti-tumor drug Lucanthone (Luc) into Glioblastoma Multiformae (GBM) cells targeting base excision repair enzyme APE-1 (Apurinic endonuclease-1). Lucanthone, an endonuclease inhibitor of APE-1, was loaded onto O-GNR-PEG-DSPEs using a simple non-covalent method. We found its uptake by GBM cell line U251 exceeding 67% and 60% in APE-1-overexpressing U251, post 24 hours (h). However, their uptake was ~38% and 29% by MCF-7 and rat glial progenitor cells (CG-4), respectively. TEM analysis of U251 showed large aggregates of O-GNR-PEG-DSPE in vesicles. Luc-O-GNR-PEG-DSPE was significantly toxic to U251more » but showed little / no toxicity when exposed to MCF-7/CG-4 cells. This differential uptake effect can be exploited to use O-GNR-PEG-DSPEs as a vehicle for Luc delivery to GBM, while reducing nonspecific cytotoxicity to the surrounding healthy tissue. In conclusion, cell death in U251 was necrotic, probably due to oxidative degradation of APE-1.« less

  3. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    PubMed Central

    Mari, Emanuela; Mardente, Stefania; Morgante, Emanuela; Tafani, Marco; Lococo, Emanuela; Fico, Flavia; Valentini, Federica; Zicari, Alessandra

    2016-01-01

    Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells. PMID:27916824

  4. Functionalization and migration of bromine adatoms on zigzag graphene nanoribbons: A first-principles study

    NASA Astrophysics Data System (ADS)

    Jaiswal, Neeraj K.; Kumar, Amit; Patel, Chandrabhan

    2018-05-01

    Tailoring the electronic band gap of graphene nanoribbons (GNR) through edge functionalization and understanding the adsorption of guest adatoms on GNR is crucial for realization of upcoming organic devices. In the present work, we have investigated the structural stability and electronic property of bromine (Br) termination at the edges of zigzag GNR (ZGNR). The migration pathways of Br adatom on ZGNR have also been discussed along four different diffusion paths. It is revealed that Br termination induces metallicity in ZGNR and caused upward shifting of Fermi level. Further, the migration is predicted to take place preferable along the ribbon edges whereas across the ribbon width, migration is least probable to take place due to sufficiently higher migration barrier of ˜160 meV.

  5. Thermal conductance of suspended nanoribbons: interplay between strain and interatomic potential nonlinearity

    NASA Astrophysics Data System (ADS)

    Barreto, Roberto; Florencia Carusela, M.; Monastra, Alejandro G.

    2017-10-01

    We investigate the role that nonlinearity in the interatomic potential has on the thermal conductance of a suspended nanoribbon when it is subjected to a longitudinal strain. To focus on the first cubic and quartic nonlinear terms of a general potential, we propose an atomic system based on an α-β Fermi-Pasta-Ulam nearest neighbor interaction. We perform classical molecular dynamics simulations to investigate the contribution of longitudinal, transversal and flexural modes to the thermal conductance as a function of the α-β parameters and the applied strain. We compare the cases where atoms are allowed to vibrate only in plane (2D) with the case of vibrations in and out of plane (3D). We find that the dependence of conductance on α and β relies on a crossover phenomenon between linear/nonlinear delocalized/localized flexural and transversal modes, driven by an on/off switch of the strain.

  6. Multi-functional spintronic devices based on boron- or aluminum-doped silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Liu, Y. S.; Dong, Y. J.; Zhang, J.; Yu, H. L.; Feng, J. F.; Yang, X. F.

    2018-03-01

    Zigzag silicene nanoribbons (ZSiNRs) in the ferromagnetic edge ordering have a metallic behavior, which limits their applications in spintronics. Here a robustly half-metallic property is achieved by the boron substitution doping at the edge of ZSiNRs. When the impurity atom is replaced by the aluminum atom, the doped ZSiNRs possess a spin semiconducting property. Its band gap is suppressed with the increase of ribbon’s width, and a pure thermal spin current is achieved by modulating ribbon’s width. Moreover, a negative differential thermoelectric resistance in the thermal charge current appears as the temperature gradient increases, which originates from the fact that the spin-up and spin-down thermal charge currents have diverse increasing rates at different temperature gradient regions. Our results put forward a promising route to design multi-functional spintronic devices which may be applied in future low-power-consumption technologies.

  7. Band gap engineering in finite elongated graphene nanoribbon heterojunctions: Tight-binding model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tayo, Benjamin O.

    2015-08-15

    A simple model based on the divide and conquer rule and tight-binding (TB) approximation is employed for studying the role of finite size effect on the electronic properties of elongated graphene nanoribbon (GNR) heterojunctions. In our model, the GNR heterojunction is divided into three parts: a left (L) part, middle (M) part, and right (R) part. The left part is a GNR of width W{sub L}, the middle part is a GNR of width W{sub M}, and the right part is a GNR of width W{sub R}. We assume that the left and right parts of the GNR heterojunction interactmore » with the middle part only. Under this approximation, the Hamiltonian of the system can be expressed as a block tridiagonal matrix. The matrix elements of the tridiagonal matrix are computed using real space nearest neighbor orthogonal TB approximation. The electronic structure of the GNR heterojunction is analyzed by computing the density of states. We demonstrate that for heterojunctions for which W{sub L} = W{sub R}, the band gap of the system can be tuned continuously by varying the length of the middle part, thus providing a new approach to band gap engineering in GNRs. Our TB results were compared with calculations employing divide and conquer rule in combination with density functional theory (DFT) and were found to agree nicely.« less

  8. Attenuation, dispersion and nonlinearity effects in graphene-based waveguides

    PubMed Central

    Mota, João Cesar Moura; Sombra, Antonio Sergio Bezerra

    2015-01-01

    Summary We simulated and analyzed in detail the behavior of ultrashort optical pulses, which are typically used in telecommunications, propagating through graphene-based nanoribbon waveguides. In this work, we showed the changes that occur in the Gaussian and hyperbolic secant input pulses due to the attenuation, high-order dispersive effects and nonlinear effects. We concluded that it is possible to control the shape of the output pulses with the value of the input signal power and the chemical potential of the graphene nanoribbon. We believe that the obtained results will be highly relevant since they can be applied to other nanophotonic devices, for example, filters, modulators, antennas, switches and other devices. PMID:26171299

  9. Tunable phonon-induced transparency in bilayer graphene nanoribbons.

    PubMed

    Yan, Hugen; Low, Tony; Guinea, Francisco; Xia, Fengnian; Avouris, Phaedon

    2014-08-13

    In the phenomenon of plasmon-induced transparency, which is a classical analogue of electromagnetically induced transparency (EIT) in atomic gases, the coherent interference between two plasmon modes results in an optical transparency window in a broad absorption spectrum. With the requirement of contrasting lifetimes, typically one of the plasmon modes involved is a dark mode that has limited coupling to the electromagnetic radiation and possesses relatively longer lifetime. Plasmon-induced transparency not only leads to light transmission at otherwise opaque frequency regions but also results in the slowing of light group velocity and enhanced optical nonlinearity. In this article, we report an analogous behavior, denoted as phonon-induced transparency (PIT), in AB-stacked bilayer graphene nanoribbons. Here, light absorption due to the plasmon excitation is suppressed in a narrow window due to the coupling with the infrared active Γ-point optical phonon, whose function here is similar to that of the dark plasmon mode in the plasmon-induced transparency. We further show that PIT in bilayer graphene is actively tunable by electrostatic gating and estimate a maximum slow light factor of around 500 at the phonon frequency of 1580 cm(-1), based on the measured spectra. Our demonstration opens an avenue for the exploration of few-photon nonlinear optics and slow light in this novel two-dimensional material.

  10. Boron Nitride Nanoribbons from Exfoliation of Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Hurst, Janet; Santiago, Diana

    2017-01-01

    Two types of boron nitride nanotubes (BNNTs) were exfoliated into boron nitride nanoribbons (BNNR), which were identified using transmission electron microscopy: (1) commercial BNNTs with thin tube walls and small diameters. Tube unzipping was indicated by a large decrease of the sample's surface area and volume for pores less than 2 nm in diameter. (2) BNNTs with large diameters and thick walls synthesized at NASA Glenn Research Center. Here, tube unraveling was indicated by a large increase in external surface area and pore volume. For both, the exfoliation process was similar to the previous reported method to exfoliate commercial hexagonal boron nitride (hBN): Mixtures of BNNT, FeCl3, and NaF (or KF) were sequentially treated in 250 to 350 C nitrogen for intercalation, 500 to 750 C air for exfoliation, and finally HCl for purification. Property changes of the nanosized boron nitride throughout this process were also similar to the previously observed changes of commercial hBN during the exfoliation process: Both crystal structure (x-ray diffraction data) and chemical properties (Fourier-transform infrared spectroscopy data) of the original reactant changed after intercalation and exfoliation, but most (not all) of these changes revert back to those of the reactant once the final, purified products are obtained.

  11. Electronic and magnetic properties of zigzag silicene nanoribbons with Stone–Wales defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Haixia; Institute of Solid State Physics, Shanxi Datong University, Datong 037009; Fang, Dangqi

    2015-02-14

    The structural, electronic, and magnetic properties of zigzag silicene nanoribbons (ZSiNRs) with Stone–Wales (SW) defects were investigated using first-principles calculations. We found that two types of SW defects (named SW-Ι and SW-ΙΙ) exist in ZSiNRs. The SW defect was found to be the most stable at the edge of the ZSiNR, independently of the defect orientation, even more stable than it is in an infinite silicene sheet. In addition, the ZSiNRs can transition from semiconductor to metal or half-metal by modifying the SW defect location and concentration. For the same defect concentration, the band structures influenced by the SW-Ι defectmore » are more distinct than those influenced by the SW-ΙΙ when the SW defect is at the edge. The present study suggests the possibility of tuning the electronic properties of ZSiNRs using the SW defects and might motivate their potential application in nanoelectronics and spintronics.« less

  12. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms.

    PubMed

    Yu, Z L; Wang, D; Zhu, Z; Zhang, Z H

    2015-10-07

    The electronic and magnetic structures of graphene nanoribbons (GNRs) with various edge structures passivated by P atoms are investigated systematically, and compared with H passivation as well. GNRs with the entire reconstructed Klein edge or armchair edge are found to be nonmagnetic regardless of P or H passivation. However, if the edge of GNRs is a mixture of zigzag edge and reconstructed Klein edge, they are nonmagnetic for H passivation but significantly magnetic for P passivation, which could be attributed to the "charge transfer doping" effect. And the corresponding magnetic device shows a noticeable negative differential resistance phenomenon and an excellent spin filtering effect under AP configuration, which originate from the special energy band structure. The GNRs with zigzag edge, reconstructed Klein edge, or mixed edge shapes are all metals in the nonmagnetic state regardless of the H or P atoms involved. The relationship between the energy gap and the width in armchair-edged GNRs by P passivation with a dimer structure also satisfies the 3p periodicity, but different in detail from the case of H passivation. The calculated edge formation energy indicates that P-passivated GNRs are energetically more favorable, suggesting that they can stably exist in the experiment.

  13. Thermal conductivity of graphene nanoribbons accounting for phonon dispersion and polarization

    NASA Astrophysics Data System (ADS)

    Wang, Yingjun; Xie, Guofeng

    2015-12-01

    The relative contribution to heat conduction by different phonon branches is still an intriguing and open question in phonon transport of graphene nanoribbons (GNRs). By incorporating the direction-dependent phonon-boundary scattering into the linearized phonon Boltzmann transport equation, we find that because of lower Grüneisen parameter, the TA phonons have the major contribution to thermal conductivity of GNRs, and in the case of smooth edge and micron-length of GNRS, the relative contribution of TA branch to thermal conductivity is over 50%. The length and edge roughness of GNRs have distinct influences on the relative contribution of different polarization branches to thermal conductivity. The contribution of TA branch to thermal conductivity increases with increasing the length or decreasing the edge roughness of GNRs. On the contrary, the contribution of ZA branch to thermal conductivity increases with decreasing the length or increasing the edge roughness of GNRs. The contribution of LA branch is length and roughness insensitive. Our findings are helpful for understanding and engineering the thermal conductivity of GNRs.

  14. Molecular dynamics simulation of square graphene-nanoflake oscillator on graphene nanoribbon.

    PubMed

    Kang, Jeong Won; Lee, Kang Whan

    2014-12-01

    Graphene nanoflakes (GNFs) have been of interest for a building block in order to develop electromechanical devices on a nanometer scale. Here, we present the oscillation motions of a square GNF oscillator on graphene nanoribbon (GNR) in the retracting-motions by performing classical molecular dynamics simulations. The simulation results showed that the GNF oscillators can be considered as a building block for nanoelectromechanical systems such as carbon-nanotube (CNT) oscillators. The oscillation dynamics of the GNF oscillator were similar to those of the CNT oscillators. When the square GNF had an initial velocity as impulse dynamics, its oscillation motions on the GNR were achieved from its self-retracting van der Waals force. For low initial velocity, its translational motions were dominant in its motions rather than its rotational motions. The kinetic energy damping ratio rapidly decreased as initial velocity increased and the kinetic energy for the translational motion of the GNF oscillator rapidly transferred into that for its rotational motion. The oscillation frequency of the GNF oscillator was dependent on its initial velocity.

  15. The structures and electronic properties of zigzag silicene nanoribbons with periodically embedded with four- and eight-membered rings

    NASA Astrophysics Data System (ADS)

    Tan, Guiping; Lu, Junzhe; Zhu, Hengjiang; Li, Fangfang; Ma, Miaomiao; Wang, Xiaoning

    2018-07-01

    Using density functional theory (DFT), we have studied the structure of a zigzag silicene nanoribbons (SiNRs) with periodically embedded with four- and eight-membered rings, and studied their electronic properties by calculating its band structures and density of states (DOS). The results showed that the zigzag SiNRs have a sp2 hybridization, in addition, the band gap gradually decreased with the increase of the width by layer, and gradually changed from semiconductor properties to metal properties. The existence of vacancy defects increased the band gap and energies, but their positions could not change the structure and the electronic properties.

