Sample records for nanorod building blocks

  1. Alq3 nanorods: promising building blocks for optical devices.

    PubMed

    Chen, Wei; Peng, Qing; Li, Yadong

    2008-07-17

    Monodisperse Alq3 nanorods with hexagonal-prism-like morphology are produced via a facile, emulsion based synthesis route. The photoluminescence of individual nanorods differs from the bulk material. These nanorods are promising building blocks for novel optical devices. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Engineering the formation of secondary building blocks within hollow interiors.

    PubMed

    Li, Xiaobo; Liu, Xiao; Ma, Yi; Li, Mingrun; Zhao, Jiao; Xin, Hongchuan; Zhang, Lei; Yang, Yan; Li, Can; Yang, Qihua

    2012-03-15

    Secondary building blocks within the cavities of primary silica-architecture building blocks are successfully engineered. The immobilized surfactant directs the selective dissolution and reassembly of dissolved silicate species for the formation of secondary building blocks (hollow nanospheres/nanorods; see figure). Supported TiO(2) on nanostructures with multilevel interiors is shown to exhibit significantly enhanced activity in photocatalytic H(2) production. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effective Light Directed Assembly of Building Blocks with Microscale Control.

    PubMed

    Dinh, Ngoc-Duy; Luo, Rongcong; Christine, Maria Tankeh Asuncion; Lin, Weikang Nicholas; Shih, Wei-Chuan; Goh, James Cho-Hong; Chen, Chia-Hung

    2017-06-01

    Light-directed forces have been widely used to pattern micro/nanoscale objects with precise control, forming functional assemblies. However, a substantial laser intensity is required to generate sufficient optical gradient forces to move a small object in a certain direction, causing limited throughput for applications. A high-throughput light-directed assembly is demonstrated as a printing technology by introducing gold nanorods to induce thermal convection flows that move microparticles (diameter = 40 µm to several hundreds of micrometers) to specific light-guided locations, forming desired patterns. With the advantage of effective light-directed assembly, the microfluidic-fabricated monodispersed biocompatible microparticles are used as building blocks to construct a structured assembly (≈10 cm scale) in ≈2 min. The control with microscale precision is approached by changing the size of the laser light spot. After crosslinking assembly of building blocks, a novel soft material with wanted pattern is approached. To demonstrate its application, the mesenchymal stem-cell-seeded hydrogel microparticles are prepared as functional building blocks to construct scaffold-free tissues with desired structures. This light-directed fabrication method can be applied to integrate different building units, enabling the bottom-up formation of materials with precise control over their internal structure for bioprinting, tissue engineering, and advanced manufacturing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dispersion and alignment of nanorods in cylindrical block copolymer thin films.

    PubMed

    Rasin, Boris; Chao, Huikuan; Jiang, Guoqian; Wang, Dongliang; Riggleman, Robert A; Composto, Russell J

    2016-02-21

    Although significant progress has been made in controlling the dispersion of spherical nanoparticles in block copolymer thin films, our ability to disperse and control the assembly of anisotropic nanoparticles into well-defined structures is lacking in comparison. Here we use a combination of experiments and field theoretic simulations to examine the assembly of gold nanorods (AuNRs) in a block copolymer. Experimentally, poly(2-vinylpyridine)-grafted AuNRs (P2VP-AuNRs) are incorporated into poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) thin films with a vertical cylinder morphology. At sufficiently low concentrations, the AuNRs disperse in the block copolymer thin film. For these dispersed AuNR systems, atomic force microscopy combined with sequential ultraviolet ozone etching indicates that the P2VP-AuNRs segregate to the base of the P2VP cylinders. Furthermore, top-down transmission electron microscopy imaging shows that the P2VP-AuNRs mainly lie parallel to the substrate. Our field theoretic simulations indicate that the NRs are strongly attracted to the cylinder base where they can relieve the local stretching of the minority block of the copolymer. These simulations also indicate conditions that will drive AuNRs to adopt a vertical orientation, namely by increasing nanorod length and/or reducing the wetting of the short block towards the substrate.

  5. Self-organized, highly luminescent CdSe nanorod-DNA complexes.

    PubMed

    Artemyev, Mikhail; Kisiel, Dmitry; Abmiotko, Sergey; Antipina, Maria N; Khomutov, Gennady B; Kislov, Vladimir V; Rakhnyanskaya, Anna A

    2004-09-01

    DNA molecules are useful building blocks and nanotemplates for controllable fabrication of various bioinorganic nanostructures due to their unique physical-chemical properties and recognition capabilities and the synthetic availability of desired nucleotide sequences and length. We have synthesized novel DNA complexes with positively charged, highly luminescent CdSe nanorods that can be self-organized into filamentary, netlike, or spheroidal nanostructures. DNA-CdSe-nanorod filaments possess strongly linearly polarized photoluminescence due to the unidirectional orientation of nanorods along the filaments. Copyright 2004 American Chemical Society

  6. Polyacrylonitrile block copolymers for the preparation of a thin carbon coating around TiO2 nanorods for advanced lithium-ion batteries.

    PubMed

    Oschmann, Bernd; Bresser, Dominic; Tahir, Muhammad Nawaz; Fischer, Karl; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf

    2013-11-01

    Herein, a new method for the realization of a thin and homogenous carbonaceous particle coating, made by carbonizing RAFT polymerization derived block copolymers anchored on anatase TiO2 nanorods, is presented. These block copolymers consist of a short anchor block (based on dopamine) and a long, easily graphitizable block of polyacrylonitrile. The grafting of such block copolymers to TiO2 nanorods creates a polymer shell, which can be visualized by atomic force microscopy (AFM). Thermal treatment at 700 °C converts the polyacrylonitrile block to partially graphitic structures (as determined by Raman spectroscopy), establishing a thin carbon coating (as determined by transmission electron microscopy, TEM, analysis). The carbon-coated TiO2 nanorods show improved electrochemical performance in terms of achievable specific capacity and, particularly, long-term cycling stability by reducing the average capacity fading per cycle from 0.252 mAh g(-1) to only 0.075 mAh g(-1) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. INFERENCE BUILDING BLOCKS

    DTIC Science & Technology

    2018-02-15

    address the problem that probabilistic inference algorithms are diÿcult and tedious to implement, by expressing them in terms of a small number of...building blocks, which are automatic transformations on probabilistic programs. On one hand, our curation of these building blocks reflects the way human...reasoning with low-level computational optimization, so the speed and accuracy of the generated solvers are competitive with state-of-the-art systems. 15

  8. First-Principles Prediction of New Electrides with Nontrivial Band Topology Based on One-Dimensional Building Blocks

    NASA Astrophysics Data System (ADS)

    Park, Changwon; Kim, Sung Wng; Yoon, Mina

    2018-01-01

    We introduce a new class of electrides with nontrivial band topology by coupling materials database searches and first-principles-calculations-based analysis. Cs3O and Ba3N are for the first time identified as a new class of electrides, consisting of one-dimensional (1D) nanorod building blocks. Their crystal structures mimic β -TiCl3 with the position of anions and cations exchanged. Unlike the weakly coupled nanorods of β -TiCl3 , Cs3O and Ba3N retain 1D anionic electrons along the hollow interrod sites; additionally, a strong interrod interaction in C3O and Ba3N induces band inversion in a 2D superatomic triangular lattice, resulting in Dirac-node lines. The new class of electrides can serve as a prototype for new electrides with a large cavity space that can be utilized for various applications such as gas storage, ion transport, and metal intercalation.

  9. Fabrication and photoluminescence properties of graphite fiber/ZnO nanorod core-shell structures.

    PubMed

    Liu, Xianbin; Du, Hejun; Liu, Bo; Wang, Jianxiong; Sun, Xiao Wei; Sun, Handong

    2011-08-01

    Graphite fiber/ZnO nanorod core-shell structures were synthesized by thermal evaporation process. The core-shell hybrid architectures were comprised of ZnO nanorods grown on the surface of graphite fiber. In addition, Hollow ZnO hierarchical structure can be obtained by oxidizing the graphite fiber. Room temperature photoluminescence (PL) of the as-made graphite fiber/ZnO nanorod structures shows two UV peaks at around 3.274 eV and 3.181 eV. The temperature-dependent photoluminescence spectra demonstrate the two UV emissions are attributed to the intrinsic optical transitions and extrinsic defect-related emissions in ZnO. These hybrid structures may be used as the building block for fabrication of nanodevices.

  10. Large-area zinc oxide nanorod arrays templated by nanoimprint lithography: control of morphologies and optical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Huang, Xiaohu; Liu, Hongfei; Chua, Soo Jin; Ross, Caroline A.

    2016-12-01

    Vertically aligned, highly ordered, large area arrays of nanostructures are important building blocks for multifunctional devices. Here, ZnO nanorod arrays are selectively synthesized on Si substrates by a solution method within patterns created by nanoimprint lithography. The growth modes of two dimensional nucleation-driven wedding cakes and screw dislocation-driven spirals are inferred to determine the top end morphologies of the nanorods. Sub-bandgap photoluminescence of the nanorods is greatly enhanced by the manipulation of the hydrogen donors via a post-growth thermal treatment. Lasing behavior is facilitated in the nanorods with faceted top ends formed from wedding cakes growth mode. This work demonstrates the control of morphologies of oxide nanostructures in a large scale and the optimization of the optical performance.

  11. Analog Building Blocks for Communications Modems.

    DTIC Science & Technology

    1977-01-01

    x*—*- A0-A039 82b ELECTRONIC COMMUNICATIONS INC ST PETERSBURG FLA F/6 9/5 ANALOG BUILDING BLOCKS FOR COMMUNICATIONS MODEMS .(U) JAN 77 B BLACK...F33615-7<t-C-1120 UNCLASSIFIED AFAL-TR-76-29 NL ANALOG BUILDING BLOCKS FOR COMMUNICATIONS MODEMS ELECTRONIC COMMUNICATIONS INC. A SUBSIDIARY OF...Idantltr Or Mac* numb*,; Avionics Building-Block modules Frequency Synthesize* Costas Demodulator Amplifier Modem Frequency Multiplier ’ -^ « TRACT

  12. The Building Blocks of Geology.

    ERIC Educational Resources Information Center

    Gibson, Betty O.

    2001-01-01

    Discusses teaching techniques for teaching about rocks, minerals, and the differences between them. Presents a model-building activity that uses plastic building blocks to build crystal and rock models. (YDS)

  13. Functionalized Helical Building Blocks for Nanoelectronics.

    PubMed

    Khokhlov, Khrystofor; Schuster, Nathaniel J; Ng, Fay; Nuckolls, Colin

    2018-04-06

    Molecular building blocks are designed and created for the cis- and trans-dibrominated perylenediimides. The syntheses are simple and provide these useful materials on the gram scale. To demonstrate their synthetic versatility, these building blocks were used to create new dimeric perylenediimide helixes. Two of these helical dimers are twistacenes, and one is a helicene. Crucially, each possesses regiochemically defined functionality that allows the dimer helix to be elaborated into higher oligomers. It would be very difficult to prepare these helical PDI building blocks regioselectively without the methods described.

  14. Building Curriculum during Block Play

    ERIC Educational Resources Information Center

    Andrews, Nicole

    2015-01-01

    Blocks are not just for play! In this article, Nicole Andrews describes observing the interactions of three young boys enthusiastically engaged in the kindergarten block center of their classroom, using blocks in a building project that displayed their ability to use critical thinking skills, physics exploration, and the development of language…

  15. Effect of rod length on the morphology of block copolymer/magnetic nanorod composites.

    PubMed

    Lo, Chieh-Tsung; Lin, Wei-Ting

    2013-05-02

    The organization of magnetic nanorods in microphase-separated diblock copolymers composed of poly(styrene-b-2-vinylpyridine) (PS-PVP) as a function of rod length and rod concentration was investigated using both transmission electron microscopy and small-angle X-ray scattering. Our results reveal that the nanorods were sequestered into the PVP domains, which is attributed to the preferential interaction between pyridine-tethered nanorods and PVP. Meanwhile, the addition of nanorods in PS-PVP caused chain stretching. To minimize the energy penalty, nanorods tended to align parallel to the interface between PS and PVP to increase the conformational entropy. As the length of nanorods increased, the increasing van der Waals interaction and magnetic interaction caused extensive rod aggregation, which suppressed the domain size of PVP and amplified the local compositional fluctuations. This creates conditions to induce disorder in the polymer morphology and nanorods undergo macrophase separation.

  16. Manipulation of partially oriented hydroxyapatite building blocks to form flowerlike bundles without acid-base regulation.

    PubMed

    Wen, Zhenliang; Wang, Zihao; Chen, Jingdi; Zhong, Shengnan; Hu, Yimin; Wang, Jianhua; Zhang, Qiqing

    2016-06-01

    The application of hydroxyapatite (HAP) in different fields depends greatly on its morphology, composition and structure. Besides, the main inorganic building blocks of human bones and teeth are also HAP. Therefore, accurate shape and aggregation control and of hydroxyapatite particles will be of great interest. Herein, oriented bundles of flowerlike HAP nanorods were successfully prepared through hydrothermal treatment without acid-base regulation, with the mono-alkyl phosphate (MAP) and sodium citrate as surfactant and chelating agent, respectively. The prepared samples were characterized by the X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and zeta potential, the pH value and conductivity value of suspension were characterized by pH meter and conductivity measurement. The results showed that the MAP and citrate play an important role in assembly of HAP nanorods without acid-base regulation. Citrate calcium complex could decompose slowly and release citrate ions at hydrothermal conditions. Besides, the further decomposition of citrate ions could release aconitic acid as the reaction time prolongs. Moreover, the possible scheme for the formation process was discussed in detail. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig E. Barnes

    2013-03-05

    A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosingmore » the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).« less

  18. Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy.

    PubMed

    Parida, Sheetal; Maiti, Chiranjit; Rajesh, Y; Dey, Kaushik K; Pal, Ipsita; Parekh, Aditya; Patra, Rusha; Dhara, Dibakar; Dutta, Pranab Kumar; Mandal, Mahitosh

    2017-01-01

    Gold nanorods, by virtue of surface plasmon resonance, convert incident light energy (NIR) into heat energy which induces hyperthermia. We designed unique, multifunctional, gold nanorod embedded block copolymer micelle loaded with GW627368X for targeted drug delivery and photothermal therapy. Glutathione responsive diblock co-polymer was synthesized by RAFT process forming self-assembled micelle on gold nanorods prepared by seed mediated method and GW627368X was loaded on to the reduction responsive gold nanorod embedded micelle. Photothermal therapy was administered using cwNIR laser (808nm; 4W/cm 2 ). Efficacy of nanoformulated GW627368X, photothermal therapy and combination of both were evaluated in vitro and in vivo. In response to photothermal treatment, cells undergo regulated, patterned cell death by necroptosis. Combining GW627368X with photothermal treatment using single nanoparticle enhanced therapeutic outcome. In addition, these nanoparticles are effective X-ray CT contrast agents, thus, can help in monitoring treatment. Reduction responsive nanorod embedded micelle containing folic acid and lipoic acid when treated on cervical cancer cells or tumour bearing mice, aggregate in and around cancer cells. Due to high glutathione concentration, micelles degrade releasing drug which binds surface receptors inducing apoptosis. When incident with 808nm cwNIR lasers, gold nanorods bring about photothermal effect leading to hyperthermic cell death by necroptosis. Combination of the two modalities enhances therapeutic efficacy by inducing both forms of cell death. Our proposed treatment strategy achieves photothermal therapy and targeted drug delivery simultaneously. It can prove useful in overcoming general toxicities associated with chemotherapeutics and intrinsic/acquired resistance to chemo and radiotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Data Policy Construction Set - Building Blocks from Childhood Constructions

    NASA Astrophysics Data System (ADS)

    Fleischer, Dirk; Paul-Stueve, Thilo; Jobmann, Alexandra; Farrenkopf, Stefan

    2016-04-01

    A complete construction set of building blocks usually comes with instructions and these instruction include building stages. The products of these building stages usually build from very general parts become highly specialized building parts for very unique features of the whole construction model. This sounds very much like the construction or organization of an interdisciplinary research project, institution or association, doesn't it! The creation process of an overarching data policy for a project group or institution is exactly the combination of individual interests with the common goal of a collaborative data policy and can be compared with the building stages of a construction set of building blocks and the building instructions. Keeping this in mind we created the data policy construction set of textual building blocks. This construction set is subdivided into several building stages or parts each containing multiple building blocks as text blocks. By combining building blocks of all subdivisions it is supposed to create a cascading data policy document. Cascading from the top level as a construction set provider for all further down existing levels such as project, themes, work packages or Universities, faculties, institutes down to the working level of working groups. The working groups are picking from the remaining building blocks in the provided construction set the suitable blocks for its working procedures to create a very specific policy from the available construction set provided by the top level community. Nevertheless, if a working group realized that there are missing building blocks or worse that there are missing building parts, then they have the chance to add the missing pieces to the construction set of direct an future use. This cascading approach enables project or institution wide application of the encoded rules from the textual level on access to data storage infrastructure. This structured approach is flexible enough to allow for

  20. Building Blocks for Personal Brands

    ERIC Educational Resources Information Center

    Thomas, Lisa Carlucci

    2011-01-01

    In this article, the author discusses the four essential building blocks for personal brands: (1) name; (2) message; (3) channels; and (4) bridges. However, outstanding building materials can only take a person so far. The author emphasizes that vision, determination, faith, a sense of humor, and humility are also required.

  1. The 10 building blocks of high-performing primary care.

    PubMed

    Bodenheimer, Thomas; Ghorob, Amireh; Willard-Grace, Rachel; Grumbach, Kevin

    2014-01-01

    Our experiences studying exemplar primary care practices, and our work assisting other practices to become more patient centered, led to a formulation of the essential elements of primary care, which we call the 10 building blocks of high-performing primary care. The building blocks include 4 foundational elements-engaged leadership, data-driven improvement, empanelment, and team-based care-that assist the implementation of the other 6 building blocks-patient-team partnership, population management, continuity of care, prompt access to care, comprehensiveness and care coordination, and a template of the future. The building blocks, which represent a synthesis of the innovative thinking that is transforming primary care in the United States, are both a description of existing high-performing practices and a model for improvement.

  2. Tunable Assembly of Gold Nanorods in Polymer Solutions To Generate Controlled Nanostructured Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poling-Skutvik, Ryan; Lee, Jonghun; Narayanan, Suresh

    In this study, gold nanorods grafted with short chain polymers are assembled into controlled open structures using polymer-induced depletion interactions and structurally characterized using small angle x-ray scattering. When the nanorod diameter is smaller than the radius of gyration of the depletant polymer, the depletion interaction depends solely on the correlation length of the polymer solution and not directly on the polymer molecular weight. As the polymer concentration increases, the stronger depletion interactions increasingly compress the grafted chains and push the gold nanorods closer together. By contrast, other structural characteristics such as the number of nearest neighbors and fractal dimensionmore » exhibit a non-monotonic dependence on polymer concentration. These parameters are maximal at intermediate concentrations, which are attributed to a crossover from reaction-limited to diffusion-limited aggregation. Finally, the control over structural properties of anisotropic nanoscale building blocks demonstrated here will be beneficial to designing and producing materials in situ with specific direction-dependent nanoscale properties and provides a crucial route for advances in additive manufacturing.« less

  3. Tunable Assembly of Gold Nanorods in Polymer Solutions To Generate Controlled Nanostructured Materials

    DOE PAGES

    Poling-Skutvik, Ryan; Lee, Jonghun; Narayanan, Suresh; ...

    2018-01-17

    In this study, gold nanorods grafted with short chain polymers are assembled into controlled open structures using polymer-induced depletion interactions and structurally characterized using small angle x-ray scattering. When the nanorod diameter is smaller than the radius of gyration of the depletant polymer, the depletion interaction depends solely on the correlation length of the polymer solution and not directly on the polymer molecular weight. As the polymer concentration increases, the stronger depletion interactions increasingly compress the grafted chains and push the gold nanorods closer together. By contrast, other structural characteristics such as the number of nearest neighbors and fractal dimensionmore » exhibit a non-monotonic dependence on polymer concentration. These parameters are maximal at intermediate concentrations, which are attributed to a crossover from reaction-limited to diffusion-limited aggregation. Finally, the control over structural properties of anisotropic nanoscale building blocks demonstrated here will be beneficial to designing and producing materials in situ with specific direction-dependent nanoscale properties and provides a crucial route for advances in additive manufacturing.« less

  4. Fault-tolerant computer study. [logic designs for building block circuits

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.; Avizienis, A. A.; Ercegovac, M. D.

    1981-01-01

    A set of building block circuits is described which can be used with commercially available microprocessors and memories to implement fault tolerant distributed computer systems. Each building block circuit is intended for VLSI implementation as a single chip. Several building blocks and associated processor and memory chips form a self checking computer module with self contained input output and interfaces to redundant communications buses. Fault tolerance is achieved by connecting self checking computer modules into a redundant network in which backup buses and computer modules are provided to circumvent failures. The requirements and design methodology which led to the definition of the building block circuits are discussed.

  5. Building blocks for subleading helicity operators

    DOE PAGES

    Kolodrubetz, Daniel W.; Moult, Ian; Stewart, Iain W.

    2016-05-24

    On-shell helicity methods provide powerful tools for determining scattering amplitudes, which have a one-to-one correspondence with leading power helicity operators in the Soft-Collinear Effective Theory (SCET) away from singular regions of phase space. We show that helicity based operators are also useful for enumerating power suppressed SCET operators, which encode subleading amplitude information about singular limits. In particular, we present a complete set of scalar helicity building blocks that are valid for constructing operators at any order in the SCET power expansion. In conclusion, we also describe an interesting angular momentum selection rule that restricts how these building blocks canmore » be assembled.« less

  6. Single molecule magnets from magnetic building blocks

    NASA Astrophysics Data System (ADS)

    Kroener, W.; Paretzki, A.; Cervetti, C.; Hohloch, S.; Rauschenbach, S.; Kern, K.; Dressel, M.; Bogani, L.; M&üLler, P.

    2013-03-01

    We provide a basic set of magnetic building blocks that can be rationally assembled, similar to magnetic LEGO bricks, in order to create a huge variety of magnetic behavior. Using rare-earth centers and multipyridine ligands, fine-tuning of intra and intermolecular exchange interaction is demonstrated. We have investigated a series of molecules with monomeric, dimeric and trimeric lanthanide centers using SQUID susceptometry and Hall bar magnetometry. A home-made micro-Hall-probe magnetometer was used to measure magnetic hysteresis loops at mK temperatures and fields up to 17 T. All compounds show hysteresis below blocking temperatures of 3 to 4 K. The correlation of the assembly of the building blocks with the magnetic properties will be discussed.

  7. Intercultural Communication Activities in the Classroom: Turning Stumbling Blocks into Building Blocks.

    ERIC Educational Resources Information Center

    Dillon, Randy K.

    This paper explores behavior patterns that inhibit effective communication in everyday, educational, and business cross-cultural settings. Opportunities to change these inhibiting patterns, metaphorically referred to as "stumbling blocks," into building blocks or tools for successful intercultural understandings are discussed in the…

  8. The 10 Building Blocks of High-Performing Primary Care

    PubMed Central

    Bodenheimer, Thomas; Ghorob, Amireh; Willard-Grace, Rachel; Grumbach, Kevin

    2014-01-01

    Our experiences studying exemplar primary care practices, and our work assisting other practices to become more patient centered, led to a formulation of the essential elements of primary care, which we call the 10 building blocks of high-performing primary care. The building blocks include 4 foundational elements—engaged leadership, data-driven improvement, empanelment, and team-based care—that assist the implementation of the other 6 building blocks—patient-team partnership, population management, continuity of care, prompt access to care, comprehensiveness and care coordination, and a template of the future. The building blocks, which represent a synthesis of the innovative thinking that is transforming primary care in the United States, are both a description of existing high-performing practices and a model for improvement. PMID:24615313

  9. Characteristics of Recycled Concrete Aggregates from Precast Slab Block Buildings

    NASA Astrophysics Data System (ADS)

    Venkrbec, Václav; Nováková, Iveta; Henková, Svatava

    2017-10-01

    Precast slab block buildings (PSBB) typically and frequently occur in Central and Eastern Europe, as well as elsewhere in the world. Some of these buildings are currently used beyond their service life capacity. The utilization of recycled materials from these buildings with regard to applying the principles of sustainable construction and using recycled materials will probably be significant in the following years. Documentation from the manufacturing processes of prefabricated blocks for precast slab block buildings is not available, and also it is difficult to declare technological discipline during the construction of these buildings. Therefore, properties of recycled concrete aggregates (RCA) produced from construction and demolition waste (C&DW) of precast slab block buildings build between 1950s to 1990s are not sufficiently known. The demolition of these buildings is very rare today, but it can be assumed an increase in demolitions of these buildings in the future. The use of RCA in new concrete requires verification/testing of the geometrical and physical properties of RCA according to the EN 12 620+A1 standard. The aim of the contribution is to present a case study of the demolition of slab block building with emphasis on RCA usage. The paper presents the results of the tests according to European standards for determining selected geometrical and physical properties of the RCA. The paper describes and evaluates tests such as determination of particle size distribution - Sieve Analysis, content of fine particles, determination of density and water absorption. The results of the properties testing of RCA are compared with the properties of natural aggregate. The general boundary conditions of RCA particular tests are presented.

  10. SRA Real Math Building Blocks PreK. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2007

    2007-01-01

    "SRA Real Math Building Blocks PreK" (also referred to as "Building Blocks for Math") is a supplemental mathematics curriculum designed to develop preschool children's early mathematical knowledge through various individual and small- and large-group activities. It uses "Building Blocks for Math PreK" software,…

  11. Strategies for Controlled Placement of Nanoscale Building Blocks

    PubMed Central

    2007-01-01

    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others. PMID:21794185

  12. Development of Test Article Building Block (TABB) for deployable platform systems

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.; Barbour, R. T.

    1984-01-01

    The concept of a Test Article Building Block (TABB) is described. The TABB is a ground test article that is representative of a future building block that can be used to construct LEO and GEO deployable space platforms for communications and scientific payloads. This building block contains a main housing within which the entire structure, utilities, and deployment/retraction mechanism are stowed during launch. The end adapter secures the foregoing components to the housing during launch. The main housing and adapter provide the necessary building-block-to-building-block attachments for automatically deployable platforms. Removal from the shuttle cargo bay can be accomplished with the remote manipulator system (RMS) and/or the handling and positioning aid (HAPA). In this concept, all the electrical connections are in place prior to launch with automatic latches for payload attachment provided on either the end adapters or housings. The housings also can contain orbiter docking ports for payload installation and maintenance.

  13. COMPRESSOR BUILDING, TRA626. ELEVATIONS. WINDOWS. WALL SECTIONS. PUMICE BLOCK BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COMPRESSOR BUILDING, TRA-626. ELEVATIONS. WINDOWS. WALL SECTIONS. PUMICE BLOCK BUILDING HOUSED COMPRESSORS FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENTS. MTR-626-IDO-2S, 3/1952. INL INDEX NO. 531-0626-00-396-110535, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. Big Questions: The Ultimate Building Blocks of Matter

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The Standard Model of particle physics treats quarks and leptons as having no size at all. Quarks are found inside protons and neutrons and the most familiar lepton is the electron. While the best measurements to date support that idea, there is circumstantial evidence that suggests that perhaps the these tiny particles might be composed of even smaller building blocks. This video explains this circumstantial evidence and introduces some very basic ideas of what those building blocks might be.

  15. Adolescent Boys' and Girls' Block Constructions Differ in Structural Balance: A Block-Building Characteristic Related to Math Achievement

    ERIC Educational Resources Information Center

    Casey, Beth M.; Pezaris, Elizabeth E.; Bassi, Julie

    2012-01-01

    Two studies were conducted on block building in adolescents, assessing middle school (Study 1) and high school students (Study 2). Students were asked to build something interesting with blocks. In both samples, the same pattern of gender differences were found; boys built taller structures than girls, and balanced a larger number of blocks on a…

  16. Building Blocks: Enmeshing Technology and Creativity with Artistic Pedagogical Technologies

    ERIC Educational Resources Information Center

    Janzen, Katherine J.; Perry, Beth; Edwards, Margaret

    2017-01-01

    Using the analogy of children's building blocks, the reader is guided through the results of a research study that explored the use of three Artistic Pedagogical Technologies (APTs). "Building blocks" was the major theme that emerged from the data. Sub-themes included developing community, enhancing creativity, and risk taking. The…

  17. Tops as building blocks for G 2 manifolds

    NASA Astrophysics Data System (ADS)

    Braun, Andreas P.

    2017-10-01

    A large number of examples of compact G 2 manifolds, relevant to supersymmetric compactifications of M-Theory to four dimensions, can be constructed by forming a twisted connected sum of two building blocks times a circle. These building blocks, which are appropriate K3-fibred threefolds, are shown to have a natural and elegant construction in terms of tops, which parallels the construction of Calabi-Yau manifolds via reflexive polytopes. In particular, this enables us to prove combinatorial formulas for the Hodge numbers and other relevant topological data.

  18. Large space erectable structures - building block structures study

    NASA Technical Reports Server (NTRS)

    Armstrong, W. H.; Skoumal, D. E.; Straayer, J. W.

    1977-01-01

    A modular planar truss structure and a long slender boom concept identified as building block approaches to construction of large spacecraft configurations are described. The concepts are compatible in weight and volume goals with the Space Transportation System, use standard structural units, and represent high on-orbit productivity in terms of structural area or beam length. Results of structural trade studies involving static and dynamic analyses of a single module and rigid body deployment analyses to assess kinetics and kinematics of automatic deployment of the building block modules are presented.

  19. Two innovative solutions based on fibre concrete blocks designed for building substructure

    NASA Astrophysics Data System (ADS)

    Pazderka, J.; Hájek, P.

    2017-09-01

    Using of fibers in a high-strength concrete allows reduction of the dimensions of small precast concrete elements, which opens up new ways of solution for traditional construction details in buildings. The paper presents two innovative technical solutions for building substructure: The special shaped plinth block from fibre concrete and the fibre concrete elements for new technical solution of ventilated floor. The main advantages of plinth block from fibre concrete blocks (compared with standard plinth solutions) is: easier and faster assembly, higher durability and thanks to the air cavity between the vertical part of the block, the building substructure reduced moisture level of structures under the waterproofing layer and a comprehensive solution to the final surface of building plinth as well as the surface of adjacent terrain. The ventilated floor based on fibre concrete precast blocks is an attractive structural alternative for tackling the problem of increased moisture in masonry in older buildings, lacking a functional waterproof layer in the substructure.

  20. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  1. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2013-03-26

    Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  2. A gradient field defeats the inherent repulsion between magnetic nanorods

    PubMed Central

    Gu, Yu; Burtovyy, Ruslan; Custer, John; Luzinov, Igor; Kornev, Konstantin G.

    2014-01-01

    When controlling the assembly of magnetic nanorods and chains of magnetic nanoparticles, it is extremely challenging to bring them together side by side while keeping a desired spacing between their axes. We show that this challenge can be successfully resolved by using a non-uniform magnetic field that defeats an inherent repulsion between nanorods. Nickel nanorods were suspended in a viscous film and a non-uniform field was used to control their placement. The in-plane movement of nanorods was tracked with a high-speed camera and a detailed image analysis was conducted to quantitatively characterize the behaviour of the nanorods. The analysis focused on the behaviour of a pair of neighbour nanorods, and a corresponding dynamic model was formulated and investigated. The complex two-dimensional dynamics of a nanorod pair was analysed analytically and numerically, and a phase portrait was constructed. Using this phase portrait, we classified the nanorod behaviour and revealed the experimental conditions in which nanorods could be placed side by side. Dependence of the distance between a pair of neighbour nanorods on physical parameters was analysed. With the aid of the proposed theory, one can build different lattices and control their spacing by applying different field gradients. PMID:26064550

  3. The Development of Spatial Skills through Interventions Involving Block Building Activities

    ERIC Educational Resources Information Center

    Casey, Beth M.; Andrews, Nicole; Schindler, Holly; Kersh, Joanne E.; Samper, Alexandra; Copley, Juanita

    2008-01-01

    This study investigated the use of block-building interventions to develop spatial-reasoning skills in kindergartners. Two intervention conditions and a control condition were included to determine, first, whether the block building activities themselves benefited children's spatial skills, and secondly, whether a story context further improved…

  4. Building Blocks for Sustainable Communities: Assistance from Grantees

    EPA Pesticide Factsheets

    EPA awarded Building Blocks for Sustainable Communities grants to four nonprofit organizations with extensive expertise in community sustainability. These organizations deliver technical assistance to communities.

  5. Hydration effects on the electronic properties of eumelanin building blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assis Oliveira, Leonardo Bruno; Departamento de Física - CEPAE, Universidade Federal de Goiás, 74690-900 Goiânia, GO; Escola de Ciências Exatas e da Computação, Pontifícia Universidade Católica de Goiás, 74605-010 Goiânia, GO

    2016-08-28

    Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in themore » electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54–79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180–220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a “chemical disorder model,” where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.« less

  6. Hydration effects on the electronic properties of eumelanin building blocks.

    PubMed

    Assis Oliveira, Leonardo Bruno; L Fonseca, Tertius; Costa Cabral, Benedito J; Coutinho, Kaline; Canuto, Sylvio

    2016-08-28

    Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54-79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180-220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a "chemical disorder model," where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.

  7. Hydration effects on the electronic properties of eumelanin building blocks

    NASA Astrophysics Data System (ADS)

    Assis Oliveira, Leonardo Bruno; L. Fonseca, Tertius; Costa Cabral, Benedito J.; Coutinho, Kaline; Canuto, Sylvio

    2016-08-01

    Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54-79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180-220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a "chemical disorder model," where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.

  8. Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.

    PubMed

    Pinkard, Andrew; Champsaur, Anouck M; Roy, Xavier

    2018-04-17

    The programmed assembly of nanoscale building blocks into multicomponent hierarchical structures is a powerful strategy for the bottom-up construction of functional materials. To develop this concept, our team has explored the use of molecular clusters as superatomic building blocks to fabricate new classes of materials. The library of molecular clusters is rich with exciting properties, including diverse functionalization, redox activity, and magnetic ordering, so the resulting cluster-assembled solids, which we term superatomic crystals (SACs), hold the promise of high tunability, atomic precision, and robust architectures among a diverse range of other material properties. Molecular clusters have only seldom been used as precursors for functional materials. Our team has been at the forefront of new developments in this exciting research area, and this Account focuses on our progress toward designing materials from cluster-based precursors. In particular, this Account discusses (1) the design and synthesis of molecular cluster superatomic building blocks, (2) their self-assembly into SACs, and (3) their resulting collective properties. The set of molecular clusters discussed herein is diverse, with different cluster cores and ligand arrangements to create an impressive array of solids. The cluster cores include octahedral M 6 E 8 and cubane M 4 E 4 (M = metal; E = chalcogen), which are typically passivated by a shell of supporting ligands, a feature upon which we have expanded upon by designing and synthesizing more exotic ligands that can be used to direct solid-state assembly. Building from this library, we have designed whole families of binary SACs where the building blocks are held together through electrostatic, covalent, or van der Waals interactions. Using single-crystal X-ray diffraction (SCXRD) to determine the atomic structure, a remarkable range of compositional variability is accessible. We can also use this technique, in tandem with vibrational

  9. Automate Your Physical Plant Using the Building Block Approach.

    ERIC Educational Resources Information Center

    Michaelson, Matt

    1998-01-01

    Illustrates how Mount Saint Vincent University (Halifax), by upgrading the control and monitoring of one building or section of the school at a time, could produce savings in energy and operating costs and improve the environment. Explains a gradual, "building block" approach to facility automation that provides flexibility without a…

  10. Mission building blocks for outer solar system exploration.

    NASA Technical Reports Server (NTRS)

    Herman, D.; Tarver, P.; Moore, J.

    1973-01-01

    Description of the technological building blocks required for exploring the outer planets with maximum scientific yields under stringent resource constraints. Two generic spacecraft types are considered: the Mariner and the Pioneer. Following a discussion of the outer planet mission constraints, the evolutionary development of spacecraft, probes, and propulsion building blocks is presented. Then, program genealogies are shown for Pioneer and Mariner missions and advanced propulsion systems to illustrate the soundness of a program based on spacecraft modification rather than on the development of new spacecraft for each mission. It is argued that, for minimum costs, technological advancement should occur in an evolutionary manner from mission to mission. While this strategy is likely to result in compromises on specific missions, the realization of the overall objectives calls for an advance commitment to the entire mission series.

  11. Metabolomics analysis: Finding out metabolic building blocks

    PubMed Central

    2017-01-01

    In this paper we propose a new methodology for the analysis of metabolic networks. We use the notion of strongly connected components of a graph, called in this context metabolic building blocks. Every strongly connected component is contracted to a single node in such a way that the resulting graph is a directed acyclic graph, called a metabolic DAG, with a considerably reduced number of nodes. The property of being a directed acyclic graph brings out a background graph topology that reveals the connectivity of the metabolic network, as well as bridges, isolated nodes and cut nodes. Altogether, it becomes a key information for the discovery of functional metabolic relations. Our methodology has been applied to the glycolysis and the purine metabolic pathways for all organisms in the KEGG database, although it is general enough to work on any database. As expected, using the metabolic DAGs formalism, a considerable reduction on the size of the metabolic networks has been obtained, specially in the case of the purine pathway due to its relative larger size. As a proof of concept, from the information captured by a metabolic DAG and its corresponding metabolic building blocks, we obtain the core of the glycolysis pathway and the core of the purine metabolism pathway and detect some essential metabolic building blocks that reveal the key reactions in both pathways. Finally, the application of our methodology to the glycolysis pathway and the purine metabolism pathway reproduce the tree of life for the whole set of the organisms represented in the KEGG database which supports the utility of this research. PMID:28493998

  12. Origami-inspired building block and parametric design for mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Ma, Hua; Feng, Mingde; Yan, Leilei; Wang, Jiafu; Wang, Jun; Qu, Shaobo

    2016-08-01

    An origami-based building block of mechanical metamaterials is proposed and explained by introducing a mechanism model based on its geometry. According to our model, this origami mechanism supports response to uniaxial tension that depends on structure parameters. Hence, its mechanical properties can be tunable by adjusting the structure parameters. Experiments for poly lactic acid (PLA) samples were carried out, and the results are in good agreement with those of finite element analysis (FEA). This work may be useful for designing building blocks of mechanical metamaterials or other complex mechanical structures.

  13. Multi-shape memory polymers achieved by the spatio-assembly of 3D printable thermoplastic building blocks.

    PubMed

    Li, Hongze; Gao, Xiang; Luo, Yingwu

    2016-04-07

    Multi-shape memory polymers were prepared by the macroscale spatio-assembly of building blocks in this work. The building blocks were methyl acrylate-co-styrene (MA-co-St) copolymers, which have the St-block-(St-random-MA)-block-St tri-block chain sequence. This design ensures that their transition temperatures can be adjusted over a wide range by varying the composition of the middle block. The two St blocks at the chain ends can generate a crosslink network in the final device to achieve strong bonding force between building blocks and the shape memory capacity. Due to their thermoplastic properties, 3D printing was employed for the spatio-assembly to build devices. This method is capable of introducing many transition phases into one device and preparing complicated shapes via 3D printing. The device can perform a complex action via a series of shape changes. Besides, this method can avoid the difficult programing of a series of temporary shapes. The control of intermediate temporary shapes was realized via programing the shapes and locations of building blocks in the final device.

  14. Determining Possible Building Blocks of the Earth and Mars

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; OBrien, K. M.

    2004-01-01

    One of the fundamental questions concerning planetary formation is exactly what material did the planets form from? All the planets in our solar system are believed to have formed out of material from the solar nebula. Chondritic meteorites appear to sample this primitive material. Chondritic meteorites are generally classified into 13 major groups, which have a variety of compositions. Detailed studies of possible building blocks of the terrestrial planets require samples that can be used to estimate the bulk chemistry of these bodies. This study will focus on trying to determine possible building blocks of Earth and Mars since samples of these two planets can be studied in detail in the laboratory.

  15. The Cellular Building Blocks of Breathing

    PubMed Central

    Ramirez, J.M.; Doi, A.; Garcia, A.J.; Elsen, F.P.; Koch, H.; Wei, A.D.

    2013-01-01

    Respiratory brainstem neurons fulfill critical roles in controlling breathing: they generate the activity patterns for breathing and contribute to various sensory responses including changes in O2 and CO2. These complex sensorimotor tasks depend on the dynamic interplay between numerous cellular building blocks that consist of voltage-, calcium-, and ATP-dependent ionic conductances, various ionotropic and metabotropic synaptic mechanisms, as well as neuromodulators acting on G-protein coupled receptors and second messenger systems. As described in this review, the sensorimotor responses of the respiratory network emerge through the state-dependent integration of all these building blocks. There is no known respiratory function that involves only a small number of intrinsic, synaptic, or modulatory properties. Because of the complex integration of numerous intrinsic, synaptic, and modulatory mechanisms, the respiratory network is capable of continuously adapting to changes in the external and internal environment, which makes breathing one of the most integrated behaviors. Not surprisingly, inspiration is critical not only in the control of ventilation, but also in the context of “inspiring behaviors” such as arousal of the mind and even creativity. Far-reaching implications apply also to the underlying network mechanisms, as lessons learned from the respiratory network apply to network functions in general. PMID:23720262

  16. Size-controlled InGaN/GaN nanorod LEDs with an ITO/graphene transparent layer

    NASA Astrophysics Data System (ADS)

    Shim, Jae-Phil; Seong, Won-Seok; Min, Jung-Hong; Kong, Duk-Jo; Seo, Dong-Ju; Kim, Hyung-jun; Lee, Dong-Seon

    2016-11-01

    We introduce ITO on graphene as a current-spreading layer for separated InGaN/GaN nanorod LEDs for the purpose of passivation-free and high light-extraction efficiency. Transferred graphene on InGaN/GaN nanorods effectively blocks the diffusion of ITO atoms to nanorods, facilitating the production of transparent ITO/graphene contact on parallel-nanorod LEDs, without filling the air gaps, like a bridge structure. The ITO/graphene layer sufficiently spreads current in a lateral direction, resulting in uniform and reliable light emission observed from the whole area of the top surface. Using KOH treatment, we reduce series resistance and reverse leakage current in nanorod LEDs by recovering the plasma-damaged region. We also control the size of the nanorods by varying the KOH treatment time and observe strain relaxation via blueshift in electroluminescence. As a result, bridge-structured LEDs with 8 min of KOH treatment show 15 times higher light-emitting efficiency than with 2 min of KOH treatment.

  17. How Crossover Speeds up Building Block Assembly in Genetic Algorithms.

    PubMed

    Sudholt, Dirk

    2017-01-01

    We reinvestigate a fundamental question: How effective is crossover in genetic algorithms in combining building blocks of good solutions? Although this has been discussed controversially for decades, we are still lacking a rigorous and intuitive answer. We provide such answers for royal road functions and OneMax, where every bit is a building block. For the latter, we show that using crossover makes every ([Formula: see text]+[Formula: see text]) genetic algorithm at least twice as fast as the fastest evolutionary algorithm using only standard bit mutation, up to small-order terms and for moderate [Formula: see text] and [Formula: see text]. Crossover is beneficial because it can capitalize on mutations that have both beneficial and disruptive effects on building blocks: crossover is able to repair the disruptive effects of mutation in later generations. Compared to mutation-based evolutionary algorithms, this makes multibit mutations more useful. Introducing crossover changes the optimal mutation rate on OneMax from [Formula: see text] to [Formula: see text]. This holds both for uniform crossover and k-point crossover. Experiments and statistical tests confirm that our findings apply to a broad class of building block functions.

  18. An Approach for On-Board Software Building Blocks Cooperation and Interfaces Definition

    NASA Astrophysics Data System (ADS)

    Pascucci, Dario; Campolo, Giovanni; Candia, Sante; Lisio, Giovanni

    2010-08-01

    This paper provides an insight on the Avionic SW architecture developed by Thales Alenia Space Italy (TAS-I) to achieve structuring of the OBSW as a set of self-standing and re-usable building blocks. It is initially described the underlying framework for building blocks cooperation, which is based on ECSSE-70 packets forwarding (for services request to a building block) and standard parameters exchange for data communication. Subsequently it is discussed the high level of flexibility and scalability of the resulting architecture, reporting as example an implementation of the Failure Detection, Isolation and Recovery (FDIR) function which exploits the proposed architecture. The presented approach evolves from avionic SW architecture developed in the scope of the project PRIMA (Mult-Purpose Italian Re-configurable Platform) and has been adopted for the Sentinel-1 Avionic Software (ASW).

  19. Composition of clusters and building blocks in amylopectins from maize mutants deficient in starch synthase III.

    PubMed

    Zhu, Fan; Bertoft, Eric; Seetharaman, Koushik

    2013-12-18

    Branches in amylopectin are distributed along the backbone. Units of the branches are building blocks (smaller) and clusters (larger) based on the distance between branches. In this study, composition of clusters and building blocks of amylopectins from dull1 maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were characterized and compared with the wild type. Clusters were produced from amylopectins by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens and were subsequently treated with phosphorylase a and β-amylase to produce φ,β-limit dextrins. Clusters were further extensively hydrolyzed with the α-amylase to produce building blocks. Structures of clusters and building blocks were analyzed by diverse chromatographic techniques. The results showed that the dull1 mutation resulted in larger clusters with more singly branched building blocks. The average cluster contained ~5.4 blocks in dull1 mutants and ~4.2 blocks in the wild type. The results are compared with previous results from SSIII-deficient amo1 barley and suggest fundamental differences in the cluster structures.

  20. Fabrication routes for one-dimensional nanostructures via block copolymers

    NASA Astrophysics Data System (ADS)

    Tharmavaram, Maithri; Rawtani, Deepak; Pandey, Gaurav

    2017-05-01

    Nanotechnology is the field which deals with fabrication of materials with dimensions in the nanometer range by manipulating atoms and molecules. Various synthesis routes exist for the one, two and three dimensional nanostructures. Recent advancements in nanotechnology have enabled the usage of block copolymers for the synthesis of such nanostructures. Block copolymers are versatile polymers with unique properties and come in many types and shapes. Their properties are highly dependent on the blocks of the copolymers, thus allowing easy tunability of its properties. This review briefly focusses on the use of block copolymers for synthesizing one-dimensional nanostructures especially nanowires, nanorods, nanoribbons and nanofibers. Template based, lithographic, and solution based approaches are common approaches in the synthesis of nanowires, nanorods, nanoribbons, and nanofibers. Synthesis of metal, metal oxides, metal oxalates, polymer, and graphene one dimensional nanostructures using block copolymers have been discussed as well.

  1. Incorporating GIS building data and census housing statistics for sub-block-level population estimation

    USGS Publications Warehouse

    Wu, S.-S.; Wang, L.; Qiu, X.

    2008-01-01

    This article presents a deterministic model for sub-block-level population estimation based on the total building volumes derived from geographic information system (GIS) building data and three census block-level housing statistics. To assess the model, we generated artificial blocks by aggregating census block areas and calculating the respective housing statistics. We then applied the model to estimate populations for sub-artificial-block areas and assessed the estimates with census populations of the areas. Our analyses indicate that the average percent error of population estimation for sub-artificial-block areas is comparable to those for sub-census-block areas of the same size relative to associated blocks. The smaller the sub-block-level areas, the higher the population estimation errors. For example, the average percent error for residential areas is approximately 0.11 percent for 100 percent block areas and 35 percent for 5 percent block areas.

  2. Confinement and Ordering of Au Nanorods in Polymer Films

    NASA Astrophysics Data System (ADS)

    Hore, Michael J. A.; Mills, Eric; Liu, Yu; Composto, Russell J.

    2009-03-01

    Ordered arrays of gold nanorods (Au NRs) possess interesting optical properties that might be utilized in future devices. Au NRs functionalized with a poly(ethylene glycol)-thiol brush are incorporated into homopolymer or block copolymer (BCP) films. NR distribution and orientational correlations are studied as a function of nanorod concentration and spacial confinement via Rutherford backscattering spectrometry (RBS) and transmission electron microscopy, respectively. In particular, differences in the degree of nanorod ordering are presented for PMMA homopolymer films (d ˜ 45 nm) versus PS-b-PMMA BCP films (L/2 ˜ 40 nm), where higher ordering is seen in the case of BCP films. At moderate volume fractions of NRs, φ = 1% to 10%, the degree of ordering is moderate, and increases with increasing φ . However, coexistence between regions of higher ordering and isotropic orientations is observed. In addition to the planar confinement considered above, orientation of Au NRs confined to cylindrical P2VP domains is studied in PS-b-P2VP BCP films.

  3. Encapsulation of an interpenetrated diamondoid inorganic building block in a metal-organic framework.

    PubMed

    Zhang, Huabin; Lin, Ping; Chen, Erxia; Tan, Yanxi; Wen, Tian; Aldalbahi, Ali; Alshehri, Saad M; Yamauchi, Yusuke; Du, Shaowu; Zhang, Jian

    2015-03-23

    The first example of an inorganic-organic composite framework with an interpenetrated diamondoid inorganic building block, featuring unique {InNa}n helices and {In12 Na16 } nano-rings, has been constructed and structurally characterized. This framework also represents a unique example of encapsulation of an interpenetrated diamondoid inorganic building block in a metal-organic framework. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. University Education in Ontario: Shared Goals & Building Blocks.

    ERIC Educational Resources Information Center

    Council of Ontario Universities, Toronto.

    This brochure suggests five goals that are likely to be shared by the people of Ontario, their government, and the province's publicly funded universities for a strong university system, and identifies the building blocks and resource-related commitments that would enable Ontario universities to achieve these goals. The goals are: (1) all…

  5. Building Blocks of Psychology: on Remaking the Unkept Promises of Early Schools.

    PubMed

    Gozli, Davood G; Deng, Wei Sophia

    2018-03-01

    The appeal and popularity of "building blocks", i.e., simple and dissociable elements of behavior and experience, persists in psychological research. We begin our assessment of this research strategy with an historical review of structuralism (as espoused by E. B. Titchener) and behaviorism (espoused by J. B. Watson and B. F. Skinner), two movements that held the assumption in their attempts to provide a systematic and unified discipline. We point out the ways in which the elementism of the two schools selected, framed, and excluded topics of study. After the historical review, we turn to contemporary literature and highlight the persistence of research into building blocks and the associated framing and exclusions in psychological research. The assumption that complex categories of human psychology can be understood in terms of their elementary components and simplest forms seems indefensible. In specific cases, therefore, reliance on the assumption requires justification. Finally, we review alternative strategies that bypass the commitment to building blocks.

  6. Fuel-Mediated Transient Clustering of Colloidal Building Blocks.

    PubMed

    van Ravensteijn, Bas G P; Hendriksen, Wouter E; Eelkema, Rienk; van Esch, Jan H; Kegel, Willem K

    2017-07-26

    Fuel-driven assembly operates under the continuous influx of energy and results in superstructures that exist out of equilibrium. Such dissipative processes provide a route toward structures and transient behavior unreachable by conventional equilibrium self-assembly. Although perfected in biological systems like microtubules, this class of assembly is only sparsely used in synthetic or colloidal analogues. Here, we present a novel colloidal system that shows transient clustering driven by a chemical fuel. Addition of fuel causes an increase in hydrophobicity of the building blocks by actively removing surface charges, thereby driving their aggregation. Depletion of fuel causes reappearance of the charged moieties and leads to disassembly of the formed clusters. This reassures that the system returns to its initial, equilibrium state. By taking advantage of the cyclic nature of our system, we show that clustering can be induced several times by simple injection of new fuel. The fuel-mediated assembly of colloidal building blocks presented here opens new avenues to the complex landscape of nonequilibrium colloidal structures, guided by biological design principles.

  7. Fault-tolerant building-block computer study

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.

    1978-01-01

    Ultra-reliable core computers are required for improving the reliability of complex military systems. Such computers can provide reliable fault diagnosis, failure circumvention, and, in some cases serve as an automated repairman for their host systems. A small set of building-block circuits which can be implemented as single very large integration devices, and which can be used with off-the-shelf microprocessors and memories to build self checking computer modules (SCCM) is described. Each SCCM is a microcomputer which is capable of detecting its own faults during normal operation and is described to communicate with other identical modules over one or more Mil Standard 1553A buses. Several SCCMs can be connected into a network with backup spares to provide fault-tolerant operation, i.e. automated recovery from faults. Alternative fault-tolerant SCCM configurations are discussed along with the cost and reliability associated with their implementation.

  8. Synthesis of Triamino Acid Building Blocks with Different Lipophilicities

    PubMed Central

    Maity, Jyotirmoy; Honcharenko, Dmytro; Strömberg, Roger

    2015-01-01

    To obtain different amino acids with varying lipophilicity and that can carry up to three positive charges we have developed a number of new triamino acid building blocks. One set of building blocks was achieved by aminoethyl extension, via reductive amination, of the side chain of ortnithine, diaminopropanoic and diaminobutanoic acid. A second set of triamino acids with the aminoethyl extension having hydrocarbon side chains was synthesized from diaminobutanoic acid. The aldehydes needed for the extension by reductive amination were synthesized from the corresponding Fmoc-L-2-amino fatty acids in two steps. Reductive amination of these compounds with Boc-L-Dab-OH gave the C4-C8 alkyl-branched triamino acids. All triamino acids were subsequently Boc-protected at the formed secondary amine to make the monomers appropriate for the N-terminus position when performing Fmoc-based solid-phase peptide synthesis. PMID:25876040

  9. The Impact of Individual Differences, Types of Model and Social Settings on Block Building Performance among Chinese Preschoolers.

    PubMed

    Tian, Mi; Deng, Zhu; Meng, Zhaokun; Li, Rui; Zhang, Zhiyi; Qi, Wenhui; Wang, Rui; Yin, Tingting; Ji, Menghui

    2018-01-01

    Children's block building performances are used as indicators of other abilities in multiple domains. In the current study, we examined individual differences, types of model and social settings as influences on children's block building performance. Chinese preschoolers ( N = 180) participated in a block building activity in a natural setting, and performance was assessed with multiple measures in order to identify a range of specific skills. Using scores generated across these measures, three dependent variables were analyzed: block building skills, structural balance and structural features. An overall MANOVA showed that there were significant main effects of gender and grade level across most measures. Types of model showed no significant effect in children's block building. There was a significant main effect of social settings on structural features, with the best performance in the 5-member group, followed by individual and then the 10-member block building. These findings suggest that boys performed better than girls in block building activity. Block building performance increased significantly from 1st to 2nd year of preschool, but not from second to third. The preschoolers created more representational constructions when presented with a model made of wooden rather than with a picture. There was partial evidence that children performed better when working with peers in a small group than when working alone or working in a large group. It is suggested that future study should examine other modalities rather than the visual one, diversify the samples and adopt a longitudinal investigation.

  10. Magnetic-plasmonic multilayered nanorods

    NASA Astrophysics Data System (ADS)

    Thumthan, Orathai

    Multilayered nanorods which consist of alternating magnetic layers separated by Au layers combine two distinctive properties, magnetic properties and surface plasmonic resonance (SPR) properties into one nano-entity. Their magnetic properties are tunable by changing the layer thickness, varying from single domain to superparamagnetic state. Superparamagnetic is a key requirement for magnetic nanoparticles for bioapplications. Superparamagnetic nanoparticles exhibit high magnetic moments at low applied magnetic field while retain no magnetic moments when magnetic field is removed preventing them from aggregation due to magnetic attraction. Au layers in the nanorods provide anchorage sites for functional group attachment. Also, Au nanodisks exhibit SPR properties. The SPR peak can be tuned from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. In this research, there are three types of multilayered nanorod have been fabricated: Au/NiFe nanorods, Au/Fe nanorods, and Au/Co nanorods. These magnetic nanorods were fabricated by templated electrodeposition into the channels in Anodic Aluminum Oxide (AAO) membrane. The setup for AAO fabrication was developed as a part of this research. Our fabricated AAO membrane has channels with a diameter ranging from 40nm to 80 nm and a thickness of 10um to 12um. Magnetic properties of nanorods such as saturation field, saturation moment, coercivity and remanence are able to manipulate through their shape anisotropy. The magnetization will be easier in long axis rather than short axis of particle. In addition, Au nanodisks in the nanorod structure are not only serving as anchorage sites for functional groups but also provide SPR properties. Under irradiation of light Au nanodisks strongly absorb light at SPR frequency which ranging from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. The SPR tunability of nanorods in near

  11. Template-based preparation of free-standing semiconducting polymeric nanorod arrays on conductive substrates.

    PubMed

    Haberkorn, Niko; Weber, Stefan A L; Berger, Rüdiger; Theato, Patrick

    2010-06-01

    We describe the synthesis and characterization of a cross-linkable siloxane-derivatized tetraphenylbenzidine (DTMS-TPD), which was used for the fabrication of semiconducting highly ordered nanorod arrays on conductive indium tin oxide or Pt-coated substrates. The stepwise process allow fabricating of macroscopic areas of well-ordered free-standing nanorod arrays, which feature a high resistance against organic solvents, semiconducting properties and a good adhesion to the substrate. Thin films of the TPD derivate with good hole-conducting properties could be prepared by cross-linking and covalently attaching to hydroxylated substrates utilizing an initiator-free thermal curing at 160 degrees C. The nanorod arrays composed of cross-linked DTMS-TPD were fabricated by an anodic aluminum oxide (AAO) template approach. Furthermore, the nanorod arrays were investigated by a recently introduced method allowing to probe local conductivity on fragile structures. It revealed that more than 98% of the nanorods exhibit electrical conductance and consequently feature a good electrical contact to the substrate. The prepared nanorod arrays have the potential to find application in the fabrication of multilayered device architectures for building well-ordered bulk-heterojunction solar cells.

  12. The Impact of Individual Differences, Types of Model and Social Settings on Block Building Performance among Chinese Preschoolers

    PubMed Central

    Tian, Mi; Deng, Zhu; Meng, Zhaokun; Li, Rui; Zhang, Zhiyi; Qi, Wenhui; Wang, Rui; Yin, Tingting; Ji, Menghui

    2018-01-01

    Children’s block building performances are used as indicators of other abilities in multiple domains. In the current study, we examined individual differences, types of model and social settings as influences on children’s block building performance. Chinese preschoolers (N = 180) participated in a block building activity in a natural setting, and performance was assessed with multiple measures in order to identify a range of specific skills. Using scores generated across these measures, three dependent variables were analyzed: block building skills, structural balance and structural features. An overall MANOVA showed that there were significant main effects of gender and grade level across most measures. Types of model showed no significant effect in children’s block building. There was a significant main effect of social settings on structural features, with the best performance in the 5-member group, followed by individual and then the 10-member block building. These findings suggest that boys performed better than girls in block building activity. Block building performance increased significantly from 1st to 2nd year of preschool, but not from second to third. The preschoolers created more representational constructions when presented with a model made of wooden rather than with a picture. There was partial evidence that children performed better when working with peers in a small group than when working alone or working in a large group. It is suggested that future study should examine other modalities rather than the visual one, diversify the samples and adopt a longitudinal investigation. PMID:29441031

  13. Oligomers and Polymers Based on Pentacene Building Blocks

    PubMed Central

    Lehnherr, Dan; Tykwinski, Rik R.

    2010-01-01

    Functionalized pentacene derivatives continue to provide unique materials for organic semiconductor applications. Although oligomers and polymers based on pentacene building blocks remain quite rare, recent synthetic achievements have provided a number of examples with varied structural motifs. This review highlights recent work in this area and, when possible, contrasts the properties of defined-length pentacene oligomers to those of mono- and polymeric systems.

  14. The Building Blocks of Life Move from Ground to Tree to Animal and Back to Ground

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.

    2015-12-01

    I generally use combinations of big words to describe my science, such as biogeochemistry, ecosystem ecology, nutrient cycling, stoichiometry, tropical deforestation, land-use change, agricultural intensification, eutrophication, greenhouse gas emissions, and sustainable development. I didn't expect to use any of these words, but I was surprised that I couldn't use some others that seem simple enough to me, such as farm, plant, soil, and forest. I landed on "building blocks" as my metaphor for the forms of carbon, nitrogen, phosphorus, and other elements that I study as they cycle through and among ecosystems. I study what makes trees and other kinds of life grow. We all know that they need the sun and that they take up water from the ground, but what else do trees need from the ground? What do animals that eat leaves and wood get from the trees? Just as we need building blocks to grow our bodies, trees and animals also need building blocks for growing their bodies. Trees get part of their building blocks from the ground and animals get theirs from what they eat. When animals poop and when leaves fall, some of their building blocks return to the ground. When they die, their building blocks also go back to the ground. I also study what happens to the ground, the water, and the air when we cut down trees, kill or shoo away the animals, and make fields to grow our food. Can we grow enough food and still keep the ground, water, and air clean? I think the answer is yes, but it will take better understanding of how all of those building blocks fit together and move around, from ground to tree to animal and back to ground.

  15. Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes.

    PubMed

    Zhang, Xinghao; Qiu, Xiongying; Kong, Debin; Zhou, Lu; Li, Zihao; Li, Xianglong; Zhi, Linjie

    2017-07-25

    Nanostructuring is a transformative way to improve the structure stability of high capacity silicon for lithium batteries. Yet, the interface instability issue remains and even propagates in the existing nanostructured silicon building blocks. Here we demonstrate an intrinsically dual stabilized silicon building block, namely silicene flowers, to simultaneously address the structure and interface stability issues. These original Si building blocks as lithium battery anodes exhibit extraordinary combined performance including high gravimetric capacity (2000 mAh g -1 at 800 mA g -1 ), high volumetric capacity (1799 mAh cm -3 ), remarkable rate capability (950 mAh g -1 at 8 A g -1 ), and excellent cycling stability (1100 mA h g -1 at 2000 mA g -1 over 600 cycles). Paired with a conventional cathode, the fabricated full cells deliver extraordinarily high specific energy and energy density (543 Wh kg ca -1 and 1257 Wh L ca -1 , respectively) based on the cathode and anode, which are 152% and 239% of their commercial counterparts using graphite anodes. Coupled with a simple, cost-effective, scalable synthesis approach, this silicon building block offers a horizon for the development of high-performance batteries.

