Sample records for nanoscale columnar transistors

  1. Emerging ferroelectric transistors with nanoscale channel materials: the possibilities, the limitations

    NASA Astrophysics Data System (ADS)

    Hong, Xia

    2016-03-01

    Combining the nonvolatile, locally switchable polarization field of a ferroelectric thin film with a nanoscale electronic material in a field effect transistor structure offers the opportunity to examine and control a rich variety of mesoscopic phenomena and interface coupling. It is also possible to introduce new phases and functionalities into these hybrid systems through rational design. This paper reviews two rapidly progressing branches in the field of ferroelectric transistors, which employ two distinct classes of nanoscale electronic materials as the conducting channel, the two-dimensional (2D) electron gas graphene and the strongly correlated transition metal oxide thin films. The topics covered include the basic device physics, novel phenomena emerging in the hybrid systems, critical mechanisms that control the magnitude and stability of the field effect modulation and the mobility of the channel material, potential device applications, and the performance limitations of these devices due to the complex interface interactions and challenges in achieving controlled materials properties. Possible future directions for this field are also outlined, including local ferroelectric gate control via nanoscale domain patterning and incorporating other emergent materials in this device concept, such as the simple binary ferroelectrics, layered 2D transition metal dichalcogenides, and the 4d and 5d heavy metal compounds with strong spin-orbit coupling.

  2. Maskless writing of a flexible nanoscale transistor with Au-contacted carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Dockendorf, Cedric P. R.; Poulikakos, Dimos; Hwang, Gilgueng; Nelson, Bradley J.; Grigoropoulos, Costas P.

    2007-12-01

    A flexible polymer field effect transistor with a nanoscale carbon nanotube channel is conceptualized and realized herein. Carbon nanotubes (CNTs) were dispersed on a polyimide substrate and marked in an scanning electron microscope with focused ion beam such that they could be contacted with gold nanoink. The CNTs were divided into two parts forming the source and drain of the transistor. A micropipette writing method was used to contact the carbon nanotube electrodes with gold nanoink and to deposit the poly(3-hexylthiophene) as an active layer. The mobility of the transistors is of the order of 10-5cm/Vs. After fabrication, the flexible transistors can be peeled off the substrate.

  3. A simple quantum mechanical treatment of scattering in nanoscale transistors

    NASA Astrophysics Data System (ADS)

    Venugopal, R.; Paulsson, M.; Goasguen, S.; Datta, S.; Lundstrom, M. S.

    2003-05-01

    We present a computationally efficient, two-dimensional quantum mechanical simulation scheme for modeling dissipative electron transport in thin body, fully depleted, n-channel, silicon-on-insulator transistors. The simulation scheme, which solves the nonequilibrium Green's function equations self consistently with Poisson's equation, treats the effect of scattering using a simple approximation inspired by the "Büttiker probes," often used in mesoscopic physics. It is based on an expansion of the active device Hamiltonian in decoupled mode space. Simulation results are used to highlight quantum effects, discuss the physics of scattering and to relate the quantum mechanical quantities used in our model to experimentally measured low field mobilities. Additionally, quantum boundary conditions are rigorously derived and the effects of strong off-equilibrium transport are examined. This paper shows that our approximate treatment of scattering, is an efficient and useful simulation method for modeling electron transport in nanoscale, silicon-on-insulator transistors.

  4. Fabrication of field-effect transistor utilizing oriented thin film of octahexyl-substituted phthalocyanine and its electrical anisotropy based on columnar structure

    NASA Astrophysics Data System (ADS)

    Ohmori, Masashi; Nakatani, Mitsuhiro; Kajii, Hirotake; Miyamoto, Ayano; Yoneya, Makoto; Fujii, Akihiko; Ozaki, Masanori

    2018-03-01

    Field-effect transistors with molecularly oriented thin films of metal-free non-peripherally octahexyl-substituted phthalocyanine (C6PcH2), which characteristically form a columnar structure, have been fabricated, and the electrical anisotropy of C6PcH2 has been investigated. The molecularly oriented thin films of C6PcH2 were prepared by the bar-coating technique, and the uniform orientation in a large area and the surface roughness at a molecular level were observed by polarized spectroscopy and atomic force microscopy, respectively. The field effect mobilities parallel and perpendicular to the column axis of C6PcH2 were estimated to be (1.54 ± 0.24) × 10-2 and (2.10 ± 0.23) × 10-3 cm2 V-1 s-1, respectively. The electrical anisotropy based on the columnar structure has been discussed by taking the simulated results obtained by density functional theory calculation into consideration.

  5. Nanoscale-Barrier Formation Induced by Low-Dose Electron-Beam Exposure in Ultrathin MoS2 Transistors.

    PubMed

    Matsunaga, Masahiro; Higuchi, Ayaka; He, Guanchen; Yamada, Tetsushi; Krüger, Peter; Ochiai, Yuichi; Gong, Yongji; Vajtai, Robert; Ajayan, Pulickel M; Bird, Jonathan P; Aoki, Nobuyuki

    2016-10-05

    Utilizing an innovative combination of scanning-probe and spectroscopic techniques, supported by first-principles calculations, we demonstrate how electron-beam exposure of field-effect transistors, implemented from ultrathin molybdenum disulfide (MoS 2 ), may cause nanoscale structural modifications that in turn significantly modify the electrical operation of these devices. Quite surprisingly, these modifications are induced by even the relatively low electron doses used in conventional electron-beam lithography, which are found to induce compressive strain in the atomically thin MoS 2 . Likely arising from sulfur-vacancy formation in the exposed regions, the strain gives rise to a local widening of the MoS 2 bandgap, an idea that is supported both by our experiment and by the results of first-principles calculations. A nanoscale potential barrier develops at the boundary between exposed and unexposed regions and may cause extrinsic variations in the resulting electrical characteristics exhibited by the transistor. The widespread use of electron-beam lithography in nanofabrication implies that the presence of such strain must be carefully considered when seeking to harness the potential of atomically thin transistors. At the same time, this work also promises the possibility of exploiting the strain as a means to achieve "bandstructure engineering" in such devices.

  6. Vertical Silicon Nanowire Field Effect Transistors with Nanoscale Gate-All-Around

    NASA Astrophysics Data System (ADS)

    Guerfi, Youssouf; Larrieu, Guilhem

    2016-04-01

    Nanowires are considered building blocks for the ultimate scaling of MOS transistors, capable of pushing devices until the most extreme boundaries of miniaturization thanks to their physical and geometrical properties. In particular, nanowires' suitability for forming a gate-all-around (GAA) configuration confers to the device an optimum electrostatic control of the gate over the conduction channel and then a better immunity against the short channel effects (SCE). In this letter, a large-scale process of GAA vertical silicon nanowire (VNW) MOSFETs is presented. A top-down approach is adopted for the realization of VNWs with an optimum reproducibility followed by thin layer engineering at nanoscale. Good overall electrical performances were obtained, with excellent electrostatic behavior (a subthreshold slope (SS) of 95 mV/dec and a drain induced barrier lowering (DIBL) of 25 mV/V) for a 15-nm gate length. Finally, a first demonstration of dual integration of n-type and p-type VNW transistors for the realization of CMOS inverter is proposed.

  7. A nanoscale piezoelectric transformer for low-voltage transistors.

    PubMed

    Agarwal, Sapan; Yablonovitch, Eli

    2014-11-12

    A novel piezoelectric voltage transformer for low-voltage transistors is proposed. Placing a piezoelectric transformer on the gate of a field-effect transistor results in the piezoelectric transformer field-effect transistor that can switch at significantly lower voltages than a conventional transistor. The piezoelectric transformer operates by using one piezoelectric to squeeze another piezoelectric to generate a higher output voltage than the input voltage. Multiple piezoelectrics can be used to squeeze a single piezoelectric layer to generate an even higher voltage amplification. Coupled electrical and mechanical modeling in COMSOL predicts a 12.5× voltage amplification for a six-layer piezoelectric transformer. This would lead to more than a 150× reduction in the power needed for communications.

  8. Ferroelectric Material Application: Modeling Ferroelectric Field Effect Transistor Characteristics from Micro to Nano

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd, C.; Ho, Fat Duen

    2006-01-01

    All present ferroelectric transistors have been made on the micrometer scale. Existing models of these devices do not take into account effects of nanoscale ferroelectric transistors. Understanding the characteristics of these nanoscale devices is important in developing a strategy for building and using future devices. This paper takes an existing microscale ferroelectric field effect transistor (FFET) model and adds effects that become important at a nanoscale level, including electron velocity saturation and direct tunneling. The new model analyzed FFETs ranging in length from 40,000 nanometers to 4 nanometers and ferroelectric thickness form 200 nanometers to 1 nanometer. The results show that FFETs can operate on the nanoscale but have some undesirable characteristics at very small dimensions.

  9. Modeling of Nano-Scale Transistors and Memory Devices for Low Power Applications

    NASA Astrophysics Data System (ADS)

    Cao, Xi

    As the featuring size of transistors scaled down to sub-20 nm, the continuous scaling of power has become one of the main challenges of the semiconductor industry. The power issue is raised by the barely scalable supply voltage and a limitation on the subthreshold swing (SS) of conventional metal-oxide-semiconductor field-effect transistor (MOSFET). In this work, self-consistent quantum transport device simulators are developed to examine the nanoscale transistors based on black phosphorus (BP) materials. The scaling limit of double-gated BP MOSFETs is assessed. To reduce the SS below the thermionic limit for ultra-steep switching, tunnel FETs (TFETs) and vertical ballistic impact ionization FETs based on BP and its heterojunctions are investigated. Furthermore, the ferroelectric tunneling junction (FTJ) is modeled and examined for potential low power memory applications. For BP MOSFETs, the device physics at the ultimate scaling limit are examined. The performance of monolayer BP MOSFETs is projected to sub-10 nm and compared with the International Technology Roadmap for Semiconductors (ITRS) requirements. And the interplay of quantum mechanical effects and the highly anisotropic bandstructure of BP at this scale is investigated. By choice of layer number and crystalline direction, BP materials can offer a range of bandgap and effective mass values, which is attractive for TFET applications. Therefore, scaling behaviors of BP TFETs near and below the 10 nm scale are studied. The gate oxide thickness scaling and the effect of high-k dielectric are compared between the TFETs and the MOSFETs. For the TFETs with the gate lengths beyond 10 nm and at the sub-10 nm scale, the direct-source-to-drain tunneling issues are evaluated, and different strategies to achieve ultra-steep switching are specified. In a sub-10 nm graphene-BP-graphene heterojunction transistor, the sharp turnon behavior was observed, under a small source-drain bias of 0.1 V. The fast switch is

  10. Nanoscale structural and chemical analysis of F-implanted enhancement-mode InAlN/GaN heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Tang, Fengzai; Lee, Kean B.; Guiney, Ivor; Frentrup, Martin; Barnard, Jonathan S.; Divitini, Giorgio; Zaidi, Zaffar H.; Martin, Tomas L.; Bagot, Paul A.; Moody, Michael P.; Humphreys, Colin J.; Houston, Peter A.; Oliver, Rachel A.; Wallis, David J.

    2018-01-01

    We investigate the impact of a fluorine plasma treatment used to obtain enhancement-mode operation on the structure and chemistry at the nanometer and atomic scales of an InAlN/GaN field effect transistor. The fluorine plasma treatment is successful in that enhancement mode operation is achieved with a +2.8 V threshold voltage. However, the InAlN barrier layers are observed to have been damaged by the fluorine treatment with their thickness being reduced by up to 50%. The treatment also led to oxygen incorporation within the InAlN barrier layers. Furthermore, even in the as-grown structure, Ga was unintentionally incorporated during the growth of the InAlN barrier. The impact of both the reduced barrier thickness and the incorporated Ga within the barrier on the transistor properties has been evaluated theoretically and compared to the experimentally determined two-dimensional electron gas density and threshold voltage of the transistor. For devices without fluorine treatment, the two-dimensional electron gas density is better predicted if the quaternary nature of the barrier is taken into account. For the fluorine treated device, not only the changes to the barrier layer thickness and composition, but also the fluorine doping needs to be considered to predict device performance. These studies reveal the factors influencing the performance of these specific transistor structures and highlight the strengths of the applied nanoscale characterisation techniques in revealing information relevant to device performance.

  11. Nanoscale MOS devices: device parameter fluctuations and low-frequency noise (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Wong, Hei; Iwai, Hiroshi; Liou, J. J.

    2005-05-01

    It is well-known in conventional MOS transistors that the low-frequency noise or flicker noise is mainly contributed by the trapping-detrapping events in the gate oxide and the mobility fluctuation in the surface channel. In nanoscale MOS transistors, the number of trapping-detrapping events becomes less important because of the large direct tunneling current through the ultrathin gate dielectric which reduces the probability of trapping-detrapping and the level of leakage current fluctuation. Other noise sources become more significant in nanoscale devices. The source and drain resistance noises have greater impact on the drain current noise. Significant contribution of the parasitic bipolar transistor noise in ultra-short channel and channel mobility fluctuation to the channel noise are observed. The channel mobility fluctuation in nanoscale devices could be due to the local composition fluctuation of the gate dielectric material which gives rise to the permittivity fluctuation along the channel and results in gigantic channel potential fluctuation. On the other hand, the statistical variations of the device parameters across the wafer would cause the noise measurements less accurate which will be a challenge for the applicability of analytical flicker noise model as a process or device evaluation tool for nanoscale devices. Some measures for circumventing these difficulties are proposed.

  12. Compact modeling of nanoscale triple-gate junctionless transistors covering drift-diffusion to quasi-ballistic carrier transport

    NASA Astrophysics Data System (ADS)

    Oproglidis, T. A.; Karatsori, T. A.; Barraud, S.; Ghibaudo, G.; Dimitriadis, C. A.

    2018-04-01

    In this work, we extend our analytical compact model for nanoscale junctionless triple-gate (JL TG) MOSFETs, capturing carrier transport from drift-diffusion to quasi-ballistic regime. This is based on a simple formulation of the low-field mobility extracted from experimental data using the Y-function method, taking into account the ballistic carrier motion and an increased carrier scattering in process-induced defects near the source/drain regions. The case of a Schottky junction in non-ideal ohmic contact at the drain side was also taken into account by modifying the threshold voltage and ideality factor of the JL transistor. The model is validated with experimental data for n-channel JL TG MOSFETs with channel length varying from 95 down to 25 nm. It can be easily implemented as a compact model for use in Spice circuit simulators.

  13. Programmable resistive-switch nanowire transistor logic circuits.

    PubMed

    Shim, Wooyoung; Yao, Jun; Lieber, Charles M

    2014-09-10

    Programmable logic arrays (PLA) constitute a promising architecture for developing increasingly complex and functional circuits through nanocomputers from nanoscale building blocks. Here we report a novel one-dimensional PLA element that incorporates resistive switch gate structures on a semiconductor nanowire and show that multiple elements can be integrated to realize functional PLAs. In our PLA element, the gate coupling to the nanowire transistor can be modulated by the memory state of the resistive switch to yield programmable active (transistor) or inactive (resistor) states within a well-defined logic window. Multiple PLA nanowire elements were integrated and programmed to yield a working 2-to-4 demultiplexer with long-term retention. The well-defined, controllable logic window and long-term retention of our new one-dimensional PLA element provide a promising route for building increasingly complex circuits with nanoscale building blocks.

  14. Plant virus directed fabrication of nanoscale materials and devices

    DTIC Science & Technology

    2015-03-26

    stringent coating processes as well as yield novel materials with unique conductive and mesoscale structures (Fowler et al., 2001; Niu et al., 2007a...steel and then coated by ELD with conductive nickel or cobalt. Several fabrication methods including atomic layer deposition, sputtering, electro...novel columnar nanowire structure that when coatedwith conductive nickel provides a forest of nanoscale electrodes that can be coated with silicon by

  15. EDITORIAL: Reigniting innovation in the transistor Reigniting innovation in the transistor

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2012-09-01

    Today the transistor is integral to the electronic circuitry that wires our lives. When Bardeen and Brattain first observed an amplified signal by connecting electrodes to a germanium crystal they saw that their 'semiconductor triode' could prove a useful alternative to the more cumbersome vacuum tubes used at the time [1]. But it was perhaps William Schottky who recognized the extent of the transistor's potential. A basic transistor has three or more terminals and current across one pair of terminals can switch or amplify current through another pair. Bardeen, Brattain and Schottky were jointly awarded a Nobel Prize in 1956 'for their researches on semiconductors and their discovery of the transistor effect' [2]. Since then many new forms of the transistor have been developed and understanding of the underlying properties is constantly advancing. In this issue Chen and Shih and colleagues at Taiwan National University and Drexel University report a pyroelectrics transistor. They show how a novel optothermal gating mechanism can modulate the current, allowing a range of developments in nanoscale optoelectronics and wireless devices [3]. The explosion of interest in nanoscale devices in the 1990s inspired electronics researchers to look for new systems that can act as transistors, such as carbon nanotube [4] and silicon nanowire [5] transistors. Generally these transistors function by raising and lowering an energy barrier of kBT -1, but researchers in the US and Canada have demonstrated that the quantum interference between two electronic pathways through aromatic molecules can also modulate the current flow [6]. The device has advantages for further miniaturization where energy dissipation in conventional systems may eventually cause complications. Interest in transistor technology has also led to advances in fabrication techniques for achieving high production quantities, such as printing [7]. Researchers in Florida in the US demonstrated field effect transistor

  16. Unraveling the physics of vertical organic field effect transistors through nanoscale engineering of a self-assembled transparent electrode.

    PubMed

    Ben-Sasson, Ariel J; Tessler, Nir

    2012-09-12

    While organic transistors' performances are continually pushed to achieve lower power consumption, higher working frequencies, and higher current densities, a new type of organic transistors characterized by a vertical architecture offers a radically different design approach to outperform its traditional counterparts. Naturally, the distinct vertical architecture gives way to different governing physical ground rules and structural key features such as the need for an embedded transparent electrode. In this paper, we make use of a zero-frequency electric field-transparent patterned electrode produced through block-copolymer self-assembly based lithography to control the performances of the vertical organic field effect transistor (VOFET) and to study its governing physical mechanisms. Unlike other VOFET structures, this design, involving well-defined electrode architecture, is fully tractable, allowing for detailed modeling, analysis, and optimization. We provide for the first time a complete account of the physics underpinning the VOFET operation, considering two complementary mechanisms: the virtual contact formation (Schottky barrier lowering) and the induced potential barrier (solid-state triode-like shielding). We demonstrate how each mechanism, separately, accounts for the link between controllable nanoscale structural modifications in the patterned electrode and the VOFET performances. For example, the ON/OFF current ratio increases by up to 2 orders of magnitude when the perforations aspect ratio (height/width) decreases from ∼0.2 to ∼0.1. The patterned electrode is demonstrated to be not only penetrable to zero-frequency electric fields but also transparent in the visible spectrum, featuring uniformity, spike-free structure, material diversity, amenability with flexible surfaces, low sheet resistance (20-2000 Ω sq(-1)) and high transparency (60-90%). The excellent layer transparency of the patterned electrode and the VOFET's exceptional electrical

  17. Yield surface evolution for columnar ice

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiwei; Ma, Wei; Zhang, Shujuan; Mu, Yanhu; Zhao, Shunpin; Li, Guoyu

    A series of triaxial compression tests, which has capable of measuring the volumetric strain of the sample, were conducted on columnar ice. A new testing approach of probing the experimental yield surface was performed from a single sample in order to investigate yield and hardening behaviors of the columnar ice under complex stress states. Based on the characteristic of the volumetric strain, a new method of defined the multiaxial yield strengths of the columnar ice is proposed. The experimental yield surface remains elliptical shape in the stress space of effective stress versus mean stress. The effect of temperature, loading rate and loading path in the initial yield surface and deformation properties of the columnar ice were also studied. Subsequent yield surfaces of the columnar ice have been explored by using uniaxial and hydrostatic paths. The evolution of the subsequent yield surface exhibits significant path-dependent characteristics. The multiaxial hardening law of the columnar ice was established experimentally. A phenomenological yield criterion was presented for multiaxial yield and hardening behaviors of the columnar ice. The comparisons between the theoretical and measured results indicate that this current model is capable of giving a reasonable prediction for the multiaxial yield and post-yield properties of the columnar ice subjected to different temperature, loading rate and path conditions.

  18. Lifetime prediction of InGaZnO thin film transistor for the application of display device and BEOL-transistors

    NASA Astrophysics Data System (ADS)

    Kim, Sang Min; Cho, Won Ju; Yu, Chong Gun; Park, Jong Tae

    2018-04-01

    In this work, the lifetime prediction models of amorphous InGaZnO thin film transistors (a-IGZO TFTs) were suggested for the application of display device and BEOL (Back End Of line) transistors with embedded a-IGZO TFTs. Four different types of test devices according to the active layer thickness, source/drain electrode materials and thermal treatments have been used to verify the suggested model. The device lifetimes under high gate bias stress and hot carrier stress were extracted through fittings of the stretched-exponential equation for threshold voltage shifts and the current estimation method for drain current degradations. Our suggested lifetime prediction models could be used in any kinds of structures of a-IGZO TFTs for the application of display device and BEOL transistors. The a-IGZO TFTs with embedded ITO local conducting layer under source/drain is better for BEOL transistor application and a-IGZO TFTs with InGaZnO thin film as source/drain electrodes may be better for the application of display devices. From 1983 to 1985, he was a Researcher at Gold-Star Semiconductor, Inc., Korea, where he worked on the development of SRAM. He joined the Department of Electronics Engineering, University of Incheon, Incheon, Korea, in 1987, where he is a Professor. As a visiting scientist at Massachusetts Institute of Technology, Cambridge, in 1991, he conducted research in hot carrier reliability of CMOS. As a visiting scholar at University of California, Davis, in 2001, he conducted research on the device structure of Nano-scale SOI CMOS. His recent interests are device structure and reliability of Nano-scale CMOS devices, flash memory, and thin film transistors.