  16. Spin-dependent electronic transport properties of transition metal atoms doped α-armchair graphyne nanoribbons

    NASA Astrophysics Data System (ADS)

    Fotoohi, Somayeh; Haji-Nasiri, Saeed

    2018-04-01

    Spin-dependent electronic transport properties of single 3d transition metal (TM) atoms doped α-armchair graphyne nanoribbons (α-AGyNR) are investigated by non-equilibrium Green's function (NEGF) method combined with density functional theory (DFT). It is found that all of the impurity atoms considered in this study (Fe, Co, Ni) prefer to occupy the sp-hybridized C atom site in α-AGyNR, and the obtained structures remain planar. The results show that highly localized impurity states are appeared around the Fermi level which correspond to the 3d orbitals of TM atoms, as can be derived from the projected density of states (PDOS). Moreover, Fe, Co, and Ni doped α-AGyNRs exhibit magnetic properties due to the strong spin splitting property of the energy levels. Also for each case, the calculated current-voltage characteristic per super-cell shows that the spin degeneracy in the system is obviously broken and the current becomes strongly spin dependent. Furthermore, a high spin-filtering effect around 90% is found under the certain bias voltages in Ni doped α-AGyNR. Additionally, the structure with Ni impurity reveals transfer characteristic that is suitable for designing a spin current switch. Our findings provide a high possibility to design the next generation spin nanodevices with novel functionalities.

  17. Theoretical study of the influence of the electric field on the electronic properties of armchair boron nitride nanoribbon

    NASA Astrophysics Data System (ADS)

    Chegel, Raad; Behzad, Somayeh

    2014-11-01

    We have investigated the electronic properties of A-BNNRs in the external electric field using third nearest neighbor tight binding approximation including edge effects. We found that the dependence of on-site energy to the external electric field for edge atoms and center part atoms is different. By comparing the band structure in the different fields, several differences are clearly seen such as modification of energy dispersions, creation of additional band edge states and band gap reduction. By increasing the electric field the band gap reduces linearly until reaches zero and BNNRs with larger width are more sensitive than small ones. All changes in the band structure are directly reflected in the DOS spectrum. The numbers and the energies of the DOS peaks are dependent on the electric field strength.

  18. Fabrication and In Situ Transmission Electron Microscope Characterization of Free-Standing Graphene Nanoribbon Devices.

    PubMed

    Wang, Qing; Kitaura, Ryo; Suzuki, Shoji; Miyauchi, Yuhei; Matsuda, Kazunari; Yamamoto, Yuta; Arai, Shigeo; Shinohara, Hisanori

    2016-01-26

    Edge-dependent electronic properties of graphene nanoribbons (GNRs) have attracted intense interests. To fully understand the electronic properties of GNRs, the combination of precise structural characterization and electronic property measurement is essential. For this purpose, two experimental techniques using free-standing GNR devices have been developed, which leads to the simultaneous characterization of electronic properties and structures of GNRs. Free-standing graphene has been sculpted by a focused electron beam in transmission electron microscope (TEM) and then purified and narrowed by Joule heating down to several nanometer width. Structure-dependent electronic properties are observed in TEM, and significant increase in sheet resistance and semiconducting behavior become more salient as the width of GNR decreases. The narrowest GNR width we obtained with the present method is about 1.6 nm with a large transport gap of 400 meV.

  19. I-V characteristics of in-plane and out-of-plane strained edge-hydrogenated armchair graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cartamil-Bueno, S. J., E-mail: s.j.cartamilbueno@tudelft.nl, E-mail: rbolivar@ugr.es; Rodríguez-Bolívar, S., E-mail: s.j.cartamilbueno@tudelft.nl, E-mail: rbolivar@ugr.es

    2015-06-28

    The effects of tensile strain on the current-voltage (I-V) characteristics of hydrogenated-edge armchair graphene nanoribbons are investigated by using DFT theory. The strain is introduced in two different ways related to the two types of systems studied in this work: in-plane strained systems (A) and out-of-plane strained systems due to bending (B). These two kinds of strain lead to make a distinction among three cases: in-plane strained systems with strained electrodes (A1) and with unstrained electrodes (A2), and out-of-plane homogeneously strained systems with unstrained, fixed electrodes (B). The systematic simulations to calculate the electronic transmission between two electrodes were focusedmore » on systems of 8 and 11 dimers in width. The results show that the differences between cases A2 and B are negligible, even though the strain mechanisms are different: in the plane case, the strain is uniaxial along its length; while in the bent case, the strain is caused by the arc deformation. Based on the study, a new type of nanoelectromechanical system solid state switching device is proposed.« less

  20. Iodine versus Bromine Functionalization for Bottom-Up Graphene Nanoribbon Growth: Role of Diffusion

    DOE PAGES

    Bronner, Christopher; Marangoni, Tomas; Rizzo, Daniel J.; ...

    2017-08-08

    Deterministic bottom-up approaches for synthesizing atomically well-defined graphene nanoribbons (GNRs) largely rely on the surface-catalyzed activation of selected labile bonds in a molecular precursor followed by step-growth polymerization and cyclodehydrogenation. While the majority of successful GNR precursors rely on the homolytic cleavage of thermally labile C–Br bonds, the introduction of weaker C–I bonds provides access to monomers that can be polymerized at significantly lower temperatures, thus helping to increase the flexibility of the GNR synthesis process. Scanning tunneling microscopy imaging of molecular precursors, activated intermediates, and polymers resulting from stepwise thermal annealing of both Br and I substituted precursors formore » chevron GNRs reveals that the polymerization of both precursors proceeds at similar temperatures on Au(111). Finally, this surprising observation is consistent with diffusion-controlled polymerization of the surface-stabilized radical intermediates that emerge from homolytic cleavage of either the C–Br or the C–I bonds.« less

  1. Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains

    NASA Astrophysics Data System (ADS)

    Cao, Ting; Zhao, Fangzhou; Louie, Steven G.

    2017-08-01

    We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end termination (synthesizable from molecular precursors with atomic precision) belong to different electronic topological classes. The topological phase of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formulas for their topological invariants and shown that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisting of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1 /2 chain with tunable exchange interaction. The discoveries here not only are of scientific interest for studies of quasi-one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.

  2. Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains.

    PubMed

    Cao, Ting; Zhao, Fangzhou; Louie, Steven G

    2017-08-18

    We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end termination (synthesizable from molecular precursors with atomic precision) belong to different electronic topological classes. The topological phase of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formulas for their topological invariants and shown that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisting of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1/2 chain with tunable exchange interaction. The discoveries here not only are of scientific interest for studies of quasi-one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.

  3. Controlling Short-Range Interactions by Tuning Surface Chemistry in HDPE/Graphene Nanoribbon Nanocomposites.

    PubMed

    Sadeghi, Soheil; Zehtab Yazdi, Alireza; Sundararaj, Uttandaraman

    2015-09-03

    Unique dispersion states of nanoparticles in polymeric matrices have the potential to create composites with enhanced mechanical, thermal, and electrical properties. The present work aims to determine the state of dispersion from the melt-state rheological behavior of nanocomposites based on carbon nanotube and graphene nanoribbon (GNR) nanomaterials. GNRs were synthesized from nitrogen-doped carbon nanotubes via a chemical route using potassium permanganate and some second acids. High-density polyethylene (HDPE)/GNR nanocomposite samples were then prepared through a solution mixing procedure. Different nanocomposite dispersion states were achieved using different GNR synthesis methods providing different surface chemistry, interparticle interactions, and internal compartments. Prolonged relaxation of flow induced molecular orientation was observed due to the presence of both carbon nanotubes and GNRs. Based on the results of this work, due to relatively weak interactions between the polymer and the nanofillers, it is expected that short-range interactions between nanofillers play the key role in the final dispersion state.

  4. Electronic properties of NH{sub 4}-adsorbed graphene nanoribbon as a promising candidate for a gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, Naoki, E-mail: harada.naoki@jp.fujitsu.com; Sato, Shintaro

    2016-05-15

    The electronic properties of NH{sub 4}-adsorbed N = 7 armchair graphene nanoribbons (AGNRs) were theoretically investigated using self-consistent atomistic simulations to explore the feasibility of AGNRs as a gas sensing material. Whereas a pristine AGNR has a finite band gap and is an intrinsic semiconductor, an NH{sub 4}-adsorbed AGNR exhibits heavily doped n-type properties similar to a graphene sheet with the molecules adsorbed. The electric characteristics of a back-gated AGNR gas sensor were also simulated and the drain current changed exponentially with increasing number of adsorbed molecules. We may conclude that an AGNR is promising as a highly sensitive gas-sensingmore » material with large outputs.« less

  5. A tunable electronic beam splitter realized with crossed graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Brandimarte, Pedro; Engelund, Mads; Papior, Nick; Garcia-Lekue, Aran; Frederiksen, Thomas; Sánchez-Portal, Daniel

    2017-03-01

    Graphene nanoribbons (GNRs) are promising components in future nanoelectronics due to the large mobility of graphene electrons and their tunable electronic band gap in combination with recent experimental developments of on-surface chemistry strategies for their growth. Here, we explore a prototype 4-terminal semiconducting device formed by two crossed armchair GNRs (AGNRs) using state-of-the-art first-principles transport methods. We analyze in detail the roles of intersection angle, stacking order, inter-GNR separation, GNR width, and finite voltages on the transport characteristics. Interestingly, when the AGNRs intersect at θ =60° , electrons injected from one terminal can be split into two outgoing waves with a tunable ratio around 50% and with almost negligible back-reflection. The split electron wave is found to propagate partly straight across the intersection region in one ribbon and partly in one direction of the other ribbon, i.e., in analogy with an optical beam splitter. Our simulations further identify realistic conditions for which this semiconducting device can act as a mechanically controllable electronic beam splitter with possible applications in carbon-based quantum electronic circuits and electron optics. We rationalize our findings with a simple model suggesting that electronic beam splitters can generally be realized with crossed GNRs.

  6. Modulation of electronic transport properties in armchair phosphorene nanoribbons by doping and edge passivation.

    PubMed

    Guo, Caixia; Wang, Tianxing; Xia, Congxin; Liu, Yufang

    2017-10-09

    The electronic structures and transport properties of group IV atoms (C, Si, Ge)-doped armchair phosphorene nanoribbons (APNRs) are investigated using first-principles calculations, considering different edge passivation. The results show that the C, Si, Ge dopants can induce the transition occur from semiconductor to metal in the APNRs. The negative differential resistance (NDR) behavior in the doped APNR system is robust with respect to the doping concentration and edge passivation type. However, their current peak positions and peak-to-valley ratio (PVR) values are correlated with doping concentration and edge passivation type. In particular, for the C, Si-doped APNRs, the low bias NDR behavior with the PVR (10 5 -10 8 ) can be observed when doping concentration is low in the APNRs with the F and H edge passivation. These results may play an important role for the fabrication of future low power consumption nano-electronic devices.

  7. Ti3C2 MXene-Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities.

    PubMed

    Dong, Yanfeng; Wu, Zhong-Shuai; Zheng, Shuanghao; Wang, Xiaohui; Qin, Jieqiong; Wang, Sen; Shi, Xiaoyu; Bao, Xinhe

    2017-05-23

    Sodium and potassium ion batteries hold promise for next-generation energy storage systems due to their rich abundance and low cost, but are facing great challenges in optimum electrode materials for actual applications. Here, ultrathin nanoribbons of sodium titanate (M-NTO, NaTi 1.5 O 8.3 ) and potassium titanate (M-KTO, K 2 Ti 4 O 9 ) were successfully synthesized by a simultaneous oxidation and alkalization process of Ti 3 C 2 MXene. Benefiting from the suitable interlayer spacing (0.90 nm for M-NTO, 0.93 nm for M-KTO), ultrathin thickness (<11 nm), narrow widths of nanoribbons (<60 nm), and open macroporous structures for enhanced ion insertion/extraction kinetics, the resulting M-NTO exhibited a large reversible capacity of 191 mAh g -1 at 200 mA g -1 for sodium storage, higher than those of pristine Ti 3 C 2 (178 mAh g -1 ) and commercial TiC derivatives (86 mAh g -1 ). Notably, M-KTO displayed a superior reversible capacity of 151 mAh g -1 at 50 mA g -1 and 88 mAh g -1 at a high rate of 300 mA g -1 and long-term stable cyclability over 900 times, which outperforms other Ti-based layered materials reported to date. Moreover, this strategy is facile and highly flexible and can be extended for preparing a large number of MXene-derived materials, from the 60+ group of MAX phases, for various applications such as supercapacitors, batteries, and electrocatalysts.

  8. Tunable metasurface with two non-coplanar and inter-perpendicular graphene nanoribbon arrays for the coupling between localized and delocalized surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Xie, Ze Tao; Ni, Feng Chao; Ma, Qi Chang; Tao, Jin; Li, Jian; Meng, Hongyun; Huang, Xu Guang

    2018-07-01

    Graphene metasurface has attracted a lot of attentions due to the unique tunability for exotic electromagnetic properties. In this work, we propose and numerically investigate a tunable metasurface with two non-coplanar and inter-perpendicular graphene nanoribbon arrays. The variation of transmission at different substrate thickness and the coupled mode are analyzed. It is shown that the Rabi-like splitting can be achieved by the coupling between localized and delocalized graphene surface plasmon polaritons. Tunable coupling strength and positions with different gate-voltages have been discussed. The effect of relaxation time and oblique incidences to resonant responses are also investigated. Additionally, we find an optical analogue of a spring, where the spectral dip vibrates around its equilibrium position at a certain wavelength. Our study suggests that the proposed structure is potentially attractive for realization of tunable double-channel filter, optical switch, and variable optical attenuator based on the graphene metasurface.