  16. Geospatial-enabled Data Exploration and Computation through Data Infrastructure Building Blocks

    NASA Astrophysics Data System (ADS)

    Song, C. X.; Biehl, L. L.; Merwade, V.; Villoria, N.

    2015-12-01

    Geospatial data are present everywhere today with the proliferation of location-aware computing devices and sensors. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. The GABBs project aims at enabling broader access to geospatial data exploration and computation by developing spatial data infrastructure building blocks that leverage capabilities of end-to-end application service and virtualized computing framework in HUBzero. Funded by NSF Data Infrastructure Building Blocks (DIBBS) initiative, GABBs provides a geospatial data architecture that integrates spatial data management, mapping and visualization and will make it available as open source. The outcome of the project will enable users to rapidly create tools and share geospatial data and tools on the web for interactive exploration of data without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the development of geospatial data infrastructure building blocks and the scientific use cases that help drive the software development, as well as seek feedback from the user communities.

  17. Interfacial engineering of CuO nanorod/ZnO nanowire hybrid nanostructure photoanode in dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Baran, Sümeyra Seniha; Asgin, Mansur; Gur, Emre; Kocak, Yusuf

    2018-01-01

    Developing efficient and cost-effective photoanode plays a vital role determining the photocurrent and photovoltage in dye-sensitized solar cells (DSSCs). Here, we demonstrate DSSCs that achieve relatively high power conversion efficiencies (PCEs) by using one-dimensional (1D) zinc oxide (ZnO) nanowires and copper (II) oxide (CuO) nanorods hybrid nanostructures. CuO nanorod-based thin films were prepared by hydrothermal method and used as a blocking layer on top of the ZnO nanowires' layer. The use of 1D ZnO nanowire/CuO nanorod hybrid nanostructures led to an exceptionally high photovoltaic performance of DSSCs with a remarkably high open-circuit voltage (0.764 V), short current density (14.76 mA/cm2 under AM1.5G conditions), and relatively high solar to power conversion efficiency (6.18%) . The enhancement of the solar to power conversion efficiency can be explained in terms of the lag effect of the interfacial recombination dynamics of CuO nanorod-blocking layer on ZnO nanowires. This work shows more economically feasible method to bring down the cost of the nano-hybrid cells and promises for the growth of other important materials to further enhance the solar to power conversion efficiency.

  18. Structure of clusters and building blocks in amylopectin from African rice accessions.

    PubMed

    Gayin, Joseph; Abdel-Aal, El-Sayed M; Marcone, Massimo; Manful, John; Bertoft, Eric

    2016-09-05

    Enzymatic hydrolysis in combination with gel-permeation and anion-exchange chromatography techniques were employed to characterise the composition of clusters and building blocks of amylopectin from two African rice (Oryza glaberrima) accessions-IRGC 103759 and TOG 12440. The samples were compared with one Asian rice (Oryza sativa) sample (cv WITA 4) and one O. sativa×O. glaberrima cross (NERICA 4). The average DP of clusters from the African rice accessions (ARAs) was marginally larger (DP=83) than in WITA 4 (DP=81). However, regarding average number of chains, clusters from the ARAs represented both the smallest and largest clusters. Overall, the result suggested that the structure of clusters in TOG 12440 was dense with short chains and high degree of branching, whereas the situation was the opposite in NERICA 4. IRGC 103759 and WITA 4 possessed clusters with intermediate characteristics. The commonest type of building blocks in all samples was group 2 (single branched dextrins) representing 40.3-49.4% of the blocks, while groups 3-6 were found in successively lower numbers. The average number of building blocks in the clusters was significantly larger in NERICA 4 (5.8) and WITA 4 (5.7) than in IRGC 103759 and TOG 12440 (5.1 and 5.3, respectively). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler.

    PubMed

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O'Connor, Mary; Shapiro, Bruce A

    2008-10-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes.

  20. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler☆

    PubMed Central

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O’Connor, Mary; Shapiro, Bruce A.

    2013-01-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes. PMID:18838281

  1. Synthesis of most polyene natural product motifs using just twelve building blocks and one coupling reaction

    PubMed Central

    Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.

    2014-01-01

    The inherent modularity of polypeptides, oligonucleotides, and oligosaccharides has been harnessed to achieve generalized building block-based synthesis platforms. Importantly, like these other targets, most small molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled the synthesis of a wide range of polyene frameworks covering all of this natural product chemical space, and first total syntheses of the polyene natural products asnipyrone B, physarigin A, and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach for making small molecules in the laboratory. PMID:24848233

  2. Statistical analysis of atmospheric turbulence about a simulated block building

    NASA Technical Reports Server (NTRS)

    Steely, S. L., Jr.

    1981-01-01

    An array of towers instrumented to measure the three components of wind speed was used to study atmospheric flow about a simulated block building. Two-point spacetime correlations of the longitudinal velocity component were computed along with two-point spatial correlations. These correlations are in good agreement with fundamental concepts of fluid mechanics. The two-point spatial correlations computed directly were compared with correlations predicted by Taylor's hypothesis and excellent agreement was obtained at the higher levels which were out of the building influence. The correlations fall off significantly in the building wake but recover beyond the wake to essentially the same values in the undisturbed, higher regions.

  3. Interlocking Toy Building Blocks as Hands-On Learning Modules for Blind and Visually Impaired Chemistry Students

    ERIC Educational Resources Information Center

    Melaku, Samuel; Schreck, James O.; Griffin, Kameron; Dabke, Rajeev B.

    2016-01-01

    Interlocking toy building blocks (e.g., Lego) as chemistry learning modules for blind and visually impaired (BVI) students in high school and undergraduate introductory or general chemistry courses are presented. Building blocks were assembled on a baseplate to depict the relative changes in the periodic properties of elements. Modules depicting…

  4. A building block for hardware belief networks.

    PubMed

    Behin-Aein, Behtash; Diep, Vinh; Datta, Supriyo

    2016-07-21

    Belief networks represent a powerful approach to problems involving probabilistic inference, but much of the work in this area is software based utilizing standard deterministic hardware based on the transistor which provides the gain and directionality needed to interconnect billions of them into useful networks. This paper proposes a transistor like device that could provide an analogous building block for probabilistic networks. We present two proof-of-concept examples of belief networks, one reciprocal and one non-reciprocal, implemented using the proposed device which is simulated using experimentally benchmarked models.

  5. Facet control of gold nanorods

    DOE PAGES

    Zhang, Qingfeng; Han, Lili; Jing, Hao; ...

    2016-01-21

    While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure–property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair ofmore » surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet-controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well-preserving all the characteristic facets and geometric features of the faceted Au nanorods. Furthermore, taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities.« less

  6. Photoelectroreduction of Building-Block Chemicals.

    PubMed

    Chen, Fengjiao; Cui, Wei; Zhang, Jie; Wang, Yeyun; Zhou, Junhua; Hu, Yongpan; Li, Yanguang; Lee, Shuit-Tong

    2017-06-12

    Conventional photoelectrochemical cells utilize solar energy to drive the chemical conversion of water or CO 2 into useful chemical fuels. Such processes are confronted with general challenges, including the low intrinsic activities and inconvenient storage and transportation of their gaseous products. A photoelectrochemical approach is proposed to drive the reductive production of industrial building-block chemicals and demonstrate that succinic acid and glyoxylic acid can be readily synthesized on Si nanowire array photocathodes free of any cocatalyst and at room temperature. These photocathodes exhibit a positive onset potential, large saturation photocurrent density, high reaction selectivity, and excellent operation durability. They capitalize on the large photovoltage generated from the semiconductor/electrolyte junction to partially offset the required external bias, and thereby make this photoelectrosynthetic approach significantly more sustainable compared to traditional electrosynthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Working Model of Protein Synthesis Using Lego(TM) Building Blocks.

    ERIC Educational Resources Information Center

    Templin, Mark A.; Fetters, Marcia K.

    2002-01-01

    Uses Lego building blocks to improve the effectiveness of teaching about protein synthesis. Provides diagrams and pictures for a 2-3 day student activity. Discusses mRNA, transfer RNA, and a protein synthesis model. (MVL)

  8. π-Extended Isoindigo-Based Derivative: A Promising Electron-Deficient Building Block for Polymer Semiconductors.

    PubMed

    Xu, Long; Zhao, Zhiyuan; Xiao, Mingchao; Yang, Jie; Xiao, Jian; Yi, Zhengran; Wang, Shuai; Liu, Yunqi

    2017-11-22

    The exploration of novel electron-deficient building blocks is a key task for developing high-performance polymer semiconductors in organic thin-film transistors. In view of the situation of the lack of strong electron-deficient building blocks, we designed two novel π-extended isoindigo-based electron-deficient building blocks, IVI and F 4 IVI. Owing to the strong electron-deficient nature and the extended π-conjugated system of the two acceptor units, their copolymers, PIVI2T and PF 4 IVI2T, containing 2,2'-bithiophene donor units, are endowed with deep-lying highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels and strong intermolecular interactions. In comparison to PIVI2T, the fluorinated PF 4 IVI2T exhibits stronger intra- and intermolecular interactions, lower HOMO/LUMO energy levels up to -5.74/-4.17 eV, and more ordered molecular packing with a smaller π-π stacking distance of up to 3.53 Å, resulting in an excellent ambipolar transporting behavior and a promising application in logic circuits for PF 4 IVI2T in ambient with hole and electron mobilities of up to 1.03 and 1.82 cm 2 V -1 s -1 , respectively. The results reveal that F 4 IVI is a promising and strong electron-deficient building unit to construct high-performance semiconducting polymers, which provides an insight into the structure-property relationships for the exploration and molecular engineering of excellent electron-deficient building blocks in the field of organic electronics.

  9. Solvent mediated hybrid 2D materials: black phosphorus - graphene heterostructured building blocks assembled for sodium ion batteries.

    PubMed

    Li, Mengya; Muralidharan, Nitin; Moyer, Kathleen; Pint, Cary L

    2018-06-07

    Here we demonstrate the broad capability to exploit interactions at different length scales in 2D materials to prepare macroscopic functional materials containing hybrid black phosphorus/graphene (BP/G) heterostructured building blocks. First, heterostructured 2D building blocks are self-assembled during co-exfoliation in the solution phase based on electrostatic attraction of different 2D materials. Second, electrophoretic deposition is used as a tool to assemble these building blocks into macroscopic films containing these self-assembled 2D heterostructures. Characterization of deposits formed using this technique elucidates the presence of stacked and sandwiched 2D heterostructures, and zeta potential measurements confirm the mechanistic interactions driving this assembly. Building on the exceptional sodium alloying capacity of BP, these materials were demonstrated as superior binder-free and additive-free anodes for sodium batteries with specific discharge capacity of 2365 mA h gP-1 and long stable cycling duration. This study demonstrates how controllable co-processing of 2D materials can enable material control for stacking and building block assembly relevant to broad future applications of 2D materials.

  10. Building Blocks for Transport-Class Hybrid and Turboelectric Vehicles

    NASA Technical Reports Server (NTRS)

    Jankovsky, Amy; Bowman, Cheryl; Jansen, Ralph

    2016-01-01

    NASA has been investing in research efforts to define potential vehicles that use hybrid and turboelectric propulsion to enable savings in fuel burn and carbon usage. This paper overviews the fundamental building blocks that have been derived from those studies and details what key performance parameters have been defined, what key ground and flight tests need to occur, and highlights progress toward each.

  11. Efficient Risk Determination of Risk of Road Blocking by Means of MMS and Data of Buildings and Their Surrounding

    NASA Astrophysics Data System (ADS)

    Nose, Kazuhito; Hatake, Shuhei

    2016-06-01

    Massive earthquake named "Tonankai Massive earthquake" is predicted to occur in the near future and is feared to cause severe damage in Kinki District . "Hanshin-Awaji Massive Earthquake" in 1995 destroyed most of the buildings constructed before 1981 and not complying with the latest earthquake resistance standards. Collapsed buildings blocked roads, obstructed evacuation, rescue and firefighting operations and inflicted further damages.To alleviate the damages, it is important to predict the points where collapsed buildings are likely block the roads and to take precautions in advance. But big cities have an expanse of urban areas with densely-distributed buildings, and it requires time and cost to check each and every building whether or not it will block the road. In order to reduce blocked roads when a disaster strikes, we made a study and confirmed that the risk of road blocking can be determined easily by means of the latest technologies of survey and geographical information.

  12. Recent advances in synthesis of bacterial rare sugar building blocks and their applications.

    PubMed

    Emmadi, Madhu; Kulkarni, Suvarn S

    2014-07-01

    Covering: 1964 to 2013. Bacteria have unusual glycans on their surfaces which distinguish them from the host cells. These unique structures offer avenues for targeting bacteria with specific therapeutics and vaccine. However, these rare sugars are not accessible in acceptable purity and amounts by isolation from natural sources. Thus, procurement of orthogonally protected rare sugar building blocks through efficient chemical synthesis is regarded as a crucial step towards the development of glycoconjugate vaccines. This Highlight focuses on recent advances in the synthesis of the bacterial deoxy amino hexopyranoside building blocks and their application in constructing various biologically important bacterial O-glycans.

  13. Engineering multifunctional protein nanoparticles by in vitro disassembling and reassembling of heterologous building blocks

    NASA Astrophysics Data System (ADS)

    Unzueta, Ugutz; Serna, Naroa; Sánchez-García, Laura; Roldán, Mónica; Sánchez-Chardi, Alejandro; Mangues, Ramón; Villaverde, Antonio; Vázquez, Esther

    2017-12-01

    The engineering of protein self-assembling at the nanoscale allows the generation of functional and biocompatible materials, which can be produced by easy biological fabrication. The combination of cationic and histidine-rich stretches in fusion proteins promotes oligomerization as stable protein-only regular nanoparticles that are composed by a moderate number of building blocks. Among other applications, these materials are highly appealing as tools in targeted drug delivery once empowered with peptidic ligands of cell surface receptors. In this context, we have dissected here this simple technological platform regarding the controlled disassembling and reassembling of the composing building blocks. By applying high salt and imidazole in combination, nanoparticles are disassembled in a process that is fully reversible upon removal of the disrupting agents. By taking this approach, we accomplish here the in vitro generation of hybrid nanoparticles formed by heterologous building blocks. This fact demonstrates the capability to generate multifunctional and/or multiparatopic or multispecific materials usable in nanomedical applications.

  14. Highly crystalline covalent organic frameworks from flexible building blocks.

    PubMed

    Xu, Liqian; Ding, San-Yuan; Liu, Junmin; Sun, Junliang; Wang, Wei; Zheng, Qi-Yu

    2016-03-28

    Two novel 2D covalent organic frameworks (TPT-COF-1 and TPT-COF-2) were synthesized from the flexible 2,4,6-triaryloxy-1,3,5-triazine building blocks on a gram scale, which show high crystallinity and large surface area. The controllable formation of highly ordered frameworks is mainly attributed to the self-assembly Piedfort unit of 2,4,6-triaryloxy-1,3,5-triazine.

  15. Efficient reduction of defects in (1120) non-polar and (1122) semi-polar GaN grown on nanorod templates

    NASA Astrophysics Data System (ADS)

    Bai, J.; Gong, Y.; Xing, K.; Yu, X.; Wang, T.

    2013-03-01

    (1120) non-polar and (1122) semi-polar GaNs with a low defect density have been achieved by means of an overgrowth on nanorod templates, where a quick coalescence with a thickness even below 1 μm occurs. On-axis and off-axis X-ray rocking curve measurements have shown a massive reduction in the linewidth for our overgrown GaN in comparison with standard GaN films grown on sapphire substrates. Transmission electron microscope observation demonstrates that the overgrowth on the nanorod templates takes advantage of an omni-directional growth around the sidewalls of the nanostructures. The dislocations redirect in basal planes during the overgrowth, leading to their annihilation and termination at voids formed due to a large lateral growth rate. In the non-polar GaN, the priority <0001> lateral growth from vertical sidewalls of nanorods allows basal plane stacking faults (BSFs) to be blocked in the nanorod gaps; while for semi-polar GaN, the propagation of BSFs starts to be impeded when the growth front is changed to be along inclined <0001> direction above the nanorods.

  16. Dendronized Metal Nanoparticles-Self-Organizing Building Blocks for the Design of New Functional Materials

    DTIC Science & Technology

    2016-04-01

    characterization has just started.       The hybrids that we have synthesized are based on plasmonic gold and  silver   nanoparticles  (NPs) but  the concept  is...AFRL-AFOSR-UK-TR-2016-0010 Dendronized metal nanoparticles - self-organizing building blocks for the design of new functional materials Bertrand...2015 4. TITLE AND SUBTITLE Dendronized metal nanoparticles - self-organizing building blocks for the design of new functional materials 5a. CONTRACT

  17. Transportable Payload Operations Control Center reusable software: Building blocks for quality ground data systems

    NASA Technical Reports Server (NTRS)

    Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara

    1994-01-01

    The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.

  18. Utilization of the Building-Block Approach in Structural Mechanics Research

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Jegley, Dawn C.; McGowan, David M.; Bush, Harold G.; Waters, W. Allen

    2005-01-01

    In the last 20 years NASA has worked in collaboration with industry to develop enabling technologies needed to make aircraft safer and more affordable, extend their lifetime, improve their reliability, better understand their behavior, and reduce their weight. To support these efforts, research programs starting with ideas and culminating in full-scale structural testing were conducted at the NASA Langley Research Center. Each program contained development efforts that (a) started with selecting the material system and manufacturing approach; (b) moved on to experimentation and analysis of small samples to characterize the system and quantify behavior in the presence of defects like damage and imperfections; (c) progressed on to examining larger structures to examine buckling behavior, combined loadings, and built-up structures; and (d) finally moved to complicated subcomponents and full-scale components. Each step along the way was supported by detailed analysis, including tool development, to prove that the behavior of these structures was well-understood and predictable. This approach for developing technology became known as the "building-block" approach. In the Advanced Composites Technology Program and the High Speed Research Program the building-block approach was used to develop a true understanding of the response of the structures involved through experimentation and analysis. The philosophy that if the structural response couldn't be accurately predicted, it wasn't really understood, was critical to the progression of these programs. To this end, analytical techniques including closed-form and finite elements were employed and experimentation used to verify assumptions at each step along the way. This paper presents a discussion of the utilization of the building-block approach described previously in structural mechanics research and development programs at NASA Langley Research Center. Specific examples that illustrate the use of this approach are

  19. Ribozyme-catalysed RNA synthesis using triplet building blocks.

    PubMed

    Attwater, James; Raguram, Aditya; Morgunov, Alexey S; Gianni, Edoardo; Holliger, Philipp

    2018-05-15

    RNA-catalyzed RNA replication is widely believed to have supported a primordial biology. However, RNA catalysis is dependent upon RNA folding, and this yields structures that can block replication of such RNAs. To address this apparent paradox we have re-examined the building blocks used for RNA replication. We report RNA-catalysed RNA synthesis on structured templates when using trinucleotide triphosphates (triplets) as substrates, catalysed by a general and accurate triplet polymerase ribozyme that emerged from in vitro evolution as a mutualistic RNA heterodimer. The triplets cooperatively invaded and unraveled even highly stable RNA secondary structures, and support non-canonical primer-free and bidirectional modes of RNA synthesis and replication. Triplet substrates thus resolve a central incongruity of RNA replication, and here allow the ribozyme to synthesise its own catalytic subunit '+' and '-' strands in segments and assemble them into a new active ribozyme. © 2018, Attwater et al.

  20. HUBBLE AND KECK DISCOVER GALAXY BUILDING BLOCK

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image shows a very small, faint galaxy 'building block' newly discovered by a unique collaboration between ground- and space-based telescopes. Hubble and the 10-meter Keck Telescopes in Hawaii joined forces, using a galaxy cluster which acts as gravitational lens to detect what scientists believe is one of the smallest very distant objects ever found. The galaxy cluster Abell 2218 was used by a team of European and American astronomers led by Richard Ellis (Caltech) in their systematic search for intrinsically faint distant star-forming systems. Without help from Abell 2218's exceptional magnifying power to make objects appear about 30 times brighter, the galaxy building block would have been undetectable. In the image to the right, the object is seen distorted into two nearly identical, very red 'images' by the gravitational lens. The image pair represents the magnified result of a single background object gravitationally lensed by Abell 2218 and viewed at a distance of 13.4 billion light-years. The intriguing object contains only one million stars, far fewer than a mature galaxy, and scientists believe it is very young. Such young star-forming systems of low mass at early cosmic times are likely to be the objects from which present-day galaxies have formed. In the image to the left, the full overview of the galaxy cluster Abell 2218 is seen. This image was taken by Hubble in 1999 at the completion of Hubble Servicing Mission 3A. Credit: NASA, ESA, Richard Ellis (Caltech) and Jean-Paul Kneib (Observatoire Midi-Pyrenees, France) Acknowledgment: NASA, A. Fruchter and the ERO Team (STScI and ST-ECF)

  1. Hierachical Ni@Fe2O3 superparticles through epitaxial growth of γ-Fe2O3 nanorods on in situ formed Ni nanoplates

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad Nawaz; Herzberger, Jana; Natalio, Filipe; Köhler, Oskar; Branscheid, Robert; Mugnaioli, Enrico; Ksenofontov, Vadim; Panthöfer, Martin; Kolb, Ute; Frey, Holger; Tremel, Wolfgang

    2016-05-01

    One endeavour of nanochemistry is the bottom-up synthesis of functional mesoscale structures from basic building blocks. We report a one-pot wet chemical synthesis of Ni@γ-Fe2O3 superparticles containing Ni cores densely covered with highly oriented γ-Fe2O3 (maghemite) nanorods (NRs) by controlled reduction/decomposition of nickel acetate (Ni(ac)2) and Fe(CO)5. Automated diffraction tomography (ADT) of the Ni-Fe2O3 interface in combination with Mössbauer spectroscopy showed that selective and oriented growth of the γ-Fe2O3 nanorods on the Ni core is facilitated through the formation of a Fe0.05Ni0.95 alloy and the appearance of superstructure features that may reduce strain at the Ni-Fe2O3 interface. The common orientation of the maghemite nanorods on the Ni core of the superparticles leads to a greatly enhanced magnetization. After functionalization with a catechol-functional polyethylene glycol (C-PEG) ligand the Ni@γ-Fe2O3 superparticles were dispersible in water.One endeavour of nanochemistry is the bottom-up synthesis of functional mesoscale structures from basic building blocks. We report a one-pot wet chemical synthesis of Ni@γ-Fe2O3 superparticles containing Ni cores densely covered with highly oriented γ-Fe2O3 (maghemite) nanorods (NRs) by controlled reduction/decomposition of nickel acetate (Ni(ac)2) and Fe(CO)5. Automated diffraction tomography (ADT) of the Ni-Fe2O3 interface in combination with Mössbauer spectroscopy showed that selective and oriented growth of the γ-Fe2O3 nanorods on the Ni core is facilitated through the formation of a Fe0.05Ni0.95 alloy and the appearance of superstructure features that may reduce strain at the Ni-Fe2O3 interface. The common orientation of the maghemite nanorods on the Ni core of the superparticles leads to a greatly enhanced magnetization. After functionalization with a catechol-functional polyethylene glycol (C-PEG) ligand the Ni@γ-Fe2O3 superparticles were dispersible in water. Electronic supplementary

  2. Building blocks for correlated superconductors and magnets

    DOE PAGES

    Sarrao, J. L.; Ronning, F.; Bauer, E. D.; ...

    2015-04-01

    Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. In addition, successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials designmore » and synthesis.« less

  3. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block.

    PubMed

    Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-Ichi; Nokami, Toshiki; Itoh, Toshiyuki

    2017-01-01

    The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.

  4. Enantiopure heterobimetallic single-chain magnets from the chiral Ru(III) building block.

    PubMed

    Ru, Jing; Gao, Feng; Wu, Tao; Yao, Min-Xia; Li, Yi-Zhi; Zuo, Jing-Lin

    2014-01-21

    A pair of one-dimensional enantiomers based on the versatile chiral dicyanoruthenate(III) building block have been synthesized and they are chiral single-chain magnets with the effective spin-reversal barrier of 28.2 K.

  5. Praseodymium hydroxide and oxide nanorods and Au/Pr6O11 nanorod catalysts for CO oxidation.

    PubMed

    Huang, P X; Wu, F; Zhu, B L; Li, G R; Wang, Y L; Gao, X P; Zhu, H Y; Yan, T Y; Huang, W P; Zhang, S M; Song, D Y

    2006-02-02

    Praseodymium hydroxide nanorods were synthesized by a two-step approach: First, metallic praseodymium was used to form praseodymium chloride, which reacted subsequently with KOH solution to produce praseodymium hydroxide. In the second step the hydroxide was treated with a concentrated alkaline solution at 180 degrees C for 45 h, yielding nanorods as shown by the scanning and transmission electron microscopy images. The results of X-ray diffraction and energy-dispersive X-ray spectroscopy experiments indicate that these nanorods are pure praseodymium hydroxide with a hexagonal structure, which can be converted into praseodymium oxide (Pr6O11) nanorods of a face-centered cubic structure after calcination at 600 degrees C for 2 h in air. Gold was loaded on the praseodymium oxide nanorods using HAuCl4 as the gold source, and NaBH4 was used to reduce the gold species to metallic nanoparticles with sizes of 8-12 nm on the nanorod surface. These Au/Pr6O11 nanorods exhibit superior catalytic activity for CO oxidation.

  6. High-performance thermoelectric nanocomposites from nanocrystal building blocks

    PubMed Central

    Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V.; Cabot, Andreu

    2016-01-01

    The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom–up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS–Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS–Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K. PMID:26948987

  7. High-performance thermoelectric nanocomposites from nanocrystal building blocks.

    PubMed

    Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V; Cabot, Andreu

    2016-03-07

    The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom-up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS-Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS-Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K.

  8. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block

    PubMed Central

    Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-ichi

    2017-01-01

    The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block. PMID:28684973

  9. PBF Reactor Building (PER620). Detail of arrangement of highdensity blocks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Detail of arrangement of high-density blocks and other basement shielding. Date: February 1966. Ebasco Services 1205 PER/PBF 620-A-7. INEEL index no. 761-0620-00-205-123070 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  10. Efficient reduction of defects in (1120) non-polar and (1122) semi-polar GaN grown on nanorod templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, J.; Gong, Y.; Xing, K.

    2013-03-11

    (1120) non-polar and (1122) semi-polar GaNs with a low defect density have been achieved by means of an overgrowth on nanorod templates, where a quick coalescence with a thickness even below 1 {mu}m occurs. On-axis and off-axis X-ray rocking curve measurements have shown a massive reduction in the linewidth for our overgrown GaN in comparison with standard GaN films grown on sapphire substrates. Transmission electron microscope observation demonstrates that the overgrowth on the nanorod templates takes advantage of an omni-directional growth around the sidewalls of the nanostructures. The dislocations redirect in basal planes during the overgrowth, leading to their annihilationmore » and termination at voids formed due to a large lateral growth rate. In the non-polar GaN, the priority <0001> lateral growth from vertical sidewalls of nanorods allows basal plane stacking faults (BSFs) to be blocked in the nanorod gaps; while for semi-polar GaN, the propagation of BSFs starts to be impeded when the growth front is changed to be along inclined <0001> direction above the nanorods.« less

  11. Application of soil block without burning process and calcium silicate panels as building wall in mountainous area

    NASA Astrophysics Data System (ADS)

    Noerwasito, Vincentius Totok; Nasution, Tanti Satriana Rosary

    2017-11-01

    Utilization of local building materials in a residential location in mountainous area is very important, considering local material as a low-energy building material because of low transport energy. The local building materials used in this study are walls made from soil blocks. The material was made by the surrounding community from compacted soil without burning process. To maximize the potential of soil block to the outdoor temperature in the mountains, it is necessary to add non-local building materials as an insulator from the influence of the outside air. The insulator was calcium silicate panel. The location of the research is Trawas sub-district, Mojokerto regency, which is a mountainous area. The research problem is on applying the composition of local materials and calcium silicate panels that it will be able to meet the requirements as a wall building material and finding to what extent the impact of the wall against indoor temperature. The result from this research was the application of soil block walls insulated by calcium silicate panels in a building model. Besides, because of the utilization of those materials, the building has a specific difference between indoor and outdoor temperature. Thus, this model can be applied in mountainous areas in Indonesia.

  12. A mixed molecular building block strategy for the design of nested polyhedron metal-organic frameworks.

    PubMed

    Tian, Dan; Chen, Qiang; Li, Yue; Zhang, Ying-Hui; Chang, Ze; Bu, Xian-He

    2014-01-13

    A mixed molecular building block (MBB) strategy for the synthesis of double-walled cage-based porous metal-organic frameworks (MOFs) is presented. By means of this method, two isostructural porous MOFs built from unprecedented double-walled metal-organic octahedron were obtained by introducing two size-matching C3 -symmetric molecular building blocks with different rigidities. With their unique framework structures, these MOFs provide, to the best of our knowledge, the first examples of double-walled octahedron-based MOFs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks.

    PubMed

    Schneider, G; Lee, M L; Stahl, M; Schneider, P

    2000-07-01

    An evolutionary algorithm was developed for fragment-based de novo design of molecules (TOPAS, TOPology-Assigning System). This stochastic method aims at generating a novel molecular structure mimicking a template structure. A set of approximately 25,000 fragment structures serves as the building block supply, which were obtained by a straightforward fragmentation procedure applied to 36,000 known drugs. Eleven reaction schemes were implemented for both fragmentation and building block assembly. This combination of drug-derived building blocks and a restricted set of reaction schemes proved to be a key for the automatic development of novel, synthetically tractable structures. In a cyclic optimization process, molecular architectures were generated from a parent structure by virtual synthesis, and the best structure of a generation was selected as the parent for the subsequent TOPAS cycle. Similarity measures were used to define 'fitness', based on 2D-structural similarity or topological pharmacophore distance between the template molecule and the variants. The concept of varying library 'diversity' during a design process was consequently implemented by using adaptive variant distributions. The efficiency of the design algorithm was demonstrated for the de novo construction of potential thrombin inhibitors mimicking peptide and non-peptide template structures.

  14. Using the World Health Organization health system building blocks through survey of healthcare professionals to determine the performance of public healthcare facilities.

    PubMed

    Manyazewal, Tsegahun

    2017-01-01

    Acknowledging the health system strengthening agenda, the World Health Organization (WHO) has formulated a health systems framework that describes health systems in terms of six building blocks. This study aimed to determine the current status of the six WHO health system building blocks in public healthcare facilities in Ethiopia. A quantitative, cross-sectional study was conducted in five public hospitals in central Ethiopia which were in a post-reform period. A self-administered, structured questionnaire which covered the WHO's six health system building blocks was used to collect data on healthcare professionals who consented. Data was analyzed using IBM SPSS version 20. The overall performance of the public hospitals was 60% when weighed against the WHO building blocks which, in this procedure, needed a minimum of 80% score. For each building block, performance scores were: information 53%, health workforce 55%, medical products and technologies 58%, leadership and governance 61%, healthcare financing 62%, and service delivery 69%. There existed a significant difference in performance among the hospitals ( p  < .001). The study proved that the WHO's health system building blocks are useful for assessing the process of strengthening health systems in Ethiopia. The six blocks allow identifying different improvement opportunities in each one of the hospitals. There was no contradiction between the indicators of the WHO building blocks and the health sustainable development goal (SDG) objectives. However, such SDG objectives should not be a substitute for strategies to strengthen health systems.

  15. A Library of Rad Hard Mixed-Voltage/Mixed-Signal Building Blocks for Integration of Avionics Systems for Deep Space

    NASA Technical Reports Server (NTRS)

    Mojarradi, M. M.; Blaes, B.; Kolawa, E. A.; Blalock, B. J.; Li, H. W.; Buck, K.; Houge, D.

    2001-01-01

    To build the sensor intensive system-on-a-chip for the next generation spacecrafts for deep space, Center for Integration of Space Microsystems at JPL (CISM) takes advantage of the lower power rating and inherent radiation resistance of Silicon on Insulator technology (SOI). We are developing a suite of mixed-voltage and mixed-signal building blocks in Honeywell's SOI process that can enable the rapid integration of the next generation avionics systems with lower power rating, higher reliability, longer life, and enhanced radiation tolerance for spacecrafts such as the Europa Orbiter and Europa Lander. The mixed-voltage building blocks are predominantly for design of adaptive power management systems. Their design centers around an LDMOS structure that is being developed by Honeywell, Boeing Corp, and the University of Idaho. The mixed-signal building blocks are designed to meet the low power, extreme radiation requirement of deep space applications. These building blocks are predominantly used to interface analog sensors to the digital CPU of the next generation avionics system on a chip. Additional information is contained in the original extended abstract.

  16. Building blocks toward contemporary trauma theory: Ferenczi 's paradigm shift.

    PubMed

    Mészáros, Judit

    2010-12-01

    In laying down the building blocks of contemporary trauma theory, Ferenczi asserted that trauma is founded on real events and that it occurs in the interpersonal and intersubjective dynamics of object relations. He stressed the significance of the presence or lack of a trusted person in the post-traumatic situation. After the trauma, the loneliness and later the isolation of the victim represent a serious pathogenic source. In the traumatic situation, the victim and the persecutor/aggressor operate differing ego defense mechanisms. Ferenczi was the first to describe the ego defense mechanism of identification with the aggressor. Ferenczi pointed out the characteristic features of the role of analyst/therapist with which (s)he may assist the patient in working through the trauma, among them being the development of a therapeutic atmosphere based on trust, so that the traumatic experiences can be relived, without which effective therapeutic change cannot be achieved. For the analyst, countertransference, as part of authentic communication, is incorporated into the therapeutic process. These are the key building blocks that are laid down by Ferenczi in his writings and appear in later works on trauma theory.

  17. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction.

    PubMed

    Woerly, Eric M; Roy, Jahnabi; Burke, Martin D

    2014-06-01

    The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin b-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.

  18. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction

    NASA Astrophysics Data System (ADS)

    Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.

    2014-06-01

    The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.

  19. 2016 Summer Series - Kenneth Cheung: Building Blocks for Aerospace Structures

    NASA Image and Video Library

    2016-06-16

    Strong, ultra-lightweight materials are expected to play a key role in the design of future aircraft and space vehicles. Lower structural mass leads to improved performance, maneuverability, efficiency, range and payload capacity. Dr. Kenneth Cheung is developing cellular composite building blocks, or digital materials, to create transformable aerostructures. In his presentation, Dr. Cheung will discuss the implications of the digital materials and morphing structures.

  20. Using Interlocking Toy Building Blocks to Assess Conceptual Understanding in Chemistry

    ERIC Educational Resources Information Center

    Geyer, Michael J.

    2017-01-01

    A current emphasis on teaching conceptual chemistry via the particulate nature of matter has led to the need for new, effective ways to assess students' conceptual understanding of this view of chemistry. This article provides a simple, inexpensive way to use interlocking toy building blocks (e.g., LEGOs) in both formative and summative…

  1. Building blocks for social accountability: a conceptual framework to guide medical schools.

    PubMed

    Preston, Robyn; Larkins, Sarah; Taylor, Judy; Judd, Jenni

    2016-08-26

    This paper presents a conceptual framework developed from empirical evidence, to guide medical schools aspiring towards greater social accountability. Using a multiple case study approach, seventy-five staff, students, health sector representatives and community members, associated with four medical schools, participated in semi-structured interviews. Two schools were in Australia and two were in the Philippines. These schools were selected because they were aspiring to be socially accountable. Data was collected through on-site visits, field notes and a documentary review. Abductive analysis involved both deductive and inductive iterative theming of the data both within and across cases. The conceptual framework for socially accountable medical education was built from analyzing the internal and external factors influencing the selected medical schools. These factors became the building blocks that might be necessary to assist movement to social accountability. The strongest factor was the demands of the local workforce situation leading to innovative educational programs established with or without government support. The values and professional experiences of leaders, staff and health sector representatives, influenced whether the organizational culture of a school was conducive to social accountability. The wider institutional environment and policies of their universities affected this culture and the resourcing of programs. Membership of a coalition of socially accountable medical schools created a community of learning and legitimized local practice. Communities may not have recognized their own importance but they were fundamental for socially accountable practices. The bedrock of social accountability, that is, the foundation for all building blocks, is shared values and aspirations congruent with social accountability. These values and aspirations are both a philosophical understanding for innovation and a practical application at the health systems and

  2. PUS Services Software Building Block Automatic Generation for Space Missions

    NASA Astrophysics Data System (ADS)

    Candia, S.; Sgaramella, F.; Mele, G.

    2008-08-01

    The Packet Utilization Standard (PUS) has been specified by the European Committee for Space Standardization (ECSS) and issued as ECSS-E-70-41A to define the application-level interface between Ground Segments and Space Segments. The ECSS-E- 70-41A complements the ECSS-E-50 and the Consultative Committee for Space Data Systems (CCSDS) recommendations for packet telemetry and telecommand. The ECSS-E-70-41A characterizes the identified PUS Services from a functional point of view and the ECSS-E-70-31 standard specifies the rules for their mission-specific tailoring. The current on-board software design for a space mission implies the production of several PUS terminals, each providing a specific tailoring of the PUS services. The associated on-board software building blocks are developed independently, leading to very different design choices and implementations even when the mission tailoring requires very similar services (from the Ground operative perspective). In this scenario, the automatic production of the PUS services building blocks for a mission would be a way to optimize the overall mission economy and improve the robusteness and reliability of the on-board software and of the Ground-Space interactions. This paper presents the Space Software Italia (SSI) activities for the development of an integrated environment to support: the PUS services tailoring activity for a specific mission. the mission-specific PUS services configuration. the generation the UML model of the software building block implementing the mission-specific PUS services and the related source code, support documentation (software requirements, software architecture, test plans/procedures, operational manuals), and the TM/TC database. The paper deals with: (a) the project objectives, (b) the tailoring, configuration, and generation process, (c) the description of the environments supporting the process phases, (d) the characterization of the meta-model used for the generation, (e) the

  3. Single-trabecula building block for large-scale finite element models of cancellous bone.

    PubMed

    Dagan, D; Be'ery, M; Gefen, A

    2004-07-01

    Recent development of high-resolution imaging of cancellous bone allows finite element (FE) analysis of bone tissue stresses and strains in individual trabeculae. However, specimen-specific stress/strain analyses can include effects of anatomical variations and local damage that can bias the interpretation of the results from individual specimens with respect to large populations. This study developed a standard (generic) 'building-block' of a trabecula for large-scale FE models. Being parametric and based on statistics of dimensions of ovine trabeculae, this building block can be scaled for trabecular thickness and length and be used in commercial or custom-made FE codes to construct generic, large-scale FE models of bone, using less computer power than that currently required to reproduce the accurate micro-architecture of trabecular bone. Orthogonal lattices constructed with this building block, after it was scaled to trabeculae of the human proximal femur, provided apparent elastic moduli of approximately 150 MPa, in good agreement with experimental data for the stiffness of cancellous bone from this site. Likewise, lattices with thinner, osteoporotic-like trabeculae could predict a reduction of approximately 30% in the apparent elastic modulus, as reported in experimental studies of osteoporotic femora. Based on these comparisons, it is concluded that the single-trabecula element developed in the present study is well-suited for representing cancellous bone in large-scale generic FE simulations.

  4. Block Play and Mathematics Learning in Preschool: The Effects of Building Complexity, Peer and Teacher Interactions in the Block Area, and Replica Play Materials

    ERIC Educational Resources Information Center

    Trawick-Smith, Jeffrey; Swaminathan, Sudha; Baton, Brooke; Danieluk, Courtney; Marsh, Samantha; Szarwacki, Monika

    2017-01-01

    Block play has been included in early childhood classrooms for over a century, yet few studies have examined its effects on learning. Several previous investigations indicate that the complexity of block building is associated with math ability, but these studies were often conducted in adult-guided, laboratory settings. In the present…

  5. Galactic Building Blocks Seen Swarming Around Andromeda

    NASA Astrophysics Data System (ADS)

    2004-02-01

    Green Bank, WV - A team of astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) has made the first conclusive detection of what appear to be the leftover building blocks of galaxy formation -- neutral hydrogen clouds -- swarming around the Andromeda Galaxy, the nearest large spiral galaxy to the Milky Way. This discovery may help scientists understand the structure and evolution of the Milky Way and all spiral galaxies. It also may help explain why certain young stars in mature galaxies are surprisingly bereft of the heavy elements that their contemporaries contain. Andromeda Galaxy This image depicts several long-sought galactic "building blocks" in orbit of the Andromeda Galaxy (M31). The newfound hydrogen clouds are depicted in a shade of orange (GBT), while gas that comprises the massive hydrogen disk of Andromeda is shown at high-resolution in blue (Westerbork Sythesis Radio Telescope). CREDIT: NRAO/AUI/NSF, WSRT (Click on Image for Larger Version) "Giant galaxies, like Andromeda and our own Milky Way, are thought to form through repeated mergers with smaller galaxies and through the accretion of vast numbers of even lower mass 'clouds' -- dark objects that lack stars and even are too small to call galaxies," said David A. Thilker of the Johns Hopkins University in Baltimore, Maryland. "Theoretical studies predict that this process of galactic growth continues today, but astronomers have been unable to detect the expected low mass 'building blocks' falling into nearby galaxies, until now." Thilker's research is published in the Astrophysical Journal Letters. Other contributors include: Robert Braun of the Netherlands Foundation for Research in Astronomy; Rene A.M. Walterbos of New Mexico State University; Edvige Corbelli of the Osservatorio Astrofisico di Arcetri in Italy; Felix J. Lockman and Ronald Maddalena of the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia; and Edward Murphy of the

  6. Collective alignment of nanorods in thin Newtonian films

    NASA Astrophysics Data System (ADS)

    Gu, Yu; Burtovyy, Ruslan; Townsend, James; Owens, Jeffery; Luzinov, Igor; Kornev, Konstantin

    2013-11-01

    We provide a complete analytical description of the alignment kinetics of magnetic nanorods in magnetic field. Nickel nanorods were formed by template electrochemical deposition in alumina membranes from a dispersion in a water-glycerol mixture. To ensure uniformity of the dispersion, the surface of the nickel nanorods was covered with polyvinylpyrrolidone (PVP). A 40-70 nm coating prevented aggregation of nanoroda. These modifications allowed us to control alignment of the nanorods in a magnetic field and test the proposed theory. An orientational distribution function of nanorods was introduced. We demonstrated that the 0.04% volume fraction of nanorods in the glycerol-water mixture behaves as a system of non-interacting particles. However, the kinetics of alignment of a nanorod assembly does not follow the predictions of the single-nanorod theory. The distribution function theory explains the kinetics of alignment of a nanorod assembly and shows the significance of the initial distribution of nanorods in the film. It can be used to develop an experimental protocol for controlled ordering of magnetic nanorods in thin films. This work was supported by the Air Force Office of Scientific Research, Grant numbers FA9550-12-1-0459 and FA8650-09-D-507 5900.

  7. Assessing the Potential of Folded Globular Polyproteins As Hydrogel Building Blocks

    PubMed Central

    2016-01-01

    The native states of proteins generally have stable well-defined folded structures endowing these biomolecules with specific functionality and molecular recognition abilities. Here we explore the potential of using folded globular polyproteins as building blocks for hydrogels. Photochemically cross-linked hydrogels were produced from polyproteins containing either five domains of I27 ((I27)5), protein L ((pL)5), or a 1:1 blend of these proteins. SAXS analysis showed that (I27)5 exists as a single rod-like structure, while (pL)5 shows signatures of self-aggregation in solution. SANS measurements showed that both polyprotein hydrogels have a similar nanoscopic structure, with protein L hydrogels being formed from smaller and more compact clusters. The polyprotein hydrogels showed small energy dissipation in a load/unload cycle, which significantly increased when the hydrogels were formed in the unfolded state. This study demonstrates the use of folded proteins as building blocks in hydrogels, and highlights the potential versatility that can be offered in tuning the mechanical, structural, and functional properties of polyproteins. PMID:28006103

  8. Quantitative NMR Approach to Optimize the Formation of Chemical Building Blocks from Abundant Carbohydrates.

    PubMed

    Elliot, Samuel G; Tolborg, Søren; Sádaba, Irantzu; Taarning, Esben; Meier, Sebastian

    2017-07-21

    The future role of biomass-derived chemicals relies on the formation of diverse functional monomers in high yields from carbohydrates. Recently, it has become clear that a series of α-hydroxy acids, esters, and lactones can be formed from carbohydrates in alcohol and water solvents using tin-containing catalysts such as Sn-Beta. These compounds are potential building blocks for polyesters bearing additional olefin and alcohol functionalities. An NMR approach was used to identify, quantify, and optimize the formation of these building blocks in the Sn-Beta-catalyzed transformation of abundant carbohydrates. Record yields of the target molecules can be achieved by obstructing competing reactions through solvent selection. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Design and synthesis of unnatural heparosan and chondroitin building blocks

    PubMed Central

    Bera, Smritilekha; Linhardt, Robert J.

    2011-01-01

    Triazole linked heparosan and chondroitin disaccharide and tetrasaccharide building blocks were synthesized in a stereoselective manner by applying a very efficient Copper Catalyzed Azide-Alkyne Cycloadditions (CuAAC) reaction of appropriately substituted azido-glucuronic acid and propargyluted N-acetyl glucosamine and N-acetyl galactosamine derivative respectively. The resulting suitably substituted tetrasaccharide analogs can be easily converted into azide and alkyne unit for further synthesis of higher oligosaccharide analogs. PMID:21438620

  10. GaN based nanorods for solid state lighting

    NASA Astrophysics Data System (ADS)

    Li, Shunfeng; Waag, Andreas

    2012-04-01

    In recent years, GaN nanorods are emerging as a very promising novel route toward devices for nano-optoelectronics and nano-photonics. In particular, core-shell light emitting devices are thought to be a breakthrough development in solid state lighting, nanorod based LEDs have many potential advantages as compared to their 2 D thin film counterparts. In this paper, we review the recent developments of GaN nanorod growth, characterization, and related device applications based on GaN nanorods. The initial work on GaN nanorod growth focused on catalyst-assisted and catalyst-free statistical growth. The growth condition and growth mechanisms were extensively investigated and discussed. Doping of GaN nanorods, especially p-doping, was found to significantly influence the morphology of GaN nanorods. The large surface of 3 D GaN nanorods induces new optical and electrical properties, which normally can be neglected in layered structures. Recently, more controlled selective area growth of GaN nanorods was realized using patterned substrates both by metalorganic chemical vapor deposition (MOCVD) and by molecular beam epitaxy (MBE). Advanced structures, for example, photonic crystals and DBRs are meanwhile integrated in GaN nanorod structures. Based on the work of growth and characterization of GaN nanorods, GaN nanoLEDs were reported by several groups with different growth and processing methods. Core/shell nanoLED structures were also demonstrated, which could be potentially useful for future high efficient LED structures. In this paper, we will discuss recent developments in GaN nanorod technology, focusing on the potential advantages, but also discussing problems and open questions, which may impose obstacles during the future development of a GaN nanorod based LED technology.

  11. Stereoselective total synthesis of Oxylipin from open chain gluco-configured building block.

    PubMed

    Borkar, Santosh Ramdas; Aidhen, Indrapal Singh

    2017-04-18

    Total synthesis of naturally occurring Oxylipin has been achieved from open chain gluco-configured building block which is readily assembled from inexpensive and commercially available D-(+)-gluconolactone. Grignard reaction and Wittig olefination reactions are key steps for the requisite CC bond formation. Copyright © 2017. Published by Elsevier Ltd.

  12. Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.

    PubMed

    Ramme, Austin J; Shivanna, Kiran H; Magnotta, Vincent A; Grosland, Nicole M

    2011-10-01

    Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh generation scheme. We hypothesise that Gaussian curvature analysis could be used to automatically develop a building block structure for multi-block hexahedral mesh generation. The Automated Building Block Algorithm incorporates principles from differential geometry, combinatorics, statistical analysis and computer science to automatically generate a building block structure to represent a given surface without prior information. We have applied this algorithm to 29 bones of varying geometries and successfully generated a usable mesh in all cases. This work represents a significant advancement in automating the definition of building blocks.

  13. Microwave spectroscopy of biomolecular building blocks.

    PubMed

    Alonso, José L; López, Juan C

    2015-01-01

    Microwave spectroscopy, considered as the most definitive gas phase structural probe, is able to distinguish between different conformational structures of a molecule, because they have unique spectroscopic constants and give rise to distinct individual rotational spectra.Previously, application of this technique was limited to molecular specimens possessing appreciable vapor pressures, thus discarding the possibility of studying many other molecules of biological importance, in particular those with high melting points, which had a tendency to undergo thermal reactions, and ultimately degradation, upon heating.Nowadays, the combination of laser ablation with Fourier transform microwave spectroscopy techniques, in supersonic jets, has enabled the gas-phase study of such systems. In this chapter, these techniques, including broadband spectroscopy, as well as results of their application into the study of the conformational panorama and structure of biomolecular building blocks, such as amino acids, nucleic bases, and monosaccharides, are briefly discussed, and with them, the tools for conformational assignation - rotational constants, nuclear quadrupole coupling interaction, and dipole moment.

  14. Determining Possible Building Blocks of the Earth

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; O'Brien, K. M.

    2003-01-01

    Introduction: One of the fundamental questions concerning the formation of the Earth is what is it made out of. The Earth appears to have condensed out of material from the solar nebula. We sample this "primitive" material in the form of chondritic meteorites. One of the most important constraints on possible building blocks for the Earth is the Earth#s oxygen iso-topic composition. Rocks from the Earth and Moon plot along a line (the terrestrial fractionation line) in diagrams of delta(sup 17)O (% relative to Standard Mean Ocean Water or SMOW) versus delta(sup 18)O (% relative to SMOW). Chondritic meteorites fall above and below this line. Distances from this line are given as Delta(sup 17)O (%) (= delta(sup 17)O - 0.52 x delta(sup 18)O).

  15. Control of ZnO Nanorod Defects to Enhance Carrier Transportation in p-Cu₂O/i-ZnO Nanorods/n-IGZO Heterojunction.

    PubMed

    Ke, Nguyen Huu; Trinh, Le Thi Tuyet; Mung, Nguyen Thi; Loan, Phan Thi Kieu; Tuan, Dao Anh; Truong, Nguyen Huu; Tran, Cao Vinh; Hung, Le Vu Tuan

    2017-01-01

    The p-Cu₂O/i-ZnO nanorods/n-IGZO heterojunctions were fabricated by electrochemical and sputtering method. ZnO nanorods were grown on conductive indium gallium zinc oxide (IGZO) thin film and then p-Cu₂O layer was deposited on ZnO nanorods to form the heterojunction. ZnO nanorods play an important role in carrier transport mechanisms and performance of the junction. The changing of defects in ZnO nanorods by annealing samples in air and vacuum have studied. The XRD, photoluminescence (PL) spectroscopy, and FTIR were used to study about structure, and defects in ZnO nanorods. The SEM, i–V characteristics methods were also used to define structure, electrical properties of the heterojunctions layers. The results show that the defects in ZnO nanorods affected remarkably on performance of heterojunctions of solar cells.

  16. From synthesis to function via iterative assembly of N-methyliminodiacetic acid boronate building blocks.

    PubMed

    Li, Junqi; Grillo, Anthony S; Burke, Martin D

    2015-08-18

    The study and optimization of small molecule function is often impeded by the time-intensive and specialist-dependent process that is typically used to make such compounds. In contrast, general and automated platforms have been developed for making peptides, oligonucleotides, and increasingly oligosaccharides, where synthesis is simplified to iterative applications of the same reactions. Inspired by the way natural products are biosynthesized via the iterative assembly of a defined set of building blocks, we developed a platform for small molecule synthesis involving the iterative coupling of haloboronic acids protected as the corresponding N-methyliminodiacetic acid (MIDA) boronates. Here we summarize our efforts thus far to develop this platform into a generalized and automated approach for small molecule synthesis. We and others have employed this approach to access many polyene-based compounds, including the polyene motifs found in >75% of all polyene natural products. This platform further allowed us to derivatize amphotericin B, the powerful and resistance-evasive but also highly toxic last line of defense in treating systemic fungal infections, and thereby understand its mechanism of action. This synthesis-enabled mechanistic understanding has led us to develop less toxic derivatives currently under evaluation as improved antifungal agents. To access more Csp(3)-containing small molecules, we gained a stereocontrolled entry into chiral, non-racemic α-boryl aldehydes through the discovery of a chiral derivative of MIDA. These α-boryl aldehydes are versatile intermediates for the synthesis of many Csp(3) boronate building blocks that are otherwise difficult to access. In addition, we demonstrated the utility of these types of building blocks in accessing pharmaceutically relevant targets via an iterative Csp(3) cross-coupling cycle. We have further expanded the scope of the platform to include stereochemically complex macrocyclic and polycyclic molecules

  17. Linked supramolecular building blocks for enhanced cluster formation

    DOE PAGES

    McLellan, Ross; Palacios, Maria A.; Beavers, Christine M.; ...

    2015-01-09

    Methylene-bridged calix[4]arenes have emerged as extremely versatile ligand supports in the formation of new polymetallic clusters possessing fascinating magnetic properties. Metal ion binding rules established for this building block allow one to partially rationalise the complex assembly process. The ability to covalently link calix[4]arenes at the methylene bridge provides significantly improved control over the introduction of different metal centres to resulting cluster motifs. Clusters assembled from bis-calix[4]arenes and transition metal ions or 3d-4f combinations display characteristic features of the analogous calix[4]arene supported clusters, thereby demonstrating an enhanced and rational approach towards the targeted synthesis of complex and challenging structures.

  18. Synthesis of orthogonally protected bacterial, rare-sugar and D-glycosamine building blocks.

    PubMed

    Emmadi, Madhu; Kulkarni, Suvarn S

    2013-10-01

    Bacterial glycoconjugates comprise atypical deoxy amino sugars that are not present on the human cell surface, making them good targets for drug discovery and carbohydrate-based vaccine development. Unfortunately, they cannot be isolated with sufficient purity in acceptable amounts, and therefore chemical synthesis is a crucial step toward the development of these products. Here we describe a detailed protocol for the synthesis of orthogonally protected bacterial deoxy amino hexopyranoside (2,4-diacetamido-2,4,6-trideoxyhexose (DATDH), D-bacillosamine, D-fucosamine, and 2-acetamido-4-amino-2,4,6-trideoxy-D-galactose (AAT)), D-glucosamine and D-galactosamine building blocks starting from β-D-thiophenylmannoside. Readily available β-D-thiophenylmannoside was first converted into the corresponding 2,4-diols via deoxygenation or silylation at C6, followed by O3 acylation. The 2,4-diols were converted into 2,4-bis-trifluoromethanesulfonates, which underwent highly regioselective, one-pot, double-serial and double-parallel displacements by azide, phthalimide, acetate and nitrite ions as nucleophiles. Thus, D-rhamnosyl- and D-mannosyl 2,4-diols can be efficiently transformed into various rare sugars and D-galactosamine, respectively, as orthogonally protected thioglycoside building blocks on a gram scale in 1-2 d, in 54-85% overall yields, after a single chromatographic purification. This would otherwise take 1-2 weeks. D-Glucosamine building blocks can be prepared from β-D-thiophenylmannoside in four steps via C2 displacement of triflates by azide in 2 d and in 66-70% overall yields. These procedures have been applied to the synthesis of L-serine-linked trisaccharide of Neisseria meningitidis and a rare disaccharide fragment of the zwitterionic polysaccharide (ZPS) A1 (ZPS A1) of Bacteroides fragilis.

  19. Facile phase transfer of gold nanorods and nanospheres stabilized with block copolymers

    PubMed Central

    Derikov, Yaroslav I; Shandryuk, Georgiy A; Talroze, Raisa V; Ezhov, Alexander A

    2018-01-01

    A fast route to transfer Au nanoparticles from aqueous to organic media is proposed based on the use of a high molecular mass diblock copolymer of styrene and 2-vinylpyridine for ligand exchange at the nanoparticle surface. The method enables the preparation of stable sols of Au nanorods with sizes of up to tens of nanometers or Au nanospheres in various organic solvents. By comparing the optical absorbance spectra of Au hydro- and organosols with the data of numerical simulations of the surface plasmon resonance, we find that nanoparticles do not aggregate and confirm the transmission electron microscopy data regarding their shape and size. The proposed approach can be effective in preparing hybrid composites without the use of strong thiol and amine surfactants. PMID:29527437

  20. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    PubMed

    Lind, Kara R; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  1. QWIP products and building blocks for high performance systems

    NASA Astrophysics Data System (ADS)

    Costard, E.; Bois, Ph.; Marcadet, X.; Nedelcu, A.

    2005-10-01

    Standard GaAs/AlGaAs quantum well infrared photodetectors (QWIP) are coming out from the laboratory. In this paper we demonstrate that production and research cannot be dissociated in order to make the new generation of thermal imagers benefit as fast as possible from the building blocks developed by researchers. Since 2002, the THALES group has been manufacturing sensitive arrays using QWIP technology based on GaAs techniques through THALES Research and Technology Laboratory. This QWIP technology allows the realization of large staring arrays for thermal imagers (TI) working in the IR band III (8-12 μm). A review of the current QWIP products is presented. In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and was the key parameter for the production initiation. Another advantage widely claimed also for QWIPs was the so-called band-gap engineering, allowing the custom design of quantum structure to fulfill the requirements of specific applications like very long wavelength or multispectral detection. In this paper, we present the performances for Middle Wavelength InfraRed (MWIR) detections and demonstrate the ability of QWIP's to cover the two spectral ranges (3-5 μm and 8-20 μm). Last but not least, the versatility of the GaAs processing appeared for QWIPs as an important gift. This assumption was well founded. We give here some results achieved on building blocks for two color QWIP pixels. We also report the expected performances of focal plane arrays that we are currently developing with the CEA-LETI-SLIR.

  2. Engineering cell factories for producing building block chemicals for bio-polymer synthesis.

    PubMed

    Tsuge, Yota; Kawaguchi, Hideo; Sasaki, Kengo; Kondo, Akihiko

    2016-01-21

    Synthetic polymers are widely used in daily life. Due to increasing environmental concerns related to global warming and the depletion of oil reserves, the development of microbial-based fermentation processes for the production of polymer building block chemicals from renewable resources is desirable to replace current petroleum-based methods. To this end, strains that efficiently produce the target chemicals at high yields and productivity are needed. Recent advances in metabolic engineering have enabled the biosynthesis of polymer compounds at high yield and productivities by governing the carbon flux towards the target chemicals. Using these methods, microbial strains have been engineered to produce monomer chemicals for replacing traditional petroleum-derived aliphatic polymers. These developments also raise the possibility of microbial production of aromatic chemicals for synthesizing high-performance polymers with desirable properties, such as ultraviolet absorbance, high thermal resistance, and mechanical strength. In the present review, we summarize recent progress in metabolic engineering approaches to optimize microbial strains for producing building blocks to synthesize aliphatic and high-performance aromatic polymers.

  3. Magnetically tunable bidirectional locomotion of a self-assembled nanorod-sphere propeller.

    PubMed

    García-Torres, José; Calero, Carles; Sagués, Francesc; Pagonabarraga, Ignacio; Tierno, Pietro

    2018-04-25

    Field-driven direct assembly of nanoscale matter has impact in disparate fields of science. In microscale systems, such concept has been recently exploited to optimize propulsion in viscous fluids. Despite the great potential offered by miniaturization, using self-assembly to achieve transport at the nanoscale remains an elusive task. Here we show that a hybrid propeller, composed by a ferromagnetic nanorod and a paramagnetic microsphere, can be steered in a fluid in a variety of modes, from pusher to puller, when the pair is dynamically actuated by a simple oscillating magnetic field. We exploit this unique design to build more complex structures capable of carrying several colloidal cargos as microscopic trains that quickly disassemble at will under magnetic command. In addition, our prototype can be extended to smaller nanorods below the diffraction limit, but still dynamically reconfigurable by the applied magnetic field.

  4. Applications, Surface Modification and Functionalization of Nickel Nanorods

    PubMed Central

    Schrittwieser, Stefan; Reichinger, Daniela; Schotter, Joerg

    2017-01-01

    The growing number of nanoparticle applications in science and industry is leading to increasingly complex nanostructures that fulfill certain tasks in a specific environment. Nickel nanorods already possess promising properties due to their magnetic behavior and their elongated shape. The relevance of this kind of nanorod in a complex measurement setting can be further improved by suitable surface modification and functionalization procedures, so that customized nanostructures for a specific application become available. In this review, we focus on nickel nanorods that are synthesized by electrodeposition into porous templates, as this is the most common type of nickel nanorod fabrication method. Moreover, it is a facile synthesis approach that can be easily established in a laboratory environment. Firstly, we will discuss possible applications of nickel nanorods ranging from data storage to catalysis, biosensing and cancer treatment. Secondly, we will focus on nickel nanorod surface modification strategies, which represent a crucial step for the successful application of nanorods in all medical and biological settings. Here, the immobilization of antibodies or peptides onto the nanorod surface adds another functionality in order to yield highly promising nanostructures. PMID:29283415

  5. Light propagation in nanorod arrays

    NASA Astrophysics Data System (ADS)

    Rahachou, A. I.; Zozoulenko, I. V.

    2007-03-01

    We study the propagation of TM- and TE-polarized light in two-dimensional arrays of silver nanorods of various diameters in a gelatin background. We calculate the transmittance, reflectance and absorption of arranged and disordered nanorod arrays and compare the exact numerical results with the predictions of the Maxwell-Garnett effective-medium theory. We show that interactions between nanorods, multipole contributions and formations of photonic gaps affect strongly the transmittance spectra that cannot be accounted for in terms of the conventional effective-medium theory. We also demonstrate and explain the degradation of the transmittance in arrays with randomly located rods as well as the weak influence of their fluctuating diameter. For TM modes we outline the importance of the skin effect, which causes the full reflection of the incoming light. We then illustrate the possibility of using periodic arrays of nanorods as high-quality polarizers.