  19. Thermal transistor utilizing gas-liquid transition.

    PubMed

    Komatsu, Teruhisa S; Ito, Nobuyasu

    2011-01-01

    We propose a simple thermal transistor, a device to control heat current. In order to effectively change the current, we utilize the gas-liquid transition of the heat-conducting medium (fluid) because the gas region can act as a good thermal insulator. The three terminals of the transistor are located at both ends and the center of the system, and are put into contact with distinct heat baths. The key idea is a special arrangement of the three terminals. The temperature at one end (the gate temperature) is used as an input signal to control the heat current between the center (source, hot) and another end (drain, cold). Simulating the nanoscale systems of this transistor, control of heat current is demonstrated. The heat current is effectively cut off when the gate temperature is cold and it flows normally when it is hot. By using an extended version of this transistor, we also simulate a primitive application for an inverter.

  20. Discovery of columnar jointing on Mars

    USGS Publications Warehouse

    Milazzo, M.P.; Keszthelyi, L.P.; Jaeger, W.L.; Rosiek, M.; Mattson, S.; Verba, C.; Beyer, R.A.; Geissler, P.E.; McEwen, A.S.

    2009-01-01

    We report on the discovery of columnar jointing in Marte Valles, Mars. These columnar lavas were discovered in the wall of a pristine, 16-km-diameter impact crater and exhibit the features of terrestrial columnar basalts. There are discontinuous outcrops along the entire crater wall, suggesting that the columnar rocks covered a surface area of at least 200 km2, assuming that the rocks obliterated by the impact event were similarly jointed. We also see columns in the walls of other fresh craters in the nearby volcanic plains of Elysium Planitia-Amazonis Planitia, which include Marte Vallis, and in a well-preserved crater in northeast Hellas. ?? 2009 The Geological Society of America.

  1. Coulomb-coupled quantum-dot thermal transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Yanchao; Yang, Zhimin; Zhang, Xin; Lin, Bihong; Lin, Guoxing; Chen, Jincan

    2018-04-01

    A quantum-dot thermal transistor consisting of three Coulomb-coupled quantum dots coupled to the respective electronic reservoirs by tunnel contacts is established. The heat flows through the collector and emitter can be controlled by the temperature of the base. It is found that a small change in the base heat flow can induce a large heat flow change in the collector and emitter. The huge amplification factor can be obtained by optimizing the Coulomb interaction between the collector and the emitter or by decreasing the tunneling rate at the base. The proposed quantum-dot thermal transistor may open up potential applications in low-temperature solid-state thermal circuits at the nanoscale.

  2. The discovery of columnar jointing on Mars

    USGS Publications Warehouse

    Milazzo, M.P.; Keszthelyi, L.P.; Jaeger, W.L.; Rosiek, M.; Mattson, S.; Verba, C.; Beyer, R.A.; Geissler, P.E.; McEwen, A.S.; ,

    2009-01-01

    We report on the discovery of columnar jointing in Marte Valles, Mars. These columnar lavas were discovered in the wall of a pristine, 16-km-diameter impact crater and exhibit the features of terrestrial columnar basalts. There are discontinuous outcrops along the entire crater wall, suggesting that the columnar rocks covered a surface area of at least 200 km2, assuming that the rocks obliterated by the impact event were similarly jointed. We also see columns in the walls of other fresh craters in the nearby volcanic plains of Elysium Planitia–Amazonis Planitia, which include Marte Vallis, and in a well-preserved crater in northeast Hellas.

  3. Transport spectroscopy of coupled donors in silicon nano-transistors

    PubMed Central

    Moraru, Daniel; Samanta, Arup; Anh, Le The; Mizuno, Takeshi; Mizuta, Hiroshi; Tabe, Michiharu

    2014-01-01

    The impact of dopant atoms in transistor functionality has significantly changed over the past few decades. In downscaled transistors, discrete dopants with uncontrolled positions and number induce fluctuations in device operation. On the other hand, by gaining access to tunneling through individual dopants, a new type of devices is developed: dopant-atom-based transistors. So far, most studies report transport through dopants randomly located in the channel. However, for practical applications, it is critical to control the location of the donors with simple techniques. Here, we fabricate silicon transistors with selectively nanoscale-doped channels using nano-lithography and thermal-diffusion doping processes. Coupled phosphorus donors form a quantum dot with the ground state split into a number of levels practically equal to the number of coupled donors, when the number of donors is small. Tunneling-transport spectroscopy reveals fine features which can be correlated with the different numbers of donors inside the quantum dot, as also suggested by first-principles simulation results. PMID:25164032

  4. An accurate model for predicting high frequency noise of nanoscale NMOS SOI transistors

    NASA Astrophysics Data System (ADS)

    Shen, Yanfei; Cui, Jie; Mohammadi, Saeed

    2017-05-01

    A nonlinear and scalable model suitable for predicting high frequency noise of N-type Metal Oxide Semiconductor (NMOS) transistors is presented. The model is developed for a commercial 45 nm CMOS SOI technology and its accuracy is validated through comparison with measured performance of a microwave low noise amplifier. The model employs the virtual source nonlinear core and adds parasitic elements to accurately simulate the RF behavior of multi-finger NMOS transistors up to 40 GHz. For the first time, the traditional long-channel thermal noise model is supplemented with an injection noise model to accurately represent the noise behavior of these short-channel transistors up to 26 GHz. The developed model is simple and easy to extract, yet very accurate.

  5. Mucinous breast carcinoma with tall columnar cells.

    PubMed

    Tsoukalas, N; Kiakou, M; Tolia, M; Kostakis, I D; Galanopoulos, M; Nakos, G; Tryfonopoulos, D; Kyrgias, G; Koumakis, G

    2018-05-01

    Mucinous carcinoma of the breast represents 1%-4% of all breast cancers. The World Health Organization classification divides this type of tumour into three different subtypes: mucinous carcinoma, mucinous carcinoma with tall columnar cells (mucinous cystadenocarcinoma and columnar cell mucinous carcinoma) and signet ring cell carcinoma. A 74-year-old woman presented a tumour with inflammatory features in the upper outer quadrant of her left breast, 7 cm in diameter. The core biopsy showed infiltrating ductal carcinoma of no specific type. The tumour-node-metastasis clinical staging was T4cN3M0 (Stage IIIC). She received neoadjuvant chemotherapy, underwent left mastectomy with radical axillary resection and subsequently received radiotherapy and chemotherapy. The histological examination of the surgical specimen revealed two solid tumors in the tail of Spence, which corresponded to adenocarcinoma with high columnar cells. The patient died 16 months after the diagnosis, suffering from pulmonary metastases and anterior chest wall infiltration. A review of the literature revealed only 21 reports of mucinous carcinoma of the breast with tall columnar cells, including our case. This is only the third time that the specific histological type of columnar cell mucinous carcinoma has been reported in the literature.

  6. Spacer length controlled lamello-columnar to oblique-columnar mesophase transition in liquid crystalline DNA - discotic cationic lipid complexes

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Cui, Li; Miao, Jianjun

    2006-03-01

    A series of asymmetric triphenylene imidazolium salts with different spacer lengths (C5, C8, and C11) were synthesized and their ionic complexes with double-strand DNA were prepared in aqueous solution. The molecular composition of the complexes was determined by FTIR analysis. The liquid crystalline morphology was characterized by polarized light microscopy, X-ray diffraction (XRD), and transmission electron microscope. 2D XRD results indicated an oblique columnar phase for the complex with a short spacer length of C5, while lamello-columnar phases for those with longer spacer lengths (C8 and C11). Thin film circular dichroism results showed the disappearing of any helical conformation in the DNA in all the complexes. Instead, the complexation between single-strand RNA and discotic cationic lipids did not show columnar morphology; therefore, the columnar liquid crystalline morphology in the DNA-discotic cationic lipid complexes was attributed to the DNA double-strand chain rigidity.

  7. Disclosing the temperature of columnar jointing in lavas.

    PubMed

    Lamur, Anthony; Lavallée, Yan; Iddon, Fiona E; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Wadsworth, Fabian B

    2018-04-12

    Columnar joints form by cracking during cooling-induced contraction of lava, allowing hydrothermal fluid circulation. A lack of direct observations of their formation has led to ambiguity about the temperature window of jointing and its impact on fluid flow. Here we develop a novel thermo-mechanical experiment to disclose the temperature of columnar jointing in lavas. Using basalts from Eyjafjallajökull volcano (Iceland) we show that contraction during cooling induces stress build-up below the solidus temperature (980 °C), resulting in localised macroscopic failure between 890 and 840 °C. This temperature window for incipient columnar jointing is supported by modelling informed by mechanical testing and thermal expansivity measurements. We demonstrate that columnar jointing takes place well within the solid state of volcanic rocks, and is followed by a nonlinear increase in system permeability of <9 orders of magnitude during cooling. Columnar jointing may promote advective cooling in magmatic-hydrothermal environments and fluid loss during geothermal drilling and thermal stimulation.

  8. Fish mucus alters the Flavobacterium columnare transcriptome

    USDA-ARS?s Scientific Manuscript database

    Columnaris disease which is caused by Flavobacterium columnare severely impacts the production of freshwater finfish species. Due to the impact on the aquaculture industry, research efforts to better understand the biological processes of F. columnare including the formation of biofilms and their co...

  9. On the origin of enhanced sensitivity in nanoscale FET-based biosensors

    PubMed Central

    Shoorideh, Kaveh; Chui, Chi On

    2014-01-01

    Electrostatic counter ion screening is a phenomenon that is detrimental to the sensitivity of charge detection in electrolytic environments, such as in field-effect transistor-based biosensors. Using simple analytical arguments, we show that electrostatic screening is weaker in the vicinity of concave curved surfaces, and stronger in the vicinity of convex surfaces. We use this insight to show, using numerical simulations, that the enhanced sensitivity observed in nanoscale biosensors is due to binding of biomolecules in concave corners where screening is reduced. We show that the traditional argument, that increased surface area-to-volume ratio for nanoscale sensors is responsible for their increased sensitivity, is incorrect. PMID:24706861

  10. Analytical model of nanoscale junctionless transistors towards controlling of short channel effects through source/drain underlap and channel thickness engineering

    NASA Astrophysics Data System (ADS)

    Roy, Debapriya; Biswas, Abhijit

    2018-01-01

    We develop a 2D analytical subthreshold model for nanoscale double-gate junctionless transistors (DGJLTs) with gate-source/drain underlap. The model is validated using well-calibrated TCAD simulation deck obtained by comparing experimental data in the literature. To analyze and control short-channel effects, we calculate the threshold voltage, drain induced barrier lowering (DIBL) and subthreshold swing of DGJLTs using our model and compare them with corresponding simulation value at channel length of 20 nm with channel thickness tSi ranging 5-10 nm, gate-source/drain underlap (LSD) values 0-7 nm and source/drain doping concentrations (NSD) ranging 5-12 × 1018 cm-3. As tSi reduces from 10 to 5 nm DIBL drops down from 42.5 to 0.42 mV/V at NSD = 1019 cm-3 and LSD = 5 nm in contrast to decrement from 71 to 4.57 mV/V without underlap. For a lower tSiDIBL increases marginally with increasing NSD. The subthreshold swing reduces more rapidly with thinning of channel thickness rather than increasing LSD or decreasing NSD.

  11. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor.

    PubMed

    Duan, Xiaojie; Gao, Ruixuan; Xie, Ping; Cohen-Karni, Tzahi; Qing, Quan; Choe, Hwan Sung; Tian, Bozhi; Jiang, Xiaocheng; Lieber, Charles M

    2011-12-18

    The ability to make electrical measurements inside cells has led to many important advances in electrophysiology. The patch clamp technique, in which a glass micropipette filled with electrolyte is inserted into a cell, offers both high signal-to-noise ratio and temporal resolution. Ideally, the micropipette should be as small as possible to increase the spatial resolution and reduce the invasiveness of the measurement, but the overall performance of the technique depends on the impedance of the interface between the micropipette and the cell interior, which limits how small the micropipette can be. Techniques that involve inserting metal or carbon microelectrodes into cells are subject to similar constraints. Field-effect transistors (FETs) can also record electric potentials inside cells, and because their performance does not depend on impedance, they can be made much smaller than micropipettes and microelectrodes. Moreover, FET arrays are better suited for multiplexed measurements. Previously, we have demonstrated FET-based intracellular recording with kinked nanowire structures, but the kink configuration and device design places limits on the probe size and the potential for multiplexing. Here, we report a new approach in which a SiO2 nanotube is synthetically integrated on top of a nanoscale FET. This nanotube penetrates the cell membrane, bringing the cell cytosol into contact with the FET, which is then able to record the intracellular transmembrane potential. Simulations show that the bandwidth of this branched intracellular nanotube FET (BIT-FET) is high enough for it to record fast action potentials even when the nanotube diameter is decreased to 3 nm, a length scale well below that accessible with other methods. Studies of cardiomyocyte cells demonstrate that when phospholipid-modified BIT-FETs are brought close to cells, the nanotubes can spontaneously penetrate the cell membrane to allow the full-amplitude intracellular action potential to be

  12. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor

    NASA Astrophysics Data System (ADS)

    Duan, Xiaojie; Gao, Ruixuan; Xie, Ping; Cohen-Karni, Tzahi; Qing, Quan; Choe, Hwan Sung; Tian, Bozhi; Jiang, Xiaocheng; Lieber, Charles M.

    2012-03-01

    The ability to make electrical measurements inside cells has led to many important advances in electrophysiology. The patch clamp technique, in which a glass micropipette filled with electrolyte is inserted into a cell, offers both high signal-to-noise ratio and temporal resolution. Ideally, the micropipette should be as small as possible to increase the spatial resolution and reduce the invasiveness of the measurement, but the overall performance of the technique depends on the impedance of the interface between the micropipette and the cell interior, which limits how small the micropipette can be. Techniques that involve inserting metal or carbon microelectrodes into cells are subject to similar constraints. Field-effect transistors (FETs) can also record electric potentials inside cells, and because their performance does not depend on impedance, they can be made much smaller than micropipettes and microelectrodes. Moreover, FET arrays are better suited for multiplexed measurements. Previously, we have demonstrated FET-based intracellular recording with kinked nanowire structures, but the kink configuration and device design places limits on the probe size and the potential for multiplexing. Here, we report a new approach in which a SiO2 nanotube is synthetically integrated on top of a nanoscale FET. This nanotube penetrates the cell membrane, bringing the cell cytosol into contact with the FET, which is then able to record the intracellular transmembrane potential. Simulations show that the bandwidth of this branched intracellular nanotube FET (BIT-FET) is high enough for it to record fast action potentials even when the nanotube diameter is decreased to 3 nm, a length scale well below that accessible with other methods. Studies of cardiomyocyte cells demonstrate that when phospholipid-modified BIT-FETs are brought close to cells, the nanotubes can spontaneously penetrate the cell membrane to allow the full-amplitude intracellular action potential to be

  13. Research on non-direct reflection columnar microstructure

    NASA Astrophysics Data System (ADS)

    Wu, B. Q.; Wang, X. Z.; Dong, L. H.

    2015-10-01

    To minimize the risk of laser accidents, especially those involving eye and skin injuries, it is crucial to pay more attention to laser safety. To control the risk of injury, depending on the laser power and wavelength, a number of required safety measures have been put forward, such as specific protection walls, and wearing safety goggles when operating lasers. The direct reflection columnar microstructure can also be used for laser safety. Based on mathematical foundations , a columnar microstructure is designed by the optical design software LightTools. Simulation showed that there is a tilt angle between the emergent and incident light, the incident light being perpendicular to the microstructure, as well as the phenomenon of no direct reflection happened. A novel testing platform was built for the columnar microstructure after it was machined. The applied testing method can measure the angle between the emergent and incident light. The method lays the condition for the further research. It is shown that the columnar microstructure with no direct reflection can be utilized in laser protection systems.

  14. Digital mammography: more microcalcifications, more columnar cell lesions without atypia.

    PubMed

    Verschuur-Maes, Anoek H J; van Gils, Carla H; van den Bosch, Maurice A A J; De Bruin, Peter C; van Diest, Paul J

    2011-09-01

    The incidence of columnar cell lesions in breast core needle biopsies since full-field digital mammography in comparison with screen-filmed mammography was analyzed. As tiny microcalcifications characterize columnar cell lesions at mammography, we hypothesized that more columnar cell lesions are diagnosed since full-field digital mammography due to its higher sensitivity for microcalcifications. In all, 3437 breast core needle biopsies performed in three hospitals and resulting from in total 55 159 mammographies were revised: 1424 taken in the screen-filmed mammography and 2013 in the full-field digital mammography period. Between the screen-filmed mammography and full-field digital mammography periods, we compared the proportion of mammographies that led to core needle biopsies, the mammographic indication for core needle biopsies (density, microcalcifications, or both) and the proportion of columnar cell lesions with or without atypia. The columnar cell lesions were graded according to Schnitt, and we included atypical ductal hyperplasia arising in the context of columnar cell lesions. Proportions were compared using χ(2) tests and prevalence ratios were adjusted for age and hospital. We found that more core needle biopsies per mammogram were taken in the full-field digital mammography period (7.6%) compared with the screen-filmed mammography period (5.0%, P<0.0001). Microcalcifications were more often diagnosed with full-field digital mammography than with screen-filmed mammography (adjusted prevalence ratio: 1.14, confidence interval 95%: 1.01-1.28). Core needle biopsies from the full-field digital mammography era showed more columnar cell lesions (10.8%) than those from the screen-filmed mammography era (4.9%; adjusted prevalence ratio: 1.93, confidence interval 95%: 1.48-2.51), particularly due to more columnar cell lesions without atypia (8.2% respectively 2.8%) while the proportion of columnar cell lesions with atypia remained nearly constant (2.0 vs 2

  15. Unipolar n-Type Black Phosphorus Transistors with Low Work Function Contacts.

    PubMed

    Wang, Ching-Hua; Incorvia, Jean Anne C; McClellan, Connor J; Yu, Andrew C; Mleczko, Michal J; Pop, Eric; Wong, H-S Philip

    2018-05-09

    Black phosphorus (BP) is a promising two-dimensional (2D) material for nanoscale transistors, due to its expected higher mobility than other 2D semiconductors. While most studies have reported ambipolar BP with a stronger p-type transport, it is important to fabricate both unipolar p- and n-type transistors for low-power digital circuits. Here, we report unipolar n-type BP transistors with low work function Sc and Er contacts, demonstrating a record high n-type current of 200 μA/μm in 6.5 nm thick BP. Intriguingly, the electrical transport of the as-fabricated, capped devices changes from ambipolar to n-type unipolar behavior after a month at room temperature. Transmission electron microscopy analysis of the contact cross-section reveals an intermixing layer consisting of partly oxidized metal at the interface. This intermixing layer results in a low n-type Schottky barrier between Sc and BP, leading to the unipolar behavior of the BP transistor. This unipolar transport with a suppressed p-type current is favorable for digital logic circuits to ensure a lower off-power consumption.

  16. The impact of defect scattering on the quasi-ballistic transport of nanoscale conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esqueda, I. S., E-mail: isanchez@isi.edu; Fritze, M.; Cress, C. D.

    2015-02-28

    Using the Landauer approach for carrier transport, we analyze the impact of defects induced by ion irradiation on the transport properties of nanoscale conductors that operate in the quasi-ballistic regime. Degradation of conductance results from a reduction of carrier mean free path due to the introduction of defects in the conducting channel. We incorporate scattering mechanisms from radiation-induced defects into calculations of the transmission coefficient and present a technique for extracting modeling parameters from near-equilibrium transport measurements. These parameters are used to describe degradation in the transport properties of nanoscale devices using a formalism that is valid under quasi-ballistic operation.more » The analysis includes the effects of bandstructure and dimensionality on the impact of defect scattering and discusses transport properties of nanoscale devices from the diffusive to the ballistic limit. We compare calculations with recently published measurements of irradiated nanoscale devices such as single-walled carbon nanotubes, graphene, and deep-submicron Si metal-oxide-semiconductor field-effect transistors.« less

  17. Comparative analysis of the Flavobacterium columnare genomovar I and II genomes

    USDA-ARS?s Scientific Manuscript database

    Columnaris disease caused by Gram-negative rod Flavobacterium columnare is one of the most common diseases of catfish. F. columnare is also a common problem in other cultured fish species worldwide. F. columnare has three major genomovars; we have sequenced a representative strain from genomovar I (...

  18. Multibit data storage states formed in plasma-treated MoS₂ transistors.

    PubMed

    Chen, Mikai; Nam, Hongsuk; Wi, Sungjin; Priessnitz, Greg; Gunawan, Ivan Manuel; Liang, Xiaogan

    2014-04-22

    New multibit memory devices are desirable for improving data storage density and computing speed. Here, we report that multilayer MoS2 transistors, when treated with plasmas, can dramatically serve as low-cost, nonvolatile, highly durable memories with binary and multibit data storage capability. We have demonstrated binary and 2-bit/transistor (or 4-level) data states suitable for year-scale data storage applications as well as 3-bit/transistor (or 8-level) data states for day-scale data storage. This multibit memory capability is hypothesized to be attributed to plasma-induced doping and ripple of the top MoS2 layers in a transistor, which could form an ambipolar charge-trapping layer interfacing the underlying MoS2 channel. This structure could enable the nonvolatile retention of charged carriers as well as the reversible modulation of polarity and amount of the trapped charge, ultimately resulting in multilevel data states in memory transistors. Our Kelvin force microscopy results strongly support this hypothesis. In addition, our research suggests that the programming speed of such memories can be improved by using nanoscale-area plasma treatment. We anticipate that this work would provide important scientific insights for leveraging the unique structural property of atomically layered two-dimensional materials in nanoelectronic applications.