  9. Synergistic Enhancement of Electrocatalytic CO 2 Reduction with Gold Nanoparticles Embedded in Functional Graphene Nanoribbon Composite Electrodes

    DOE PAGES

    Rogers, Cameron; Perkins, Wade S.; Veber, Gregory; ...

    2017-02-24

    Regulating the complex environment accounting for the stability, selectivity, and activity of catalytic metal nanoparticle interfaces represents a challenge to heterogeneous catalyst design. Here in this paper, we demonstrate the intrinsic performance enhancement of a composite material composed of gold nanoparticles (AuNPs) embedded in a bottom-up synthesized graphene nanoribbon (GNR) matrix for the electrocatalytic reduction of CO 2. Electrochemical studies reveal that the structural and electronic properties of the GNR composite matrix increase the AuNP electrochemically active surface area (ECSA), lower the requisite CO 2 reduction overpotential by hundreds of millivolts (catalytic onset > -0.2 V versus reversible hydrogen electrodemore » (RHE)), increase the Faraday efficiency (>90%), markedly improve stability (catalytic performance sustained over >24 h), and increase the total catalytic output (>100-fold improvement over traditional amorphous carbon AuNP supports). The inherent structural and electronic tunability of bottom-up synthesized GNR-AuNP composites affords an unrivaled degree of control over the catalytic environment, providing a means for such profound effects as shifting the rate-determining step in the electrocatalytic reduction of CO 2 to CO, and thereby altering the electrocatalytic mechanism at the nanoparticle surface.« less

  10. Electronic ferroelectricity in carbon-based systems: from reality of organic conductors to promises of polymers and graphene nano-ribbons

    NASA Astrophysics Data System (ADS)

    Kirova, Natasha; Brazovskii, Serguei

    2014-03-01

    Ferroelectricity is a rising demand in fundamental and applied solid state physics. Ferroelectrics are used in microelectronics as active gate materials, in capacitors, electro-optical-acoustic modulators, etc. There is a particular demand for plastic ferroelectrics, e.g. as a sensor for acoustic imaging in medicine and beyond, in shapeable capacitors, etc. Microscopic mechanisms of ferroelectric polarization in traditional materials are typically ionic. In this talk we discuss the electronic ferroelectrics - carbon-based materials: organic crystals, conducting polymers and graphene nano-ribbons. The motion of walls, separating domains with opposite electric polarisation, can be influenced and manipulated by terahertz and infra-red range optics.

  11. Ab initio study of gold-doped zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Srivastava, Pankaj; Dhar, Subhra; Jaiswal, Neeraj K.

    2014-12-01

    The electronic transport properties of zigzag graphene nanoribbons (ZGNRs) through covalent functionalization of gold (Au) atoms is investigated by using non-equilibrium Green's function combined with density functional theory. It is revealed that the electronic properties of Au-doped ZGNRs vary significantly due to spin and its non-inclusion. We find that the DOS profiles of Au-adsorbed ZGNR due to spin reveal very less number of states available for conduction, whereas non-inclusion of spin results in higher DOS across the Fermi level. Edge Au-doped ribbons exhibit stable structure and are energetically more favorable than the center Au-doped ZGNRs. Though the chemical interaction at the ZGNR-Au interface modifies the Fermi level, Au-adsorbed ZGNR reveals semimetallic properties. A prominent qualitative change of the I-V curve from linear to nonlinear is observed as the Au atom shifts from center toward the edges of the ribbon. Number of peaks present near the Fermi level ensures conductance channels available for charge transport in case of Au-center-substituted ZGNR. We predict semimetallic nature of the Au-adsorbed ZGNR with a high DOS peak distributed over a narrow energy region at the Fermi level and fewer conductance channels. Our calculations for the magnetic properties predict that Au functionalization leads to semiconducting nature with different band gaps for spin up and spin down. The outcomes are compared with the experimental and theoretical results available for other materials.

  12. Different shades of cholesterol: Gold nanoparticles supported on MoS2 nanoribbons for enhanced colorimetric sensing of free cholesterol.

    PubMed

    Nirala, Narsingh R; Pandey, Shobhit; Bansal, Anushka; Singh, Vijay K; Mukherjee, Bratindranath; Saxena, Preeti S; Srivastava, Anchal

    2015-12-15

    In the present study, we manifest that traditionally used gold nanoparticles when supported on molybdenum disulfide nanoribbons matrix (MoS2 NRs-Au NPs) show synergistically enhanced intrinsic peroxidase like catalytic activity and can catalyze the oxidation of 3,3',5,5' tetramethyl benzidine by H2O2 to produce a highly sensitive blue shade product depending on level of free cholesterol, when tested on complex system of human serum. Further the system attests appreciable kinetics, owing to Km value as low as 0.015 mM and better loading capacity (Vmax=6.7×10(-6) M s(-1)). Additionally, the proposed system is stable for weeks with ability to perform appreciably in wide pH (3-6) and temperature range (25-60 °C). Utilizing this potential, the present work proposes a cholesterol detection color wheel which is used along with cost effective cholesterol detection strips fabricated out of proposed MoS2 NRs-Au NPs system for quick and reliable detection of free cholesterol using unaided eye. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Fabrication of One-Dimensional Zigzag [6,6]-PhenylC61-Butyric Acid Methyl Ester Nanoribbons from Two-Dimensional Nanosheets (Open Access: Author’s Final)

    DTIC Science & Technology

    2015-09-18

    a derivative is the [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), a C60 fullerene with a chemically bonded functional group. The addition of the...functional group, on the other hand, decreases the fullerene symmetry and conse- quently affects its crystallization.8 Although growth of crystalline C60...possibility to tune the grown structures to different morphologies.8 One-dimensional fullerene (C60) struc- tures, namely, nanorods and nanoribbons, are of

  14. Adsorption of CO2 on Fe-doped graphene nano-ribbons: Investigation of transport properties

    NASA Astrophysics Data System (ADS)

    Othman, W.; Fahed, M.; Hatim, S.; Sherazi, A.; Berdiyorov, G.; Tit, N.

    2017-07-01

    Density functional theory combined with the non-equilibrium Green’s function formalism is used to study the conductance response of Fe-doped graphene nano-ribbons (GNRs) to CO2 gas adsorption. A single Fe atom is either adsorbed on GNR’s surface (aFe-graphene) or it substitutes the carbon atom (sFe-graphene). Metal atom doping reduces the electronic transmission of pristine graphene due to the localization of electronic states near the impurity site. Moreover, the aFe-graphene is found to be less sensitive to the CO2 molecule attachment as compared to the sFe-graphene system. These behaviours are not only consolidated but rather confirmed by calculating the IV characteristics from which both surface resistance and its sensitivity to the gas are estimated. Since the change in the conductivity is one of the main outputs of sensors, our findings will be useful in developing efficient graphene-based solid-state gas sensors.

  15. Single MoO3 nanoribbon waveguides: good building blocks as elements and interconnects for nanophotonic applications

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wu, Guoqing; Gu, Fuxing; Zeng, Heping

    2015-11-01

    Exploring new nanowaveguide materials and structures is of great scientific interest and technological significance for optical and photonic applications. In this work, high-quality single-crystal MoO3 nanoribbons (NRs) are synthesized and used for optical guiding. External light sources are efficiently launched into the single MoO3 NRs using silica fiber tapers. It is found that single MoO3 NRs are as good nanowaveguides with loss optical losses (typically less than 0.1 dB/μm) and broadband optical guiding in the visible/near-infrared region. Single MoO3 NRs have good Raman gains that are comparable to those of semiconductor nanowaveguides, but the second harmonic generation efficiencies are about 4 orders less than those of semiconductor nanowaveguides. And also no any third-order nonlinear optical effects are observed at high pump power. A hybrid Fabry-Pérot cavity containing an active CdSe nanowire and a passive MoO3 NR is also demonstrated, and the ability of coupling light from other active nanostructures and fluorescent liquid solutions has been further demonstrated. These optical properties make single MoO3 NRs attractive building blocks as elements and interconnects in miniaturized photonic circuitries and devices.

  16. Ab initio study of the mechanism of bottom-up synthesis of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Xiao, Zhongcan; Ma, Chuanxu; Zhang, Honghai; Liang, Liangbo; Huang, Jingsong; Lu, Wenchang; Hong, Kunlun; Li, An-Ping; Bernholc, Jerry

    Graphene nanoribbons (GNRs) can be fabricated with atomic precision by using molecular precursors deposited on a metal substrate, and potentially form the basis for future molecular-scale electronics. The precursor molecules are first annealed to form a polymer, and further annealing at a higher temperature leads to the formation of a GNR. We systematically study the reaction pathways of this cyclodehydrogenation process, using density functional theory and the nudged elastic band method. We find that the Au substrate reduces the reaction barriers for key steps in the cyclodehydrogenation process: cyclization, hydrogen migration and desorption. Furthermore, our calculations explain recent experiments showing that an STM-tip can induce local polymer-to-GNR transition, which can be used to fabricate atomically precise heterojunctions: at a negative bias, the STM tip injects excess holes into the polymer HOMO state, lowering the energy barrier in agreement with Woodward-Hoffmann rules. At a positive bias, when excess electrons are injected into the LUMO state, the energy barrier is not significantly lowered and the transition is not observed.

  17. Thermal Conductivity of Twisted Bilayer Graphene Nanoribbons from Non-equilibrium Molecular Dynamics Study.

    NASA Astrophysics Data System (ADS)

    Li, Chenyang; Su, Shanshan; Ge, Supeng; Lake, Roger

    Misorientation of the two layers of bilayer graphene affects both the electronic properties and the vibrational modes or phonons. The phonon density of modes is little affected by misorientation, however, zone-folding can allow new Umklapp scattering processes that could affect the phonon transport and thermal conductivity. To investigate this, we use NEMD molecular dynamics simulations as implemented in LAMMPS to study the thermal conductivity of the misoriented graphene bilayers. Seven commensurate misorientation angles varying from 6.01º to 48.36º have modeled and analyzed to understand how the misorientation angle affects the thermal conductivity of relatively wide ( 10 nm) misoriented bilayer graphene nanoribbons (m-BLGNRs). Within numerical accuracy, we find that the thermal conductivity of the m-BLGNRs for all of the simulated commensurate angles have the same thermal conductivity with AB stacked and AA stacked BLGNRs. These results indicate that neither the misorientation angle nor the stacking order affect the thermal conductivity of BLGNRs. This work was supported as part by the NSF #1307671.

  18. Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets.

    PubMed

    Liu, Xiaofei; Xu, Tao; Wu, Xing; Zhang, Zhuhua; Yu, Jin; Qiu, Hao; Hong, Jin-Hua; Jin, Chuan-Hong; Li, Ji-Xue; Wang, Xin-Ran; Sun, Li-Tao; Guo, Wanlin

    2013-01-01

    Developments in semiconductor technology are propelling the dimensions of devices down to 10 nm, but facing great challenges in manufacture at the sub-10 nm scale. Nanotechnology can fabricate nanoribbons from two-dimensional atomic crystals, such as graphene, with widths below the 10 nm threshold, but their geometries and properties have been hard to control at this scale. Here we find that robust ultrafine molybdenum-sulfide ribbons with a uniform width of 0.35 nm can be widely formed between holes created in a MoS2 sheet under electron irradiation. In situ high-resolution transmission electron microscope characterization, combined with first-principles calculations, identifies the sub-1 nm ribbon as a Mo5S4 crystal derived from MoS2, through a spontaneous phase transition. Further first-principles investigations show that the Mo5S4 ribbon has a band gap of 0.77 eV, a Young's modulus of 300GPa and can demonstrate 9% tensile strain before fracture. The results show a novel top-down route for controllable fabrication of functional building blocks for sub-nanometre electronics.

  19. Isothermal folding of a light-up bio-orthogonal RNA origami nanoribbon.

    PubMed

    Torelli, Emanuela; Kozyra, Jerzy Wieslaw; Gu, Jing-Ying; Stimming, Ulrich; Piantanida, Luca; Voïtchovsky, Kislon; Krasnogor, Natalio

    2018-05-03

    RNA presents intringuing roles in many cellular processes and its versatility underpins many different applications in synthetic biology. Nonetheless, RNA origami as a method for nanofabrication is not yet fully explored and the majority of RNA nanostructures are based on natural pre-folded RNA. Here we describe a biologically inert and uniquely addressable RNA origami scaffold that self-assembles into a nanoribbon by seven staple strands. An algorithm is applied to generate a synthetic De Bruijn scaffold sequence that is characterized by the lack of biologically active sites and repetitions larger than a predetermined design parameter. This RNA scaffold and the complementary staples fold in a physiologically compatible isothermal condition. In order to monitor the folding, we designed a new split Broccoli aptamer system. The aptamer is divided into two nonfunctional sequences each of which is integrated into the 5' or 3' end of two staple strands complementary to the RNA scaffold. Using fluorescence measurements and in-gel imaging, we demonstrate that once RNA origami assembly occurs, the split aptamer sequences are brought into close proximity forming the aptamer and turning on the fluorescence. This light-up 'bio-orthogonal' RNA origami provides a prototype that can have potential for in vivo origami applications.

  20. Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111)

    PubMed Central

    2017-01-01

    We report the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4″-dibromo-para-terphenyl as the molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can subsequently be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbon’s band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in GNR-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbate’s band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate. PMID:29049879

  1. Vertical heterostructures of MoS2 and graphene nanoribbons grown by two-step chemical vapor deposition for high-gain photodetectors.