  6. PBF Reactor Building (PER620). After lowering reactor vessel onto blocks, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). After lowering reactor vessel onto blocks, it is rolled on logs into PBF. Metal framework under vessel is handling device. Various penetrations in reactor bottom were for instrumentation, poison injection, drains. Large one, below center "manhole" was for primary coolant. Photographer: Larry Page. Date: February 13, 1970. INEEL negative no. 70-736 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  7. Dual-mode MOS SOI nanoscale transistor serving as a building block for optical communication between blocks

    NASA Astrophysics Data System (ADS)

    Bendayan, Michael; Sabo, Roi; Zolberg, Roee; Mandelbaum, Yaakov; Chelly, Avraham; Karsenty, Avi

    2017-02-01

    We developed a new type of silicon MOSFET Quantum Well transistor, coupling both electronic and optical properties which should overcome the indirect silicon bandgap constraint, and serve as a future light emitting device in the range 0.8-2μm, as part of a new building block in integrated circuits allowing ultra-high speed processors. Such Quantum Well structure enables discrete energy levels for light recombination. Model and simulations of both optical and electric properties are presented pointing out the influence of the channel thickness and the drain voltage on the optical emission spectrum.

  8. ZnO nanorods for electronic and photonic device applications

    NASA Astrophysics Data System (ADS)

    Yi, Gyu-Chul; Yoo, Jinkyoung; Park, Won Il; Jung, Sug Woo; An, Sung Jin; Kim, H. J.; Kim, D. W.

    2005-11-01

    We report on catalyst-free growth of ZnO nanorods and their nano-scale electrical and optical device applications. Catalyst-free metalorganic vapor-phase epitaxy (MOVPE) enables fabrication of size-controlled high purity ZnO single crystal nanorods. Various high quality nanorod heterostructures and quantum structures based on ZnO nanorods were also prepared using the MOVPE method and characterized using scanning electron microscopy, transmission electron microscopy, and optical spectroscopy. From the photoluminescence spectra of ZnO/Zn 0.8Mg 0.2O nanorod multi-quantum-well structures, in particular, we observed a systematic blue-shift in their PL peak position due to quantum confinement effect of carriers in nanorod quantum structures. For ZnO/ZnMgO coaxial nanorod heterostructures, photoluminescence intensity was significantly increased presumably due to surface passivation and carrier confinement. In addition to the growth and characterizations of ZnO nanorods and their quantum structures, we fabricated nanoscale electronic devices based on ZnO nanorods. We report on fabrication and device characteristics of metal-oxidesemiconductor field effect transistors (MOSFETs), Schottky diodes, and metal-semiconductor field effect transistors (MESFETs) as examples of the nanodevices. In addition, electroluminescent devices were fabricated using vertically aligned ZnO nanorods grown p-type GaN substrates, exhibiting strong visible electroluminescence.

  9. Toward hybrid Au nanorods @ M (Au, Ag, Pd and Pt) core-shell heterostructures for ultrasensitive SERS probes

    NASA Astrophysics Data System (ADS)

    Xie, Xiaobin; Gao, Guanhui; Kang, Shendong; Lei, Yanhua; Pan, Zhengyin; Shibayama, Tamaki; Cai, Lintao

    2017-06-01

    Being able to precisely control the morphologies of noble metallic nanostructures is of essential significance for promoting the surface-enhanced Raman scattering (SERS) effect. Herein, we demonstrate an overgrowth strategy for synthesizing Au @ M (M = Au, Ag, Pd, Pt) core-shell heterogeneous nanocrystals with an orientated structural evolution and highly improved properties by using Au nanorods as seeds. With the same reaction condition system applied, we obtain four well-designed heterostructures with diverse shapes, including Au concave nanocuboids (Au CNs), Au @ Ag crystalizing face central cube nanopeanuts, Au @ Pd porous nanocuboids and Au @ Pt nanotrepangs. Subsequently, the exact overgrowth mechanism of the above heterostructural building blocks is further analysed via the systematic optimiziation of a series of fabrications. Remarkably, the well-defined Au CNs and Au @ Ag nanopeanuts both exhibit highly promoted SERS activity. We expect to be able to supply a facile strategy for the fabrication of multimetallic heterogeneous nanostructures, exploring the high SERS effect and catalytic activities.

  10. LEGO® Bricks as Building Blocks for Centimeter-Scale Biological Environments: The Case of Plants

    PubMed Central

    Lind, Kara R.; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil. PMID:24963716

  11. Mussel-inspired nano-building block assemblies for mimicking extracellular matrix microenvironments with multiple functions.

    PubMed

    Wang, Zhenming; Jia, Zhanrong; Jiang, Yanan; Li, Pengfei; Han, Lu; Lu, Xiong; Ren, Fuzeng; Wang, Kefeng; Yuan, Huiping

    2017-08-03

    The assembly of nano-building blocks is an effective way to produce artificial extracellular matrix microenvironments with hierarchical micro/nano structures. However, it is hard to assemble different types of nano-building blocks, to form composite coatings with multiple functions, by traditional layer-by-layer (LbL) self-assembly methods. Inspired by the mussel adhesion mechanism, we developed polydopamine (PDA)-decorated bovine serum albumin microspheres (BSA-MS) and nano-hydroxyapatite (nano-HA), and assembled them to form bioactive coatings with micro/nano structures encapsulating bone morphogenetic protein-2 (BMP-2). First, PDA-decorated nano-HA (nano-pHA) was obtained by oxidative polymerization of dopamine on nano-HA. Second, BMP-2-encapsulated BSA microspheres were prepared through desolvation, and then were also decorated by PDA (pBSA-MS). Finally, the nano-pHA and pBSA-MS were assembled using the adhesive properties of PDA. Bone marrow stromal cell cultures and in vivo implantation, showed that the pHA/pBSA (BMP-2) coatings can promote cell adhesion, proliferation, and benefited for osteoinductivity. PDA decoration was also applied to assemble various functional nanoparticles, such as nano-HA, polystyrene, and Fe 3 O 4 nanoparticles. In summary, this study provides a novel strategy for the assembly of biofunctional nano-building blocks, which surpasses traditional LbL self-assembly of polyelectrolytes, and can find broad applications in bioactive agents delivery or multi-functional coatings.

  12. Real World of Industrial Chemistry: Ethylene: The Organic Chemical Industry's Most Important Building Block.

    ERIC Educational Resources Information Center

    Fernelius, W. Conrad, Ed.; And Others

    1979-01-01

    The value of ethylene, as the organic chemical industry's most important building block, is discussed. The discussion focuses on the source of ethylene, its various forms and functions, and the ways in which the forms are made. (SA)

  13. Electrical Measurements on Iridium Dioxide Nanorods

    NASA Astrophysics Data System (ADS)

    Lin, Y. H.; Lee, T. C.; Lin, J. J.; Chang, H. M.; Huang, Y. S.

    2006-09-01

    Iridium dioxide (IrO2) nanorods have been prepared by metal-organic chemical vapor deposition method. Applying the standard electron-beam lithography technique, a single nanorod with a diameter of 110 nm is contacted by three Cr/Au fingers from above. The resistance measurements on this nanorod have been performed between 10 and 300 K, using different probe configurations. We observe that the resistivity ρ of the nanorod has a value ⩽ 120 μΩ cm at 300 K. On the other hand, the temperature dependence of the contact resistance R obeys the law logR ∝ T-1/2 below 100 K. The conduction process through the contact is ascribed to the transport of electrons via hopping in granular metals accidentally formed at the contact region.

  14. Trainer's Guide to Building Blocks for Teaching Preschoolers with Special Needs [CD-ROM

    ERIC Educational Resources Information Center

    Joseph, Gail E.; Sandall, Susan R.; Schwartz, Ilene S.

    2010-01-01

    An essential teaching companion for instructors of pre-K educators, this convenient CD-ROM is a vivid blueprint for effective inclusive education using the popular "Building Blocks" approach. Following the structure of the bestselling textbook, this comprehensive guide helps teacher educators provide effective instruction on the three types of…

  15. Effects of a Preschool Mathematics Curriculum: Summative Research on the "Building Blocks" Project

    ERIC Educational Resources Information Center

    Clements, Douglas H.; Sarama, Julie

    2007-01-01

    This study evaluated the efficacy of a preschool mathematics program based on a comprehensive model of developing research-based software and print curricula. Building Blocks, funded by the National Science Foundation, is a curriculum development project focused on creating research-based, technology-enhanced mathematics materials for pre-K…

  16. Multifunctional Nanoparticles Self-Assembled from Small Organic Building Blocks for Biomedicine.

    PubMed

    Xing, Pengyao; Zhao, Yanli

    2016-09-01

    Supramolecular self-assembly shows significant potential to construct responsive materials. By tailoring the structural parameters of organic building blocks, nanosystems can be fabricated, whose performance in catalysis, energy storage and conversion, and biomedicine has been explored. Since small organic building blocks are structurally simple, easily modified, and reproducible, they are frequently employed in supramolecular self-assembly and materials science. The dynamic and adaptive nature of self-assembled nanoarchitectures affords an enhanced sensitivity to the changes in environmental conditions, favoring their applications in controllable drug release and bioimaging. Here, recent significant research advancements of small-organic-molecule self-assembled nanoarchitectures toward biomedical applications are highlighted. Functionalized assemblies, mainly including vesicles, nanoparticles, and micelles are categorized according to their topological morphologies and functions. These nanoarchitectures with different topologies possess distinguishing advantages in biological applications, well incarnating the structure-property relationship. By presenting some important discoveries, three domains of these nanoarchitectures in biomedical research are covered, including biosensors, bioimaging, and controlled release/therapy. The strategies regarding how to design and characterize organic assemblies to exhibit biomedical applications are also discussed. Up-to-date research developments in the field are provided and research challenges to be overcome in future studies are revealed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. An Explanation for Bends of 1-Dimensional Nanorods

    NASA Astrophysics Data System (ADS)

    Mukaida, Masashi; Ichinose, Ataru; Mele, Paolo; Mtsumoto, Kaname; Horii, Shigeru; Yoshida, Yutaka

    Growth of artificial pinning centers (APCs) in YBa2Cu3O7-J (YBCO) films are discussed. The APCs used in this research are BaZrO3 and BaSnO3 nanorods which are reported by Mele et al. TEM images show these nanorods graduallybend accordinglywith approachingtoasurfaceof films. This featureshowedagrowth patternlikeafirework. Weexplainthe featureofthe nanorodsas follows;Atanearlygrowth stage, filmsgrowinalayerbylayergrowth mode. The surface of the films is flat and very smooth. After the early growth stage, the film surface gradually becomes rough, indicating the film grows in a Stranski-Krastanov growth mode. This roughness was caused by a spiral growth of films with manysteps. At the step of YBCO films, nanorod materials such as BaZrO3 are supplied from one direction. Then, the center of nanorods sifts to the same direction of the step flow. Then, the nanorods bend to the edge of the grains in the films. As a grain in spiral growth had a convex surface, nanorods bent to the direction perpendicular to the grain surface. Finally, nanorods in rough grains form firework structures.

  18. Molecular Building Block-Based Electronic Charges for High-Throughput Screening of Metal-Organic Frameworks for Adsorption Applications.

    PubMed

    Argueta, Edwin; Shaji, Jeena; Gopalan, Arun; Liao, Peilin; Snurr, Randall Q; Gómez-Gualdrón, Diego A

    2018-01-09

    Metal-organic frameworks (MOFs) are porous crystalline materials with attractive properties for gas separation and storage. Their remarkable tunability makes it possible to create millions of MOF variations but creates the need for fast material screening to identify promising structures. Computational high-throughput screening (HTS) is a possible solution, but its usefulness is tied to accurate predictions of MOF adsorption properties. Accurate adsorption simulations often require an accurate description of electrostatic interactions, which depend on the electronic charges of the MOF atoms. HTS-compatible methods to assign charges to MOF atoms need to accurately reproduce electrostatic potentials (ESPs) and be computationally affordable, but current methods present an unsatisfactory trade-off between computational cost and accuracy. We illustrate a method to assign charges to MOF atoms based on ab initio calculations on MOF molecular building blocks. A library of building blocks with built-in charges is thus created and used by an automated MOF construction code to create hundreds of MOFs with charges "inherited" from the constituent building blocks. The molecular building block-based (MBBB) charges are similar to REPEAT charges-which are charges that reproduce ESPs obtained from ab initio calculations on crystallographic unit cells of nanoporous crystals-and thus similar predictions of adsorption loadings, heats of adsorption, and Henry's constants are obtained with either method. The presented results indicate that the MBBB method to assign charges to MOF atoms is suitable for use in computational high-throughput screening of MOFs for applications that involve adsorption of molecules such as carbon dioxide.

  19. Key Building Blocks via Enzyme-Mediated Synthesis

    NASA Astrophysics Data System (ADS)

    Fischer, Thomas; Pietruszka, Jörg

    Biocatalytic approaches to valuable building blocks in organic synthesis have emerged as an important tool in the last few years. While first applications were mainly based on hydrolases, other enzyme classes such as oxidoreductases or lyases moved into the focus of research. Nowadays, a vast number of biotransformations can be found in the chemical and pharmaceutical industries delivering fine chemicals or drugs. The mild reaction conditions, high stereo-, regio-, and chemoselectivities, and the often shortened reaction pathways lead to economical and ecological advantages of enzymatic conversions. Due to the enormous number of enzyme-mediated syntheses, the present chapter is not meant to be a complete review, but to deliver comprehensive insights into well established enzymatic systems and recent advances in the application of enzymes in natural product synthesis. Furthermore, it is focused on the most frequently used enzymes or enzyme classes not covered elsewhere in the present volume.

  20. Automated electrochemical assembly of the protected potential TMG-chitotriomycin precursor based on rational optimization of the carbohydrate building block.

    PubMed

    Nokami, Toshiki; Isoda, Yuta; Sasaki, Norihiko; Takaiso, Aki; Hayase, Shuichi; Itoh, Toshiyuki; Hayashi, Ryutaro; Shimizu, Akihiro; Yoshida, Jun-ichi

    2015-03-20

    The anomeric arylthio group and the hydroxyl-protecting groups of thioglycosides were optimized to construct carbohydrate building blocks for automated electrochemical solution-phase synthesis of oligoglucosamines having 1,4-β-glycosidic linkages. The optimization study included density functional theory calculations, measurements of the oxidation potentials, and the trial synthesis of the chitotriose trisaccharide. The automated synthesis of the protected potential N,N,N-trimethyl-d-glucosaminylchitotriomycin precursor was accomplished by using the optimized building block.

  1. III-nitride core–shell nanorod array on quartz substrates

    PubMed Central

    Bae, Si-Young; Min, Jung-Wook; Hwang, Hyeong-Yong; Lekhal, Kaddour; Lee, Ho-Jun; Jho, Young-Dahl; Lee, Dong-Seon; Lee, Yong-Tak; Ikarashi, Nobuyuki; Honda, Yoshio; Amano, Hiroshi

    2017-01-01

    We report the fabrication of near-vertically elongated GaN nanorods on quartz substrates. To control the preferred orientation and length of individual GaN nanorods, we combined molecular beam epitaxy (MBE) with pulsed-mode metal–organic chemical vapor deposition (MOCVD). The MBE-grown buffer layer was composed of GaN nanograins exhibiting an ordered surface and preferred orientation along the surface normal direction. Position-controlled growth of the GaN nanorods was achieved by selective-area growth using MOCVD. Simultaneously, the GaN nanorods were elongated by the pulsed-mode growth. The microstructural and optical properties of both GaN nanorods and InGaN/GaN core–shell nanorods were then investigated. The nanorods were highly crystalline and the core–shell structures exhibited optical emission properties, indicating the feasibility of fabricating III-nitride nano-optoelectronic devices on amorphous substrates. PMID:28345641

  2. Rapid and annealing-free self-assembly of DNA building blocks for 3D hydrogel chaperoned by cationic comb-type copolymers.

    PubMed

    Zhang, Zheng; Wu, Yuyang; Yu, Feng; Niu, Chaoqun; Du, Zhi; Chen, Yong; Du, Jie

    2017-10-01

    The construction and self-assembly of DNA building blocks are the foundation of bottom-up development of three-dimensional DNA nanostructures or hydrogels. However, most self-assembly from DNA components is impeded by the mishybridized intermediates or the thermodynamic instability. To enable rapid production of complicated DNA objects with high yields no need for annealing process, herein different DNA building blocks (Y-shaped, L- and L'-shaped units) were assembled in presence of a cationic comb-type copolymer, poly (L-lysine)-graft-dextran (PLL-g-Dex), under physiological conditions. The results demonstrated that PLL-g-Dex not only significantly promoted the self-assembly of DNA blocks with high efficiency, but also stabilized the assembled multi-level structures especially for promoting the complicated 3D DNA hydrogel formation. This study develops a novel strategy for rapid and high-yield production of DNA hydrogel even derived from instable building blocks at relatively low DNA concentrations, which would endow DNA nanotechnology for more practical applications.

  3. Ultrafast studies of gold, nickel, and palladium nanorods

    NASA Astrophysics Data System (ADS)

    Sando, Gerald M.; Berry, Alan D.; Owrutsky, Jeffrey C.

    2007-08-01

    Steady state and ultrafast transient absorption studies have been carried out for gold, nickel, and palladium high aspect ratio nanorods. For each metal, nanorods were fabricated by electrochemical deposition into ˜6μm thick polycarbonate templates. Two nominal pore diameters(10 and 30nm, resulting in nanorod diameters of about 40 and 60nm, respectively) were used, yielding nanorods with high aspect ratios (>25). Static spectra of nanorods of all three metals reveal both a longitudinal surface plasmon resonance (SPRL) band in the mid-infrared as well as a transverse band in the visible for the gold and larger diameter nickel and palladium nanorods. The appearance of SPRL bands in the infrared for high aspect ratio metal nanorods and the trends in their maxima for the different aspect ratios and metals are consistent with calculations based on the Gans theory. For the gold and nickel samples, time resolved studies were performed with a subpicosecond resolution using 400nm excitation and a wide range of probe wavelengths from the visible to the mid-IR as well as for infrared excitation (near 2000cm-1) probed at 800nm. The dynamics observed for nanorods of both metals and both diameters include transients due to electron-phonon coupling and impulsively excited coherent acoustic breathing mode oscillations, which are similar to those previously reported for spherical and smaller rod-shaped gold nanoparticles. The dynamics we observe are the same within the experimental uncertainty for 400nm and infrared (5μm) excitation probed at 800nm. The transient absorption using 400nm excitation and 800nm probe pulses of the palladium nanorods also reveal coherent acoustic oscillations. The results demonstrate that the dynamics for high aspect ratio metal nanorods are similar to those for smaller nanoparticles.

  4. Efficient Carrier Multiplication in Colloidal Silicon Nanorods

    DOE PAGES

    Stolle, Carl Jackson; Lu, Xiaotang; Yu, Yixuan; ...

    2017-08-01

    In this study, auger recombination lifetimes, absorption cross sections, and the quantum yields of carrier multiplication (CM), or multiexciton generation (MEG), were determined for solvent-dispersed silicon (Si) nanorods using transient absorption spectroscopy (TAS). Nanorods with an average diameter of 7.5 nm and aspect ratios of 6.1, 19.3, and 33.2 were examined. Colloidal Si nanocrystals of similar diameters were also studied for comparison. The nanocrystals and nanorods were passivated with organic ligands by hydrosilylation to prevent surface oxidation and limit the effects of surface trapping of photoexcited carriers. All samples used in the study exhibited relatively efficient photoluminescence. The Auger lifetimesmore » increased with nanorod length, and the nanorods exhibited higher CM quantum yield and efficiency than the nanocrystals with a similar band gap energy E g. Beyond a critical length, the CM quantum yield decreases. Finally, nanorods with the aspect ratio of 19.3 had the highest CM quantum yield of 1.6 ± 0.2 at 2.9E g, which corresponded to a multiexciton yield that was twice as high as observed for the spherical nanocrystals.« less

  5. Growth process and anticancer properties of gold nanorods.

    PubMed

    Zhang, Junyan; Wang, Mian; Webster, Thomas J

    2017-09-01

    Gold nanoparticles have been of great interest because of their unique optical properties, facile synthesis and conjugation. Among various shapes of gold nanoparticles, gold nanorods have been widely studied. They can be conjugated with different molecules for biomedical applications, such as tumor imaging and therapy. However, few researchers have studied the antitumor properties of bare gold nanorods. In this study, unfunctionalized gold nanorods were synthesized and tested on breast tumor cells. Results showed that the aspect ratio of gold nanorods could be easily influenced by both reaction time and the amount of silver nitrate in the growth solution. A new growth process is proposed here based on the UV-Vis spectra and TEM images of gold nanorods at different reaction times. More importantly, cell studies showed that within a certain concentration range, the gold nanorods can selectively kill tumor cells while having limited or little influence on healthy mammalian (dermal fibroblast) cells. Thus, this study shows promise for the use of bare gold nanorods for further study alone or in combination with photothermal treatment. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2616-2621, 2017. © 2017 Wiley Periodicals, Inc.

  6. Flower-like ZnO nanorod arrays grown on HF-etched Si (111): constraining relation between ZnO seed layer and Si (111)

    NASA Astrophysics Data System (ADS)

    Brahma, Sanjaya; Liu, C.-W.; Huang, R.-J.; Chang, S.-J.; Lo, K.-Y.

    2015-11-01

    We demonstrate the formation of self-assembled homogenous flower-like ZnO nanorods over a ZnO seed layer deposited on a HF-etched Si (111) substrate. The typical flower-like morphology of ZnO nanorod arrays is ascribed to the formation of the island-like seed layer which is deposited by the drop method followed by annealing at 300 °C. The island-like ZnO seed layer consists of larger ZnO grains, and is built by constraining of the Si (111) surface due to pattern matching. Pattern matching of Si with ZnO determines the shape and size of the seed layer and this controls the final morphology of ZnO nanorods to be either flower like or vertically aligned. The high quality of the island-like ZnO seed layer enhances the diameter and length of ZnO nanorods. Besides, while the amorphous layer formed during the annealing process would influence the strained ZnO grain, that subsequent amorphous layer will not block the constraining between the ZnO grain and the substrate.

  7. Simulation of spectral properties of bundlelike gold nanorods

    NASA Astrophysics Data System (ADS)

    Ozaki, Ryotaro; Nagao, Yoshiki; Kadowaki, Kazunori; Kuwahara, Yutaka

    2016-03-01

    Metal nanoparticles have become increasingly important in fields such as electronics, photonics, and biotechnology. In particular, anisotropic gold nanoparticles, such as gold nanorods, exhibit unique properties owing to their anisotropy. Optical properties of isolated gold nanorods and dimers of gold nanorods have been investigated from both experimental and theoretical points of view. We have reported a method for three-dimensional assembly of anisotropic gold nanoparticles by two-phase transfer in which the morphologies of the assemblies can be controlled by the aspect ratio of nanorods. In this study, we numerically calculate extinction spectra to investigate the plasmonic properties of bundlelike assemblies by the finite-element method. Their plasmonic properties depend on not only the three orthogonal directions but also the alignment of the nanorod assembly.

  8. Effects of Chromium Dopant on Ultraviolet Photoresponsivity of ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Mokhtari, S.; Safa, S.; Khayatian, A.; Azimirad, R.

    2017-07-01

    Structural and optical properties of bare ZnO nanorods, ZnO-encapsulated ZnO nanorods, and Cr-doped ZnO-encapsulated ZnO nanorods have been investigated. Encapsulated ZnO nanorods were grown using a simple two-stage method in which ZnO nanorods were first grown on a glass substrate directly from a hydrothermal bath, then encapsulated with a thin layer of Cr-doped ZnO by dip coating. Comparative study of x-ray diffraction patterns showed that Cr was successfully incorporated into the shell layer of ZnO nanorods. Moreover, energy-dispersive x-ray spectroscopy confirmed presence of Cr in this sample. It was observed that the thickness of the shell layer around the core of the ZnO nanorods was at least about 20 nm. Transmission electron microscopy of bare ZnO nanorods revealed single-crystalline structure. Based on optical results, both the encapsulation process and addition of Cr dopant decreased the optical bandgap of the samples. Indeed, the optical bandgap values of Cr-doped ZnO-encapsulated ZnO nanorods, ZnO-encapsulated ZnO nanorods, and bare ZnO nanorods were 2.89 eV, 3.15 eV, and 3.34 eV, respectively. The ultraviolet (UV) parameters demonstrated that incorporation of Cr dopant into the shell layer of ZnO nanorods considerably facilitated formation and transportation of photogenerated carriers, optimizing their performance as a practical UV detector. As a result, the photocurrent of the Cr-doped ZnO-encapsulated ZnO nanorods was the highest (0.6 mA), compared with ZnO-encapsulated ZnO nanorods and bare ZnO nanorods (0.21 mA and 0.06 mA, respectively).

  9. Seed layer effect on different properties and UV detection capability of hydrothermally grown ZnO nanorods over SiO2/p-Si substrate

    NASA Astrophysics Data System (ADS)

    Sannakashappanavar, Basavaraj S.; Byrareddy, C. R.; Kumar, Pesala Sudheer; Yadav, Aniruddh Bahadur

    2018-05-01

    Hydrothermally grown one dimensional ZnO nanostructures are among the most widely used semiconductor materials to build high-efficiency electronic devices for various applications. Few researchers have addressed the growth mechanism and effect of ZnO seed layer on different properties of ZnO nanorods grown by hydrothermal method, instead, no one has synthesized ZnO nanorod over SiO2/p-Si substrate. The aim of this study is to study the effect of ZnO seed layer and the growth mechanism of ZnO nanorods over SiO2/p-Si substrate. To achieve the goal, we have synthesized ZnO nanorods over different thickness ZnO seed layers by using the hydrothermal method on SiO2/p-Si substrate. The effects of c-plane area ratio were identified for the growth rate of c-plane, reaction rate constant and stagnant layer thickness also calculated by using a modified rate growth equation. We have identified maximum seed layer thickness for the growth of vertical ZnO nanorod. A step dislocation in the ZnO nanorods grown on 150and 200 nm thick seed layers was observed, the magnitude of Burges vector was calculated for this disorder. The seed layer and ZnO nanorods were characterized by AFM, XPS, UV-visible, XRD (X-ray diffraction, and SEM(scanning electron microscope). To justify the application of the grown ZnO nanorods Ti/Au was deposited over ZnO nanorods grown over all seed layers for the fabrication of photoconductor type UV detector.

  10. Optical characterization of CdS nanorods capped with starch

    NASA Astrophysics Data System (ADS)

    Roy, J. S.; Pal Majumder, T.; Schick, C.

    2015-05-01

    Well crystalline uniform CdS nanorods were grown by changing the concentration of maize starch. The highly polymeric (branched) structure of starch enhances the growth of CdS nanorods. The average diameter of the nanorods is 20-25 nm while length is of 500-600 nm as verified from SEM and XRD observations. The optical band gaps of the CdS nanorods are varying from 2.66 eV to 2.52 eV depending on concentration of maize starch. The photoluminescence (PL) emission bands are shifted from 526 nm to 529 nm with concentration of maize starch. We have also observed the enhanced PL intensity in CdS nanorods capped with starch. The Fourier transform infrared (FTIR) spectroscopy shows the significant effect of starch on CdS nanorods.

  11. Building Trades. Block II. Foundations.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    Twelve informational lessons and eleven manipulative lessons are provided on foundations as applied to the building trades. Informational lessons cover land measurements; blueprint reading; level instruments; building and site planning; building site preparation; laying out building lines; soil preparation and special evacuation; concrete forms;…

  12. Biomimetic, Strong, Tough, and Self-Healing Composites Using Universal Sealant-Loaded, Porous Building Blocks.

    PubMed

    Hwang, Sung Hoon; Miller, Joseph B; Shahsavari, Rouzbeh

    2017-10-25

    Many natural materials, such as nacre and dentin, exhibit multifunctional mechanical properties via structural interplay between compliant and stiff constituents arranged in a particular architecture. Herein, we present, for the first time, the bottom-up synthesis and design of strong, tough, and self-healing composite using simple but universal spherical building blocks. Our composite system is composed of calcium silicate porous nanoparticles with unprecedented monodispersity over particle size, particle shape, and pore size, which facilitate effective loading and unloading with organic sealants, resulting in 258% and 307% increases in the indentation hardness and elastic modulus of the compacted composite. Furthermore, heating the damaged composite triggers the controlled release of the nanoconfined sealant into the surrounding area, enabling moderate recovery in strength and toughness. This work paves the path towards fabricating a novel class of biomimetic composites using low-cost spherical building blocks, potentially impacting bone-tissue engineering, insulation, refractory and constructions materials, and ceramic matrix composites.

  13. Biotin-streptavidin-induced aggregation of gold nanorods: tuning rod-rod orientation.

    PubMed

    Gole, Anand; Murphy, Catherine J

    2005-11-08

    We report herein biotin-streptavidin-mediated aggregation studies of long gold nanorods. We have previously demonstrated end-to-end linkages of gold nanorods driven by the biotin-streptavidin interaction (Caswell et al. J. Am. Chem. Soc. 2003, 125, 13914). In that report, the specific binding of biotin disulfide to the gold nanorod edges was achieved due to the preferred binding of thiol molecules to the Au[111] surface (gold nanorod ends) as opposed to the gold nanorod side faces. This led to the end-end linkage of gold nanorods upon subsequent addition of streptavidin. In this report we demonstrate a simple procedure to biotinylate the entire gold nanorod surface and subsequently form a 3-D assembly by addition of streptavidin. Gold nanorods were synthesized by the three-step seeding protocol documented in our previous articles. The surface of gold nanorods was further modified by a layer of a weak polyelectrolyte, poly(acrylic acid), PAA. A biotin molecule which has an amine group at one end (biotin-PEO-amine) was anchored to the carboxylic acid group of the polyelectrolyte using the well-known carbodiimide chemistry. This process biotinylates the entire gold nanorod surface. Addition of streptavidin further leads to aggregation of gold nanorods. A closer look at the aggregates reveals a preferential side-to-side assembly of gold nanorods. The gold nanorods were characterized at each stage by UV-vis spectroscopy, light scattering, and transmission electron microscopy (TEM) measurements.

  14. Templated synthesis of metal nanorods in silica nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Yadong; Gao, Chuanbo

    A method of preparing a metal nanorod. The method includes seeding a metal nanoparticle within the lumen of a nanotube, and growing a metal nanorod from the seeded metal nanoparticle to form a metal nanorod-nanotube composite. In some cases, the nanotube includes metal binding ligands attached to the inner surface. Growing of the metal nanorod includes incubating the seeded nanotube in a solution that includes: a metal source for the metal in the metal nanorod, the metal source including an ion of the metal; a coordinating ligand that forms a stable complex with the metal ion; a reducing agent formore » reducing the metal ion, and a capping agent that stabilizes atomic monomers of the metal. Compositions derived from the method are also provided.« less

  15. α-Haloaldehydes: versatile building blocks for natural product synthesis.

    PubMed

    Britton, Robert; Kang, Baldip

    2013-02-01

    The diastereoselective addition of organometallic reagents to α-chloroaldehydes was first reported in 1959 and occupies a historically significant role as the prototypical reaction for Cornforth's model of stereoinduction. Despite clear synthetic potential for these reagents, difficulties associated with producing enantiomerically enriched α-haloaldehydes limited their use in natural product synthesis through the latter half of the 20th century. In recent years, however, a variety of robust, organocatalytic processes have been reported that now provide direct access to optically enriched α-haloaldehydes and have motivated renewed interest in their use as building blocks for natural product synthesis. This Highlight summarizes the methods available for the enantioselective preparation of α-haloaldehydes and their stereoselective conversion into natural products.

  16. Organization of Gold Nanorods in Cylinder-Forming Block Copolymer Films

    NASA Astrophysics Data System (ADS)

    Jian, Guoquian; Riggleman, Robert; Composto, Russell

    2012-02-01

    The addition of gold nanorods (AuNRs) to copolymer films can impart unique optical and electrical properties. To take full advantage of this system, the AuNRs must be dispersed in a self-organizing copolymer that directs the orientation of the anisotropic particle. In the present work, AuNRs with aspect ratio 3.6 (8 nm x 29 nm) are grafted with poly(2-vinyl pyridine) (P2VP) brushes and dispersed in a cylindrical forming diblock copolymer of polystyrene-b-P2VP (180K-b-77K, 29.6 wt% P2VP). Films are spun cast and solvent annealed in chloroform to produce a perpendicular cylindrical morphology at the surface. Using TEM and UV-ozone etching combined with AFM, the AuNRs are well dispersed and co-locate (top down view) with the P2VP cylinders, ˜50nm diameter. However, the AuNRs mainly lie parallel to the surface indicating that they likely locate at the junction created at the intersection between P2VP cylinders and P2VP brush layer adjacent to the silicon oxide surface. Self-consistent field calculations of the Au:PS-b-P2VP morphology as well as the effect of adding P2VP homopolymer to the nanocomposite will be discussed.

  17. Diameter Control and Photoluminescence of ZnO Nanorods from Trialkylamines

    DOE PAGES

    Andelman, Tamar; Gong, Yinyan; Neumark, Gertrude; ...

    2007-01-01

    A novel solution method to control the diameter of ZnO nanorods is reported. Small diameter (2-3 nm) nanorods were synthesized from trihexylamine, and large diameter (50–80 nm) nanorods were synthesized by increasing the alkyl chain length to tridodecylamine. The defect (green) emission of the photoluminescence (PL) spectra of the nanorods varies with diameter, and can thus be controlled by the diameter control. The small ZnO nanorods have strong green emission, while the large diameter nanorods exhibit a remarkably suppressed green band. We show that this observation supports surface oxygen vacancies as the defect that gives rise to the green emission.

  18. Alignment of gold nanorods by angular photothermal depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Adam B.; Chow, Timothy T. Y.; Chon, James W. M., E-mail: jchon@swin.edu.au

    2014-02-24

    In this paper, we demonstrate that a high degree of alignment can be imposed upon randomly oriented gold nanorod films by angular photothermal depletion with linearly polarized laser irradiation. The photothermal reshaping of gold nanorods is observed to follow quadratic melting model rather than the threshold melting model, which distorts the angular and spectral hole created on 2D distribution map of nanorods to be an open crater shape. We have accounted these observations to the alignment procedures and demonstrated good agreement between experiment and simulations. The use of multiple laser depletion wavelengths allowed alignment criteria over a large range ofmore » aspect ratios, achieving 80% of the rods in the target angular range. We extend the technique to demonstrate post-alignment in a multilayer of randomly oriented gold nanorod films, with arbitrary control of alignment shown across the layers. Photothermal angular depletion alignment of gold nanorods is a simple, promising post-alignment method for creating future 3D or multilayer plasmonic nanorod based devices and structures.« less

  19. [Theragnostic approaches using gold nanorods and near infrared light].

    PubMed

    Niidome, Takuro; Shiotani, Atsushi; Akiyama, Yasuyuki; Ohga, Akira; Nose, Keisuke; Pissuwan, Dakrong; Niidome, Yasuro

    2010-12-01

    Gold nanoparticles have unique optical properties such as surface-plasmon and photothermal effects. Such properties have resulted in gold nanoparticles having several clinical applications. Gold nanorods (which are rod-shaped gold nanoparticles) show a surface plasmon band in the near-infrared region. They have therefore been proposed as contrast agents for bioimaging, or as heating devices for photothermal therapy. Polyethylene glycol-modified gold nanorods systemically administrated into mice can be detected with integrating sphere, and the stability of the gold nanorods in blood flow evaluated. After intravenous injection of gold nanorods followed by near-infrared laser irradiation, significant tumor damage triggered by the photothermal effect was observed. To deliver gold nanorods to the target tissue, thermosensitive polymer gel-coated gold nanorods were prepared. After intravenous injection of the gel-modified gold nanorods and irradiation of the tumor, a larger amount of gold was detected in the irradiated tumor than in the non-irradiated tumor. This effect is due to the hydrophobic interaction between the cellular membrane or the extracellular matrix and the gel surfaces induced by the photothermal effect. Furthermore, the photothermal effect enhanced the permeability of the stratum corneum of the skin. As a result of treatment of the skin with ovalbumin and gold nanorods followed by near-infrared light irradiation, a significant amount of protein was detected in the skin. The gold nanorods therefore showed several functions as a photothermal nanodevice for bioimaging, thermal therapy, and a drug delivery system.

  20. High efficiency dye-sensitized solar cell based on novel TiO2 nanorod/nanoparticle bilayer electrode

    PubMed Central

    Hafez, Hoda; Lan, Zhang; Li, Qinghua; Wu, Jihuai

    2010-01-01

    High light-to-energy conversion efficiency was achieved by applying novel TiO2 nanorod/nanoparticle (NR/NP) bilayer electrode in the N719 dye-sensitized solar cells. The short-circuit current density (JSC), the open-circuit voltage (VOC), the fill factor (FF), and the overall efficiency (η) were 14.45 mA/cm2, 0.756 V, 0.65, and 7.1%, respectively. The single-crystalline TiO2 NRs with length 200–500 nm and diameter 30–50 nm were prepared by simple hydrothermal methods. The dye-sensitized solar cells with pure TiO2 NR and pure TiO2 NP electrodes showed only a lower light-to-electricity conversion efficiency of 4.4% and 5.8%, respectively, compared with single-crystalline TiO2 NRs. This can be attributed to the new NR/NP bilayer design that can possess the advantages of both building blocks, ie, the high surface area of NP aggregates and rapid electron transport rate and the light scattering effect of single-crystalline NRs. PMID:24198470

  1. Fabrication and photovoltaic properties of ZnO nanorods/perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirahata, Yasuhiro; Tanaike, Kohei; Akiyama, Tsuyoshi

    2016-02-01

    ZnO nanorods/perovskite solar cells with different lengths of ZnO nanorods were fabricated. The ZnO nanorods were prepared by chemical bath deposition and directly confirmed to be hexagon-shaped nanorods. The lengths of the ZnO nanorads were controlled by deposition condition of ZnO seed layer. Photovoltaic properties of the ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} solar cells were investigated by measuring current density-voltage characteristics and incident photon to current conversion efficiency. The highest conversion efficiency was obtained in ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} with the longest ZnO nanorods.

  2. Formation and electrical transport properties of pentacene nanorod crystal.

    PubMed

    Akai-Kasaya, M; Ohmori, C; Kawanishi, T; Nashiki, M; Saito, A; Aono, M; Kuwahara, Y

    2010-09-10

    The monophasic formation of an uncharted pentacene crystal, the pentacene nanorod, has been investigated. The restricted formation of the pentacene nanorod on a bare mica surface reveals a peculiar surface catalytic crystal growth mode of the pentacene. We demonstrated the charge transport measurements through a single pentacene nanorod and analyzed the data using a periodic hopping conduction model. The results revealed that the pentacene nanorod has a periodic conductive node within their one-dimensional crystal.

  3. Preparation and Electrochemical Performance of Li4Mn5O12 Nanorods using β-MnO2 Nanorods as Precursor

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Wang, Li; Mu, Yanlin; Zhang, Chongwei; Zhu, Fan; Liu, Mengjiao; Lai, Qiongyu; Bi, Jian; Gao, Daojiang

    2018-03-01

    Li4Mn5O12 nanorods were successfully prepared by using β-MnO2 nanorod precursors as self-templates. The obtained Li4Mn5O12 nanorods were approximately 0.8-1.5 μm in length and 0.15 μm in width, and were employed as electrode materials and applied in supercapacitors. The results show that Li4Mn5O12 nanorods can deliver 211 F g-1 within the potential range of 0-1.4 V at a scan rate of 5 mV s-1 in 1 mol L-1 Li2SO4 solution, which presents a good electrochemical performance.

  4. Ultraviolet electroluminescence from zinc oxide nanorods/deoxyribonucleic acid hybrid bio light-emitting diode

    NASA Astrophysics Data System (ADS)

    Gupta, Rohini Bhardwaj; Nagpal, Swati; Arora, Swati; Bhatnagar, Pramod Kumar; Mathur, Parmatma Chandra

    2011-01-01

    Ultraviolet (UV) light-emitting diode using salmon deoxyribonucleic acid (sDNA)-cetyltrimethylammonium complex as an electron blocking layer and zinc oxide (ZnO) nanorods as emissive material was fabricated. UV emission, which was blue shifted up to 335 nm with respect to the band edge emission of 390 nm, was observed. This blue shift was caused due to accumulation of electrons in the conduction band of ZnO because of a high potential barrier existing at the sDNA/ZnO interface.

  5. YBa2Cu3O x superconducting nanorods

    NASA Astrophysics Data System (ADS)

    Rieken, William; Bhargava, Atit; Horie, Rie; Akimitsu, Jun; Daimon, Hiroshi

    2018-02-01

    Herein, we report the synthesis of YBa2Cu3O x superconducting nanorods performed by solution chemistry. Initially, a mixture of fine-grained coprecipitated powder was obtained and subsequently converted to YBa2Cu3O x nanorods by heating to 1223 K in oxygen for 12 h. The nanorods are superconducting without the need for any further sintering or oxygenation, thereby providing an avenue for direct application to substrates at room temperature or direct use as formed nanorods. A critical superconducting transition temperature T c of about 92 K was achieved at a critical magnetic field of 10 Oe.

  6. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block

    NASA Astrophysics Data System (ADS)

    Bayeh, Liela; Le, Phong Q.; Tambar, Uttam K.

    2017-07-01

    The stereoselective oxidation of hydrocarbons is one of the most notable advances in synthetic chemistry over the past fifty years. Inspired by nature, enantioselective dihydroxylations, epoxidations and other oxidations of unsaturated hydrocarbons have been developed. More recently, the catalytic enantioselective allylic carbon-hydrogen oxidation of alkenes has streamlined the production of pharmaceuticals, natural products, fine chemicals and other functional materials. Allylic functionalization provides a direct path to chiral building blocks with a newly formed stereocentre from petrochemical feedstocks while preserving the olefin functionality as a handle for further chemical elaboration. Various metal-based catalysts have been discovered for the enantioselective allylic carbon-hydrogen oxidation of simple alkenes with cyclic or terminal double bonds. However, a general and selective allylic oxidation using the more common internal alkenes remains elusive. Here we report the enantioselective, regioselective and E/Z-selective allylic oxidation of unactivated internal alkenes via a catalytic hetero-ene reaction with a chalcogen-based oxidant. Our method enables non-symmetric internal alkenes to be selectively converted into allylic functionalized products with high stereoselectivity and regioselectivity. Stereospecific transformations of the resulting multifunctional chiral building blocks highlight the potential for rapidly converting internal alkenes into a broad range of enantioenriched structures that can be used in the synthesis of complex target molecules.

  7. Microbial production of building block chemicals and polymers.

    PubMed

    Lee, Jeong Wook; Kim, Hyun Uk; Choi, Sol; Yi, Jongho; Lee, Sang Yup

    2011-12-01

    Owing to our increasing concerns on the environment, climate change, and limited natural resources, there has recently been considerable effort exerted to produce chemicals and materials from renewable biomass. Polymers we use everyday can also be produced either by direct fermentation or by polymerization of monomers that are produced by fermentation. Recent advances in metabolic engineering combined with systems biology and synthetic biology are allowing us to more systematically develop superior strains and bioprocesses for the efficient production of polymers and monomers. Here, we review recent trends in microbial production of building block chemicals that can be subsequently used for the synthesis of polymers. Also, recent successful cases of direct one-step production of polymers are reviewed. General strategies for the production of natural and unnatural platform chemicals are described together with representative examples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Growth process for gallium nitride porous nanorods

    DOEpatents

    Wildeson, Isaac Harshman; Sands, Timothy David

    2015-03-24

    A GaN nanorod and formation method. Formation includes providing a substrate having a GaN film, depositing SiN.sub.x on the GaN film, etching a growth opening through the SiN.sub.x and into the GaN film, growing a GaN nanorod through the growth opening, the nanorod having a nanopore running substantially through its centerline. Focused ion beam etching can be used. The growing can be done using organometallic vapor phase epitaxy. The nanopore diameter can be controlled using the growth opening diameter or the growing step duration. The GaN nanorods can be removed from the substrate. The SiN.sub.x layer can be removed after the growing step. A SiO.sub.x template can be formed on the GaN film and the GaN can be grown to cover the SiO.sub.x template before depositing SiN.sub.x on the GaN film. The SiO.sub.x template can be removed after growing the nanorods.

  9. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks.

    PubMed

    Chen, Yun; Nielsen, Jens

    2013-12-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. CdO nanorods and Cd(OH)2/Ag core/satellite nanorods: Rapid and efficient sonochemical synthesis, characterization and their magnetic properties.

    PubMed

    Abbas, Mohamed; Tawfik, Wael; Chen, Jiangang

    2018-01-01

    We have designed an efficient and direct sonochemical method for the facile synthesis of Cd(OH) 2 , CdO, and Cd(OH) 2 /Ag core/satellite nanorods. A Cd(OH) 2 nanorod was synthesized with a one-pot, environmentally-friendly aqueous sonochemical reaction, followed by calcination at 500°C to produce CdO nanorods. Thirty minutes of re-ultrasonicated CdO nanorods in the presence of the Ag precursor was sufficient for phase transformation from the cubic structure of CdO to the monoclinic crystalline structure of Cd(OH) 2 , accompanied by deposition of Ag nanodots on the surface to form Cd(OH) 2 /Ag core/satellite nanorods. X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy, N 2 Brunauer-Emmett-Teller adsorption-desorption, and Fourier-transform infrared spectroscopy measurements confirmed the successful formation of the various phases and the unique morphology of the nanorods/satellites. We also measured the magnetic properties using a vibrating sample magnetometer at room temperature, and the produced nanorods showed weak unsaturated ferromagnetic properties with a magnetic moment values of 0.105 and 0.076emu/g for CdO and Cd(OH) 2 /Ag NRs, respectively. In conclusion, our one-pot, cost-effective, sonochemical approach holds promise for the synthesis of various oxides and core/satellite nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Patterned synthesis of ZnO nanorod arrays for nanoplasmonic waveguide applications

    NASA Astrophysics Data System (ADS)

    Lamson, Thomas L.; Khan, Sahar; Wang, Zhifei; Zhang, Yun-Kai; Yu, Yong; Chen, Zhe-Sheng; Xu, Huizhong

    2018-03-01

    We report the patterned synthesis of ZnO nanorod arrays of diameters between 50 nm and 130 nm and various spacings. This was achieved by patterning hole arrays in a polymethyl methacrylate layer with electron beam lithography, followed by chemical synthesis of ZnO nanorods in the patterned holes using the hydrothermal method. The fabrication of ZnO nanorod waveguide arrays is also demonstrated by embedding the nanorods in a silver film using the electroplating process. Optical transmission measurement through the nanorod waveguide arrays is performed and strong resonant transmission of visible light is observed. We have found the resonance shifts to a longer wavelength with increasing nanorod diameter. Furthermore, the resonance wavelength is independent of the nanowaveguide array period, indicating the observed resonant transmission is the effect of a single ZnO nanorod waveguide. These nanorod waveguides may be used in single-molecule imaging and sensing as a result of the nanoscopic profile of the light transmitted through the nanorods and the controlled locations of these nanoscale light sources.

  12. Theoretical and technological building blocks for an innovation accelerator

    NASA Astrophysics Data System (ADS)

    van Harmelen, F.; Kampis, G.; Börner, K.; van den Besselaar, P.; Schultes, E.; Goble, C.; Groth, P.; Mons, B.; Anderson, S.; Decker, S.; Hayes, C.; Buecheler, T.; Helbing, D.

    2012-11-01

    Modern science is a main driver of technological innovation. The efficiency of the scientific system is of key importance to ensure the competitiveness of a nation or region. However, the scientific system that we use today was devised centuries ago and is inadequate for our current ICT-based society: the peer review system encourages conservatism, journal publications are monolithic and slow, data is often not available to other scientists, and the independent validation of results is limited. The resulting scientific process is hence slow and sloppy. Building on the Innovation Accelerator paper by Helbing and Balietti [1], this paper takes the initial global vision and reviews the theoretical and technological building blocks that can be used for implementing an innovation (in first place: science) accelerator platform driven by re-imagining the science system. The envisioned platform would rest on four pillars: (i) Redesign the incentive scheme to reduce behavior such as conservatism, herding and hyping; (ii) Advance scientific publications by breaking up the monolithic paper unit and introducing other building blocks such as data, tools, experiment workflows, resources; (iii) Use machine readable semantics for publications, debate structures, provenance etc. in order to include the computer as a partner in the scientific process, and (iv) Build an online platform for collaboration, including a network of trust and reputation among the different types of stakeholders in the scientific system: scientists, educators, funding agencies, policy makers, students and industrial innovators among others. Any such improvements to the scientific system must support the entire scientific process (unlike current tools that chop up the scientific process into disconnected pieces), must facilitate and encourage collaboration and interdisciplinarity (again unlike current tools), must facilitate the inclusion of intelligent computing in the scientific process, must facilitate

  13. Removal of Carmine from Aqueous Solution by Carbonated Hydroxyapatite Nanorods

    PubMed Central

    Liu, Guanxiong; Xue, Caibao; Zhu, Peizhi

    2017-01-01

    In this study, carbonated hydroxyapatite (CHA) nanorods were prepared by a novel hydrothermal method. The crystallinity and chemical structure of synthesized CHA nanorods was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), respectively. Carmine was selected as representative organic dyes to study the adsorption capacities of CHA nanorods. Mechanistic studies of carmine adsorption by CHA nanorods show that the adsorption processes both follow the pseudo-second-order kinetic model and fit the Langmuir isotherm model well. The CHA nanorods exhibited a high adsorption capacity of 85.51 mg/g for carmine at room-temperature. The experimental results prove that CHA nanorods can be promising absorbents for removing organic dye pollutants in wastewater from paper and textile plants. PMID:28587250

  14. "Looking through the Eyes of the Learner": Implementation of Building Blocks for Student Engagement

    ERIC Educational Resources Information Center

    D'Annolfo, Suzanne Cordier; Schumann, Jeffrey A.

    2012-01-01

    The Building Blocks for Student Engagement (BBSE) protocol was designed to provide a consistent framework of common language and a visual point of reference shared among students, teachers and school leaders to keep a laser-like focus on the instructional core and student engagement. Grounded in brain-based learning and implemented in urban,…

  15. Shedding Light on the Formation of Gold Nanorods

    NASA Astrophysics Data System (ADS)

    Lopez, Orlando; Hudry, Damien; Nykypanchuk, Dmytro

    A significant interest in the study and synthesis of one-dimensional materials such as nanorods or nanowires is sparked by their potential application in electronics, photonics and biodetection. However, the synthesis of these low dimensional materials is not always reliable due to kinetic effects in symmetry breaking and high sensitivity to impurities. In this work we discuss the synthesis of gold nanorods and new ways to achieve symmetry breaking during the growth from seed solution, hence maximizing the yield of nanorods. We discuss the mechanism involved in symmetry breaking and general strategies to improve the nanorod morphology and synthetic yield. This work can serve as a starting point to design reproducible synthetic strategies for preparing high quality gold nanorods. This project was supported by the U.S. Department of Energy, Office of Science, under the Science Undergraduate Laboratory Internships Program and used resources of the C.F.N., which is a U.S. DOE Facility, at B.N.L., Contract No. DE-SC0012704.

  16. A theory of growing crystalline nanorods - Mode I

    NASA Astrophysics Data System (ADS)

    Du, Feng; Huang, Hanchen

    2018-08-01

    Nanorods grow in two possible modes during physical vapor deposition (PVD). In mode I, monolayer surface steps dictate the diameter of nanorods. In mode II, multiple-layer surface steps dictate the diameter, which is the smallest possible under physical vapor deposition [5,10]. This paper reports closed-form theories of terrace lengths and nanorod diameter during the growth in mode I, as a function of deposition conditions. The accompanying lattice kinetic Monte Carlo simulations verify these theories. This study reveals that (1) quasi-steady growth exists for each set of nanorod growth conditions, and (2) the characteristic length scales, including terrace lengths and nanorod diameter at the quasi-steady state, depend on the deposition conditions - deposition rate F, substrate temperature T, and incidence angle θ - only as a function of l2D/tan θ, with l2 D = 2(v2 D/Fcosθ) 1/3 as a diffusion-limited length scale and v2D as the atomic diffusion jump rate over monolayer surface steps.

  17. Flexible Fabrication of Shape-Controlled Collagen Building Blocks for Self-Assembly of 3D Microtissues.

    PubMed

    Zhang, Xu; Meng, Zhaoxu; Ma, Jingyun; Shi, Yang; Xu, Hui; Lykkemark, Simon; Qin, Jianhua

    2015-08-12

    Creating artificial tissue-like structures that possess the functionality, specificity, and architecture of native tissues remains a big challenge. A new and straightforward strategy for generating shape-controlled collagen building blocks with a well-defined architecture is presented, which can be used for self-assembly of complex 3D microtissues. Collagen blocks with tunable geometries are controllably produced and released via a membrane-templated microdevice. The formation of functional microtissues by embedding tissue-specific cells into collagen blocks with expression of specific proteins is described. The spontaneous self-assembly of cell-laden collagen blocks into organized tissue constructs with predetermined configurations is demonstrated, which are largely driven by the synergistic effects of cell-cell and cell-matrix interactions. This new strategy would open up new avenues for the study of tissue/organ morphogenesis, and tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. RNA and RNP as Building Blocks for Nanotechnology and Synthetic Biology.

    PubMed

    Ohno, Hirohisa; Saito, Hirohide

    2016-01-01

    Recent technologies that aimed to elucidate cellular function have revealed essential roles for RNA molecules in living systems. Our knowledge concerning functional and structural information of naturally occurring RNA and RNA-protein (RNP) complexes is increasing rapidly. RNA and RNP interaction motifs are structural units that function as building blocks to constitute variety of complex structures. RNA-central synthetic biology and nanotechnology are constructive approaches that employ the accumulated information and build synthetic RNA (RNP)-based circuits and nanostructures. Here, we describe how to design and construct synthetic RNA (RNP)-based devices and structures at the nanometer-scale for biological and future therapeutic applications. RNA/RNP nanostructures can also be utilized as the molecular scaffold to control the localization or interactions of target molecule(s). Moreover, RNA motifs recognized by RNA-binding proteins can be applied to make protein-responsive translational "switches" that can turn gene expression "on" or "off" depending on the intracellular environment. This "synthetic RNA and RNP world" will expand tools for nanotechnology and synthetic biology. In addition, these reconstructive approaches would lead to a greater understanding of building principle in naturally occurring RNA/RNP molecules and systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Culture's building blocks: investigating cultural evolution in a LEGO construction task.

    PubMed

    McGraw, John J; Wallot, Sebastian; Mitkidis, Panagiotis; Roepstorff, Andreas

    2014-01-01

    ONE OF THE MOST ESSENTIAL BUT THEORETICALLY VEXING ISSUES REGARDING THE NOTION OF CULTURE IS THAT OF CULTURAL EVOLUTION AND TRANSMISSION: how a group's accumulated solutions to invariant challenges develop and persevere over time. But at the moment, the notion of applying evolutionary theory to culture remains little more than a suggestive trope. Whereas the modern synthesis of evolutionary theory has provided an encompassing scientific framework for the selection and transmission of biological adaptations, a convincing theory of cultural evolution has yet to emerge. One of the greatest challenges for theorists is identifying the appropriate time scales and units of analysis in order to reduce the intractably large and complex phenomenon of "culture" into its component "building blocks." In this paper, we present a model for scientifically investigating cultural processes by analyzing the ways people develop conventions in a series of LEGO construction tasks. The data revealed a surprising pattern in the selection of building bricks as well as features of car design across consecutive building sessions. Our findings support a novel methodology for studying the development and transmission of culture through the microcosm of interactive LEGO design and assembly.

  20. Diamond-Like Carbon Nanorods and Fabrication Thereof

    NASA Technical Reports Server (NTRS)

    Varshney, Deepak (Inventor); Makarov, Vladimir (Inventor); Morell, Gerardo (Inventor); Saxena, Puja (Inventor); Weiner, Brad (Inventor)

    2017-01-01

    Novel sp. (sup 3) rich diamond-like carbon (DLC) nanorod films were fabricated by hot filament chemical vapor deposition technique. The results are indicative of a bottom-up self-assembly synthesis process, which results in a hierarchical structure that consists of microscale papillae comprising numerous nanorods. The papillae have diameters ranging from 2 to 4 microns and the nanorods have diameters in the 35-45 nanometer range. A growth mechanism based on the vapor liquid-solid mechanism is proposed that accounts for the morphological aspects in the micro- and nano-scales.

  1. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application.

    PubMed

    Fu, Chong; Li, Mingji; Li, Hongji; Li, Cuiping; Qu, Changqing; Yang, Baohe

    2017-03-01

    Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO 2 nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Field gradients can control the alignment of nanorods.

    PubMed

    Ooi, Chinchun; Yellen, Benjamin B

    2008-08-19

    This work is motivated by the unexpected experimental observation that field gradients can control the alignment of nonmagnetic nanorods immersed inside magnetic fluids. In the presence of local field gradients, nanorods were observed to align perpendicular to the external field at low field strengths, but parallel to the external field at high field strengths. The switching behavior results from the competition between a preference to align with the external field (orientational potential energy) and preference to move into regions of minimum magnetic field (positional potential energy). A theoretical model is developed to explain this experimental behavior by investigating the statistics of nanorod alignment as a function of both the external uniform magnetic field strength and the local magnetic field variation above a periodic array of micromagnets. Computational phase diagrams are developed which indicate that the relative population of nanorods in parallel and perpendicular states can be adjusted through several control parameters. However, an energy barrier to rotation was discovered to influence the rate kinetics and restrict the utility of this assembly technique to nanorods which are slightly shorter than the micromagnet length. Experimental results concerning the orientation of nanorods inside magnetic fluid are also presented and shown to be in strong agreement with the theoretical work.

  3. Functionalized Gold Nanorods for Tumor Imaging and Targeted Therapy

    PubMed Central

    Gui, Chen; Cui, Da-xiang

    2012-01-01

    Gold nanorods, as an emerging noble metal nanomaterial with unique properties, have become the new exciting focus of theoretical and experimental studies in the past few years. The structure and function of gold nanorods, especially their biocompatibility, optical property, and photothermal effects, have been attracting more and more attention. Gold nanorods exhibit great potential in applications such as tumor molecular imaging and photothermal therapy. In this article, we review some of the main advances made over the past few years in the application of gold nanorods in surface functionalization, molecular imaging, and photothermal therapy. We also explore other prospective applications and discuss the corresponding concepts, issues, approaches, and challenges, with the aim of stimulating broader interest in gold nanorod-based nanotechnology and improving its practical application. PMID:23691482

  4. Exciton emission from bare and hybrid plasmonic GaN nanorods

    NASA Astrophysics Data System (ADS)

    Mohammadi, Fatemesadat; Kunert, Gerd; Hommel, Detlef; Ge, Jingxuan; Duscher, Gerd; Schmitzer, Heidrun; Wagner, Hans Peter

    We study the exciton emission of hybrid gold nanoparticle/Alq3 (aluminiumquinoline)/wurtzite GaN nanorods. GaN nanorods of 1.5 μm length and 250 nm diameter were grown by plasma assisted MBE. Hybrid GaN nanorods were synthesized by organic molecular beam deposition. Temperature and power dependent time integrated (TI) and time resolved (TR) photoluminescence (PL) measurements were performed on bare and hybrid structures. Bare nanorods show donor (D0,X) and acceptor bound (A0,X) exciton emission at 3.473 eV and at 3.463 eV, respectively. TR-PL trace modeling reveal lifetimes of 240 ps and 1.4 ns for the (D0,X) and (A0,X) transition. 10 nm gold coated GaN nanorods show a significant PL quenching and (D0,X) lifetime shortening which is tentatively attributed to impact ionization of (D0,X) due to hot electron injection from the gold nanoparticles. This is supported by electron energy loss spectroscopy that shows a redshift of a midgap state transition indicating a reduction of a preexisting band-bending at the nanorod surface due to positive charging of the gold nanoparticles. Inserting a nominally 5 nm thick Alq3 spacer between the nanorod and the gold reduces the PL quenching and lifetime shortening. Plasmonic nanorods with a 30 nm thick Alq3 spacer reveal lifetimes which are nearly identical to uncoated GaN nanorods.

  5. Efficient Perovskite Solar Cells Depending on TiO2 Nanorod Arrays.

    PubMed

    Li, Xin; Dai, Si-Min; Zhu, Pei; Deng, Lin-Long; Xie, Su-Yuan; Cui, Qian; Chen, Hong; Wang, Ning; Lin, Hong

    2016-08-24

    Perovskite solar cells (PSCs) with TiO2 materials have attracted much attention due to their high photovoltaic performance. Aligned TiO2 nanorods have long been used for potential application in highly efficient perovskite solar cells, but the previously reported efficiencies of perovskite solar cells based on TiO2 nanorod arrays were underrated. Here we show a solvothermal method based on a modified ketone-HCl system with the addition of organic acids suitable for modulation of the TiO2 nanorod array films to fabricate highly efficient perovskite solar cells. Photovoltaic measurements indicated that efficient nanorod-structured perovskite solar cells can be achieved with the length of the nanorods as long as approximately 200 nm. A record efficiency of 18.22% under the reverse scan direction has been optimized by avoiding direct contact between the TiO2 nanorods and the hole transport materials, eliminating the organic residues on the nanorod surfaces using UV-ozone treatment and tuning the nanorod array morphologies through addition of different organic acids in the solvothermal process.

  6. Nanorod Mobility within Entangled Wormlike Micelle Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh

    In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentrationmore » is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity.« less

  7. Nanorod Mobility within Entangled Wormlike Micelle Solutions

    DOE PAGES

    Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh; ...

    2016-12-20

    In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentrationmore » is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity.« less

  8. Facile synthesis of Nb2O5 nanobelts assembled from nanorods and their applications in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodi; Liu, Guangyin; Chen, Hao; Ma, Jianmin; Zhang, Ruixue

    2017-12-01

    Hierarchical 1D Nb2O5 nanobelts are successfully synthesized via a facile solvothermal method and following thermal treatment. The as-formed Nb2O5 nanobelts are characterized by XRD, FESEM, TEM, and BET, and the results indicate that they possess pseudohexagonal structure and are composed of ultranarrow nanorods with an average diameter of ca. 15 nm. When used as anodic materials for lithium ion batteries, the obtained Nb2O5 nanobelts can deliver initial discharge capacities of 209.3 mAh g-1 at the current density of 0.5 C. In addition, the Nb2O5 nanobelts exhibit a reversible capacity of 95.8 mAh g-1 after 200 cycles at relatively high current density of 5 C. The good electrochemical performance of the Nb2O5 nanobelts may be ascribed to their good monodispersity, high specific surface areas, and narrow rod-like building blocks. The Nb2O5 nanobelts can be developed as promising anodes for high-rate 2 V LIBs with good safety.