  19. Effect of gate bias sweep rate on the threshold voltage of in-plane gate nanowire transistor

    NASA Astrophysics Data System (ADS)

    Liu, H. X.; Li, J.; Tan, R. R.

    2018-01-01

    In2O3 nanowire electric-double-layer (EDL) transistors with in-plane gate gated by SiO2 solid-electrolyte are fabricated on transparent glass substrates. The gate voltage sweep rates can effectively modulate the threshold voltage (Vth) of nanowire device. Both depletion mode and enhancement mode are realized, and the Vth shift of the nanowire transistors is estimated to be 0.73V (without light). This phenomenon is due to increased adsorption of oxygen on the nanowire surface by the slower gate voltage sweep rates. Adsorbed oxygens capture electrons and cause a surface of nanowire channel was depleted. The operation voltage of transistor was 1.0 V, because the EDL gate dielectric can lead to high gate dielectric capacitance. These transparent in-plane gate nanowire transistors are promising for “see-through” nanoscale sensors.

  20. Columnar organization of orientation domains in V1

    NASA Astrophysics Data System (ADS)

    Liedtke, Joscha; Wolf, Fred

    In the primary visual cortex (V1) of primates and carnivores, the functional architecture of basic stimulus selectivities appears similar across cortical layers (Hubel & Wiesel, 1962) justifying the use of two-dimensional cortical models and disregarding organization in the third dimension. Here we show theoretically that already small deviations from an exact columnar organization lead to non-trivial three-dimensional functional structures. We extend two-dimensional random field models (Schnabel et al., 2007) to a three-dimensional cortex by keeping a typical scale in each layer and introducing a correlation length in the third, columnar dimension. We examine in detail the three-dimensional functional architecture for different cortical geometries with different columnar correlation lengths. We find that (i) topological defect lines are generally curved and (ii) for large cortical curvatures closed loops and reconnecting topological defect lines appear. This theory extends the class of random field models by introducing a columnar dimension and provides a systematic statistical assessment of the three-dimensional functional architecture of V1 (see also (Tanaka et al., 2011)).

  1. Columnar lined Barrett's oesophagus.

    PubMed

    Sharma, Neel; Ho, Khek Yu

    2015-12-01

    Over the past few years, the definition of Barrett's oesophagus has altered with no real agreement on histological understanding. This article highlights the increasing confusion regarding Barrett's oesophagus with a focus on the all-too-frequently ignored aspect of the columnar lined oesophagus.

  2. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic.

    PubMed

    Shahrjerdi, Davood; Bedell, Stephen W

    2013-01-09

    In recent years, flexible devices based on nanoscale materials and structures have begun to emerge, exploiting semiconductor nanowires, graphene, and carbon nanotubes. This is primarily to circumvent the existing shortcomings of the conventional flexible electronics based on organic and amorphous semiconductors. The aim of this new class of flexible nanoelectronics is to attain high-performance devices with increased packing density. However, highly integrated flexible circuits with nanoscale transistors have not yet been demonstrated. Here, we show nanoscale flexible circuits on 60 Å thick silicon, including functional ring oscillators and memory cells. The 100-stage ring oscillators exhibit the stage delay of ~16 ps at a power supply voltage of 0.9 V, the best reported for any flexible circuits to date. The mechanical flexibility is achieved by employing the controlled spalling technology, enabling the large-area transfer of the ultrathin body silicon devices to a plastic substrate at room temperature. These results provide a simple and cost-effective pathway to enable ultralight flexible nanoelectronics with unprecedented level of system complexity based on mainstream silicon technology.

  3. Quantitative measurements of nanoscale permittivity and conductivity using tuning-fork-based microwave impedance microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyu; Hao, Zhenqi; Wu, Di; Zheng, Lu; Jiang, Zhanzhi; Ganesan, Vishal; Wang, Yayu; Lai, Keji

    2018-04-01

    We report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-field microwave imaging with small distance modulation.

  4. Fabrication of metal nanopatterns for organic field effect transistor electrodes by cracking and transfer printing

    NASA Astrophysics Data System (ADS)

    Wang, Xiaonan; Fu, Tingting; Wang, Zhe

    2018-04-01

    In this paper, we demonstrate a novel method for fabricating metal nanopatterns using cracking to address the limitations of traditional techniques. Parallel crack arrays were created in a polydimethylsiloxane (PDMS) mold using a combination of surface modification and control of strain fields. The elastic PDMS containing the crack arrays was subsequently used as a stamp to prepare nanoscale metal patterns on a substrate by transfer printing. To illustrate the functionality of this technique, we employed the metal patterns as the source and drain contacts of an organic field effect transistor. Using this approach, we fabricated transistors with channel lengths ranging from 70-600 nm. The performance of these devices when the channel length was reduced was studied. The drive current density increases as expected, indicating the creation of operational transistors with recognizable properties.

  5. Columnar joint morphology and cooling rate: A starch-water mixture experiment

    NASA Astrophysics Data System (ADS)

    Toramaru, A.; Matsumoto, T.

    2004-02-01

    An analogue experiment using a starch-water mixture has been carried out in order to understand the effect of cooling rate on the morphological characteristics of a basalt columnar joint. If the contraction of material is essential for the formation of columnar joint structure, the water loss rate by desiccation (hereafter referred to as desiccation rate) in the experiment is analogous to the cooling rate in solidifying basalt. In the experiment the desiccation rate is controlled by varying the distance between the starch-water mixture and a lamp used as the heat source. We find that there are three regimes in the relation between joint formation and desiccation rate: (1) At desiccation rates higher than ˜1.4 × 10-2 (g cm-2 h-1) (normal columnar joint regime), the average cross-sectional area S of a column is inversely proportional to the average desiccation rate, (i.e., S ∝ -δ, with δ = 1). (2) Between that desiccation rate and a critical desiccation rate, 0.8 × 10-2 (g/cm2h), S approaches infinity as decreases close to a critical desiccation rate (i.e., exponent δ monotonically increases from unity to infinity) (critical regime). (3) Below the critical desiccation rate, no columnar structure forms (no columnar joint regime forms). Applying the present experimental result to the formation of basalt column, the basalt columnar cross-sectional area is inversely proportional to the cooling rate with factors including elasticity, crack growth coefficient, thermal expansion, glass transition temperature, and crack density ratio at stress maximum. Also, it can be predicted that there exists a critical cooling rate below which the columnar joint does not form; the presence of a critical regime between the normal columnar jointing and no columnar jointing during a certain cooling rate range can also be predicted. We find that at higher cooling rate the preferred column shape is a pentagon, whereas at lower cooling rate it is a hexagon.

  6. The role of basal cells in adhesion of columnar epithelium to airway basement membrane.

    PubMed

    Evans, M J; Plopper, C G

    1988-08-01

    In this report, we present a new concept of the role of the basal cell in airway epithelium. Previously, the basal cell was thought to be the progenitor cell for the columnar epithelium. However, several studies have shown that this concept may not be correct. The morphologic aspects of the basal cell suggest that it could play a role in adhesion of the columnar epithelium to the basement membrane. Basal cells form attachments with columnar cells (desmosomes) and with the basement membrane (hemidesmosomes). Columnar cells do not form hemidesmosome attachments with the basement membrane. Basal cells could strengthen the adhesion of columnar cells to the basement membrane by forming hemidesmosome attachments to the basement membrane and desmosome attachments with adjacent columnar cells. Incidental evidence from 2 existing publications concerning airway microanatomy support this concept. As columnar cells grow taller, the proportion of the cell surface in contact with the basement membrane becomes progressively smaller, and thus the cell surface area related to adhesion also becomes smaller. It was found that the number of basal cells per millimeter of basement membrane was closely related to the height of the columnar cell epithelium (r = 0.98), but not to the number of columnar cells (r = 0.42). The consistency of the relationship between increased columnar cell height (and thus decreased surface area for adhesion) and the number of basal cells present (r = 0.98) supports the concept that the basal cell plays a role in adhesion of columnar cells to the basement membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Mucosal polyamine metabolism in the columnar lined oesophagus.

    PubMed Central

    Gray, M R; Wallace, H M; Goulding, H; Hoffman, J; Kenyon, W E; Kingsnorth, A N

    1993-01-01

    Mucosal ornithine decarboxylase activity and polyamine content has been proposed as a possible marker for malignant potential in gastrointestinal mucosa. Polyamine content and histological findings were examined in 107 pairs of endoscopic biopsy specimens taken from gastric fundus, fundic and specialised Barrett's oesophagus and Barrett's adenocarcinoma. The content of putrescine (median nmol/mg protein, range) the primary product of ornithine decarboxylase showed a progressive increase from gastric fundus (0.41, 0.15-1.5); fundic (0.45, 0.01-4.08); specialised Barrett's oesophagus (0.54, 0.01-2.0); dysplastic columnar lined oesophagus (0.56, 0.31-3.1) to adenocarcinoma (1.23, 0.29-8.98). Adenocarcinoma putrescine content was significantly greater than gastric fundus (p < 0.018) and fundic (p < 0.03). Mucosal spermine, spermidine, and total polyamine values were greater in gastric fundus than fundic, specialised Barrett's oesophagus, and dysplastic columnar lined oesophagus (all p < 0.001) suggesting failure to further metabolise putrescine to its higher polyamines in the metaplastic epithelium. Although metaplastic columnar lined oesophagus shows significant differences in polyamine metabolic activity from the stomach the important distinction between specialised and dysplastic columnar lined oesophagus cannot be made by measuring the polyamine content. PMID:8504955

  8. Quantitative measurements of nanoscale permittivity and conductivity using tuning-fork-based microwave impedance microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiaoyu; Hao, Zhenqi; Wu, Di

    Here, we report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS 2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-fieldmore » microwave imaging with small distance modulation.« less

  9. Quantitative measurements of nanoscale permittivity and conductivity using tuning-fork-based microwave impedance microscopy

    DOE PAGES

    Wu, Xiaoyu; Hao, Zhenqi; Wu, Di; ...

    2018-04-01

    Here, we report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS 2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-fieldmore » microwave imaging with small distance modulation.« less

  10. Radiating columnar joints in Gyeongju, Korea as a educational site

    NASA Astrophysics Data System (ADS)

    Woo, H.; Kim, J. H.; Jang, Y. D.

    2015-12-01

    Gyeongju is located in the central eastern part of South Korea. There are various directional columnar joint sets in Tertiary trachytic basalt formation along the shore. In particular, rare radiating columnar joints occur in this area. Columnar joints are parallel, prismatic columns that are formed as a result of contraction during the rapid cooling of lava flow, forming a three dimensional fracture network. In general, the radius and direction of the rock column represent the cooling rate and surface respectively. Radiating direction of columns here indicates that dome- or lobe-shaped lava was cooled from its surface to the core during the viscous lava flow. The fact that the trachytic textures of plagioclase laths are indistinct suggests that the radiating columnar joints are equivalent to the frontal end of the lava lobes. This area is currently has a shore trail course, which is being developed into a picturesque educational park. There are corresponding information boards on the trail near each type of columnar joints to explain not only the forming process and geological mechanisms but the importance of nature conservation to visitors, especially students. A variety of educational materials and educational programs linked to regular school curriculum are also being developed.

  11. Modelling of nanoscale multi-gate transistors affected by atomistic interface roughness

    NASA Astrophysics Data System (ADS)

    Nagy, Daniel; Aldegunde, Manuel; Elmessary, Muhammad A.; García-Loureiro, Antonio J.; Seoane, Natalia; Kalna, Karol

    2018-04-01

    Interface roughness scattering (IRS) is one of the major scattering mechanisms limiting the performance of non-planar multi-gate transistors, like Fin field-effect transistors (FETs). Here, two physical models (Ando’s and multi-sub-band) of electron scattering with the interface roughness induced potential are investigated using an in-house built 3D finite element ensemble Monte Carlo simulation toolbox including parameter-free 2D Schrödinger equation quantum correction that handles all relevant scattering mechanisms within highly non-equilibrium carrier transport. Moreover, we predict the effect of IRS on performance of FinFETs with realistic channel cross-section shapes with respect to the IRS correlation length (Λ) and RMS height (Δ_RMS ). The simulations of the n-type SOI FinFETs with the multi-sub-band IRS model shows its very strong effect on electron transport in the device channel compared to the Ando’s model. We have also found that the FinFETs are strongly affected by the IRS in the ON-region. The limiting effect of the IRS significantly increases as the Fin width is reduced. The FinFETs with <1 1 0> channel orientation are affected more by the IRS than those with the <1 0 0> crystal orientation. Finally, Λ and Δ_RMS are shown to affect the device performance similarly. A change in values by 30% (Λ) or 20% (Δ_RMS ) results in an increase (decrease) of up to 13% in the drive current.

  12. Modelling of nanoscale multi-gate transistors affected by atomistic interface roughness.

    PubMed

    Nagy, Daniel; Aldegunde, Manuel; Elmessary, Muhammad A; García-Loureiro, Antonio J; Seoane, Natalia; Kalna, Karol

    2018-04-11

    Interface roughness scattering (IRS) is one of the major scattering mechanisms limiting the performance of non-planar multi-gate transistors, like Fin field-effect transistors (FETs). Here, two physical models (Ando's and multi-sub-band) of electron scattering with the interface roughness induced potential are investigated using an in-house built 3D finite element ensemble Monte Carlo simulation toolbox including parameter-free 2D Schrödinger equation quantum correction that handles all relevant scattering mechanisms within highly non-equilibrium carrier transport. Moreover, we predict the effect of IRS on performance of FinFETs with realistic channel cross-section shapes with respect to the IRS correlation length (Λ) and RMS height ([Formula: see text]). The simulations of the n-type SOI FinFETs with the multi-sub-band IRS model shows its very strong effect on electron transport in the device channel compared to the Ando's model. We have also found that the FinFETs are strongly affected by the IRS in the ON-region. The limiting effect of the IRS significantly increases as the Fin width is reduced. The FinFETs with [Formula: see text] channel orientation are affected more by the IRS than those with the [Formula: see text] crystal orientation. Finally, Λ and [Formula: see text] are shown to affect the device performance similarly. A change in values by 30% (Λ) or [Formula: see text] ([Formula: see text]) results in an increase (decrease) of up to [Formula: see text] in the drive current.

  13. Columnar to Nematic Mesophase Transition: Binary Mixtures of Copper Soaps with Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Seghrouchni, R.; Skoulios, A.

    1995-09-01

    Copper (II) soaps are known to produce columnar mesophases at high temperatures. The polar groups of the soap molecules are stacked over one another within columns surrounded by the paraffin chains in a disordered conformation and laterally arranged according to a two-dimensional hexagonal lattice. Upon addition of a hydrocarbon, the mesophases swell homogeneously. The hydrocarbon molecules locate themselves among the disordered chains of the soap molecules, the columnar cores remain perfectly unchanged, keeping a constant intra-columnar stacking period, and the hexagonal lattice expands in proportion to the amount of hydrocarbon added to the system. Beyond a certain degree of swelling, the columnar mesophases suddenly turn into a nematic mesophase through a first-order phase transition. The structural elements that align parallel to the nematic director are the very same molecular columns that are involved in the columnar mesophases. The columnar to nematic mesophase transition was studied systematically as a function of the molecular size of the soaps and hydrocarbons used as diluents and discussed on a molecular level, emphasizing such aspects as the persistence length of the paraffin chains and the location of the solvent molecules among the columns.

  14. VIRULENCE OF Flavobacterium columnare GENOMOVARS IN RAINBOW TROUT (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare is the causative agent of columnaris disease and is responsible for significant economic losses in aquaculture. F. columnare is a Gram-negative bacterium, and five genetic types or genomovars have been described based on restriction fragment length polymorphism of the 16S rR...

  15. The immunophenotypic relationship between the submucosal gland unit, columnar metaplasia and squamous islands in the columnar-lined oesophagus.

    PubMed

    Lörinc, Ester; Mellblom, Lennart; Öberg, Stefan

    2015-12-01

    To characterize the immunophenotypic relationship between the squamous and the glandular compartments in the oesophagus of patients with columnar-lined oesophagus (CLO). Eight tissue blocks from three oesophageal resection specimens from patients who underwent oesophagectomy for adenocarcinoma of the oesophagus were selected for immunohistochemical analysis. The markers of intestinal differentiation [CK20, CDX2 and MUC2] were all expressed in the expected pattern, solely in the glandular compartment of the resection specimens. CK4, CK17 and lysozyme were expressed in both the glandular and the squamous compartments. In addition, CK17 expression was found on both the squamous and glandular margins of the squamocolumnar transformation zones and in the submucosal gland (SMG) intraglandular and excretory ducts. There is an immunophenotypic relationship between the squamous and the glandular compartments of the CLO, with expression of lysozyme, CK4 and CK17 in both squamous and columnar cells. These overlapping immunophenotypes indicate similar differentiation paths, and link the SMG unit with the columnar metaplasia and the neosquamous islands in CLO. Our findings support the theory of a cellular origin of CLO and neosquamous islands from the SMG unit. © 2015 John Wiley & Sons Ltd.

  16. Nanopore extended field-effect transistor for selective single-molecule biosensing.

    PubMed

    Ren, Ren; Zhang, Yanjun; Nadappuram, Binoy Paulose; Akpinar, Bernice; Klenerman, David; Ivanov, Aleksandar P; Edel, Joshua B; Korchev, Yuri

    2017-09-19

    There has been a significant drive to deliver nanotechnological solutions to biosensing, yet there remains an unmet need in the development of biosensors that are affordable, integrated, fast, capable of multiplexed detection, and offer high selectivity for trace analyte detection in biological fluids. Herein, some of these challenges are addressed by designing a new class of nanoscale sensors dubbed nanopore extended field-effect transistor (nexFET) that combine the advantages of nanopore single-molecule sensing, field-effect transistors, and recognition chemistry. We report on a polypyrrole functionalized nexFET, with controllable gate voltage that can be used to switch on/off, and slow down single-molecule DNA transport through a nanopore. This strategy enables higher molecular throughput, enhanced signal-to-noise, and even heightened selectivity via functionalization with an embedded receptor. This is shown for selective sensing of an anti-insulin antibody in the presence of its IgG isotype.Efficient detection of single molecules is vital to many biosensing technologies, which require analytical platforms with high selectivity and sensitivity. Ren et al. combine a nanopore sensor and a field-effect transistor, whereby gate voltage mediates DNA and protein transport through the nanopore.

  17. Nano-Transistor Modeling: Two Dimensional Green's Function Method

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    Two quantum mechanical effects that impact the operation of nanoscale transistors are inversion layer energy quantization and ballistic transport. While the qualitative effects of these features are reasonably understood, a comprehensive study of device physics in two dimensions is lacking. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL (Drain Induced Barrier Lowering), and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI).

  18. Optical and structural properties of cobalt-permalloy slanted columnar heterostructure thin films

    NASA Astrophysics Data System (ADS)

    Sekora, Derek; Briley, Chad; Schubert, Mathias; Schubert, Eva

    2017-11-01

    Optical and structural properties of sequential Co-column-NiFe-column slanted columnar heterostructure thin films with an Al2O3 passivation coating are reported. Electron-beam evaporated glancing angle deposition is utilized to deposit the sequential multiple-material slanted columnar heterostructure thin films. Mueller matrix generalized spectroscopic ellipsometry data is analyzed with a best-match model approach employing the anisotropic Bruggeman effective medium approximation formalism to determine bulk-like and anisotropic optical and structural properties of the individual Co and NiFe slanted columnar material sub-layers. Scanning electron microscopy is applied to image the Co-NiFe sequential growth properties and to verify the results of the ellipsometric analysis. Comparisons to single-material slanted columnar thin films and optically bulk solid thin films are presented and discussed. We find that the optical and structural properties of each material sub-layer of the sequential slanted columnar heterostructure film are distinct from each other and resemble those of their respective single-material counterparts.

  19. Attofarad resolution capacitance-voltage measurement of nanometer scale field effect transistors utilizing ambient noise.

    PubMed

    Gokirmak, Ali; Inaltekin, Hazer; Tiwari, Sandip

    2009-08-19

    A high resolution capacitance-voltage (C-V) characterization technique, enabling direct measurement of electronic properties at the nanoscale in devices such as nanowire field effect transistors (FETs) through the use of random fluctuations, is described. The minimum noise level required for achieving sub-aF (10(-18) F) resolution, the leveraging of stochastic resonance, and the effect of higher levels of noise are illustrated through simulations. The non-linear DeltaC(gate-source/drain)-V(gate) response of FETs is utilized to determine the inversion layer capacitance (C(inv)) and carrier mobility. The technique is demonstrated by extracting the carrier concentration and effective electron mobility in a nanoscale Si FET with C(inv) = 60 aF.

  20. In situ transmission electron microscopy of transistor operation and failure.

    PubMed

    Wang, Baoming; Islam, Zahabul; Haque, Aman; Chabak, Kelson; Snure, Michael; Heller, Eric; Glavin, Nicholas

    2018-08-03

    Microscopy is typically used as a post-mortem analytical tool in performance and reliability studies on nanoscale materials and devices. In this study, we demonstrate real time microscopy of the operation and failure of AlGaN/GaN high electron mobility transistors inside the transmission electron microscope. Loading until failure was performed on the electron transparent transistors to visualize the failure mechanisms caused by self-heating. At lower drain voltages, thermo-mechanical stresses induce irreversible microstructural deformation, mostly along the AlGaN/GaN interface, to initiate the damage process. At higher biasing, the self-heating deteriorates the gate and catastrophic failure takes place through metal/semiconductor inter-diffusion and/or buffer layer breakdown. This study indicates that the current trend of recreating the events, from damage nucleation to catastrophic failure, can be replaced by in situ microscopy for a quick and accurate account of the failure mechanisms.