    PubMed

    Yunus, Rozan Mohamad; Endo, Hiroko; Tsuji, Masaharu; Ago, Hiroki

    2015-10-14

    Heterostructures of two-dimensional (2D) layered materials have attracted growing interest due to their unique properties and possible applications in electronics, photonics, and energy. Reduction of the dimensionality from 2D to one-dimensional (1D), such as graphene nanoribbons (GNRs), is also interesting due to the electron confinement effect and unique edge effects. Here, we demonstrate a bottom-up approach to grow vertical heterostructures of MoS2 and GNRs by a two-step chemical vapor deposition (CVD) method. Single-layer GNRs were first grown by ambient pressure CVD on an epitaxial Cu(100) film, followed by the second CVD process to grow MoS2 over the GNRs. The MoS2 layer was found to grow preferentially on the GNR surface, while the coverage could be further tuned by adjusting the growth conditions. The MoS2/GNR nanostructures show clear photosensitivity to visible light with an optical response much higher than that of a 2D MoS2/graphene heterostructure. The ability to grow a novel 1D heterostructure of layered materials by a bottom-up CVD approach will open up a new avenue to expand the dimensionality of the material synthesis and applications.

  2. A multichannel model for the self-consistent analysis of coherent transport in graphene nanoribbons.

    PubMed

    Mencarelli, Davide; Pierantoni, Luca; Farina, Marco; Di Donato, Andrea; Rozzi, Tullio

    2011-08-23

    In this contribution, we analyze the multichannel coherent transport in graphene nanoribbons (GNRs) by a scattering matrix approach. We consider the transport properties of GNR devices of a very general form, involving multiple bands and multiple leads. The 2D quantum transport over the whole GNR surface, described by the Schrödinger equation, is strongly nonlinear as it implies calculation of self-generated and externally applied electrostatic potentials, solutions of the 3D Poisson equation. The surface charge density is computed as a balance of carriers traveling through the channel at all of the allowed energies. Moreover, formation of bound charges corresponding to a discrete modal spectrum is observed and included in the model. We provide simulation examples by considering GNR configurations typical for transistor devices and GNR protrusions that find an interesting application as cold cathodes for X-ray generation. With reference to the latter case, a unified model is required in order to couple charge transport and charge emission. However, to a first approximation, these could be considered as independent problems, as in the example. © 2011 American Chemical Society

  3. First-principles study on the magnetic and electronic properties of Al or P doped armchair silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojiao; Zhang, Dan; Xie, Fang; Zheng, Xialian; Wang, Haiyan; Long, Mengqiu

    2017-07-01

    Using the first-principles calculations, we investigate the geometric structure, electronic and magnetic properties of armchair silicene nanoribbons (ASiNRs) doped with aluminum (Al) or phosphorus (P) atoms. Total energy analysis shows that both Al and P atoms are preferentially doping at the edge site of ASiNRs. And the magnetism can be found in both Al and P doped systems. For Al doped ASiNRs, we find that the magnetic moment and band gap are dependent on the ribbon width. While for P doped ASiNRs, the magnetic moment always keeps 1μB and is independent of the ribbon width, meanwhile the band gap oscillates with a period of three with the ribbon width increasing. Our results present a new avenue for band engineering of SiNRs and benefit for the designing of silicone-based nano-spin-devices in nanoelectronics.

  4. Size effect on the magnetic and electronic properties of the monolayer lateral hetero-junction WS2-MoS2 nanoribbon

    NASA Astrophysics Data System (ADS)

    Wen, Yan-Ni; Xia, Ming-Gang; Zhang, Sheng-Li

    2016-05-01

    By using the VASP, we studied the magnetic and electronic properties of the monolayer lateral hetero-junction WS2-MoS2-nanoribbons (WS2-MoS2-NRs). Our results show that the NRs' edge chirality and width affect significantly its magnetic and electronic properties. The monolayer lateral hetero-junction ZZ-WS2-MoS2-NRs(ZZ: zigzag) exhibitmetallic behavior and have considerable magnetic moment. Their magnetic moments decrease in the order of Nz = 2, 6 and 4 (the width of NRs). While, the magnetic moment decreases with the increased rz (the number of the Mo-S chains, rz ≠ 0 and rz ≠ Nz) at the same width Nz. The NA-AC-WS2-NR (AC: armchair) and NA-AC-WS2-MoS2-NR-1 (the number of the Mo-S chain is 1) show metallic behavior when NA = 3 (the width of NRs). The other monolayer lateral hetero-junction AC-WS2-MoS2-NRs remain the nonmagnetic and semiconductingbehavior as bulk. But they are indirect band-gap except for the NA = 3, rA = 2 (the number of the Mo-S chains) and NA = 7, rA = 0 when NA < 9. However they are direct band-gap when NA ≥ 9. Their lowest and highest band gaps are 0.150 eV and 0.581 eV, respectively. These unique magnetic and electronic properties will provide guidanceon the WS2-MoS2 hetero-junction application in nanodevice.

  5. To investigate the relation between pore size and twist angle in enhanced thermoelectric efficient porous armchair graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Kaur, Sukhdeep; Randhawa, Deep Kamal Kaur; Bindra Narang, Sukhleen

    2018-05-01

    Based on Non-Equilibrium Green’s function method, we demonstrate that the twisted deformation is an efficient method to improve the figure of merit ZT of porous armchair graphene nanoribbons AGNRs. The peak value of ZT can be obtained for a certain tunable twist angle. Further analysis shows that the tunable twist angle exhibits an inverse relationship with the pore size laying forth the designers a choice for the larger twists to be replaced by smaller ones simply by increasing the size of the pore. Ballistic transport regime and semi-empirical method using Huckel basis set is used to obtain the electrical properties while the Tersoff potential is employed for the phononic system. These interesting findings indicate that the twisted porous AGNRs can be utilized as designing materials for potential thermoelectric applications.

  6. Top–down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets

    PubMed Central

    Liu, Xiaofei; Xu, Tao; Wu, Xing; Zhang, Zhuhua; Yu, Jin; Qiu, Hao; Hong, Jin-Hua; Jin, Chuan-Hong; Li, Ji-Xue; Wang, Xin-Ran; Sun, Li-Tao; Guo, Wanlin

    2013-01-01

    Developments in semiconductor technology are propelling the dimensions of devices down to 10 nm, but facing great challenges in manufacture at the sub-10 nm scale. Nanotechnology can fabricate nanoribbons from two-dimensional atomic crystals, such as graphene, with widths below the 10 nm threshold, but their geometries and properties have been hard to control at this scale. Here we find that robust ultrafine molybdenum-sulfide ribbons with a uniform width of 0.35 nm can be widely formed between holes created in a MoS2 sheet under electron irradiation. In situ high-resolution transmission electron microscope characterization, combined with first-principles calculations, identifies the sub-1 nm ribbon as a Mo5S4 crystal derived from MoS2, through a spontaneous phase transition. Further first-principles investigations show that the Mo5S4 ribbon has a band gap of 0.77 eV, a Young’s modulus of 300GPa and can demonstrate 9% tensile strain before fracture. The results show a novel top–down route for controllable fabrication of functional building blocks for sub-nanometre electronics. PMID:23653188

  7. I-V characteristics of graphene nanoribbon/h-BN heterojunctions and resonant tunneling.

    PubMed

    Wakai, Taiga; Sakamoto, Shoichi; Tomiya, Mitsuyoshi

    2018-07-04

    We present the first principle calculations of the electrical properties of graphene sheet/h-BN heterojunction (GS/h-BN) and 11-armchair graphene nanoribbon/h-BN heterojunction (11-AGNR/h-BN), which are carried out using the density functional theory (DFT) method and the non-equilibrium Green's function (NEGF) technique. Since 11-AGNR belongs to the conductive (3n-1)-family of AGNR, both are metallic nanomaterials with two transverse arrays of h-BN, which is a wide-gap semi-conductor. The two h-BN arrays act as double barriers. The transmission functions (TF) and I-[Formula: see text] characteristics of GS/h-BN and 11-AGNR/h-BN are calculated by DFT and NEGF, and they show that quantum double barrier tunneling occurs. The TF becomes very spiky in both materials, and it leads to step-wise I-[Formula: see text] characteristics rather than negative resistance, which is the typical behavior of double barriers in semiconductors. The results of our first principle calculations are also compared with 1D Dirac equation model for the double barrier system. The model explains most of the peaks of the transmission functions nearby the Fermi energy quite well. They are due to quantum tunneling.

  8. Gate-tunable supercurrent and multiple Andreev reflections in a superconductor-topological insulator nanoribbon-superconductor hybrid device

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis A.; Kayyalha, Morteza; Kazakov, Aleksandr; Miotkowski, Ireneusz; Rokhinson, Leonid P.; Chen, Yong P.

    2018-02-01

    We report on the observation of gate-tunable proximity-induced superconductivity and multiple Andreev reflections (MARs) in a bulk-insulating BiSbTeSe2 topological insulator nanoribbon (TINR) Josephson junction with superconducting Nb contacts. We observe a gate-tunable critical current (IC) for gate voltages (Vg) above the charge neutrality point (VCNP), with IC as large as 430 nA. We also observe MAR peaks in the differential conductance (dI/dV) versus DC voltage (Vdc) across the junction corresponding to sub-harmonic peaks (at Vdc = Vn = 2ΔNb/en, where ΔNb is the superconducting gap of the Nb contacts and n is the sub-harmonic order). The sub-harmonic order, n, exhibits a Vg-dependence and reaches n = 13 for Vg = 40 V, indicating the high transparency of the Nb contacts to TINR. Our observations pave the way toward exploring the possibilities of using TINR in topologically protected devices that may host exotic physics such as Majorana fermions.

  9. Investigating the edge state of graphene nanoribbons by a chemical approach: Synthesis and magnetic properties of zigzag-edged nanographene molecules

    NASA Astrophysics Data System (ADS)

    Konishi, Akihito; Hirao, Yasukazu; Kurata, Hiroyuki; Kubo, Takashi

    2013-12-01

    The edge state, which is a peculiar magnetic state in zigzag-edged graphene nanoribbons (GNRs) originating from an electron-electron correlation in an edge-localized π-state, has promising applications for magnetic and spintronics devices and has attracted much attention of physicists, chemists, and engineers. For deeper understanding the edge state, precise fabrication of edge structures in GNRs has been highly demanded. We focus on [a.b]periacene, which are polycyclic aromatic hydrocarbons (PAHs) that have zigzag and armchair edges on molecular periphery, as a model compound for the understanding and actually prepare and characterize them. This review summarizes our recent studies on the origin of the edge state by investigating [a.b]periacene in terms of the relationship between the molecular structure and spin-localizing character.

  10. Zepto-molar electrochemical detection of Brucella genome based on gold nanoribbons covered by gold nanoblooms

    NASA Astrophysics Data System (ADS)

    Rahi, Amid; Sattarahmady, Naghmeh; Heli, Hossein

    2015-12-01

    Gold nanoribbons covered by gold nanoblooms were sonoelectrodeposited on a polycrystalline gold surface at -1800 mV (vs. AgCl) with the assistance of ultrasound and co-occurrence of the hydrogen evolution reaction. The nanostructure, as a transducer, was utilized to immobilize a Brucella-specific probe and fabrication of a genosensor, and the process of immobilization and hybridization was detected by electrochemical methods, using methylene blue as a redox marker. The proposed method for detection of the complementary sequence, sequences with base-mismatched (one-, two- and three-base mismatches), and the sequence of non-complementary sequence was assayed. The fabricated genosensor was evaluated for the assay of the bacteria in the cultured and human samples without polymerase chain reactions (PCR). The genosensor could detect the complementary sequence with a calibration sensitivity of 0.40 μA dm3 mol-1, a linear concentration range of 10 zmol dm-3 to 10 pmol dm-3, and a detection limit of 1.71 zmol dm-3.

  11. Fringing field effects in negative capacitance field-effect transistors with a ferroelectric gate insulator

    NASA Astrophysics Data System (ADS)

    Hattori, Junichi; Fukuda, Koichi; Ikegami, Tsutomu; Ota, Hiroyuki; Migita, Shinji; Asai, Hidehiro; Toriumi, Akira

    2018-04-01

    We study the effects of fringing electric fields on the behavior of negative-capacitance (NC) field-effect transistors (FETs) with a silicon-on-insulator body and a gate stack consisting of an oxide film, an internal metal film, a ferroelectric film, and a gate electrode using our own device simulator that can properly handle the complicated relationship between the polarization and the electric field in ferroelectric materials. The behaviors of such NC FETs and the corresponding metal-oxide-semiconductor (MOS) FETs are simulated and compared with each other to evaluate the effects of the NC of the ferroelectric film. Then, the fringing field effects are evaluated by comparing the NC effects in NC FETs with and without gate spacers. The fringing field between the gate stack, especially the internal metal film, and the source/drain region induces more charges at the interface of the film with the ferroelectric film. Accordingly, the function of the NC to modulate the gate voltage and the resulting function to improve the subthreshold swing are enhanced. We also investigate the relationships of these fringing field effects to the drain voltage and four design parameters of NC FETs, i.e., gate length, gate spacer permittivity, internal metal film thickness, and oxide film thickness.

  12. Graphene-based magnetless converter of terahertz wave polarization

    NASA Astrophysics Data System (ADS)

    Melnikova, Veronica S.; Polischuk, Olga V.; Popov, Vyacheslav V.

    2016-04-01

    The polarization conversion of terahertz radiation by the periodic array of graphene nanoribbons located at the surface of a high-refractive-index dielectric substrate (terahertz prism) is studied theoretically. Giant polarization conversion at the plasmon resonance frequencies takes place without applying external DC magnetic field. It is shown that the total polarization conversion can be reached at the total internal reflection of THz wave from the periodic array of graphene nanoribbons even at room temperature.

  13. Proton Damage Effects on Carbon Nanotube Field-Effect Transistors

    DTIC Science & Technology

    2014-06-19

    PROTON DAMAGE EFFECTS ON CARBON NANOTUBE FIELD-EFFECT TRANSISTORS THESIS Evan R. Kemp, Ctr...United States. AFIT-ENP-T-14-J-39 PROTON DAMAGE EFFECTS ON CARBON NANOTUBE FIELD-EFFECT TRANSISTORS THESIS Presented to...PROTON DAMAGE EFFECTS ON CARBON NANOTUBE FIELD-EFFECT TRANSISTORS Evan R. Kemp, BS Ctr, USAF Approved: // Signed

  14. Intense conductivity suppression by edge defects in zigzag MoS2 and WSe2 nanoribbons: a density functional based tight-binding study.