  9. Building Blocks for Reliable Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    2005-01-01

    This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations.

  10. ZnO Nano-Rod Devices for Intradermal Delivery and Immunization.

    PubMed

    Nayak, Tapas R; Wang, Hao; Pant, Aakansha; Zheng, Minrui; Junginger, Hans; Goh, Wei Jiang; Lee, Choon Keong; Zou, Shui; Alonso, Sylvie; Czarny, Bertrand; Storm, Gert; Sow, Chorng Haur; Lee, Chengkuo; Pastorin, Giorgia

    2017-06-15

    Intradermal delivery of antigens for vaccination is a very attractive approach since the skin provides a rich network of antigen presenting cells, which aid in stimulating an immune response. Numerous intradermal techniques have been developed to enhance penetration across the skin. However, these methods are invasive and/or affect the skin integrity. Hence, our group has devised zinc oxide (ZnO) nano-rods for non-destructive drug delivery. Chemical vapour deposition was used to fabricate aligned nano-rods on ZnO pre-coated silicon chips. The nano-rods' length and diameter were found to depend on the temperature, time, quality of sputtered silicon chips, etc. Vertically aligned ZnO nano-rods with lengths of 30-35 µm and diameters of 200-300 nm were selected for in vitro human skin permeation studies using Franz cells with Albumin-fluorescein isothiocyanate (FITC) absorbed on the nano-rods. Fluorescence and confocal studies on the skin samples showed FITC penetration through the skin along the channels formed by the nano-rods. Bradford protein assay on the collected fluid samples indicated a significant quantity of Albumin-FITC in the first 12 h. Low antibody titres were observed with immunisation on Balb/c mice with ovalbumin (OVA) antigen coated on the nano-rod chips. Nonetheless, due to the reduced dimensions of the nano-rods, our device offers the additional advantage of excluding the simultaneous entrance of microbial pathogens. Taken together, these results showed that ZnO nano-rods hold the potential for a safe, non-invasive, and painless intradermal drug delivery.

  11. The Development of Logico-Mathematical Knowledge in a Block-Building Activity at Ages 1-4

    ERIC Educational Resources Information Center

    Kamii, Constance; Miyakawa, Yoko; Kato, Yasuhiko

    2004-01-01

    To study the developmental interrelationships among various aspects of logico-mathematical knowledge, 80 one- to 4-year-olds were individually asked to build "something tall" with 20 blocks. Percentages of new and significant behaviors increased with age and were analyzed in terms of the development of logico-mathematical relationships. It was…

  12. Functional Perfluoroalkyl Polyhedral Oligomeric Silsesquioxane (F-POSS): Building Blocks for Low Surface Energy Materials

    DTIC Science & Technology

    2010-10-21

    Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Functional Perfluoroalkyl Polyhedral Oligomeric Silsesquioxane (F...long chain fluorinated alkyl groups ranging from 6-12 carbon atoms in length. Herein, a disilanol perfluoroalkyl polyhedral oligomeric...FUNCTIONAL PERFLUOROALKYL POLYHEDRAL OLIGOMERIC SILSESQUIOXANES (F-POSS): BUILDING BLOCKS FOR LOW SURFACE ENERGY MATERIA LS Sean M Rami,.e:, Yvonne Dia

  13. Building blocks for protein interaction devices

    PubMed Central

    Grünberg, Raik; Ferrar, Tony S.; van der Sloot, Almer M.; Constante, Marco; Serrano, Luis

    2010-01-01

    Here, we propose a framework for the design of synthetic protein networks from modular protein–protein or protein–peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for part–based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors controlling protein expression in Escherichia coli: obstruction of translation initiation by mRNA secondary structure or toxicity of individual domains. Eventually, 13 proteins were purified for further characterization. Starting from well-established biotechnological tools, two general–purpose interaction input and two readout devices were built and characterized in vitro. Constitutive interaction input was achieved with a pair of synthetic leucine zippers. The second interaction was drug-controlled utilizing the rapamycin-induced binding of FRB(T2098L) to FKBP12. The interaction kinetics of both devices were analyzed by surface plasmon resonance. Readout was based on Förster resonance energy transfer between fluorescent proteins and was quantified for various combinations of input and output devices. Our results demonstrate the feasibility of parts-based protein synthetic biology. Additionally, we identify future challenges and limitations of modular design along with approaches to address them. PMID:20215443

  14. Facile growth of barium oxide nanorods: structural and optical properties.

    PubMed

    Ahmad, Naushad; Wahab, Rizwan; Alam, Manawwer

    2014-07-01

    This paper reports a large-scale synthesis of barium oxide nanorods (BaO-NRs) by simple solution method at a very low-temperature of - 60 degrees C. The as-grown BaO-NRs were characterized in terms of their morphological, structural, compositional, optical and thermal properties. The morphological characterizations of as-synthesized nanorods were done by scanning electron microscopy (SEM) which confirmed that the synthesized products are rod shaped and grown in high density. The nanorods exhibits smooth and clean surfaces throughout their lengths. The crystalline property of the material was analyzed with X-ray diffraction pattern (XRD). The compositional and thermal properties of synthesized nanorods were observed via Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis which confirmed that the synthesized nanorods are pure BaO and showed good thermal stability. The nanorods exhibited good optical properties as was confirmed from the room-temperature UV-vis spectroscopy. Finally, a plausible mechanism for the formation of BaO-NRs is also discussed in this paper.

  15. Elfin: An algorithm for the computational design of custom three-dimensional structures from modular repeat protein building blocks.

    PubMed

    Yeh, Chun-Ting; Brunette, T J; Baker, David; McIntosh-Smith, Simon; Parmeggiani, Fabio

    2018-02-01

    Computational protein design methods have enabled the design of novel protein structures, but they are often still limited to small proteins and symmetric systems. To expand the size of designable proteins while controlling the overall structure, we developed Elfin, a genetic algorithm for the design of novel proteins with custom shapes using structural building blocks derived from experimentally verified repeat proteins. By combining building blocks with compatible interfaces, it is possible to rapidly build non-symmetric large structures (>1000 amino acids) that match three-dimensional geometric descriptions provided by the user. A run time of about 20min on a laptop computer for a 3000 amino acid structure makes Elfin accessible to users with limited computational resources. Protein structures with controlled geometry will allow the systematic study of the effect of spatial arrangement of enzymes and signaling molecules, and provide new scaffolds for functional nanomaterials. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Hydrodynamic fabrication of structurally gradient ZnO nanorods.

    PubMed

    Kim, Hyung Min; Youn, Jae Ryoun; Song, Young Seok

    2016-02-26

    We studied a new approach where structurally gradient nanostructures were fabricated by means of hydrodynamics. Zinc oxide (ZnO) nanorods were synthesized in a drag-driven rotational flow in a controlled manner. The structural characteristics of nanorods such as orientation and diameter were determined by momentum and mass transfer at the substrate surface. The nucleation of ZnO was induced by shear stress which plays a key role in determining the orientation of ZnO nanorods. The nucleation and growth of such nanostructures were modeled theoretically and analyzed numerically to understand the underlying physics of the fabrication of nanostructures controlled by hydrodynamics. The findings demonstrated that the precise control of momentum and mass transfer enabled the formation of ZnO nanorods with a structural gradient in diameter and orientation.

  17. Vibrations of single-crystal gold nanorods and nanowires

    NASA Astrophysics Data System (ADS)

    Saviot, L.

    2018-04-01

    The vibrations of gold nanowires and nanorods are investigated numerically in the framework of continuum elasticity using the Rayleigh-Ritz variational method. Special attention is paid to identify the vibrations relevant in Raman scattering experiments. A comprehensive description of the vibrations of nanorods is proposed by determining their symmetry, comparing with standing waves in the corresponding nanowires, and estimating their Raman intensity. The role of experimentally relevant parameters such as the anisotropic cubic lattice structure, the presence of faceted lateral surfaces, and the shape of the ends of the nanorods is evaluated. Elastic anisotropy is shown to play a significant role contrarily to the presence of facets. Localized vibrations are found for nanorods with flat ends. Their evolution as the shape of the ends is changed to half-spheres is discussed.

  18. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    NASA Astrophysics Data System (ADS)

    Liang, Rongning; Wang, Tiantian; Zhang, Huan; Yao, Ruiqing; Qin, Wei

    2018-03-01

    Nowadays, it is still difficult for molecularly imprinted polymer (MIPs) to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  19. A polynomial-chaos-expansion-based building block approach for stochastic analysis of photonic circuits

    NASA Astrophysics Data System (ADS)

    Waqas, Abi; Melati, Daniele; Manfredi, Paolo; Grassi, Flavia; Melloni, Andrea

    2018-02-01

    The Building Block (BB) approach has recently emerged in photonic as a suitable strategy for the analysis and design of complex circuits. Each BB can be foundry related and contains a mathematical macro-model of its functionality. As well known, statistical variations in fabrication processes can have a strong effect on their functionality and ultimately affect the yield. In order to predict the statistical behavior of the circuit, proper analysis of the uncertainties effects is crucial. This paper presents a method to build a novel class of Stochastic Process Design Kits for the analysis of photonic circuits. The proposed design kits directly store the information on the stochastic behavior of each building block in the form of a generalized-polynomial-chaos-based augmented macro-model obtained by properly exploiting stochastic collocation and Galerkin methods. Using this approach, we demonstrate that the augmented macro-models of the BBs can be calculated once and stored in a BB (foundry dependent) library and then used for the analysis of any desired circuit. The main advantage of this approach, shown here for the first time in photonics, is that the stochastic moments of an arbitrary photonic circuit can be evaluated by a single simulation only, without the need for repeated simulations. The accuracy and the significant speed-up with respect to the classical Monte Carlo analysis are verified by means of classical photonic circuit example with multiple uncertain variables.

  20. Nanorod diameter modulated osteogenic activity of hierarchical micropore/nanorod-patterned coatings via a Wnt/β-catenin pathway.

    PubMed

    Zhou, Jianhong; Zhao, Lingzhou; Li, Bo; Han, Yong

    2018-04-14

    Hierarchical micropore/nanorod-patterned strontium doped hydroxyapatite (Ca 9 Sr 1 (PO 4 ) 6 (OH) 2 , Sr 1 -HA) structures (MNRs) with different nanorod diameters of about 30, 70 and 150 nm were coated on titanium, to investigate the effect of nanorod diameter on osteogenesis and the involved mechanism. Compared to micropore/nanogranule-patterned Sr 1 -HA coating (MNG), MNRs gave rise to dramatically enhanced in vitro mesenchymal stem cell functions including osteogenic differentiation in the absence of osteogenic supplements and in vivo osseointegration related to the nanorod diameter with about 70 nm displaying the best effects. MNRs activated the cellular Wnt/β-catenin pathway by increasing the expression of Wnt3a and LRP6 and decreasing the expression of Wnt/β-catenin pathway antagonists (sFRP1, sFRP2, Dkk1 and Dkk2). The exogenous Wnt3a significantly enhanced the β-catenin signaling activation and cell differentiation on MNG, and the exogenous Dkk1 attenuated the enhancing effect of MNRs on them. The data demonstrate that MNRs favor osseointegration via a Wnt/β-catenin pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Rapid formation of complexity in the total synthesis of natural products enabled by oxabicyclo[2.2.1]heptene building blocks.

    PubMed

    Schindler, Corinna S; Carreira, Erick M

    2009-11-01

    This critical review showcases examples of rapid formation of complexity in total syntheses starting from 7-oxabicyclo[2.2.1]hept-5-ene derivatives. An overview of methods allowing synthetic access to these building blocks is provided and their application in recently developed synthetic transformations to structurally complex systems is illustrated. In addition, the facile access to a novel oxabicyclo[2.2.1]heptene derived building block is presented which significantly enlarges the possibilities of previously known chemical transformations and is highlighted in the enantioselective route to the core of the banyaside and suomilide natural products (107 references).

  2. Concept analysis and the building blocks of theory: misconceptions regarding theory development.

    PubMed

    Bergdahl, Elisabeth; Berterö, Carina M

    2016-10-01

    The purpose of this article is to discuss the attempts to justify concepts analysis as a way to construct theory - a notion often advocated in nursing. The notion that concepts are the building blocks or threads from which theory is constructed is often repeated. It can be found in many articles and well-known textbooks. However, this notion is seldom explained or defended. The notion of concepts as building blocks has also been questioned by several authors. However, most of these authors seem to agree to some degree that concepts are essential components from which theory is built. Discussion paper. Literature was reviewed to synthesize and debate current knowledge. Our point is that theory is not built by concepts analysis or clarification and we will show that this notion has its basis in some serious misunderstandings. We argue that concept analysis is not a part of sound scientific method and should be abandoned. The current methods of concept analysis in nursing have no foundation in philosophy of science or in language philosophy. The type of concept analysis performed in nursing is not a way to 'construct' theory. Rather, theories are formed by creative endeavour to propose a solution to a scientific and/or practical problem. The bottom line is that the current style and form of concept analysis in nursing should be abandoned in favour of methods in line with modern theory of science. © 2016 John Wiley & Sons Ltd.

  3. Size tunable gold nanorods evenly distributed in the channels of mesoporous silica.

    PubMed

    Li, Zhi; Kübel, Christian; Pârvulescu, Vasile I; Richards, Ryan

    2008-06-01

    Uniformly distributed gold nanorods in mesoporous silica were synthesized in situ by performing a seed-mediated growth process in the channels of SBA-15 which functions as a hard-template to confine the diameter of gold nanorods. By changing the amount of gold precursor, gold nanorods were prepared with a fixed diameter (6-7 nm) and tunable aspect ratios from 3 to 30. Transmission electron microscope and electron tomography were utilized to visualize the gold nanorods supported on one piece of SBA-15 segment and showed a fairly uniform 3-dimensional distribution of gold nanorods within the SBA-15 channels. The longitudinal plasmon resonances of the gold nanorods/SBA-15 composites analyzed by diffuse reflectance UV-vis spectra were found to be tunable depending on the length of gold nanorods. No significant decrease in surface area and/or pore size of the composite was found after growth, indicating the growth process did not disrupt the open mesoporous structure of SBA-15. The combination of the tunable size of the nanorods and their 3-dimensional distribution within the open supporting matrix makes the gold nanorods/SBA-15 composites interesting candidates to systematically study the influence of the aspect ratio of gold nanorods on their properties and potential applications, i.e., catalyst, optical polarizer, and ultrasensitive medical imaging technique.

  4. Public Opinion on Youth, Crime and Race: A Guide for Advocates. Building Blocks for Youth.

    ERIC Educational Resources Information Center

    Soler, Mark

    This guide summarizes public opinion research on youth and juvenile justice issues from the Building Blocks for Youth focus groups and various national polls. Overall, the public is less fearful about crime than in the past but believes juvenile crime is increasing. There is serious public concern about the effectiveness of the juvenile justice…

  5. Controllable growth of aluminum nanorods using physical vapor deposition

    PubMed Central

    2014-01-01

    This letter proposes and experimentally demonstrates that oxygen, through action as a surfactant, enables the growth of aluminum nanorods using physical vapor deposition. Based on the mechanism through which oxygen acts, the authors show that the diameter of aluminum nanorods can be controlled from 50 to 500 nm by varying the amount of oxygen present, through modulating the vacuum level, and by varying the substrate temperature. When grown under medium vacuum, the nanorods are in the form of an aluminum metal - aluminum oxide core-shell. The thickness of the oxide shell is ~2 nm as grown and is stable when maintained in ambient for 30 days or annealed in air at 475 K for 1 day. As annealing temperature is increased, the nanorod morphology remains stable while the ratio of oxide shell to metallic core increases, resulting in a fully aluminum oxide nanorod at 1,475 K. PMID:25170334

  6. Plasmonic and Magnetically Responsive Gold ShellMagnetic Nanorod Hybrids

    DTIC Science & Technology

    2017-10-10

    is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT In this work we demonstrated a new methodology to create asymmetric magnetic nanorods with a...Through this work, methodologies are developed to create asymmetric nanorod morphologies composed of an iron (II, III) oxide (Fe3O4) magnetic core with a...shape are preserved throughout the process. 4. Conclusions In this work we demonstrated a new methodology to create asymmetric magnetic nanorods

  7. Bio-Functional Au/Si Nanorods for Pathogen Detection

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract Nanotechnology applications for food safety and biosecurity, especially development of nanoscale sensors for foodborne pathogen measurement are emerging. A novel bio-functional nanosensor for Salmonella detection was developed using hetero-nanorods. The silica nanorods were fabr...

  8. Synthesis and in vitro cytotoxicity of mPEG-SH modified gold nanorods

    NASA Astrophysics Data System (ADS)

    Didychuk, Candice L.; Ephrat, Pinhas; Belton, Michelle; Carson, Jeffrey J. L.

    2008-02-01

    Plasmon-resonant gold nanorods show great potential as an agent for contrast-enhanced biomedical imaging or for phototherapeutics. This is primarily due to the high molar extinction coefficient at the absorption maximum and the dependence of the wavelength of the absorption maximum on the aspect ratio, which is tunable in the near-infrared (NIR) during synthesis. Although gold nanorods can be produced in high-yield through the seed-mediated growth technique, the presence of residual cetyltrimethylammonium bromide (CTAB), a stabilizing surfactant required for nanorod growth, interferes with cell function and causes cytotoxicity. To overcome this potential obstacle to in vivo use, we synthesized gold nanorods and conjugated them to a methoxy (polyethylene glycol)-thiol (mPEG (5000)-SH). This approach yielded mPEG-SH modified gold nanorods with optical and morphometric properties that were similar to raw (CTAB) nanorods. Both the CTAB and mPEG-SH nanorods were tested for cytotoxicity against the HL-60 human leukemia cell line by trypan blue exclusion, and the mPEG-SH modified gold nanorods were also tested against a rat insulinoma (RIN-38) and squamous cell carcinoma (SCCVII) cell line. Cells incubated for 24 h with the mPEG-SH modified nanorods had little change in cell viability compared to cells incubated with vehicle alone. This was in contrast to cytotoxicity of CTAB nanorods on HL-60 cells. These results suggest that mPEG-SH modified gold nanorods are better suited for cell loading protocols and injection into animals and facilitate their use for imaging and phototherapeutic purposes.

  9. Directed assembly-based printing of homogeneous and hybrid nanorods using dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Chai, Zhimin; Yilmaz, Cihan; Busnaina, Ahmed A.; Lissandrello, Charles A.; Carter, David J. D.

    2017-11-01

    Printing nano and microscale three-dimensional (3D) structures using directed assembly of nanoparticles has many potential applications in electronics, photonics and biotechnology. This paper presents a reproducible and scalable 3D dielectrophoresis assembly process for printing homogeneous silica and hybrid silica/gold nanorods from silica and gold nanoparticles. The nanoparticles are assembled into patterned vias under a dielectrophoretic force generated by an alternating current (AC) field, and then completely fused in situ to form nanorods. The assembly process is governed by the applied AC voltage amplitude and frequency, pattern geometry, and assembly time. Here, we find out that complete assembly of nanorods is not possible without applying both dielectrophoresis and electrophoresis. Therefore, a direct current offset voltage is used to add an additional electrophoretic force to the assembly process. The assembly can be precisely controlled to print silica nanorods with diameters from 20-200 nm and spacing from 500 nm to 2 μm. The assembled nanorods have good uniformity in diameter and height over a millimeter scale. Besides homogeneous silica nanorods, hybrid silica/gold nanorods are also assembled by sequentially assembling silica and gold nanoparticles. The precision of the assembly process is further demonstrated by assembling a single particle on top of each nanorod to demonstrate an additional level of functionalization. The assembled hybrid silica/gold nanorods have potential to be used for metamaterial applications that require nanoscale structures as well as for plasmonic sensors for biosensing applications.

  10. Synthesis and Self-Assembly of fcc Phase FePt Nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Min; Pica, Timothy; Jiang, Ying-Bing

    2007-05-01

    In this paper, we report a synthesis of FePt nanorods by confining decomposition of Fe(CO) 5 and reduction of Pt(caca) 2 in surfactant reverse cylindrical micelles. The controlled nucleation and growth kinetics in confined environment allows easy control over Fe/Pt composition, nanorod uniformity, and nanorod aspect ratio. The FePt nanorods tend to self-assemble into ordered arrays along three-dimensions. Directed assembly under external magnetic field leads to two-dimensional ordered arrays, parallel to the substrate magnetic field. We expect that with optimized external magnetic fields, we should be able to assemble these nanorods into orientated one or two-dimensional arrays, providing a uniformmore » anisotropic magnetic platform for varied applications in enhanced data storage, magneto-electron transport, etc.« less

  11. Plasmid Vectors and Molecular Building Blocks for the Development of Genetic Manipulation Tools for Trypanosoma cruzi

    PubMed Central

    Bouvier, León A.; Cámara, María de los Milagros; Canepa, Gaspar E.; Miranda, Mariana R.; Pereira, Claudio A.

    2013-01-01

    The post genomic era revealed the need for developing better performing, easier to use and more sophisticated genetic manipulation tools for the study of Trypanosoma cruzi, the etiological agent of Chagas disease. In this work a series of plasmids that allow genetic manipulation of this protozoan parasite were developed. First of all we focused on useful tools to establish selection strategies for different strains and which can be employed as expression vectors. On the other hand molecular building blocks in the form of diverse selectable markers, modifiable fluorescent protein and epitope-tag coding sequences were produced. Both types of modules were harboured in backbone molecules conceived to offer multiple construction and sub-cloning strategies. These can be used to confer new properties to already available genetic manipulation tools or as starting points for whole novel designs. The performance of each plasmid and building block was determined independently. For illustration purposes, some simple direct practical applications were conducted. PMID:24205392

  12. Exploring the building blocks of social cognition: spontaneous agency perception and visual perspective taking in autism.

    PubMed

    Zwickel, Jan; White, Sarah J; Coniston, Devorah; Senju, Atsushi; Frith, Uta

    2011-10-01

    Individuals with autism spectrum disorders have highly characteristic impairments in social interaction and this is true also for those with high functioning autism or Asperger syndrome (AS). These social cognitive impairments are far from global and it seems likely that some of the building blocks of social cognition are intact. In our first experiment, we investigated whether high functioning adults who also had a diagnosis of AS would be similar to control participants in terms of their eye movements when watching animated triangles in short movies that normally evoke mentalizing. They were. Our second experiment using the same movies, tested whether both groups would spontaneously adopt the visuo-spatial perspective of a triangle protagonist. They did. At the same time autistic participants differed in their verbal accounts of the story line underlying the movies, confirming their specific difficulties in on-line mentalizing. In spite of this difficulty, two basic building blocks of social cognition appear to be intact: spontaneous agency perception and spontaneous visual perspective taking.

  13. Single crystalline Ge(1-x)Mn(x) nanowires as building blocks for nanoelectronics.

    PubMed

    van der Meulen, Machteld I; Petkov, Nikolay; Morris, Michael A; Kazakova, Olga; Han, Xinhai; Wang, Kang L; Jacob, Ajey P; Holmes, Justin D

    2009-01-01

    Magnetically doped Si and Ge nanowires have potential application in future nanowire spin-based devices. Here, we report a supercritical fluid method for producing single crystalline Mn-doped Ge nanowires with a Mn-doping concentration of between 0.5-1.0 atomic % that display ferromagnetism above 300 K and a superior performance with respect to the hole mobility of around 340 cm(2)/Vs, demonstrating the potential of using these nanowires as building blocks for electronic devices.

  14. Autonomously Self-Adhesive Hydrogels as Building Blocks for Additive Manufacturing.

    PubMed

    Deng, Xudong; Attalla, Rana; Sadowski, Lukas P; Chen, Mengsu; Majcher, Michael J; Urosev, Ivan; Yin, Da-Chuan; Selvaganapathy, P Ravi; Filipe, Carlos D M; Hoare, Todd

    2018-01-08

    We report a simple method of preparing autonomous and rapid self-adhesive hydrogels and their use as building blocks for additive manufacturing of functional tissue scaffolds. Dynamic cross-linking between 2-aminophenylboronic acid-functionalized hyaluronic acid and poly(vinyl alcohol) yields hydrogels that recover their mechanical integrity within 1 min after cutting or shear under both neutral and acidic pH conditions. Incorporation of this hydrogel in an interpenetrating calcium-alginate network results in an interfacially stiffer but still rapidly self-adhesive hydrogel that can be assembled into hollow perfusion channels by simple contact additive manufacturing within minutes. Such channels withstand fluid perfusion while retaining their dimensions and support endothelial cell growth and proliferation, providing a simple and modular route to produce customized cell scaffolds.

  15. Theoretical analysis of bimetallic nanorod dimer biosensors for label-free molecule detection

    NASA Astrophysics Data System (ADS)

    Das, Avijit; Talukder, Muhammad Anisuzzaman

    2018-02-01

    In this work, we theoretically analyze a gold (Au) core within silver (Ag) shell (Au@Ag) nanorod dimer biosensor for label-free molecule detection. The incident light on an Au@Ag nanorod strongly couples to localized surface plasmon modes, especially around the tip region. The field enhancement around the tip of a nanorod or between the tips of two longitudinally aligned nanorods as in a dimer can be exploited for sensitive detection of biomolecules. We derive analytical expressions for the interactions of an Au@Ag nanorod dimer with the incident light. We also study the detail dynamics of an Au@Ag nanorod dimer with the incident light computationally using finite difference time domain (FDTD) technique when core-shell ratio, relative position of the nanorods, and angle of incidence of light change. We find that the results obtained using the developed analytical model match well with that obtained using FDTD simulations. Additionally, we investigate the sensitivity of the Au@Ag nanorod dimer, i.e., shift in the resonance wavelength, when a target biomolecule such as lysozyme (Lys), human serum albumin (HSA), anti-biotin (Abn), human catalase (CAT), and human fibrinogen (Fb) protein molecules are attached to the tips of the nanorods.

  16. An Imide-Based Pentacyclic Building Block for n-Type Organic Semiconductors

    DOE PAGES

    Wu, Fu-Peng; Un, Hio-Ieng; Li, Yongxi; ...

    2017-10-09

    For this study a new electron-deficient unit with fused 5-heterocyclic ring was developed by replacing a cyclopenta-1,3-diene from electron-rich donor indacenodithiophene (IDT) with cyclohepta-4,6-diene-1,3-diimde unit. The imide bridging endows BBI with fixed planar configuration and both low the highest occupied molecular orbital (HOMO) (-6.24 eV) and the lowest unoccupied molecular orbit (LUMO) (-2.57 eV) energy levels. Organic field-effect transistors (OFETs) based on BBI polymers exhibit electron mobility up to 0.34 cm 2 V -1 s -1, which indicates that the BBI is a promising n-type building block for optoelectronics.

  17. An Imide-Based Pentacyclic Building Block for n-Type Organic Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fu-Peng; Un, Hio-Ieng; Li, Yongxi

    For this study a new electron-deficient unit with fused 5-heterocyclic ring was developed by replacing a cyclopenta-1,3-diene from electron-rich donor indacenodithiophene (IDT) with cyclohepta-4,6-diene-1,3-diimde unit. The imide bridging endows BBI with fixed planar configuration and both low the highest occupied molecular orbital (HOMO) (-6.24 eV) and the lowest unoccupied molecular orbit (LUMO) (-2.57 eV) energy levels. Organic field-effect transistors (OFETs) based on BBI polymers exhibit electron mobility up to 0.34 cm 2 V -1 s -1, which indicates that the BBI is a promising n-type building block for optoelectronics.

  18. Building Quality Report Cards for Geriatric Care in The Netherlands: Using Concept Mapping to Identify the Appropriate "Building Blocks" from the Consumer's Perspective

    ERIC Educational Resources Information Center

    Groenewoud, A. Stef; van Exel, N. Job A.; Berg, Marc; Huijsman, Robbert

    2008-01-01

    Purpose: This article reports on a study to identify "building blocks" for quality report cards for geriatric care. Its aim is to present (a) the results of the study and (b) the innovative step-by-step approach that was developed to arrive at these results. Design and Methods: We used Concept Mapping/Structured Conceptualization to…

  19. Metal oxide nanorod arrays on monolithic substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng

    A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can includemore » a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.« less

  20. Culture’s building blocks: investigating cultural evolution in a LEGO construction task

    PubMed Central

    McGraw, John J.; Wallot, Sebastian; Mitkidis, Panagiotis; Roepstorff, Andreas

    2014-01-01

    One of the most essential but theoretically vexing issues regarding the notion of culture is that of cultural evolution and transmission: how a group’s accumulated solutions to invariant challenges develop and persevere over time. But at the moment, the notion of applying evolutionary theory to culture remains little more than a suggestive trope. Whereas the modern synthesis of evolutionary theory has provided an encompassing scientific framework for the selection and transmission of biological adaptations, a convincing theory of cultural evolution has yet to emerge. One of the greatest challenges for theorists is identifying the appropriate time scales and units of analysis in order to reduce the intractably large and complex phenomenon of “culture” into its component “building blocks.” In this paper, we present a model for scientifically investigating cultural processes by analyzing the ways people develop conventions in a series of LEGO construction tasks. The data revealed a surprising pattern in the selection of building bricks as well as features of car design across consecutive building sessions. Our findings support a novel methodology for studying the development and transmission of culture through the microcosm of interactive LEGO design and assembly. PMID:25309482

  1. All-silicon nanorod-based Dammann gratings.

    PubMed

    Li, Zile; Zheng, Guoxing; He, Ping'An; Li, Song; Deng, Qiling; Zhao, Jiangnan; Ai, Yong

    2015-09-15

    Established diffractive optical elements (DOEs), such as Dammann gratings, whose phase profile is controlled by etching different depths into a transparent dielectric substrate, suffer from a contradiction between the complexity of fabrication procedures and the performance of such gratings. In this Letter, we combine the concept of geometric phase and phase modulation in depth, and prove by theoretical analysis and numerical simulation that nanorod arrays etched on a silicon substrate have a characteristic of strong polarization conversion between two circularly polarized states and can act as a highly efficient half-wave plate. More importantly, only by changing the orientation angles of each nanorod can the arrays control the phase of a circularly polarized light, cell by cell. With the above principle, we report the realization of nanorod-based Dammann gratings reaching diffraction efficiencies of 50%-52% in the C-band fiber telecommunications window (1530-1565 nm). In this design, uniform 4×4 spot arrays with an extending angle of 59°×59° can be obtained in the far field. Because of these advantages of the single-step fabrication procedure, accurate phase controlling, and strong polarization conversion, nanorod-based Dammann gratings could be utilized for various practical applications in a range of fields.

  2. Cr2O3 nanoparticle-functionalized WO3 nanorods for ethanol gas sensors

    NASA Astrophysics Data System (ADS)

    Choi, Seungbok; Bonyani, Maryam; Sun, Gun-Joo; Lee, Jae Kyung; Hyun, Soong Keun; Lee, Chongmu

    2018-02-01

    Pristine WO3 nanorods and Cr2O3-functionalized WO3 nanorods were synthesized by the thermal evaporation of WO3 powder in an oxidizing atmosphere, followed by spin-coating of the nanowires with Cr2O3 nanoparticles and thermal annealing in an oxidizing atmosphere. Scanning electron microscopy was used to examine the morphological features and X-ray diffraction was used to study the crystallinity and phase formation of the synthesized nanorods. Gas sensing tests were performed at different temperatures in the presence of test gases (ethanol, acetone, CO, benzene and toluene). The Cr2O3-functionalized WO3 nanorods sensor showed a stronger response to these gases relative to the pristine WO3 nanorod sensor. In particular, the response of the Cr2O3-functionalized WO3 nanorods sensor to 200 ppm ethanol gas was 5.58, which is approximately 4.4 times higher that of the pristine WO3 nanorods sensor. Furthermore, the Cr2O3-functionalized WO3 nanorods sensor had a shorter response and recovery time. The pristine WO3 nanorods had no selectivity toward ethanol gas, whereas the Cr2O3-functionalized WO3 nanorods sensor showed good selectivity toward ethanol. The gas sensing mechanism of the Cr2O3-functionalized WO3 nanorods sensor toward ethanol is discussed in detail.

  3. ZnO Nano-Rod Devices for Intradermal Delivery and Immunization

    PubMed Central

    Nayak, Tapas R.; Wang, Hao; Pant, Aakansha; Zheng, Minrui; Junginger, Hans; Goh, Wei Jiang; Lee, Choon Keong; Zou, Shui; Alonso, Sylvie; Czarny, Bertrand; Storm, Gert; Sow, Chorng Haur; Lee, Chengkuo; Pastorin, Giorgia

    2017-01-01

    Intradermal delivery of antigens for vaccination is a very attractive approach since the skin provides a rich network of antigen presenting cells, which aid in stimulating an immune response. Numerous intradermal techniques have been developed to enhance penetration across the skin. However, these methods are invasive and/or affect the skin integrity. Hence, our group has devised zinc oxide (ZnO) nano-rods for non-destructive drug delivery. Chemical vapour deposition was used to fabricate aligned nano-rods on ZnO pre-coated silicon chips. The nano-rods’ length and diameter were found to depend on the temperature, time, quality of sputtered silicon chips, etc. Vertically aligned ZnO nano-rods with lengths of 30–35 µm and diameters of 200–300 nm were selected for in vitro human skin permeation studies using Franz cells with Albumin-fluorescein isothiocyanate (FITC) absorbed on the nano-rods. Fluorescence and confocal studies on the skin samples showed FITC penetration through the skin along the channels formed by the nano-rods. Bradford protein assay on the collected fluid samples indicated a significant quantity of Albumin-FITC in the first 12 h. Low antibody titres were observed with immunisation on Balb/c mice with ovalbumin (OVA) antigen coated on the nano-rod chips. Nonetheless, due to the reduced dimensions of the nano-rods, our device offers the additional advantage of excluding the simultaneous entrance of microbial pathogens. Taken together, these results showed that ZnO nano-rods hold the potential for a safe, non-invasive, and painless intradermal drug delivery. PMID:28617335

  4. Nanorod mediated surface plasmon resonance sensor based on effective medium theory

    USDA-ARS?s Scientific Manuscript database

    A novel nanorod mediated surface plasmon resonance (SPR) sensor was investigated for enhancing sensitivity of the sensor. The theoretical model containing an anisotropic layer of nanorod was investigated using four-layer Fresnel equations and effective medium theory. The properties of the nanorod me...

  5. Wrapping cytochrome c around single-wall carbon nanotube: engineered nanohybrid building blocks for infrared detection at high quantum efficiency

    PubMed Central

    Gong, Youpin; Liu, Qingfeng; Wilt, Jamie Samantha; Gong, Maogang; Ren, Shenqiang; Wu, Judy

    2015-01-01

    Biomolecule cytochrome c (Cty c), a small molecule of a chain of amino acids with extraordinary electron transport, was helically wrapped around a semiconductive single-wall carbon nanotube (s-SWCNT) to form a molecular building block for uncooled infrared detection with two uniquely designed functionalities: exciton dissociation to free charge carriers at the heterojunction formed on the s-SWCNT/Cty c interface and charge transport along the electron conducting chain of Cty c (acceptor) and hole conducting channel through s-SWCNT (donor). Such a design aims at addressing the long-standing challenges in exciton dissociation and charge transport in an SWCNT network, which have bottlenecked development of photonic SWCNT-based infrared detectors. Using these building blocks, uncooled s-SWCNT/Cyt c thin film infrared detectors were synthesized and shown to have extraordinary photoresponsivity up to 0.77 A W−1 due to a high external quantum efficiency (EQE) in exceeding 90%, which represents a more than two orders of magnitude enhancement than the best previously reported on CNT-based infrared detectors with EQE of only 1.72%. From a broad perspective, this work on novel s-SWCNT/Cyt c nanohybrid infrared detectors has developed a successful platform of engineered carbon nanotube/biomolecule building blocks with superior properties for optoelectronic applications. PMID:26066737

  6. Wrapping cytochrome c around single-wall carbon nanotube: engineered nanohybrid building blocks for infrared detection at high quantum efficiency.

    PubMed

    Gong, Youpin; Liu, Qingfeng; Wilt, Jamie Samantha; Gong, Maogang; Ren, Shenqiang; Wu, Judy

    2015-06-11

    Biomolecule cytochrome c (Cty c), a small molecule of a chain of amino acids with extraordinary electron transport, was helically wrapped around a semiconductive single-wall carbon nanotube (s-SWCNT) to form a molecular building block for uncooled infrared detection with two uniquely designed functionalities: exciton dissociation to free charge carriers at the heterojunction formed on the s-SWCNT/Cty c interface and charge transport along the electron conducting chain of Cty c (acceptor) and hole conducting channel through s-SWCNT (donor). Such a design aims at addressing the long-standing challenges in exciton dissociation and charge transport in an SWCNT network, which have bottlenecked development of photonic SWCNT-based infrared detectors. Using these building blocks, uncooled s-SWCNT/Cyt c thin film infrared detectors were synthesized and shown to have extraordinary photoresponsivity up to 0.77 A W(-1) due to a high external quantum efficiency (EQE) in exceeding 90%, which represents a more than two orders of magnitude enhancement than the best previously reported on CNT-based infrared detectors with EQE of only 1.72%. From a broad perspective, this work on novel s-SWCNT/Cyt c nanohybrid infrared detectors has developed a successful platform of engineered carbon nanotube/biomolecule building blocks with superior properties for optoelectronic applications.

  7. Rotational behaviour of PEGylated gold nanorods in a lipid bilayer system

    NASA Astrophysics Data System (ADS)

    Oroskar, Priyanka A.; Jameson, Cynthia J.; Murad, Sohail

    2017-06-01

    PEGylated gold nanorods are widely used as nanocarriers in targeted drug delivery and other nanotechnology applications due to the special optical and photo-thermal characteristics of gold nanorods. In this work, we employ coarse-grain molecular simulations to examine the pathway by which PEGylated gold nanorods enter and exit a dipalmitoylphosphatidylcholine lipid bilayer membrane and follow the behaviour of the system to investigate the consequences. We find that PEGylated gold nanorods rotate during permeation, lying down and straightening up as they make their way through the lipid membrane. We find that this rotational behaviour, irrespective of the initial orientation of the nanorod with respect to the membrane normal, is concomitant with the changing interactions of polyethylene glycol (PEG) beads with lipid head beads in both membrane leaflets. For a nanorod with hydrophilic ligands, such as PEG, lying down appears to be driven by favourable hydrophilic interactions with the phosphate and choline groups of the lipid. Mobility of the ligands offers mechanisms for these favourable interactions and for minimising unfavourable interactions with the hydrophobic lipid tails that constitute the inner section of the membrane; the PEG ligands can stretch out to reach the phosphate and choline groups of both leaflets and they can coil in and interact with each other and avoid the alkane lipid tails. Recently developed experimental techniques for imaging, orientation, and rotation of single gold nanorods may be able to observe this predicted rotational behaviour. We find that lipid flip-flop mechanisms do not differ significantly from a spherical gold nanoparticle to a gold nanorod, and PEGylated gold nanorods like their spherical counterparts do not remove lipid molecules from the bilayer membrane. Our results should be of interest to experimentalists who plan to use functionalised gold nanorods in biomedical applications.

  8. Building Blocks for Reliable Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi N. (Technical Monitor)

    2002-01-01

    This talk describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  9. Origami building blocks: Generic and special four-vertices

    NASA Astrophysics Data System (ADS)

    Waitukaitis, Scott; van Hecke, Martin

    2016-02-01

    Four rigid panels connected by hinges that meet at a point form a four-vertex, the fundamental building block of origami metamaterials. Most materials designed so far are based on the same four-vertex geometry, and little is known regarding how different geometries affect folding behavior. Here we systematically categorize and analyze the geometries and resulting folding motions of Euclidean four-vertices. Comparing the relative sizes of sector angles, we identify three types of generic vertices and two accompanying subtypes. We determine which folds can fully close and the possible mountain-valley assignments. Next, we consider what occurs when sector angles or sums thereof are set equal, which results in 16 special vertex types. One of these, flat-foldable vertices, has been studied extensively, but we show that a wide variety of qualitatively different folding motions exist for the other 15 special and 3 generic types. Our work establishes a straightforward set of rules for understanding the folding motion of both generic and special four-vertices and serves as a roadmap for designing origami metamaterials.

  10. Origami building blocks: Generic and special four-vertices.

    PubMed

    Waitukaitis, Scott; van Hecke, Martin

    2016-02-01

    Four rigid panels connected by hinges that meet at a point form a four-vertex, the fundamental building block of origami metamaterials. Most materials designed so far are based on the same four-vertex geometry, and little is known regarding how different geometries affect folding behavior. Here we systematically categorize and analyze the geometries and resulting folding motions of Euclidean four-vertices. Comparing the relative sizes of sector angles, we identify three types of generic vertices and two accompanying subtypes. We determine which folds can fully close and the possible mountain-valley assignments. Next, we consider what occurs when sector angles or sums thereof are set equal, which results in 16 special vertex types. One of these, flat-foldable vertices, has been studied extensively, but we show that a wide variety of qualitatively different folding motions exist for the other 15 special and 3 generic types. Our work establishes a straightforward set of rules for understanding the folding motion of both generic and special four-vertices and serves as a roadmap for designing origami metamaterials.

  11. The Building Blocks of Digital Media Literacy: Socio-Material Participation and the Production of Media Knowledge

    ERIC Educational Resources Information Center

    Dezuanni, Michael

    2015-01-01

    This article outlines the knowledge and skills students develop when they engage in digital media production and analysis in school settings. The metaphor of "digital building blocks" is used to describe the material practices, conceptual understandings and production of knowledge that lead to the development of digital media literacy.…

  12. Coating fabrics with gold nanorods for colouring, UV-protection, and antibacterial functions

    NASA Astrophysics Data System (ADS)

    Zheng, Yidan; Xiao, Manda; Jiang, Shouxiang; Ding, Feng; Wang, Jianfang

    2012-12-01

    Gold nanorods exhibit rich colours owing to the nearly linear dependence of the longitudinal plasmon resonance wavelength on the length-to-diameter aspect ratio. This property of Au nanorods has been utilized in this work for dyeing fabrics. Au nanorods of different aspect ratios were deposited on both cotton and silk fabrics by immersing them in Au nanorod solutions. The coating of Au nanorods makes the fabrics exhibit a broad range of colours varying from brownish red through green to purplish red, which are essentially determined by the longitudinal plasmon wavelength of the deposited Au nanorods. The colorimetric values of the coated fabrics were carefully measured for examining the colouring effects. The nanorod-coated cotton fabrics were found to be commercially acceptable in washing fastness to laundering tests and colour fastness to dry cleaning tests. Moreover, the nanorod-coated cotton and silk fabrics show significant improvements on both UV-protection and antibacterial functions. Our study therefore points out a promising approach for the use of noble metal nanocrystals as dyeing materials for textile applications on the basis of their inherent localized plasmon resonance properties.

  13. Structural characterization of hydrothermally synthesized MnO2 nanorods

    NASA Astrophysics Data System (ADS)

    A'yuni, D. Q.; Alkian, I.; Sya'diyah, F. K.; Kadarisman; Darari, A.; Gunawan, V.; Subagio, A.

    2017-11-01

    We prepared the hydrothermal method to synthesize MnO2 nanorods with controlled structure. KMnO4 and HCl with the various molar ratio (1:2,1:6,1:8) reacted at 160°C for three hours to form MnO2 nanorods. The study found that changing the molar ratio can control the structure and morphology of MnO2. The result revealed that MnO2 formed in nanorod microstructures with different crystallographic structure and phase composition of each molar ratio. The diffraction peaks observed at 2θ values of 28.9°, 37.8°, 40.9°, 49.7° and 60.5° respectively indexed to (110), (101), (200), (411) and (521) plane reflections of a tetragonal phase of β-MnO2 and α-MnO2. The characterization of the morphology showed that the diameters of nanorod microstructures of MnO2 ranging from 30 to 145 nm with length ranging from 0.5 to 3 μm. These MnO2 nanorods product would be potentially used in energy storage devices.

  14. Theoretical analysis of hot electron dynamics in nanorods

    PubMed Central

    Kumarasinghe, Chathurangi S.; Premaratne, Malin; Agrawal, Govind P.

    2015-01-01

    Localised surface plasmons create a non-equilibrium high-energy electron gas in nanostructures that can be injected into other media in energy harvesting applications. Here, we derive the rate of this localised-surface-plasmon mediated generation of hot electrons in nanorods and the rate of injecting them into other media by considering quantum mechanical motion of the electron gas. Specifically, we use the single-electron wave function of a particle in a cylindrical potential well and the electric field enhancement factor of an elongated ellipsoid to derive the energy distribution of electrons after plasmon excitation. We compare the performance of nanorods with equivolume nanoparticles of other shapes such as nanospheres and nanopallets and report that nanorods exhibit significantly better performance over a broad spectrum. We present a comprehensive theoretical analysis of how different parameters contribute to efficiency of hot-electron harvesting in nanorods and reveal that increasing the aspect ratio can increase the hot-electron generation and injection, but the volume shows an inverse dependency when efficiency per unit volume is considered. Further, the electron thermalisation time shows much less influence on the injection rate. Our derivations and results provide the much needed theoretical insight for optimization of hot-electron harvesting process in highly adaptable metallic nanorods. PMID:26202823

  15. ZnO Nanorod-Based Non-Enzymatic Optical Glucose Biosensor.

    PubMed

    Sarangi, Sachindra Nath; Nozaki, Shinji; Sahu, Surendra Nath

    2015-06-01

    The highly sensitive, interference-free and non-enzymatic optical sensing of glucose has been made possible for the first time using the hydrothermally synthesized ZnO nanorods. The UV irradiation of glucose-treated ZnO nanorods decomposes glucose into hydrogen peroxide (H2O2) and gluconic acid by UV oxidation. The ZnO nanorods play the role of a catalyst similar to the oxidase used in the enzymatic glucose sensors. The photoluminescence (PL) intensity of the near-band edge emission of the ZnO nanorods linearly decreased with the increased concentration of H2O2. Therefore, the glucose concentration is monitored over the wide range of 0.5-30 mM, corresponding to 9-540 mg/dL. The concentration range of the linear region in the calibration curve is suitable for its clinical use as a glucose sensor, because the glucose concentration of human serum is typically in the range of 80-120 mg/dL. In addition, the optical glucose sensor made of the ZnO nanorods is free from interference by bovin serum albumin, ascorbic acid or uric acid, which are also present in human blood. The non-enzymatic ZnO-nanorod sensor has been demonstrated with human serum samples from both normal persons and diabetic patients. There is a good agreement between the glucose concentrations measured by the PL quenching and standard clinical methods.

  16. Nucleation and growth of zinc oxide nanorods directly on metal wire by sonochemical method.

    PubMed

    Rayathulhan, Ruzaina; Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2017-03-01

    ZnO nanorods were directly grown on four different wires (silver, nickel, copper, and tungsten) using sonochemical method. Zinc nitrate hexahydrate and hexamethylenetetramine (HMT) were used as precursors. Influence of growth parameters such as precursors' concentration and ultrasonic power on the grown nanorods were determined. The results demonstrated that the precursor concentration affected the growth structure and density of the nanorods. The morphology, distribution, and orientation of nanorods changed as the ultrasonic power changed. Nucleation of ZnO nanorods on the wire occurred at lower ultrasonic power and when the power increased, the formation and growth of ZnO nanorods on the wires were initiated. The best morphology, size, distribution, and orientation of the nanorods were observed on the Ag wire. The presence of single crystal nanorod with hexagonal shaped was obtained. This shape indicates that the ZnO nanorods corresponded to the hexagonal wurtzite structure with growth preferential towards the (002) direction. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Microplasma illumination enhancement of vertically aligned conducting ultrananocrystalline diamond nanorods

    PubMed Central

    2012-01-01

    Vertically aligned conducting ultrananocrystalline diamond (UNCD) nanorods are fabricated using the reactive ion etching method incorporated with nanodiamond particles as mask. High electrical conductivity of 275 Ω·cm−1 is obtained for UNCD nanorods. The microplasma cavities using UNCD nanorods as cathode show enhanced plasma illumination characteristics of low threshold field of 0.21 V/μm with plasma current density of 7.06 mA/cm2 at an applied field of 0.35 V/μm. Such superior electrical properties of UNCD nanorods with high aspect ratio potentially make a significant impact on the diamond-based microplasma display technology. PMID:23009733

  18. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A Paul [Oakland, CA; Scher, Erik C [San Francisco, CA; Manna, Liberato [Palo Del Collie, IT

    2009-05-19

    Disclosed herein is a graded core/shell semiconductor nanorod having at least a first segment of a core of a Group II-VI, Group III-V or a Group IV semiconductor, a graded shell overlying the core, wherein the graded shell comprises at least two monolayers, wherein the at least two monolayers each independently comprise a Group II-VI, Group III-V or a Group IV semiconductor.

  19. Conjugated block copolymers: A building block for high-performance organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Guo, Changhe

    State-of-the-art organic photovoltaics rely on kinetically trapped, partially phase-separated structures of donor/acceptor mixtures to create a high interfacial area for exciton dissociation and networks of bicontinuous phases for charge transport. Nevertheless, intrinsic structural disorder and weak intermolecular interactions in polymer blends limit the performance and stability of organic electronic devices. We demonstrate a potential strategy to control morphology and donor/acceptor heterojunctions through conjugated block copolymer poly(3-hexylthiophene)- block-poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(thiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (P3HT-b-PFTBT). Block copolymers can self-assemble into well-ordered nanostructures ideal for photovoltaic applications. When utilized as the photovoltaic active layer, P3HT-b-PFTBT block copolymer devices demonstrate thermal stability and photoconversion efficiency of 3% well beyond devices composed of the constituent polymer blends. Resonant soft X-ray scattering (RSOXS) is used to elucidate the structural origin for efficient block copolymer photovoltaics. Energy tuning in soft X-ray ranges gives RSOXS chemical sensitivity to characterize organic thin films with compositionally similar phases or complicated multiphase systems. RSOXS reveals that the remarkable performance of P3HT-b-PFTBT devices is due to self-assembly into nanoscale in-plane lamellar morphology, which not only establishes an equilibrium microstructure amenable for exciton dissociation but also provides pathways for efficient charge transport. Furthermore, we find evidence that covalent control of donor/acceptor interfaces in block copolymers has the potential to promote charge separation and optimize the photoconversion process by limiting charge recombination. To visualize the nanostructure in organic thin films, we introduce low energy-loss energy-filtered transmission electron microscopy (EFTEM) as an important alternative

  20. The assessment of professional competence: building blocks for theory development.

    PubMed

    van der Vleuten, C P M; Schuwirth, L W T; Scheele, F; Driessen, E W; Hodges, B

    2010-12-01

    This article presents lessons learnt from experiences with assessment of professional competence. Based on Miller's pyramid, a distinction is made between established assessment technology for assessing 'knows', 'knowing how' and 'showing how' and more recent developments in the assessment of (clinical) performance at the 'does' level. Some general lessons are derived from research of and experiences with the established assessment technology. Here, many paradoxes are revealed and empirical outcomes are often counterintuitive. Instruments for assessing the 'does' level are classified and described, and additional general lessons for this area of performance assessment are derived. These lessons can also be read as general principles of assessment (programmes) and may provide theoretical building blocks to underpin appropriate and state-of-the-art assessment practices. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Nanoporous Gold as a Platform for a Building Block Catalyst

    DOE PAGES

    Wittstock, Arne; Wichmann, Andre; Baeumer, Marcus

    2012-09-25

    The porous bulk materials are of great interest in catalysis because they can be employed in heterogeneous gas and liquid phase catalysis, electrocatalysis, and in electrocatalytic sensing. Nanoporous gold gained considerable attraction in this context because it is the prime example of a corrosion-derived nanoporous bulk metal. Moreover, the material was shown to be a very active and selective Au type catalyst for a variety of oxidation reactions. In leveraging the functionalization of the surface of the material with various additives, its catalytic applications can be extended and tuned. In this review, we will summarize recent developments in using nanoporousmore » gold as the platform for the development of high performance catalytic materials by adding metals, metal oxides, and molecular functionalities as building blocks.« less

  2. Hydrothermal Synthesis and Biocompatibility Study of Highly Crystalline Carbonated Hydroxyapatite Nanorods

    NASA Astrophysics Data System (ADS)

    Xue, Caibao; Chen, Yingzhi; Huang, Yongzhuo; Zhu, Peizhi

    2015-08-01

    Highly crystalline carbonated hydroxyapatite (CHA) nanorods with different carbonate contents were synthesized by a novel hydrothermal method. The crystallinity and chemical structure of synthesized nanorods were studied by Fourier transform infrared spectroscopy (FTIR), X-ray photo-electronic spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The biocompatibility of synthesized CHA nanorods was evaluated by cell viability and alkaline phosphatase (ALP) activity of MG-63 cell line. The biocompatibility evaluation results show that these CHA nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopedic application.

  3. The Building Blocks for JWST I and T (Integrations and Test) to Operations - From Simulator to Flight Units

    NASA Technical Reports Server (NTRS)

    Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace

    2012-01-01

    The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.

  4. Nanoscale Rheology and Anisotropic Diffusion Using Single Gold Nanorod Probes

    NASA Astrophysics Data System (ADS)

    Molaei, Mehdi; Atefi, Ehsan; Crocker, John C.

    2018-03-01

    The complex rotational and translational Brownian motion of anisotropic particles depends on their shape and the viscoelasticity of their surroundings. Because of their strong optical scattering and chemical versatility, gold nanorods would seem to provide the ultimate probes of rheology at the nanoscale, but the suitably accurate orientational tracking required to compute rheology has not been demonstrated. Here we image single gold nanorods with a laser-illuminated dark-field microscope and use optical polarization to determine their three-dimensional orientation to better than one degree. We convert the rotational diffusion of single nanorods in viscoelastic polyethylene glycol solutions to rheology and obtain excellent agreement with bulk measurements. Extensions of earlier models of anisotropic translational diffusion to three dimensions and viscoelastic fluids give excellent agreement with the observed motion of single nanorods. We find that nanorod tracking provides a uniquely capable approach to microrheology and provides a powerful tool for probing nanoscale dynamics and structure in a range of soft materials.

  5. Self-assembling peptide-based building blocks in medical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acar, Handan; Srivastava, Samanvaya; Chung, Eun Ji

    Peptides and peptide-conjugates, comprising natural and synthetic building blocks, are an increasingly popular class of biomaterials. Self-assembled nanostructures based on peptides and peptide-conjugates offer advantages such as precise selectivity and multifunctionality that can address challenges and limitations in the clinic. In this review article, we discuss recent developments in the design and self-assembly of various nanomaterials based on peptides and peptide-conjugates for medical applications, and categorize them into two themes based on the driving forces of molecular self-assembly. First, we present the self-assembled nanostructures driven by the supramolecular interactions between the peptides, with or without the presence of conjugates. Themore » studies where nanoassembly is driven by the interactions between the conjugates of peptide-conjugates are then presented. Particular emphasis is given to in vivo studies focusing on therapeutics, diagnostics, immune modulation and regenerative medicine. Finally, challenges and future perspectives are presented.« less

  6. Aminobenzoates as building blocks for natural product assembly lines.

    PubMed

    Walsh, Christopher T; Haynes, Stuart W; Ames, Brian D

    2012-01-01

    The ortho-, meta-, and para- regioisomers of aminobenzoate are building blocks for a wide range of microbial natural products. Both the ortho-isomer (anthranilate) and PABA derive from the central shikimate pathway metabolite chorismate while the meta-isomer is not available by that route and starts from UDP-3-aminoglucose. PABA is largely funnelled into folate biosynthesis while anthranilate is the scaffold for biosynthetic elaboration into many natural heterocycles, most notably with its role in indole formation for tryptophan biosynthesis. Anthranilate is also converted to benzodiazepinones, fumiquinazolines, quinoxalines, phenoxazines, benzoxazolinates, quinolones, and phenazines, often with redox enzyme participation. The 5-hydroxy form of 3-aminobenzaote is the starter unit for ansa-bridged rifamycins, ansamitocins, and geldanamycins, whereas regioisomers 2-hydroxy, 4-hydroxy and 2,4-dihydroxy-3-aminobenzoate are key components of antimycin, grixazone, and platencin and platensimycin biosynthesis, respectively. The enzymatic mechanisms for generation of the aminobenzoate regioisomers and their subsequent utilization for diverse heterocycle and macrocycle construction are examined.

  7. Biophysical properties of dermal building-blocks affects extra cellular matrix assembly in 3D endogenous macrotissue.

    PubMed

    Urciuolo, F; Garziano, A; Imparato, G; Panzetta, V; Fusco, S; Casale, C; Netti, P A

    2016-01-29

    The fabrication of functional tissue units is one of the major challenges in tissue engineering due to their in vitro use in tissue-on-chip systems, as well as in modular tissue engineering for the construction of macrotissue analogs. In this work, we aim to engineer dermal tissue micromodules obtained by culturing human dermal fibroblasts into porous gelatine microscaffold. We proved that such stromal cells coupled with gelatine microscaffolds are able to synthesize and to assemble an endogenous extracellular matrix (ECM) resulting in tissue micromodules, which evolve their biophysical features over the time. In particular, we found a time-dependent variation of oxygen consumption kinetic parameters, of newly formed ECM stiffness and of micromodules self-aggregation properties. As consequence when used as building blocks to fabricate larger tissues, the initial tissue micromodules state strongly affects the ECM organization and maturation in the final macrotissue. Such results highlight the role of the micromodules properties in controlling the formation of three-dimensional macrotissue in vitro, defining an innovative design criterion for selecting tissue-building blocks for modular tissue engineering.

  8. Synthesis of CdS nanorods in soft template under gamma-irradiation.

    PubMed

    Zhao, Bing; Wang, Yanli; Zhang, Haijiao; Jiao, Zheng; Wang, Haobo; Ding, Guoji; Wu, Minghong

    2009-02-01

    CdS nano material which has a band gap of 2.42 eV at room temperature is a typical II-VII semiconductor having many commercial or potential applications, e.g., light-emitting diodes, solar cell and optoelectronic devices. In this paper, we use a new strategy to synthesize CdS nanorods. CdS nanorods were prepared in soft template under gamma-irradiation though the reaction of cadmium sulphide and thiacetamide (TAA). The formation process and characters of CdS nanorods was investigated in detail by transmission electron microscopy (TEM), electron diffraction (ED) pattern, X-ray powder diffraction (XRD), ultraviolet spectrophotometer (UV) and photoluminescence spectrophotometer (PL). In the experiment we proposed that the irradiation of gamma-ray accelerated the formation of S(2-) under acidic condition (pH = 3) and vinyl acetate (VAc) monomer formed pre-organized nano polymer tubules which were used as both templates and nanoreacters for the growth of CdS nanorods. In this process, we have obtained the CdS polycrystal nanorods with PVAc nano tubules and CdS single-crystal nanorods. The result of X-ray powder diffraction confirms that the crystal type of CdS nanorods is cubic F-43 m (216). The results from transmission electron microscopy and electron diffraction show that the concentrations of reactants and the dose rate of gamma-ray are key to produce appropriate CdS nanorods. Relatively low concentrations (Cd2+: 0.008-0.02 mol/L, Cd2+ : S(2-) = 1 : 2) of reactants and long time (1-2 d) of irradiation in low dose rate (6-14 Gy/min) are propitious to form CdS single-crystal nanorods with small diameter (less than 100 nm) and well length (2-5 microm). UV and PL characterizations show the sample have well optical properties.

  9. Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction

    NASA Astrophysics Data System (ADS)

    Prasad, Virendra; D'Souza, Charlene; Yadav, Deepti; Shaikh, A. J.; Vigneshwaran, Nadanathangam

    2006-09-01

    Well-crystallized zinc oxide nanorods have been fabricated by single step solid-state reaction using zinc acetate and sodium hydroxide, at room temperature. The sodium lauryl sulfate (SLS) stabilized zinc oxide nanorods were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectroscopy. The X-ray diffraction revealed the wurtzite structure of zinc oxide. The size estimation by XRD and TEM confirmed that the ZnO nanorods are made of single crystals. The growth of zinc oxide crystals into rod shape was found to be closely related to its hexagonal nature. The mass ratio of SLS:ZnO in the nanorods was found to be 1:10 based on the thermogravimetric analysis. Blue shift of photoluminescence emission was noticed in the ZnO nanorods when compared to that of ZnO bulk. FT-IR analysis confirmed the binding of SLS with ZnO nanorods. Apart from ease of preparation, this method has the advantage of eco-friendliness since the solvent and other harmful chemicals were eliminated in the synthesis protocol.

  10. Fabrication of TiN nanorods by electrospinning and their electrochemical properties

    NASA Astrophysics Data System (ADS)

    Sun, Dongfei; Lang, Junwei; Yan, Xingbin; Hu, Litian; Xue, Qunji

    2011-05-01

    TiN nanorods were synthesized using electrospinning technique followed by thermolysis in different atmospheres. A dimethyl formamide-ethanol solution of poly-(vinyl pyrrolidone) and Ti (IV)-isopropoxide was used as the electrospinning precursor solution and as-spun nanofibers were calcined at 500 °C in air to generate TiO 2 nanofibers. Subsequently, a conversion from TiO 2 nanofibers to TiN nanorods was employed by the nitridation treatment at 600˜1400 °C in ammonia atmosphere. A typical characteristic of the final products was that the pristine nanofibers were cut into nanorods. The conversion from TiO 2 to TiN was realized when the nitridation temperature was above 800 °C. As-prepared nanorods were composed of TiN nano-crystallites and the average crystallite size gradually increased with the increase of the nitridation temperature. Electrochemical properties of TiN nanorods showed strong dependence on the nitridation temperature. The maximum value of the specific capacitance was obtained from the TiN nanorods prepared at 800 °C.