  1. Field-induced strain degradation of AlGaN/GaN high electron mobility transistors on a nanometer scale

    NASA Astrophysics Data System (ADS)

    Lin, Chung-Han; Doutt, D. R.; Mishra, U. K.; Merz, T. A.; Brillson, L. J.

    2010-11-01

    Nanoscale Kelvin probe force microscopy and depth-resolved cathodoluminescence spectroscopy reveal an electronic defect evolution inside operating AlGaN/GaN high electron mobility transistors with degradation under electric-field-induced stress. Off-state electrical stress results in micron-scale areas within the extrinsic drain expanding and decreasing in electric potential, midgap defects increasing by orders-of-magnitude at the AlGaN layer, and local Fermi levels lowering as gate-drain voltages increase above a characteristic stress threshold. The pronounced onset of defect formation, Fermi level movement, and transistor degradation at the threshold gate-drain voltage of J. A. del Alamo and J. Joh [Microelectron. Reliab. 49, 1200 (2009)] is consistent with crystal deformation and supports the inverse piezoelectric model of high electron mobility transistor degradation.

  2. Temperature dependence of ballistic mobility in a metamorphic InGaAs/InAlAs high electron mobility transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jongkyong; Gang, Suhyun; Jo, Yongcheol

    We have investigated the temperature dependence of ballistic mobility in a 100 nm-long InGaAs/InAlAs metamorphic high-electron-mobility transistor designed for millimeter-wavelength RF applications. To extract the temperature dependence of quasi-ballistic mobility, our experiment involves measurements of the effective mobility in the low-bias linear region of the transistor and of the collision-dominated Hall mobility using a gated Hall bar of the same epitaxial structure. The data measured from the experiment are consistent with that of modeled ballistic mobility based on ballistic transport theory. These results advance the understanding of ballistic transport in various transistors with a nano-scale channel length that is comparable tomore » the carrier's mean free path in the channel.« less

  3. Effects of structural modification on reliability of nanoscale nitride HEMTs

    NASA Astrophysics Data System (ADS)

    Gaddipati, Vamsi Mohan

    AlGaN based nanoscale high-electron-mobility transistors (HEMTs) are the next generation of transistor technology that features the unique combination of higher power, wider bandwidth, low noise, higher efficiency, and temperature/radiation hardness than conventional AlGaAs and Si based technologies. However, as evidenced by recent stress tests, reliability of these devices (characterized by a gradual decrease in the output current/power leading to failure of the device in just tens of hours of operation) remains a major concern. Although, in these tests, physical damages were clearly visible in the device, the root cause and nature of these damages have not yet been fully assessed experimentally. Therefore, a comprehensive theoretical study of the physical mechanisms responsible for degradation of AlGaN HEMTs is essential before these devices are deployed in targeted applications. The main objective of the proposed research is to computationally investigate how degradation of state-of-the-art nanoscale AlGaN HEMTs is governed by an intricate and dynamical coupling of thermo-electromechanical processes at different length (atoms-to-transistor) and time (femtosecondto- hours) scales while operating in high voltage, large mechanical, and high temperature/radiation stresses. This work centers around a novel hypotheses as follows: High voltage applied to AlGaN HEMT causes excessive internal heat dissipation, which triggers gate metal diffusion into the semiconducting barrier layer and structural modifications (defect ii formation) leading to diminished polarization induced charge density and output current. Since the dynamical system to be studied is complex, chaotic (where the evolution rule is guided by atomicity of the underlying material), and involve coupled physical processes, an in-house multiscale simulator (QuADS 3-D) has been employed and augmented, where material parameters are obtained atomistically using firstprinciples, structural relaxation and defect

  4. Air-gating and chemical-gating in transistors and sensing devices made from hollow TiO2 semiconductor nanotubes

    NASA Astrophysics Data System (ADS)

    Alivov, Yahya; Funke, Hans; Nagpal, Prashant

    2015-07-01

    Rapid miniaturization of electronic devices down to the nanoscale, according to Moore’s law, has led to some undesirable effects like high leakage current in transistors, which can offset additional benefits from scaling down. Development of three-dimensional transistors, by spatial extension in the third dimension, has allowed higher contact area with a gate electrode and better control over conductivity in the semiconductor channel. However, these devices do not utilize the large surface area and interfaces for new electronic functionality. Here, we demonstrate air gating and chemical gating in hollow semiconductor nanotube devices and highlight the potential for development of novel transistors that can be modulated using channel bias, gate voltage, chemical composition, and concentration. Using chemical gating, we reversibly altered the conductivity of nanoscaled semiconductor nanotubes (10-500 nm TiO2 nanotubes) by six orders of magnitude, with a tunable rectification factor (ON/OFF ratio) ranging from 1-106. While demonstrated air- and chemical-gating speeds were slow here (˜seconds) due to the mechanical-evacuation rate and size of our chamber, the small nanoscale volume of these hollow semiconductors can enable much higher switching speeds, limited by the rate of adsorption/desorption of molecules at semiconductor interfaces. These chemical-gating effects are completely reversible, additive between different chemical compositions, and can enable semiconductor nanoelectronic devices for ‘chemical transistors’, ‘chemical diodes’, and very high-efficiency sensing applications.

  5. Transistor Effect in Improperly Connected Transistors.

    ERIC Educational Resources Information Center

    Luzader, Stephen; Sanchez-Velasco, Eduardo

    1996-01-01

    Discusses the differences between the standard representation and a realistic representation of a transistor. Presents an experiment that helps clarify the explanation of the transistor effect and shows why transistors should be connected properly. (JRH)

  6. A microwave field-driven transistor-like skyrmionic device with the microwave current-assisted skyrmion creation

    NASA Astrophysics Data System (ADS)

    Xia, Jing; Huang, Yangqi; Zhang, Xichao; Kang, Wang; Zheng, Chentian; Liu, Xiaoxi; Zhao, Weisheng; Zhou, Yan

    2017-10-01

    Magnetic skyrmion is a topologically protected domain-wall structure at nanoscale, which could serve as a basic building block for advanced spintronic devices. Here, we propose a microwave field-driven skyrmionic device with the transistor-like function, where the motion of a skyrmion in a voltage-gated ferromagnetic nanotrack is studied by micromagnetic simulations. It is demonstrated that the microwave field can drive the motion of a skyrmion by exciting the propagating spin waves, and the skyrmion motion can be governed by a gate voltage. We also investigate the microwave current-assisted creation of a skyrmion to facilitate the operation of the transistor-like skyrmionic device on the source terminal. It is found that the microwave current with an appropriate frequency can reduce the threshold current density required for the creation of a skyrmion from the ferromagnetic background. The proposed transistor-like skyrmionic device operated with the microwave field and current could be useful for building future skyrmion-based circuits.

  7. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  8. Monitoring Single-Molecule Protein Dynamics with a Carbon Nanotube Transistor

    NASA Astrophysics Data System (ADS)

    Collins, Philip G.

    2014-03-01

    Nanoscale electronic devices like field-effect transistors have long promised to provide sensitive, label-free detection of biomolecules. Single-walled carbon nanotubes press this concept further by not just detecting molecules but also monitoring their dynamics in real time. Recent measurements have demonstrated this premise by monitoring the single-molecule processivity of three different enzymes: lysozyme, protein Kinase A, and the Klenow fragment of DNA polymerase I. With all three enzymes, single molecules tethered to nanotube transistors were electronically monitored for 10 or more minutes, allowing us to directly observe a range of activity including rare transitions to chemically inactive and hyperactive conformations. The high bandwidth of the nanotube transistors further allow every individual chemical event to be clearly resolved, providing excellent statistics from tens of thousands of turnovers by a single enzyme. Initial success with three different enzymes indicates the generality and attractiveness of the nanotube devices as a new tool to complement other single-molecule techniques. Research on transduction mechanisms provides the design rules necessary to further generalize this architecture and apply it to other proteins. The purposeful incorporation of just one amino acid is sufficient to fabricate effective, single molecule sensors from a wide range of enzymes or proteins.

  9. Ambipolar nonvolatile memory based on a quantum-dot transistor with a nanoscale floating gate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Che, Yongli; Zhang, Yating, E-mail: yating@tju.edu.cn; Song, Xiaoxian

    2016-07-04

    Using only solution processing methods, we developed ambipolar quantum-dot (QD) transistor floating-gate memory (FGM) that uses Au nanoparticles as a floating gate. Because of the bipolarity of the active channel of PbSe QDs, the memory could easily trap holes or electrons in the floating gate by programming/erasing (P/E) operations, which could shift the threshold voltage both up and down. As a result, the memory exhibited good programmable memory characteristics: a large memory window (ΔV{sub th} ∼ 15 V) and a long retention time (>10{sup 5 }s). The magnitude of ΔV{sub th} depended on both P/E voltages and the bias voltage (V{sub DS}): ΔV{sub th}more » was a cubic function to V{sub P/E} and linearly depended on V{sub DS}. Therefore, this FGM based on a QD transistor is a promising alternative to its inorganic counterparts owing to its advantages of bipolarity, high mobility, low cost, and large-area production.« less

  10. Relationship between columnar cell changes and low-grade carcinoma in situ of the breast--a cytogenetic study.

    PubMed

    Go, Edna May L; Tsang, Julia Y S; Ni, Yun-Bi; Yu, Alex M; Mendoza, Paulo; Chan, Siu-Ki; Lam, Christopher C; Lui, Philip C; Tan, Puay-Hoon; Tse, Gary M

    2012-11-01

    Columnar cell lesions of the breast include columnar cell changes without atypia and columnar cell changes with atypia. The latter frequently coexist and share molecular changes with low-grade carcinoma in situ and invasive carcinoma, suggesting that columnar cell changes may be precursors to progression of low-grade advanced lesions. In this study, we assessed chromosomal aberrations at 16q, hallmark for low-grade lesions, in columnar cell changes with or without atypia and their adjacent carcinoma in situ by fluorescent in situ hybridization using 3 region-specific probes spanning the entire chromosomal arm. The results were correlated with the histomorphological features of the corresponding lesions. Forty-four percent of low-grade carcinoma in situ and 31% of high-grade carcinoma in situ were associated with columnar cell changes with atypia, suggesting a link between columnar cell changes with atypia and low-grade carcinoma in situ. For the genetic aberrations, heterozygous deletion of 16q was present in 56% of low-grade carcinoma in situ but only in 19% of high-grade carcinoma in situ. Conversely, aneuploidy was found mostly in high-grade carcinoma in situ (88%). Twenty percent of columnar cell changes with atypia but none of the columnar cell changes without atypia showed heterozygous deletion of 16q. Interestingly, the same changes in 16q were observed in the columnar cell changes and their associated low-grade carcinoma in situ lesions. These findings demonstrated a genetic commonality between columnar cell changes with atypia and low-grade carcinoma in situ and substantiated the precursor role of columnar cell changes with atypia for low-grade carcinoma in situ but not high-grade carcinoma in situ of the breast. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Multiscale modeling and computation of nano-electronic transistors and transmembrane proton channels

    NASA Astrophysics Data System (ADS)

    Chen, Duan

    The miniaturization of nano-scale electronic transistors, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. In biology, proton dynamics and transport across membrane proteins are of paramount importance to the normal function of living cells. Similar physical characteristics are behind the two subjects, and model simulations share common mathematical interests/challenges. In this thesis work, multiscale and multiphysical models are proposed to study the mechanisms of nanotransistors and proton transport in transmembrane at the atomic level. For nano-electronic transistors, we introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential. This framework enables us to put microscopic and macroscopic descriptions on an equal footing at nano-scale. Additionally, this model includes layered structures and random doping effect of nano-transistors. For transmembrane proton channels, we describe proton dynamics quantum mechanically via a density functional approach while implicitly treat numerous solvent molecules as a dielectric continuum. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered in atomic details. We formulate a total free energy functional to include kinetic and potential energies of protons, as well as electrostatic energy of all other ions on an equal footing. For both nano-transistors and proton channels systems, the variational principle is employed to derive nonlinear governing equations. The Poisson-Kohn-Sham equations are derived for nano-transistors while the generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained for proton channels. Related numerical

  12. Complete genome sequence of the fish pathogen Flavobacterium columnare strain C#2

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare is a Gram-negative bacterial pathogen that causes columnaris disease of freshwater fish. Flavobacterium columnare strain C#2 was isolated from a diseased warm water fish and is typed as genomovar II. The genome consists of a single 3.33 Mb circular chromosome with 2,689 pred...

  13. Overview of nanoscale NEXAFS performed with soft X-ray microscopes.

    PubMed

    Guttmann, Peter; Bittencourt, Carla

    2015-01-01

    Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples.

  14. ISS-Experiments of Columnar-to-Equiaxed Transition in Solidification Processing

    NASA Technical Reports Server (NTRS)

    Sturz, Laszlo; Zimmermann, Gerhard; Gandin, Charles, Andre; Billia, Bernard; Magelinck, Nathalie; Nguyen-Thi, Henry; Browne, David John; Mirihanage, Wajira U.; Voss, Daniela; Beckermann, Christoph; hide

    2012-01-01

    The main topic of the research project CETSOL in the framework of the Microgravity Application Promotion (MAP) programme of the European Space Agency (ESA) is the investigation of the transition from columnar to equiaxed grain growth during solidification. Microgravity environment allows for suppression of buoyancy-driven melt flow and for growth of equiaxed grains free of sedimentation and buoyancy effects. This contribution will present first experimental results obtained in microgravity using hypo-eutectic AlSi alloys in the Materials Science Laboratory (MSL) on-board the International Space Station (ISS). The analysis of the experiments confirms the existence of a columnar to equiaxed transition, especially in the refined alloy. Temperature evolution and grain structure analysis provide critical values for the position, the temperature gradient and the solidification velocity at the columnar to equiaxed transition. These data will be used to improve modeling of solidification microstructures and grain structure on different lengths scales.

  15. Columnar to Nematic Mesophase Transition: Binary Mixtures of Unlike Copper Soaps

    NASA Astrophysics Data System (ADS)

    Seghrouchni, R.; Skoulios, A.

    1995-10-01

    Copper (II) soaps are known to produce columnar mesophases at high temperature. The polar groups of the soap molecules are stacked over one another within columns surrounded by the alkyl chains in a disordered conformation and laterally arranged according to a two-dimensional hexagonal lattice. The present work studies the mesomorphic behaviour of binary mixtures of copper soaps using differential scanning calorimetry, polarizing microscopy, and X-ray diffraction. When the soaps are of comparable molecular sizes the mixtures are homogeneous and columnar at all compositions. The columns of the two soaps, remaining intact in the mixture, are distributed randomly on the nodes of a hexagonal Bravais lattice. Crystallographic homogeneity is obtained by transfer of methylene groups from cell to cell. When, on the other hand, the soaps are different enough in molecular sizes, the columnar structure of the mixtures is interrupted in the middle range of compositions for the benefit of a nematic one. The transfer of methylene groups gets indeed harder to achieve and the distortion of the hexagonal units cells becomes important. The columnar to nematic phase transition is discussed on a molecular and a topological level.

  16. Columnar Self-Assembly of Electron-Deficient Dendronized Bay-Annulated Perylene Bisimides.

    PubMed

    Gupta, Ravindra Kumar; Shankar Rao, Doddamane S; Prasad, S Krishna; Achalkumar, Ammathnadu S

    2018-03-07

    Three new heteroatom bay-annulated perylene bisimides (PBIs) have been synthesized by microwave-assisted synthesis in excellent yield. N-annulated and S-annulated perylene bisimides exhibited columnar hexagonal phase, whereas Se-annulated perylene bisimide exhibited low temperature columnar oblique phase in addition to the high temperature columnar hexagonal phase. The cup shaped bay-annulated PBIs pack into columns with enhanced intermolecular interactions. In comparison to PBI, these molecules exhibited lower melting and clearing temperature, with good solubility. A small red shift in the absorption was seen in the case of N-annulated PBI, whereas S- and Se-annulated PBIs exhibited blue-shifted absorption spectra. Bay-annulation increased the HOMO and LUMO levels of the N-annulated perylene bisimide, whereas a slight increase in the LUMO level and a decrease in the HOMO levels were observed in the case of S- and Se-annulated perylene bisimides, in comparison to the simple perylene bisimide. The band gaps of PBI and PBI-N were almost same, whereas an increase in the band gaps were observed in the case of S- and Se-annulated PBIs. The tendency to freeze in the ordered glassy columnar phase for PBI-N and PBI-S will help to overcome the charge traps due to crystallization, which are detrimental to one-dimensional charge carrier mobility. These solution processable electron deficient columnar semiconductors possessing good thermal stability may form an easily accessible promising class of n-type materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Surface modification of 316L stainless steel with magnetron sputtered TiN/VN nanoscale multilayers for bio implant applications.

    PubMed

    Subramanian, B; Ananthakumar, R; Kobayashi, Akira; Jayachandran, M

    2012-02-01

    Nanoscale multilayered TiN/VN coatings were developed by reactive dc magnetron sputtering on 316L stainless steel substrates. The coatings showed a polycrystalline cubic structure with (111) preferential growth. XPS analysis indicated the presence of peaks corresponding to Ti2p, V2p, N1s, O1s, and C1s. Raman spectra exhibited the characteristic peaks in the acoustic range of 160-320 cm(-1) and in the optic range between 480 and 695 cm(-1). Columnar structure of the coatings was observed from TEM analysis. The number of adherent platelets on the surface of the TiN/VN multilayer, VN, TiN single layer coating exhibit fewer aggregation and pseudopodium than on substrates. The wear resistance of the multilayer coatings increases obviously as a result of their high hardness. Tafel plots in simulated bodily fluid showed lower corrosion rate for the TiN/VN nanoscale multilayer coatings compared to single layer and bare 316L SS substrate.

  18. Does flat epithelial atypia have rounder nuclei than columnar cell change/hyperplasia? A morphometric approach to columnar cell lesions of the breast.

    PubMed

    Yamashita, Yoshiko; Ichihara, Shu; Moritani, Suzuko; Yoon, Han-Seung; Yamaguchi, Masahiro

    2016-06-01

    Columnar cell lesions of the breast encompass columnar cell change/hyperplasia (CCC/CCH) and flat epithelial atypia (FEA). These have attracted researchers because emerging data suggest that FEA may represent the earliest histologically detectable non-obligate precursor of breast cancer. However, it is occasionally difficult to distinguish FEA from CCC/CCH because of similar histology. Although the nuclei of FEA are frequently described as relatively round compared with those of CCC/CCH, there are few morphometric studies to support this statement. The aim of this study was to provide objective data as to the nuclear shape in columnar cell lesions. As a shape descriptor, we adopted ellipticity that is defined by the formula 2b/2a, where a is the length of the long axis of the ellipse and b is the length of the short axis. Contrary to circularity, ellipticity reflects the overall configuration of an ellipse irrespective of surface irregularity. Our image analysis included generating whole slide images, extracting glandular cell nuclei, measuring nuclear ellipticity, and superimposing graded colors based on execution of results on the captured images. A total of 7917 nuclei extracted from 22 FEA images and 5010 nuclei extracted from 13 CCC/CCH images were analyzed. There was a significant difference in nuclear roundness between FEA and CCC/CCH with mean ellipticity values of 0.723 and 0.679, respectively (p < 0.001, Welch's t test). Furthermore, FEA with malignancy had significantly rounder nuclei than FEA without malignancy (p < 0.001). Our preliminary results suggest that nuclear ellipticity is a key parameter in reproducibly classifying columnar cell lesions of the breast.

  19. Nanoscale cryptography: opportunities and challenges.

    PubMed

    Masoumi, Massoud; Shi, Weidong; Xu, Lei

    2015-01-01

    While most of the electronics industry is dependent on the ever-decreasing size of lithographic transistors, this scaling cannot continue indefinitely. To improve the performance of the integrated circuits, new emerging and paradigms are needed. In recent years, nanoelectronics has become one of the most important and exciting forefront in science and engineering. It shows a great promise for providing us in the near future with many breakthroughs that change the direction of technological advances in a wide range of applications. In this paper, we discuss the contribution that nanotechnology may offer to the evolution of cryptographic hardware and embedded systems and demonstrate how nanoscale devices can be used for constructing security primitives. Using a custom set of design automation tools, it is demonstrated that relative to a conventional 45-nm CMOS system, performance gains can be obtained up to two orders of magnitude reduction in area and up to 50 % improvement in speed.

  20. Identification of four distinct phylogenetic groups in Flavobacterium columnare with fish host associations

    USDA-ARS?s Scientific Manuscript database

    Columnaris disease, caused by the Gram-negative bacterium Flavobacterium columnare, is one of the most prevalent fish diseases worldwide. An exceptionally high level of genetic diversity among isolates of F. columnare has long been recognized, whereby six established genomovars have been described t...

  1. Sketched oxide single-electron transistor

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei; Siles, Pablo F.; Bi, Feng; Cen, Cheng; Bogorin, Daniela F.; Bark, Chung Wung; Folkman, Chad M.; Park, Jae-Wan; Eom, Chang-Beom; Medeiros-Ribeiro, Gilberto; Levy, Jeremy

    2011-06-01

    Devices that confine and process single electrons represent an important scaling limit of electronics. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties. Here, we use an atomic force microscope tip to reversibly `sketch' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides. In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of ~1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.

  2. STABILIZED TRANSISTOR AMPLIFIER

    DOEpatents

    Noe, J.B.