    PubMed

    Silva, F W N; Costa, A L M T; Liu, Lei; Barros, E B

    2016-11-04

    The effects of edge vacancies on the electron transport properties of zigzag MoS2/WSe2 nanoribbons are studied using a density functional theory (DFT)-based tight-binding model with a sp(3)d(5) basis set for the electronic structure calculation and applying the Landauer-Büttiker approach for the electronic transport. Our results show that the presence of a single edge vacancy, with a missing MoS2/WSe2 triplet, is enough to suppress the conductance of the system by almost one half for most energies around the Fermi level. Furthermore, the presence of other single defects along the same edge has little effect on the overall conductance, indicating that the conductance of that particular edge has been strongly suppressed by the first defect. The presence of another defect on the opposite edge further suppresses the quantum conductance, independently of the relative position between the two defects in opposite edges. The introduction of other defects cause the suppression to be energy dependent, leading to conductance peaks which depend on the geometry of the edges. The strong conductance dependence on the presence of edge defects is corroborated by DFT calculations using SIESTA, which show that the electronic bands near the Fermi energy are strongly localized at the edge.

  15. Magnetic field effects in proteins

    NASA Astrophysics Data System (ADS)

    Jones, Alex R.

    2016-06-01

    Many animals can sense the geomagnetic field, which appears to aid in behaviours such as migration. The influence of man-made magnetic fields on biology, however, is potentially more sinister, with adverse health effects being claimed from exposure to fields from mobile phones or high voltage power lines. Do these phenomena have a common, biophysical origin, and is it even plausible that such weak fields can profoundly impact noisy biological systems? Radical pair intermediates are widespread in protein reaction mechanisms, and the radical pair mechanism has risen to prominence as perhaps the most plausible means by which even very weak fields might impact biology. In this New Views article, I will discuss the literature over the past 40 years that has investigated the topic of magnetic field effects in proteins. The lack of reproducible results has cast a shadow over the area. However, magnetic field and spin effects have proven to be useful mechanistic tools for radical mechanism in biology. Moreover, if a magnetic effect on a radical pair mechanism in a protein were to influence a biological system, the conditions necessary for it to do so appear increasing unlikely to have come about by chance.

  16. Strain-induced band engineering in monolayer stanene on Sb(111)

    NASA Astrophysics Data System (ADS)

    Gou, Jian; Kong, Longjuan; Li, Hui; Zhong, Qing; Li, Wenbin; Cheng, Peng; Chen, Lan; Wu, Kehui

    2017-10-01

    The two-dimensional (2D) allotrope of tin with low buckled honeycomb structure named stanene is proposed to be an ideal 2D topological insulator with a nontrivial gap larger than 0.1 eV. Theoretical works also pointed out the topological property of stanene amenability to strain tuning. In this paper we report the successful realization of high quality, monolayer stanene film as well as monolayer stanene nanoribbons on Sb(111) surface by molecular-beam epitaxy, providing an ideal platform to the study of stanene. More importantly, we observed a continuous evolution of the electronic bands of stanene across the nanoribbon, related to the strain field gradient in stanene. Our work experimentally confirmed that strain is an effective method for band engineering in stanene, which is important for fundamental research and application of stanene.

  17. Orbital effect of the magnetic field in dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.

    2017-12-01

    The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.

  18. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors.

    PubMed

    Liu, Mingkai; Miao, Yue-E; Zhang, Chao; Tjiu, Weng Weei; Yang, Zhibin; Peng, Huisheng; Liu, Tianxi

    2013-08-21

    A three dimensional (3D) polyaniline (PANI)-graphene nanoribbon (GNR)-carbon nanotube (CNT) composite, PANI-GNR-CNT, has been prepared via in situ polymerization of an aniline monomer on the surface of a GNR-CNT hybrid. Here, the 3D GNR-CNT hybrid has been conveniently prepared by partially unzipping the pristine multi-walled CNTs, while the residual CNTs act as "bridges" connecting different GNRs. The morphology and structure of the resulting hybrid materials have been characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffraction (XRD). Electrochemical tests reveal that the hierarchical PANI-GNR-CNT composite based on the two-electrode cell possesses much higher specific capacitance (890 F g(-1)) than the GNR-CNT hybrid (195 F g(-1)) and neat PANI (283 F g(-1)) at a discharge current density of 0.5 A g(-1). At the same time, the PANI-GNR-CNT composite displays good cycling stability with a retention ratio of 89% after 1000 cycles, suggesting that this novel PANI-GNR-CNT composite is a promising candidate for energy storage applications.

  19. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Mingkai; Miao, Yue-E.; Zhang, Chao; Tjiu, Weng Weei; Yang, Zhibin; Peng, Huisheng; Liu, Tianxi

    2013-07-01

    A three dimensional (3D) polyaniline (PANI)-graphene nanoribbon (GNR)-carbon nanotube (CNT) composite, PANI-GNR-CNT, has been prepared via in situ polymerization of an aniline monomer on the surface of a GNR-CNT hybrid. Here, the 3D GNR-CNT hybrid has been conveniently prepared by partially unzipping the pristine multi-walled CNTs, while the residual CNTs act as ``bridges'' connecting different GNRs. The morphology and structure of the resulting hybrid materials have been characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffraction (XRD). Electrochemical tests reveal that the hierarchical PANI-GNR-CNT composite based on the two-electrode cell possesses much higher specific capacitance (890 F g-1) than the GNR-CNT hybrid (195 F g-1) and neat PANI (283 F g-1) at a discharge current density of 0.5 A g-1. At the same time, the PANI-GNR-CNT composite displays good cycling stability with a retention ratio of 89% after 1000 cycles, suggesting that this novel PANI-GNR-CNT composite is a promising candidate for energy storage applications.

  20. Sensitive electrochemical sensing for polycyclic aromatic amines based on a novel core-shell multiwalled carbon nanotubes@ graphene oxide nanoribbons heterostructure.

    PubMed

    Zhu, Gangbing; Yi, Yinhui; Han, Zhixiang; Wang, Kun; Wu, Xiangyang

    2014-10-03

    Being awfully harmful to the environment and human health, the qualitative and quantitative determinations of polycyclic aromatic amines (PAAs) are of great significance. In this paper, a novel core-shell heterostructure of multiwalled carbon nanotubes (MWCNTs) as the core and graphene oxide nanoribbons (GONRs) as the shell (MWCNTs@GONRs) was produced from longitudinal partially unzipping of MWCNTs side walls using a simple wet chemical strategy and applied for electrochemical determination of three kinds of PAAs (1-aminopyrene (1-AP), 1-aminonaphthalene and 3,3'-diaminobiphenyl). Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis and electrochemical methods were used to characterize the as-prepared MWCNTs@GONRs. Due to the synergistic effects from MWCNTs and GONRs, the oxidation currents of PAAs at the MWCNTs@GONRs modified glassy carbon (GC) electrode are much higher than that at the MWCNTs/GC, graphene/GC and bare GC electrodes. 1-AP was used as the representative analyte to demonstrate the sensing performance of the MWCNTs@GONRs/GC electrode, and the proposed modified electrode has a linear response range of 8.0-500.0 nM with a detection limit of 1.5 nM towards 1-AP. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Splitting of a vertical multiwalled carbon nanotube carpet to a graphene nanoribbon carpet and its use in supercapacitors.

    PubMed

    Zhang, Chenguang; Peng, Zhiwei; Lin, Jian; Zhu, Yu; Ruan, Gedeng; Hwang, Chih-Chau; Lu, Wei; Hauge, Robert H; Tour, James M

    2013-06-25

    Potassium vapor was used to longitudinally split vertically aligned multiwalled carbon nanotubes carpets (VA-CNTs). The resulting structures have a carpet of partially split MWCNTs and graphene nanoribbons (GNRs). The split structures were characterized by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. When compared to the original VA-CNTs carpet, the split VA-CNTs carpet has enhanced electrochemical performance with better specific capacitance in a supercapacitor. Furthermore, the split VA-CNTs carpet has excellent cyclability as a supercapacitor electrode material. There is a measured maximum power density of 103 kW/kg at an energy density of 5.2 Wh/kg and a maximum energy density of 9.4 Wh/kg. The superior electrochemical performances of the split VA-CNTs can be attributed to the increased surface area for ion accessibility after splitting, and the lasting conductivity of the structure with their vertical conductive paths based on the preserved GNR alignment.

  2. Tunable magnetic states on the zigzag edges of hydrogenated and halogenated group-IV nanoribbons

    NASA Astrophysics Data System (ADS)

    Wang, Tzu-Cheng; Hsu, Chia-Hsiu; Huang, Zhi-Quan; Chuang, Feng-Chuan; Su, Wan-Sheng; Guo, Guang-Yu

    2016-12-01

    The magnetic and electronic properties of hydrogenated and halogenated group-IV zigzag nanoribbons (ZNRs) are investigated by first-principles density functional calculations. Fascinatingly, we find that all the ZNRs have magnetic edges with a rich variety of electronic and magnetic properties tunable by selecting the parent and passivating elements as well as controlling the magnetization direction and external strain. In particular, the electric property of the edge band structure can be tuned from the conducting to insulating with a band gap up to 0.7 eV. The last controllability would allow us to develop magnetic on-off nano-switches. Furthermore, ZNRs such as SiI, Ge, GeI and SnH, have fully spin-polarized metallic edge states and thus are promising materials for spintronics. The calculated magnetocrystalline anisotropy energy can be as large as ~9 meV/edge-site, being 2×103 time greater than that of bulk Ni and Fe (~5 μeV/atom), and thus has great potential for high density magneto-electric data-storage devices. Finally, the calculated exchange coupling strength and thus magnetic transition temperature increases as the applied strain goes from -5% to 5%. Our findings thus show that these ZNRs would have exciting applications in next-generation electronic and spintronic nano-devices.

  3. Nucleobases-decorated boron nitride nanoribbons for electrochemical biosensing: a dispersion-corrected DFT study.

    PubMed

    Dabhi, Shweta D; Roondhe, Basant; Jha, Prafulla K

    2018-03-28

    Understanding the interactions between biomolecules and boron nitride nanostructures is key for their use in nanobiotechnology and medical engineering. In this study, we investigated the adsorption of nucleobases adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U) over armchair and zigzag boron nitride nanoribbons (BNNR) using density functional theory to define the applicability of BNNR for the sensing of nucleobases and DNA sequencing. To appropriately account for dispersion, the van der Waals forces (DFT-D2)-type method developed by Grimme was also included in the calculations. The calculated adsorption energy suggests the following order of adsorption for A-BNNR and Z-BNNR with the nucleobases: G > T > A > U > C and G > C > A > T > U, respectively. The origin of the binding of the different nucleobases with BNNR was analysed and π-π stacking was found to be responsible. In addition, the electronic properties, density of states and work function significantly vary after adsorption. These analyses indicate different binding natures for different nucleobases and BNNRs. Thus, this study demonstrates that BNNR can be applied as biosensors for the detection of nucleobases, which are constituents of DNA and RNA. Furthermore, analysis of electronic properties and adsorption energies will play a key role in targeted drug delivery, enzyme activities and genome sequencing. Our results indicate that BNNRs have better adsorption capacity than graphene and boron nitride nanotubes.

  4. Full-dispersion Monte Carlo simulation of phonon transport in micron-sized graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, S., E-mail: smei4@wisc.edu; Knezevic, I., E-mail: knezevic@engr.wisc.edu; Maurer, L. N.

    2014-10-28

    We simulate phonon transport in suspended graphene nanoribbons (GNRs) with real-space edges and experimentally relevant widths and lengths (from submicron to hundreds of microns). The full-dispersion phonon Monte Carlo simulation technique, which we describe in detail, involves a stochastic solution to the phonon Boltzmann transport equation with the relevant scattering mechanisms (edge, three-phonon, isotope, and grain boundary scattering) while accounting for the dispersion of all three acoustic phonon branches, calculated from the fourth-nearest-neighbor dynamical matrix. We accurately reproduce the results of several experimental measurements on pure and isotopically modified samples [S. Chen et al., ACS Nano 5, 321 (2011);S. Chenmore » et al., Nature Mater. 11, 203 (2012); X. Xu et al., Nat. Commun. 5, 3689 (2014)]. We capture the ballistic-to-diffusive crossover in wide GNRs: room-temperature thermal conductivity increases with increasing length up to roughly 100 μm, where it saturates at a value of 5800 W/m K. This finding indicates that most experiments are carried out in the quasiballistic rather than the diffusive regime, and we calculate the diffusive upper-limit thermal conductivities up to 600 K. Furthermore, we demonstrate that calculations with isotropic dispersions overestimate the GNR thermal conductivity. Zigzag GNRs have higher thermal conductivity than same-size armchair GNRs, in agreement with atomistic calculations.« less

  5. Surface-Directed Assembly of Sequence-Defined Synthetic Polymers into Networks of Hexagonally Patterned Nanoribbons with Controlled Functionalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chun-Long; Zuckermann, Ronald N.; DeYoreo, James J.