  11. Polymer-grafted gold nanorods in polymer thin films: Dispersion and plasmonic coupling

    NASA Astrophysics Data System (ADS)

    Hore, Michael-Jon Ainsley

    This dissertation describes complementary experimental and theoretical studies to deter- mine the thermodynamic factors that affect the dispersion of polymer-grafted Au nanorods within polymer thin films. Au nanorods exhibit a uniform dispersion with a regular spacing for favorable brush / matrix interactions, such as poly(ethylene glycol) (PEG)-Au / poly(methyl methacrylate) (PMMA) and polystyrene (PS)-Au / poly(2,6-dimethyl-p-phenylene oxide) (PPO). For PEG-Au / PMMA, the nanorods are locally oriented and their dispersion is independent of the ratio of the degree of polymerization of the matrix (P) to that of the brush (N), α = P/N, whereas for chemically similar brush / matrix combinations, such as PS-Au / PS and PEG-Au / poly(ethylene oxide) (PEO), nanorods are randomly dispersed for α 2. For aggregated systems (α > 2), nanorods are found primarily within aggregates containing side-by-side aligned nanorods with a spacing that scales with N. UV-visible spectroscopy and discrete dipole approximation (DDA) calculations demonstrate that coupling between surface plasmons within the aggregates leads to a blue shift in the optical absorption as α increases, indicating the sensitivity of spectroscopy for determining nanorod dispersion in polymer nanocomposite films. Self-consistent field theory (SCFT) calculations and Monte Carlo (MC) simulations show that the aggregation of nanorods for α > 2 can be attributed to depletion-attraction forces caused by autophobic dewetting of the brush and matrix. Finally, miscible blends of PS and PPO are investigated as a route to control depletion-attraction interactions between PS-Au nanorods. Initially, nanorods aggregate in matrices having 50 vol. % PPO and then gradually disperse as PPO becomes the majority component. The brush and matrix density profiles, determined by SCFT, show that PPO segregates into the PS brush, and acts as a compatibilizer, which improves dispersion. As dispersion improves, coupling between surface

  12. Au/Si Hetero-Nanorod-based Biosensor for Salmonella Detection

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract Among several potentials of nanotechnology applications for food industry, development of nanoscale sensors for food safety and biosecurity measurement are emerging. A novel biosensor for Salmonella detection was developed using Au/Si nanorods. The Si nanorods were fabricated by...

  13. Gold Nanorods as Nanodevices for Bioimaging, Photothermal Therapeutics, and Drug Delivery.

    PubMed

    Haine, Aung Thu; Niidome, Takuro

    2017-01-01

    Gold nanorods are promising metals in several biomedical applications such as bioimaging, thermal therapy, and drug delivery. Gold nanorods have strong absorption bands in near-infrared (NIR) light region and show photothermal effects. Since NIR light can penetrate deeply into tissues, their unique optical, chemical, and biological properties have attracted considerable clinical interest. Gold nanorods are expected to act not only as on-demand thermal converters for photothermal therapy but also as mediators of a controlled drug-release system responding to light irradiation. In this review, we discuss current progress using gold nanorods as bioimaging platform, phototherapeutic agents, and drug delivery vehicles.

  14. Growth of aragonite calcium carbonate nanorods in the biomimetic anodic aluminum oxide template

    NASA Astrophysics Data System (ADS)

    Lee, Inho; Han, Haksoo; Lee, Sang-Yup

    2010-04-01

    In this study, a biomimetic template was prepared and applied for growing calcium carbonate (CaCO 3) nanorods whose shape and polymorphism were controlled. A biomimetic template was prepared by adsorbing catalytic dipeptides into the pores of an anodic aluminum oxide (AAO) membrane. Using this peptide-adsorbed template, mineralization and aggregation of CaCO 3 was carried out to form large nanorods in the pores. The nanorods were aragonite and had a structure similar to nanoneedle assembly. This aragonite nanorod formation was driven by both the AAO template and catalytic function of dipeptides. The AAO membrane pores promoted generation of aragonite polymorph and guided nanorod formation by guiding the nanorod growth. The catalytic dipeptides promoted the aggregation and further dehydration of calcium species to form large nanorods. Functions of the AAO template and catalytic dipeptides were verified through several control experiments. This biomimetic approach makes possible the production of functional inorganic materials with controlled shapes and crystalline structures.

  15. A simple template method for hierarchical dendrites of silver nanorods and their applications in catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Peng; Zhang Milin; Hou Hongwei

    2008-03-04

    A novel strategy has been put forward to prepare hierarchical dendrites of silver nanorods via a simple integration method using 'Devarda's template' as a reducing agent and architecture template with the assistance of ultrasonic waves, in which the template was firstly fabricated and employed. The individual silver dendrite is composed of a long central trunk with secondary branches, which preferentially grew in a parallel direction with a definite angle to the trunk. The results reveal that the dendrites are single crystalline in nature and interestingly prove that the silver single crystal has the preferential orientation in <1 1 1> directionmore » in normal conditions. The contrast experiments demonstrated that both 'Devarda's template' and the ultrasonic irradiation are necessary for building hierarchically silver dendrites in a water system. Moreover, the experimental results show that the dendrites of silver nanorods are the superior electrode materials for the electrochemical sensors to detect directly NO{sub 2}{sup -} in aqueous solution.« less

  16. Systems thinking in practice: the current status of the six WHO building blocks for health system strengthening in three BHOMA intervention districts of Zambia: a baseline qualitative study.

    PubMed

    Mutale, Wilbroad; Bond, Virginia; Mwanamwenge, Margaret Tembo; Mlewa, Susan; Balabanova, Dina; Spicer, Neil; Ayles, Helen

    2013-08-01

    The primary bottleneck to achieving the MDGs in low-income countries is health systems that are too fragile to deliver the volume and quality of services to those in need. Strong and effective health systems are increasingly considered a prerequisite to reducing the disease burden and to achieving the health MDGs. Zambia is one of the countries that are lagging behind in achieving millennium development targets. Several barriers have been identified as hindering the progress towards health related millennium development goals. Designing an intervention that addresses these barriers was crucial and so the Better Health Outcomes through Mentorship (BHOMA) project was designed to address the challenges in the Zambia's MOH using a system wide approach. We applied systems thinking approach to describe the baseline status of the Six WHO building blocks for health system strengthening. A qualitative study was conducted looking at the status of the Six WHO building blocks for health systems strengthening in three BHOMA districts. We conducted Focus group discussions with community members and In-depth Interviews with key informants. Data was analyzed using Nvivo version 9. The study showed that building block specific weaknesses had cross cutting effect in other health system building blocks which is an essential element of systems thinking. Challenges noted in service delivery were linked to human resources, medical supplies, information flow, governance and finance building blocks either directly or indirectly. Several barriers were identified as hindering access to health services by the local communities. These included supply side barriers: Shortage of qualified health workers, bad staff attitude, poor relationships between community and health staff, long waiting time, confidentiality and the gender of health workers. Demand side barriers: Long distance to health facility, cost of transport and cultural practices. Participating communities seemed to lack the capacity

  17. Room temperature photoluminescence properties of ZnO nanorods grown by hydrothermal reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwan, S., E-mail: iwan-sugihartono@unj.ac.id; Prodi Ilmu Material, Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok; Fauzia, Vivi

    Zinc oxide (ZnO) nanorods were fabricated by a hydrothermal reaction on silicon (Si) substrate at 95 °C for 6 hours. The ZnO seed layer was fabricated by depositing ZnO thin films on Si substrates by ultrasonic spray pyrolisis (USP). The annealing effects on crystal structure and optical properties of ZnO nanorods were investigated. The post-annealing treatment was performed at 800 °C with different environments. The annealed of ZnO nanorods were characterized by X-ray diffraction (XRD) and photoluminescence (PL) in order to analyze crystal structure and optical properties, respectively. The results show the orientations of [002], [101], [102], and [103] diffractionmore » peaks were observed and hexagonal wurtzite structure of ZnO nanorods were vertically grown on Si substrates. The room temperature PL spectra show ultra-violet (UV) and visible emissions. The annealed of ZnO nanorods in vacuum condition (3.8 × 10{sup −3} Torr) has dominant UV emission. Meanwhile, non-annealed of ZnO nanorods has dominant visible emission. It was expected that the annealed of ZnO in vacuum condition suppresses the existence of native defects in ZnO nanorods.« less

  18. Detecting Casimir torque with an optically levitated nanorod

    NASA Astrophysics Data System (ADS)

    Xu, Zhujing; Li, Tongcang

    2017-09-01

    The linear momentum and angular momentum of virtual photons of quantum vacuum fluctuations can induce the Casimir force and the Casimir torque, respectively. While the Casimir force has been measured extensively, the Casimir torque has not been observed experimentally though it was predicted over 40 years ago. Here we propose to detect the Casimir torque with an optically levitated nanorod near a birefringent plate in vacuum. The axis of the nanorod tends to align with the polarization direction of the linearly polarized optical tweezer. When its axis is not parallel or perpendicular to the optical axis of the birefringent crystal, it will experience a Casimir torque that shifts its orientation slightly. We calculate the Casimir torque and Casimir force acting on a levitated nanorod near a birefringent crystal. We also investigate the effects of thermal noise and photon recoils on the torque and force detection. We prove that a levitated nanorod in vacuum will be capable of detecting the Casimir torque under realistic conditions, and will be an important tool in precision measurements.

  19. High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays.

    PubMed

    Hobbs, Richard G; Yang, Yujia; Fallahi, Arya; Keathley, Philip D; De Leo, Eva; Kärtner, Franz X; Graves, William S; Berggren, Karl K

    2014-11-25

    Here we demonstrate the design, fabrication, and characterization of ultrafast, surface-plasmon enhanced Au nanorod optical field emitter arrays. We present a quantitative study of electron emission from Au nanorod arrays fabricated by high-resolution electron-beam lithography and excited by 35 fs pulses of 800 nm light. We present accurate models for both the optical field enhancement of Au nanorods within high-density arrays, and electron emission from those nanorods. We have also studied the effects of surface plasmon damping induced by metallic interface layers at the substrate/nanorod interface on near-field enhancement and electron emission. We have identified the peak optical field at which the electron emission mechanism transitions from a 3-photon absorption mechanism to strong-field tunneling emission. Moreover, we have investigated the effects of nanorod array density on nanorod charge yield, including measurement of space-charge effects. The Au nanorod photocathodes presented in this work display 100-1000 times higher conversion efficiency relative to previously reported UV triggered emission from planar Au photocathodes. Consequently, the Au nanorod arrays triggered by ultrafast pulses of 800 nm light in this work may outperform equivalent UV-triggered Au photocathodes, while also offering nanostructuring of the electron pulse produced from such a cathode, which is of interest for X-ray free-electron laser (XFEL) development where nanostructured electron pulses may facilitate more efficient and brighter XFEL radiation.

  20. A crown-like heterometallic unit as the building block for a 3D In-Ge-S framework.

    PubMed

    Han, Xiaohui; Wang, Zhenqing; Xu, Jin; Liu, Dan; Wang, Cheng

    2015-12-14

    Supertetrahedral clusters are the most common building blocks in constructing Group 13/14/16 microporous metal chalcogenide materials while other types of clusters are yet scarcely explored. Herein, a new crown-like building unit [In3Ge3S16] has been obtained. The units assemble into a 3D framework [C6H14NO]4[In6Ge3S17]·1.5H2O (1) via a dual-connection mode and a SrSi2 (srs)-type topology could be achieved by treating each unit as a tri-connected node.

  1. Au/Si nanorod-based biosensor for food pathogen detection

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract Among several potentials of nanotechnology applications for food industry, development of nanoscale sensors for food safety and quality measurement are emerging. A novel biosensor for Salmonella detection was developed using Au/Si nanorods. The Si nanorods were fabricated by gla...

  2. Dielectric behavior and transport properties of ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Soosen Samuel, M.; Koshy, Jiji; Chandran, Anoop; George, K. C.

    2011-08-01

    Highly optical, good crystalline and randomly aligned ZnO nanorods were synthesized by the hydrothermal method. The dielectric properties of ZnO nanorods were attributed to the interfacial polarization at low frequencies (below 10 kHz) and orientational polarization at higher frequencies. The observed ω( n-1) dependence of dielectric loss was discussed on the basis of the Universal model of dielectric response. Dielectric loss peak was composed of the Debye like loss peak at higher frequencies and interfacial loss peak at lower frequencies. Charge transport through the grain and grain boundary region was investigated by impedance spectroscopy. At higher temperatures the conductivity of the nanorod was mainly through the grain interior and the overall impedance was contributed by the grain boundary region. The activation energy of nanorod was calculated as 0.078 eV, which is slightly higher than the reported bulk value.

  3. Polarization Properties of Semiconductor Nanorod Heterostructures: From Single Particles to the Ensemble.

    PubMed

    Hadar, Ido; Hitin, Gal B; Sitt, Amit; Faust, Adam; Banin, Uri

    2013-02-07

    Semiconductor heterostructured seeded nanorods exhibit intense polarized emission, and the degree of polarization is determined by their morphology and dimensions. Combined optical and atomic force microscopy were utilized to directly correlate the emission polarization and the orientation of single seeded nanorods. For both the CdSe/CdS sphere-in-rod (S@R) and rod-in-rod (R@R), the emission was found to be polarized along the nanorod's main axis. Statistical analysis for hundreds of single nanorods shows higher degree of polarization, p, for R@R (p = 0.83), in comparison to S@R (p = 0.75). These results are in good agreement with the values inferred by ensemble photoselection anisotropy measurements in solution, establishing its validity for nanorod samples. On this basis, photoselection photoluminescence excitation anisotropy measurements were carried out providing unique information concerning the symmetry of higher excitonic transitions and allowing for a better distinction between the dielectric and the quantum-mechanical contributions to polarization in nanorods.

  4. Low temperature synthesis of hexagonal ZnO nanorods and their hydrogen sensing properties

    NASA Astrophysics Data System (ADS)

    Qurashi, Ahsanulhaq; Faiz, M.; Tabet, N.; Alam, Mir Waqas

    2011-08-01

    The growth of hexagonal ZnO nanorods was demonstrated by low temperature chemical synthesis approach. X-ray diffraction (XRD) analysis revealed a wurtzite hexagonal structure of the ZnO nanorods. The optical properties were measured by UV-vis spectrophotometer at room temperature. X-ray photoelectron spectroscopy (XPS) confirmed high purity of the ZnO nanorods. The hydrogen sensor made of the ZnO nanorods showed reversible response. The hydrogen gas tests were carried out in presence of ambient air and the influence of operation temperature on the hydrogen gas sensing property of ZnO nanorods was also investigated.

  5. Environment‐Adaptive Coassembly/Self‐Sorting and Stimulus‐Responsiveness Transfer Based on Cholesterol Building Blocks

    PubMed Central

    Xing, Pengyao; Tham, Huijun Phoebe; Li, Peizhou; Chen, Hongzhong; Xiang, Huijing

    2017-01-01

    Abstract Manipulating the property transfer in nanosystems is a challenging task since it requires switchable molecular packing such as separate aggregation (self‐sorting) or synergistic aggregation (coassembly). Herein, a unique manipulation of self‐sorting/coassembly aggregation and the observation of switchable stimulus‐responsiveness transfer in a two component self‐assembly system are reported. Two building blocks bearing the same cholesterol group give versatile topological structures in polar and nonpolar solvents. One building block (cholesterol conjugated cynanostilbene, CCS) consists of cholesterol conjugated with a cynanostilbene unit, and the other one (C10CN) is comprised of cholesterol connected with a naphthalimide group having a flexible long alkyl chain. Their assemblies including gel, crystalline plates, and vesicles are obtained. In gel and crystalline plate phases, the self‐sorting behavior dominates, while synergistic coassembly occurs in vesicle phase. Since CCS having the cyanostilbene group can respond to the light irradiation, it undergoes light‐induced chiral amplification. C10CN is thermally responsive, whereby its supramolecular chirality is inversed upon heating. In coassembled vesicles, it is interestingly observed that their responsiveness can be transferred by each other, i.e., the C10CN segment is sensitive to the light irradiation, while CCS is thermoresponsive. This unprecedented behavior of the property transfer may shine a light to the precise fabrication of smart materials. PMID:29375976

  6. Search for water and life's building blocks in the Universe: An Introduction

    NASA Astrophysics Data System (ADS)

    Kwok, Sun

    Water and organics are commonly believed to be the essential ingredients for life on Earth. The development of infrared and submillimeter observational techniques has resulted in the detection of water in circumstellar envelopes, interstellar clouds, comets, asteroids, planetary satellites and the Sun. Complex organics have also been found in stellar ejecta, diffuse and molecular clouds, meteorites, interplanetary dust particles, comets and planetary satellites. In this Focus Meeting, we will discuss the origin, distribution, and detection of water and other life's building blocks both inside and outside of the Solar System. The possibility of extraterrestrial organics and water on the origin of life on Earth will also be discussed.

  7. VO2 nanorods for efficient performance in thermal fluids and sensors

    NASA Astrophysics Data System (ADS)

    Dey, Kajal Kumar; Bhatnagar, Divyanshu; Srivastava, Avanish Kumar; Wan, Meher; Singh, Satyendra; Yadav, Raja Ram; Yadav, Bal Chandra; Deepa, Melepurath

    2015-03-01

    VO2 (B) nanorods with average width ranging between 50-100 nm are synthesized via a hydrothermal method and the post hydrothermal treatment drying temperature is found to be influential in their overall phase and growth morphology evolution. The nanorods with unusually high optical bandgap for a VO2 material are effective in enhancing the thermal performance of ethylene glycol nanofluids over a wide temperature range as is indicated by the temperature dependent thermal conductivity measurements. Humidity and LPG sensors fabricated using the VO2 (B) nanorods bear testament to their efficient sensing performance, which can be partially attributed to the mesoporous nature of the nanorods.VO2 (B) nanorods with average width ranging between 50-100 nm are synthesized via a hydrothermal method and the post hydrothermal treatment drying temperature is found to be influential in their overall phase and growth morphology evolution. The nanorods with unusually high optical bandgap for a VO2 material are effective in enhancing the thermal performance of ethylene glycol nanofluids over a wide temperature range as is indicated by the temperature dependent thermal conductivity measurements. Humidity and LPG sensors fabricated using the VO2 (B) nanorods bear testament to their efficient sensing performance, which can be partially attributed to the mesoporous nature of the nanorods. Electronic supplementary information (ESI) available: Plots representing the actual ratio Knf/KEG (Knf is the thermal conductivity of the nanofluid and KEG being thermal conductivity of the base fluid) across the entire experimental temperature range of 20 to 80 °C, table representing a comparison of performance of the VO2 sensor towards different gases. See DOI: 10.1039/c4nr06032f

  8. In Vivo Toxicity Studies of Europium Hydroxide Nanorods in Mice

    PubMed Central

    Patra, Chitta Ranjan; Abdel Moneim, Soha S.; Wang, Enfeng; Dutta, Shamit; Patra, Sujata; Eshed, Michal; Mukherjee, Priyabrata; Gedanken, Aharon; Shah, Vijay H; Mukhopadhyay, Debabrata

    2009-01-01

    Lanthanide nanoparticles and nanorods have been widely used for diagnostic and therapeutic applications in biomedical nanotechnology due to their fluorescence properties and pro-angiogenic to endothelial cells, respectively. Recently, we have demonstrated that europium (III) hydroxide [EuIII(OH)3] nanorods, synthesized by the microwave technique and characterized by several physico-chemical techniques, can be used as pro-angiogenic agents which introduce future therapeutic treatment strategies for severe ischemic heart/limb disease, and peripheral ischemic disease. The toxicity of these inorganic nanorods to endothelial cells was supported by several in vitro assays. To determine the in vivo toxicity, these nanorods were administered to mice through intraperitoneal injection (IP) everyday over a period of seven days in a dose dependent (1.25 to 125 mgKg−1day−1) and time dependent manner (8–60 days). Bio-distribution of europium elements in different organs was analyzed by inductively coupled plasma mass spectrometry (ICPMS). Short-term (S-T) and long-term (L-T) toxicity studies (mice sacrificed on day 8 and 60 for S-T and L-T, respectively) show normal blood hematology and serum clinical chemistry with the exception of a slight elevation of liver enzymes. Histological examination of nanorod treated vital organs (liver, kidney, spleen and lungs) showed no or only mild histological changes that indicate mild toxicity at the higher dose of nanorods. PMID:19616569

  9. Synthesis of neodymium hydroxide nanotubes and nanorods by soft chemical process.

    PubMed

    Shi, Weidong; Yu, Jiangbo; Wang, Haishui; Yang, Jianhui; Zhang, Hongjie

    2006-08-01

    A facile soft chemical approach using cetyltrimethylammonium bromide (CTAB) as template is successfully designed for synthesis of neodymium hydroxide nanotubes. These nanotubes have an average outer diameter around 20 nm, inner diameter around 2 nm, and length ranging from 100 to 120 nm, high BET surface area of 495.71 m(2) g(-1). We also find that neodymium hydroxide nanorods would be obtained when CTAB absented in reaction system. The Nd(OH)3 nanorods might act as precursors that are converted into Nd2O3 nanorods through dehydration at 550 degrees C. The nanorods could exhibit upconversion emission characteristic under excitation of 591 nm at room temperature.

  10. Biopolymers Containing Unnatural Building Blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter G.

    2013-06-30

    Although the main chain structure of polymers has a profound effect on their materials properties, the side groups can also have dramatic effects on their properties including conductivity, liquid crystallinity, hydrophobicity, elasticity and biodegradability. Unfortunately control over the side chain structure of polymers remains a challenge – it is difficult to control the sequence of chain elongation when mixtures of monomers are polymerized, and postpolymerization side chain modification is made difficult by polymer effects on side chain reactivity. In contrast, the mRNA templated synthesis of polypeptides on the ribosome affords absolute control over the primary sequence of the twenty aminomore » acid monomers. Moreover, the length of the biopolymer is precisely controlled as are sites of crosslinking. However, whereas synthetic polymers can be synthesized from monomers with a wide range of chemically defined structures, ribosomal biosynthesis is largely limited to the 20 canonical amino acids. For many applications in material sciences, additional building blocks would be desirable, for example, amino acids containing metallocene, photoactive, and halogenated side chains. To overcome this natural constraint we have developed a method that allows unnatural amino acids, beyond the common twenty, to be genetically encoded in response to nonsense or frameshift codons in bacteria, yeast and mammalian cells with high fidelity and good yields. Here we have developed methods that allow identical or distinct noncanonical amino acids to be incorporated at multiple sites in a polypeptide chain, potentially leading to a new class of templated biopolymers. We have also developed improved methods for genetically encoding unnatural amino acids. In addition, we have genetically encoded new amino acids with novel physical and chemical properties that allow selective modification of proteins with synthetic agents. Finally, we have evolved new metal-ion binding sites in

  11. Directed self-assembly of nanorod networks: bringing the top down to the bottom up.

    PubMed

    Einsle, Joshua F; Scheunert, Gunther; Murphy, Antony; McPhillips, John; Zayats, Anatoly V; Pollard, Robert; Bowman, Robert M

    2012-12-21

    Self-assembled electrodeposited nanorod materials have been shown to offer an exciting landscape for a wide array of research ranging from nanophotonics through to biosensing and magnetics. However, until now, the scope for site-specific preparation of the nanorods on wafers has been limited to local area definition. Further there is little or no lateral control of nanorod height. In this work we present a scalable method for controlling the growth of the nanorods in the vertical direction as well as their lateral position. A focused ion beam pre-patterns the Au cathode layer prior to the creation of the anodized aluminium oxide (AAO) template on top. When the pre-patterning is of the same dimension as the pore spacing of the AAO template, lines of single nanorods are successfully grown. Further, for sub-200 nm wide features, a relationship between the nanorod height and distance from the non-patterned cathode can be seen to follow a quadratic growth rate obeying Faraday's law of electrodeposition. This facilitates lateral control of nanorod height combined with localized growth of the nanorods.

  12. Role of nanorods insertion layer in ZnO-based electrochemical metallization memory cell

    NASA Astrophysics Data System (ADS)

    Mangasa Simanjuntak, Firman; Singh, Pragya; Chandrasekaran, Sridhar; Juanda Lumbantoruan, Franky; Yang, Chih-Chieh; Huang, Chu-Jie; Lin, Chun-Chieh; Tseng, Tseung-Yuen

    2017-12-01

    An engineering nanorod array in a ZnO-based electrochemical metallization device for nonvolatile memory applications was investigated. A hydrothermally synthesized nanorod layer was inserted into a Cu/ZnO/ITO device structure. Another device was fabricated without nanorods for comparison, and this device demonstrated a diode-like behavior with no switching behavior at a low current compliance (CC). The switching became clear only when the CC was increased to 75 mA. The insertion of a nanorods layer induced switching characteristics at a low operation current and improve the endurance and retention performances. The morphology of the nanorods may control the switching characteristics. A forming-free electrochemical metallization memory device having long switching cycles (>104 cycles) with a sufficient memory window (103 times) for data storage application, good switching stability and sufficient retention was successfully fabricated by adjusting the morphology and defect concentration of the inserted nanorod layer. The nanorod layer not only contributed to inducing resistive switching characteristics but also acted as both a switching layer and a cation diffusion control layer.

  13. Self-assembly of Nano-rods in Photosensitive Phase Separation

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Kuksenok, Olga; Maresov, Egor; Balazs, Anna

    2012-02-01

    Computer simulations reveal how photo-induced chemical reactions in polymeric mixtures can be exploited to create long-range order in materials whose features range from the sub-micron to the nanoscale. The process is initiated by shining a spatially uniform light on a photosensitive AB binary blend, which thereby undergoes both a reversible chemical reaction and phase separation. When a well-collimated, higher intensity light is rastered over the sample, the system forms defect-free, spatially periodic structures. We now build on this approach by introducing nanorods that have a preferential affinity for one the phases in a binary mixture. By rastering over the sample with the higher intensity light, we can create ordered arrays of rods within periodically ordered materials in essentially one processing step.

  14. In situ transmission electron microscopy of cadmium selenide nanorod sublimation

    DOE PAGES

    Hellebusch, Daniel J.; Manthiram, Karthish; Beberwyck, Brandon J.; ...

    2015-01-23

    In situ electron microscopy is used to observe the morphological evolution of cadmium selenide nanorods as they sublime under vacuum at a series of elevated temperatures. Mass loss occurs anisotropically along the nanorod’s long axis. At temperatures close to the sublimation threshold, the phase change occurs from both tips of the nanorods and proceeds unevenly with periods of rapid mass loss punctuated by periods of relative stability. At higher temperatures, the nanorods sublime at a faster, more uniform rate, but mass loss occurs from only a single end of the rod. Furthermore, we propose a mechanism that accounts for themore » observed sublimation behavior based on the terrace–ledge–kink (TLK) model and how the nanorod surface chemical environment influences the kinetic barrier of sublimation.« less

  15. Vertically aligned diamond-graphite hybrid nanorod arrays with superior field electron emission properties

    NASA Astrophysics Data System (ADS)

    Ramaneti, R.; Sankaran, K. J.; Korneychuk, S.; Yeh, C. J.; Degutis, G.; Leou, K. C.; Verbeeck, J.; Van Bael, M. K.; Lin, I. N.; Haenen, K.

    2017-06-01

    A "patterned-seeding technique" in combination with a "nanodiamond masked reactive ion etching process" is demonstrated for fabricating vertically aligned diamond-graphite hybrid (DGH) nanorod arrays. The DGH nanorod arrays possess superior field electron emission (FEE) behavior with a low turn-on field, long lifetime stability, and large field enhancement factor. Such an enhanced FEE is attributed to the nanocomposite nature of the DGH nanorods, which contain sp2-graphitic phases in the boundaries of nano-sized diamond grains. The simplicity in the nanorod fabrication process renders the DGH nanorods of greater potential for the applications as cathodes in field emission displays and microplasma display devices.

  16. Plasmon-resonant nanorods as multimodal agents for two-photon luminescent imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Huff, Terry B.; Hansen, Matthew N.; Tong, Ling; Zhao, Yan; Wang, Haifeng; Zweifel, Daniel A.; Cheng, Ji-Xin; Wei, Alexander

    2007-02-01

    Plasmon-resonant gold nanorods have outstanding potential as multifunctional agents for image-guided therapies. Nanorods have large absorption cross sections at near-infrared (NIR) frequencies, and produce two-photon luminescence (TPL) when excited by fs-pulsed laser irradiation. The TPL signals can be detected with single-particle sensitivity, enabling nanorods to be imaged in vivo while passing through blood vessels at subpicomolar concentrations. Furthermore, cells labeled with nanorods become highly susceptible to photothermal damage when irradiated at plasmon resonance, often resulting in a dramatic blebbing of the cell membrane. However, the straightforward application of gold nanorods for cell-specific labeling is obstructed by the presence of CTAB, a cationic surfactant carried over from nanorod synthesis which also promotes their nonspecific uptake into cells. Careful exchange and replacement of CTAB can be achieved by introducing oligoethyleneglycol (OEG) units capable of chemisorption onto nanorod surfaces by in situ dithiocarbamate formation, a novel method of surface functionalization. Nanorods with a dense coating of methyl-terminated OEG chains are shielded from nonspecific cell uptake, whereas nanorods functionalized with folate-terminated OEG chains accumulate on the surface of tumor cells overexpressing their cognate receptor, with subsequent delivery of photoinduced cell damage at low laser fluence.

  17. Tuning the emission of ZnO nanorods based light emitting diodes using Ag doping

    NASA Astrophysics Data System (ADS)

    Echresh, Ahmad; Chey, Chan Oeurn; Shoushtari, Morteza Zargar; Nur, Omer; Willander, Magnus

    2014-11-01

    We have fabricated, characterized, and compared ZnO nanorods/p-GaN and n-Zn0.94Ag0.06O nanorods/p-GaN light emitting diodes (LEDs). Current-voltage measurement showed an obvious rectifying behaviour of both LEDs. A reduction of the optical band gap of the Zn0.94Ag0.06O nanorods compared to pure ZnO nanorods was observed. This reduction leads to decrease the valence band offset at n-Zn0.94Ag0.06O nanorods/p-GaN interface compared to n-ZnO nanorods/p-GaN heterojunction. Consequently, this reduction leads to increase the hole injection from the GaN to the ZnO. From electroluminescence measurement, white light was observed for the n-Zn0.94Ag0.06O nanorods/p-GaN heterojunction LEDs under forward bias, while for the reverse bias, blue light was observed. While for the n-ZnO nanorods/p-GaN blue light dominated the emission in both forward and reverse biases. Further, the LEDs exhibited a high sensitivity in responding to UV illumination. The results presented here indicate that doping ZnO nanorods might pave the way to tune the light emission from n-ZnO/p-GaN LEDs.

  18. Strong Surface Diffusion Mediated Glancing-Angle Deposition: Growth, Recrystallization and Reorientation of Tin Nanorods

    NASA Astrophysics Data System (ADS)

    Wang, Huan-Hua; Shi, Yi-Jian; William, Chu; Yigal, Blum

    2008-01-01

    Different from usual glancing-angle deposition where low surface diffusion is necessary to form nanorods, strong surface diffusion mediated glancing-angle deposition is exemplified by growing tin nanorod films on both silicon and glass substrates simultaneously via thermal evaporation. During growth, the nanorods were simultaneously baked by the high-temperature evaporator, and therefore re-crystallized into single crystals in consequence of strong surface diffusion. The monocrystalline tin nanorods have a preferred orientation perpendicular to the substrate surface, which is quite different from the usual uniformly oblique nanorods without recrystallization.

  19. Hydrotalcite catalysis for the synthesis of new chiral building blocks.

    PubMed

    Rodilla, Jesus M; Neves, Patricia P; Pombal, Sofia; Rives, Vicente; Trujillano, Raquel; Díez, David

    2016-01-01

    The use of hydrotalcites for the synthesis of two chiral building blocks in a simple way is described as a new and green methodology. The synthesis of these compounds implies a regioselective Baeyer-Villiger reaction in a very selective way with ulterior opening and lactonisation. This methodology should be considered green for the use of hydrogen peroxide as the only oxidant and hydrotalcites as the catalyst, and because no residues are produced apart from water. The procedure is very adequate for using in gram scale, in order to increase the value of the obtained compounds. The conditions are excellent and can be applied for nonstable compounds, as they are very mild. The synthesised compounds are magnific starting materials for the synthesis of biologically active or natural compounds. The use of a cheap, commercial and chiral compound as carvone disposable in both enantiomeric forms adds an extra value to this methodology.

  20. C–H arylation of unsubstituted furan and thiophene with acceptor bromides: access to donor–acceptor–donor-type building blocks for organic electronics.

    PubMed

    Matsidik, Rukiya; Martin, Johannes; Schmidt, Simon; Obermayer, Johannes; Lombeck, Florian; Nübling, Fritz; Komber, Hartmut; Fazzi, Daniele; Sommer, Michael

    2015-01-16

    Pd-catalyzed direct arylation (DA) reaction conditions have been established for unsubstituted furan (Fu) and thiophene (Th) with three popular acceptor building blocks to be used in materials for organic electronics, namely 4,7-dibromo-2,1,3-benzothiadiazole (BTBr2), N,N′-dialkylated 2,6-dibromonaphthalene-1,4,5,8-bis(dicarboximide) (NDIBr2), and 1,4-dibromotetrafluorobenzene (F4Br2). Reactions with BTBr2, F4Br2, and NDIBr2 require different solvents to obtain high yields. The use of dimethylacetamide (DMAc) is essential for the successful coupling of BTBr2 and F4Br2, but detrimental for NDIBr2, as the electron-deficient NDI core is prone to nucleophilic core substitution in DMAc as solvent but not in toluene. NDIFu2 is much more planar compared to NDITh2, resulting in an enhanced charge-transfer character, which makes it an interesting building block for conjugated systems designed for organic electronics. This study highlights direct arylation as a simple and inexpensive method to construct a series of important donor–acceptor–donor building blocks to be further used for the preparation of a variety of conjugated materials.

  1. Intrinsic Folding Proclivities in Cyclic β-Peptide Building Blocks: Configuration and Heteroatom Effects Analyzed by Conformer-Selective Spectroscopy and Quantum Chemistry.

    PubMed

    Alauddin, Mohammad; Gloaguen, Eric; Brenner, Valérie; Tardivel, Benjamin; Mons, Michel; Zehnacker-Rentien, Anne; Declerck, Valérie; Aitken, David J

    2015-11-09

    This work describes the use of conformer-selective laser spectroscopy following supersonic expansion to probe the local folding proclivities of four-membered ring cyclic β-amino acid building blocks. Emphasis is placed on stereochemical effects as well as on the structural changes induced by the replacement of a carbon atom of the cycle by a nitrogen atom. The amide A IR spectra are obtained and interpreted with the help of quantum chemistry structure calculations. Results provide evidence that the building block with a trans-substituted cyclobutane ring has a predilection to form strong C8 hydrogen bonds. Nitrogen-atom substitution in the ring induces the formation of the hydrazino turn, with a related but distinct hydrogen-bonding network: the structure is best viewed as a bifurcated C8/C5 bond with the N heteroatom lone electron pair playing a significant acceptor role, which supports recent observations on the hydrazino turn structure in solution. Surprisingly, this study shows that the cis-substituted cyclobutane ring derivative also gives rise predominantly to a C8 hydrogen bond, although weaker than in the two former cases, a feature that is not often encountered for this building block. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Formation and bioactivity of HA nanorods on micro-arc oxidized zirconium.

    PubMed

    Zhang, Lan; Zhu, Shaoyu; Han, Yong; Xiao, Chengzhang; Tang, Wu

    2014-10-01

    A microporous and CaO partially stabilized zirconia (Ca-PSZ) coating covered with hydroxyapatite (HA) nanorods is fabricated on Zr substrate by a hybrid approach of micro-arc oxidation (MAO) and hydrothermal treatment (HT). The effect of P ions in HT solution on the density and morphology of HA was investigated; the hydrophilicity and apatite-forming ability of the Ca-PSZ coating with HA nanorods were also examined. High-density HA nanorods (with a mean diameter of 50 nm and length of 450 nm) grow on the Ca-PSZ coating after HT in a solution containing 0.002 M β-glycerophosphate disodium (β-GP). However, only a few of coarse-grained HA crystallites grow in the MAOed pores after HT in distilled water or in an ammonia aqueous solution with an initial pH value equal to the solution containing 0.002 M β-GP. P ions in the HT solution are thought to significantly promote the formation of HA nanorods. The Ca-PSZ coating covered with HA nanorods displays good hydrophilicity and excellent apatite-inducing ability, and the induced apatite prefers to nucleate on the basal-faceted surfaces of HA nanorods. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Systems thinking in practice: the current status of the six WHO building blocks for health system strengthening in three BHOMA intervention districts of Zambia: a baseline qualitative study

    PubMed Central

    2013-01-01

    Background The primary bottleneck to achieving the MDGs in low-income countries is health systems that are too fragile to deliver the volume and quality of services to those in need. Strong and effective health systems are increasingly considered a prerequisite to reducing the disease burden and to achieving the health MDGs. Zambia is one of the countries that are lagging behind in achieving millennium development targets. Several barriers have been identified as hindering the progress towards health related millennium development goals. Designing an intervention that addresses these barriers was crucial and so the Better Health Outcomes through Mentorship (BHOMA) project was designed to address the challenges in the Zambia’s MOH using a system wide approach. We applied systems thinking approach to describe the baseline status of the Six WHO building blocks for health system strengthening. Methods A qualitative study was conducted looking at the status of the Six WHO building blocks for health systems strengthening in three BHOMA districts. We conducted Focus group discussions with community members and In-depth Interviews with key informants. Data was analyzed using Nvivo version 9. Results The study showed that building block specific weaknesses had cross cutting effect in other health system building blocks which is an essential element of systems thinking. Challenges noted in service delivery were linked to human resources, medical supplies, information flow, governance and finance building blocks either directly or indirectly. Several barriers were identified as hindering access to health services by the local communities. These included supply side barriers: Shortage of qualified health workers, bad staff attitude, poor relationships between community and health staff, long waiting time, confidentiality and the gender of health workers. Demand side barriers: Long distance to health facility, cost of transport and cultural practices. Participating

  4. Synthesis and characterization of mixed monolayer protected gold nanorods and their Raman activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mlambo, Mbuso; Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125; Mdluli, Phumlani S.

    2013-10-15

    Graphical abstract: Gold nanorods surface functionalization. - Highlights: • Mixed monolayer protected gold nanorods. • Surface enhanced Raman spectroscopy. • HS-(CH{sub 2}){sub 11}-NHCO-coumarin as a Raman active compound. - Abstract: The cetyltrimethylammonium bromide (CTAB) gold nanorods (AuNRs) were prepared by seed-mediated route followed by the addition of a Raman active compound (HS-(CH{sub 2}){sub 11}-NHCO-coumarin) on the gold nanorods surfaces. Different stoichiometric mixtures of HS-(CH{sub 2}){sub 11}-NHCO-coumarin and HS-PEG-(CH{sub 2}){sub 11}COOH were evaluated for their Raman activities. The lowest stoichiometric ratio HS-(CH{sub 2}){sub 11}-NHCO-coumarin adsorbed on gold nanorods surface was detected and enhanced by Raman spectroscopy. The produced mixed monolayer protectedmore » gold nanorods were characterized by UV-vis spectrometer for optical properties, transmission electron microscope (TEM) for structural properties (shape and aspect ratio) and their zeta potentials (charges) were obtained from ZetaSizer to determine the stability of the produced mixed monolayer protected gold nanorods. The Raman results showed a surface enhanced Raman scattering (SERS) enhancement at the lowest stoichiometric ratio of 1% HS-(CH{sub 2}){sub 11}-NHCO-coumarin compared to high ratio of 50% HS-(CH{sub 2}){sub 11}-NHCO-coumarin on the surface of gold nanorods.« less

  5. Light-activated microbubbles around gold nanorods for photoacoustic microsurgery

    NASA Astrophysics Data System (ADS)

    Cavigli, Lucia; Centi, Sonia; Lai, Sarah; Borri, Claudia; Micheletti, Filippo; Tortoli, Paolo; Panettieri, Ilaria; Streit, Ingolf; Rossi, Francesca; Ratto, Fulvio; Pini, Roberto

    2018-02-01

    The increasing interest around imaging and microsurgery techniques based on the photoacoustic effect has boosted active research into the development of exogenous contrast agents that may enhance the potential of this innovative approach. In this context, plasmonic particles as gold nanorods are achieving resounding interest, owing to their efficiency of photothermal conversion, intense optical absorbance in the near infrared region, inertness in the body and convenience for conjugation with ligands of molecular targets. On the other hand, the photoinstability of plasmonic particles remains a remarkable obstacle. In particular, gold nanorods easily reshape into nanospheres and so lose their optical absorbance in the near infrared region, under exposure to few-ns-long laser pulses. This issue is attracting much attention and stimulating ad-hoc solutions, such as the addition of rigid shells and the optimization of multiple parameters. In this contribution, we focus on the influence of the shape of gold nanorods on their photothermal behavior and photostability. We describe the photothermal process in the gold nanorods by modeling their optical absorption and consequent temperature dynamics as a function of their aspect ratio (length / diameter). Our results suggest that increasing the aspect ratio does probably not limit the photostability of gold nanorods, while shifting the plasmonic peak towards wavelengths around 1100 nm, which hold more technological interest.

  6. Removal of Congo red dye molecules by MnO2 nanorods.

    PubMed

    Yin, Bosi; Zhang, Siwen; Jiao, Yang; Liu, Yang; Qu, Fengyu; Ma, Yajie; Wu, Xiang

    2014-09-01

    Uniform MnO2 nanorods were synthesized successfully via a facile and effective hydrothermal approach. Scanning electron microscope images showed that the average diameter of the as-synthesized nanorod is about 30 nm and the length of that is about 5 μm, respectively. Photocatalytic experimental results indicate that Congo red can be degraded nearly completely (over 97%) after visible light irradiation of 120 min, demonstrating potential applications of such nanorod structures for wastewater purification.

  7. Building Blocks of Contemporary HRD Research: A Citation Analysis on Human Resource Development Quarterly between 2007 and 2013

    ERIC Educational Resources Information Center

    Mehdiabadi, Amir Hedayati; Seo, Gaeun; Huang, Wenhao David; Han, Seung-hyun Caleb

    2017-01-01

    Human resource development is known to encapsulate a collection of social science disciplines including communications, psychology, and economics. Since these and other similar areas are the cornerstones of HRD, the changing nature of HRD demands constant reflections on the value and building blocks of contemporary HRD inquiries. This article…

  8. Fast photocatalytic degradation of sulforhodamine B using ZnO:Cu nanorods

    NASA Astrophysics Data System (ADS)

    Raji, R.; Gopchandran, K. G.

    2018-02-01

    In this work, ZnO:Cu nanorods with tunable Cu content were successfully synthesized via co-precipitation method and investigations were made on the use of these nanorods as photocatalyst by observing the photodegradation of a representative dye pollutant of sulforhodamine B (SRB) under sunlight. The X-ray diffraction analysis and high resolution transmission electron microscopy showed that ZnO:Cu nanorods possess wurtzite phase with preferential growth along (101) plane. The formation of additional defect levels in these nanorods on doping with Cu and its dependence on the concentration of Cu were studied using photoluminescence and X-ray photoelectron spectroscopy. ZnO:Cu nanorods results in faster degradation of dye as compared to the undoped ZnO and is found that Cu doping enhances the photodegradation activity significantly and is highly sensitive to Cu doping level. The fast photocatalytic degradation is attributed to the fact that Cu ions promote the interfacial charge transfer and favors the effective charge separation of photogenerated electrons and holes generated during sunlight irradiation, increasing the rate of production of reactive oxygen species needed for the degradation of the dye. The chemical oxygen demand analysis of the dye solution after sunlight irradiation indicates that rate of mineralization is slower than the decoloration. The possible mechanism for degradation of dye under sunlight irradiation is described with a schematic. Additionally, the photostability of the ZnO:Cu nanorods was also tested through three repetitive cycles. This work suggest that the prepared ZnO:Cu nanorods are suitable for cost-effective water purification.

  9. SiC Multi-Chip Power Modules as Power-System Building Blocks

    NASA Technical Reports Server (NTRS)

    Lostetter, Alexander; Franks, Steven

    2007-01-01

    The term "SiC MCPMs" (wherein "MCPM" signifies "multi-chip power module") denotes electronic power-supply modules containing multiple silicon carbide power devices and silicon-on-insulator (SOI) control integrated-circuit chips. SiC MCPMs are being developed as building blocks of advanced expandable, reconfigurable, fault-tolerant power-supply systems. Exploiting the ability of SiC semiconductor devices to operate at temperatures, breakdown voltages, and current densities significantly greater than those of conventional Si devices, the designs of SiC MCPMs and of systems comprising multiple SiC MCPMs are expected to afford a greater degree of miniaturization through stacking of modules with reduced requirements for heat sinking. Moreover, the higher-temperature capabilities of SiC MCPMs could enable operation in environments hotter than Si-based power systems can withstand. The stacked SiC MCPMs in a given system can be electrically connected in series, parallel, or a series/parallel combination to increase the overall power-handling capability of the system. In addition to power connections, the modules have communication connections. The SOI controllers in the modules communicate with each other as nodes of a decentralized control network, in which no single controller exerts overall command of the system. Control functions effected via the network include synchronization of switching of power devices and rapid reconfiguration of power connections to enable the power system to continue to supply power to a load in the event of failure of one of the modules. In addition to serving as building blocks of reliable power-supply systems, SiC MCPMs could be augmented with external control circuitry to make them perform additional power-handling functions as needed for specific applications: typical functions could include regulating voltages, storing energy, and driving motors. Because identical SiC MCPM building blocks could be utilized in a variety of ways, the cost

  10. Effect of bath temperature on surface morphology and photocatalytic activity of ZnO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sriharan, N.; Senthil, T. S., E-mail: tssenthi@gmail.com; Muthukumarasamy, N.

    2016-05-06

    ZnO nanorods were prepared by using simple hydrothermal method using four different bath temperatures. All the prepared ZnO nanorods are annealed at 450°C and are characterized by using various techniques such as X-ray diffraction, UV spectra and scanning electron microscopy. Photocatalytic activity of the prepared ZnO nanorods is analyzed. A novel photocatalytic reactor designed with ZnO nanorods prepared at 90°C shows enhanced catalytic efficiency. The role of light irradiation time, bath temperature and surface morphology of the ZnO nanorods on the performance of photocatalytic reaction is analyzed.

  11. Structural and optical characterization of bismuth sulphide nanorods

    NASA Astrophysics Data System (ADS)

    Shah, N. M.; Poria, K. C.

    2017-05-01

    In this work Bismuth sulfide (Bi2S3) nanorods with a high order of crystallinity is synthesized via hydrothermal method from aqueous solution of Bismuth Nitrate Pentahydrate and elemental Sulphur using Triethanolamine (TEA) as capping agent. The microstructures of Bi2S3 nanorods were investigated by X-ray diffraction (XRD) analysis. The positions and relative intensities of all the peaks in XRD pattern are in good agreement with those of the orthorhombic crystal structure of Bi2S3. TEM images shows that synthesized Bi2S3 has morphology of nanorods while selected area electron diffraction pattern indicates single crystalline nature. The analysis of diffuse reflectance (DR) spectrum of as synthesized Bi2S3 using Kubelka - Munk theory suggests direct energy band gap of 1.5 eV.

  12. Nanobiotechnology with S-layer proteins as building blocks.

    PubMed

    Sleytr, Uwe B; Schuster, Bernhard; Egelseer, Eva M; Pum, Dietmar; Horejs, Christine M; Tscheliessnig, Rupert; Ilk, Nicola

    2011-01-01

    One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Hydroxyapatite nanorods: soft-template synthesis, characterization and preliminary in vitro tests.

    PubMed

    Nguyen, Nga Kim; Leoni, Matteo; Maniglio, Devid; Migliaresi, Claudio

    2013-07-01

    Synthetic hydroxyapatite nanorods are excellent candidates for bone tissue engineering applications. In this study, hydroxyapatite nanorods resembling bone minerals were produced by using soft-template method with cetyltrimethylammonium bromide. Composite hydroxyapatite/poly(D, L)lactic acid films were prepared to evaluate the prepared hydroxyapatite nanorods in terms of cell affinity. Preliminary in vitro experiments showed that aspect ratio and film surface roughness play a vital role in controlling adhesion and proliferation of human osteoblast cell line MG 63. The hydroxyapatite nanorods with aspect ratios in the range of 5.94-7 were found to possess distinctive properties, with the corresponding hydroxyapatite/poly(D, L)lactic acid films promoting cellular confluence and a fast formation of collagen fibers as early as after 7 days of culture.

  14. Nanotubes, nanorods and nanowires having piezoelectric and/or pyroelectric properties and devices manufactured therefrom

    DOEpatents

    Russell, Thomas P [Amherst, MA; Lutkenhaus, Jodie [Wethersfield, CT

    2012-05-15

    Disclosed herein is a device comprising a pair of electrodes; and a nanotube, a nanorod and/or a nanowire; the nanotube, nanorod and/or nanowire comprising a piezoelectric and/or pyroelectric polymeric composition; the pair of electrodes being in electrical communication with opposing surfaces of the nanotube, nanorod and/or a nanowire; the pair of electrodes being perpendicular to a longitudinal axis of the nanotube, nanorod and/or a nanowire.

  15. Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments

    NASA Astrophysics Data System (ADS)

    Huber, Matthias C.; Schreiber, Andreas; von Olshausen, Philipp; Varga, Balázs R.; Kretz, Oliver; Joch, Barbara; Barnert, Sabine; Schubert, Rolf; Eimer, Stefan; Kele, Péter; Schiller, Stefan M.

    2015-01-01

    Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally ‘program’ the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials.

  16. Hydrothermal Synthesis and Photocatalytic Property of β-Ga2O3 Nanorods

    NASA Astrophysics Data System (ADS)

    Reddy, L. Sivananda; Ko, Yeong Hwan; Yu, Jae Su

    2015-09-01

    Gallium oxide (Ga2O3) nanorods were facilely prepared by a simple hydrothermal synthesis, and their morphology and photocatalytic property were studied. The gallium oxide hydroxide (GaOOH) nanorods were formed in aqueous growth solution containing gallium nitrate and ammonium hydroxide at 95 °C of growth temperature. Through the calcination treatment at 500 and 1000 °C for 3 h, the GaOOH nanorods were converted into single crystalline α-Ga2O3 and β-Ga2O3 phases. From X-ray diffraction analysis, it could be confirmed that a high crystalline quality of β-Ga2O3 nanorods was achieved by calcinating at 1000 °C. The thermal behavior of the Ga2O3 nanorods was also investigated by differential thermal analysis, and their vibrational bands were identified by Fourier transform infrared spectroscopy. In order to examine the photocatalytic activity of samples, the photodegradation of Rhodamine B solution was observed under UV light irradiation. As a result, the α-Ga2O3 and β-Ga2O3 nanorods exhibited high photodegeneration efficiencies of 62 and 79 %, respectively, for 180 min of UV irradiation time.

  17. Gallium ion-assisted room temperature synthesis of small-diameter ZnO nanorods.

    PubMed

    Cho, Seungho; Kim, Semi; Lee, Kun-Hong

    2011-09-15

    We report a method for synthesizing small-diameter ZnO nanorods at room temperature (20 °C), under normal atmospheric pressure (1 atm), and using a relatively short reaction time (1 h) by adding gallium salts to the reaction solution. The ZnO nanorods were, on average, 92 nm in length and 9 nm in diameter and were single crystalline in nature. Quantitative analyses revealed that gallium atoms were not incorporated into the synthesized nanocrystals. On the basis of the experimental results, we propose a mechanism for the formation of small-diameter ZnO nanorods in the presence of gallium ions. The optical properties were probed by UV-Vis diffuse reflectance spectroscopy. The absorption band of the small-diameter ZnO nanorods was blue-shifted relative to the absorption band of the ~230 nm diameter ZnO nanorods (control samples). Control experiments demonstrated that the absence of metal ion-containing precipitants (except ZnO) at room temperature is essential, and that the ZnO nanorod diameter distributions were narrow for the stirred reaction solution and broad when prepared without stirring. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Hydrothermal Synthesis and Photocatalytic Property of β-Ga2O3 Nanorods.

    PubMed

    Reddy, L Sivananda; Ko, Yeong Hwan; Yu, Jae Su

    2015-12-01

    Gallium oxide (Ga2O3) nanorods were facilely prepared by a simple hydrothermal synthesis, and their morphology and photocatalytic property were studied. The gallium oxide hydroxide (GaOOH) nanorods were formed in aqueous growth solution containing gallium nitrate and ammonium hydroxide at 95 °C of growth temperature. Through the calcination treatment at 500 and 1000 °C for 3 h, the GaOOH nanorods were converted into single crystalline α-Ga2O3 and β-Ga2O3 phases. From X-ray diffraction analysis, it could be confirmed that a high crystalline quality of β-Ga2O3 nanorods was achieved by calcinating at 1000 °C. The thermal behavior of the Ga2O3 nanorods was also investigated by differential thermal analysis, and their vibrational bands were identified by Fourier transform infrared spectroscopy. In order to examine the photocatalytic activity of samples, the photodegradation of Rhodamine B solution was observed under UV light irradiation. As a result, the α-Ga2O3 and β-Ga2O3 nanorods exhibited high photodegeneration efficiencies of 62 and 79 %, respectively, for 180 min of UV irradiation time.

  19. Ferromagnetic behavior and exchange bias effect in akaganeite nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadic, Marin, E-mail: marint@vinca.rs; Milosevic, Irena; Motte, Laurence

    We report ferromagnetic-like properties and exchange bias effect in akaganeite (β-FeOOH) nanorods. They exhibit a Néel temperature T{sub N} = 259 K and ferromagnetic-like hysteresis behavior both below and above T{sub N}. An exchange bias effect is observed below T{sub N} and represents an interesting behavior for akaganeite nanorods. These results are explained on the basis of a core-shell structure in which the core has bulk akaganeite magnetic properties (i.e., antiferromagnetic ordering) while the shell exhibits a disordered spin state. Thus, the nanorods show ferromagnetic properties and an exchange bias effect at the same time, increasing their potential for use in practical applications.

  20. Spectral fractionation detection of gold nanorod contrast agents using optical coherence tomography

    PubMed Central

    Jia, Yali; Liu, Gangjun; Gordon, Andrew Y.; Gao, Simon S.; Pechauer, Alex D.; Stoddard, Jonathan; McGill, Trevor J.; Jayagopal, Ashwath; Huang, David

    2015-01-01

    We demonstrate the proof of concept of a novel Fourier-domain optical coherence tomography contrast mechanism using gold nanorod contrast agents and a spectral fractionation processing technique. The methodology detects the spectral shift of the backscattered light from the nanorods by comparing the ratio between the short and long wavelength halves of the optical coherence tomography signal intensity. Spectral fractionation further divides the halves into sub-bands to improve spectral contrast and suppress speckle noise. Herein, we show that this technique can detect gold nanorods in intralipid tissue phantoms. Furthermore, cellular labeling by gold nanorods was demonstrated using retinal pigment epithelial cells in vitro. PMID:25836459

  1. Equivalence of the EMD- and NEMD-based decomposition of thermal conductivity into microscopic building blocks.

    PubMed

    Matsubara, Hiroki; Kikugawa, Gota; Ishikiriyama, Mamoru; Yamashita, Seiji; Ohara, Taku

    2017-09-21

    Thermal conductivity of a material can be comprehended as being composed of microscopic building blocks relevant to the energy transfer due to a specific microscopic process or structure. The building block is called the partial thermal conductivity (PTC). The concept of PTC is essential to evaluate the contributions of various molecular mechanisms to heat conduction and has been providing detailed knowledge of the contribution. The PTC can be evaluated by equilibrium molecular dynamics (EMD) and non-equilibrium molecular dynamics (NEMD) in different manners: the EMD evaluation utilizes the autocorrelation of spontaneous heat fluxes in an equilibrium state whereas the NEMD one is based on stationary heat fluxes in a non-equilibrium state. However, it has not been fully discussed whether the two methods give the same PTC or not. In the present study, we formulate a Green-Kubo relation, which is necessary for EMD to calculate the PTCs equivalent to those by NEMD. Unlike the existing theories, our formulation is based on the local equilibrium hypothesis to describe a clear connection between EMD and NEMD simulations. The equivalence of the two derivations of PTCs is confirmed by the numerical results for liquid methane and butane. The present establishment of the EMD-NEMD correspondence makes the MD analysis of PTCs a robust way to clarify the microscopic origins of thermal conductivity.

  2. Attachment of Quantum Dots on Zinc Oxide Nanorods

    NASA Astrophysics Data System (ADS)

    Seay, Jared; Liang, Huan; Harikumar, Parameswar

    2011-03-01

    ZnO nanorods grown by hydrothermal technique are of great interest for potential applications in photovoltaic and optoelectronic devices. In this study we investigate the optimization of the optical absorption properties by a low temperature, chemical bath deposition technique. Our group fabricated nanorods on indium tin oxide (ITO) substrate with precursor solution of zinc nitrate hexahydrate and hexamethylenetramine (1:1 molar ratio) at 95C for 9 hours. In order to optimize the light absorption characteristics of ZnO nanorods, CdSe/ZnS core-shell quantum dots (QDs) of various diameters were attached to the surface of ZnO nanostructures grown on ITO and gold-coated silicon substrates. Density of quantum dots was varied by controlling the number drops on the surface of the ZnO nanorods. For a 0.1 M concentration of QDs of 10 nm diameter, the PL intensity at 385 nm increased as the density of the quantum dots on ZnO nanostructures was increased. For quantum dots at 1 M concentration, the PL intensity at 385 nm increased at the beginning and then decreased at higher density. We will discuss the observed changes in PL intensity with QD concentration with ZnO-QD band structure and recombination-diffusion processes taking place at the interface.

  3. Ultrafast carrier dynamics in GaN/InGaN multiple quantum wells nanorods

    NASA Astrophysics Data System (ADS)

    Chen, Weijian; Wen, Xiaoming; Latzel, Michael; Yang, Jianfeng; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Christiansen, Silke; Conibeer, Gavin

    2018-01-01

    GaN/InGaN multiple quantum wells (MQW) is a promising material for high-efficiency solid-state lighting. Ultrafast optical pump-probe spectroscopy is an important characterization technique for examining fundamental phenomena in semiconductor nanostructure with sub-picosecond resolution. In this study, ultrafast exciton and charge carrier dynamics in GaN/InGaN MQW planar layer and nanorod are investigated using femtosecond transient absorption (TA) techniques at room temperature. Here nanorods are fabricated by etching the GaN/InGaN MQW planar layers using nanosphere lithography and reactive ion etching. Photoluminescence efficiency of the nanorods have been proved to be much higher than that of the planar layers, but the mechanism of the nanorod structure improvement of PL efficiency is not adequately studied. By comparing the TA profile of the GaN/InGaN MQW planar layers and nanorods, the impact of surface states and nanorods lateral confinement in the ultrafast carrier dynamics of GaN/InGaN MQW is revealed. The nanorod sidewall surface states have a strong influence on the InGaN quantum well carrier dynamics. The ultrafast relaxation processes studied in this GaN/InGaN MQW nanostructure is essential for further optimization of device application.

  4. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  5. Ordered WO3-x nanorods: facile synthesis and their electrochemical properties for aluminum-ion batteries.

    PubMed

    Tu, Jiguo; Lei, Haiping; Yu, Zhijing; Jiao, Shuqiang

    2018-02-01

    In this work, we have synthesized ordered WO 3 nanorods via a facile hydrothermal process. And the series WO 3-x nanorods with oxygen vacancies are obtained via a subsequent thermal reduction process. The formation mechanisms of WO 3-x nanorods with different oxygen vacancies are proposed. And the electrochemical results reveal that the WO 3-x nanorods exhibit the improved specific capacity due to the oxygen vacancies caused by the thermal reduction. More importantly, the reaction mechanism of the WO 3-x nanorods as cathodes for aluminum-ion batteries has been proved.

  6. Building blocks for the development of an interface for high-throughput thin layer chromatography/ambient mass spectrometric analysis: a green methodology.

    PubMed

    Cheng, Sy-Chyi; Huang, Min-Zong; Wu, Li-Chieh; Chou, Chih-Chiang; Cheng, Chu-Nian; Jhang, Siou-Sian; Shiea, Jentaie

    2012-07-17

    Interfacing thin layer chromatography (TLC) with ambient mass spectrometry (AMS) has been an important area of analytical chemistry because of its capability to rapidly separate and characterize the chemical compounds. In this study, we have developed a high-throughput TLC-AMS system using building blocks to deal, deliver, and collect the TLC plate through an electrospray-assisted laser desorption ionization (ELDI) source. This is the first demonstration of the use of building blocks to construct and test the TLC-MS interfacing system. With the advantages of being readily available, cheap, reusable, and extremely easy to modify without consuming any material or reagent, the use of building blocks to develop the TLC-AMS interface is undoubtedly a green methodology. The TLC plate delivery system consists of a storage box, plate dealing component, conveyer, light sensor, and plate collecting box. During a TLC-AMS analysis, the TLC plate was sent to the conveyer from a stack of TLC plates placed in the storage box. As the TLC plate passed through the ELDI source, the chemical compounds separated on the plate would be desorbed by laser desorption and subsequently postionized by electrospray ionization. The samples, including a mixture of synthetic dyes and extracts of pharmaceutical drugs, were analyzed to demonstrate the capability of this TLC-ELDI/MS system for high-throughput analysis.