    1963-05-01

    A temperature stabilized transistor amplifier having a pair of transistors coupled in cascade relation that are capable of providing amplification through a temperature range of - 100 un. Concent 85% F to 400 un. Concent 85% F described. The stabilization of the amplifier is attained by coupling a feedback signal taken from the emitter of second transistor at a junction between two serially arranged biasing resistances in the circuit of the emitter of the second transistor to the base of the first transistor. Thus, a change in the emitter current of the second transistor is automatically corrected by the feedback adjustment of the base-emitter potential of the first transistor and by a corresponding change in the base-emitter potential of the second transistor. (AEC)

  3. Highly sensitive protein detection using a plasmonic field effect transistor (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shokri-Kojori, Hossein; Ji, Yiwen; Han, Xu; Paik, Younghun; Braunschweig, Adam; Kim, Sung Jin

    2016-03-01

    Localized surface Plasmon Resonance (LSPR) is a nanoscale phenomenon which presents strong resonance associated with noble metal nanostructures. This plasmon resonance based technology enables highly sensitive detection for chemical and biological applications. Recently, we have developed a plasmon field effect transistor (FET) that enables direct plasmonic-to-electric signal conversion with signal amplification. The plasmon FET consists of back-gated field effect transistor incorporated with gold nanoparticles on top of the FET channel. The gold nanostructures are physically separated from transistor electrodes and can be functionalized for a specific biological application. In this presentation, we report a successful demonstration of a model system to detect Con A proteins using Carbohydrate linkers as a capture molecule. The plasmon FET detected a very low concentration of Con A (0.006 mg/L) while it offers a wide dynamic range of 0.006-50 mg/L. In this demonstration, we used two-color light sources instead of a bulky spectrometer to achieve high sensitivity and wide dynamic range. The details of two-color based differential measurement method will be discussed. This novel protein-based sensor has several advantages such as extremely small size for point-of-care system, multiplexing capability, no need of complex optical geometry.

  4. Current crowding issues on nanoscale planar organic transistors for spintronics applications.

    PubMed

    Verduci, Tindara; Chaumy, Guillaume; Dayen, Jean-Francois; Leclerc, Nicolas; Devaux, Eloïse; Stoeckel, Marc-Antoine; Orgiu, Emanuele; Samorì, Paolo; Doudin, Bernard

    2018-06-12

    The predominance of interface resistance makes current crowding ubiquitous in short channel organic electronics devices but its impact on spin transport has never been considered. We investigate electrochemically-doped nanoscale PBTTT short channel devices and observe the smallest reported values of crowding lengths, found for sub-100 nm electrodes separation. These observed values are nevertheless exceeding the spin diffusion lengths reported in the literature. We discuss here how current crowding can be taken into account in the framework of the Fert-Jaffrès model of spin current propagation in heterostructures, and predict that the anticipated resulting values of magnetoresistance can be significantly reduced. Current crowding therefore impacts spin transport applications and interpretation of the results on spin valve devices. © 2018 IOP Publishing Ltd.

  5. Anomalous columnar order of charged colloidal platelets

    NASA Astrophysics Data System (ADS)

    Morales-Anda, L.; Wensink, H. H.; Galindo, A.; Gil-Villegas, A.

    2012-01-01

    Monte Carlo computer simulations are carried out for a model system of like-charged colloidal platelets in the isothermal-isobaric ensemble (NpT). The aim is to elucidate the role of electrostatic interactions on the structure of synthetic clay systems at high particle densities. Short-range repulsions between particles are described by a suitable hard-core model representing a discotic particle. This potential is supplemented with an electrostatic potential based on a Yukawa model for the screened Coulombic potential between infinitely thin disklike macro-ions. The particle aspect-ratio and electrostatic parameters were chosen to mimic an aqueous dispersion of thin, like-charged, rigid colloidal platelets at finite salt concentration. An examination of the fluid phase diagram reveals a marked shift in the isotropic-nematic transition compared to the hard cut-sphere reference system. Several statistical functions, such as the pair correlation function for the center-of-mass coordinates and structure factor, are obtained to characterize the structural organization of the platelets phases. At low salinity and high osmotic pressure we observe anomalous hexagonal columnar structures characterized by interpenetrating columns with a typical intercolumnar distance corresponding to about half of that of a regular columnar phase. Increasing the ionic strength leads to the formation of glassy, disordered structures consisting of compact clusters of platelets stacked into finite-sized columns. These so-called "nematic columnar" structures have been recently observed in systems of charge-stabilized gibbsite platelets. Our findings are corroborated by an analysis of the static structure factor from a simple density functional theory.

  6. Comparative challenge model of Flavobacterium columnare using abraded and unabraded channel catfish, Ictalurus punctatus (Rafinesque).

    PubMed

    Bader, J A; Nusbaum, K E; Shoemaker, C A

    2003-08-01

    The early entry of the fish pathogen Flavobacterium columnare and enhancement by abrasion was studied in channel catfish, Ictalurus punctatus (Rafinesque), using the polymerase chain reaction and a species-specific primer set for a bacterial 16S rRNA gene product. Evaluations were conducted following an abrasion bath immersion challenge with F. columnare. Abrasion, a practice which has historically been used prior to bacterial challenge, had significant effects on the early entry of the pathogen and on cumulative percent survival (CPS). The FvpF1-FvpR1 primer set was useful in detecting the early entry of F. columnare in mucus, skin, gill, blood, liver and trunk kidney tissues in both abraded and unabraded fish following immersion challenge at 29 +/- 2 degrees C. Bacteria were detected earlier in all tissues in abraded fish, except in the trunk kidney. These differences were not significant, except in the case of blood. Mucus, skin and gill tissues were positive for F. columnare earliest regardless of treatment (after 5 min in abraded fish and after 15 min in unabraded fish). CPS following challenge with F. columnare was significantly affected by abrasion, which supports the use of abrasion for the F. columnare challenge model for channel catfish.

  7. Transistors and tunnel diodes enabled by large-scale MoS2 nanosheets grown on GaN

    NASA Astrophysics Data System (ADS)

    San Yip, Pak; Zou, Xinbo; Cho, Wai Ching; Wu, Kam Lam; Lau, Kei May

    2017-07-01

    We report growth, fabrication, and device results of MoS2-based transistors and diodes implemented on a single 2D/3D material platform. The 2D/3D platform consists of a large-area MoS2 thin film grown on SiO2/p-GaN substrates. Atomic force microscopy, scanning electron microscopy, and Raman spectroscopy were used to characterize the thickness and quality of the as-grown MoS2 film, showing that the large-area MoS2 nanosheet has a smooth surface morphology constituted by small grains. Starting from the same material, both top-gated MoS2 field effect transistors and MoS2/SiO2/p-GaN heterojunction diodes were fabricated. The transistors exhibited a high on/off ratio of 105, a subthreshold swing of 74 mV dec-1, field effect mobility of 0.17 cm2 V-1 s-1, and distinctive current saturation characteristics. For the heterojunction diodes, current-rectifying characteristics were demonstrated with on-state current density of 29 A cm-2 and a current blocking property up to -25 V without breakdown. The reported transistors and diodes enabled by the same 2D/3D material stack present promising building blocks for constructing future nanoscale electronics.

  8. Single ZnO nanowire-PZT optothermal field effect transistors.

    PubMed

    Hsieh, Chun-Yi; Lu, Meng-Lin; Chen, Ju-Ying; Chen, Yung-Ting; Chen, Yang-Fang; Shih, Wan Y; Shih, Wei-Heng

    2012-09-07

    A new type of pyroelectric field effect transistor based on a composite consisting of single zinc oxide nanowire and lead zirconate titanate (ZnO NW-PZT) has been developed. Under infrared (IR) laser illumination, the transconductance of the ZnO NW can be modulated by optothermal gating. The drain current can be increased or decreased by IR illumination depending on the polarization orientation of the Pb(Zr(0.3)Ti(0.7))O(3) (PZT) substrate. Furthermore, by combining the photocurrent behavior in the UV range and the optothermal gating effect in the IR range, the wide spectrum of response of current by light offers a variety of opportunities for nanoscale optoelectronic devices.

  9. Evolution of oesophageal adenocarcinoma from metaplastic columnar epithelium without goblet cells in Barrett's oesophagus.

    PubMed

    Lavery, Danielle L; Martinez, Pierre; Gay, Laura J; Cereser, Biancastella; Novelli, Marco R; Rodriguez-Justo, Manuel; Meijer, Sybren L; Graham, Trevor A; McDonald, Stuart A C; Wright, Nicholas A; Jansen, Marnix

    2016-06-01

    Barrett's oesophagus commonly presents as a patchwork of columnar metaplasia with and without goblet cells in the distal oesophagus. The presence of metaplastic columnar epithelium with goblet cells on oesophageal biopsy is a marker of cancer progression risk, but it is unclear whether clonal expansion and progression in Barrett's oesophagus is exclusive to columnar epithelium with goblet cells. We developed a novel method to trace the clonal ancestry of an oesophageal adenocarcinoma across an entire Barrett's segment. Clonal expansions in Barrett's mucosa were identified using cytochrome c oxidase enzyme histochemistry. Somatic mutations were identified through mitochondrial DNA sequencing and single gland whole exome sequencing. By tracing the clonal origin of an oesophageal adenocarcinoma across an entire Barrett's segment through a combination of histopathological spatial mapping and clonal ordering, we find that this cancer developed from a premalignant clonal expansion in non-dysplastic ('cardia-type') columnar metaplasia without goblet cells. Our data demonstrate the premalignant potential of metaplastic columnar epithelium without goblet cells in the context of Barrett's oesophagus. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Thermal-noise suppression in nano-scale Si field-effect transistors by feedback control based on single-electron detection

    NASA Astrophysics Data System (ADS)

    Chida, Kensaku; Nishiguchi, Katsuhiko; Yamahata, Gento; Tanaka, Hirotaka; Fujiwara, Akira

    2015-08-01

    We perform feedback (FB) control for suppressing thermal fluctuation in the number of electrons in a silicon single-electron (SE) device composed of a small transistor and capacitor. SEs enter and leave the capacitor via the transistor randomly at thermal equilibrium, which is monitored in real time using a high-charge-sensitivity detector. In order to suppress such random motion or thermal fluctuation of the electrons, SEs are injected and removed using the transistor according to the monitored change in the number of electrons in the capacitor, which is exactly the FB control. As a result, thermal fluctuation in the number of electrons in a SE device is suppressed by 60%, which corresponds to the so-called FB cooling from 300 to 110 K. Moreover, a thermodynamics analysis of this FB cooling reveals that entropy in the capacitor is reduced and the device is at non-equilibrium; i.e., the free energy of the device increases. Since this entropy reduction originates from information about the electrons' motion monitored by the detector, our results by the FB control represent one type of information-to-energy conversion.

  11. Direct detection of a transport-blocking trap in a nanoscaled silicon single-electron transistor by radio-frequency reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villis, B. J.; Sanquer, M.; Jehl, X.

    2014-06-09

    The continuous downscaling of transistors results in nanoscale devices which require fewer and fewer charged carriers for their operation. The ultimate charge controlled device, the single-electron transistor (SET), controls the transfer of individual electrons. It is also the most sensitive electrometer, and as a result the electron transport through it can be dramatically affected by nearby charges. Standard direct-current characterization techniques, however, are often unable to unambiguously detect and resolve the origin of the observed changes in SET behavior arising from changes in the charge state of a capacitively coupled trap. Using a radio-frequency (RF) reflectometry technique, we are ablemore » to unequivocally detect this process, in very close agreement with modeling of the trap's occupation probability.« less

  12. Transitional basal cells at the squamous-columnar junction generate Barrett's oesophagus.

    PubMed

    Jiang, Ming; Li, Haiyan; Zhang, Yongchun; Yang, Ying; Lu, Rong; Liu, Kuancan; Lin, Sijie; Lan, Xiaopeng; Wang, Haikun; Wu, Han; Zhu, Jian; Zhou, Zhongren; Xu, Jianming; Lee, Dong-Kee; Zhang, Lanjing; Lee, Yuan-Cho; Yuan, Jingsong; Abrams, Julian A; Wang, Timothy C; Sepulveda, Antonia R; Wu, Qi; Chen, Huaiyong; Sun, Xin; She, Junjun; Chen, Xiaoxin; Que, Jianwen

    2017-10-26

    In several organ systems, the transitional zone between different types of epithelium is a hotspot for pre-neoplastic metaplasia and malignancy, but the cells of origin for these metaplastic epithelia and subsequent malignancies remain unknown. In the case of Barrett's oesophagus, intestinal metaplasia occurs at the gastro-oesophageal junction, where stratified squamous epithelium transitions into simple columnar cells. On the basis of a number of experimental models, several alternative cell types have been proposed as the source of this metaplasia but in all cases the evidence is inconclusive: no model completely mimics Barrett's oesophagus in terms of the presence of intestinal goblet cells. Here we describe a transitional columnar epithelium with distinct basal progenitor cells (p63 + KRT5 + KRT7 + ) at the squamous-columnar junction of the upper gastrointestinal tract in a mouse model. We use multiple models and lineage tracing strategies to show that this squamous-columnar junction basal cell population serves as a source of progenitors for the transitional epithelium. On ectopic expression of CDX2, these transitional basal progenitors differentiate into intestinal-like epithelium (including goblet cells) and thereby reproduce Barrett's metaplasia. A similar transitional columnar epithelium is present at the transitional zones of other mouse tissues (including the anorectal junction) as well as in the gastro-oesophageal junction in the human gut. Acid reflux-induced oesophagitis and the multilayered epithelium (believed to be a precursor of Barrett's oesophagus) are both characterized by the expansion of the transitional basal progenitor cells. Our findings reveal a previously unidentified transitional zone in the epithelium of the upper gastrointestinal tract and provide evidence that the p63 + KRT5 + KRT7 + basal cells in this zone are the cells of origin for multi-layered epithelium and Barrett's oesophagus.

  13. Efficacy of a modified live Flavobacterium columnare vaccine in fish.

    PubMed

    Shoemaker, Craig A; Klesius, Phillip H; Drennan, John D; Evans, Joyce J

    2011-01-01

    Flavobacterium columnare is an aquatic bacterium that is responsible for columnaris disease. This aquatic pathogen has a worldwide distribution and is highly infectious to both warm and cold water fish. A modified live F. columnare vaccine was developed by repeated passage of a virulent strain on increasing concentrations of rifampicin that resulted in attenuation. Here we report vaccination/challenge trials to evaluate efficacy and safety. In separate laboratory trials, immersion vaccination of channel catfish (Ictalurus punctatus) fry between 10 to 48 days post hatch (DPH) with experimental vaccine or licensed product resulted in relative percent survival (RPS) between 57-94% following challenge. Similarly, a vaccination/challenge trial using largemouth bass (Micropterus salmoides) fry at 10 DPH was performed using various doses of licensed product under laboratory conditions. Results demonstrated safety of the vaccine and significant protection following challenge with RPS values between 74-94%, depending on vaccine dose. Together, these trials demonstrate the vaccine administered to early life-stage channel catfish and largemouth bass is safe and reduces mortality following challenge with F. columnare. Published by Elsevier Ltd.

  14. Sketched Oxide Single-Electron Transistor

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei

    2012-02-01

    Devices that confine and process single electrons represent an important scaling limit of electronics. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties. Here, we use an atomic force microscope tip to reversibly ``sketch'' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides.ootnotetextCheng et al., Nature Nanotechnology 6, 343 (2011). In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of ˜1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.

  15. Microseismic monitoring of columnar jointed basalt fracture activity: a trial at the Baihetan Hydropower Station, China

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Rui; Li, Qing-Peng; Feng, Xia-Ting; Xiao, Ya-Xun; Feng, Guang-Liang; Hu, Lian-Xing

    2014-10-01

    Severe stress release has occurred to the surrounding rocks of the typically columnar jointed basalt after excavation at the Baihetan Hydropower Station, Jinsha River, China, where cracking, collapse, and other types of failure may take place occasionally due to relaxation fracture. In order to understand the relaxation fracture characteristics of the columnar jointed basalt in the entire excavation process at the diversion tunnel of the Baihetan Hydropower Station, real-time microseismic monitoring tests were performed. First, the applicability of a geophone and accelerometer was analyzed in the columnar jointed basalt tunnel, and the results show that the accelerometer was more applicable to the cracking monitoring of the columnar jointed basalt. Next, the waveform characteristics of the microseismic signals were analyzed, and the microseismic signals were identified as follows: rock fracture signal, drilling signal, electrical signal, heavy vehicle passing signal, and blast signal. Then, the attenuation characteristics of the microseismic signals in the columnar jointed basalt tunnel were studied, as well as the types and characteristics of the columnar jointed basalt fracture. Finally, location analysis was conducted on the strong rock fracture events, in which four or more sensors were triggered, to obtain the temporal and spatial evolution characteristics and laws of the columnar jointed basalt relaxation fracture after excavation. The test results are not only of important reference value to the excavation and support of diversion tunnel at the Baihetan Hydropower Station, but also of great referential significance and value to the conduction of similar tests.

  16. Columnar cell lesions and pseudoangiomatous hyperplasia like stroma: is there an epithelial-stromal interaction?

    PubMed

    Recavarren, Rosemary A; Chivukula, Mamatha; Carter, Gloria; Dabbs, David J

    2009-10-10

    The significance of association between cancer and its microenvironment has been increasingly recognized. It has been shown in animal models that interaction between neoplastic epithelial cells and adjacent stroma can modulate tumor behavior. Carcinoma associated stromal cells can transform normal epithelial cells into neoplastic cells. In breast, columnar cell lesions are non-obligate precursors of low grade ductal carcinoma in situ. Columnar cell lesions can be seen intimately associated with PASH-like-stroma, a lesion we termed as CCPLS. Our aim is to investigate epithelial-stromal interactions in CCPLS and compare them to PASH without columnar cell lesions in breast core needle biopsies. Normal terminal duct lobular unit (TDLU) epithelium was seen in association with columnar cell lesions as well as PASH. Eight (8) cases of each category were examined by a panel of immunostains: CD117 (C-kit), CD34, CD105, bFGF, AR, ER-beta, MIB-1. We observed a markedly decreased expression of c-kit in columnar cell lesions compared to TDLU-epithelium. CD105 showed a quantitative increase in activated vessels in CCPLS compared to PASH. A subset of CCPLS and PASH were androgen receptor positive. A strong nuclear positivity for ER-beta is observed in the epithelium and stroma of all CCPLS cases. We conclude that (1) activated blood vessels predominate in CCPLS; (2) A molecular alteration is signified by c-kit loss in columnar cell lesions; (3) ER-beta and androgen receptor positivity indicate CCPLS are hormonally responsive lesions. Our study suggests an intimate vascular and hormone dependent epithelial-stromal interaction exists in CCPLS lesions.

  17. Experimental Study of Electron and Phonon Dynamics in Nanoscale Materials by Ultrafast Laser Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shen, Xiaohan

    With the rapid advances in the development of nanotechnology, nowadays, the sizes of elementary unit, i.e. transistor, of micro- and nanoelectronic devices are well deep into nanoscale. For the pursuit of cheaper and faster nanoscale electronic devices, the size of transistors keeps scaling down. As the miniaturization of the nanoelectronic devices, the electrical resistivity increases dramatically, resulting rapid growth in the heat generation. The heat generation and limited thermal dissipation in nanoscale materials have become a critical problem in the development of the next generation nanoelectronic devices. Copper (Cu) is widely used conducting material in nanoelectronic devices, and the electron-phonon scattering is the dominant contributor to the resistivity in Cu nanowires at room temperature. Meanwhile, phonons are the main carriers of heat in insulators, intrinsic and lightly doped semiconductors. The thermal transport is an ensemble of phonon transport, which strongly depends on the phonon frequency. In addition, the phonon transport in nanoscale materials can behave fundamentally different than in bulk materials, because of the spatial confinement. However, the size effect on electron-phonon scattering and frequency dependent phonon transport in nanoscale materials remain largely unexplored, due to the lack of suitable experimental techniques. This thesis is mainly focusing on the study of carrier dynamics and acoustic phonon transport in nanoscale materials. The weak photothermal interaction in Cu makes thermoreflectance measurement difficult, we rather measured the reflectivity change of Cu induced by absorption variation. We have developed a method to separately measure the processes of electron-electron scattering and electron-phonon scattering in epitaxial Cu films by monitoring the transient reflectivity signal using the resonant probe with particular wavelengths. The enhancement on electron-phonon scattering in epitaxial Cu films with thickness

  18. Enhanced Resonant Tunneling in Symmetric 2D Semiconductor Vertical Heterostructure Transistors.

    PubMed

    Campbell, Philip M; Tarasov, Alexey; Joiner, Corey A; Ready, William J; Vogel, Eric M

    2015-05-26

    Tunneling transistors with negative differential resistance have widespread appeal for both digital and analog electronics. However, most attempts to demonstrate resonant tunneling devices, including graphene-insulator-graphene structures, have resulted in low peak-to-valley ratios, limiting their application. We theoretically demonstrate that vertical heterostructures consisting of two identical monolayer 2D transition-metal dichalcogenide semiconductor electrodes and a hexagonal boron nitride barrier result in a peak-to-valley ratio several orders of magnitude higher than the best that can be achieved using graphene electrodes. The peak-to-valley ratio is large even at coherence lengths on the order of a few nanometers, making these devices appealing for nanoscale electronics.

  19. Submucosal glands in the columnar-lined oesophagus: evidence of an association with metaplasia and neosquamous epithelium.

    PubMed

    Lörinc, Ester; Öberg, Stefan

    2012-07-01

    A multipotential stem cell, possibly located in the submucosal gland ducts, has been suggested as the origin of metaplastic mucosa in the oesophagus. The topographic distribution of these glands and their excretory ducts (SMG) within the columnar lined oesophagus (CLO) is largely unknown. The aim of this study was to examine the distribution of SMG in relation to the type of overlying epithelium in patients with CLO. Seven oesophageal resection specimens were examined histologically in toto. The median frequency of SMG was similar in the metaplastic segments (0.12 SMG/mm) and the normal squamous segments (0.10 SMG/mm). Within the metaplastic segments, the median frequency of SMG beneath the squamous islands was significantly higher than that observed under the columnar lined parts (0.22 versus 0.08 SMG/mm, P = 0.046), There was a strong accumulation of SMG at the squamo-columnar transition zones (0.53 SMG/mm), which was significantly greater than that found in the columnar and squamous parts (P = 0.001 and 0.002, respectively). The relative accumulation of SMG beneath squamous islands and the squamo-columnar junctions within the metaplastic segment supports the hypothesis that both metaplastic columnar mucosa and neosquamous epithelium originate from a progenitor in the SMG. © 2012 Blackwell Publishing Ltd.