    The exquisite self-assembly of proteins and peptides in nature into highly ordered functional materials has inspired innovative approaches to biomimetic materials design and synthesis. Here we report the assembly of peptoids—a class of highly stable sequence-defined synthetic polymers—into biomimetic materials on mica surfaces. The assembling 12-mer peptoid contains alternating acidic and aromatic residues, and the presence of Ca2+ cations creates peptoid-peptoid and peptoid-mica interactions that drive assembly. In situ atomic force microscopy (AFM) shows that peptoids first assemble into discrete nanoparticles, these particles then transform into hexagonally-patterned nanoribbons on mica surfaces. AFM-based dynamic force spectroscopy (DFS) studies show that peptoid-micamore » interactions are much stronger than peptoidpeptoid interactions in the presence of Ca2+, illuminating the physical parameters that drive peptoid assembly. We further demonstrate the display of functional groups at the N-terminus of assembling peptoid sequence to produce biomimetic materials with similar hierarchical structures. This research demonstrates that surface-directed peptoid assembly can be used as a robust platform to develop biomimetic coating materials for applications.« less

  6. Impact of tensile strain on the thermal transport of zigzag hexagonal boron nitride nanoribbon: An equilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Navid, Ishtiaque Ahmed; Intisar Khan, Asir; Subrina, Samia

    2018-02-01

    The thermal conductivity of single layer strained hexagonal boron nitride nanoribbon (h-BNNR) has been computed using the Green—Kubo formulation of Equilibrium Molecular Dynamics (EMD) simulation. We have investigated the impact of strain on thermal transport of h-BNNR by varying the applied tensile strain from 1% upto 5% through uniaxial loading. The thermal conductivity of h-BNNR decreases monotonically with the increase of uniaxial tensile strain keeping the sample size and temperature constant. The thermal conductivity can be reduced upto 86% for an applied uniaxial tensile strain of 5%. The impact of temperature and width variation on the thermal conductivity of h-BNNR has also been studied under different uniaxial tensile strain conditions. With the increase in temperature, the thermal conductivity of strained h-BNNR exhibits a decaying characteristics whereas it shows an opposite pattern with the increasing width. Such study would provide a good insight on the strain tunable thermal transport for the potential device application of boron nitride nanostructures.

  7. Adatoms in graphene nanoribbons: spintronic properties and the quantum spin Hall phase

    NASA Astrophysics Data System (ADS)

    Ganguly, Sudin; Basu, Saurabh

    2017-11-01

    We study the charge and spin transport in a two terminal graphene nanoribbon (GNR) decorated with random distribution of Gold (Au) adatoms using a Kane-Mele model. The presence of the quantum spin Hall (QSH) phase is found to crucially depend on the strength of the intrinsic spin-orbit term, while the plateau in the longitudinal conductance at a 2e^2/h value is not the smoking gun for the QSH phase. Thus the Au adatoms which manage to induce only a small intrinsic spin-orbit coupling cannot guarantee a QSH phase, albeit yielding a 2e^2/h plateau in the longitudinal conductance around the zero of the Fermi energy. If other adatoms can induce larger spin-orbit strengths (we call them hypothetical adatoms), they would ensure both the plateau and the QSH phase as is evident from the presence of the conducting edge states. Motivated by these results, the spintronic applications are explored via computing the spin polarized conductance for both Au and hypothetical adatoms. The y-component of the spin polarized conductance renders the dominant contribution owing to the finite width of the GNR in the y-direction and is found to possess strikingly similar features with that of the longitudinal conductance. The other two components, namely x and z are small but finite and hence have relevance in spintronic applications. Moreover, via computing the local current distribution, we show the clear emergence of edge states in the case of hypothetical adatoms, which are conspicuously absent for Au decorated GNRs.

  8. Graphene field-effect devices

    NASA Astrophysics Data System (ADS)

    Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H.

    2007-09-01

    In this article, graphene is investigated with respect to its electronic properties when introduced into field effect devices (FED). With the exception of manual graphene deposition, conventional top-down CMOS-compatible processes are applied. Few and monolayer graphene sheets are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The electrical properties of monolayer graphene sandwiched between two silicon dioxide films are studied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from double-gated Graphene-FEDs and silicon metal-oxide-semiconductor field-effect-transistors (MOSFETs).

  9. Magnetization distribution and spin transport of graphene/h-BN/graphene nanoribbon-based magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yan, X. H.; Guo, Y. D.; Xiao, Y.

    2017-09-01

    Motivated by recent electronic transport measurement of boron nitride-graphene hybrid atomic layers, we studied magnetization distribution, transmission and current-bias relation of graphene/h-BN/graphene (C/BN/C) nanoribbon-based magnetic tunnel junctions (MTJ) based on density functional theory and non-equilibrium Green's function methods. Three types of MTJs, i.e. asymmetric, symmetric (S) and symmetric (SS), and two types of lead magnetization alignment, i.e. parallel (PC) and antiparallel (APC), are considered. The results show that the magnetization distribution is closely related to the interface structure. Especially for asymmetric MTJ, the B/N atoms at the C/BN interface are spin-polarized and give finite magnetic moments. More interesting, it is found that the APC transmission of asymmetric MTJ with the thinnest barrier dominates over the PC one. By analyzing the projected density of states, one finds that the unusual higher APC transmission than PC is due to the coupling of electronic states of left ZGNR and right ZGNR. By integrating transmission, we calculate the current-bias voltage relation and find that the APC current is larger than PC current at small bias voltage and therefore reproduces a negative tunnel magnetoresistance. The results reported here will be useful and important for the design of C/BN/C-based MTJ.

  10. Synthesis and Application of Graphene Based Nanomaterials

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei

    Graphene, a two-dimensional sp2-bonded carbon material, has recently attracted major attention due to its excellent electrical, optical and mechanical properties. Depending on different applications, graphene and its derived hybrid nanomaterials can be synthesized by either bottom-up chemical vapor deposition (CVD) methods for electronics, or various top-down chemical reaction methods for energy generation and storage devices. My thesis begins with the investigation of CVD synthesis of graphene thin films in Chapter 1, including the direct growth of bilayer graphene on insulating substrates and synthesis of "rebar graphene": a hybrid structure with graphene and carbon or boron nitride nanotubes. Chapter 2 discusses the synthesis of nanoribbon-shaped materials and their applications, including splitting of vertically aligned multi-walled carbon nanotube carpets for supercapacitors, synthesis of dispersable ferromagnetic graphene nanoribbon stacks with enhanced electrical percolation properties in magnetic field, graphene nanoribbon/SnO 2 nanocomposite for lithium ion batteries, and enhanced electrocatalysis for hydrogen evolution reactions from WS2 nanoribbons. Next, Chapter 3 discusses graphene coated iron oxide nanomaterials and their use in energy storage applications. Finally, Chapter 4 introduces the development, characterization, and fabrication of laser induced graphene and its application as supercapacitors.

  11. Tunable magnetic states on the zigzag edges of hydrogenated and halogenated group-IV nanoribbons

    NASA Astrophysics Data System (ADS)

    Chuang, Feng-Chuan; Wang, Tzu-Cheng; Hsu, Chia-Hsiu; Huang, Zhi-Quan; Su, Wan-Sheng; Guo, Guang-Yu

    The magnetic and electronic properties of hydrogenated and halogenated group-IV zigzag nanoribbons (ZNRs) are investigated by first-principles density functional calculations. Fascinatingly, we find that all the ZNRs have magnetic edges with a rich variety of electronic and magnetic properties tunable by selecting the parent and passivating elements as well as controlling the magnetization direction and external strain. In particular, the electric property of the edge band structure can be tuned from the conducting to insulating with a band gap up to 0.7 eV, depending on the parent and passivating elements as well as the applied strain, magnetic configuration and magnetization orientation. The last controllability would allow us to develop magnetic on-off nano-switches. Furthermore, ZNRs such as SiI, Ge, GeI and SnH, have fully spin-polarized metallic edge states and thus are promising materials for spintronics. The calculated magnetocrystalline anisotropy energy can be as large as 9 meV/edge-site, being 2000 time greater than that of bulk Ni and Fe ( 5 μeV/atom), and thus has great potential for high density magneto-electric data-storage devices. Finally, the calculated exchange coupling strength and thus magnetic transition temperature increases as the applied strain goes from -5 % to 5 %. Our findings thus show that these ZNRs would have exciting applications in next-generation electronic and spintronic nano-devices.

  12. Synaptic Effects of Electric Fields

    NASA Astrophysics Data System (ADS)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits

  13. Spin-filtering and giant magnetoresistance effects in polyacetylene-based molecular devices

    NASA Astrophysics Data System (ADS)

    Chen, Tong; Yan, Shenlang; Xu, Liang; Liu, Desheng; Li, Quan; Wang, Lingling; Long, Mengqiu

    2017-07-01

    Using the non-equilibrium Green's function formalism in combination with density functional theory, we performed ab initio calculations of spin-dependent electron transport in molecular devices consisting of a polyacetylene (CnHn+1) chain vertically attached to a carbon chain sandwiched between two semi-infinite zigzag-edged graphene nanoribbon electrodes. Spin-charge transport in the device could be modulated to different magnetic configurations by an external magnetic field. The results showed that single spin conduction could be obtained. Specifically, the proposed CnHn+1 devices exhibited several interesting effects, including (dual) spin filtering, spin negative differential resistance, odd-even oscillation, and magnetoresistance (MR). Marked spin polarization with a filtering efficiency of up to 100% over a large bias range was found, and the highest MR ratio for the CnHn+1 junctions reached 4.6 × 104. In addition, the physical mechanisms for these phenomena were also revealed.

  14. Etiologic Field Effect: Reappraisal of the Field Effect Concept in Cancer Predisposition and Progression

    PubMed Central

    Lochhead, Paul; Chan, Andrew T; Nishihara, Reiko; Fuchs, Charles S; Beck, Andrew H; Giovannucci, Edward; Ogino, Shuji

    2014-01-01

    The term “field effect” (also known as field defect, field cancerization, or field carcinogenesis) has been used to describe a field of cellular and molecular alteration, which predisposes to the development of neoplasms within that territory. We explore an expanded, integrative concept, “etiologic field effect”, which asserts that various etiologic factors (the exposome including dietary, lifestyle, environmental, microbial, hormonal, and genetic factors) and their interactions (the interactome) contribute to a tissue microenvironmental milieu that constitutes a “field of susceptibility” to neoplasia initiation, evolution, and progression. Importantly, etiological fields predate the acquisition of molecular aberrations commonly considered to indicate presence of filed effect. Inspired by molecular pathological epidemiology (MPE) research, which examines the influence of etiologic factors on cellular and molecular alterations during disease course, an etiologically-focused approach to field effect can: 1) broaden the horizons of our inquiry into cancer susceptibility and progression at molecular, cellular, and environmental levels, during all stages of tumor evolution; 2) embrace host-environment-tumor interactions (including gene-environment interactions) occurring in the tumor microenvironment; and, 3) help explain intriguing observations, such as shared molecular features between bilateral primary breast carcinomas, and between synchronous colorectal cancers, where similar molecular changes are absent from intervening normal colon. MPE research has identified a number of endogenous and environmental exposures which can influence not only molecular signatures in the genome, epigenome, transcriptome, proteome, metabolome and interactome, but also host immunity and tumor behavior. We anticipate that future technological advances will allow the development of in vivo biosensors capable of detecting and quantifying “etiologic field effect” as abnormal

  15. On the effective field theory for quasi-single field inflation

    NASA Astrophysics Data System (ADS)

    Tong, Xi; Wang, Yi; Zhou, Siyi

    2017-11-01

    We study the effective field theory (EFT) description of the virtual particle effects in quasi-single field inflation, which unifies the previous results on large mass and large mixing cases. By using a horizon crossing approximation and matching with known limits, approximate expressions for the power spectrum and the spectral index are obtained. The error of the approximate solution is within 10% in dominate parts of the parameter space, which corresponds to less-than-0.1% error in the ns-r diagram. The quasi-single field corrections on the ns-r diagram are plotted for a few inflation models. Especially, the quasi-single field correction drives m2phi2 inflation to the best fit region on the ns-r diagram, with an amount of equilateral non-Gaussianity which can be tested in future experiments.

  16. Cell Specific Cytotoxicity and Uptake of Graphene Nanoribbons

    PubMed Central

    Chowdhury, Sayan Mullick; Lalwani, Gaurav; Zhang, Kevin; Yang, Jeong Yun; Neville, Kayla; Sitharaman, Balaji

    2012-01-01

    The synthesis of oxidized graphene nanoribbons (O-GNR) via longitudinal unzipping of carbon nanotubes opens avenues for their further development for a variety of biomedical applications. Evaluation of the cyto- and bio-compatibility is necessary to develop any new material for in vivo biomedical applications. In this study, we report the cytotoxicity screening of O-GNRs water-solubilized with PEG-DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)]), using six different assays, in four representative cell lines; Henrietta Lacks cells (HeLa) derived from cervical cancer tissue, National Institute of Health 3T3 mouse fibroblast cells (NIH-3T3), Sloan Kettering breast cancer cells (SKBR3) and Michigan cancer foundation-7 breast cancer cells (MCF7). These cell lines significantly differed in their response to O-GNR-PEG-DSPE formulations; assessed and evaluated using various endpoints (lactate dehydrogenase (LDH) release, cellular metabolism, lysosomal integrity and cell proliferation) for cytotoxicity. In general, all the cells showed a dose-dependent (10–400 μg/ml) and time-dependent (12–48 h) decrease in cell viability. However, the degree of cytotoxicity was significantly lower in MCF7 or SKBR3 cells compared to HeLa cells. These cells were 100% viable upto 48 hours, when incubated at 10μg/ml O-GNR-PEG-DSPE concentration, and showed decrease in cell viability above this concentration with ~78% of cells viable at the highest concentration (400 μg/ml). In contrast, significant cell death (5–25% cell death depending on the time point, and the assay) was observed for HeLa cells even at a low concentration of 10μg/ml. The decrease in cell viability was steep with increase in concentration with the CD50 values ≥ 100μg/ml depending on the assay, and time point. Transmission electron microscopy of the various cells treated with the O-GNR solutions show higher uptake of the O-GNR-PEG-DSPEs into HeLa cells compared to other cell

  17. Classical Hall Effect without Magnetic Field

    NASA Astrophysics Data System (ADS)

    Schade, Nicholas; Tao, Chiao-Yu; Schuster, David; Nagel, Sidney

    We show that the sign and density of charge carriers in a material can be obtained without the presence of a magnetic field. This effect, analogous to the classical Hall effect, is due solely to the geometry of the current-carrying wire. When current flows, surface charges along the wire create small electric fields that direct the current to follow the path of the conductor. In a curved wire, the charge carriers must experience a centripetal force, which arises from an electric field perpendicular to the drift velocity. This electric field produces a potential difference between the sides of the wire that depends on the sign and density of the charge carriers. We experimentally investigate circuits made from superconductors or graphene to find evidence for this effect.