  7. Uptake, translocation, and toxicity of gold nanorods in maize

    NASA Astrophysics Data System (ADS)

    Moradi Shahmansouri, Nastaran

    Nanomaterials are widely used in many different products, such as electronics, cosmetics, industrial goods, biomedical uses, and other material applications. The heavy emission of nanomaterials into the environment has motived increasing concern regarding the effects on ecosystems, food chains, and, human health. Plants can tolerate a certain amount of natural nanomaterials, but large amounts of ENMs released from a variety of industries could be toxic to plants and possibly threaten the ecosystem. Employing phytoremediation as a contamination treatment method may show promise. However a pre-requisite to successful treatment is a better understanding of the behavior and effects of nanomaterials within plant systems. This study is designed to investigate the uptake, translocation, bioavailability, and toxicity of gold nanorods in maize plants. Maize is an important food and feed crop that can be used to understand the potential hazardous effects of nanoparticle uptake and distribution in the food chain. The findings could be an important contribution to the fields of phytoremediation, agri-nanotechnology, and nanoparticle toxicity on plants. In the first experiment, hydroponically grown maize seedlings were exposed to similar doses of commercial non-coated gold nanorods in three sizes, 10x34 nm, 20x75 nm, and 40x96 nm. The three nanorod species were suspended in solutions at concentrations of 350 mg/l, 5.8 mg/l, and 14 mg/l, respectively. Maize plants were exposed to all three solutions resulting in considerably lower transpiration and wet biomass than control plants. Likewise, dry biomass was reduced, but the effect is less pronounced than that of transpiration and wet biomass. The reduced transpiration and water content, which eventually proved fatal to exposed plants, were most likely a result of toxic effect of gold nanorod, which appeared to physically hinder the root system. TEM images proved that maize plants can uptake gold particles and accumulate them in

  8. Zinc oxide nanorod clusters deposited seaweed cellulose sheet for antimicrobial activity.

    PubMed

    Bhutiya, Priyank L; Mahajan, Mayur S; Abdul Rasheed, M; Pandey, Manoj; Zaheer Hasan, S; Misra, Nirendra

    2018-06-01

    Seaweed cellulose was isolated from green seaweed Ulva fasciata using a common bleaching agent. Sheet containing porous mesh was prepared from the extracted seaweed crystalline cellulose along with zinc oxide (ZnO) nanorod clusters grown over the sheet by single step hydrothermal method. Seaweed cellulose and zinc oxide nanorod clusters deposited seaweed cellulose sheet was characterized by FT-IR, XRD, TGA, and SEM-EDX. Morphology showed that the diameter of zinc oxide nanorods were around 70nm. Zinc oxide nanorod clusters deposited on seaweed cellulose sheet gave remarkable antibacterial activity towards gram-positive (Staphylococcus aureus, Bacillus ceresus, Streptococcus thermophilis) and gram-negative (Escherichia coli, Pseudomonas aeruginous) microbes. Such deposited sheet has potential applications in pharmaceutical, biomedical, food packaging, water treatment and biotechnological industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Local mechanical response of cells to the controlled rotation of magnetic nanorods.

    PubMed

    Castillo, Matias; Ebensperger, Roberto; Wirtz, Denis; Walczak, Magdalena; Hurtado, Daniel E; Celedon, Alfredo

    2014-11-01

    The mechanical response of the cytoplasm was investigated by the intracellular implantation of magnetic nanorods and exposure to low-frequency rotatory magnetic fields. Nanorods (Pt-Ni, ∼200 nm diameter) fabricated by electrodeposition in templates of porous alumina with lengths of approximately 2 and 5 µm were inserted into NIH/3T3 fibroblasts and manipulated with a rotational magnetic field. Nanorod rotation was observed only for torques greater than 3.0 × 10(-16) Nm, suggesting a Bingham-type behavior of the cytoplasm. Higher torques produced considerable deformation of the intracellular material. The cell nucleus and cell membrane were significantly deformed by nanorods actuated by 4.5 × 10(-15) Nm torques. Our results demonstrate that nanorods under magnetic fields are an effective tool to mechanically probe the intracellular environment. We envision that our findings may contribute to the noninvasive and direct mechanical characterization of the cytoplasm. © 2014 Wiley Periodicals, Inc.

  10. Local mechanical response of cells to the controlled rotation of magnetic nanorods

    PubMed Central

    Castillo, Matias; Ebensperger, Roberto; Wirtz, Denis; Walczak, Magdalena; Hurtado, Daniel E.; Celedon, Alfredo

    2015-01-01

    The mechanical response of the cytoplasm was investigated by the intracellular implantation of magnetic nanorods and exposure to low-frequency rotatory magnetic fields. Nanorods (Pt-Ni, ~200 nm diameter) fabricated by electrodeposition in templates of porous alumina with lengths of approximately 2 and 5 μm were inserted into NIH/ 3T3 fibroblasts and manipulated with a rotational magnetic field. Nanorod rotation was observed only for torques greater than 3.0 × 10−16 Nm, suggesting a Bingham-type behavior of the cytoplasm. Higher torques produced considerable deformation of the intracellular material. The cell nucleus and cell membrane were significantly deformed by nanorods actuated by 4.5 × 10−15 Nm torques. Our results demonstrate that nanorods under magnetic fields are an effective tool to mechanically probe the intracellular environment. We envision that our findings may contribute to the noninvasive and direct mechanical characterization of the cytoplasm. PMID:24700696

  11. Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface

    NASA Astrophysics Data System (ADS)

    Ge, Chun; Lu, Meng; Zhang, Wei; Cunningham, Brian T.

    2010-04-01

    A dielectric nanorod structure is used to enhance the label-free detection sensitivity of a vertically-emitting distributed feedback laser biosensor (DFBLB). The device is comprised of a replica molded plastic grating that is subsequently coated with a dye-doped polymer layer and a TiO2 nanorod layer produced by the glancing angle deposition technique. The DFBLB emission wavelength is modulated by the adsorption of biomolecules, whose greater dielectric permittivity with respect to the surrounding liquid media will increase the laser wavelength in proportion to the density of surface-adsorbed biomaterial. The nanorod layer provides greater surface area than a solid dielectric thin film, resulting in the ability to incorporate a greater number of molecules. The detection of a monolayer of protein polymer poly (Lys, Phe) is used to demonstrate that a 90 nm TiO2 nanorod structure improves the detection sensitivity by a factor of 6.6 compared to an identical sensor with a nonporous TiO2 surface.

  12. Two step continuous method to synthesize colloidal spheroid gold nanorods.

    PubMed

    Chandra, S; Doran, J; McCormack, S J

    2015-12-01

    This research investigated a two-step continuous process to synthesize colloidal suspension of spheroid gold nanorods. In the first step; gold precursor was reduced to seed-like particles in the presence of polyvinylpyrrolidone and ascorbic acid. In continuous second step; silver nitrate and alkaline sodium hydroxide produced various shape and size Au nanoparticles. The shape was manipulated through weight ratio of ascorbic acid to silver nitrate by varying silver nitrate concentration. The specific weight ratio of 1.35-1.75 grew spheroid gold nanorods of aspect ratio ∼1.85 to ∼2.2. Lower weight ratio of 0.5-1.1 formed spherical nanoparticle. The alkaline medium increased the yield of gold nanorods and reduced reaction time at room temperature. The synthesized gold nanorods retained their shape and size in ethanol. The surface plasmon resonance was red shifted by ∼5 nm due to higher refractive index of ethanol than water. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Methylidynetrisphosphonates: Promising C1 building block for the design of phosphate mimetics

    PubMed Central

    Romanenko, Vadim D

    2013-01-01

    Summary Methylidynetrisphosphonates are representatives of geminal polyphosphonates bearing three phosphonate (PO3H2) groups at the bridged carbon atom. Like well-known methylenebisphosphonates (BPs), they are characterized by a P–C–P backbone structure and are chemically stable mimetics of the endogenous metabolites, i.e., inorganic pyrophosphates (PPi). Because of its analogy to PPi and an ability to chelate metal ions, the 1,1,1-trisphosphonate structure is of great potential as a C1 building block for the design of phosphate mimetics. The purpose of this review is to present a concise summary of the state of the art in trisphosphonate chemistry with particular emphasis on the synthesis, structure, reactions, and potential medicinal applications of these compounds. PMID:23766816

  14. Total synthesis of a CD-ring: side-chain building block for preparing 17-epi-calcitriol derivatives from the Hajos-Parrish dione.

    PubMed

    Michalak, Karol; Wicha, Jerzy

    2011-08-19

    An efficient synthesis of the key building block for 17-epi-calctriol from the Hajos-Parrish dione involving a sequence of diastereoselective transformation of the azulene core and the side-chain construction is presented.

  15. Systematic approach to in-depth understanding of photoelectrocatalytic bacterial inactivation mechanisms by tracking the decomposed building blocks.

    PubMed

    Sun, Hongwei; Li, Guiying; Nie, Xin; Shi, Huixian; Wong, Po-Keung; Zhao, Huijun; An, Taicheng

    2014-08-19

    A systematic approach was developed to understand, in-depth, the mechanisms involved during the inactivation of bacterial cells using photoelectrocatalytic (PEC) processes with Escherichia coli K-12 as the model microorganism. The bacterial cells were found to be inactivated and decomposed primarily due to attack from photogenerated H2O2. Extracellular reactive oxygen species (ROSs), such as H2O2, may penetrate into the bacterial cell and cause dramatically elevated intracellular ROSs levels, which would overwhelm the antioxidative capacity of bacterial protective enzymes such as superoxide dismutase and catalase. The activities of these two enzymes were found to decrease due to the ROSs attacks during PEC inactivation. Bacterial cell wall damage was then observed, including loss of cell membrane integrity and increased permeability, followed by the decomposition of cell envelope (demonstrated by scanning electronic microscope images). One of the bacterial building blocks, protein, was found to be oxidatively damaged due to the ROSs attacks, as well. Leakage of cytoplasm and biomolecules (bacterial building blocks such as proteins and nucleic acids) were evident during prolonged PEC inactivation process. The leaked cytoplasmic substances and cell debris could be further degraded and, ultimately, mineralized with prolonged PEC treatment.

  16. Y-doping TiO2 nanorod arrays for efficient perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Deng, Xinlian; Wang, Yanqing; Cui, Zhendong; Li, Long; Shi, Chengwu

    2018-05-01

    To improve the electron transportation in TiO2 nanorod arrays and charge separation in the interface of TiO2/perovskite, Y-doping TiO2 nanorod arrays with the length of 200 nm, diameter of 11 nm and areal density of 1050 μm-2 were successfully prepared by the hydrothermal method and the influence of Y/Ti molar ratios of 0%, 3%, 5% in the hydrothermal grown solutions on the growth of TiO2 nanorod arrays was investigated. The results revealed that the appropriate Y/Ti molar ratios can increase the areal density of the corresponding TiO2 nanorod arrays and improve the charge separation in the interface of the TiO2/perovskite. The Y-doping TiO2 nanorod array perovskite solar cells with the Y/Ti molar ratio of 3% exhibited a photoelectric conversion efficiency (PCE) of 18.11% along with an open-circuit voltage (Voc) of 1.06 V, short-circuit photocurrent density (Jsc) of 22.50 mA cm-2 and fill factor (FF) of 76.16%, while the un-doping TiO2 nanorod array perovskite solar cells gave a PCE of 16.42% along with Voc of 1.04 V, Jsc of 21.66 mA cm-2 and FF of 72.97%.

  17. Facile One-Pot Synthesis of Tellurium Nanorods as Antioxidant and Anticancer Agents.

    PubMed

    Huang, Wei; Wu, Hualian; Li, Xiaoling; Chen, Tianfeng

    2016-08-19

    Nanorods have been utilized in targeted therapy, controlled release, molecular diagnosis, and molecule imaging owing to their large surface area and optical, magnetic, electronic, and structural properties. However, low stability and complex synthetic methods have substantially limited the application of tellurium nanorods for use as antioxidant and anticancer agents. Herein, a facile one-pot synthesis of functionalized tellurium nanorods (PTNRs) by using a hydrothermal synthetic system with a polysaccharide-protein complex (PTR), which was extracted from Pleurotus tuber-regium, as a capping agent is described. PTNRs remained stable in water and in phosphate-buffered saline and exhibited high hemocompatibility. Interestingly, these nanorods possessed strong antioxidant activity for scavenging 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS(.+) ) and 2,2-diphenyl-1-picrylhydrazylhydrate (DPPH) free radicals and demonstrated novel anticancer activities. However, these nanorods exhibited low cytotoxicity toward normal human cells. In addition, the PTNRs effectively induced a decrease in the mitochondrial membrane potential in a dose-dependent manner, which indicated that mitochondrial dysfunction might play an important role in PTNR-induced apoptosis. Therefore, this study provides a one-pot strategy for the facile synthesis of tellurium nanorods with novel antioxidant and anticancer application potentials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity

    PubMed Central

    Ma, Ming-Guo

    2012-01-01

    Hierarchically nanosized hydroxyapatite (HA) with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours. Objective The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA) with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks. Methods A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did not decrease with the increasing concentration of hierarchically nanostructured HA added. Conclusion A novel, simple and reliable hydrothermal route had been developed for the synthesis of

  19. Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides

    PubMed Central

    Görl, Daniel; Zhang, Xin; Stepanenko, Vladimir; Würthner, Frank

    2015-01-01

    New synthetic methodologies for the formation of block copolymers have revolutionized polymer science within the last two decades. However, the formation of supramolecular block copolymers composed of alternating sequences of larger block segments has not been realized yet. Here we show by transmission electron microscopy (TEM), 2D NMR and optical spectroscopy that two different perylene bisimide dyes bearing either a flat (A) or a twisted (B) core self-assemble in water into supramolecular block copolymers with an alternating sequence of (AmBB)n. The highly defined ultralong nanowire structure of these supramolecular copolymers is entirely different from those formed upon self-assembly of the individual counterparts, that is, stiff nanorods (A) and irregular nanoworms (B), respectively. Our studies further reveal that the as-formed supramolecular block copolymer constitutes a kinetic self-assembly product that transforms into thermodynamically more stable self-sorted homopolymers upon heating. PMID:25959777

  20. Freestanding polyaniline nanorods grown on graphene for highly capacitive energy storage

    NASA Astrophysics Data System (ADS)

    Li, Zijiong; Qin, Zhen; Yang, Baocheng; Guo, Jian; Wang, Haiyan; Zhang, Weiyang; Lv, Xiaowei; Stack, Alison

    2015-02-01

    Freestanding polyaniline (PANI) nanorods grown in situ on microwave-expanded graphene oxide (MEGO) sheets were prepared through a facile solution method. The morphological characterization indicates that large quantity of free-standing PANI nanorods with average diameter of 50 nm were uniformly deposited onto the double sides of the MEGO nanosheets to form a sandwich structure. The hybrid of PANI/MEGO (GPANI) exhibit high specific surface area and high electrical conductivity, compared with pristine PANI nanorods. When evaluated as electrodes for supercapacitors, the GPANI demonstrate high specific capacitance of 628 F g-1 at a current density of 1.1 A g-1, high-rate performance, and excellent cycle stability compared to individual component. Such excellent electrochemical performance should be attributed to the combined double-layer capacitance and pseudo -capacitance mechanisms from the MEGO sheets and PANI nanorods.

  1. Cu-doped ZnO nanorod arrays: the effects of copper precursor and concentration

    PubMed Central

    2014-01-01

    Cu-doped ZnO nanorods have been grown at 90°C for 90 min onto a quartz substrate pre-coated with a ZnO seed layer using a hydrothermal method. The influence of copper (Cu) precursor and concentration on the structural, morphological, and optical properties of ZnO nanorods was investigated. X-ray diffraction analysis revealed that the nanorods grown are highly crystalline with a hexagonal wurtzite crystal structure grown along the c-axis. The lattice strain is found to be compressive for all samples, where a minimum compressive strain of −0.114% was obtained when 1 at.% Cu was added from Cu(NO3)2. Scanning electron microscopy was used to investigate morphologies and the diameters of the grown nanorods. The morphological properties of the Cu-doped ZnO nanorods were influenced significantly by the presence of Cu impurities. Near-band edge (NBE) and a broad blue-green emission bands at around 378 and 545 nm, respectively, were observed in the photoluminescence spectra for all samples. The transmittance characteristics showed a slight increase in the visible range, where the total transmittance increased from approximately 80% for the nanorods doped with Cu(CH3COO)2 to approximately 90% for the nanorods that were doped with Cu(NO3)2. PMID:24855460

  2. ZnO-nanorods: A possible white LED phosphor

    NASA Astrophysics Data System (ADS)

    Sarangi, Sachindra Nath; T., Arun; Ray, Dinseh K.; Sahoo, Pratap Kumar; Nozaki, Shinji; Sugiyama, Noriyuki; Uchida, Kazuo

    2017-05-01

    The white light-emitting diodes (LEDs) have drawn much attention to replace conventional lighting sources because of low energy consumption, high light efficiency and long lifetime. Although the most common approach to produce white light is to combine a blue LED chip and a yellow phosphor, such a white LED cannot be used for a general lighting application, which requires a broad luminescence spectrum in the visible wavelength range. We have successfully chemically synthesized the ZnO nanorods showing intense broad luminescence in the visible wavelength range and made a white LED using the ZnO nanorods as phosphor excited with a blue LED. Their lengths and diameters were 2 - 10 μm and 200 - 800 nm, respectively. The wurtzite structure was confirmed by the x-ray diffraction measurement. The PL spectrum obtained by exciting the ZnO nanorods with the He-Cd laser has two peaks, one associated with the near band-edge recombination and the other with recombination via defects. The peak intensity of the near band-edge luminescence at 388 nm is much weaker than that of the defect-related luminescence. The latter luminescence peak ranges from 450 to 850 nm and broad enough to be used as a phosphor for a white LED. A white LED has been fabricated using a blue LED with 450 nm emission and ZnO nanorod powders. The LED performances show a white light emission and the electroluminescence measurement shows a stiff increase in white light intensity with increasing blue LED current. The Commission International de1'Eclairage (CIE) chromaticity colour coordinates of 450 nm LED pumped white emission shows a coordinate of (0.31, 0.32) for white LED at 350 mA. These results indicate that ZnO nanorods provides an alternate and effective approach to achieve high-performance white LEDs and also other optoelectronic devices.

  3. Nanosized Building Blocks for Customizing Novel Antibiofilm Approaches.

    PubMed

    Paula, A J; Koo, H

    2017-02-01

    Recent advances in nanotechnology provide unparalleled flexibility to control the composition, size, shape, surface chemistry, and functionality of materials. Currently available engineering approaches allow precise synthesis of nanocompounds (e.g., nanoparticles, nanostructures, nanocrystals) with both top-down and bottom-up design principles at the submicron level. In this context, these "nanoelements" (NEs) or "nanosized building blocks" can 1) generate new nanocomposites with antibiofilm properties or 2) be used to coat existing surfaces (e.g., teeth) and exogenously introduced surfaces (e.g., restorative or implant materials) for prevention of bacterial adhesion and biofilm formation. Furthermore, functionalized NEs 3) can be conceived as nanoparticles to carry and selectively release antimicrobial agents after attachment or within oral biofilms, resulting in their disruption. The latter mechanism includes "smart release" of agents when triggered by pathogenic microenvironments (e.g., acidic pH or low oxygen levels) for localized and controlled drug delivery to simultaneously kill bacteria and dismantle the biofilm matrix. Here we discuss inorganic, metallic, polymeric, and carbon-based NEs for their outstanding chemical flexibility, stability, and antibiofilm properties manifested when converted into bioactive materials, assembled on-site or delivered at biofilm-surface interfaces. Details are provided on the emerging concept of the rational design of NEs and recent technological breakthroughs for the development of a new generation of nanocoatings or functional nanoparticles for biofilm control in the oral cavity.

  4. Optoacoustic detection of viral antigens using targeted gold nanorods

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher; Woodward, Lee; Glickman, Randolph D.; Barsalou, Norman

    2009-02-01

    We are detecting antigens (Ag), isolated from infectious organisms, utilizing laser optoacoustic spectroscopy and antibody-coupled gold nanorod (NR) contrast agents specifically targeted to the antigen of interest. We have detected, in clinical ocular samples, both Herpes Simplex Virus Type 1 and 2 (HSV-1 and HSV-2) . A monoclonal antibody (Ab) specific to both HSV-1 and HSV-2 was conjugated to gold nanorods to produce a targeted contrast agent with a strong optoacoustic signal. Elutions obtained from patient corneal swabs were adsorbed in standard plastic micro-wells. An immunoaffinity reaction was then performed with the functionalized gold nanorods, and the results were probed with an OPO laser, emitting wavelengths at the peak absorptions of the nanorods. Positive optoacoustic responses were obtained from samples containing authentic (microbiologically confirmed) HSV-1 and HSV-2. To obtain an estimate of the sensitivity of the technique, serial dilutions from 1 mg/ml to 1 pg/ml of a C. trachomatis surface Ag were prepared, and were probed with a monoclonal Ab, specific to the C. trachomatis surface Ag, conjugated to gold nanorods. An optoacoustic response was obtained, proportional to the concentration of antigen, and with a limit of detection of about 5 pg/ml. The optoacoustic signals generated from micro-wells containing albumin or saline were similar to those from blank wells. The potential benefit of this method is identify viral agents more rapidly than with existing techniques. In addition, the sensitivity of the assay is comparable or superior to existing colorimetric- or fluorometric-linked immunoaffinity assays.

  5. Identifying the Evolutionary Building Blocks of the Cardiac Conduction System

    PubMed Central

    Jensen, Bjarke; Boukens, Bastiaan J. D.; Postma, Alex V.; Gunst, Quinn D.; van den Hoff, Maurice J. B.; Moorman, Antoon F. M.; Wang, Tobias; Christoffels, Vincent M.

    2012-01-01

    The endothermic state of mammals and birds requires high heart rates to accommodate the high rates of oxygen consumption. These high heart rates are driven by very similar conduction systems consisting of an atrioventricular node that slows the electrical impulse and a His-Purkinje system that efficiently activates the ventricular chambers. While ectothermic vertebrates have similar contraction patterns, they do not possess anatomical evidence for a conduction system. This lack amongst extant ectotherms is surprising because mammals and birds evolved independently from reptile-like ancestors. Using conserved genetic markers, we found that the conduction system design of lizard (Anolis carolinensis and A. sagrei), frog (Xenopus laevis) and zebrafish (Danio rerio) adults is strikingly similar to that of embryos of mammals (mouse Mus musculus, and man) and chicken (Gallus gallus). Thus, in ectothermic adults, the slow conducting atrioventricular canal muscle is present, no fibrous insulating plane is formed, and the spongy ventricle serves the dual purpose of conduction and contraction. Optical mapping showed base-to-apex activation of the ventricles of the ectothermic animals, similar to the activation pattern of mammalian and avian embryonic ventricles and to the His-Purkinje systems of the formed hearts. Mammalian and avian ventricles uniquely develop thick compact walls and septum and, hence, form a discrete ventricular conduction system from the embryonic spongy ventricle. Our study uncovers the evolutionary building plan of heart and indicates that the building blocks of the conduction system of adult ectothermic vertebrates and embryos of endotherms are similar. PMID:22984480

  6. Molecular building blocks and their architecture in biologically/environmentally compatible soft matter chemical machinery.

    PubMed

    Toyota, Taro; Banno, Taisuke; Nitta, Sachiko; Takinoue, Masahiro; Nomoto, Tomonori; Natsume, Yuno; Matsumura, Shuichi; Fujinami, Masanori

    2014-01-01

    This review briefly summarizes recent developments in the construction of biologically/environmentally compatible chemical machinery composed of soft matter. Since environmental and living systems are open systems, chemical machinery must continuously fulfill its functions not only through the influx and generation of molecules but also via the degradation and dissipation of molecules. If the degradation or dissipation of soft matter molecular building blocks and biomaterial molecules/polymers can be achieved, soft matter particles composed of them can be used to realize chemical machinery such as selfpropelled droplets, drug delivery carriers, tissue regeneration scaffolds, protocell models, cell-/tissuemarkers, and molecular computing systems.

  7. Quantification of urban structure on building block level utilizing multisensoral remote sensing data

    NASA Astrophysics Data System (ADS)

    Wurm, Michael; Taubenböck, Hannes; Dech, Stefan

    2010-10-01

    Dynamics of urban environments are a challenge to a sustainable development. Urban areas promise wealth, realization of individual dreams and power. Hence, many cities are characterized by a population growth as well as physical development. Traditional, visual mapping and updating of urban structure information of cities is a very laborious and cost-intensive task, especially for large urban areas. For this purpose, we developed a workflow for the extraction of the relevant information by means of object-based image classification. In this manner, multisensoral remote sensing data has been analyzed in terms of very high resolution optical satellite imagery together with height information by a digital surface model to retrieve a detailed 3D city model with the relevant land-use / land-cover information. This information has been aggregated on the level of the building block to describe the urban structure by physical indicators. A comparison between the indicators derived by the classification and a reference classification has been accomplished to show the correlation between the individual indicators and a reference classification of urban structure types. The indicators have been used to apply a cluster analysis to group the individual blocks into similar clusters.

  8. Constructing MnO{sub 2}/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Weiwei; Liu, Tiangui, E-mail: tianguiliu@gmail.com; Cao, Shiyi

    In order to improve the photocatalytic and antibacterial activity of ZnO nanorods, ZnO nanorods decorated with MnO{sub 2} nanoparticles (MnO{sub 2}/ZnO nanorod hybrids) were prepared by using microwave assisted coprecipitation method under the influence of hydrogen peroxide, and the structure, photocatalytic activity and antibacterial property of the products were studied. Experimental results indicated that MnO{sub 2} nanoparticles are decorated on the surface of single crystalline ZnO nanorods. Moreover, the resultant MnO{sub 2}/ZnO nanorod hybrids have been proven to possess good photocatalytic and antibacterial activity, which their degradated efficiency for Rhodamin B (RhB) is twice as the pure ZnO nanorods. Enhancementmore » for photocatalytic and antibacterial activity is mainly attributed to the low band gap energy and excellent electrochemical properties of MnO{sub 2} nanoparticles. - Graphical abstract: The MnO{sub 2}/single crystalline ZnO nanorods hybrids, which MnO{sub 2} nanoparticles are loaded on the surface of ZnO nanorods, were prepared by the step-by-step precipitation method under the assistance of ammonia and hydrogen peroxide. Display Omitted - Highlights: • MnO{sub 2}/ZnO nanorod hybrids were prepared by the step-by-step assembly method. • Single crystalline ZnO nanorods can be decorated by MnO{sub 2} nanoparticles. • MnO{sub 2}/ZnO nanorod hybrids possess good photocatalytic and antibacterial activity. • MnO{sub 2} can improve the photocatalytic activity of ZnO nanorods under visible light.« less

  9. Structural and optical properties of ZnO nanorods synthesized via template free approach

    NASA Astrophysics Data System (ADS)

    Kajal, Priyanka; D, Pooja; Jaggi, Neena

    2016-06-01

    In this paper, we report a novel method for synthesis of semiconducting ZnO nanorods using Zinc acetate dehydrate precursor in a methanol—de-ionized (1:5) mixture via template free approach. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images of as synthesized nanorods revealed hexagonal symmetry of rods, whereas x-ray diffraction (XRD) analysis for structure and phase has shown high crystallinity with wurtzite crystal structure. The structural characterization by FT-IR analysis revealed presence of various groups on as synthesized ZnO nanorods, whereas the UV-Vis analysis has shown a blue shift in the absorption spectra as compared to bulk ZnO due to quantum confinement of charge carriers. Photoluminescence (PL) spectroscopy study has also been performed revealing a good degree of phosphorescence in the ZnO nanorods. Further, thermo gravimetric analysis (TGA) revealed that as synthesized nanorods by present method are highly stable at high temperature (1000 °C). This study provides an alternative, less expensive and a very simple method for the fabrication of ZnO nanorods in abundance, which can be further used for various sensing applications, in particular, gas sensing.

  10. Preparation, characterization and electroluminescence studies of ZnO nanorods for optoelectronic device applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Anju, E-mail: singh-nk24@yahoo.com; Vishwakarma, H. L., E-mail: horilal5@yahoo.com

    2015-07-31

    In this work, ZnO nanorods were achieved by a simple chemical precipitation method in the presence of capping agent Poly Vinyl Pyrrolidone (PVP) at room temperature. X-Ray Diffraction (XRD) result indicates that the synthesized undoped ZnO nanorods have wurtzite hexagonal structure without any impurities. It has been seen that the growth orientation of the prepared ZnO nanorods were (101). XRD analysis revealed that the nanorods having the crystallite size 49 nm. The Scanning Electron Microscopy (SEM) image confirmed the size and shape of these nanorods. The diameter of nanorods has been found that 1.52 µm to 1.61 µm and the lengthmore » of about 4.89 µm. It has also been found that at room temperature Ultra Violet Visible (UV-VIS) absorption band is around 355 nm (blue shifted as compared to bulk). Electroluminescence (EL) studies show that emission of light is possible at very small threshold voltage and increases rapidly with increasing applied voltage. It is seen that smaller ZnO nanoparticles give higher electroluminescence brightness starting at lower threshold voltage. The brightness is also affected by increasing the frequency of AC signal.« less

  11. Field emission from ZnS nanorods synthesized by radio frequency magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Maiti, U. N.; Jana, S.; Chattopadhyay, K. K.

    2006-11-01

    The field emission property of zinc sulphides nanorods synthesized in the thin film form on Si substrates has been studied. It is seen that ZnS nanorod thin films showed good field emission properties with a low-macroscopic turn-on field (2.9-6.3 V/μm). ZnS nanorods were synthesized by using radio frequency magnetron sputtering of a polycrystalline prefabricated ZnS target at a relatively higher pressure (10 -1 mbar) and at a lower substrate temperature (233-273 K) without using any catalyst. Transmission electron microscopic image showed the formation of ZnS nanorods with high aspect ratio (>60). The field emission data were analysed using Fowler-Nordhiem theory and the nearly straight-line nature of the F-N plots confirmed cold field emission of electrons. It was also found that the turn-on field decreased with the decrease of nanorod's diameters. The optical properties of the ZnS nanorods were also studied. From the measurements of transmittance of the films deposited on glass substrates, the direct allowed bandgap values have been calculated and they were in the range 3.83-4.03 eV. The thickness of the films was ˜600 nm.

  12. Learning and optimization with cascaded VLSI neural network building-block chips

    NASA Technical Reports Server (NTRS)

    Duong, T.; Eberhardt, S. P.; Tran, M.; Daud, T.; Thakoor, A. P.

    1992-01-01

    To demonstrate the versatility of the building-block approach, two neural network applications were implemented on cascaded analog VLSI chips. Weights were implemented using 7-b multiplying digital-to-analog converter (MDAC) synapse circuits, with 31 x 32 and 32 x 32 synapses per chip. A novel learning algorithm compatible with analog VLSI was applied to the two-input parity problem. The algorithm combines dynamically evolving architecture with limited gradient-descent backpropagation for efficient and versatile supervised learning. To implement the learning algorithm in hardware, synapse circuits were paralleled for additional quantization levels. The hardware-in-the-loop learning system allocated 2-5 hidden neurons for parity problems. Also, a 7 x 7 assignment problem was mapped onto a cascaded 64-neuron fully connected feedback network. In 100 randomly selected problems, the network found optimal or good solutions in most cases, with settling times in the range of 7-100 microseconds.

  13. Nested seaweed cellulose fiber deposited with cuprous oxide nanorods for antimicrobial activity.

    PubMed

    Bhutiya, Priyank L; Misra, Nirendra; Abdul Rasheed, M; Zaheer Hasan, S

    2018-05-30

    Bird's nest type architectural network of cellulosic nanofibers was extracted, with nearly 34% yield, from green filamentous seaweed Chaetomorpha antennina using mild bleaching agent. Nanorods of cuprous oxide (Cu 2 O) were grown over the porous sheet, prepared from the seaweed cellulose, by one step hydrothermal method. The seaweed cellulose and Cu 2 O nanorods deposited seaweed cellulose sheets, were characterized by XRD, SEM-EDX, FT-IR, TGA and tensile test. XRD revealed that seaweed cellulose acted as reducing agent, reducing CuO to Cu 2 O. Morphology showed that the average diameter of seaweed cellulose and deposited Cu 2 O nanorods were 30 nm and 90 nm, respectively. Cuprous oxide nanorods deposited seaweed cellulose sheet gave very good antibacterial activity towards gram-positive (Staphylococcus aureus, Streptococcus thermophilis) and gram-negative (Pseudomonas aeruginous, Escherichia coli) microbes. The Cu 2 O nanorods deposited seaweed cellulose sheet can be viewed to have great potential in biomedical, packaging, biotechnological, textile, water treatment and pharmaceutical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. "Science SQL" as a Building Block for Flexible, Standards-based Data Infrastructures

    NASA Astrophysics Data System (ADS)

    Baumann, Peter

    2016-04-01

    We have learnt to live with the pain of separating data and metadata into non-interoperable silos. For metadata, we enjoy the flexibility of databases, be they relational, graph, or some other NoSQL. Contrasting this, users still "drown in files" as an unstructured, low-level archiving paradigm. It is time to bridge this chasm which once was technologically induced, but today can be overcome. One building block towards a common re-integrated information space is to support massive multi-dimensional spatio-temporal arrays. These "datacubes" appear as sensor, image, simulation, and statistics data in all science and engineering domains, and beyond. For example, 2-D satellilte imagery, 2-D x/y/t image timeseries and x/y/z geophysical voxel data, and 4-D x/y/z/t climate data contribute to today's data deluge in the Earth sciences. Virtual observatories in the Space sciences routinely generate Petabytes of such data. Life sciences deal with microarray data, confocal microscopy, human brain data, which all fall into the same category. The ISO SQL/MDA (Multi-Dimensional Arrays) candidate standard is extending SQL with modelling and query support for n-D arrays ("datacubes") in a flexible, domain-neutral way. This heralds a new generation of services with new quality parameters, such as flexibility, ease of access, embedding into well-known user tools, and scalability mechanisms that remain completely transparent to users. Technology like the EU rasdaman ("raster data manager") Array Database system can support all of the above examples simultaneously, with one technology. This is practically proven: As of today, rasdaman is in operational use on hundreds of Terabytes of satellite image timeseries datacubes, with transparent query distribution across more than 1,000 nodes. Therefore, Array Databases offering SQL/MDA constitute a natural common building block for next-generation data infrastructures. Being initiator and editor of the standard we present principles

  15. Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods

    PubMed Central

    Fulati, Alimujiang; Ali, Syed M.Usman; Riaz, Muhammad; Amin, Gul; Nur, Omer; Willander, Magnus

    2009-01-01

    ZnO nanotubes and nanorods grown on gold thin film were used to create pH sensor devices. The developed ZnO nanotube and nanorod pH sensors display good reproducibility, repeatability and long-term stability and exhibit a pH-dependent electrochemical potential difference versus an Ag/AgCl reference electrode over a large dynamic pH range. We found the ZnO nanotubes provide sensitivity as high as twice that of the ZnO nanorods, which can be ascribed to the fact that small dimensional ZnO nanotubes have a higher level of surface and subsurface oxygen vacancies and provide a larger effective surface area with higher surface-to-volume ratio as compared to ZnO nanorods, thus affording the ZnO nanotube pH sensor a higher sensitivity. Experimental results indicate ZnO nanotubes can be used in pH sensor applications with improved performance. Moreover, the ZnO nanotube arrays may find potential application as a novel material for measurements of intracellular biochemical species within single living cells. PMID:22291545

  16. Preparation and Photoacoustic Analysis of Cellular Vehicles Containing Gold Nanorods.

    PubMed

    Cavigli, Lucia; Tatini, Francesca; Borri, Claudia; Ratto, Fulvio; Centi, Sonia; Cini, Alberto; Lelli, Beatrice; Matteini, Paolo; Pini, Roberto

    2016-05-02

    Gold nanorods are attractive for a range of biomedical applications, such as the photothermal ablation and the photoacoustic imaging of cancer, thanks to their intense optical absorbance in the near-infrared window, low cytotoxicity and potential to home into tumors. However, their delivery to tumors still remains an issue. An innovative approach consists of the exploitation of the tropism of tumor-associated macrophages that may be loaded with gold nanorods in vitro. Here, we describe the preparation and the photoacoustic inspection of cellular vehicles containing gold nanorods. PEGylated gold nanorods are modified with quaternary ammonium compounds, in order to achieve a cationic profile. On contact with murine macrophages in ordinary Petri dishes, these particles are found to undergo massive uptake into endocytic vesicles. Then these cells are embedded in biopolymeric hydrogels, which are used to verify that the stability of photoacoustic conversion of the particles is retained in their inclusion into cellular vehicles. We are confident that these results may provide new inspiration for the development of novel strategies to deliver plasmonic particles to tumors.

  17. Main-chain supramolecular block copolymers.

    PubMed

    Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus

    2011-01-01

    Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.

  18. Spectroscopic investigation of some building blocks of organic conductors: A comparative study

    NASA Astrophysics Data System (ADS)

    Mukherjee, V.; Yadav, T.

    2017-04-01

    Theoretical molecular structures and IR and Raman spectra of di and tetra methyl substituted tetrathiafulvalene and tetraselenafulvalene molecules have been studied. These molecules belong to the organic conductor family and are immensely used as building blocks of several organic conducting devices. The Hartree-Fock and density functional theory with exchange functional B3LYP have been employed for computational purpose. We have also performed normal coordinate analysis to scale the theoretical frequencies and to calculate potential energy distributions for the conspicuous assignments. The exciting frequency and temperature dependent Raman spectra have also presented. Optimization results reveal that the sulphur derivatives possess boat shape while selenium derivatives possess planner structures. Natural bond orbitals analysis has also been performed to study second order interaction between donors and acceptors and to compute molecular orbital occupancy and energy.

  19. Pinenes: Abundant and Renewable Building Blocks for a Variety of Sustainable Polymers.

    PubMed

    Winnacker, Malte

    2018-05-14

    Pinenes - a group of monoterpenes containing a double bond - are very suitable renewable building blocks for a variety of sustainable polymers and materials. Their abundance from mainly non-edible parts of plants as well as the feasibility to isolate them render these compounds unique amongst the variety of biomass that is utilizable for novel materials. Accordingly, their use for the synthesis of biobased polymers has been investigated intensively, and strong progress has been made with this especially within the past 2-3 years. Direct cationic or radical polymerization via the double bonds as well as polymerization upon their further functionalization can afford a variety of sustainable polymers suitable for many applications, which is summarized in this article. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes.

    PubMed

    Peng, Yuan; Li, Yanshuo; Ban, Yujie; Jin, Hua; Jiao, Wenmei; Liu, Xinlei; Yang, Weishen

    2014-12-12

    Layered metal-organic frameworks would be a diverse source of crystalline sheets with nanometer thickness for molecular sieving if they could be exfoliated, but there is a challenge in retaining the morphological and structural integrity. We report the preparation of 1-nanometer-thick sheets with large lateral area and high crystallinity from layered MOFs. They are used as building blocks for ultrathin molecular sieve membranes, which achieve hydrogen gas (H2) permeance of up to several thousand gas permeation units (GPUs) with H2/CO2 selectivity greater than 200. We found an unusual proportional relationship between H2 permeance and H2 selectivity for the membranes, and achieved a simultaneous increase in both permeance and selectivity by suppressing lamellar stacking of the nanosheets. Copyright © 2014, American Association for the Advancement of Science.

  1. Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation

    PubMed Central

    Rusli, Nurul Izni; Tanikawa, Masahiro; Mahmood, Mohamad Rusop; Yasui, Kanji; Hashim, Abdul Manaf

    2012-01-01

    The formation of high-density zinc oxide (ZnO) nanorods on porous silicon (PS) substrates at growth temperatures of 600–1000 °C by a simple thermal evaporation of zinc (Zn) powder in the presence of oxygen (O2) gas was systematically investigated. The high-density growth of ZnO nanorods with (0002) orientation over a large area was attributed to the rough surface of PS, which provides appropriate planes to promote deposition of Zn or ZnOx seeds as nucleation sites for the subsequent growth of ZnO nanorods. The geometrical morphologies of ZnO nanorods are determined by the ZnOx seed structures, i.e., cluster or layer structures. The flower-like hexagonal-faceted ZnO nanorods grown at 600 °C seem to be generated from the sparsely distributed ZnOx nanoclusters. Vertically aligned hexagonal-faceted ZnO nanorods grown at 800 °C may be inferred from the formation of dense arrays of ZnOx clusters. The formation of disordered ZnO nanorods formed at 1000 °C may due to the formation of a ZnOx seed layer. The growth mechanism involved has been described by a combination of self-catalyzed vapor-liquid-solid (VLS) and vapor-solid (VS) mechanism. The results suggest that for a more precise study on the growth of ZnO nanostructures involving the introduction of seeds, the initial seed structures must be taken into account given their significant effects.

  2. Inkjet printed fluorescent nanorod layers exhibit superior optical performance over quantum dots

    NASA Astrophysics Data System (ADS)

    Halivni, Shira; Shemesh, Shay; Waiskopf, Nir; Vinetsky, Yelena; Magdassi, Shlomo; Banin, Uri

    2015-11-01

    Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays.Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the

  3. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy.

    PubMed

    Chen, Yun-Sheng; Frey, Wolfgang; Kim, Seungsoo; Homan, Kimberly; Kruizinga, Pieter; Sokolov, Konstantin; Emelianov, Stanislav

    2010-04-26

    Photothermal stability and, therefore, consistency of both optical absorption and photoacoustic response of the plasmonic nanoabsorbers is critical for successful photoacoustic image-guided photothermal therapy. In this study, silica-coated gold nanorods were developed as a multifunctional molecular imaging and therapeutic agent suitable for image-guided photothermal therapy. The optical properties and photothermal stability of silica-coated gold nanorods under intense irradiation with nanosecond laser pulses were investigated by UV-Vis spectroscopy and transmission electron microscopy. Silica-coated gold nanorods showed increased photothermal stability and retained their superior optical properties under much higher fluences. The changes in photoacoustic response of PEGylated and silica-coated nanorods under laser pulses of various fluences were compared. The silica-coated gold nanorods provide a stable photoacoustic signal, which implies better imaging capabilities and make silica-coated gold nanorods a promising imaging and therapeutic nano-agent for photoacoustic imaging and image-guided photothermal therapy.

  4. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy

    PubMed Central

    Chen, Yun-Sheng; Frey, Wolfgang; Kim, Seungsoo; Homan, Kimberly; Kruizinga, Pieter; Sokolov, Konstantin; Emelianov, Stanislav

    2010-01-01

    Photothermal stability and, therefore, consistency of both optical absorption and photoacoustic response of the plasmonic nanoabsorbers is critical for successful photoacoustic image-guided photothermal therapy. In this study, silica-coated gold nanorods were developed as a multifunctional molecular imaging and therapeutic agent suitable for image-guided photothermal therapy. The optical properties and photothermal stability of silica-coated gold nanorods under intense irradiation with nanosecond laser pulses were investigated by UV-Vis spectroscopy and transmission electron microscopy. Silica-coated gold nanorods showed increased photothermal stability and retained their superior optical properties under much higher fluences. The changes in photoacoustic response of PEGylated and silica-coated nanorods under laser pulses of various fluences were compared. The silica-coated gold nanorods provide a stable photoacoustic signal, which implies better imaging capabilities and make silica-coated gold nanorods a promising imaging and therapeutic nano-agent for photoacoustic imaging and image-guided photothermal therapy. PMID:20588732

  5. Construction of three-dimensional DNA hydrogels from linear building blocks.

    PubMed

    Nöll, Tanja; Schönherr, Holger; Wesner, Daniel; Schopferer, Michael; Paululat, Thomas; Nöll, Gilbert

    2014-08-04

    A three-dimensional DNA hydrogel was generated by self-assembly of short linear double-stranded DNA (dsDNA) building blocks equipped with sticky ends. The resulting DNA hydrogel is thermoresponsive and the length of the supramolecular dsDNA structures varies with temperature. The average diffusion coefficients of the supramolecular dsDNA structures formed by self-assembly were determined by diffusion-ordered NMR spectroscopy (DOSY NMR) for temperatures higher than 60 °C. Temperature-dependent rheological measurements revealed a gel point of 42±1 °C. Below this temperature, the resulting material behaved as a true gel of high viscosity with values for the storage modulus G' being significantly larger than that for the loss modulus G''. Frequency-dependent rheological measurements at 20 °C revealed a mesh size (ξ) of 15 nm. AFM analysis of the diluted hydrogel in the dry state showed densely packed structures of entangled chains, which are also expected to contain multiple interlocked rings and catenanes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Building Blocks for Reliable Complex Nonlinear Numerical Simulations. Chapter 2

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  7. The Self-Assembly of Nanogold for Optical Metamaterials

    NASA Astrophysics Data System (ADS)

    Nidetz, Robert A.

    2011-12-01

    Optical metamaterials are an emerging field that enables manipulation of light like never before. Producing optical metamaterials requires sub-wavelength building blocks. The focus here was to develop methods to produce building blocks for metamaterials from nanogold. Electron-beam lithography was used to define an aminosilane patterned chemical template in order to electrostatically self-assemble citrate-capped gold nanoparticles. Equilibrium self-assembly was achieved in 20 minutes by immersing chemical templates into gold nanoparticle solutions. The number of nanoparticles that self-assembled on an aminosilane dot was controlled by manipulating the diameters of the dots and nanoparticles. Adding salt to the nanoparticle solution enabled the nanoparticles to self-assemble in greater numbers on the same sized dot. However, the preparation of the nanoparticle solution containing salt was sensitive to spikes in the salt concentration which led to aggregation of the nanoparticles and non-specific deposition. Gold nanorods were also electrostatically self-assembled. Polyelectrolyte-coated gold nanorods were patterned with limited success. A polyelectrolyte chemical template also patterned gold nanorods, but the gold nanorods preferred to pattern on the edges of the pattern. Ligand-exchanged gold nanorods displayed the best self-assembly, but suffered from slow kinetics. Self-assembled gold nanoparticles were cross-linked with poly(diallyldimethylammonium chloride). The poly(diallyldimethylammonium chloride) allowed additional nanoparticles to pattern on top of the already patterned nanoparticles. Cross-linked nanoparticles were lifted-off of the substrate by sonication in a sodium hydroxide solution. The presence of van der Waals forces and/or amine bonding prevent the nanogold from lifting-off without sonication. A good-solvent evaporation process was used to self-assemble poly(styrene) coated gold nanoparticles into spherical microbead assemblies. The use of larger

  8. A study of transition from n- to p-type based on hexagonal WO3 nanorods sensor

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Qiao; Hu, Ming; Wei, Xiao-Ying

    2014-04-01

    Hexagonal WO3 nanorods are fabricated by a facile hydrothermal process at 180 °C using sodium tungstate and sodium chloride as starting materials. The morphology, structure, and composition of the prepared nanorods are studied by scanning electron microscopy, X-ray diffraction spectroscopy, and energy dispersive spectroscopy. It is found that the agglomeration of the nanorods is strongly dependent on the PH value of the reaction solution. Uniform and isolated WO3 nanorods with diameters ranging from 100 nm-150 nm and lengths up to several micrometers are obtained at PH = 2.5 and the nanorods are identified as being hexagonal in phase structure. The sensing characteristics of the WO3 nanorod sensor are obtained by measuring the dynamic response to NO2 with concentrations in the range 0.5 ppm-5 ppm and at working temperatures in the range 25 °C-250 °C. The obtained WO3 nanorods sensors are found to exhibit opposite sensing behaviors, depending on the working temperature. When being exposed to oxidizing NO2 gas, the WO3 nanorod sensor behaves as an n-type semiconductor as expected when the working temperature is higher than 50 °C, whereas, it behaves as a p-type semiconductor below 50 °C. The origin of the n- to p-type transition is correlated with the formation of an inversion layer at the surface of the WO3 nanorod at room temperature. This finding is useful for making new room temperature NO2 sensors based on hexagonal WO3 nanorods.

  9. Conjugation of antibodies to gold nanorods through Fc portion: synthesis and molecular specific imaging

    PubMed Central

    Joshi, Pratixa P.; Yoon, Soon Joon; Hardin, William G.; Emelianov, Stanislav; Sokolov, Konstantin V.

    2013-01-01

    Anisotropic gold nanorods provide a convenient combination of properties, such as tunability of plasmon resonances and strong extinction cross-sections in the near-infrared to red spectral region. These properties have created significant interest in the development of antibody conjugation methods for synthesis of targeted nanorods for a number of biomedical applications, including molecular specific imaging and therapy. Previously published conjugation approaches have achieved molecular specificity. However, the current conjugation methods have several downsides including low stability and potential cytotoxicity of bioconjugates that are produced by electrostatic interactions as well as lack of control over antibody orientation during covalent conjugation. Here we addressed these shortcomings by introducing directional antibody conjugation to the gold nanorod surface. The directional conjugation is achieved through the carbohydrate moiety, which is located on one of the heavy chains of the Fc portion of most antibodies. The carbohydrate is oxidized under mild conditions to a hydrazide reactive aldehyde group. Then, a heterofunctional linker with hydrazide and dithiol groups is used to attach antibodies to gold nanorods. The directional conjugation approach was characterized using electron microscopy, zeta potential and extinction spectra. We also determined spectral changes associated with nanorod aggregation; these spectral changes can be used as a convenient quality control of nanorod bioconjugates. Molecular specificity of the synthesized antibody targeted nanorods was demonstrated using hyperspectral optical and photoacoustic imaging of cancer cell culture models. Additionally, we observed characteristic changes in optical spectra of molecular specific nanorods after their interactions with cancer cells; the observed spectral signatures can be explored for sensitive cancer detection. PMID:23631707

  10. MIL-68 (In) nano-rods for the removal of Congo red dye from aqueous solution.

    PubMed

    Jin, Li-Na; Qian, Xin-Ye; Wang, Jian-Guo; Aslan, Hüsnü; Dong, Mingdong

    2015-09-01

    MIL-68 (In) nano-rods were prepared by a facile solvothermal synthesis using NaOAc as modulator agent at 100°C for 30 min. The BET test showed that the specific surface area and pore volume of MIL-68 (In) nanorods were 1252 m(2) g(-1) and 0.80 cm(3) g(-1), respectively. The as-prepared MIL-68 (In) nanorods showed excellent adsorption capacity and rapid adsorption rate for removal of Congo red (CR) dye from water. The maximum adsorption capacity of MIL-68 (In) nanorods toward CR reached 1204 mg g(-1), much higher than MIL-68 (In) microrods and most of the previously reported adsorbents. The adsorption process of CR by MIL-68 (In) nano-rods was investigated and found to be obeying the Langmuir adsorption model in addition to pseudo-second-order rate equation. Moreover, the MIL-68 (In) nanorods showed an acceptable reusability after regeneration with ethanol. All information gives an indication that the as-prepared MIL-68 (In) nanorods show their potential as the adsorbent for highly efficient removal of CR in wastewater. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods

    PubMed Central

    Fernandez Cabada, Tamara; Sanchez Lopez de Pablo, Cristina; Martinez Serrano, Alberto; del Pozo Guerrero, Francisco; Serrano Olmedo, Jose Javier; Ramos Gomez, Milagros

    2012-01-01

    Background Metallic nanorods are promising agents for a wide range of biomedical applications. In this study, we developed an optical hyperthermia method capable of inducing in vitro death of glioblastoma cells. Methods The procedure used was based on irradiation of gold nanorods with a continuous wave laser. This kind of nanoparticle converts absorbed light into localized heat within a short period of time due to the surface plasmon resonance effect. The effectiveness of the method was determined by measuring changes in cell viability after laser irradiation of glioblastoma cells in the presence of gold nanorods. Results Laser irradiation in the presence of gold nanorods induced a significant decrease in cell viability, while no decrease in cell viability was observed with laser irradiation or incubation with gold nanorods alone. The mechanism of cell death mediated by gold nanorods during photothermal ablation was analyzed, indicating that treatment compromised the integrity of the cell membrane instead of initiating the process of programmed cell death. Conclusion The use of gold nanorods in hyperthermal therapies is very effective in eliminating glioblastoma cells, and therefore represents an important area of research for therapeutic development. PMID:22619509

  12. Optical properties of core-shell and multi-shell nanorods

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb; Shehata, Nader

    2018-05-01

    We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.

  13. ZnO nanorods/AZO photoanode for perovskite solar cells fabricated in ambient air

    NASA Astrophysics Data System (ADS)

    La Ferrara, Vera; De Maria, Antonella; Rametta, Gabriella; Della Noce, Marco; Vittoria Mercaldo, Lucia; Borriello, Carmela; Bruno, Annalisa; Delli Veneri, Paola

    2017-08-01

    ZnO nanorods are a good candidate for replacing standard photoanodes, such as TiO2, in perovskite solar cells and in principle superseding the high performances already obtained. This is possible because ZnO nanorods have a fast electron transport rate due to their large surface area. An array of ZnO nanorods is grown by chemical bath deposition starting from Al-doped ZnO (AZO) used both as a seed layer and as an efficient transparent anode in the visible spectral range. In particular, in this work we fabricate methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells using glass/AZO/ZnO nanorods/perovskite/Spiro-OMeTAD/Au as the architecture. The growth of ZnO nanorods has been optimized by varying the precursor concentrations, growth time and solution temperature. All the fabrication process and photovoltaic characterizations have been carried out in ambient air and the devices have not been encapsulated. Power conversion efficiency as high as 7.0% has been obtained with a good stability over 20 d. This is the highest reported value to the best of our knowledge and it is a promising result for the development of perovskite solar cells based on ZnO nanorods and AZO.

  14. Silver nanorod structures for metal enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Badshah, Mohsin Ali; Lu, Xun; Ju, Jonghyun; Kim, Seok-min

    2016-09-01

    Fluorescence based detection is a commonly used methodology in biotechnology and medical diagnostics. Metalenhanced fluorescence (MEF) becomes a promising strategy to improve the sensitivity of fluorescence detection, where fluorophores coupling with surface plasmon on metallic structures results fluorescence enhancement. To apply the MEF methodology in real medical diagnostics, especially for protein or DNA microarray detection, a large area (e.g., slide glass, 75 × 25 mm2) with uniform metallic nanostructures is required. In this study, we fabricated a large area MEF substrates using oblique angle deposition (OAD), which is a single step, inexpensive large area fabrication method of nanostructures. To optimize the morphological effect, Ag-nanorods with various lengths were fabricated on the conventional slide glass substrates. Streptavidin-Cy5 dissolved in buffer solution with different concentration (100ng/ml 100μg/ml) were applied to MEF substrates using a pipette, and the fluorescence signals were measured. The enhancement factor increased with the increase in length of Ag-nanorods and maximum enhancement factor 91x was obtained from Ag-nanorods 750nm length compare to bare glass due to higher surface Plasmon effect.

  15. A Shifted Block Lanczos Algorithm 1: The Block Recurrence

    NASA Technical Reports Server (NTRS)

    Grimes, Roger G.; Lewis, John G.; Simon, Horst D.

    1990-01-01

    In this paper we describe a block Lanczos algorithm that is used as the key building block of a software package for the extraction of eigenvalues and eigenvectors of large sparse symmetric generalized eigenproblems. The software package comprises: a version of the block Lanczos algorithm specialized for spectrally transformed eigenproblems; an adaptive strategy for choosing shifts, and efficient codes for factoring large sparse symmetric indefinite matrices. This paper describes the algorithmic details of our block Lanczos recurrence. This uses a novel combination of block generalizations of several features that have only been investigated independently in the past. In particular new forms of partial reorthogonalization, selective reorthogonalization and local reorthogonalization are used, as is a new algorithm for obtaining the M-orthogonal factorization of a matrix. The heuristic shifting strategy, the integration with sparse linear equation solvers and numerical experience with the code are described in a companion paper.

  16. Development of a physical and electronic model for RuO 2 nanorod rectenna devices

    NASA Astrophysics Data System (ADS)

    Dao, Justin

    Ruthenium oxide (RuO2) nanorods are an emergent technology in nanostructure devices. As the physical size of electronics approaches a critical lower limit, alternative solutions to further device miniaturization are currently under investigation. Thin-film nanorod growth is an interesting technology, being investigated for use in wireless communications, sensor systems, and alternative energy applications. In this investigation, self-assembled RuO2 nanorods are grown on a variety of substrates via a high density plasma, reactive sputtering process. Nanorods have been found to grow on substrates that form native oxide layers when exposed to air, namely silicon, aluminum, and titanium. Samples were analyzed with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques. Conductive Atomic Force Microscopy (C-AFM) measurements were performed on single nanorods to characterize structure and electrical conductivity. The C-AFM probe tip is placed on a single nanorod and I-V characteristics are measured, potentially exhibiting rectifying capabilities. An analysis of these results using fundamental semiconductor physics principles is presented. Experimental data for silicon substrates was most closely approximated by the Simmons model for direct electron tunneling, whereas that of aluminum substrates was well approximated by Fowler-Nordheim tunneling. The native oxide of titanium is regarded as a semiconductor rather than an insulator and its ability to function as a rectifier is not strong. An electronic model for these nanorods is described herein.

  17. AZO nanorods thin films by sputtering method

    NASA Astrophysics Data System (ADS)

    Rosli, A. B.; Shariffudin, S. S.; Awang, Z.; Herman, S. H.

    2018-05-01

    Al-doped zinc oxide (AZO) nanorods thin film were deposited on Au catalyst using RF sputtering at 300 °C. The 15 nm thickness Au catalyst were deposited on glass substrates by sputtering method followed by annealing for 15 min at 500 °C to form Au nanostructures on the glass substrate. The AZO thin films were then deposited on Au catalyst at different RF power ranging from 50 - 200 W. The morphology of AZO was characterized using Field Emission Scanning Electron Microscopy while X-ray Diffraction was used to examine crystallinity of AZO thin films. From this work, the AZO nanorods was found grow at 200 W RF power.

  18. Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles.

    PubMed

    Liu, Zhi; Qiao, Jing; Niu, Zhongwei; Wang, Qian

    2012-09-21

    Viruses belong to a fascinating class of natural supramolecular structures, composed of multiple copies of coat proteins (CPs) that assemble into different shapes with a variety of sizes from tens to hundreds of nanometres. Because of their advantages including simple/economic production, well-defined structural features, unique shapes and sizes, genetic programmability and robust chemistries, recently viruses and virus-like nanoparticles (VLPs) have been used widely in biomedical applications and materials synthesis. In this critical review, we highlight recent advances in the use of virus coat proteins (VCPs) and viral nanoparticles (VNPs) as building blocks in self-assembly studies and materials development. We first discuss the self-assembly of VCPs into VLPs, which can efficiently incorporate a variety of different materials as cores inside the viral protein shells. Then, the self-assembly of VNPs at surfaces or interfaces is summarized. Finally, we discuss the co-assembly of VNPs with different functional materials (178 references).

  19. Probing the Conformational Landscape of Polyether Building Blocks in Supersonic Jets

    NASA Astrophysics Data System (ADS)

    Bocklitz, Sebastian; Hewett, Daniel M.; Zwier, Timothy S.; Suhm, Martin A.

    2016-06-01

    Polyethylene oxides (Polyethylene glycoles) and their phenoxy-capped analogs represent a prominent class of important polymers that are highly used as precursor molecules in supramolecular reactions. After a detailed study on the simplest representative (1,2-dimethoxyethane) [1], we present results on oligoethylene oxides with increasing chain lengths obtained by spontaneous Raman scattering in a supersonic jet. Through variation of stagnation pressure, carrier gas, nozzle distance and temperature we gain information on the conformational landscape as well as the mutual interconversion of low energy conformers. The obtained results are compared to state-of-the-art quantum chemical calculations. Additionally, we present UV as well as IR-UV and UV-UV double resonance studies on 1-methoxy-2-phenoxyethane in a supersonic jet. These complementary techniques allow for conformationally selective electronic and vibrational spectra in a closely related conformational landscape. [1] S. Bocklitz, M. A. Suhm, Constraining the Conformational Landscape of a Polyether Building Block by Raman Jet Spectroscopy, Z. Phys. Chem. 2015, 229, 1625-1648.

  20. Graphene Oxide-Promoted Reshaping and Coarsening of Gold Nanorods and Nanoparticles

    PubMed Central

    Pan, Hanqing; Low, Serena; Weerasuriya, Nisala; Shon, Young-Seok

    2015-01-01

    This paper describes thermally induced reshaping and coarsening behaviors of gold nanorods and nanoparticles immobilized on the surface of graphene oxide. Cetyltrimethylammonium bromide-stabilized gold nanorods with an aspect ratio of ~3.5 (54:15 nm) and glutathione-capped gold nanoparticles with an average core size of ~3 nm were synthesized and self-assembled onto the surface of graphene oxide. The hybrid materials were then heated at different temperatures ranging from 50 to 300 °C. The effects of heat treatments were monitored using UV–vis spectroscopy and transmission electron microscopy (TEM). These results were directly compared with those of heat-treated free-standing gold nanorods and nanoparticles without graphene oxide to understand the heat-induced morphological changes of the nanohybrids. The obtained results showed that the gold nanorods would undergo a complete reshaping to spherical particles at the temperature of 50 °C when they are assembled on graphene oxide. In comparison, the complete reshaping of free-standing gold nanorods to spherical particles would ultimately require a heating of the samples at 200 °C. In addition, the spherical gold nanoparticles immobilized on graphene oxide would undergo a rapid coarsening at the temperature of 100–150 °C, which was lower than the temperature (150–200 °C) required for visible coarsening of free-standing gold nanoparticles. The results indicated that graphene oxide facilitates the reshaping and coarsening of gold nanorods and nanoparticles, respectively, during the heat treatments. The stripping and spillover of stabilizing ligands promoted by graphene oxide are proposed to be the main mechanism for the enhancements in the heat-induced transformations of nanohybrids. PMID:25611371

  1. Dispersions of Aramid Nanofibers: A New Nanoscale Building Block

    PubMed Central

    Yang, Ming; Cao, Keqin; Sui, Lang; Qi, Ying; Zhu, Jian; Waas, Anthony; Arruda, Ellen M.; Kieffer, John; Thouless, M. D.; Kotov, Nicholas A.

    2011-01-01

    Stable dispersions of nanofibers are virtually unknown for synthetic polymers. They can complement analogous dispersions of inorganic components, such as nanoparticles, nanowires, nanosheets, etc as a fundamental component of a toolset for design of nanostructures and metamaterials via numerous solvent-based processing methods. As such, strong flexible polymeric nanofibers are very desirable for the effective utilization within composites of nanoscale inorganic components such as nanowires, carbon nanotubes, graphene, and others. Here stable dispersions of uniform high-aspect-ratio aramid nanofibers (ANFs) with diameters between 3 and 30 nm and up to 10 μm in length were successfully obtained. Unlike the traditional approaches based on polymerization of monomers, they are made by controlled dissolution of standard macroscale form of the aramid polymer, i.e. well known Kevlar threads, and revealed distinct morphological features similar to carbon nanotubes. ANFs are successfully processed into films using layer-by-layer (LBL) assembly as one of the potential methods of preparation of composites from ANFs. The resultant films are transparent and highly temperature resilient. They also display enhanced mechanical characteristics making ANF films highly desirable as protective coatings, ultrastrong membranes, as well as building blocks of other high performance materials in place of or in combination with carbon nanotubes. PMID:21800822

  2. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    NASA Astrophysics Data System (ADS)

    Nakate, U. T.; Bulakhe, R. N.; Lokhande, C. D.; Kale, S. N.