  20. Functional trade-offs in succulent stems predict responses to climate change in columnar cacti.

    PubMed

    Williams, David G; Hultine, Kevin R; Dettman, David L

    2014-07-01

    Columnar cacti occur naturally in many habitats and environments in the Americas but are conspicuously dominant in very dry desert regions. These majestic plants are widely regarded for their cultural, economic, and ecological value and, in many ecosystems, support highly diverse communities of pollinators, seed dispersers, and frugivores. Massive amounts of water and other resources stored in the succulent photosynthetic stems of these species confer a remarkable ability to grow and reproduce during intensely hot and dry periods. Yet many columnar cacti are potentially under severe threat from environmental global changes, including climate change and loss of habitat. Stems in columnar cacti and other cylindrical-stemmed cacti are morphologically diverse; stem volume-to-surface area ratio (V:S) across these taxa varies by almost two orders of magnitude. Intrinsic functional trade-offs are examined here across a broad range of V:S in species of columnar cacti. It is proposed that variation in photosynthetic gas exchange, growth, and response to stress is highly constrained by stem V:S, establishing a mechanistic framework for understanding the sensitivity of columnar cacti to climate change and drought. Specifically, species that develop stems with low V:S, and thus have little storage capacity, are expected to express high mass specific photosynthesis and growth rates under favourable conditions compared with species with high V:S. But the trade-off of having little storage capacity is that low V:S species are likely to be less tolerant of intense or long-duration drought compared with high V:S species. The application of stable isotope measurements of cactus spines as recorders of growth, water relations, and metabolic responses to the environment across species of columnar cacti that vary in V:S is also reviewed. Taken together, our approach provides a coherent theory and required set of observations needed for predicting the responses of columnar cacti to

  1. Doped Organic Transistors.

    PubMed

    Lüssem, Björn; Keum, Chang-Min; Kasemann, Daniel; Naab, Ben; Bao, Zhenan; Leo, Karl

    2016-11-23

    Organic field-effect transistors hold the promise of enabling low-cost and flexible electronics. Following its success in organic optoelectronics, the organic doping technology is also used increasingly in organic field-effect transistors. Doping not only increases device performance, but it also provides a way to fine-control the transistor behavior, to develop new transistor concepts, and even improve the stability of organic transistors. This Review summarizes the latest progress made in the understanding of the doping technology and its application to organic transistors. It presents the most successful doping models and an overview of the wide variety of materials used as dopants. Further, the influence of doping on charge transport in the most relevant polycrystalline organic semiconductors is reviewed, and a concise overview on the influence of doping on transistor behavior and performance is given. In particular, recent progress in the understanding of contact doping and channel doping is summarized.

  2. Isolation and characterization of Flavobacterium columnare strains infecting fishes inhabiting the Laurentian Great Lakes basin

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare, the etiological agent of columnaris disease, causes significant losses in fish worldwide. In this study, F. columnare infection prevalence was assessed in representative Great Lakes fish species. Over 2,000 wild, feral, and hatchery-propagated salmonids, percids, centrarc...

  3. Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase.

    PubMed

    Wolters, Pieter J; Schouten, Henk J; Velasco, Riccardo; Si-Ammour, Azeddine; Baldi, Paolo

    2013-12-01

    Understanding the genetic mechanisms controlling columnar-type growth in the apple mutant 'Wijcik' will provide insights on how tree architecture and growth are regulated in fruit trees. In apple, columnar-type growth is controlled by a single major gene at the Columnar (Co) locus. By comparing the genomic sequence of the Co region of 'Wijcik' with its wild-type 'McIntosh', a novel non-coding DNA element of 1956 bp specific to Pyreae was found to be inserted in an intergenic region of 'Wijcik'. Expression analysis of selected genes located in the vicinity of the insertion revealed the upregulation of the MdCo31 gene encoding a putative 2OG-Fe(II) oxygenase in axillary buds of 'Wijcik'. Constitutive expression of MdCo31 in Arabidopsis thaliana resulted in compact plants with shortened floral internodes, a phenotype reminiscent of the one observed in columnar apple trees. We conclude that MdCo31 is a strong candidate gene for the control of columnar growth in 'Wijcik'. No claim to original European Union works. New Phytologist © 2013 New Phytologist Trust.

  4. Columnar Transitions in Microscale Evaporating Liquid Jets

    NASA Astrophysics Data System (ADS)

    Hunter, Hanif; Glezer, Ari

    2007-11-01

    Microscale evaporating liquid jets that are injected into a quiescent gaseous medium having adjustable ambient pressure are investigated over a range of jet speeds using a shadowgraph technique. The jets are formed by a laser-drilled 10 μm nozzle from a small-scale pressurized reservoir, and sub-atmospheric ambient pressure is maintained using a controllable, metered Venturi pump. The near-field jet features are captured by shadowgraph imaging using a pulsed ND-Yag laser and a 12 bit CCD camera where the field of view measured 200 μm on the side. As the ambient pressure is reduced, the jet column undergoes a series of spectacular transitions that are first marked by the appearance of vapor bubbles within the jet column. The transitions progress from columnar instabilities to series of column bifurcations to high-order branching and film formation and culminate in conical atomization of the jet column. In addition to the effects of the ambient pressure, the present investigation also considers effects of the liquid surface tension and vapor pressure on the onset, evolution, and hysteresis of the columnar transitions.

  5. Investigating the Mobility of Trilayer Graphene Nanoribbon in Nanoscale FETs

    NASA Astrophysics Data System (ADS)

    Rahmani, Meisam; Ghafoori Fard, Hassan; Ahmadi, Mohammad Taghi; Rahbarpour, Saeideh; Habibiyan, Hamidreza; Varmazyari, Vali; Rahmani, Komeil

    2017-10-01

    The aim of the present paper is to investigate the scaling behaviors of charge carrier mobility as one of the most remarkable characteristics for modeling of nanoscale field-effect transistors (FETs). Many research groups in academia and industry are contributing to the model development and experimental identification of multi-layer graphene FET-based devices. The approach in the present work is to provide an analytical model for carrier mobility of tri-layer graphene nanoribbon (TGN) FET. In order to do so, one starts by identifying the analytical modeling of TGN carrier velocity and ballistic conductance. At the end, a model of charge carrier mobility with numerical solution is analytically derived for TGN FET, in which the carrier concentration, temperature and channel length characteristics dependence are highlighted. Moreover, variation of band gap and gate voltage during the proposed device operation and its effect on carrier mobility is investigated. To evaluate the nanoscale FET performance, the carrier mobility model is also adopted to obtain the I-V characteristics of the device. In order to verify the accuracy of the proposed analytical model for TGN mobility, it is compared to the existing experimental data, and a satisfactory agreement is reported for analogous ambient conditions. Moreover, the proposed model is compared with the published data of single-layer graphene and bi-layer graphene, in which the obtained results demonstrate significant insights into the importance of charge carrier mobility impact in high-performance TGN FET. The work presented here is one step towards an applicable model for real-world nanoscale FETs.

  6. Evaluation of the hormonal state of columnar apple trees (Malus x domestica) based on high throughput gene expression studies.

    PubMed

    Krost, Clemens; Petersen, Romina; Lokan, Stefanie; Brauksiepe, Bastienne; Braun, Peter; Schmidt, Erwin R

    2013-02-01

    The columnar phenotype of apple trees (Malus x domestica) is characterized by a compact growth habit with fruit spurs instead of lateral branches. These properties provide significant economic advantages by enabling high density plantings. The columnar growth results from the presence of a dominant allele of the gene Columnar (Co) located on chromosome 10 which can appear in a heterozygous (Co/co) or homozygous (Co/Co) state. Although two deep sequencing approaches could shed some light on the transcriptome of columnar shoot apical meristems (SAMs), the molecular mechanisms of columnar growth are not yet elaborated. Since the influence of phytohormones is believed to have a pivotal role in the establishment of the phenotype, we performed RNA-Seq experiments to study genes associated with hormone homeostasis and clearly affected by the presence of Co. Our results provide a molecular explanation for earlier findings on the hormonal state of columnar apple trees. Additionally, they allow hypotheses on how the columnar phenotype might develop. Furthermore, we show a statistically approved enrichment of differentially regulated genes on chromosome 10 in the course of validating RNA-Seq results using additional gene expression studies.

  7. Antibacterial activity of acylglucinol derivatives against Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Columnaris disease is one of the most common bacterial diseases of pond-raised channel catfish (Ictalurus punctatus) in the southeastern United States of America. The Gram-negative, rod-shaped bacterium Flavobacterium columnare is the cause of columnaris disease. Direct economic losses to catfish pr...

  8. Columnar mesophases of hexabenzocoronene derivatives. II. Charge carrier mobility

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, James; Marcon, Valentina; Kremer, Kurt; Nelson, Jenny; Andrienko, Denis

    2008-09-01

    Combining atomistic molecular dynamic simulations, Marcus-Hush theory description of charge transport rates, and master equation description of charge dynamics, we correlate the temperature-driven change of the mesophase structure with the change of charge carrier mobilities in columnar phases of hexabenzocoronene derivatives. The time dependence of fluctuations in transfer integrals shows that static disorder is predominant in determining charge transport characteristics. Both site energies and transfer integrals are distributed because of disorder in the molecular arrangement. It is shown that the contributions to the site energies from polarization and electrostatic effects are of opposite sign for positive charges. We look at three mesophases of hexabenzocoronene: herringbone, discotic, and columnar disordered. All results are compared to time resolved microwave conductivity data and show excellent agreement with no fitting parameters.

  9. Columnar mesophases of hexabenzocoronene derivatives. II. Charge carrier mobility.

    PubMed

    Kirkpatrick, James; Marcon, Valentina; Kremer, Kurt; Nelson, Jenny; Andrienko, Denis

    2008-09-07

    Combining atomistic molecular dynamic simulations, Marcus-Hush theory description of charge transport rates, and master equation description of charge dynamics, we correlate the temperature-driven change of the mesophase structure with the change of charge carrier mobilities in columnar phases of hexabenzocoronene derivatives. The time dependence of fluctuations in transfer integrals shows that static disorder is predominant in determining charge transport characteristics. Both site energies and transfer integrals are distributed because of disorder in the molecular arrangement. It is shown that the contributions to the site energies from polarization and electrostatic effects are of opposite sign for positive charges. We look at three mesophases of hexabenzocoronene: herringbone, discotic, and columnar disordered. All results are compared to time resolved microwave conductivity data and show excellent agreement with no fitting parameters.

  10. Effect of Channel Thickness, Annealing Temperature and Channel Length on Nanoscale Ga2O3-In2O3-ZnO Thin Film Transistor Performance.

    PubMed

    Kumaresan, Yogeenth; Pak, Yusin; Lim, Namsoo; Lee, Ryeri; Song, Hui; Kim, Tae Heon; Choi, Boran; Jung, Gun Young

    2016-06-01

    We demonstrated the effect of active layer (channel) thickness and annealing temperature on the electrical performances of Ga2O3-In2O3-ZnO (GIZO) thin film transistor (TFT) having nanoscale channel width (W/L: 500 nm/100 μm). We found that the electron carrier concentration of the channel was decreased significantly with increasing the annealing temperature (100 degrees C to 300 degrees C). Accordingly, the threshold voltage (V(T)) was shifted towards positive voltage (-12.2 V to 10.8 V). In case of channel thickness, the V(T) was shifted towards negative voltage with increasing the channel thickness. The device with channel thickness of 90 nm annealed at 200 degrees C revealed the best device performances in terms of mobility (10.86 cm2/Vs) and V(T) (0.8 V). The effect of channel length was also studied, in which the channel width, thickness and annealing temperature were kept constant such as 500 nm, 90 nm and 200 degrees C, respectively. The channel length influenced the on-current level significantly with small variation of V(T), resulting in lower value of on/off current ratio with increasing the channel length. The device with channel length of 0.5 μm showed enhanced on/off current ratio of 10(6) with minimum V(T) of 0.26 V.

  11. Monte Carlo simulations of spin transport in a strained nanoscale InGaAs field effect transistor

    NASA Astrophysics Data System (ADS)

    Thorpe, B.; Kalna, K.; Langbein, F. C.; Schirmer, S.

    2017-12-01

    Spin-based logic devices could operate at a very high speed with a very low energy consumption and hold significant promise for quantum information processing and metrology. We develop a spintronic device simulator by combining an in-house developed, experimentally verified, ensemble self-consistent Monte Carlo device simulator with spin transport based on a Bloch equation model and a spin-orbit interaction Hamiltonian accounting for Dresselhaus and Rashba couplings. It is employed to simulate a spin field effect transistor operating under externally applied voltages on a gate and a drain. In particular, we simulate electron spin transport in a 25 nm gate length In0.7Ga0.3As metal-oxide-semiconductor field-effect transistor with a CMOS compatible architecture. We observe a non-uniform decay of the net magnetization between the source and the gate and a magnetization recovery effect due to spin refocusing induced by a high electric field between the gate and the drain. We demonstrate a coherent control of the polarization vector of the drain current via the source-drain and gate voltages, and show that the magnetization of the drain current can be increased twofold by the strain induced into the channel.

  12. Mechanical Computing Redux: Limitations at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Liu, Tsu-Jae King

    2014-03-01

    Technology solutions for overcoming the energy efficiency limits of nanoscale complementary metal oxide semiconductor (CMOS) technology ultimately will be needed in order to address the growing issue of integrated-circuit chip power density. Off-state leakage current sets a fundamental lower limit in energy per operation for any voltage-level-based digital logic implemented with transistors (CMOS and beyond), which leads to practical limits for device density (i.e. cost) and operating frequency (i.e. system performance). Mechanical switches have zero off-state leakag and hence can overcome this fundamental limit. Contact adhesive force sets a lower limit for the switching energy of a mechanical switch, however, and also directly impacts its performance. This paper will review recent progress toward the development of nano-electro-mechanical relay technology and discuss remaining challenges for realizing the promise of mechanical computing for ultra-low-power computing. Supported by the Center for Energy Efficient Electronics Science (NSF Award 0939514).

  13. Dielectrophoretic columnar focusing device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Conrad D; Galambos, Paul C; Derzon, Mark S

    2010-05-11

    A dielectrophoretic columnar focusing device uses interdigitated microelectrodes to provide a spatially non-uniform electric field in a fluid that generates a dipole within particles in the fluid. The electric field causes the particles to either be attracted to or repelled from regions where the electric field gradient is large, depending on whether the particles are more or less polarizable than the fluid. The particles can thereby be forced into well defined stable paths along the interdigitated microelectrodes. The device can be used for flow cytometry, particle control, and other process applications, including cell counting or other types of particle counting,more » and for separations in material control.« less

  14. Transistor-based interface circuitry

    DOEpatents

    Taubman, Matthew S [Richland, WA

    2007-02-13

    Among the embodiments of the present invention is an apparatus that includes a transistor, a servo device, and a current source. The servo device is operable to provide a common base mode of operation of the transistor by maintaining an approximately constant voltage level at the transistor base. The current source is operable to provide a bias current to the transistor. A first device provides an input signal to an electrical node positioned between the emitter of the transistor and the current source. A second device receives an output signal from the collector of the transistor.

  15. Columnar jointing - the mechanics of thermal contraction in cooling lavas

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Iddon, F.; Hornby, A. J.; Kendrick, J. E.; von Aulock, F. W.; Wadsworth, F. B.

    2014-12-01

    Columnar joints are spectacular features of volcanic rocks, which form by cracking during cooling-induced contraction of lava. The process, and resultant geometry, manifests a complex interplay between heat dissipation, contraction and tensile strength, yet the formation temperature of such joints remains elusive. Here, we present results from a combination of field survey, thermo-analytical characterisation and mechanical investigation to constrain conditions favourable for columnar jointing. Columnar joints at Seljavellir, a basaltic lava flow at the base of Eyjafjallajökull volcano (Iceland) produce quadratic to heptagonal cross sectional patterns with column widths ranging from 20 to 70 cm in size. The fracture surfaces are characterised by striae with spacing (between 1 to 6 cm) that shares a positive linear relationship to the joint spacing. The striae exhibit both a rough and smooth portion, interpreted to express a change in deformation regime from a ductile response as stress builds up to a fully brittle, mode-I fracture propagation at high stress accumulation. To test the thermo-mechanics of columnar joints we developed an experimental setup to investigate the stress, strain-to-failure and temperature at which basalts undergo tensile failure during cooling from the solidus temperature of 980 °C. We find that fractures initiate at ~800 °C, revealed by a change in stress accumulation (i.e., Young modulus), and complete failure completes after some 0.4% strain at ~670 °C. We interpret the two-stage fracture dynamics as the cause for the change in fracture surface roughness observed in nature. We coupled this dataset with Brazil tensile tests at 30, 400, 600, 800 and 1000 °C. We note that the strain to failure decrease from 1% (>800 °C) to 0.4% (<800 °C). Complementary dilatometric measurements (at 3mN of normal stress and a rate of 2 C/min) constrain the expansion coefficient to be linear and equal to 10-5/°C below the solid temperature. Simple ratio

  16. Non-linear effects and thermoelectric efficiency of quantum dot-based single-electron transistors.

    PubMed

    Talbo, Vincent; Saint-Martin, Jérôme; Retailleau, Sylvie; Dollfus, Philippe

    2017-11-01

    By means of advanced numerical simulation, the thermoelectric properties of a Si-quantum dot-based single-electron transistor operating in sequential tunneling regime are investigated in terms of figure of merit, efficiency and power. By taking into account the phonon-induced collisional broadening of energy levels in the quantum dot, both heat and electrical currents are computed in a voltage range beyond the linear response. Using our homemade code consisting in a 3D Poisson-Schrödinger solver and the resolution of the Master equation, the Seebeck coefficient at low bias voltage appears to be material independent and nearly independent on the level broadening, which makes this device promising for metrology applications as a nanoscale standard of Seebeck coefficient. Besides, at higher voltage bias, the non-linear characteristics of the heat current are shown to be related to the multi-level effects. Finally, when considering only the electronic contribution to the thermal conductance, the single-electron transistor operating in generator regime is shown to exhibit very good efficiency at maximum power.

  17. Phenotypic characterization and genetic diversity of Flavobacterium columnare isolated from red tilapia, Oreochromis sp. in Thailand

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare is the etiologic agent of columnaris disease and severely affects various freshwater aquaculture fish species worldwide. The objectives of this study were to determine the phenotypic characteristics and genetic variability among F. columnare isolates isolated from red tilapi...

  18. Synaptic organic transistors with a vacuum-deposited charge-trapping nanosheet

    PubMed Central

    Kim, Chang-Hyun; Sung, Sujin; Yoon, Myung-Han

    2016-01-01

    Organic neuromorphic devices hold great promise for unconventional signal processing and efficient human-machine interfaces. Herein, we propose novel synaptic organic transistors devised to overcome the traditional trade-off between channel conductance and memory performance. A vacuum-processed, nanoscale metallic interlayer provides an ultra-flat surface for a high-mobility molecular film as well as a desirable degree of charge trapping, allowing for low-temperature fabrication of uniform device arrays on plastic. The device architecture is implemented by widely available electronic materials in combination with conventional deposition methods. Therefore, our results are expected to generate broader interests in incorporation of organic electronics into large-area neuromorphic systems, with potential in gate-addressable complex logic circuits and transparent multifunctional interfaces receiving direct optical and cellular stimulation. PMID:27645425

  19. Synaptic organic transistors with a vacuum-deposited charge-trapping nanosheet

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Hyun; Sung, Sujin; Yoon, Myung-Han

    2016-09-01

    Organic neuromorphic devices hold great promise for unconventional signal processing and efficient human-machine interfaces. Herein, we propose novel synaptic organic transistors devised to overcome the traditional trade-off between channel conductance and memory performance. A vacuum-processed, nanoscale metallic interlayer provides an ultra-flat surface for a high-mobility molecular film as well as a desirable degree of charge trapping, allowing for low-temperature fabrication of uniform device arrays on plastic. The device architecture is implemented by widely available electronic materials in combination with conventional deposition methods. Therefore, our results are expected to generate broader interests in incorporation of organic electronics into large-area neuromorphic systems, with potential in gate-addressable complex logic circuits and transparent multifunctional interfaces receiving direct optical and cellular stimulation.

  20. Columnar metaplasia in a surgical mouse model of gastro-esophageal reflux disease is not derived from bone marrow-derived cell.

    PubMed

    Aikou, Susumu; Aida, Junko; Takubo, Kaiyo; Yamagata, Yukinori; Seto, Yasuyuki; Kaminishi, Michio; Nomura, Sachiyo

    2013-09-01

    The incidence of esophageal adenocarcinoma has increased in the last 25 years. Columnar metaplasia in Barrett's mucosa is assumed to be a precancerous lesion for esophageal adenocarcinoma. However, the induction process of Barrett's mucosa is still unknown. To analyze the induction of esophageal columnar metaplasia, we established a mouse gastro-esophageal reflux disease (GERD) model with associated development of columnar metaplasia in the esophagus. C57BL/6 mice received side-to-side anastomosis of the esophagogastric junction with the jejunum, and mice were killed 10, 20, and 40 weeks after operation. To analyze the contribution of bone marrow-derived cells to columnar metaplasia in this surgical GERD model, some mice were transplanted with GFP-marked bone marrow after the operation. Seventy-three percent of the mice (16/22) showed thickened mucosa in esophagus and 41% of mice (9/22) developed columnar metaplasia 40 weeks after the operation with a mortality rate of 4%. Bone marrow-derived cells were not detected in columnar metaplastic epithelia. However, scattered epithelial cells in the thickened squamous epithelia in regions of esophagitis did show bone marrow derivation. The results demonstrate that reflux induced by esophago-jejunostomy in mice leads to the development of columnar metaplasia in the esophagus. However, bone marrow-derived cells do not contribute directly to columnar metaplasia in this mouse model. © 2013 Japanese Cancer Association.