  18. Tuning the Fermi velocity in Dirac materials with an electric field.

    PubMed

    Díaz-Fernández, A; Chico, Leonor; González, J W; Domínguez-Adame, F

    2017-08-14

    Dirac materials are characterized by energy-momentum relations that resemble those of relativistic massless particles. Commonly denominated Dirac cones, these dispersion relations are considered to be their essential feature. These materials comprise quite diverse examples, such as graphene and topological insulators. Band-engineering techniques should aim to a full control of the parameter that characterizes the Dirac cones: the Fermi velocity. We propose a general mechanism that enables the fine-tuning of the Fermi velocity in Dirac materials in a readily accessible way for experiments. By embedding the sample in a uniform electric field, the Fermi velocity is substantially modified. We first prove this result analytically, for the surface states of a topological insulator/semiconductor interface, and postulate its universality in other Dirac materials. Then we check its correctness in carbon-based Dirac materials, namely graphene nanoribbons and nanotubes, thus showing the validity of our hypothesis in different Dirac systems by means of continuum, tight-binding and ab-initio calculations.

  19. Highly sensitive and simultaneous electrochemical determination of 2-aminophenol and 4-aminophenol based on poly(l-arginine)-β-cyclodextrin/carbon nanotubes@graphene nanoribbons modified electrode.

    PubMed

    Yi, Yinhui; Zhu, Gangbing; Wu, Xiangyang; Wang, Kun

    2016-03-15

    Owing to the similar characteristics and physiochemical property of 2-aminophenol (2-AP) and 4-aminophenol (4-AP), the highly sensitive simultaneous electrochemical determination of 2- and 4-AP is a great challenge. In this paper, by electropolymerizing β-cyclodextrin (β-CD) and l-arginine (l-Arg) on the surface of carbon nanotubes@graphene nanoribbons (CNTs@GNRs) core-shell heterostructure, a P-β-CD-l-Arg/CNTs@GNRs nanohybrid modified electrode was prepared successfully, and it could exhibit the synergetic effects of β-CD (high host-guest recognition and enrichment ability), l-Arg (excellent electrocatalytic activity) and CNTs@GNRs (prominent electrochemical properties and large surface area), the P-β-CD-l-Arg/CNTs@GNRs modified electrode was used in the electrochemical determination of 2- and 4-AP, the results demonstrated that the highly sensitive and simultaneous determination of 2- and 4-AP is successfully achieved and the modified electrode has a linear response range of 25.0-1300.0 nM for both 2- and 4-AP, and the detection limits of 2- and 4-AP obtained in this work are 6.2 and 3.5 nM, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Saving Moore’s Law Down To 1 nm Channels With Anisotropic Effective Mass

    NASA Astrophysics Data System (ADS)

    Ilatikhameneh, Hesameddin; Ameen, Tarek; Novakovic, Bozidar; Tan, Yaohua; Klimeck, Gerhard; Rahman, Rajib

    2016-08-01

    Scaling transistors’ dimensions has been the thrust for the semiconductor industry in the last four decades. However, scaling channel lengths beyond 10 nm has become exceptionally challenging due to the direct tunneling between source and drain which degrades gate control, switching functionality, and worsens power dissipation. Fortunately, the emergence of novel classes of materials with exotic properties in recent times has opened up new avenues in device design. Here, we show that by using channel materials with an anisotropic effective mass, the channel can be scaled down to 1 nm and still provide an excellent switching performance in phosphorene nanoribbon MOSFETs. To solve power consumption challenge besides dimension scaling in conventional transistors, a novel tunnel transistor is proposed which takes advantage of anisotropic mass in both ON- and OFF-state of the operation. Full-band atomistic quantum transport simulations of phosphorene nanoribbon MOSFETs and TFETs based on the new design have been performed as a proof.

  1. Extended effective field theory of inflation

    NASA Astrophysics Data System (ADS)

    Ashoorioon, Amjad; Casadio, Roberto; Cicoli, Michele; Geshnizjani, Ghazal; Kim, Hyung J.

    2018-02-01

    We present a general framework where the effective field theory of single field inflation is extended by the inclusion of operators with mass dimension 3 and 4 in the unitary gauge. These higher dimensional operators introduce quartic and sextic corrections to the dispersion relation. We study the regime of validity of this extended effective field theory of inflation and the effect of these higher dimensional operators on CMB observables associated with scalar perturbations, such as the speed of sound, the amplitude of the power spectrum and the tensor-to-scalar ratio. Tensor perturbations remain instead, unaltered.

  2. Origin of spin polarization in an edge boron doped zigzag graphene nanoribbon: a potential spin filter.

    PubMed

    Chakrabarty, Soubhik; Wasey, A H M Abdul; Thapa, Ranjit; Das, G P

    2018-08-24

    To realize a graphene based spintronic device, the prime challenge is to control the electronic structure of edges. In this work we find the origin of the spin filtering property in edge boron doped zigzag graphene nanoribbons (ZGNRs) and provide a guide to preparing a graphene based next-generation spin filter based device. Here, we unveil the role of orbitals (p-electron) to tune the electronic, magnetic and transport properties of edge B doped ZGNRs. When all the edge carbon atoms at one of the edges of ZGNRs are replaced by B (100% edge B doping), the system undergoes a semiconductor to metal transition. The role of passivation of the edge with single/double atomic hydrogen on the electronic properties and its relation with the p-electron is correlated in-depth. 50% edge B doped ZGNRs (50% of the edge C atoms at one of the edges are replaced by B) also show half-metallicity when the doped edge is left unpassivated. The half-metallic systems show 100% spin filtering efficiency for a wide range of bias voltages. Zero-bias transmission function of the other configurations shows asymmetric behavior for the up and down spin channels, thereby indicating their possible application potential in nano-spintronics.

  3. Magnetic adatoms in two and four terminal graphene nanoribbons: A comparison between their spin polarized transport

    NASA Astrophysics Data System (ADS)

    Ganguly, Sudin; Basu, Saurabh

    2018-04-01

    We study the charge and spin transport in two and four terminal graphene nanoribbons (GNR) decorated with random distribution of magnetic adatoms. The inclusion of the magnetic adatoms generates only the z-component of the spin polarized conductance via an exchange bias in the absence of Rashba spin-orbit interaction (SOI), while in presence of Rashba SOI, one is able to create all the three (x, y and z) components. This has important consequences for possible spintronic applications. The charge conductance shows interesting behaviour near the zero of the Fermi energy. Where in presence of magnetic adatoms the familiar plateau at 2e2 / h vanishes, thereby transforming a quantum spin Hall insulating phase to an ordinary insulator. The local charge current and the local spin current provide an intuitive idea on the conductance features of the system. We found that, the local charge current is independent of Rashba SOI, while the three components of the local spin currents are sensitive to Rashba SOI. Moreover the fluctuations of the spin polarized conductance are found to be useful quantities as they show specific trends, that is, they enhance with increasing adatom densities. A two terminal GNR device seems to be better suited for possible spintronic applications.

  4. Low resistivity of graphene nanoribbons with zigzag-dominated edge fabricated by hydrogen plasma etching combined with Zn/HCl pretreatment

    NASA Astrophysics Data System (ADS)

    Liu, Fengkui; Li, Qi; Wang, Rubing; Xu, Jianbao; Hu, Junxiong; Li, Weiwei; Guo, Yufen; Qian, Yuting; Deng, Wei; Ullah, Zaka; Zeng, Zhongming; Sun, Mengtao; Liu, Liwei

    2017-11-01

    Graphene nanoribbons (GNRs) have attracted intensive research interest owing to their potential applications in high performance graphene-based electronics. However, the deterioration of electrical performance caused by edge disorder is still an important obstacle to the applications. Here, we report the fabrication of low resistivity GNRs with a zigzag-dominated edge through hydrogen plasma etching combined with the Zn/HCl pretreatment method. This method is based on the anisotropic etching properties of hydrogen plasma in the vicinity of defects created by sputtering zinc (Zn) onto planar graphene. The polarized Raman spectra measurement of GNRs exhibits highly polarization dependence, which reveals the appearance of the zigzag-dominated edge. The as-prepared GNRs exhibit high carrier mobility (˜1332.4 cm2 v-1 s-1) and low resistivity (˜0.7 kΩ) at room temperature. Particularly, the GNRs can carry large current density (5.02 × 108 A cm-2) at high voltage (20.0 V) in the air atmosphere. Our study develops a controllable method to fabricate zigzag edge dominated GNRs for promising applications in transistors, sensors, nanoelectronics, and interconnects.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soleimanikahnoj, S.; Knezevic, I.

    Zigzag phosphorene nanoribbons are metallic owing to the edge states, whose energies are inside the gap and far from the bulk bands. We show that -- through electrical manipulation of edge states -- electron propagation can be restricted to one of the ribbon edges or, in case of bilayer phosphorene nanoribbons, to one of the layers. This finding implies that edge and layer can be regarded as tunable equivalents of the spin-one-half degree of freedom, i.e., the pseudospin. In both layer- and edge-pseudospin schemes, we propose and characterize a pseudospin field-effect transistor, which can generate pseudospin-polarized current. Also, we proposemore » edge- and layer-pseudospin valves that operate analogously to conventional spin valves. The performance of valves in each pseudospin scheme is benchmarked by the pseudomagnetoresistance (PMR) ratio. The edge-pseudospin valve shows a nearly perfect PMR, with remarkable robustness against device parameters and disorder. Furthermore, these results may initiate new developments in pseudospin electronics.« less

  6. Effective Field Theory on Manifolds with Boundary

    NASA Astrophysics Data System (ADS)

    Albert, Benjamin I.

    In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.

  7. Length-dependent thermal transport in one-dimensional self-assembly of planar π-conjugated molecules

    NASA Astrophysics Data System (ADS)

    Tang, Hao; Xiong, Yucheng; Zu, Fengshuo; Zhao, Yang; Wang, Xiaomeng; Fu, Qiang; Jie, Jiansheng; Yang, Juekuan; Xu, Dongyan

    2016-06-01

    This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport.This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport

  8. Electric field effect in superconductor-ferroelectric structures

    NASA Technical Reports Server (NTRS)

    Lemanov, V. V.

    1995-01-01

    Electric field effect (the E-effect) in superconductors has been studied since 1960 when Glover and Sherill published their results on a shift of the critical temperature T(sub c) about 0.1 mK in Sn and In thin films under the action Off the field E=300 kV/cm. Stadler was the first to study the effect or spontaneous polarization of ferroelectric substrate on the electric properties of superconductors. He observed that the reversal of polarization of TGS substrate under action of external electric field in Sn-TGS structures induced the T(sub c) shift in Sn about 1.3 mK. Since in this case the effect is determined not by the electric field but by the spontaneous polarization, we may call this effect the P-effect. High-T(sub c) superconductors opened the new possibilities to study the E- and P-effects due to low charge carrier density, as compared to conventional superconductors, and to anomalously small coherence length. Experiments in this field began in many laboratories but a breakthrough was made where a shift in T(sub c) by 50 mK was observed in YBCO thin films. Much higher effects were observed in subsequent studies. The first experiments on the P-effect in high-T(sub c) superconductors were reported elsewhere. In this report we shall give a short description of study on the P-effect in high-T(sub c) superconductors.

  9. Spurious heat conduction behavior of finite-size graphene nanoribbon under extreme uniaxial strain caused by the AIREBO potential

    NASA Astrophysics Data System (ADS)

    Yang, Xueming; Wu, Sihan; Xu, Jiangxin; Cao, Bingyang; To, Albert C.

    2018-02-01

    Although the AIREBO potential can well describe the mechanical and thermal transport of the carbon nanostructures under normal conditions, previous studies have shown that it may overestimate the simulated mechanical properties of carbon nanostructures in extreme strains near fracture. It is still unknown whether such overestimation would also appear in the thermal transport of nanostructrues. In this paper, the mechanical and thermal transport of graphene nanoribbon under extreme deformation conditions are studied by MD simulations using both the original and modified AIREBO potential. Results show that the cutoff function of the original AIREBO potential produces an overestimation on thermal conductivity in extreme strains near fracture stage. Spurious heat conduction behavior appears, e.g., the thermal conductivity of GNRs does not monotonically decrease with increasing strain, and even shows a ;V; shaped reversed and nonphysical trend. Phonon spectrum analysis show that it also results in an artificial blue shift of G peak and phonon stiffening of the optical phonon modes. The correlation between spurious heat conduction behavior and overestimation of mechanical properties near the fracture stage caused by the original AIREBO potential are explored and revealed.

  10. Self-assembly of a nanotube from a black phosphorus nanoribbon on a string of fullerenes at low temperature.

    PubMed

    Cai, Kun; Shi, Jiao; Liu, Ling-Nan; Qin, Qing-Hua

    2017-09-13

    A string of fullerenes is used for generating a nanotube by self-assembly of a black phosphorus (BP) nanoribbon at a temperature of 8 K. Among the fullerenes in the string, there are at least two fixed fullerenes placed along the edge of the BP ribbon for keeping its configuration stability during winding. By way of molecular dynamics simulations, it is found that successful generation of a BP nanotube depends on the bending stiffness of the ribbon and the attraction between the fullerenes and the ribbon. When the attraction is strong enough, the two edges (along the zigzag direction) of the BP ribbon will be able to bond covalently to form a nanotube. By the molecular dynamics approach, the maximum width of the BP ribbon capable of forming a nanotube with a perfect length is investigated in three typical models. The maximum width of the BP ribbon becomes larger with the string containing more fullerenes. This finding reveals a way to control the width of the BP ribbon which forms a nanotube. It provides guidance for fabricating a BP nanotube with a specified length, the same as to the width of the ribbon.