    2016-05-01

    The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  3. Study of annealing effect on the growth of ZnO nanorods on ZnO seed layers

    NASA Astrophysics Data System (ADS)

    Sannakashappanavar, Basavaraj S.; Pattanashetti, Nandini A.; Byrareddy, C. R.; Yadav, Aniruddh Bahadur

    2018-04-01

    A zinc oxide (ZnO) seed layer was deposited on the SiO2/Si substrate by RF sputtering. To study the effect of annealing, the seed layers were classified into annealed and unannealed thin films. Annealing of the seed layers was carried at 450°C. Surface morphology of the seed layers were studied by Atomic force microscopy. ZnO nanorods were then grown on both the types of seed layer by hydrothermal method. The morphology and the structural properties of the nanorods were characterized by X-ray diffraction and Scanning electron microscopy. The effect of seed layer annealing on the growth and orientation of the ZnO nanorods were clearly examined on comparing with the nanorods grown on unannealed seed layer. The nanorods grown on annealed seed layers were found to be well aligned and oriented. Further, the I-V characteristic study was carried out on these aligned nanorods. The results supports positively for the future work to further enhance the properties of developed nanorods for their wide applications in electronic and optoelectronic devices.

  4. Establishing an Appropriate Level of Detail (LoD) for a Building Information Model (BIM) - West Block, Parliament Hill, Ottawa, Canada

    NASA Astrophysics Data System (ADS)

    Fai, S.; Rafeiro, J.

    2014-05-01

    In 2011, Public Works and Government Services Canada (PWGSC) embarked on a comprehensive rehabilitation of the historically significant West Block of Canada's Parliament Hill. With over 17 thousand square meters of floor space, the West Block is one of the largest projects of its kind in the world. As part of the rehabilitation, PWGSC is working with the Carleton Immersive Media Studio (CIMS) to develop a building information model (BIM) that can serve as maintenance and life-cycle management tool once construction is completed. The scale and complexity of the model have presented many challenges. One of these challenges is determining appropriate levels of detail (LoD). While still a matter of debate in the development of international BIM standards, LoD is further complicated in the context of heritage buildings because we must reconcile the LoD of the BIM with that used in the documentation process (terrestrial laser scan and photogrammetric survey data). In this paper, we will discuss our work to date on establishing appropriate LoD within the West Block BIM that will best serve the end use. To facilitate this, we have developed a single parametric model for gothic pointed arches that can be used for over seventy-five unique window types present in the West Block. Using the AEC (CAN) BIM as a reference, we have developed a workflow to test each of these window types at three distinct levels of detail. We have found that the parametric Gothic arch significantly reduces the amount of time necessary to develop scenarios to test appropriate LoD.

  5. A generalized analog implementation of piecewise linear neuron models using CCII building blocks.

    PubMed

    Soleimani, Hamid; Ahmadi, Arash; Bavandpour, Mohammad; Sharifipoor, Ozra

    2014-03-01

    This paper presents a set of reconfigurable analog implementations of piecewise linear spiking neuron models using second generation current conveyor (CCII) building blocks. With the same topology and circuit elements, without W/L modification which is impossible after circuit fabrication, these circuits can produce different behaviors, similar to the biological neurons, both for a single neuron as well as a network of neurons just by tuning reference current and voltage sources. The models are investigated, in terms of analog implementation feasibility and costs, targeting large scale hardware implementations. Results show that, in order to gain the best performance, area and accuracy; these models can be compromised. Simulation results are presented for different neuron behaviors with CMOS 350 nm technology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Using OpenMP vs. Threading Building Blocks for Medical Imaging on Multi-cores

    NASA Astrophysics Data System (ADS)

    Kegel, Philipp; Schellmann, Maraike; Gorlatch, Sergei

    We compare two parallel programming approaches for multi-core systems: the well-known OpenMP and the recently introduced Threading Building Blocks (TBB) library by Intel®. The comparison is made using the parallelization of a real-world numerical algorithm for medical imaging. We develop several parallel implementations, and compare them w.r.t. programming effort, programming style and abstraction, and runtime performance. We show that TBB requires a considerable program re-design, whereas with OpenMP simple compiler directives are sufficient. While TBB appears to be less appropriate for parallelizing existing implementations, it fosters a good programming style and higher abstraction level for newly developed parallel programs. Our experimental measurements on a dual quad-core system demonstrate that OpenMP slightly outperforms TBB in our implementation.

  7. Growth of well-aligned ZnO nanorods using auge catalyst by vapor phase transportation.

    PubMed

    Ha, S Y; Jung, M N; Park, S H; Ko, H J; Ko, H; Oh, D C; Yao, T; Chang, J H

    2006-11-01

    Well-aligned ZnO nanorods have been achieved using new alloy (AuGe) catalyst. Zn powder was used as a source material and it was transported in a horizontal tube furnace onto an AuGe deposited Si substrates. The structural and optical properties of ZnO nanorods were characterized by scanning electron microscopy, high resolution X-ray diffraction, and photoluminescence. ZnO nanorods grown at 650 degrees C on 53 nm thick AuGe layer show uniform shape with the length of 8 +/- 0.5 microm and the diameter of 150 +/- 5 nm. Also, the tilting angle of ZnO nanorods (+/- 5.5 degrees) is confirmed by HRXRD. High structural quality of the nanorods is conformed by the photoluminescence measurement. All samples show strong UV emission without considerable deep level emission. However, weak deep level emission appears at high (700 degrees C) temperature due to the increase of oxygen desertion.

  8. Building Numbers from Primes

    ERIC Educational Resources Information Center

    Burkhart, Jerry

    2009-01-01

    Prime numbers are often described as the "building blocks" of natural numbers. This article shows how the author and his students took this idea literally by using prime factorizations to build numbers with blocks. In this activity, students explore many concepts of number theory, including the relationship between greatest common factors and…

  9. Synthesis and magnetic properties of single-crystalline Na2-xMn8O16 nanorods

    PubMed Central

    2011-01-01

    The synthesis of single-crystalline hollandite-type manganese oxides Na2-xMn8O16 nanorods by a simple molten salt method is reported for the first time. The nanorods were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and a superconducting quantum interference device magnetometer. The magnetic measurements indicated that the nanorods showed spin glass behavior and exchange bias effect at low temperatures. The low-temperature magnetic behaviors can be explained by the uncompensated spins on the surface of the nanorods. PMID:21711626

  10. Blockbusters: Ideas for the Block Center.

    ERIC Educational Resources Information Center

    Adams, Polly K.; Nesmith, Jaynie

    1996-01-01

    Goals of block building in early childhood classrooms focus on physical, social, cognitive, and emotional development. Reports survey results of the value teachers place on block play. Offers illustrations of task cards to use with blocks in math, language arts, social studies, and science. Discusses guidelines and suggests idea cards and sentence…

  11. Plasmonic detection of mercury via amalgam formation on surface-immobilized single Au nanorods

    NASA Astrophysics Data System (ADS)

    Schopf, Carola; Martín, Alfonso; Iacopino, Daniela

    2017-12-01

    Au nanorods were used as plasmonic transducers for investigation of mercury detection through a mechanism of amalgam formation at the nanorod surfaces. Marked scattering color transitions and associated blue shifts of the surface plasmon resonance peak wavelengths (λmax) were measured in individual nanorods by darkfield microscopy upon chemical reduction of Hg(II). Such changes were related to compositional changes occurring as a result of Hg-Au amalgam formation as well as morphological changes in the nanorods' aspect ratios. The plot of λmax shifts vs. Hg(II) concentration showed a linear response in the 10-100 nM concentration range. The sensitivity of the system was ascribed to the narrow width of single nanorod scattering spectra, which allowed accurate determination of peak shifts. The system displayed good selectivity as the optical response obtained for mercury was one order of magnitude higher than the response obtained with competitor ions. Analysis of mercury content in river and tap water were also performed and highlighted both the potential and limitation of the developed method for real sensing applications.

  12. Room temperature growth of ZnO nanorods by hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Tateyama, Hiroki; Zhang, Qiyan; Ichikawa, Yo

    2018-05-01

    The effect of seed layer morphology on ZnO nanorod growth at room temperature was studied via hydrothermal synthesis on seed layers with different thicknesses and further annealed at different temperatures. The change in the thickness and annealing temperature enabled us to control over a diameter of ZnO nanorods which are attributed to the changing of crystallinity and roughness of the seed layers.

  13. The alcohol-sensing behaviour of SnO2 nanorods prepared by a facile solid state reaction

    NASA Astrophysics Data System (ADS)

    Gao, F.; Ren, X. P.; Wan, W. J.; Zhao, Y. P.; Li, Y. H.; Zhao, H. Y.

    2017-02-01

    SnO2 nanorods with the range of 12-85 nm in diameter were fabricated by a facile solid state reaction in the medium of NaCl-KCl mixture at room temperature and calcined at 600, 680, 760 and 840 oC, respectively. The XRD, TEM and XPS were employed to characterize the structure and morphology of the SnO2 nanorods. The influence of the calcination temperature on the gas sensing behaviour of the SnO2 nanorods with different diameter was investigated. The result showed that all the sensors had good response to alcohol. The response of the gracile nanorods prepared at a low calcined temperature demonstrated significantly better than the thick nanorods prepared at a high calcined temperature. The mechanism was attributed to the nonstoichiometric ratio of Sn/O and larger surface area of the gracile nanorods to enhance the oxygen surface adsorption.

  14. Knowledge Gateways: The Building Blocks.

    ERIC Educational Resources Information Center

    Hawkins, Donald T.; And Others

    1988-01-01

    Discusses the need for knowledge gateway systems to provide access to scattered information and the use of technologies in gateway building, including artificial intelligence and expert systems, networking, online retrieval systems, optical storage, and natural language processing. The status of four existing gateways is described. (20 references)…

  15. Fabrication of ZnO nanorod using spray-pyrolysis and chemical bath deposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramadhani, Muhammad F., E-mail: brian@tf.itb.ac.id; Pasaribu, Maruli A. H., E-mail: brian@tf.itb.ac.id; Yuliarto, Brian, E-mail: brian@tf.itb.ac.id

    2014-02-24

    ZnO thin films with nanorod structure were deposited using Ultrasonic Spray Pyrolysis method for seed growth, and Chemical Bath Deposition (CBD) for nanorod growth. High purity Zn-hydrate and Urea are used to control Ph were dissolved in ethanol and aqua bidest in Ultrasonic Spray Pyrolysis process. Glass substrate was placed above the heater plate of reaction chamber, and subsequently sprayed with the range duration of 5, 10 and 20 minutes at the temperatures of 3500 C. As for the Chemical Bath Deposition, the glass substrate with ZnO seed on the surface was immerse to Zn-hydrate, HMTA (Hexa Methylene Tetra Amine)more » and deionized water solution for duration of 3, 5 and 7 hour and temperatures of 600 C, washed in distilled water, dried, and annealed at 3500 C for an hour. The characterization of samples was carried out to reveal the surface morphology using Scanning Electron Microscopy (SEM). From the data, the combination of 5 minutes of Ultrasonic Spray Pyrolysis process and 3 hour of CBD has showed the best structure of nanorod. Meanwhile the longer Spraying process and CBD yield the bigger nanorod structure that have been made, and it makes the films more dense which make the nanorod collide each other and as a result produce unsymetric nanorod structure.« less

  16. Synthesis of borylated porphyrin and bromo- porphyrin as building blocks for light harvesting antenna molecule

    NASA Astrophysics Data System (ADS)

    Radzuan, Nuur Haziqah Mohd; Hassan, Nurul Izzaty; Bakar, Muntaz Abu

    2018-04-01

    The building blocks for synthesis of light harvesting antenna which are 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-10,20-diphenylporphyrin, 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-10,20-dihexylporphyrin and 5,10,15,20-tetra-(bromophenyl)porphyrin were synthesized. Borylated porphyrin was synthesized by Suzuki coupling reaction between A2BC bromo-porphyrin and pinacolborane. Whereas 5,10,15,20-tetra-(bromophenyl) porphyrin was synthesized by Lindsey condensation reaction between pyrrole and 4-bromobenzaldehyde. 1H-NMR, 13C-NMR spectroscopy and UV-visible spectroscopy confirmed the successful formation of all compounds.

  17. LaPO4:Eu fluorescent nanorods, synthesis, characterization and spectroscopic studies on interaction with human serum albumin

    NASA Astrophysics Data System (ADS)

    Guo, Xingjia; Yao, Jie; Liu, Xuehui; Wang, Hongyan; Zhang, Lizhi; Xu, Liping; Hao, Aijun

    2018-06-01

    Eu3+ doped LaPO4 fluorescent nanorods (LaPO4:Eu) was successfully fabricated by a hydrothermal process. The obtained LaPO4:Eu nanorods under the optimal conditions were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD) technique, Fourier transform infrared (FTIR), UV-vis absorption and fluorescence spectroscopy. The nanorods with a length of 50-100 nm and a diameter of about 10 nm, can emit strong red fluorescence upon excitation at 241 nm. The FTIR result confirmed that there are lots of phosphate groups on the surfaces of nanorods. In order to better understand the physiological behavior of nanorods in human body, multiple spectroscopic methods were used to study the interaction between the LaPO4:Eu nanorods and human serum albumin (HSA) in the simulated physiological conditions. The results indicated that the nanorods can effectively quench the intrinsic fluorescence of HSA through a dynamic quenching mode with the association constants of the order of 103 L mol-1. The values of the thermodynamic parameters suggested that the binding of the nanorods to HSA was a spontaneous process and van der Waals forces and hydrogen bonds played a predominant role. The displacement experiments verified that the binding site of nanorods on HSA was mainly located in the hydrophobic pocket of subdomain IIA (site I) of HSA. The binding distance between nanorods and HSA was calculated to be 4.2 nm according to the theory of Förster non-radiation energy transfer. The analysis of synchronous fluorescence, three-dimensional fluorescence (3D) and circular dichroism (CD) spectra indicated that there the addition of LaPO4:Eu nanorods did not caused significant alterations in conformation of HSA secondary structure and the polarity around the amino acid residues.

  18. LaPO4:Eu fluorescent nanorods, synthesis, characterization and spectroscopic studies on interaction with human serum albumin.

    PubMed

    Guo, Xingjia; Yao, Jie; Liu, Xuehui; Wang, Hongyan; Zhang, Lizhi; Xu, Liping; Hao, Aijun

    2018-06-05

    Eu 3+ doped LaPO 4 fluorescent nanorods (LaPO 4 :Eu) was successfully fabricated by a hydrothermal process. The obtained LaPO 4 :Eu nanorods under the optimal conditions were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD) technique, Fourier transform infrared (FTIR), UV-vis absorption and fluorescence spectroscopy. The nanorods with a length of 50-100nm and a diameter of about 10nm, can emit strong red fluorescence upon excitation at 241nm. The FTIR result confirmed that there are lots of phosphate groups on the surfaces of nanorods. In order to better understand the physiological behavior of nanorods in human body, multiple spectroscopic methods were used to study the interaction between the LaPO 4 :Eu nanorods and human serum albumin (HSA) in the simulated physiological conditions. The results indicated that the nanorods can effectively quench the intrinsic fluorescence of HSA through a dynamic quenching mode with the association constants of the order of 10 3 Lmol -1 . The values of the thermodynamic parameters suggested that the binding of the nanorods to HSA was a spontaneous process and van der Waals forces and hydrogen bonds played a predominant role. The displacement experiments verified that the binding site of nanorods on HSA was mainly located in the hydrophobic pocket of subdomain IIA (site I) of HSA. The binding distance between nanorods and HSA was calculated to be 4.2nm according to the theory of Förster non-radiation energy transfer. The analysis of synchronous fluorescence, three-dimensional fluorescence (3D) and circular dichroism (CD) spectra indicated that there the addition of LaPO 4 :Eu nanorods did not caused significant alterations in conformation of HSA secondary structure and the polarity around the amino acid residues. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Experimental observation of spatially resolved photo-luminescence intensity distribution in dual mode upconverting nanorod bundles

    PubMed Central

    Kumar, Pawan; Singh, Satbir; Singh, V. N.; Singh, Nidhi; Gupta, R. K.; Gupta, Bipin Kumar

    2017-01-01

    A novel method for demonstration of photoluminescence intensity distribution in upconverting nanorod bundles using confocal microscopy is reported. Herein, a strategy for the synthesis of highly luminescent dual mode upconverting/downshift Y1.94O3:Ho3+0.02/Yb3+0.04 nanorod bundles by a facile hydrothermal route has been introduced. These luminescent nanorod bundles exhibit strong green emission at 549 nm upon excitations at 449 nm and 980 nm with quantum efficiencies of ~6.3% and ~1.1%, respectively. The TEM/HRTEM results confirm that these bundles are composed of several individual nanorods with diameter of ~100 nm and length in the range of 1–3 μm. Furthermore, two dimensional spatially resolved photoluminescence intensity distribution study has been carried out using confocal photoluminescence microscope throughout the nanorod bundles. This study provides a new direction for the potential use of such emerging dual mode nanorod bundles as photon sources for next generation flat panel optical display devices, bio-medical applications, luminescent security ink and enhanced energy harvesting in photovoltaic applications. PMID:28211891

  20. Polymer Nanocomposite Films: Dispersion of Polymer Grafted Nanorods and Optical Properties

    NASA Astrophysics Data System (ADS)

    Composto, Russell

    2013-03-01

    The thermodynamic factors that affect the dispersion of polymer-brush grafted gold nanorods (NR) in polymer matrix films have been studied by experiment and theory. When brush and matrix have a favorable interaction, such as poly(ethylene oxide) (PEO)-NR/ poly(methyl methacrylate) (PMMA) and polystyrene (PS)-NR / poly(2,6-dimethyl-p-phenylene oxide) (PPO), nanorods are uniformly dispersed. For PEO-NRs in PMMA, the NRs are regularly spaced and well dispersed, independent of the ratio of the degree of polymerization of the matrix (P) to that of the brush (N), namely P/N. As the NR volume fraction increases, the local orientation of the nanorods increases, whereas the macroscopic orientation remains isotropic. When the brush and matrix are similar (i.e., PS-NR / PS and PEO-NR / PEO), the nanorods randomly disperse for P/N < 2 (i.e., wet brush), but align side-by-side in aggregates for P/N > 2. UV-visible spectroscopy and discrete dipole approximation (DDA) calculations demonstrate that surface plasmon coupling leads to a blue shift in the longitudinal surface plasmon resonance (LSPR) as P/N increases. For P/N > 2, self-consistent field theory (SCFT) calculations and Monte Carlo (MC) simulations indicate that nanorod aggregation is caused by depletion-attraction forces. Starting with a dry brush system, namely, a PS matrix where P/N = 30, these attractive forces can be mediated by adding a compatibilizing agent (e.g., PPO) that drives the NRs to disperse. Finally, dry and wet brush behavior is observed for NR aspect ratios varying from 2.5 to 7. However, compared at the same volume fraction, long rods for the dry case exhibit much better local order than lower aspect ratio nanorods, suggesting that long rods may exhibit nematic-like ordering at higher loadings. NSF Polymer and CEMRI Programs.

  1. MICROWAVE-ASSISTED SHAPE CONTROLLED BULK SYNTHESIS OF AG AND FE NANORODS IN POLY (ETHYLENE GLYCOL) SOLUTIONS

    EPA Science Inventory

    Bulk syntheses of silver (Ag) and iron (Fe) nanorods using poly (ethylene glycol), PEG, under microwave irradiation (MW) conditions are reported. Favorable conditions to make Ag nanorods were established and can be extended to make Fe nanorods with uniform size and shape. The nan...

  2. Novel design of highly [110]-oriented barium titanate nanorod array and its application in nanocomposite capacitors.

    PubMed

    Yao, Lingmin; Pan, Zhongbin; Zhai, Jiwei; Chen, Haydn H D

    2017-03-23

    Nanocomposites in capacitors combining highly aligned one dimension ferroelectric nanowires with polymer would be more desirable for achieving higher energy density. However, the synthesis of the well-isolated ferroelectric oxide nanorod arrays with a high orientation has been rather scant, especially using glass-made substrates. In this study, a novel design that is capable of fabricating a highly [110]-oriented BaTiO 3 (BT) nanorod array was proposed first, using a three-step hydrothermal reaction on glass-made substrates. The details for controlling the dispersion of the nanorod array, the orientation and the aspect ratio are also discussed. It is found that the alkaline treatment of the TiO 2 (TO) nanorod array, rather than the completing transformation into sodium titanate, favors the transformation of the TO into the BT nanorod array, as well as protecting the glass-made substrate. The dispersity of the nanorod array can be controlled by the introduction of a glycol ether-deionized water mixed solvent and soluble salts. Moreover, the orientation of the nanorod arrays could be tuned by the ionic strength of the solution. This novel BT nanorod array was used as a filler in a nanocomposite capacitor, demonstrating that a large energy density (11.82 J cm -3 ) can be achieved even at a low applied electric field (3200 kV cm -1 ), which opens us a new application in nanocomposite capacitors.

  3. The Influence of Building Block Play on Mathematics Achievement and Logical and Divergent Thinking in Italian Primary School Mathematics Classes

    ERIC Educational Resources Information Center

    Pirrone, Concetta; Tienken, Christopher H.; Pagano, Tatiana; Di Nuovo, Santo

    2018-01-01

    In an experimental study to explain the effect of structured Building Block Play with LEGO™ bricks on 6-year-old student mathematics achievement and in the areas of logical thinking, divergent thinking, nonverbal reasoning, and mental imagery, students in the experimental group scored significantly higher (p = 0.05) in mathematics achievement and…

  4. ZnO:Ag nanorods as efficient photocatalysts: Sunlight driven photocatalytic degradation of sulforhodamine B

    NASA Astrophysics Data System (ADS)

    Raji, R.; K. S., Sibi; K. G., Gopchandran

    2018-01-01

    Visible light responsive highly photocatalytic ZnO:Ag nanorods with varying Ag concentration were synthesized via co-precipitation method. X-ray diffraction analysis and high resolution transmission electron microscopy investigations confirmed the hexagonal wurtzite phase for these ZnO:Ag nanorods with preferential growth along the (101) plane. Raman shift and luminescence measurements indicated that the incorporation of Ag influences the lattice vibrational modes; there by causing distortion in lattice, inducing silent vibrational modes and emission behavior by quenching of both the band edge and visible emissions respectively. The photocatalytic performance of these nanorods as catalysts was tested by observing the photodegradation of a representative dye pollutant, viz., sulforhodamine B under sunlight irradiation. Photocatalytic performance was evaluated by determining the rate of reaction kinetics, photodegradation efficiency and mineralization efficiency. A high rate constant of 0.552 min-1, chemical oxygen demand value of 5.8 ppm and a mineralization efficiency of 94% were obtained when ZnO: Ag nanorods with an Ag content of 1.5 at.% were used as catalysts. The observed increase in photocatalytic efficiency with Ag content in ZnO:Ag nanorods is attributed to the electron scavenging action of silver, Schottky barrier between the Ag and ZnO interface and the better utilization of sunlight due to enhanced absorption due to plasmons in the visible region. BET analysis indicated that silver doping causes effective surface area of nanorods to increase, which in turn increases the photocatalytic efficiency. The possible mechanism for degradation of dye under sunlight irradiation is described with a schematic and the photostability of the ZnO:Ag nanorods were also tested through five repetitive cycles. This work suggests that the prepared ZnO:Ag nanorods are excellent reusable photocatalysts for the degradation of toxic organic waste in water, which causes severe

  5. Metal molybdate nanorods as non-precious electrocatalysts for the oxygen reduction

    NASA Astrophysics Data System (ADS)

    Wu, Tian; Zhang, Lieyu

    2015-12-01

    Development of non-precious electrocatalysts with applicable electrocatalytic activity towards the oxygen reduction reaction (ORR) is important to fulfill broad-based and large-scale applications of metal/air batteries and fuel cells. Herein, nickel and cobalt molybdates with uniform nanorod morphology are synthesized using a facile one-pot hydrothermal method. The ORR activity of the prepared metal molybdate nanorods in alkaline media are investigated by using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperomety in rotating disk electrode (RDE) techniques. The present study suggests that the prepared metal molybdate nanorods exhibit applicable electrocatalytic activities towards the ORR in alkaline media, promising the applications as non-precious cathode in fuel cells and metal-air batteries.

  6. Hydrothermally Processed Photosensitive Field-Effect Transistor Based on ZnO Nanorod Networks

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Bhargava, Kshitij; Dixit, Tejendra; Palani, I. A.; Singh, Vipul

    2016-11-01

    Formation of a stable, reproducible zinc oxide (ZnO) nanorod-network-based photosensitive field-effect transistor using a hydrothermal process at low temperature has been demonstrated. K2Cr2O7 additive was used to improve adhesion and facilitate growth of the ZnO nanorod network over the SiO2/Si substrate. Transistor characteristics obtained in the dark resemble those of the n-channel-mode field-effect transistor (FET). The devices showed I on/ I off ratio above 8 × 102 under dark condition, field-effect mobility of 4.49 cm2 V-1 s-1, and threshold voltage of -12 V. Further, under ultraviolet (UV) illumination, the FET exhibited sensitivity of 2.7 × 102 in off-state (-10 V) versus 1.4 in on-state (+9.7 V) of operation. FETs based on such nanorod networks showed good photoresponse, which is attributed to the large surface area of the nanorod network. The growth temperature for ZnO nanorod networks was kept at 110°C, enabling a low-temperature, cost-effective, simple approach for high-performance ZnO-based FETs for large-scale production. The role of network interfaces in the FET performance is also discussed.

  7. Exciton Emission from Bare and Alq3/Gold Coated GaN Nanorods

    NASA Astrophysics Data System (ADS)

    Mohammadi, Fatemesadat; Kuhnert, Gerd; Hommel, Detlef; Schmitzer, Heidrun; Wagner, Hans-Peter

    We study the excitonic and impurity related emission in bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature-dependent time-integrated (TI) and time-resolved (TR) photoluminescence (PL). The GaN nanorods were grown by molecular beam epitaxy. Alq3 as well as Alq3/gold covered nanorods were synthesized by organic molecular beam deposition. In the near-band edge region a donor-bound-exciton (D0X) emission is observed at 3.473 eV. Another emission band at 3.275 eV reveals LO-phonon replica and is attributed to a donor-acceptor-pair (DAP) luminescence. TR PL traces at 20 K show a nearly biexponential decay for the D0X with lifetimes of approximately 180 and 800 ps for both bare and Alq3 coated nanorods. In GaN nanorods which were coated with an Alq3 film and subsequently with a 10 nm thick gold layer we observe a PL quenching of D0X and DAP band and the lifetimes of the D0X transition shorten. The quenching behaviour is partially attributed to the energy-transfer from free excitons and donor-bound-excitons to plasmon oscillations in the gold layer.

  8. Bioanalytical system for detection of cancer cells with photoluminescent ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Viter, R.; Jekabsons, K.; Kalnina, Z.; Poletaev, N.; Hsu, S. H.; Riekstina, U.

    2016-11-01

    Using photoluminescent ZnO nanorods and carbohydrate marker SSEA-4, a novel cancer cell recognition system was developed. Immobilization of SSEA-4 antibodies (αSSEA-4) on ZnO nanorods was performed in buffer solution (pH = 7.1) over 2 h. The cancer cell line probes were fixed on the glass slide. One hundred microliters of ZnO-αSSEA-4 conjugates were deposited on the cell probe and exposed for 30 min. After washing photoluminescence spectra were recorded. Based on the developed methodology, ZnO-αSSEA-4 probes were tested on patient-derived breast and colorectal carcinoma cells. Our data clearly show that the carbohydrate SSEA-4 molecule is expressed on cancer cell lines and patient-derived cancer cells. Moreover, SSEA-4 targeted ZnO nanorods bind to the patient-derived cancer cells with high selectivity and the photoluminescence signal increased tremendously compared to the signal from the control samples. Furthermore, the photoluminescence intensity increase correlated with the extent of malignancy in the target cell population. A novel portable bioanalytical system, based on optical ZnO nanorods and fiber optic detection system was developed. We propose that carbohydrate SSEA-4 specific ZnO nanorods could be used for the development of cancer diagnostic biosensors and for targeted therapy.

  9. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods.

    PubMed

    Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang

    2014-01-01

    Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10(-8) refractive index units could be achieved with optimal deposition parameters of silver nanorods.

  10. Two-stage epitaxial growth of vertically-aligned SnO 2 nano-rods on(001) ceria

    DOE PAGES

    Solovyov, Vyacheslav F.; Wu, Li-jun; Rupich, Martin W.; ...

    2014-09-20

    Growth of high-aspect ratio oriented tin oxide, SnO 2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO 2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO 2 deposit. Second, vertical SnO 2nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 μm long nano-rods with an average diameter of ≈20 nm.

  11. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol

    PubMed Central

    Al-Sabahi, Jamal; Bora, Tanujjal; Al-Abri, Mohammed; Dutta, Joydeep

    2016-01-01

    Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO) nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC) was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region. PMID:28773363

  12. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol.

    PubMed

    Al-Sabahi, Jamal; Bora, Tanujjal; Al-Abri, Mohammed; Dutta, Joydeep

    2016-03-28

    Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO) nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC) was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region.

  13. Impact: a low cost, reconfigurable, digital beamforming common module building block for next generation phased arrays

    NASA Astrophysics Data System (ADS)

    Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris

    2015-05-01

    Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.

  14. Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics.

    PubMed

    Lin, Chenxi; Huang, Ningfeng; Povinelli, Michelle L

    2012-01-02

    We carry out a systematic numerical study of the effects of aperiodicity on silicon nanorod anti-reflection structures. We use the scattering matrix method to calculate the average reflection loss over the solar spectrum for periodic and aperiodic arrangements of nanorods. We find that aperiodicity can either improve or deteriorate the anti-reflection performance, depending on the nanorod diameter. We use a guided random-walk algorithm to design optimal aperiodic structures that exhibit lower reflection loss than both optimal periodic and random aperiodic structures.

  15. Nanoscopic insights into the effect of silicon on core-shell InGaN/GaN nanorods: Luminescence, composition, and structure

    NASA Astrophysics Data System (ADS)

    Ren, Christopher X.; Tang, Fengzai; Oliver, Rachel A.; Zhu, Tongtong

    2018-01-01

    GaN-based nanorods and nanowires have recently shown great potential as a platform for future energy-efficient photonic and optoelectronic applications, such as light emitting diodes and nanolasers. Currently, the most industrially scalable method of growing III-nitride nanorods remains metal-organic vapour phase epitaxy: whilst this growth method is often used in conjunction with extrinsic metallic catalyst particles, these particles can introduce unwanted artifacts in the nanorods such as stacking faults. In this paper, we examine the catalyst-free growth of GaN/InGaN core-shell nanorods by metal-organic vapor phase epitaxy for optoelectronic applications using silane to enhance the vertical growth of the nanorods. We find that both the silane concentration and exposure time can greatly affect the nanorod properties, and that larger concentrations and longer exposure times can severely degrade the nanorod structure and thus result in reduced emission from the InGaN QW shell. Finally, we report that the mechanism behind the effect of silane on the nanorod structure is the unintentional formation of an SiNx interlayer following completion of the growth of the nanorod core. This interlayer induces the growth of GaN islands on the nanorod sidewalls, the spatial distribution of which can affect their subsequent coalescence during the lateral growth stages and result in non-uniformity in the nanorod structure. This suggests that careful control of the silane flow must be exerted during growth to achieve both high aspect ratio nanorods and uniform emission along the length of the nanorod.

  16. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods.

    PubMed

    Chen, Feng; Huang, Peng; Zhu, Ying-Jie; Wu, Jin; Zhang, Chun-Lei; Cui, Da-Xiang

    2011-12-01

    The design and synthesis of multifunctional systems with high biocompatibility are very significant for the future of clinical applications. Herein, we report a microwave-assisted rapid synthesis of multifunctional Eu(3+)/Gd(3+) dual-doped hydroxyapatite (HAp) nanorods, and the photoluminescence (PL), drug delivery and in vivo imaging of as-prepared Eu(3+)/Gd(3+) doped HAp nanorods. The photoluminescent and magnetic multifunctions of HAp nanorods are realized by the dual-doping with Eu(3+) and Gd(3+). The PL intensity of doped HAp nanorods can be adjusted by varying Eu(3+) and Gd(3+) concentrations. The magnetization of doped HAp nanorods increases with the concentration of doped Gd(3+). The as-prepared Eu(3+)/Gd(3+)-doped HAp nanorods exhibit inappreciable toxicity to the cells in vitro. More importantly, the Eu(3+)/Gd(3+)-doped HAp nanorods show a high drug adsorption capacity and sustained drug release using ibuprofen as a model drug, and the drug release is governed by a diffusion process. Furthermore, the noninvasive visualization of nude mice with subcutaneous injection indicates that the Eu(3+)/Gd(3+)-doped HAp nanorods with the photoluminescent function are suitable for in vivo imaging. In vitro and in vivo imaging tests indicate that Eu(3+)/Gd(3+)-doped HAp nanorods have a potential in applications such as a multiple-model imaging agent for magnetic resonance (MR) imaging, photoluminescence imaging and computed tomography (CT) imaging. The Eu(3+)/Gd(3+) dual-doped HAp nanorods are promising for applications in the biomedical fields such as multifunctional drug delivery systems with imaging guidance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Expedient Route To Access Rare Deoxy Amino l-Sugar Building Blocks for the Assembly of Bacterial Glycoconjugates.

    PubMed

    Sanapala, Someswara Rao; Kulkarni, Suvarn S

    2016-04-13

    Bacterial glycoproteins and oligosaccharides contain several rare deoxy amino l-sugars which are virtually absent in the human cells. This structural difference between the bacterial and host cell surface glycans can be exploited for the development of carbohydrate based vaccines and target specific drugs. However, the unusual deoxy amino l-sugars present in the bacterial glycoconjugates are not available from natural sources. Thus, procurement of orthogonally protected rare l-sugar building blocks through efficient chemical synthesis is a crucial step toward the synthesis of structurally well-defined and homogeneous complex glycans. Herein, we report a general and expedient methodology to access a variety of unusual deoxy amino l-sugars starting from readily available l-rhamnose and l-fucose via highly regioselective, one-pot double serial and double parallel displacements of the corresponding 2,4-bistriflates using azide and nitrite anions as nucleophiles. Alternatively, regioselective monotriflation at O2, O3, and O4 of l-rhamnose/l-fucose allowed selective inversions at respective positions leading to diverse rare sugars. The orthogonally protected deoxy amino l-sugar building blocks could be stereoselectively assembled to obtain biologically relevant bacterial O-glycans, as exemplified by the first total synthesis of the amino linker-attached, conjugation-ready tetrasaccharide of O-PS of Yersinia enterocolitica O:50 strain 3229 and the trisaccharide of Pseudomonas chlororaphis subsp. aureofaciens strain M71.

  18. Real-time atomistic observation of structural phase transformations in individual hafnia nanorods

    DOE PAGES

    Hudak, Bethany M.; Depner, Sean W.; Waetzig, Gregory R.; ...

    2017-05-12

    High-temperature phases of hafnium dioxide have exceptionally high dielectric constants and large bandgaps, but quenching them to room temperature remains a challenge. Scaling the bulk form to nanocrystals, while successful in stabilizing the tetragonal phase of isomorphous ZrO 2, has produced nanorods with a twinned version of the room temperature monoclinic phase in HfO 2. Here we use in situ heating in a scanning transmission electron microscope to observe the transformation of an HfO 2 nanorod from monoclinic to tetragonal, with a transformation temperature suppressed by over 1000°C from bulk. When the nanorod is annealed, we observe with atomic-scale resolutionmore » the transformation from twinned-monoclinic to tetragonal, starting at a twin boundary and propagating via coherent transformation dislocation; the nanorod is reduced to hafnium on cooling. Unlike the bulk displacive transition, nanoscale size-confinement enables us to manipulate the transformation mechanism, and we observe discrete nucleation events and sigmoidal nucleation and growth kinetics.« less

  19. Shell Layer Thickness-Dependent Photocatalytic Activity of Sputtering Synthesized Hexagonally Structured ZnO-ZnS Composite Nanorods

    PubMed Central

    Liang, Yuan-Chang; Lo, Ya-Ru; Wang, Chein-Chung; Xu, Nian-Cih

    2018-01-01

    ZnO-ZnS core-shell nanorods are synthesized by combining the hydrothermal method and vacuum sputtering. The core-shell nanorods with variable ZnS shell thickness (7–46 nm) are synthesized by varying ZnS sputtering duration. Structural analyses demonstrated that the as-grown ZnS shell layers are well crystallized with preferring growth direction of ZnS (002). The sputtering-assisted synthesized ZnO-ZnS core-shell nanorods are in a wurtzite structure. Moreover, photoluminance spectral analysis indicated that the introduction of a ZnS shell layer improved the photoexcited electron and hole separation efficiency of the ZnO nanorods. A strong correlation between effective charge separation and the shell thickness aids the photocatalytic behavior of the nanorods and improves their photoresponsive nature. The results of comparative degradation efficiency toward methylene blue showed that the ZnO-ZnS nanorods with the shell thickness of approximately 17 nm have the highest photocatalytic performance than the ZnO-ZnS nanorods with other shell layer thicknesses. The highly reusable catalytic efficiency and superior photocatalytic performance of the ZnO-ZnS nanorods with 17 nm-thick ZnS shell layer supports their potential for environmental applications. PMID:29316671

  20. Growth of thin film containing high density ZnO nanorods with low temperature calcinated seed layer

    NASA Astrophysics Data System (ADS)

    Panda, Rudrashish; Samal, Rudranarayan; Khatua, Lizina; Das, Susanta Kumar

    2018-05-01

    In this work we demonstrate the growth of thin film containing high density ZnO nanorods by using drop casting of the seed layer calcinated at a low temperature of 132 °C. Chemical bath deposition (CBD) method is used to grow the nanorods. X-ray diffraction (XRD) analysis and Field Emission Scanning Electron Microscopy (FESEM) are performed for the structural and morphological characterizations of the nanorods. The average diameter and length of nanorods are found to be 33 nm and 270 nm respectively. The bandgap of the material is estimated to be 3.2 eV from the UV-Visible absorption spectroscopy. The reported method is much more cost-effective and can be used for growth of ZnO nanorods for various applications.

  1. Growth of ZnO nanorods on stainless steel wire using chemical vapour deposition and their photocatalytic activity.

    PubMed

    Abd Aziz, Siti Nor Qurratu Aini; Pung, Swee-Yong; Ramli, Nurul Najiah; Lockman, Zainovia

    2014-01-01

    The photodegradation efficiency of ZnO nanoparticles in removal of organic pollutants deteriorates over time as a high percentage of the nanoparticles can be drained away by water during the wastewater treatment. This problem can be solved by growing the ZnO nanorods on stainless steel wire. In this work, ZnO nanorods were successfully grown on stainless steel wire by chemical vapour deposition. The SAED analysis indicates that ZnO nanorod is a single crystal and is preferentially grown in [0001] direction. The deconvoluted O 1s peak at 531.5 eV in XPS analysis is associated with oxygen deficient, revealing that the ZnO nanorods contain many oxygen vacancies. This observation is further supported by the finding of the small I(uv)/I(vis) ratio, that is, ~1 in the photoluminescence analysis. The growth of ZnO nanorods on stainless steel wire was governed by vapour-solid mechanism as there were no Fe particles observed at the tips of the nanorods. The photodegradation of Rhodamine B solution by ZnO nanorods followed the first-order kinetics.

  2. Growth of ZnO Nanorods on Stainless Steel Wire Using Chemical Vapour Deposition and Their Photocatalytic Activity

    PubMed Central

    Abd Aziz, Siti Nor Qurratu Aini; Pung, Swee-Yong; Ramli, Nurul Najiah; Lockman, Zainovia

    2014-01-01

    The photodegradation efficiency of ZnO nanoparticles in removal of organic pollutants deteriorates over time as a high percentage of the nanoparticles can be drained away by water during the wastewater treatment. This problem can be solved by growing the ZnO nanorods on stainless steel wire. In this work, ZnO nanorods were successfully grown on stainless steel wire by chemical vapour deposition. The SAED analysis indicates that ZnO nanorod is a single crystal and is preferentially grown in [0001] direction. The deconvoluted O 1s peak at 531.5 eV in XPS analysis is associated with oxygen deficient, revealing that the ZnO nanorods contain many oxygen vacancies. This observation is further supported by the finding of the small I uv/I vis ratio, that is, ~1 in the photoluminescence analysis. The growth of ZnO nanorods on stainless steel wire was governed by vapour-solid mechanism as there were no Fe particles observed at the tips of the nanorods. The photodegradation of Rhodamine B solution by ZnO nanorods followed the first-order kinetics. PMID:24587716

  3. Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures.

    PubMed

    Ryu, Han-Youl

    2014-02-04

    Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs. PACS: 41.20.Jb; 42.72.Bj; 85.60.Jb.

  4. Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures

    PubMed Central

    2014-01-01

    Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs. PACS 41.20.Jb; 42.72.Bj; 85.60.Jb PMID:24495598

  5. Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption

    PubMed Central

    Su, Zhaoxian; Yin, Jianbo; Zhao, Xiaopeng

    2015-01-01

    We design a soft infrared metamaterial absorber based on gold nanorods dispersed in liquid crystal (LC) placed on a gold film and theoretically investigate its total absorption character. Because the nanorods align with the LC molecule, the gold nanorods/LC hybrid exhibits different permittivity as a function of tilt angle of LC. At a certain tilt angle, the absorber shows an omnidirectional total absorption effect. By changing the tilt angle of LC by an external electric field, the total absorption character can be adjusted. The total absorption character also depends on the concentration, geometric dimension of nanorods, and defect of nanorod arrangement in LC. When the LC contains different size of gold nanorods, a broadband absorption can be easily realized. The characteristics including flexibility, omnidirectional, broadband and tunablility make the infrared metamaterial absorber possess potential use in smart metamaterial devices. PMID:26576660

  6. Monodispersed fabrication and dielectric studies on ethylenediamine passivated α-manganese dioxide nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, A. Martin; Kumar, R. Thilak, E-mail: manojthilak@yahoo.com

    2016-09-15

    Highlights: • Monodispersed ethylenediamine (EDA) passivated α-MnO{sub 2} nanorods were fabricated by inexpensive wet chemical method. • FTIR analysis indicated that surface passivation is strongly influenced by the introduction of the organic ligand. • XRD and HR-SEM revealed the structure and morphology of the fabricated α-MnO{sub 2} nanorods with an average size of about 40 × 200 nm. • Dielectric studies pointed out that the fabricated α-MnO{sub 2} is semiconducting in nature with resistivity, ρ = 1.46 to 5.76 × 10{sup 3} Ωcm. • The optical energy gap for the fabricated α-MnO{sub 2} nanorods is found to be around 1.37more » eV. - Abstract: In this present work, pure α-MnO{sub 2} nanorods were fabricated by the reduction of 0.2 m/L of KMnO{sub 4} with 0.2 m/L of Na{sub 2}S{sub 2}O{sub 3}·5H{sub 2}O and by passivating with the organic ligand Ethylenediamine (EDA). The structural, functional, morphological and chemical composition of the nanorods were investigated by X-Ray Diffractometer (XRD), Fourier Transform Infrared Spectrometer (FTIR), High Resolution Scanning Electron Microscope (HR-SEM) and Energy Dispersive X-Ray Spectrometry (EDX). The XRD analysis indicated high crystalline nature of the product and FTIR confirmed the contribution of the organic ligand in surface passivation. HR-SEM image revealed the morphology of the α-MnO{sub 2} nanorods with an average size of about 40 × 200 nm. EDX confirmed the presence of Mn and O in the material. UV–visible spectrophotometery was used to determine the absorption behavior of the nanorods and an indirect band gap of 1.37 eV was acquired by Taucplot. Dielectric studies were carried out using Broadband Dielectric Spectrometer(BDS) and the resistivity was found to be around the semiconductor range (ρ = 1.46 to 5.76 × 10{sup 3} Ωcm).« less

  7. Core-Shell Particles as Building Blocks for Systems with High Duality Symmetry

    NASA Astrophysics Data System (ADS)

    Rahimzadegan, Aso; Rockstuhl, Carsten; Fernandez-Corbaton, Ivan

    2018-05-01

    Material electromagnetic duality symmetry requires a system to have equal electric and magnetic responses. Intrinsically dual materials that meet the duality conditions at the level of the constitutive relations do not exist in many frequency bands. Nevertheless, discrete objects like metallic helices and homogeneous dielectric spheres can be engineered to approximate the dual behavior. We exploit the extra degrees of freedom of a core-shell dielectric sphere in a particle optimization procedure. The duality symmetry of the resulting particle is more than 1 order of magnitude better than previously reported nonmagnetic objects. We use T -matrix-based multiscattering techniques to show that the improvement is transferred onto the duality symmetry of composite objects when the core-shell particle is used as a building block instead of homogeneous spheres. These results are relevant for the fashioning of systems with high duality symmetry, which are required for some technologically important effects.

  8. Synthesis and photoelectrochemical properties of a novel CuO/ZnO nanorod photocathode for solar hydrogen generation

    NASA Astrophysics Data System (ADS)

    Shaislamov, Ulugbek; Lee, Heon-Ju

    2016-10-01

    Here, we present a facile synthesis method and photoelectrochemical characterizations of a p-type CuO-nanorod array photoelectrode with ZnO nanorod branches. Vertically-aligned CuO nanorods were synthesized by using direct oxidation of metallic Cu nanorods grown on a Cu substrate by using a facile template-assisted electrodeposition method. The formed CuONR/ZnONB hierarchically-structured photoelectrode exhibited remarkable photoelectrodechemical performance and outstanding stability compared to the CuO NR photoelectrode without ZnO NR branches. Morphological, optical and electrochemical characterizations were carried out in order to examine the effects of ZnO nanorod branches on the stability and the overall electrochemical performance of the electrode.

  9. Enhancing absorption in coated semiconductor nanowire/nanorod core-shell arrays using active host matrices

    NASA Astrophysics Data System (ADS)

    Jule, Leta; Dejene, Francis; Roro, Kittessa

    2016-12-01

    In the present work, we investigated theoretically and experimentally the interaction of radiation field phenomena interacting with arrays of nanowire/nanorod core-shell embedded in active host matrices. The optical properties of composites are explored including the case when the absorption of propagating wave by dissipative component is completely compensated by amplification in active (lasing) medium. On the basis of more elaborated modeling approach and extended effective medium theory, the effective polarizability and the refractive index of electromagnetic mode dispersion of the core-shell nanowire arrays are derived. ZnS(shell)-coated by sulphidation process on ZnO(shell) nanorod arrays grown on (100) silicon substrate by chemical bath deposition (CBD) has been used for theoretical comparison. Compared with the bare ZnO nanorods, ZnS-coated core/shell nanorods exhibit a strongly reduced ultraviolet (UV) emission and a dramatically enhanced deep level (DL) emission. Obviously, the UV and DL emission peaks are attributed to the emissions of ZnO nanorods within ZnO/ZnS core/shell nanorods. The reduction of UV emission after ZnS coating seems to agree with the charge separation mechanism of type-II band alignment that holes transfer from the core to shell, which would quench the UV emission to a certain extent. Our theoretical calculations and numerical simulation demonstrate that the use of active host (amplifying) medium to compensate absorption at metallic inclusions. Moreover the core-shell nanorod/nanowire arrays create the opportunity for broad band absorption and light harvesting applications.

  10. Cyclodextrins as versatile building blocks for regenerative medicine.

    PubMed

    Alvarez-Lorenzo, Carmen; García-González, Carlos A; Concheiro, Angel

    2017-12-28

    Cyclodextrins (CDs) are one of the most versatile substances produced by nature, and it is in the aqueous biological environment where the multifaceted potential of CDs can be completely unveiled. CDs form inclusion complexes with a variety of guest molecules, including polymers, producing very diverse biocompatible supramolecular structures. Additionally, CDs themselves can trigger cell differentiation to distinct lineages depending on the substituent groups and also promote salt nucleation. These features together with the affinity-driven regulated release of therapeutic molecules, growth factors and gene vectors explain the rising interest for CDs as building blocks in regenerative medicine. Supramolecular poly(pseudo)rotaxane structures and zipper-like assemblies exhibit outstanding viscoelastic properties, performing as syringeable implants. The sharp shear-responsiveness of the supramolecular assemblies is opening new avenues for the design of bioinks for 3D printing and also of electrospun fibers. CDs can also be transformed into polymerizable monomers to prepare alternative nanostructured materials. The aim of this review is to analyze the role that CDs may play in regenerative medicine through the analysis of the last decade research. Most applications of CD-based scaffolds are focussed on non-healing bone fractures, cartilage reparation and skin recovery, but also on even more challenging demands such as neural grafts. For the sake of clarity, main sections of this review are organized according to the architecture of the CD-based scaffolds, mainly syringeable supramolecular hydrogels, 3D printed scaffolds, electrospun fibers, and composites, since the same scaffold type may find application in different tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics

    NASA Astrophysics Data System (ADS)

    Tiwari, Sadhana; Vinchurkar, Madhuri; Rao, V. Ramgopal; Garnier, Gil

    2017-03-01

    Distinguishing a specific biomarker from a biofluid sample containing a large variety of proteins often requires the selective preconcentration of that particular biomarker to a detectable level for analysis. Low-cost, paper-based device is an emerging opportunity in diagnostics. In the present study, we report a novel Zinc oxide nanorods functionalized paper platform for the preconcentration of Myoglobin, a cardiac biomarker. Zinc oxide nanorods were grown on a Whatman filter paper no. 1 via the standard hydrothermal route. The growth of Zinc oxide nanorods on paper was confirmed by a combination of techniques consisting of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS,) scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX) analysis. The Zinc oxide nanorods modified Whatman filter paper (ZnO-NRs/WFP) was further tested for use as a protein preconcentrator. Paper-based ELISA was performed for determination of pre-concentration of cardiac marker protein Myoglobin using the new ZnO-NRs/WFP platform. The ZnO-NRs/WFP could efficiently capture the biomarker even from a very dilute solution (Myoglobin < 50 nM). Our ELISA results show a threefold enhancement in protein capture with ZnO-NRs/WFP compared to unmodified Whatman filter paper, allowing accurate protein analysis and showing the diagnostic concept.

  12. Synthesis and characterisations of SnO2 nanorods via low temperature hydrothermal method

    NASA Astrophysics Data System (ADS)

    Inderan, Vicinisvarri; Lim, Shin Ye; Ong, Teng Sian; Bastien, Samuel; Braidy, Nadi; Lee, Hooi Ling

    2015-12-01

    In the present study, tin oxide (SnO2) nanorods were successfully synthesized through hydrothermal treatment at a relatively low temperature (180 °C) using various concentrations of metal precursor, SnCl4·5H2O (0.04 M-0.16 M) in a mixed solution of ethanol and water before bringing the pH to 13 by adding 6 M NaOH. The effect of concentration on the morphology and structure of SnO2 were comprehensively studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis) and Fourier Transform Infrared (FTIR). It was found that increasing the concentration of tin precursor from 0.04 M to 0.16 M leads to a complete conversion from nanospheres to nanoplates and finally to nanorods. The SEM results confirmed that SnO2 nanorods are obtained for concentrations up to 0.12 M. At synthesis condition of 0.12 M, SnCl4·5H2O and pH 13, single rutile nanorods with preferential growth in the [002] direction were obtained. It was found that the diameter of nanorods formed at 0.12 M is similar to that of nanoplates formed at 0.08 M (20 nm), which suggests that spear-shaped nanorods might have originated from the primary nanoparticles (the particles grown in lower concentration during hydrothermal treatment). Possible reaction mechanisms are proposed to explain the observed morphologies.

  13. Ultrasensitive hydrogen sensor based on Pt-decorated WO₃ nanorods prepared by glancing-angle dc magnetron sputtering.

    PubMed

    Horprathum, M; Srichaiyaperk, T; Samransuksamer, B; Wisitsoraat, A; Eiamchai, P; Limwichean, S; Chananonnawathorn, C; Aiempanakit, K; Nuntawong, N; Patthanasettakul, V; Oros, C; Porntheeraphat, S; Songsiriritthigul, P; Nakajima, H; Tuantranont, A; Chindaudom, P

    2014-12-24

    In this work, we report an ultrasensitive hydrogen (H2) sensor based on tungsten trioxide (WO3) nanorods decorated with platinum (Pt) nanoparticles. WO3 nanorods were fabricated by dc magnetron sputtering with a glancing angle deposition (GLAD) technique, and decorations of Pt nanoparticles were performed by normal dc sputtering on WO3 nanorods with varying deposition time from 2.5 to 15 s. Crystal structures, morphologies, and chemical information on Pt-decorated WO3 nanorods were characterized by grazing-incident X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and photoelectron spectroscopy, respectively. The effect of the Pt nanoparticles on the H2-sensing performance of WO3 nanorods was investigated over a low concentration range of 150-3000 ppm of H2 at 150-350 °C working temperatures. The results showed that the H2 response greatly increased with increasing Pt-deposition time up to 10 s but then substantially deteriorated as the deposition time increased further. The optimally decorated Pt-WO3 nanorod sensor exhibited an ultrahigh H2 response from 1530 and 214,000 to 150 and 3000 ppm of H2, respectively, at 200 °C. The outstanding gas-sensing properties may be attributed to the excellent dispersion of fine Pt nanoparticles on WO3 nanorods having a very large effective surface area, leading to highly effective spillover of molecular hydrogen through Pt nanoparticles onto the WO3 nanorod surface.

  14. Magnetization measurements reveal the local shear stiffness of hydrogels probed by ferromagnetic nanorods

    NASA Astrophysics Data System (ADS)

    Bender, P.; Tschöpe, A.; Birringer, R.

    2014-12-01

    The local mechanical coupling of ferromagnetic nanorods in hydrogels was characterized by magnetization measurements. Nickel nanorods were synthesized by the AAO-template method and embedded in gelatine hydrogels with mechanically soft or hard matrix properties determined by the gelatine weight fraction. By applying a homogeneous magnetic field during gelation the nanorods were aligned along the field resulting in uniaxially textured ferrogels. The magnetization curves of the soft ferrogel exhibited not only important similarities but also characteristic differences as compared to the hard ferrogel. The hystereses measured in a field parallel to the texture axis were almost identical for both samples indicating effective coupling of the nanorods with the polymer network. By contrast, measurements in a magnetic field perpendicular to the texture axis revealed a much higher initial susceptibility of the soft as compared to the hard ferrogel. This difference was attributed to the additional rotation of the nanorods allowed by the reduced shear modulus in the soft ferrogel matrix. Two methods for data analysis were presented which enabled us to determine the shear modulus of the gelatine matrix which was interpreted as a local rather than macroscopic quantity in consideration of the nanoscale of the probe particles.

  15. Light-Induced Temperature Transitions in Biodegradable Polymer and Nanorod Composites**

    PubMed Central

    Hribar, Kolin C.; Metter, Robert B.; Ifkovits, Jamie L.; Troxler, Thomas

    2010-01-01

    Shape-memory materials (including polymers, metals, and ceramics) are those that are processed into a temporary shape and respond to some external stimuli (e.g., temperature) to undergo a transition back to a permanent shape.[1, 2] Shape memory polymers are finding use in a range of applications from aerospace to fabrics, to biomedical devices and microsystem components.[3–5] For many applications, it would be beneficial to initiate heating with an external trigger (e.g., transdermal light exposure). In this work, we formulated composites of gold nanorods (<1% by volume) and biodegradable networks, where exposure to infrared light induced heating and consequently, shape transitions. The heating is repeatable and tunable based on nanorod concentration and light intensity and the nanorods did not alter the cytotoxicity or in vivo tissue response to the networks. PMID:19408258

  16. Statistical molecular design of building blocks for combinatorial chemistry.

    PubMed

    Linusson, A; Gottfries, J; Lindgren, F; Wold, S

    2000-04-06

    The reduction of the size of a combinatorial library can be made in two ways, either base the selection on the building blocks (BB's) or base it on the full set of virtually constructed products. In this paper we have investigated the effects of applying statistical designs to BB sets compared to selections based on the final products. The two sets of BB's and the virtually constructed library were described by structural parameters, and the correlation between the two characterizations was investigated. Three different selection approaches were used both for the BB sets and for the products. In the first two the selection algorithms were applied directly to the data sets (D-optimal design and space-filling design), while for the third a cluster analysis preceded the selection (cluster-based design). The selections were compared using visual inspection, the Tanimoto coefficient, the Euclidean distance, the condition number, and the determinant of the resulting data matrix. No difference in efficiency was found between selections made in the BB space and in the product space. However, it is of critical importance to investigate the BB space carefully and to select an appropriate number of BB's to result in an adequate diversity. An example from the pharmaceutical industry is then presented, where selection via BB's was made using a cluster-based design.

  17. Gold Nanorod Linking to Control Plasmonic Properties in Solution and Polymer Nanocomposites

    PubMed Central

    2015-01-01

    A novel, solution-based method is presented to prepare bifunctional gold nanorods (B-NRs), assemble B-NRs end-to-end in various solvents, and disperse linked B-NRs in a polymer matrix. The B-NRs have poly(ethylene glycol) grafted along its long axis and cysteine adsorbed to its ends. By controlling cysteine coverage, bifunctional ligands or polymer can be end-grafted to the AuNRs. Here, two dithiol ligands (C6DT and C9DT) are used to link the B-NRs in organic solvents. With increasing incubation time, the nanorod chain length increases linearly as the longitudinal surface plasmon resonance shifts toward lower adsorption wavelengths (i.e., red shift). Analogous to step-growth polymerization, the polydispersity in chain length also increases. Upon adding poly(ethylene glycol) or poly(methyl methacrylate) to chloroform solution with linked B-NR, the nanorod chains are shown to retain end-to-end linking upon spin-casting into PEO or PMMA films. Using quartz crystal microbalance with dissipation (QCM-D), the mechanism of nanorod linking is investigated on planar gold surfaces. At submonolayer coverage of cysteine, C6DT molecules can insert between cysteines and reach an areal density of 3.4 molecules per nm2. To mimic the linking of Au NRs, this planar surface is exposed to cysteine-coated Au nanoparticles, which graft at 7 NPs per μm2. This solution-based method to prepare, assemble, and disperse Au nanorods is applicable to other nanorod systems (e.g., CdSe) and presents a new strategy to assemble anisotropic particles in organic solvents and polymer coatings. PMID:24483622

  18. Gold nanorod linking to control plasmonic properties in solution and polymer nanocomposites.

    PubMed

    Ferrier, Robert C; Lee, Hyun-Su; Hore, Michael J A; Caporizzo, Matthew; Eckmann, David M; Composto, Russell J

    2014-02-25

    A novel, solution-based method is presented to prepare bifunctional gold nanorods (B-NRs), assemble B-NRs end-to-end in various solvents, and disperse linked B-NRs in a polymer matrix. The B-NRs have poly(ethylene glycol) grafted along its long axis and cysteine adsorbed to its ends. By controlling cysteine coverage, bifunctional ligands or polymer can be end-grafted to the AuNRs. Here, two dithiol ligands (C6DT and C9DT) are used to link the B-NRs in organic solvents. With increasing incubation time, the nanorod chain length increases linearly as the longitudinal surface plasmon resonance shifts toward lower adsorption wavelengths (i.e., red shift). Analogous to step-growth polymerization, the polydispersity in chain length also increases. Upon adding poly(ethylene glycol) or poly(methyl methacrylate) to chloroform solution with linked B-NR, the nanorod chains are shown to retain end-to-end linking upon spin-casting into PEO or PMMA films. Using quartz crystal microbalance with dissipation (QCM-D), the mechanism of nanorod linking is investigated on planar gold surfaces. At submonolayer coverage of cysteine, C6DT molecules can insert between cysteines and reach an areal density of 3.4 molecules per nm(2). To mimic the linking of Au NRs, this planar surface is exposed to cysteine-coated Au nanoparticles, which graft at 7 NPs per μm(2). This solution-based method to prepare, assemble, and disperse Au nanorods is applicable to other nanorod systems (e.g., CdSe) and presents a new strategy to assemble anisotropic particles in organic solvents and polymer coatings.

  19. Semiconductor Seeded Nanorods with Graded Composition Exhibiting High Quantum-Yield, High Polarization, and Minimal Blinking.

    PubMed

    Hadar, Ido; Philbin, John P; Panfil, Yossef E; Neyshtadt, Shany; Lieberman, Itai; Eshet, Hagai; Lazar, Sorin; Rabani, Eran; Banin, Uri

    2017-04-12

    Seeded semiconductor nanorods represent a unique family of quantum confined materials that manifest characteristics of mixed dimensionality. They show polarized emission with high quantum yield and fluorescence switching under an electric field, features that are desirable for use in display technologies and other optical applications. So far, their robust synthesis has been limited mainly to CdSe/CdS heterostructures, thereby constraining the spectral tunability to the red region of the visible spectrum. Herein we present a novel synthesis of CdSe/Cd 1-x Zn x S seeded nanorods with a radially graded composition that show bright and highly polarized green emission with minimal intermittency, as confirmed by ensemble and single nanorods optical measurements. Atomistic pseudopotential simulations elucidate the importance of the Zn atoms within the nanorod structure, in particular the effect of the graded composition. Thus, the controlled addition of Zn influences and improves the nanorods' optoelectronic performance by providing an additional handle to manipulate the degree confinement beyond the common size control approach. These nanorods may be utilized in applications that require the generation of a full, rich spectrum such as energy-efficient displays and lighting.

  20. Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays.