  1. Water hardness influences Flavobacterium columnare pathogenesis in channel catfish

    USDA-ARS?s Scientific Manuscript database

    Studies were conducted to determine aspects of water chemistry responsible for large differences in pathogenesis and mortality rates in challenges of channel catfish Ictalurus punctatus with Flavobacterium columnare; challenges were conducted in water supplying the Stuttgart National Aquaculture Res...

  2. Investigations of electromagnetic scattering by columnar ice crystals

    NASA Technical Reports Server (NTRS)

    Weil, H.; Senior, T. B. A.

    1976-01-01

    An integral equation approach was developed to determine the scattering and absorption of electromagnetic radiation by thin walled cylinders of arbitrary cross-section and refractive index. Based on this method, extensive numerical data was presented at infrared wavelengths for hollow hexagonal cross section cylinders which simulate columnar sheath ice crystals.

  3. Biologically sensitive field-effect transistors: from ISFETs to NanoFETs

    PubMed Central

    Pachauri, Vivek

    2016-01-01

    Biologically sensitive field-effect transistors (BioFETs) are one of the most abundant classes of electronic sensors for biomolecular detection. Most of the time these sensors are realized as classical ion-sensitive field-effect transistors (ISFETs) having non-metallized gate dielectrics facing an electrolyte solution. In ISFETs, a semiconductor material is used as the active transducer element covered by a gate dielectric layer which is electronically sensitive to the (bio-)chemical changes that occur on its surface. This review will provide a brief overview of the history of ISFET biosensors with general operation concepts and sensing mechanisms. We also discuss silicon nanowire-based ISFETs (SiNW FETs) as the modern nanoscale version of classical ISFETs, as well as strategies to functionalize them with biologically sensitive layers. We include in our discussion other ISFET types based on nanomaterials such as carbon nanotubes, metal oxides and so on. The latest examples of highly sensitive label-free detection of deoxyribonucleic acid (DNA) molecules using SiNW FETs and single-cell recordings for drug screening and other applications of ISFETs will be highlighted. Finally, we suggest new device platforms and newly developed, miniaturized read-out tools with multichannel potentiometric and impedimetric measurement capabilities for future biomedical applications. PMID:27365038

  4. VOLTAGE-CONTROLLED TRANSISTOR OSCILLATOR

    DOEpatents

    Scheele, P.F.

    1958-09-16

    This patent relates to transistor oscillators and in particular to those transistor oscillators whose frequencies vary according to controlling voltages. A principal feature of the disclosed transistor oscillator circuit resides in the temperature compensation of the frequency modulating stage by the use of a resistorthermistor network. The resistor-thermistor network components are selected to have the network resistance, which is in series with the modulator transistor emitter circuit, vary with temperature to compensate for variation in the parameters of the transistor due to temperature change.

  5. Radiation-hardened transistor and integrated circuit

    DOEpatents

    Ma, Kwok K.

    2007-11-20

    A composite transistor is disclosed for use in radiation hardening a CMOS IC formed on an SOI or bulk semiconductor substrate. The composite transistor has a circuit transistor and a blocking transistor connected in series with a common gate connection. A body terminal of the blocking transistor is connected only to a source terminal thereof, and to no other connection point. The blocking transistor acts to prevent a single-event transient (SET) occurring in the circuit transistor from being coupled outside the composite transistor. Similarly, when a SET occurs in the blocking transistor, the circuit transistor prevents the SET from being coupled outside the composite transistor. N-type and P-type composite transistors can be used for each and every transistor in the CMOS IC to radiation harden the IC, and can be used to form inverters and transmission gates which are the building blocks of CMOS ICs.

  6. Shape-Persistent, Sterically Crowded Star Mesogens: From Exceptional Columnar Dimer Stacks to Supermesogens.

    PubMed

    Lehmann, Matthias; Maier, Philipp

    2015-08-10

    Hexasubstituted C3 -symmetric benzenes with three oligophenylenevinylene (OPV) arms and three pyridyl or phenyl substituents are shape-persistent star mesogens that are sterically crowded in the center. Such molecular structures possess large void spaces between their arms, which have to be filled in condensed phases. For the neat materials, this is accomplished by an exceptional formation of dimers and short-range helical packing in columnar mesophases. The mesophase is thermodynamically stable for the pyridyl compound. Only this derivative forms filled star-shaped supermesogens in the presence of various carboxylic acids. The latter do not arrange as dimers, but as monomers along the columnar stacks. In this liquid crystal (LC) phase, the guests are completely enclosed by the hosts. Therefore, the host can be regarded as a new LC endoreceptor, which allows the design of columnar functional structures in the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Evaluation of potassium permanganate against an experimental subacute infection of Flavobacterium columnare in channel catfish, Icatlurus punctatus

    USDA-ARS?s Scientific Manuscript database

    The efficacy of potassium permanganate (KMnO4) as a prophylactic and therapeutic treatment for subacute infection of Flavobacterium columnare was demonstrated in experimentally infected channel catfish, Ictalurus punctatus. Catfish experimentally infected with F. columnare to mimic a subacute infec...

  8. Analysis of EDZ Development of Columnar Jointed Rock Mass in the Baihetan Diversion Tunnel

    NASA Astrophysics Data System (ADS)

    Hao, Xian-Jie; Feng, Xia-Ting; Yang, Cheng-Xiang; Jiang, Quan; Li, Shao-Jun

    2016-04-01

    Due to the time dependency of the crack propagation, columnar jointed rock masses exhibit marked time-dependent behaviour. In this study, in situ measurements, scanning electron microscope (SEM), back-analysis method and numerical simulations are presented to study the time-dependent development of the excavation damaged zone (EDZ) around underground diversion tunnels in a columnar jointed rock mass. Through in situ measurements of crack propagation and EDZ development, their extent is seen to have increased over time, despite the fact that the advancing face has passed. Similar to creep behaviour, the time-dependent EDZ development curve also consists of three stages: a deceleration stage, a stabilization stage, and an acceleration stage. A corresponding constitutive model of columnar jointed rock mass considering time-dependent behaviour is proposed. The time-dependent degradation coefficient of the roughness coefficient and residual friction angle in the Barton-Bandis strength criterion are taken into account. An intelligent back-analysis method is adopted to obtain the unknown time-dependent degradation coefficients for the proposed constitutive model. The numerical modelling results are in good agreement with the measured EDZ. Not only that, the failure pattern simulated by this time-dependent constitutive model is consistent with that observed in the scanning electron microscope (SEM) and in situ observation, indicating that this model could accurately simulate the failure pattern and time-dependent EDZ development of columnar joints. Moreover, the effects of the support system provided and the in situ stress on the time-dependent coefficients are studied. Finally, the long-term stability analysis of diversion tunnels excavated in columnar jointed rock masses is performed.

  9. Columnar transmitter based wireless power delivery system for implantable device in freely moving animals.

    PubMed

    Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Lee, Sung Eun; Jun, Sang Bum; Kim, Sung June

    2013-01-01

    A wireless power delivery system is developed to deliver electrical power to the neuroprosthetic devices that are implanted into animals freely moving inside the cage. The wireless powering cage is designed for long-term animal experiments without cumbersome wires for power supply or the replacement of batteries. In the present study, we propose a novel wireless power transmission system using resonator-based inductive links to increase power efficiency and to minimize the efficiency variations. A columnar transmitter coil is proposed to provide lateral uniformity of power efficiency. Using this columnar transmitter coil, only 7.2% efficiency fluctuation occurs from the maximum transmission efficiency of 25.9%. A flexible polymer-based planar type receiver coil is fabricated and assembled with a neural stimulator and an electrode. Using the designed columnar transmitter coil, the implantable device successfully operates while it moves freely inside the cage.

  10. Composition of Extracellular Polymeric Substances (EPS) produced by Flavobacterium columnare isolated from tropical fish in Brazil.

    PubMed

    de Alexandre Sebastião, Fernanda; Pilarski, Fabiana; Lemos, Manoel Victor Franco

    2013-01-01

    Thirty nine isolates of Flavobacterium columnare from Brazilian fish farms had their carbohydrate composition of EPS evaluated by high efficiency liquid chromatography, using the phenol-sulfuric acid method of EPS. The occurrence of capsules on F. columnare cells was not directly related to biofilm formation, and the predominant monosaccharide is glucose.

  11. Low-frequency electronic noise in single-layer MoS2 transistors.

    PubMed

    Sangwan, Vinod K; Arnold, Heather N; Jariwala, Deep; Marks, Tobin J; Lauhon, Lincoln J; Hersam, Mark C

    2013-09-11

    Ubiquitous low-frequency 1/f noise can be a limiting factor in the performance and application of nanoscale devices. Here, we quantitatively investigate low-frequency electronic noise in single-layer transition metal dichalcogenide MoS2 field-effect transistors. The measured 1/f noise can be explained by an empirical formulation of mobility fluctuations with the Hooge parameter ranging between 0.005 and 2.0 in vacuum (<10(-5) Torr). The field-effect mobility decreased, and the noise amplitude increased by an order of magnitude in ambient conditions, revealing the significant influence of atmospheric adsorbates on charge transport. In addition, single Lorentzian generation-recombination noise was observed to increase by an order of magnitude as the devices were cooled from 300 to 6.5 K.

  12. Do breast columnar cell lesions with atypia need to be excised?

    PubMed

    Datrice, Nicole; Narula, Navneet; Maggard, Melinda; Butler, John; Hsiang, David; Baick, Choong; Lane, Karen

    2007-10-01

    Columnar cell lesion with atypia (CCLA) is a newly recognized pathologic entity seen in breast specimens. The breast cancer risk associated with this finding is unclear, although CCLA had been found adjacent to both in situ and invasive carcinomas, but the incidence is unknown. Breast specimens from patients with a columnar cell lesion were reviewed by a pathologist for atypia. Twenty-one specimens with CCLA were identified [core biopsy (8), excisional biopsy (11), and simple mastectomy (2)]. Six of eight specimens with CCLA on core had adjacent abnormal pathology: infiltrating ductal carcinoma (IDC)/lobular carcinoma in situ (LCIS) (1), ductal carcinoma in situ (DCIS)/LCIS (1), DCIS (1), LCIS (1), and papillomatosis (2). Five of 11 specimens with CCLA on excisional biopsy had adjacent abnormal pathology: IDC (3), DCIS/LCIS (1), and atypical ductal hyperplasia/papilloma (1). Two of two simple mastectomy specimens had CCLA associated with IDC (1) and DCIS (1). Overall, abnormal pathology was found adjacent to CCLA in 62 per cent of specimens (13/21). Breast pathologic specimens containing a columnar cell lesion should be carefully examined for atypia. Surgical excision is warranted for CCLA found on core biopsy. The future risk of breast cancer based on the finding of CCLA alone requires further investigation.

  13. Composition of Extracellular Polymeric Substances (EPS) produced by Flavobacterium columnare isolated from tropical fish in Brazil

    PubMed Central

    de Alexandre Sebastião, Fernanda; Pilarski, Fabiana; Lemos, Manoel Victor Franco

    2013-01-01

    Thirty nine isolates of Flavobacterium columnare from Brazilian fish farms had their carbohydrate composition of EPS evaluated by high efficiency liquid chromatography, using the phenol-sulfuric acid method of EPS. The occurrence of capsules on F. columnare cells was not directly related to biofilm formation, and the predominant monosaccharide is glucose. PMID:24516426

  14. A novel nanoscale SOI MOSFET by embedding undoped region for improving self-heating effect

    NASA Astrophysics Data System (ADS)

    Ghaffari, Majid; Orouji, Ali A.

    2018-06-01

    Because of the low thermal conductivity of the SiO2 (oxide), the Buried Oxide (BOX) layer in a Silicon-On-Insulator Metal-Oxide Semiconductor Field-Effect Transistor (SOI MOSFET) prevents heat dissipation in the silicon layer and causes increase in the device lattice temperature. In this paper, a new technique is proposed for reducing Self-Heating Effects (SHEs). The key idea in the proposed structure is using a Silicon undoped Region (SR) in the nanoscale SOI MOSFET under the drain and channel regions in order to decrease the SHE. The novel transistor is named Silicon undoped Region SOI-MOSFET (SR-SOI). Due to the embedded silicon undoped region in the suitable place, the proposed structure has decreased the device lattice temperature. The location and dimensions of the proposed region have been carefully optimized to achieve the best results. This work has explored enhancement such as decreased maximum lattice temperature, increased electron mobility, increased drain current, lower DC drain conductance and higher DC transconductance and also decreased bandgap energy variations. Also, for modeling of the structure in the SPICE tools, the main characterizations have been extracted such as thermal resistance (RTH), thermal capacitance (CTH), and SHE characteristic frequency (fTH). All parameters are extracted in relation with the AC operation indicate excellent performance of the SR-SOI device. The results show that proposed region is a suitable alternative to oxide as a part of the buried oxide layer in SOI structures and has better performance in high temperature. Using two-dimensional (2-D) and two-carrier device simulation is done comparison of the SR-SOI structure with a Conventional SOI (C-SOI). As a result, the SR-SOI device can be regarded as a useful substitution for the C-SOI device in nanoscale integrated circuits as a reliable device.

  15. Retaining {1 0 0} texture from initial columnar grains in 6.5 wt% Si electrical steels

    NASA Astrophysics Data System (ADS)

    Liang, Ruiyang; Yang, Ping; Mao, Weimin

    2017-11-01

    6.5 wt% Si electrical steel is a superior soft magnetic material with excellent magnetic properties which highly depends on texture. In this study, based on the heredity of 〈0 0 1〉 orientation in columnar grains, columnar grains are used as the initial material to prepare non-oriented 6.5 wt% Si electrical steel with excellent magnetic properties. EBSD and XRD techniques are adopted to explore the structure and texture evolution during hot rolling, warm rolling, cold rolling and annealing. The results show that, due to the heredity of "structure and texture" from the initial strong {1 0 0} columnar grains, annealed sheet with {1 0 0}〈0 0 1〉 texture had better magnetic properties, which can be used as non-oriented high-silicon electrical steel. Both preferred cube grain nucleation in deformed {1 1 3}〈3 6 1〉 grains in subsurface and coarse {1 0 0}〈0 0 1〉 deformed grains in center layer show the effect of initial columnar grains with {1 0 0} texture.

  16. Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order

    DOE PAGES

    Gujral, Ankit; Gomez, Jaritza; Ruan, Shigang; ...

    2017-10-04

    Anisotropic molecular packing, particularly in highly ordered liquid crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized glassy solids of discotic liquid crystalline systems. Using grazing incidence X-ray scattering, atomic force microscopy, and UV–vis spectroscopy, we compare three systems: a rectangular columnar liquid crystal, a hexagonal columnar liquid crystal, and a nonmesogen. The packing motifs accessible by vapor deposition are highly organized for the liquid crystalline systems with columns propagating either in-plane or out-of-plane depending upon the substrate temperature during deposition.more » As a result, the structures formed at a given substrate temperature can be understood as resulting from partial equilibration toward the structure of the equilibrium liquid crystal surface during the deposition process.« less

  17. Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gujral, Ankit; Gomez, Jaritza; Ruan, Shigang

    Anisotropic molecular packing, particularly in highly ordered liquid crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized glassy solids of discotic liquid crystalline systems. Using grazing incidence X-ray scattering, atomic force microscopy, and UV–vis spectroscopy, we compare three systems: a rectangular columnar liquid crystal, a hexagonal columnar liquid crystal, and a nonmesogen. The packing motifs accessible by vapor deposition are highly organized for the liquid crystalline systems with columns propagating either in-plane or out-of-plane depending upon the substrate temperature during deposition.more » As a result, the structures formed at a given substrate temperature can be understood as resulting from partial equilibration toward the structure of the equilibrium liquid crystal surface during the deposition process.« less

  18. Lytic bacteriophages specific to Flavobacterium columnare rescue catfish, Clarias batrachus (Linn.) from columnaris disease.

    PubMed

    Prasad, Yogendra; Arpana; Kumar, Dinesh; Sharma, A K

    2011-03-01

    This investigation was aimed to find out appropriate strategy against antibiotic resistant bacterial fish pathogen, F. columnare. This pathogen was found persistently associated with fishes causing columnaris disease and ensuing mass mortality in hatchery and culture system of Sub - Himalayan region. Nine lytic F. columnare phages (FCP1 - FCP9) specific to its fifteen isolates were isolated from the water and bottom sediments of various geo-climatic regions of North India. The F. columnare phage FCP1 (made of hexagonal head and non contractile long tail belonging to family Podovariedae, a member of DNA virus) exhibited broader host range to lyse 9 out of 15 isolates of F. columnare. Therapeutic ability of FCP1 phage was assessed in C. batrachus inoculated intramuscularly (im) with virulent bacterial isolate FC8 and post inoculated (PI) with FCP1 phage (@ 10(8) : 10(6):: cfu : pfu) through intramuscular (im), immersion (bath) and oral (phage impregnated feed) treatment. Significant (p < 0.001) reduction (less than 10(-3) cfu ml(-1)) in host bacterium in the sera, gill, liver and kidney of challenged fishes was noted after 6 hr of phage treatment. Quantum of phage played a significant role in bringing down bacterial population as in the sera of dose 1 (@ 4.55 x 10(6) pfu ml(-1)) and dose 2 (@ 9.15 x 10(6) pfu ml(-1)) treated fishes mean log10 cfu value reduced by 3 logs (58.39%) and 5 logs (73.77%) at 96 hr, respectively. Phage treatment led to disappearance of gross symptoms, negative bacteriological test, detectable phage and 100% survival in experimentally infected C. batrachus. Result of this study provides evidence of profound lytic impact of FCP1 phage and represents its interesting therapeutic importance against antibiotic resistant F. columnare.

  19. Columnar alterations of NADH fluorescence during hypoxia-ischemia in immature rat brain.

    PubMed

    Welsh, F A; Vannucci, R C; Brierley, J B

    1982-01-01

    Cerebral hypoxia-ischemia was produced in 7-day postnatal rats by unilateral carotid artery ligation combined with systemic hypoxia (8% O2). Levels of high energy phosphates, which were only slightly altered in the contralateral hemisphere, were nearly depleted in the ipsilateral hemisphere during the 3-h hypoxic insult. With hypoxia of between 1 and 3 hours' duration, columnar alterations of cortical NADH fluorescence occurred in the same location and regional pattern as did histologic damage demonstrated previously (Rice et al., 1981). In regions exhibiting columns of NADH fluorescence, there was no evidence of a columnar reduction of high energy phosphates as levels of ATP and phosphocreatine were nearly zero. Recovery from 3 h of hypoxia was accompanied by partial and regionally heterogeneous restoration of ATP within the ipsilateral hemisphere. Columnar variations of NADH fluorescence were not detected in the recovery period; rather, regions with impaired restitution of high energy phosphates exhibited NADH fluorescence that was diminished diffusely compared to the contralateral hemisphere. The correlation between depressed NADH fluorescence and depleted ATP, present as cortical columns during hypoxia and as larger regions during recovery, suggests that decreased formation of NADH may be limiting the resynthesis of high energy phosphates.

  20. Effect of boundary heat flux on columnar formation in binary alloys: A phase-field study

    NASA Astrophysics Data System (ADS)

    Du, Lifei; Zhang, Peng; Yang, Shaomei; Chen, Jie; Du, Huiling

    2018-02-01

    A non-isothermal phase-field model was employed to simulate the columnar formation during rapid solidification in binary Ni-Cu alloy. Heat flux at different boundaries was applied to investigate the temperature gradient effect on the morphology, concentration and temperature distributions during directional solidifications. With the heat flux input/extraction from boundaries, coupling with latent heat release and initial temperature gradient, temperature distributions are significantly changed, leading to solute diffusion changes during the phase-transition. Thus, irregular columnar structures are formed during the directional solidification, and the concentration distribution in solid columnar arms could also be changed due to the different growing speeds and temperature distributions at the solid-liquid interfaces. Therefore, applying specific heat conditions at the solidifying boundaries could be an efficient way to control the microstructure during solidifications.