  11. Cell specific cytotoxicity and uptake of graphene nanoribbons.

    PubMed

    Mullick Chowdhury, Sayan; Lalwani, Gaurav; Zhang, Kevin; Yang, Jeong Y; Neville, Kayla; Sitharaman, Balaji

    2013-01-01

    The synthesis of oxidized graphene nanoribbons (O-GNR) via longitudinal unzipping of carbon nanotubes opens avenues for their further development for a variety of biomedical applications. Evaluation of the cyto- and bio-compatibility is necessary to develop any new material for in vivo biomedical applications. In this study, we report the cytotoxicity screening of O-GNRs water-solubilized with PEG-DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)]), using six different assays, in four representative cell lines; Henrietta Lacks cells (HeLa) derived from cervical cancer tissue, National Institute of Health 3T3 mouse fibroblast cells (NIH-3T3), Sloan Kettering breast cancer cells (SKBR3) and Michigan cancer foundation-7 breast cancer cells (MCF7). These cell lines significantly differed in their response to O-GNR-PEG-DSPE formulations; assessed and evaluated using various endpoints (lactate dehydrogenase (LDH) release, cellular metabolism, lysosomal integrity and cell proliferation) for cytotoxicity. In general, all the cells showed a dose-dependent (10-400 μg/ml) and time-dependent (12-48 h) decrease in cell viability. However, the degree of cytotoxicity was significantly lower in MCF7 or SKBR3 cells compared to HeLa cells. These cells were 100% viable upto 48 h, when incubated at 10 μg/ml O-GNR-PEG-DSPE concentration, and showed decrease in cell viability above this concentration with ~78% of cells viable at the highest concentration (400 μg/ml). In contrast, significant cell death (5-25% cell death depending on the time point, and the assay) was observed for HeLa cells even at a low concentration of 10 μg/ml. The decrease in cell viability was steep with increase in concentration with the CD(50) values ≥ 100 μg/ml depending on the assay, and time point. Transmission electron microscopy of the various cells treated with the O-GNR solutions show higher uptake of the O-GNR-PEG-DSPEs into HeLa cells compared to other cell types

  12. Infrared spectroscopy and surface chemistry of beta-Ga(2)O(3) nanoribbons.

    PubMed

    Bermudez, V M; Prokes, S M

    2007-12-04

    The structure and surface chemistry of crystalline beta-Ga2O3 nanoribbons (NRs), deposited in a thin layer on various metallic and dielectric substrates (mainly on Au), have been characterized using vibrational spectroscopy. The results have been analyzed with the aid of a previous ab initio theoretical model for the beta-Ga2O3 surface structure. Raman spectra and normal-incidence infrared (IR) transmission data show little if any difference from corresponding results for bulk single crystals. For a layer formed on a metallic substrate, IR reflection-absorption spectroscopy (IRRAS) shows longitudinal-optic (LO) modes that are red-shifted by approximately 37 cm-1 relative to those of a bulk crystal. Evidence is also seen for a bonding interaction at the Ga2O3/Au interface following heating in room air. Polarization-modulated IRRAS has been used to study the adsorption of pyridine under steady-state conditions in ambient pressures as high as approximately 5 Torr. The characteristic nu19b and nu8a modes of adsorbed pyridine exhibit little or no shift from the corresponding gas-phase values. This indicates that the surface is only weakly acidic, consistent with the theoretical prediction that singly unsaturated octahedral Ga sites are the only reactive cation sites on the NR surface. However, evidence for adsorption at defect sites is seen in the form of more strongly shifted modes that saturate in intensity at low pyridine coverage. The effect of H atoms, formed by thermal cracking of H2, has also been studied. No Ga-H or O-H bonds are observed on the pristine NR surface. This suggests that the previously reported presence of such species on Ga2O3 powders heated in H2 is a result of a partial reduction of the oxide surface. The heat of adsorption of atomic H on the pristine beta-Ga2O3(100) surface at 0 K is computed to be -1.79 eV per H at saturation (average of Ga-H and O-H sites), whereas a value of +0.45 eV per H is found for the dissociative adsorption of H2. This

  13. Nonlinear effective permittivity of field grading composite dielectrics

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Zhao, Xiaolei; Li, Qi; Hu, Jun; He, Jinliang

    2018-02-01

    Field grading composite dielectrics with good nonlinear electrical properties can function as smart materials for electrical field control in a high-voltage apparatus. Besides the well-documented nonlinear conducting behavior, the field-dependent effective permittivity of field grading composites were also reported; however, in-depth research on the mechanism and influencing factors of this nonlinear permittivity are absent. This paper theoretically discusses the origin of the nonlinear effective permittivity, and the mechanism is illustrated through the waveform analysis of the nonlinear response of ZnO microvaristor/silicone rubber composites under a pure AC field. The field-dependent effective permittivity and loss property of the ZnO composites are measured by a dielectric spectrometer in both DC and AC fields under different frequencies. Through comparison of measurement results and theoretical models, the influence of the filler concentration, frequency, and time domain characteristics of the applied field on the nonlinear permittivity of the field grading composites are well explained. This paper provides insight into the nonlinear permittivity of field grading composites, and will be helpful for further tuning the performance of field grading composites.

  14. Dynamic Response of Exchange Bias in Graphene Nanoribbons

    DTIC Science & Technology

    2012-01-01

    in establishing the GNRs-based spintronic devices. Keywords: Dynamic magnetic properties , exchange bias, training effect, field sweep rate and...transport properties by means of various applied conditions 6, 7 . The discovery 8 of weak ferromagnetism in polymerized C60 has invoked a special...attention to investigate the magnetic properties of carbon- based materials. Graphene is an allotrope of carbon and irradiation of graphene with ions

  15. Enhanced lithium-ion storage and hydrogen evolution reaction catalysis of MoS2/graphene nanoribbons hybrids with loose interlaced three-dimension structure

    NASA Astrophysics Data System (ADS)

    Wu, Xuan; Fan, Zihan; Ling, Xiaolun; Wu, Shuting; Chen, Xin; Hu, Xiaolin; Zhuang, Naifeng; Chen, Jianzhong

    2018-06-01

    Molybdenum disulfide hybridized with graphene nanoribbon (MoS2/GNR) was prepared by mild method. MoS2/GNR hybrids interlace loosely into a three-dimension structure. GNR hybridization can improve the dispersity of MoS2, reduce the grain size of MoS2 to 3-6 nm, increase the specific surface area, and broaden the interlamellar spacing of MoS2 (002) plane to 0.67-0.73 nm, which facilitates the transportation of Li+ ions for lithium-ion battery. MoS2/GNR hybrids have better cyclic durability, higher specific discharge capacity, and superior rate performance than MoS2. The electrocatalytic activity in hydrogen evolution reaction shows that MoS2/GNR hybrids have the lower overpotential and the larger current density with a negligible current loss after 2000 cycles. Hybridizing with GNRs enhances both the lithium-ion electrochemical storage and the electrocatalytic activity of MoS2. [Figure not available: see fulltext.

  16. One-step synthesis of graphene nanoribbon-MnO₂ hybrids and their all-solid-state asymmetric supercapacitors.

    PubMed

    Liu, Mingkai; Tjiu, Weng Weei; Pan, Jisheng; Zhang, Chao; Gao, Wei; Liu, Tianxi

    2014-04-21

    Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO₂) of graphene nanoribbons (GNR) and MnO₂ nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO₂ nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO₂ hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the desirable porous structure, excellent electrical conductivity, as well as high rate capability and specific capacitances of both the GNR and GNR-MnO₂ hybrid, the optimized GNR//GNR-MnO₂ asymmetric supercapacitor can be cycled reversibly in an enlarged potential window of 0-2.0 V. In addition, the fabricated GNR//GNR-MnO₂ asymmetric supercapacitor exhibits a significantly enhanced maximum energy density of 29.4 W h kg(-1) (at a power density of 12.1 kW kg(-1)), compared with that of the symmetric cells based on GNR-MnO₂ hybrids or GNR sheets. This greatly enhanced energy storage ability and high rate capability can be attributed to the homogeneous dispersion and excellent pseudocapacitive performance of MnO₂ nanoparticles and the high electrical conductivity of the GNRs.

  17. First principles study of carbon nanostructures, transition metal dichalcogenides, and magnetoelectric interfaces

    NASA Astrophysics Data System (ADS)

    Hammouri, Mahmoud

    Perovskite oxides such as lead zirconate titanate, lanthanum manganite and two dimensional, atomically thick materials such as graphene, carbon nanotubes, graphene nanoribbon, and transition-metal dichalcogenides (TMDs) received intensive attention due to their electronic, magnetic, and transport properties. Understanding the properties and structure of these materials in solid state is a longstanding scientific challenge, especially for experimentalists. Using state-of-the-art density functional theory, different properties can be explained with an excellent match with experiments. This thesis presents an Ab initio density functional theory study of the electronic, magnetic, and transport properties of nanostructure systems. Nanostructures studied in this thesis include graphene, carbon nanotubes, graphene nanoribbons, zirconium disulfide, and La0.67Sr0.33MnO3/PbZr 02 Ti0.8O3 (LSMO/PZT) (100) interface. I investigated the mechanism of chemical functionalization of the side walls of carbon nanotubes by benzyne molecules. Binding energies, geometries, and electronic structure changes due to this functionalization are examined in detail. The binding energies between benzyne molecules and carbon nanotubes are found to be inversely proportional to nanotube diameter. We also studied the properties of graphene nanoribbons under compressions. Our study showed that the band gaps of graphene nanoribbons were strongly affected by applied compression. In addition, we found that the effect of compression has a strong influence on the IV-characteristic. We also investigated the effect of uniaxial strain on the electronic and magnetic properties of zirconium disulfide nanoribbons. Our calculation showed that the magnetization of zirconium disulfide nanoribbons can be switched on and off by the applied strain. In the last part, we studied the properties of the interface between two perovskite oxides, lead zirconate titanate and lanthanum strontium manganite. Our study

  18. Organized one dimensional nanomaterials: From preparations to applications

    NASA Astrophysics Data System (ADS)

    Wen, Xiaogang

    This thesis is mainly concerned with the development of organized one dimensional (1D) nanomaterials and their applications. We have synthesized Ag2S, Cu2S nanowires, Fe2O3 nanobelt and nanowire arrays and ZnO nanobelt arrays from corresponding metal substrate respectively via gas solid reaction methods under different growth conditions. The effect of various parameters including temperature, reaction time, composition of gas, surface pre-oxidation, size of source materials etc. on the growth of metal oxide/sulfide 1D nanostructure have been studied systemically. The size and morphology of these 1D nanomaterials could be rationally controlled by adjusting the growth conditions. A tip growth mechanism has been confirmed based our results. The properties including PL, Raman, field effect transistors, and field emission of these materials have been measured. Cu(OH)2 nanoribbons have been synthesized by a solution solid reaction method using Cu and Cu2S nanowires as precursors. Cu(OH) 2 nanoribbons can form well-aligned arrays on Cu substrate. Low temperature facilitate the formation of Cu(OH)2 nanoribbon arrays. Reaction conditions affect the morphology, crystal structure, even composition of the products much. CuO nanorod arrays of several nm in diameter could be synthesis in changed condition. Cu(OH)2 nanoribbon arrays are good sacrifice template for synthesizing other Cu-based 1D nanomaterials. It has been converted to CuO, Cu2O, Cu8S9, Cu etc. 1D nanostructure through different physical and chemical reaction process. Au/Cu2S core/sheath nanowires have been synthesized in solution phase via a simple template-induced redox deposition process, after removing the Cu2S template, Au nanotubes have been formed. The photoelectrochemistry (PEC) properties of it have been studied. Ag dendritic nanostructures have been prepared via solution reaction. We have revealed that the stem, branch, and sub-branch grow along <100>, <111> and <100> directions, respectively. Such a

  19. Inversion in the magnetic field effect of benzilketyl:SDS radical pair at high fields

    NASA Astrophysics Data System (ADS)

    Misra, Ajay; Haldar, Mintu; Chowdhury, Mihir

    1999-05-01

    The effect of a high magnetic field (up to 13.3 T) on radical pairs generated by the hydrogen abstraction of the photoexcited benzil triplet from sodium dodecyl sulphate has been studied. It was found that both the radical pair lifetime and the free radical yield increase with an increase of field from 0 to 4 T. A further increase of field causes a decrease in both. This reversal of the magnetic field effect (MFE) above 4 T has been explained in terms of relaxation mechanism and competition between a number of rate processes. The effect of reducing the micelle size on the MFE inversion has been discussed.

  20. Magnetic field evolution in white dwarfs: The hall effect and complexity of the field

    NASA Technical Reports Server (NTRS)

    Muslimov, A. G.; Van Horn, H. M.; Wood, M. A.

    1995-01-01

    We calculate the evolution of the magnetic fields in white dwarfs, taking into account the Hall effect. Because this effect depends nonlinearly upon the magnetic field strength B, the time dependences of the various multipole field components are coupled. The evolution of the field is thus significantly more complicated than has been indicated by previous investigations. Our calculations employ recent white dwarf evolutionary sequences computed for stars with masses 0.4, 0.6, 0.8, and 1.0 solar mass. We show that in the presence of a strong (up to approximately 10(exp 9) G) internal toroidal magnetic field; the evolution of even the lowest order poloidal modes can be substantially changed by the Hall effect. As an example, we compute the evolution of an initially weak quadrupole component, which we take arbitrarily to be approximately 0.1%-1% of the strength of a dominant dipole field. We find that coupling provided by the Hall effect can produce growth of the ratio of the quadrupole to the dipole component of the surface value of the magnetic field strength by more than a factor of 10 over the 10(exp 9) to 10(exp 10) year cooling lifetime of the white dwarf. Some consequences of these results for the process of magnetic-field evolution in white dwarfs are briefly discussed.