    PubMed

    Cho, Seungho; Jang, Ji-Wook; Lee, Jae Sung; Lee, Kun-Hong

    2010-10-01

    We report a simple wet-chemical synthesis of ∼5 nm diameter ZnO nanorod arrays at room temperature (20 °C) and normal atmospheric pressure (1 atm) and their optical properties. They were single crystalline in nature, and grew in the [001] direction. These small diameter ZnO nanorod arrays can also be synthesized at 0 °C. Control experiments were also conducted. On the basis of the results, we propose a mechanism for the spontaneous growth of the small diameter ZnO structures. The optical properties of the 5 nm diameter ZnO nanorod arrays synthesized using this method were probed by UV-Visible diffuse reflectance spectroscopy. A clear blue-shift, relative to the absorption band from 50 nm diameter ZnO nanorod arrays, was attributed to the quantum confinement effects caused by the small nanocrystal size in the 5 nm diameter ZnO nanorods.

  1. Nanoscale characterization of GaN/InGaN multiple quantum wells on GaN nanorods by photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Weijian; Wen, Xiaoming; Latzel, Michael; Yang, Jianfeng; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Christiansen, Silke; Conibeer, Gavin

    2017-02-01

    GaN/InGaN multiple quantum wells (MQW) and GaN nanorods have been widely studied as a candidate material for high-performance light emitting diodes. In this study, GaN/InGaN MQW on top of GaN nanorods are characterized in nanoscale using confocal microscopy associated with photoluminescence spectroscopy, including steady-state PL, timeresolved PL and fluorescence lifetime imaging (FLIM). Nanorods are fabricated by etching planar GaN/InGaN MQWs on top of a GaN layer on a c-plane sapphire substrate. Photoluminescence efficiency from the GaN/InGaN nanorods is evidently higher than that of the planar structure, indicating the emission improvement. Time-resolved photoluminescence (TRPL) prove that surface defects on GaN nanorod sidewalls have a strong influence on the luminescence property of the GaN/InGaN MWQs. Such surface defects can be eliminated by proper surface passivation. Moreover, densely packed nanorod array and sparsely standing nanorods have been studied for better understanding the individual property and collective effects from adjacent nanorods. The combination of the optical characterization techniques guides optoelectronic materials and device fabrication.

  2. Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Ma, Biao; Zhou, Xiao; Bao, Hua; Li, Xingwei; Wang, Gengchao

    2012-10-01

    Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods (sGNS/PANI) are successfully synthesized via interfacial polymerization of aniline monomers in the presence of sulfonated graphene nanosheets (sGNS). The FE-SEM images indicate that the morphologies of sGNS/PANI composites can be controlled by adjusting the concentration of aniline monomers. FTIR and Raman spectra reveal that aligned PANI nanorod arrays for sGNS/PANI exhibit higher degree of conjugation compared with pristine PANI nanorods. The hierarchical composite based on the two-electrode cell possesses higher specific capacitance (497 F g-1 at 0.2 A g-1), better rate capability and cycling stability (5.7% capacitance loss after 2000 cycles) than those of pristine PANI nanorods.

  3. Gold nanorods for cell imaging with confocal reflectance microscopy and two-photon fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Ji-Yao; Wang, Pei-Nan

    2010-02-01

    Gold nanorods have unique optical properties as their two photon absorption cross sections are very high and their spectral positions of extinction bands can be controlled by their aspect ratio only, so that gold nanorods have been considered as agents for cell imaging. Two-photon photoluminescence imaging could be used to detect the cellular gold nanorods with the high power femto-second (fs) infrared laser, but may cause the photothermal effect melting the rods. The 3-D distribution of gold nanorods in living cells also can be measured by confocal reflectance microscopy with a very low laser power, and thus the cell damaging can be avoided. In this work, these two methods were comparatively studied in living rat basophilic leukemia (RBL-2H3) cells.

  4. Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications

    NASA Astrophysics Data System (ADS)

    Kopwitthaya, Atcha; Yong, Ken-Tye; Hu, Rui; Roy, Indrajit; Ding, Hong; Vathy, Lisa A.; Bergey, Earl J.; Prasad, Paras N.

    2010-08-01

    In this contribution, we report the use of a PEGylated gold nanorods formulation as a colored dye for tumor labeling in vivo. We have demonstrated that the nanorod-targeted tumor site can be easily differentiated from the background tissues by the 'naked eye' without the need of sophisticated imaging instruments. In addition to tumor labeling, we have also performed in vivo toxicity and biodistribution studies of PEGylated gold nanorods in vivo by using BALB/c mice as the model. In vivo toxicity studies indicated no mortality or adverse effects or weight changes in BALB/c mice treated with PEGylated gold nanorods. This finding will provide useful guidelines in the future development of diagnostic probes for cancer diagnosis, optically guided tumor surgery, and lymph node mapping applications.

  5. Compact hematite buffer layer as a promoter of nanorod photoanode performances

    NASA Astrophysics Data System (ADS)

    Milan, R.; Cattarin, S.; Comisso, N.; Baratto, C.; Kaunisto, K.; Tkachenko, N. V.; Concina, I.

    2016-10-01

    The effect of a thin α-Fe2O3 compact buffer layer (BL) on the photoelectrochemical performances of a bare α-Fe2O3 nanorods photoanode is investigated. The BL is prepared through a simple spray deposition onto a fluorine-doped tin oxide (FTO) conducting glass substrate before the growth of a α-Fe2O3 nanorods via a hydrothermal process. Insertion of the hematite BL between the FTO and the nanorods markedly enhances the generated photocurrent, by limiting undesired losses of photogenerated charges at the FTO||electrolyte interface. The proposed approach warrants a marked improvement of material performances, with no additional thermal treatment and no use/dispersion of rare or toxic species, in agreement with the principles of green chemistry.

  6. Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on (001) ceria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyov, VF; Wu, LJ; Rupich, MW

    2014-12-15

    Growth of high-aspect ratio oriented tin oxide, SnO2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO2 deposit. Second, vertical SnO2 nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 mu m long nano-rods with an average diameter of approximate to 20 nm. 2014 Elsevier B.V. All rights reserved.

  7. Mononuclear, trinuclear, and hetero-trinuclear supramolecular complexes containing a new tri-sulfonate ligand and cobalt(II)/copper(II)-(1,10-phenanthroline) 2 building blocks

    NASA Astrophysics Data System (ADS)

    Yu, Yunfang; Wei, Yongqin; Broer, Ria; Sa, Rongjian; Wu, Kechen

    2008-03-01

    Novel mononuclear, trinuclear, and hetero-trinuclear supermolecular complexes, [Co(phen) 2(H 2O)(HTST)]·2H 2O ( 1), [Co 3(phen) 6(H 2O) 2(TST) 2]·7H 2O ( 2), and [Co 2Cu(phen) 6(H 2O) 2(TST) 2]·10H 2O ( 3), have been synthesized by the reactions of a new tri-sulfonate ligand (2,4,6-tris(4-sulfophenylamino)-1,3,5-triazine, H 3TST) with the M2+ ( M=Co, Cu) and the second ligand 1,10-phenanthroline (phen). Complex 1 contains a cis-Co(II)(phen) 2 building block and an HTST as monodentate ligand; complex 2 consists of two TST as bidentate ligands connecting one trans- and two cis-Co(II)(phen) 2 building blocks; complex 3 is formed by replacing the trans-Co(II)(phen) 2 in 2 with a trans-Cu(II)(phen) 2, which is the first reported hetero-trinuclear supramolecular complex containing both the Co(II)(phen) 2 and Cu(II)(phen) 2 as building blocks. The study shows the flexible multifunctional self-assembly capability of the H 3TST ligands presenting in these supramolecular complexes through coordinative, H-bonding and even π- π stacking interactions. The photoluminescent optical properties of these complexes are also investigated and discussed as well as the second-order nonlinear optical properties of 1.

  8. Gravimetric humidity sensor based on ZnO nanorods covered piezoresistive Si microcantilever

    NASA Astrophysics Data System (ADS)

    Xu, Jiushuai; Bertke, Maik; Li, Xiaojing; Gad, Alaaeldin; Zhou, Hao; Wasisto, Hutomo Suryo; Peiner, Erwin

    2017-06-01

    A ZnO nanorods film covered silicon resonant cantilever sensor is developed for atmosphere humidity detection by monitoring the resonant frequency shifts induced by the additional weight of adsorbed water molecules. Two different crystalline seed-layer deposition methods were applied to grow different nanorods films. The morphology of the ZnO films were characterized and the sensor sensitivities were measured under different relative humidity (RH) levels. The experiments results showed that this novel humidity sensor with ZnO nanorods has a sensitivity of 101.5 +/- 12.0 ppm/RH% (amount of adsorbed water of 36.9 +/- 4.4 ng/RH%), indicating its potential for portable sensing applications.

  9. One-dimensional α-MoO3 nanorods for high energy density pseudocapacitor

    NASA Astrophysics Data System (ADS)

    Dutta, Shibsankar; Pal, Shreyasi; De, Sukanta

    2018-04-01

    Ultralong α-MoO3 nanorods having length of 500 nm to 1 µm and uniform width of around ˜50 nm have been synthesized by a simple one step hydrothermal route using a molybdenum organic salt precursor. An evaluation of the electrochemical properties of the nanorods was done by cyclic voltammetry (CV), and galvanometric charging- discharging (GCD) test. Because of the high active sites and rapid ion diffusion and electron transport of the electrodes using as prepared nanorods reveals energy density of 65 Wh/kg at a power density of 940 W/ kg and a maximum specific capacitance of 474 F/g. It also shows excellent cycling stability.

  10. BSA modification to reduce CTAB induced nonspecificity and cytotoxicity of aptamer-conjugated gold nanorods

    NASA Astrophysics Data System (ADS)

    Yasun, Emir; Li, Chunmei; Barut, Inci; Janvier, Denisse; Qiu, Liping; Cui, Cheng; Tan, Weihong

    2015-05-01

    Aptamer-conjugated gold nanorods (AuNRs) are excellent candidates for targeted hyperthermia therapy of cancer cells. However, in high concentrations of AuNRs, aptamer conjugation alone fails to result in highly cell-specific AuNRs due to the presence of positively charged cetyltrimethylammonium bromide (CTAB) as a templating surfactant. Besides causing nonspecific electrostatic interactions with the cell surfaces, CTAB can also be cytotoxic, leading to uncontrolled cell death. To avoid the nonspecific interactions and cytotoxicity triggered by CTAB, we report the further biologically inspired modification of aptamer-conjugated AuNRs with bovine serum albumin (BSA) protein. Following this modification, interaction between CTAB and the cell surface was efficiently blocked, thereby dramatically reducing the side effects of CTAB. This approach may provide a general and simple method to avoid one of the most serious issues in biomedical applications of nanomaterials: nonspecific binding of the nanomaterials with biological cells.Aptamer-conjugated gold nanorods (AuNRs) are excellent candidates for targeted hyperthermia therapy of cancer cells. However, in high concentrations of AuNRs, aptamer conjugation alone fails to result in highly cell-specific AuNRs due to the presence of positively charged cetyltrimethylammonium bromide (CTAB) as a templating surfactant. Besides causing nonspecific electrostatic interactions with the cell surfaces, CTAB can also be cytotoxic, leading to uncontrolled cell death. To avoid the nonspecific interactions and cytotoxicity triggered by CTAB, we report the further biologically inspired modification of aptamer-conjugated AuNRs with bovine serum albumin (BSA) protein. Following this modification, interaction between CTAB and the cell surface was efficiently blocked, thereby dramatically reducing the side effects of CTAB. This approach may provide a general and simple method to avoid one of the most serious issues in biomedical applications

  11. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses.

    PubMed

    Mondal, S; Wei, Q; Ding, W J; Hafez, H A; Fareed, M A; Laramée, A; Ropagnol, X; Zhang, G; Sun, S; Sheng, Z M; Zhang, J; Ozaki, T

    2017-01-10

    We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20-200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results.

  12. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses

    PubMed Central

    Mondal, S.; Wei, Q.; Ding, W. J.; Hafez, H. A.; Fareed, M. A.; Laramée, A.; Ropagnol, X.; Zhang, G.; Sun, S.; Sheng, Z. M.; Zhang, J.; Ozaki, T.

    2017-01-01

    We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20–200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results. PMID:28071764

  13. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses

    NASA Astrophysics Data System (ADS)

    Mondal, S.; Wei, Q.; Ding, W. J.; Hafez, H. A.; Fareed, M. A.; Laramée, A.; Ropagnol, X.; Zhang, G.; Sun, S.; Sheng, Z. M.; Zhang, J.; Ozaki, T.

    2017-01-01

    We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20-200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results.

  14. Novel route to WOx nanorods and WS2 nanotubes from WS2 inorganic fullerenes.

    PubMed

    Li, Yan-Hui; Zhao, Yi Min; Ma, Ren Zhi; Zhu, Yan Qiu; Fisher, Niles; Jin, Yi Zheng; Zhang, Xin Ping

    2006-09-21

    WO(x) (2 < x < 3) and WS(2) nanostructures have been widely praised due to applications as catalysts, solid lubricants, field emitters, and optical components. Many methods have been developed to fabricate these nanomaterials; however, most attention was focused on the same dimensional transformation from WO(x) nanoparticles or nanorods to WS(2) nanoparticles or nanotubes. In a solid-vapor reaction, by simply controlling the quantity of water vapor and reaction temperature, we have realized the transformation from quasi-zero-dimensional WS(2) nanoparticles to one-dimensional W(18)O(49) nanorods, and subsequent sulfuration reactions have further converted these W(18)O(49) nanorods into WS(2) nanotubes. The reaction temperature, quantity of water vapor, and pretreatment of the WS(2) nanoparticle precursors are important process parameters for long, thin, and homogeneous W(18)O(49) nanorods growth. The morphologies, crystal structures, and circling transformation mechanisms of sulfide-oxide-sulfide are discussed, and the photoluminescence properties of the resulting nanorods are investigated using a Xe lamp under an excitation of 270 nm.

  15. Analytic model for low-frequency noise in nanorod devices.

    PubMed

    Lee, Jungil; Yu, Byung Yong; Han, Ilki; Choi, Kyoung Jin; Ghibaudo, Gerard

    2008-10-01

    In this work analytic model for generation of excess low-frequency noise in nanorod devices such as field-effect transistors are developed. In back-gate field-effect transistors where most of the surface area of the nanorod is exposed to the ambient, the surface states could be the major noise source via random walk of electrons for the low-frequency or 1/f noise. In dual gate transistors, the interface states and oxide traps can compete with each other as the main noise source via random walk and tunneling, respectively.

  16. Building block diode laser concept for high brightness laser output in the kW range and its applications

    NASA Astrophysics Data System (ADS)

    Ferrario, Fabio; Fritsche, Haro; Grohe, Andreas; Hagen, Thomas; Kern, Holger; Koch, Ralf; Kruschke, Bastian; Reich, Axel; Sanftleben, Dennis; Steger, Ronny; Wallendorf, Till; Gries, Wolfgang

    2016-03-01

    The modular concept of DirectPhotonics laser systems is a big advantage regarding its manufacturability, serviceability as well as reproducibility. By sticking to identical base components an economic production allows to serve as many applications as possible while keeping the product variations minimal. The modular laser design is based on single emitters and various combining technics. In a first step we accept a reduction of the very high brightness of the single emitters by vertical stacking several diodes in fast axis. This can be theoretically done until the combined fast axis beam quality is on a comparable level as the individual diodes slow axis beam quality without loosing overall beam performance after fiber coupling. Those stacked individual emitters can be wavelength stabilized by an external resonator, providing the very same feedback to each of those laser diodes which leads to an output power of about 100 W with BPP of <3.5 mm*mrad (FA) and <5 mm*mrad (SA). In the next steps, further power scaling is accomplished by polarization and wavelength multiplexing yielding high optical efficiencies of more than 80% and resulting in a building block module with about 500 W launched into a 100 μm fiber with 0.15 NA. Higher power levels can be achieved by stacking those building blocks using the very same dense spectral combing technique up to multi kW Systems without further reduction of the BPP. The 500 W building blocks are consequently designed in a way that they feature a high flexibility with regard to their emitting wavelength bandwidth. Therefore, new wavelengths can be implemented by only exchanging parts and without any additional change of the production process. This design principal theoretically offers the option to adapt the wavelength of those blocks to any applications, from UV, visible into the far IR as long as there are any diodes commercially available. This opens numerous additional applications like laser pumping, scientific

  17. Simple and scalable growth of AgCl nanorods by plasma-assisted strain relaxation on flexible polymer substrates

    NASA Astrophysics Data System (ADS)

    Park, Jae Yong; Lee, Illhwan; Ham, Juyoung; Gim, Seungo; Lee, Jong-Lam

    2017-06-01

    Implementing nanostructures on plastic film is indispensable for highly efficient flexible optoelectronic devices. However, due to the thermal and chemical fragility of plastic, nanostructuring approaches are limited to indirect transfer with low throughput. Here, we fabricate single-crystal AgCl nanorods by using a Cl2 plasma on Ag-coated polyimide. Cl radicals react with Ag to form AgCl nanorods. The AgCl is subjected to compressive strain at its interface with the Ag film because of the larger lattice constant of AgCl compared to Ag. To minimize strain energy, the AgCl nanorods grow in the [200] direction. The epitaxial relationship between AgCl (200) and Ag (111) induces a strain, which leads to a strain gradient at the periphery of AgCl nanorods. The gradient causes a strain-induced diffusion of Ag atoms to accelerate the nanorod growth. Nanorods grown for 45 s exhibit superior haze up to 100% and luminance of optical device increased by up to 33%.

  18. Biorefineries for the production of top building block chemicals and their derivatives.

    PubMed

    Choi, Sol; Song, Chan Woo; Shin, Jae Ho; Lee, Sang Yup

    2015-03-01

    Due to the growing concerns on the climate change and sustainability on petrochemical resources, DOE selected and announced the bio-based top 12 building blocks and discussed the needs for developing biorefinery technologies to replace the current petroleum based industry in 2004. Over the last 10 years after its announcement, many studies have been performed for the development of efficient technologies for the bio-based production of these chemicals and derivatives. Now, ten chemicals among these top 12 chemicals, excluding the l-aspartic acid and 3-hydroxybutyrolactone, have already been commercialized or are close to commercialization. In this paper, we review the current status of biorefinery development for the production of these platform chemicals and their derivatives. In addition, current technological advances on industrial strain development for the production of platform chemicals using micro-organisms will be covered in detail with case studies on succinic acid and 3-hydroxypropionic acid as examples. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications.

    PubMed

    Liu, Qingkun; Cui, Yanxia; Gardner, Dennis; Li, Xin; He, Sailing; Smalyukh, Ivan I

    2010-04-14

    We demonstrate the bulk self-alignment of dispersed gold nanorods imposed by the intrinsic cylindrical micelle self-assembly in nematic and hexagonal liquid crystalline phases of anisotropic fluids. External magnetic field and shearing allow for alignment and realignment of the liquid crystal matrix with the ensuing long-range orientational order of well-dispersed plasmonic nanorods. This results in a switchable polarization-sensitive plasmon resonance exhibiting stark differences from that of the same nanorods in isotropic fluids. The device-scale bulk nanoparticle alignment may enable optical metamaterial mass production and control of properties arising from combining the switchable nanoscale structure of anisotropic fluids with the surface plasmon resonance properties of the plasmonic nanorods.

  20. Amphiphilic Peptide Nanorods Based on Oligo-Phenylalanine as a Biocompatible Drug Carrier.

    PubMed

    Song, Su Jeong; Lee, Seulgi; Ryu, Kyoung-Seok; Choi, Joon Sig

    2017-09-20

    Peptide nanostructure has been widely explored for drug-delivery systems in recent studies. Peptides possess comparatively lower cytotoxicity and are more efficient than polymeric carriers. Here, we propose a peptide nanorod system, composed of an amphiphilic oligo-peptide RH 3 F 8 (Arg-His 3 -Phe 8 ), as a drug-delivery carrier. Arginine is an essential amino acid in typical cell-penetration peptides, and histidine induces endo- and lysosomal escape because of its proton sponge effect. Phenylalanine is introduced to provide rich hydrophobicity for stable self-assembly and drug encapsulation. The self-assembled structure of RH 3 F 8 showed nanorod-shaped morphology, positive surface charge, and retained formation in water for 35 days. RH 3 F 8 , labeled with Nile Red, showed high cellar uptake and accumulation in both cytoplasm and nucleus. The RH 3 F 8 nanorods demonstrated negligible cytotoxicity, as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and hemolysis assays. To confirm the efficiency of drug delivery, curcumin was encapsulated in the RH 3 F 8 nanorod system (RH 3 F 8 -Cur). RH 3 F 8 -Cur showed high encapsulation efficiency (24.63%) under the conditions of 200 μM curcumin. The RH 3 F 8 -Cur retained nanoscale size and positive surface charge, similar to those of the empty RH 3 F 8 nanorods. RH 3 F 8 -Cur displayed a robust anticancer effect in HeLa and A549 cells, and inhibited the proliferation of cancer cells in a zebrafish model. These results indicate that the RH 3 F 8 nanorods may be a promising candidate for a safe and effective drug-delivery system.

  1. Multi-angle ZnO microstructures grown on Ag nanorods array for plasmon-enhanced near-UV-blue light emitter

    NASA Astrophysics Data System (ADS)

    Pal, Anil Kumar; Bharathi Mohan, D.

    2017-10-01

    Metal enhanced ultraviolet light emission has been explored in ZnO/Ag hybrid structures prepared by hydrothermal growth of multi-angled ZnO nanorods on slanted Ag nanorods array fabricated by the thermal evaporation technique. Slanted Ag nanorods are realized to be the stacking of non-spherical Ag nanoparticles, resulting in asymmetric surface plasmon resonance spectra. The surface roughness of Ag nanorod array films significantly influences the growth mechanism of ZnO nanorods, leading to the formation of multi-angled ZnO microflowers. ZnO/Ag hybrid structures facilitate the interfacial charge transfer from Ag to ZnO with the realization of negative shift in binding energy of Ag 3d orbitals by ˜0.8 eV. These high quality ZnO nanorods in ZnO/Ag hybrid nanostructures exhibit strong ultraviolet emission in the 383-396 nm region without broad deep level emission, which can be explained by a suitable band diagram. The metal enhanced photoluminescence is witnessed mainly due to interfacial charge transfer with its dependence on surface roughness of bottom layer Ag nanorods, number density of ZnO nanorods and diversity in the interfacial area between Ag and ZnO nanorods. The existence of strong ultraviolet light with minor blue light emission and appearance of CIE shade in strong violet-blue region by ZnO/Ag hybrid structures depict exciting possibilities towards near UV-blue light emitting devices.

  2. Multi-angle ZnO microstructures grown on Ag nanorods array for plasmon-enhanced near-UV-blue light emitter.

    PubMed

    Pal, Anil Kumar; Mohan, D Bharathi

    2017-10-13

    Metal enhanced ultraviolet light emission has been explored in ZnO/Ag hybrid structures prepared by hydrothermal growth of multi-angled ZnO nanorods on slanted Ag nanorods array fabricated by the thermal evaporation technique. Slanted Ag nanorods are realized to be the stacking of non-spherical Ag nanoparticles, resulting in asymmetric surface plasmon resonance spectra. The surface roughness of Ag nanorod array films significantly influences the growth mechanism of ZnO nanorods, leading to the formation of multi-angled ZnO microflowers. ZnO/Ag hybrid structures facilitate the interfacial charge transfer from Ag to ZnO with the realization of negative shift in binding energy of Ag 3d orbitals by ∼0.8 eV. These high quality ZnO nanorods in ZnO/Ag hybrid nanostructures exhibit strong ultraviolet emission in the 383-396 nm region without broad deep level emission, which can be explained by a suitable band diagram. The metal enhanced photoluminescence is witnessed mainly due to interfacial charge transfer with its dependence on surface roughness of bottom layer Ag nanorods, number density of ZnO nanorods and diversity in the interfacial area between Ag and ZnO nanorods. The existence of strong ultraviolet light with minor blue light emission and appearance of CIE shade in strong violet-blue region by ZnO/Ag hybrid structures depict exciting possibilities towards near UV-blue light emitting devices.

  3. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems.

    PubMed

    Muto, Yutaka; Yokoyama, Shigeyuki

    2012-01-01

    'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Synthetic polycations with controlled charge density and molecular weight as building blocks for biomaterials.

    PubMed

    Kleinberger, Rachelle M; Burke, Nicholas A D; Zhou, Christal; Stöver, Harald D H

    2016-01-01

    A series of polycations prepared by RAFT copolymerization of N-(3-aminopropyl)methacrylamide hydrochloride (APM) and N-(2-hydroxypropyl)methacrylamide, with molecular weights of 15 and 40 kDa, and APM content of 10-75 mol%, were tested as building blocks for electrostatically assembled hydrogels such as those used for cell encapsulation. Complexation and distribution of these copolymers within anionic calcium alginate gels, as well as cytotoxicity, cell attachment, and cell proliferation on surfaces grafted with the copolymers were found to depend on composition and molecular weight. Copolymers with lower cationic charge density and lower molecular weight showed less cytotoxicity and cell adhesion, and were more mobile within alginate gels. These findings aid in designing improved polyelectrolyte complexes for use as biomaterials.

  5. Recurrence of 49-base decamers, nonomers, and octamers within mouse C mu gene of Ig heavy chain and its primordial building block.

    PubMed Central

    Yazaki, A; Ohno, S

    1983-01-01

    Within the published 2,168-base-long mouse C mu gene of Ig heavy chain consisting of four coding and four noncoding segments, 2 base decamers, 8 nonomers, and 39 octamers recurred. Recurring base heptamers (about 100) and hexamers (about 350) were simply too numerous to merit individual identification. In spite of extensive overlaps between these recurring base decamers to hexamers, they occupied nearly the entire length of mouse Ig C mu gene. As with other genes of the beta-sheet-forming beta 2-microglobulin family, the Ig C mu gene (flanking and intervening noncoding sequences included) is not a unique sequence but rather it is degenerate repeats of the 45-base-long primordial building-block sequence uniquely its own. This primordial building block must originally have specified the 15-amino-acid-residue-long primordial arm of beta-sheet-forming loops, the characteristics of the beta 2-microglobulin family of polypeptides. PMID:6403948

  6. Post-annealing effect on optical absorbance of hydrothermally grown zinc oxide nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohar, Rahmat Setiawan; Djuhana, Dede; Imawan, Cuk

    In this study, the optical absorbance of zinc oxide (ZnO) nanorods was investigated. The ZnO thin film were deposited on indium tin oxide (ITO) layers using ultrasonic spray pyrolysis (USP) method and then grown by hydrothermal method. In order to improve the optical absorbance, the ZnO nanorods were then post-annealed for one hour at three different of temperatures, namely 250, 400, and 500 °C. The X-ray diffraction (XRD) spectra and FESEM images show that the ZnO nanorods have the hexagonal wurtzite crystal structure and the increasing of post-annealing temperature resulted in the increasing of crystallite size from 38.2 nm to 48.4 nm.more » The UV-vis spectra shows that all samples of ZnO nanorods exhibited the identical sharp absorption edge at 390 nm indicating that all samples have the same bandgap. The post-annealing process seemed to decrease the optical absorbance in the region of 300-550 nm and increase the optical absorbance in the region of 550-700 nm..« less

  7. Synthesis, structure and magnetic properties ofβ-MnO2nanorods

    PubMed Central

    Kim, HaeJin; Lee, JinBae; Kim, Young-Min; Jung, Myung-Hwa; Jagličić, Z; Umek, P

    2007-01-01

    We present synthesis, structure and magnetic properties of structurally well-ordered single-crystalline β-MnO2nanorods of 50–100 nm diameter and several µm length. Thorough structural characterization shows that the basic β-MnO2material is covered by a thin surface layer (∼2.5 nm) of α-Mn2O3phase with a reduced Mn valence that adds its own magnetic signal to the total magnetization of the β-MnO2nanorods. The relatively complicated temperature-dependent magnetism of the nanorods can be explained in terms of a superposition of bulk magnetic properties of spatially segregated β-MnO2and α-Mn2O3constituent phases and the soft ferromagnetism of the thin interface layer between these two phases.

  8. Thickness dependence of the MoO3 blocking layers on ZnO nanorod-inverted organic photovoltaic devices

    PubMed Central

    Wang, Mingjun; Li, Yuan; Huang, Huihui; Peterson, Eric D.; Nie, Wanyi; Zhou, Wei; Zeng, Wei; Huang, Wenxiao; Fang, Guojia; Sun, Nanhai; Zhao, Xingzhong; Carroll, David L.

    2011-01-01

    Organic solar cells based on vertically aligned zinc oxide nanorod arrays (ZNR) in an inverted structure of indium tin oxide (ITO)∕ZNR∕poly(3-hexylthiophene): (6,6)-phenyl C61 butyric acid methyl ester(P3HT:PCBM)∕MoO3∕aluminum(Al) were studied. We found that the optimum MoO3 layer thickness condition of 20 nm, the MoO3 can effectively decrease the probability of bimolecular recombination either at the Al interface or within the active layer itself. For this optimum condition we get a power conversion efficiency of 2.15%, a short-circuit current density of 9.02 mA∕cm2, an open-circuit voltage of 0.55V, and a fill factor of 0.44 under 100 mW∕cm2 irradiation. Our investigations also show that the highly crystallized ZNR can create short and continuous pathways for electron transport and increase the contact area between the ZNR and the organic materials. PMID:21464889

  9. Unclonable Security Codes Designed from Multicolor Luminescent Lanthanide-Doped Y2O3 Nanorods for Anticounterfeiting.

    PubMed

    Kumar, Pawan; Nagpal, Kanika; Gupta, Bipin Kumar

    2017-04-26

    The duplicity of important documents has emerged as a serious problem worldwide. Therefore, many efforts have been devoted to developing easy and fast anticounterfeiting techniques with multicolor emission. Herein, we report the synthesis of multicolor luminescent lanthanide-doped Y 2 O 3 nanorods by hydrothermal method and their usability in designing of unclonable security codes for anticounterfeiting applications. The spectroscopic features of nanorods are probed by photoluminescence spectroscopy. The Y 2 O 3 :Eu 3+ , Y 2 O 3 :Tb 3+ , and Y 2 O 3 :Ce 3+ nanorods emit hypersensitive red (at 611 nm), strong green (at 541 nm), and bright blue (at 438 nm) emissions at 254, 305, and 381 nm, respectively. The SEM and TEM/HRTEM results reveal that these nanorods have diameter and length in the range of 80-120 nm and ∼2-5 μm, respectively. The two-dimensional spatially resolved photoluminescence intensity distribution in nanorods is also investigated by using confocal photoluminescence microscopic technique. Further, highly luminescent unclonable security codes are printed by a simple screen printing technique using luminescent ink fabricated from admixing of lanthanide doped multicolor nanorods in PVC medium. The prospective use of these multicolor luminescent nanorods provide a new opportunity for easily printable, highly stable, and unclonable multicolor luminescent security codes for anti-counterfeiting applications.

  10. Growth, morphological and optical characteristics of ZnSSe nanorods

    NASA Astrophysics Data System (ADS)

    Chen, Lin-Jer; Dai, Jia-Heng

    2017-02-01

    Zinc seledide sulfide (ZnSxSe1-x) nanorods with wurtzite structure were synthesized by a low temperature solvothermal pathway. In a typical condition of solvothermal at 180 °C for 8 h, the ZnSxSe1-x was composed of nanorods 10-15 nm in diameter and 50-75 nm length. These results indicate that the nanoscale of ZnSSe nanocrystals may contribute to the solvothermal process and exhibit a tunable photoluminescence (PL) and band gap that depends on the variation of reaction conditions. The work suggests a promising route to single-mode "mirror-less" amplified spontaneous emission (ASE) from inorganic nanomaterials with the Cholesteric liquid crystals (CLC) providing additional potential functionality. The obtained products are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). This approach for solvothermal growth can also be used with primary ZnSSe nanorods to achieve tunable optical properties and can likely be extended to nanomaterials of different shapes and other optical devices.

  11. Penta-Twinned Copper Nanorods: Facile Synthesis via Seed-Mediated Growth and Their Tunable Plasmonic Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Ming; Ruditskiy, Aleksey; Peng, Hsin-Chieh

    When seed-mediated growth is used as a versatile approach to the synthesis of penta-twinned Cu nanorods with uniform diameters and controllable aspect ratios is reported. The success of this approach relies on our recent synthesis of uniform Pd decahedra, with sizes in the range of 6–20 nm. The Pd decahedral seeds can direct the heterogeneous nucleation and growth of Cu along the fivefold axis to produce nanorods with uniform diameters defined by the lateral dimension of the original seeds. Due to a large mismatch in the lattice constants between Cu and Pd (7.1%), the deposited Cu is forced to growmore » along one side of the Pd decahedral seed, generating a nanorod with an asymmetric distribution of Cu, with the Pd seed situated at one of the two ends. According to extinction spectra, the as-obtained Cu nanorods can be stored in water under the ambient conditions for at least six months without noticeable degradation. The resulting stability allows us to systematically investigate the size-dependent surface plasmon resonance properties of the penta-twinned Cu nanorods. With the nanorod transverse modes positioned at 560 nm, the longitudinal modes can be readily tuned from the visible to the near-infrared region by controlling the aspect ratio.« less

  12. Penta-Twinned Copper Nanorods: Facile Synthesis via Seed-Mediated Growth and Their Tunable Plasmonic Properties

    DOE PAGES

    Luo, Ming; Ruditskiy, Aleksey; Peng, Hsin-Chieh; ...

    2016-01-07

    When seed-mediated growth is used as a versatile approach to the synthesis of penta-twinned Cu nanorods with uniform diameters and controllable aspect ratios is reported. The success of this approach relies on our recent synthesis of uniform Pd decahedra, with sizes in the range of 6–20 nm. The Pd decahedral seeds can direct the heterogeneous nucleation and growth of Cu along the fivefold axis to produce nanorods with uniform diameters defined by the lateral dimension of the original seeds. Due to a large mismatch in the lattice constants between Cu and Pd (7.1%), the deposited Cu is forced to growmore » along one side of the Pd decahedral seed, generating a nanorod with an asymmetric distribution of Cu, with the Pd seed situated at one of the two ends. According to extinction spectra, the as-obtained Cu nanorods can be stored in water under the ambient conditions for at least six months without noticeable degradation. The resulting stability allows us to systematically investigate the size-dependent surface plasmon resonance properties of the penta-twinned Cu nanorods. With the nanorod transverse modes positioned at 560 nm, the longitudinal modes can be readily tuned from the visible to the near-infrared region by controlling the aspect ratio.« less

  13. Emission dynamics of hybrid plasmonic gold/organic GaN nanorods

    NASA Astrophysics Data System (ADS)

    Mohammadi, F.; Schmitzer, H.; Kunert, G.; Hommel, D.; Ge, J.; Duscher, G.; Langbein, W.; Wagner, H. P.

    2017-12-01

    We studied the emission of bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ˜1.5 μm length and ˜250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.

  14. Emission dynamics of hybrid plasmonic gold/organic GaN nanorods.

    PubMed

    Mohammadi, F; Schmitzer, H; Kunert, G; Hommel, D; Ge, J; Duscher, G; Langbein, W; Wagner, H P

    2017-12-15

    We studied the emission of bare and aluminum quinoline (Alq 3 )/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ∼1.5 μm length and ∼250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq 3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq 3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq 3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.

  15. Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal-Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wen-Yang; Cai, Rong; Pham, Tony

    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal–organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu₂(O₂C-)₄], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu₃O(N 4–x(CH) xC-)₃] (x = 0, 1, or 2). Remotely, the chemicalmore » stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1.« less

  16. Photoelectron spectra of some antibiotic building blocks: 2-azetidinone and thiazolidine-carboxylic acid.

    PubMed

    Ahmed, Marawan; Ganesan, Aravindhan; Wang, Feng; Feyer, Vitaliy; Plekan, Oksana; Prince, Kevin C

    2012-08-23

    X-ray photoelectron spectra of the core and valence levels of the fundamental building blocks of β-lactam antibiotics have been investigated and compared with theoretical calculations. The spectra of the compounds 2-azetidinone and the 2- and 4-isomers of thiazolidine-carboxylic acid are interpreted in the light of theoretical calculations. The spectra of the two isomers of thiazolidine-carboxylic acid are rather similar, as expected, but show clear effects due to isomerization. Both isomers are analogues of proline, which is well-known to populate several low energy conformers in the gas phase. We have investigated the low energy conformers of thiazolidine-4-carboxylic acid theoretically in more detail and find some spectroscopic evidence that multiple conformers may be present. The measured valence levels are assigned for all three compounds, and the character of the frontier orbitals is identified and analyzed.

  17. An Organolanthanide Building Block Approach to Single-Molecule Magnets.

    PubMed

    Harriman, Katie L M; Murugesu, Muralee

    2016-06-21

    and experimental chemistry allows us to shed light on the mechanisms and electronic properties that govern the slow relaxation dynamics inherent to this unique set of SMMs, thus providing insight into the role by which both symmetry and crystal field effects contribute to the magnetic properties. As we look to the future success of such materials in practical devices, we must gain an understanding of how the 4f elements communicate magnetically, a subject upon which there is still limited knowledge. As such, we have described our work on coupling mononuclear metallocenes to generate new dinuclear SMMs. Through a building block approach, we have been able to gain access to new double,- triple- and quadruple-decker complexes that possess remarkable properties; exhibiting TB of 12 K and Ueff above 300 K. Our goal is to develop a fundamental platform from which to study 4f coupling, while maintaining and enhancing the strict axiality of the anisotropy of the 4f ions. This Account will present a successful strategy employed in the production of novel and high-performing SMMs, as well as a clear overview of the lessons learned throughout.

  18. Plastic Fibre Reinforced Soil Blocks as a Sustainable Building Material

    NASA Astrophysics Data System (ADS)

    Prasad, C. K. Subramania; Nambiar, E. K. Kunhanandan; Abraham, Benny Mathews

    2012-10-01

    Solid waste management, especially the huge quantity of waste plastics, is one of the major environmental concerns nowadays. Their employability in block making in the form of fibres, as one of the methods of waste management, can be investigated through a fundamental research. This paper highlights the salient observations from a systematic investigation on the effect of embedded fibre from plastic waste on the performance of stabilised mud blocks. Stabilisation of the soil was done by adding cement, lime and their combination. Plastic fibre in chopped form from carry bags and mineral water bottles were added (0.1% & 0.2% by weight of soil) as reinforcement. The blocks were tested for density, and compressive strength, and observed failure patterns were analysed. Blocks with 0.1% of plastic fibres showed an increase in strength of about 3 to 10%. From the observations of failure pattern it can be concluded that benefits of fibre reinforcement includes both improved ductility in comparison with raw blocks and inhibition of crack propogation after its initial formation.

  19. Synthesis of histone proteins by CPE ligation using a recombinant peptide as the C-terminal building block.

    PubMed

    Kawakami, Toru; Yoshikawa, Ryo; Fujiyoshi, Yuki; Mishima, Yuichi; Hojo, Hironobu; Tajima, Shoji; Suetake, Isao

    2015-11-01

    The post-translational modification of histones plays an important role in gene expression. We report herein on a method for synthesizing such modified histones by ligating chemically prepared N-terminal peptides and C-terminal recombinant peptide building blocks. Based on their chemical synthesis, core histones can be categorized as two types; histones H2A, H2B and H4 which contain no Cys residues, and histone H3 which contains a Cys residue(s) in the C-terminal region. A combination of native chemical ligation and desulphurization can be simply used to prepare histones without Cys residues. For the synthesis of histone H3, the endogenous Cys residue(s) must be selectively protected, while keeping the N-terminal Cys residue of the C-terminal building block that is introduced for purposes of chemical ligation unprotected. To this end, a phenacyl group was successfully utilized to protect endogenous Cys residue(s), and the recombinant peptide was ligated with a peptide containing a Cys-Pro ester (CPE) sequence as a thioester precursor. Using this approach it was possible to prepare all of the core histones H2A, H2B, H3 and H4 with any modifications. The resulting proteins could then be used to prepare a core histone library of proteins that have been post-translationally modified. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  20. Assembling Ordered Nanorod Superstructures and Their Application as Microcavity Lasers

    NASA Astrophysics Data System (ADS)

    Liu, Pai; Singh, Shalini; Guo, Yina; Wang, Jian-Jun; Xu, Hongxing; Silien, Christophe; Liu, Ning; Ryan, Kevin M.

    2017-03-01

    Herein we report the formation of multi-layered arrays of vertically aligned and close packed semiconductor nanorods in perfect registry at a substrate using electric field assisted assembly. The collective properties of these CdSexS1-x nanorod emitters are harnessed by demonstrating a relatively low amplified spontaneous emission (ASE) threshold and a high net optical gain at medium pump intensity. The importance of order in the system is highlighted where a lower ASE threshold is observed compared to disordered samples.

  1. A generalized locomotion CPG architecture based on oscillatory building blocks.

    PubMed

    Yang, Zhijun; França, Felipe M G

    2003-07-01

    Neural oscillation is one of the most extensively investigated topics of artificial neural networks. Scientific approaches to the functionalities of both natural and artificial intelligences are strongly related to mechanisms underlying oscillatory activities. This paper concerns itself with the assumption of the existence of central pattern generators (CPGs), which are the plausible neural architectures with oscillatory capabilities, and presents a discrete and generalized approach to the functionality of locomotor CPGs of legged animals. Based on scheduling by multiple edge reversal (SMER), a primitive and deterministic distributed algorithm, it is shown how oscillatory building block (OBB) modules can be created and, hence, how OBB-based networks can be formulated as asymmetric Hopfield-like neural networks for the generation of complex coordinated rhythmic patterns observed among pairs of biological motor neurons working during different gait patterns. It is also shown that the resulting Hopfield-like network possesses the property of reproducing the whole spectrum of different gaits intrinsic to the target locomotor CPGs. Although the new approach is not restricted to the understanding of the neurolocomotor system of any particular animal, hexapodal and quadrupedal gait patterns are chosen as illustrations given the wide interest expressed by the ongoing research in the area.

  2. Facile synthesis of self-assembled ultrathin α-FeOOH nanorod/graphene oxide composites for supercapacitors.

    PubMed

    Wei, Yuxue; Ding, Ruimin; Zhang, Chenghua; Lv, Baoliang; Wang, Yi; Chen, Chengmeng; Wang, Xiaoping; Xu, Jian; Yang, Yong; Li, Yongwang

    2017-10-15

    A one-pot facile, impurity-free hydrothermal method to synthesize ultrathin α-FeOOH nanorods/graphene oxide (GO) composites is reported. It is directly synthesized from GO and iron acetate in water solution without inorganic or organic additives. XRD, Raman, FT-IR, XPS and TEM are used to characterize the samples. The nanorods in composites are single crystallite with an average diameter of 6nm and an average length of 75nm, which are significantly smaller than GO-free α-FeOOH nanorods. This can be attributed to the confinement effect and special electronic influence of GO. The influences of experimental conditions including reaction time and reactant concentration on the sizes of nanorods have been investigated. It reveals that the initial Fe 2+ concentration and reaction time play an important role in the synthetic process. Furthermore, a possible nucleation-growth mechanism is proposed. As electrode materials for supercapacitors, the α-FeOOH nanorods/GO composite with 20% iron loading has the largest specific capacitance (127Fg -1 at 10Ag -1 ), excellent rate capability (100Fg -1 at 20Ag -1 ) and good cyclic performance (85% capacitance retention after 2000 cycles), which is much better than GO-free α-FeOOH nanorods. This unique structure results in rapid electrolyte ions diffusion, fast electron transport and high charging-discharging rate. In virtue of the superior electrochemical performance, the α-FeOOH nanorods/GO composite material has a promising application in high-performance supercapacitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Sonochemical synthesis of porous NiTiO3 nanorods for photocatalytic degradation of ceftiofur sodium.

    PubMed

    Pugazhenthiran, N; Kaviyarasan, K; Sivasankar, T; Emeline, A; Bahnemann, D; Mangalaraja, R V; Anandan, S

    2017-03-01

    Porous NiTiO 3 nanorods were synthesized through the sonochemical route followed by calcination at various temperature conditions. Surface morphology of the samples was tuned by varying the heat treatment temperature from 100 to 600°C. The synthesized NiTiO 3 nanorods were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, diffused reflectance spectroscopy, photoluminescence spectroscopy and Brunauer-Emmett-Teller (BET) analyses. The characterization studies revealed that the NiTiO 3 nanomaterial was tuned to porous and perfectly rod shaped structure during the heat treatment at 600°C. The porous NiTiO 3 nanorods showed visible optical response and thus can be utilized in the photocatalytic degradation of ceftiofur sodium (CFS) under direct sunlight. The photoluminescence intensity of the porous NiTiO 3 nanorods formed while heating at 600°C was lower than that of the as-synthesized NiTiO 3 sample owing to the photogenerated electrons delocalization along the one dimensional nanorods and this delocalization resulted in the reduction of the electron-hole recombination rate. The photocatalytic degradation of ceftiofur sodium (CFS) was carried out using NiTiO 3 nanorods under the direct sunlight irradiation and their intermediate products were analysed through HPLC to deduce the possible degradation mechanism. The porous NiTiO 3 nanorods exhibited an excellent photocatalytic activity towards the CFS degradation and further, the photocatalytic activity was increased by the addition of peroxomonosulfate owing to the simultaneous generation of both OH and SO 4 - . Copyright © 2016 Elsevier B.V. All rights reserved.

  4. High colloidal stability of gold nanorods coated with a peptide-ethylene glycol: Analysis by cyanide-mediated etching and nanoparticle tracking analysis.

    PubMed

    Free, Paul; Conger, Gao; Siji, Wu; Zhang, Jing Bo; Fernig, David G

    2016-10-01

    The stability of gold nanorods was assessed following coating with various charged or uncharged ligands, mostly peptides. Highly stable monodispersed gold nanorods were obtained by coating CTAB-stabilized gold nanorods with a pentapeptide with C-terminal ethylene glycol units (peptide-EG). UV-vis spectroscopy of these nanorods suspended in saline solutions indicated no signs of aggregation, and they were easily purified using size-exclusion chromatography. A more stringent measure of nanorod stability involved observing changes in the UV-vis absorbance of gold nanorods subjected to etching with cyanide. The λmax absorbance of peptide-EG coated nanorods red-shifted in etchant solution. The hypothesis that changes in the nanorod aspect ratio led to this red-shift was confirmed by TEM analysis, which showed pit formation along the transverse axis. The etching process was followed in solution using nanoparticle tracking analysis. The red-shift was shown to occur while the particles remained mono-dispersed, and so was not due to aggregation. Adding both etchant solution and peptide-EG to the nanorods was further shown to allow modulation of the Δλmax red-shift and increase the etchant resistance of peptide-EG nanorods. Thus, very stable gold nanorods can be produced using the peptide-EG coating approach and their optical properties modulated with etchant. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. 2. EXTERIOR VIEW OF BUILDING 25B (TEST CHAMBER BUILDING) AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR VIEW OF BUILDING 25B (TEST CHAMBER BUILDING) AND WIND TUNNEL, LOOKING NORTHWEST (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  6. Effect of seed age on gold nanorod formation. A microfluidic, real-time investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watt, John; Hance, Bradley G.; Anderson, Rachel S.

    We report a real time investigation into the effect of seed age on the growth of gold nanorods using a microfluidic reaction apparatus. Through small-angle X-ray scattering (SAXS) and ultraviolet–visible spectroscopy (UV–vis) analysis, we observe the seeds aging in accordance with Ostwald ripening. A seed solution is then aged in situ and continuously injected into a microfluidic chip to initiate rod growth. We track nanorod formation in real time using in-line ultraviolet–visible and near-infrared (UV–vis–NIR) monitoring and observe a dramatic decrease in yield with increasing seed age. We then demonstrate that, by diluting the gold seed solution immediately following synthesis,more » the rate of aging can be reduced and nanorods synthesized continuously, in good yield. As a result, these findings suggest ultrasmall, catalytically active seeds, which are rapidly lost due to ripening and are critical for the formation of gold nanorods.« less

  7. Effect of seed age on gold nanorod formation. A microfluidic, real-time investigation

    DOE PAGES

    Watt, John; Hance, Bradley G.; Anderson, Rachel S.; ...

    2015-09-02

    We report a real time investigation into the effect of seed age on the growth of gold nanorods using a microfluidic reaction apparatus. Through small-angle X-ray scattering (SAXS) and ultraviolet–visible spectroscopy (UV–vis) analysis, we observe the seeds aging in accordance with Ostwald ripening. A seed solution is then aged in situ and continuously injected into a microfluidic chip to initiate rod growth. We track nanorod formation in real time using in-line ultraviolet–visible and near-infrared (UV–vis–NIR) monitoring and observe a dramatic decrease in yield with increasing seed age. We then demonstrate that, by diluting the gold seed solution immediately following synthesis,more » the rate of aging can be reduced and nanorods synthesized continuously, in good yield. As a result, these findings suggest ultrasmall, catalytically active seeds, which are rapidly lost due to ripening and are critical for the formation of gold nanorods.« less

  8. Organo-Soluble Porphyrin Mixed Monolayer-Protected Gold Nanorods with Intercalated Fullerenes

    DTIC Science & Technology

    2012-03-16

    Mixed Monolayer- Protected Gold Nanorods with Intercalated Fullerenes Chenming Xue, Yongqian Xu, Yi Pang, Dingshan Yu, Liming Dai, Min Gao, Augustine...Protected Gold Nanorods with Intercalated Fullerenes 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT... Fullerenes Chenming Xue, † Yongqian Xu, ‡ Yi Pang, ‡ Dingshan Yu, § Liming Dai, § Min Gao, † Augustine Urbas ± and Quan

  9. Block Play: Practical Suggestions for Common Dilemmas

    ERIC Educational Resources Information Center

    Tunks, Karyn Wellhousen

    2009-01-01

    Learning materials and teaching methods used in early childhood classrooms have fluctuated greatly over the past century. However, one learning tool has stood the test of time: Wood building blocks, often called unit blocks, continue to be a source of pleasure and learning for young children at play. Wood blocks have the unique capacity to engage…

  10. Cu-TiO2 nanorods with enhanced ultraviolet- and visible-light photoactivity for bisphenol A degradation.

    PubMed

    Chiang, Li-Fen; Doong, Ruey-An

    2014-07-30

    In this study, the microwave-assisted sol-gel method and chemical reduction were used to synthesize Cu-TiO2 nanorod composites for enhanced photocatalytic degradation of bisphenol A (BPA) in the presence of UV and visible lights. The electron microscopic images showed that the Cu nanoparticles at 4.5±0.1nm were well-deposited onto the surface of TiO2 nanorods after chemical reduction of Cu ions by NaBH4. The X-ray diffractometry patterns and X-ray photoelectron spectroscopic results indicated that Cu species on the Cu-TiO2 nanorods were mainly the mixture of Cu2O and Cu(0). The Cu-TiO2 nanorods showed excellent photocatalytic activity toward BPA photodegradation under the irradiation of UV and visible lights. The pseudo-first-order rate constant (kobs) for BPA photodegradation by 7wt% Cu-TiO2 nanorods were 18.4 and 3.8 times higher than those of as-synthesized TiO2 nanorods and Degussa P25 TiO2, respectively, under the UV light irradiation. In addition, the kobs for BPA photodegradation by 7wt% Cu-TiO2 nanorods increased by a factor of 5.8 when compared with that of Degussa P25 TiO2 under the irradiation of 460±40nm visible light. Results obtained in this study clearly demonstrate the feasibility of using one-dimensional Cu-TiO2 nanorods for photocatalytic degradation of BPA and other pharmaceutical and personal care products in water and wastewater treatment plants. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Effects of annealing temperature on the H2-sensing properties of Pd-decorated WO3 nanorods

    NASA Astrophysics Data System (ADS)

    Lee, Sangmin; Lee, Woo Seok; Lee, Jae Kyung; Hyun, Soong Keun; Lee, Chongmu; Choi, Seungbok

    2018-03-01

    The temperature of the post-annealing treatment carried out after noble metal deposition onto semiconducting metal oxides (SMOs) must be carefully optimized to maximize the sensing performance of the metal-decorated SMO sensors. WO3 nanorods were synthesized by thermal evaporation of WO3 powders and decorated with Pd nanoparticles using a sol-gel method, followed by an annealing process. The effects of the annealing temperature on the hydrogen gas-sensing properties of the Pd-decorated WO3 nanorods were then examined; the optimal annealing temperature, leading to the highest response of the WO3 nanorod sensor to H2, was determined to be 600 °C. Post-annealing at 600 °C resulted in nanorods with the highest surface area-to-volume ratio, as well as in the optimal size and the largest number of deposited Pd nanoparticles, leading to the highest response and the shortest response/recovery times toward H2. The improved H2-sensing performance of the Pd-decorated WO3 nanorod sensor, compared to a sensor based on pristine WO3 nanorods, is attributed to the enhanced catalytic activity, increased surface area-to-volume ratio, and higher amounts of surface defects.

  12. Tuning the optical properties of ZnO nanorods by variation of precursor concentration through hydrothermal method

    NASA Astrophysics Data System (ADS)

    Kumari, Lakshmi; Kar, Asit Kumar

    2018-05-01

    ZnO nanorods with varying precursor concentration have been successfully synthesized by the hydrothermal method. The effect of the precursor concentration on the structural, morphological and optical properties of the resulting nanorods was investigated by means of X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis spectroscopy and photoluminescence (PL) spectroscopy. The crystalline structural characterization demonstrated that the synthesized materials crystallize in pure ZnO wurtzite structure without any other secondary phase. SEM micrographs demonstrate nanorod type features in all the samples. In addition, they show that increase of precursor concentration changes the length and diameter of nanorods. The UV-Vis studies show a strong absorption band in UV region at 373 nm attributed to the band-edge absorption of wurtzite hexagonal ZnO, blue shifted relative to its bulk form (380 nm). The PL spectra of obtained nanorods excited at 360 nm present broad visible emission. Moreover, as the visible region (from 510 to 550 nm) is concerned, it is speculated that the increase of the precursor concentration affects strongly the kind of interstitial defects (Oi, Zni and Vo) formed in ZnO nanorods. The luminescence intensity decreases with the increase of precursor concentration.

  13. Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles.

    PubMed

    Ibupoto, Zafar Hussain; Khun, Kimleang; Eriksson, Martin; AlSalhi, Mohammad; Atif, Muhammad; Ansari, Anees; Willander, Magnus

    2013-08-19

    Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. These techniques have shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can be grown with an orientation along the c -axis of the substrate and exhibit a wurtzite crystal structure with a dominant (002) peak in an XRD spectrum and possessed a high crystal quality. A photoluminescence (PL) spectroscopy study of the ZnO nanorods has revealed a conventional near band edge ultraviolet emission, along with emission in the visible part of the electromagnetic spectrum due to defect emission. This study provides an alternative method for the fabrication of well aligned ZnO nanorods. This method can be helpful in improving the performance of devices where alignment plays a significant role.

  14. Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles

    PubMed Central

    Ibupoto, Zafar Hussain; Khun, Kimleang; Eriksson, Martin; AlSalhi, Mohammad; Atif, Muhammad; Ansari, Anees; Willander, Magnus

    2013-01-01

    Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. These techniques have shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can be grown with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a dominant (002) peak in an XRD spectrum and possessed a high crystal quality. A photoluminescence (PL) spectroscopy study of the ZnO nanorods has revealed a conventional near band edge ultraviolet emission, along with emission in the visible part of the electromagnetic spectrum due to defect emission. This study provides an alternative method for the fabrication of well aligned ZnO nanorods. This method can be helpful in improving the performance of devices where alignment plays a significant role. PMID:28811454

  15. Three dimensional chiral plasmon rulers based on silver nanorod trimers.

    PubMed

    Han, Chunrui; Yang, Lechen; Ye, Piao; Parrott, Edward P J; Pickwell-Macpherson, Emma; Tam, Wing Yim

    2018-04-16

    The symmetry dependences of plasmon excitation modes are studied in 3D silver nanorod trimers. The degenerate plasmon modes split into chiral modes by breaking the inversion and mirror symmetry of the nanorod trimer through translation and/or rotation of the middle rod. With a translation operation, successive evolution of the circular dichroism (CD) spectrum can be achieved through gradual breaking of the inversion symmetry. An additional rotation operation produces even dramatic spectral changes due to breaking a quasi-mirror symmetry resulted from the same angular distance of the middle rod to the top and bottom rods. Especially, pairs of new chiral modes can be excited due to the contact of the middle rod with the top-bottom rod pair. The spectral changes in the simulations, which are also demonstrated experimentally, envision the 3D chiral nanorod trimer system as plasmon ruler for spatial configuration retrieval and dynamic bio-process analysis at the single molecule level.

  16. Postbuckling behaviors of nanorods including the effects of nonlocal elasticity theory and surface stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thongyothee, Chawis, E-mail: chawist@hotmail.com; Chucheepsakul, Somchai

    2013-12-28

    This paper is concerned with postbuckling behaviors of nanorods subjected to an end concentrated load. One end of the nanorod is clamped while the other end is fixed to a support that can slide in the slot. The governing equation is developed from static equilibrium and geometrical conditions by using the exact curvature corresponding to the elastica theory. The nonlocal elasticity, the effect of surface stress, and their combined effects are taken into account in Euler–Bernoulli beam theory. Differential equations in this problem can be solved numerically by using the shooting-optimization technique for the postbuckling loads and the buckled configurations.more » The results show that nanorods with the nonlocal elasticity effect undergo increasingly large deformation while the effect of surface stress in combination with nonlocal elasticity decreases the deflection of nanorods under the same postbuckling load.« less

  17. Double-heterojunction nanorod light-responsive LEDs for display applications.

    PubMed

    Oh, Nuri; Kim, Bong Hoon; Cho, Seong-Yong; Nam, Sooji; Rogers, Steven P; Jiang, Yiran; Flanagan, Joseph C; Zhai, You; Kim, Jae-Hwan; Lee, Jungyup; Yu, Yongjoon; Cho, Youn Kyoung; Hur, Gyum; Zhang, Jieqian; Trefonas, Peter; Rogers, John A; Shim, Moonsub

    2017-02-10

    Dual-functioning displays, which can simultaneously transmit and receive information and energy through visible light, would enable enhanced user interfaces and device-to-device interactivity. We demonstrate that double heterojunctions designed into colloidal semiconductor nanorods allow both efficient photocurrent generation through a photovoltaic response and electroluminescence within a single device. These dual-functioning, all-solution-processed double-heterojunction nanorod light-responsive light-emitting diodes open feasible routes to a variety of advanced applications, from touchless interactive screens to energy harvesting and scavenging displays and massively parallel display-to-display data communication. Copyright © 2017, American Association for the Advancement of Science.

  18. Hydrophilic interaction chromatography-multiple reaction monitoring mass spectrometry method for basic building block analysis of low molecular weight heparins prepared through nitrous acid depolymerization.

    PubMed

    Sun, Xiaojun; Guo, Zhimou; Yu, Mengqi; Lin, Chao; Sheng, Anran; Wang, Zhiyu; Linhardt, Robert J; Chi, Lianli

    2017-01-06

    Low molecular weight heparins (LMWHs) are important anticoagulant drugs that are prepared through depolymerization of unfractionated heparin. Based on the types of processing reactions and the structures of the products, LMWHs can be divided into different classifications. Enoxaparin is prepared by benzyl esterification and alkaline depolymerization, while dalteparin and nadroparin are prepared through nitrous acid depolymerization followed by borohydride reduction. Compositional analysis of their basic building blocks is an effective way to provide structural information on heparin and LMWHs. However, most current compositional analysis methods have been limited to heparin and enoxaparin. A sensitive and comprehensive approach is needed for detailed investigation of the structure of LMWHs prepared through nitrous acid depolymerization, especially their characteristic saturated non-reducing end (NRE) and 2,5-anhydro-d-mannitol reducing end (RE). A maltose modified hydrophilic interaction column offers improved separation of complicated mixtures of acidic disaccharides and oligosaccharides. A total of 36 basic building blocks were unambiguously identified by high-resolution tandem mass spectrometry (MS). Multiple reaction monitoring (MRM) MS/MS quantification was developed and validated in the analysis of dalteparin and nadroparin samples. Each group of building blocks revealed different aspects of the properties of LMWHs, such as functional motifs required for anticoagulant activity, the structure of heparin starting materials, cleavage sites in the depolymerization reaction, and undesired structural modifications resulting from side reactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Fabrication of Worm-Like Nanorods and Ultrafine Nanospheres of Silver Via Solid-State Photochemical Decomposition

    PubMed Central

    2009-01-01

    Worm-like nanorods and nanospheres of silver have been synthesized by photochemical decomposition of silver oxalate in water by UV irradiation in the presence of CTAB and PVP, respectively. No external seeds have been employed for the synthesis of Ag nanorods. The synthesized Ag colloids have been characterized by UV-visible spectra, powder XRD, HRTEM, and selected area electron diffraction (SAED). Ag nanospheres of average size around 2 nm have been obtained in the presence of PVP. XRD and TEM analyses revealed that top and basal planes of nanorods are bound with {111} facets. Williamson–Hall plot has revealed the presence of defects in the Ag nanospheres and nanorods. Formation of defective Ag nanocrystals is attributed to the heating effect of UV-visible irradiation. PMID:20596513

  20. Mesoporous titania-vertical nanorod films with interfacial engineering for high performance dye-sensitized solar cells.

    PubMed

    Ahmed, Irfan; Fakharuddin, Azhar; Wali, Qamar; Bin Zainun, Ayib Rosdi; Ismail, Jamil; Jose, Rajan

    2015-03-13

    Working electrode (WE) fabrication offers significant challenges in terms of achieving high-efficiency dye-sensitized solar cells (DSCs). We have combined the beneficial effects of vertical nanorods grown on conducting glass substrate for charge transport and mesoporous particles for dye loading and have achieved a high photoconversion efficiency of (η) > 11% with an internal quantum efficiency of ∼93% in electrode films of thickness ∼7 ± 0.5 μm. Controlling the interface between the vertical nanorods and the mesoporous film is a crucial step in attaining high η. We identify three parameters, viz., large surface area of nanoparticles, increased light scattering of the nanorod-nanoparticle layer, and superior charge transport of nanorods, that simultaneously contribute to the improved photovoltaic performance of the WE developed.