  1. Copper atomic-scale transistors.

    PubMed

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  2. Copper atomic-scale transistors

    PubMed Central

    Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO4 + H2SO4) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and −170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes (U bias) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1G 0 (G 0 = 2e2/h; with e being the electron charge, and h being Planck’s constant) or 2G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors. PMID:28382242

  3. Nanoscale integration is the next frontier for nanotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picraux, Samuel T

    2009-01-01

    in many ways, from exploiting field-effect transistor devices and low power complementary logic to enable the electronic watch and hand calculator in the 1970's, to today's microprocessors and memories with billions of devices and a computational power not imagined a few decades ago. The manipulation of charges on a chip, the new concepts in combining devices for logic functions, and the new approaches to computation, information processing, and imaging have all emerged from Kilby and Noyce's simple concept of integrating devices on a single chip. Moving from hard to soft materials, a second more recent example of integration is the DNA microarray. These microarrays, with up to millions of elements in a planar array that can be optically read out, can simultaneously measure the expression of 10's of thousands of genes to study the effects of disease and treatment, or screen for single nucleotide polymorphisms for uses ranging from forensics to predisposition to disease. While still at an early stage, microarrays have revolutionized biosciences by providing the means to interrogate the complex genetic control of biological functions. Just as integrated circuits and microarrays have led to completely new functionalities and performance, the integration of nanoscale materials and structures is anticipated to lead to new performance and enable the design of new functionalities not previously envisioned. The fundamental questions underlying integration go beyond just complex fabrication or the engineering of known solutions; they lead to new discoveries and new science. The scientific challenges around nanoscale integration necessitate the development of new knowledge that is central to the advance of nanotechnology. To move forward one must address key science questions that arise in nanoscience integration and go beyond a single system or materials area. New science and discoveries especially await around three questions. How does one: (1) Control energy transfer and

  4. Biologically sensitive field-effect transistors: from ISFETs to NanoFETs.

    PubMed

    Pachauri, Vivek; Ingebrandt, Sven

    2016-06-30

    Biologically sensitive field-effect transistors (BioFETs) are one of the most abundant classes of electronic sensors for biomolecular detection. Most of the time these sensors are realized as classical ion-sensitive field-effect transistors (ISFETs) having non-metallized gate dielectrics facing an electrolyte solution. In ISFETs, a semiconductor material is used as the active transducer element covered by a gate dielectric layer which is electronically sensitive to the (bio-)chemical changes that occur on its surface. This review will provide a brief overview of the history of ISFET biosensors with general operation concepts and sensing mechanisms. We also discuss silicon nanowire-based ISFETs (SiNW FETs) as the modern nanoscale version of classical ISFETs, as well as strategies to functionalize them with biologically sensitive layers. We include in our discussion other ISFET types based on nanomaterials such as carbon nanotubes, metal oxides and so on. The latest examples of highly sensitive label-free detection of deoxyribonucleic acid (DNA) molecules using SiNW FETs and single-cell recordings for drug screening and other applications of ISFETs will be highlighted. Finally, we suggest new device platforms and newly developed, miniaturized read-out tools with multichannel potentiometric and impedimetric measurement capabilities for future biomedical applications. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Ungeremine and its hemisynthetic analogues as bactericides against Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    The Gram-negative bacterium Flavobacterium columunare is the cause of colmunaris disease in channel catfish (Ictalurus punctatus). In a previous study, the betaine-type alkaloid ungeremine, 1 obtained from Pancratium maritimum L. was found to have strong antibacterial activity against F. columnare. ...

  6. Interplay of Nanoscale, Hybrid P3HT/ZTO Interface on Optoelectronics and Photovoltaic Cells.

    PubMed

    Lai, Jian-Jhong; Li, Yu-Hsun; Feng, Bo-Rui; Tang, Shiow-Jing; Jian, Wen-Bin; Fu, Chuan-Min; Chen, Jiun-Tai; Wang, Xu; Lee, Pooi See

    2017-09-27

    Photovoltaic effects in poly(3-hexylthiophene-2,5-diyl) (P3HT) have attracted much attention recently. Here, natively p-type doped P3HT nanofibers and n-type doped zinc tin oxide (ZTO) nanowires are used for making not only field-effect transistors (FETs) but also p-n nanoscale diodes. The hybrid P3HT/ZTO p-n heterojunction shows applications in many directions, and it also facilitates the investigation of photoelectrons and photovoltaic effects on the nanoscale. As for applications, the heterojunction device shows a simultaneously high on/off ratio of n- and p-type FETs, gatable p-n junction diodes, tristate buffer devices, gatable photodetectors, and gatable solar cells. On the other hand, P3HT nanofibers are taken as a photoactive layer and the role played by the p-n heterojunction in the photoelectric and photovoltaic effects is investigated. It is found that the hybrid P3HT/ZTO p-n heterojunction assists in increasing photocurrents and enhancing photovoltaic effects. Through the controllable gating of the heterojunction, we can discuss the background mechanisms of photocurrent generation and photovoltaic energy harvesting.

  7. Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus

    PubMed Central

    Jiang, Ming; Li, Haiyan; Zhang, Yongchun; Yang, Ying; Lu, Rong; Liu, Kuancan; Lin, Sijie; Lan, Xiaopeng; Wang, Haikun; Wu, Han; Zhu, Jian; Zhou, Zhongren; Xu, Jianming; Lee, Dong-Kee; Zhang, Lanjing; Lee, Yuan-Cho; Yuan, Jingsong; Abrams, Julian A.; Wang, Timothy G.; Sepulveda, Antonia R.; Wu, Qi; Chen, Huaiyong; Sun, Xin; She, Junjun; Chen, Xiaoxin; Que, Jianwen

    2017-01-01

    In several organ systems the transitional zone between different types of epithelia is a hotspot for pre-neoplastic metaplasia and malignancy1–3. However, the cell-of-origin for the metaplastic epithelium and subsequent malignancy, remains obscure1–3. In the case of Barrett’s oesophagus (BE), intestinal metaplasia occurs at the gastro-oesophageal junction, where stratified squamous epithelium transitions into simple columnar cells4. Based on different experimental models, several alternative cell types have been proposed as the source of the metaplasia, but in all cases the evidence is inconclusive and no model completely mimics BE with the presence of intestinal goblet cells5–8. Here, we describe a novel transitional columnar epithelium with distinct basal progenitor cells (p63+ KRT5+ KRT7+) in the squamous-columnar junction (SCJ) in the upper gastrointestinal tract of the mouse. We use multiple models and lineage tracing strategies to show that this unique SCJ basal cell population serves as a source of progenitors for the transitional epithelium. Moreover, upon ectopic expression of CDX2 these transitional basal progenitors differentiate into intestinal-like epithelium including goblet cells, thus reproducing Barrett’s metaplasia. A similar transitional columnar epithelium is present at the transitional zones of other mouse tissues, including the anorectal junction, and, importantly, at the gastro-oesophageal junction in the human gut. Acid reflux-induced oesophagitis and the multilayered epithelium (MLE) believed to be a precursor of BE are both characterized by the expansion of the transitional basal progenitor cells. Taken together our findings reveal the presence of a previously unidentified transitional zone in the epithelium of the upper gastrointestinal tract and provide evidence that the p63+ KRT7+ basal cells in this zone are the cell-of-origin for MLE and BE. PMID:29019984

  8. Dual-mode MOS SOI nanoscale transistor serving as a building block for optical communication between blocks

    NASA Astrophysics Data System (ADS)

    Bendayan, Michael; Sabo, Roi; Zolberg, Roee; Mandelbaum, Yaakov; Chelly, Avraham; Karsenty, Avi

    2017-02-01

    We developed a new type of silicon MOSFET Quantum Well transistor, coupling both electronic and optical properties which should overcome the indirect silicon bandgap constraint, and serve as a future light emitting device in the range 0.8-2μm, as part of a new building block in integrated circuits allowing ultra-high speed processors. Such Quantum Well structure enables discrete energy levels for light recombination. Model and simulations of both optical and electric properties are presented pointing out the influence of the channel thickness and the drain voltage on the optical emission spectrum.

  9. Realization of Molecular-Based Transistors.

    PubMed

    Richter, Shachar; Mentovich, Elad; Elnathan, Roey

    2018-06-06

    Molecular-based devices are widely considered as significant candidates to play a role in the next generation of "post-complementary metal-oxide-semiconductor" devices. In this context, molecular-based transistors: molecular junctions that can be electrically gated-are of particular interest as they allow new modes of operation. The properties of molecular transistors composed of a single- or multimolecule assemblies, focusing on their practicality as real-world devices, concerning industry demands and its roadmap are compared. Also, the capability of the gate electrode to modulate the molecular transistor characteristics efficiently is addressed, showing that electrical gating can be easily facilitated in single molecular transistors and that gating of transistor composed of molecular assemblies is possible if the device is formed vertically. It is concluded that while the single-molecular transistor exhibits better performance on the lab-scale, its realization faces signifacant challenges when compared to those faced by transistors composed of a multimolecule assembly. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Molecular Photovoltaics in Nanoscale Dimension

    PubMed Central

    Burtman, Vladimir; Zelichonok, Alexander; Pakoulev, Andrei V.

    2011-01-01

    This review focuses on the intrinsic charge transport in organic photovoltaic (PVC) devices and field-effect transistors (SAM-OFETs) fabricated by vapor phase molecular self-assembly (VP-SAM) method. The dynamics of charge transport are determined and used to clarify a transport mechanism. The 1,4,5,8-naphthalene-tetracarboxylic diphenylimide (NTCDI) SAM devices provide a useful tool to study the fundamentals of polaronic transport at organic surfaces and to discuss the performance of organic photovoltaic devices in nanoscale. Time-resolved photovoltaic studies allow us to separate the charge annihilation kinetics in the conductive NTCDI channel from the overall charge kinetic in a SAM-OFET device. It has been demonstrated that tuning of the type of conductivity in NTCDI SAM-OFET devices is possible by changing Si substrate doping. Our study of the polaron charge transfer in organic materials proposes that a cation-radical exchange (redox) mechanism is the major transport mechanism in the studied SAM-PVC devices. The role and contribution of the transport through delocalized states of redox active surface molecular aggregates of NTCDI are exposed and investigated. This example of technological development is used to highlight the significance of future technological development of nanotechnologies and to appreciate a structure-property paradigm in organic nanostructures. PMID:21339983

  11. Evolvable circuit with transistor-level reconfigurability

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian (Inventor); Salazar-Lazaro, Carlos Harold (Inventor)

    2004-01-01

    An evolvable circuit includes a plurality of reconfigurable switches, a plurality of transistors within a region of the circuit, the plurality of transistors having terminals, the plurality of transistors being coupled between a power source terminal and a power sink terminal so as to be capable of admitting power between the power source terminal and the power sink terminal, the plurality of transistors being coupled so that every transistor terminal to transistor terminal coupling within the region of the circuit comprises a reconfigurable switch.

  12. Complete genome sequence analysis of the fish pathogen Flavobacterium columnare provides insights into antibiotic resistance and pathogenicity related genes.

    PubMed

    Zhang, Yulei; Zhao, Lijuan; Chen, Wenjie; Huang, Yunmao; Yang, Ling; Sarathbabu, V; Wu, Zaohe; Li, Jun; Nie, Pin; Lin, Li

    2017-10-01

    We analyzed here the complete genome sequences of a highly virulent Flavobacterium columnare Pf1 strain isolated in our laboratory. The complete genome consists of a 3,171,081 bp circular DNA with 2784 predicted protein-coding genes. Among these, 286 genes were predicted as antibiotic resistance genes, including 32 RND-type efflux pump related genes which were associated with the export of aminoglycosides, indicating inducible aminoglycosides resistances in F. columnare. On the other hand, 328 genes were predicted as pathogenicity related genes which could be classified as virulence factors, gliding motility proteins, adhesins, and many putative secreted proteases. These genes were probably involved in the colonization, invasion and destruction of fish tissues during the infection of F. columnare. Apparently, our obtained complete genome sequences provide the basis for the explanation of the interactions between the F. columnare and the infected fish. The predicted antibiotic resistance and pathogenicity related genes will shed a new light on the development of more efficient preventional strategies against the infection of F. columnare, which is a major worldwide fish pathogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Interband Lateral Resonant Tunneling Transistor.

    DTIC Science & Technology

    1994-11-14

    INTERBAND LATERAL RESONANT TUNNELING TRANSISTOR 10 BACKGROUND OF THE INVENTION Field of the Invention This invention pertains to a tunneling transistor...and in 15 particular to an interband lateral resonant tunneling transistor. Description of Related Art Conventional semiconductor technologies are... interband lateral resonant tunneling transistor along the cross-section B-B of Figure 2c. Figure 4 is another preferred embodiment cross-sectional 20

  14. Role of intragastric and intraoesophageal alkalinisation in the genesis of complications in Barrett's columnar lined lower oesophagus.

    PubMed Central

    Attwood, S E; Ball, C S; Barlow, A P; Jenkinson, L; Norris, T L; Watson, A

    1993-01-01

    Patients with Barrett's columnar lined lower oesophagus have severe acid gastrooesophageal reflux and may develop complications, including ulceration, stricture, and carcinoma. The aim of this study was to establish if a relationship exists between the pH profile in the oesophagus and stomach and the development of complications in patients with Barrett's columnar lined lower oesophagus. Twenty four hour ambulatory oesophageal pH monitoring was performed in 26 patients with Barrett's columnar lined lower oesophagus and combined with 24 hour ambulatory gastric pH monitoring in 16. Ten of the 26 with Barrett's columnar lined lower oesophagus had complications including stricture (eight), deep ulceration (one), and carcinoma (one). Oesophageal acid exposure (% time < pH 4) was similar in patients with or without complications (19.2% v 19.3% p > 0.05). Oesophageal alkaline exposure (% time > pH 7) was greater in patients with complications (24.2% v 8.4% p > 0.05). Of the 16 patients who underwent gastric pH monitoring there was a clear relationship between gastric and oesophageal alkalinisation in 13. These results support the hypothesis that complications in Barrett's columnar lined lower oesophagus develop in association with increased exposure of the oesophagus to an alkaline environment which appears to be secondary to duodenogastric reflux. The routine use of 24 hour ambulatory gastric pH monitoring in conjunction with oesophageal pH monitoring can help identify those patients at risk. PMID:8432439

  15. Formalin treatment of Trichondina sp. reduced Flavobacterium columnare infection in tilapia

    USDA-ARS?s Scientific Manuscript database

    Bacterium Flavobacterium columnare and protozoan Trichodina spp. are common pathogens of cultured fish. Recent studies on parasite-bacterium interaction show evidence that concurrent infections increase severity of some infectious diseases, especially bacterial diseases. The effect of parasite treat...

  16. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks.

  17. High-performance vertical organic transistors.

    PubMed

    Kleemann, Hans; Günther, Alrun A; Leo, Karl; Lüssem, Björn

    2013-11-11

    Vertical organic thin-film transistors (VOTFTs) are promising devices to overcome the transconductance and cut-off frequency restrictions of horizontal organic thin-film transistors. The basic physical mechanisms of VOTFT operation, however, are not well understood and VOTFTs often require complex patterning techniques using self-assembly processes which impedes a future large-area production. In this contribution, high-performance vertical organic transistors comprising pentacene for p-type operation and C60 for n-type operation are presented. The static current-voltage behavior as well as the fundamental scaling laws of such transistors are studied, disclosing a remarkable transistor operation with a behavior limited by injection of charge carriers. The transistors are manufactured by photolithography, in contrast to other VOTFT concepts using self-assembled source electrodes. Fluorinated photoresist and solvent compounds allow for photolithographical patterning directly and strongly onto the organic materials, simplifying the fabrication protocol and making VOTFTs a prospective candidate for future high-performance applications of organic transistors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Gene expression analysis between planktonic and biofilm states of Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare, the causative agent of columnaris disease causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry continual efforts to better understand basic mechanisms that contribute to disease ...

  19. Sickeningly sweet: L-rhamnose stimulates Flavobacterium columnare biofilm formation and virulence

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare, the causative agent of columnaris disease causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry continual efforts to better understand basic mechanisms that contribute to disease ...

  20. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  1. Mechanically adjustable single-molecule transistors and stencil mask nanofabrication of high-resolution scanning probes

    NASA Astrophysics Data System (ADS)

    Champagne, Alexandre

    This dissertation presents the development of two original experimental techniques to probe nanoscale objects. The first one studies electronic transport in single organic molecule transistors in which the source-drain electrode spacing is mechanically adjustable. The second involves the fabrication of high-resolution scanning probe microscopy sensors using a stencil mask lithography technique. We describe the fabrication of transistors in which a single organic molecule can be incorporated. The source and drain leads of these transistors are freely suspended above a flexible substrate, and their spacing can be adjusted by bending the substrate. We detail the technology developed to carry out measurements on these samples. We study electronic transport in single C60 molecules at low temperature. We observe Coulomb blockaded transport and can resolve the discrete energy spectrum of the molecule. We are able to mechanically tune the spacing between the electrodes (over a range of 5 A) to modulate the lead-molecule coupling, and can electrostatically tune the energy levels on the molecule by up to 160 meV using a gate electrode. Initial progress in studying different transport regimes in other molecules is also discussed. We present a lithographic process that allows the deposition of metal nanostructures with a resolution down to 10 nm directly onto atomic force microscope (AFM) tips. We show that multiple layers of lithography can be deposited and aligned. We fabricate high-resolution magnetic force microscopy (MFM) probes using this method and discuss progress to fabricate other scanning probe microscopy (SPM) sensors.

  2. Vertical organic transistors.

    PubMed

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-11-11

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted.

  3. Columnar domains and anisotropic growth laws in dipolar systems.

    PubMed

    Bupathy, Arunkumar; Banerjee, Varsha; Puri, Sanjay

    2017-06-01

    Magnetic and dielectric solids are well-represented by the Ising model with dipolar interactions (IM+DI). The latter are long-ranged, fluctuating in sign, and anisotropic. Equilibrium studies have revealed novel consequences of these complicated interactions, but their effect on nonequilibrium behavior is not explored. We perform a deep temperature quench to study the kinetics of domain growth in the d=3 IM+DI. Our main observations are (i) the emergence of columnar domains along the z axis (Ising axis) with a transient periodicity in the xy plane; (ii) anisotropic growth laws: ℓ_{ρ}(t)∼t^{ϕ}; ℓ_{z}(t)∼t^{ψ}, where ρ[over ⃗]=(x,y) and ℓ is the characteristic length scale; (iii) generalized dynamical scaling for the correlation function: C(ρ,z;t)=g(ρ/ℓ_{ρ},z/ℓ_{z}); and (iv) an asymptotic Porod tail in the corresponding structure factor: S(k_{ρ},0;t)∼k_{ρ}^{-3}; S(0,k_{z};t)∼k_{z}^{-2}. Our results explain the experimentally observed columnar morphologies in a wide range of dipolar systems, and they have important technological implications.

  4. Scales of columnar jointing in igneous rocks: field measurements and controlling factors

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Taisne, Benoît; Garel, Fanny; Médard, Étienne; Bosshard, Sonja; Mattsson, Hannes B.

    2012-03-01

    Columnar jointing is a common feature of solidified lavas, sills and dikes, but the factors controlling the characteristic stoutness of columns remain debated, and quantitative field observations are few in number. In this paper, we provide quantitative measurements on sizing of columnar joint sets and our assessment of the principal factors controlling it. We focus on (1) chemistry, as it is the major determinant of the physical (mechanical and thermal) properties of the lava, and (2) geology, as it influences the style of emplacement and lava geometry, setting boundary conditions for the cooling process and the rate of heat loss. In our analysis, we cover lavas with a broad range of chemical compositions (from basanite to phonolite, for six of which we provide new geochemical analyses) and of geological settings. Our field measurements cover 50 columnar jointing sites in three countries. We provide reliable, manually digitized data on the size of individual columns and focus the mathematical analysis on their geometry (23,889 data on side length, of which 17,312 are from full column sections and 3,033 data on cross-sectional area and order of polygonality). The geometrical observations show that the variation in characteristic size of columns between different sites exceeds one order of magnitude (side length ranging from 8 to 338 cm) and that the column-bounding polygons' average order is less than 6. The network of fractures is found to be longer than required by a minimum-energy hexagonal configuration, indicating a non-equilibrium, geologically quick process. In terms of the development and characteristic sizing of columnar joint sets, our observations suggest that columns are the result of an interplay between the geological setting of emplacement and magma chemistry. When the geological setting constrains the geometry of the emplaced body, it exerts a stronger control on characteristic column stoutness. At unconstrained geometries (e.g. unconfined lava

  5. Immunohistochemical analysis of metaplastic non-goblet columnar lined oesophagus shows phenotypic similarities to Barrett's oesophagus: a study in an Asian population.

    PubMed

    Srivastava, Supriya; Liew, Mei Shan; McKeon, Frank; Xian, Wa; Yeoh, Khay Guan; Ho, Khek Yu; Teh, Ming

    2014-02-01

    Barrett's oesophagus is a premalignant condition, predisposing to oesophageal adenocarcinoma. However, some adenocarcinoma may arise in columnar lined oesophagus without goblet cells. Our aim was to evaluate the biological properties of non-goblet columnar lined oesophagus only and elucidate its relationship with Barrett's oesophagus and associated neoplasia. Endoscopic biopsies from patients with Barrett's oesophagus (n=30), non-goblet columnar lined oesophagus (n=14), Barrett's oesophagus associated high grade dysplasia (n=6) and adenocarcinoma (n=4) were selected. Immunostaining for villin, claudin 3 and MUC4 was performed. Statistical analysis was performed and a p value <0.05 was considered significant. Villin and MUC4 were positive in 42%, 100% each and 50% in non-goblet columnar lined oesophagus, Barrett's oesophagus, high grade dysplasia and adenocarcinoma respectively, while claudin 3 was 100% positive in all the groups. In non-goblet columnar lined oesophagus, six cases that were villin immunopositive, showed positive expression for claudin 3 and/or MUC4 and there was no difference from the high grade dysplasia or adenocarcinoma (p>0.05). Our results indicate that a subset of non-goblet columnar lined oesophagus shows an intestinal phenotype representing an early stage of Barrett's oesophagus. This subset probably harbours the potential to change into adenocarcinoma in the long term. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  6. Flavobacterium columnare isolated from red tilapia (Oreochromis sp.): emphasis on genetic characterization and virulence of rhizoid and non-rhizoid morphotypes

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare is the causative agent of columnaris disease and severely affects various freshwater fish species worldwide. Here, we described the phenotypic and genetic characterization of F. columnare isolates isolated from farmed red tilapia in Thailand. Additionally, the virulence as w...

  7. Template-assisted selective epitaxy of III–V nanoscale devices for co-planar heterogeneous integration with Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmid, H., E-mail: sih@zurich.ibm.com; Borg, M.; Moselund, K.

    2015-06-08

    III–V nanoscale devices were monolithically integrated on silicon-on-insulator (SOI) substrates by template-assisted selective epitaxy (TASE) using metal organic chemical vapor deposition. Single crystal III–V (InAs, InGaAs, GaAs) nanostructures, such as nanowires, nanostructures containing constrictions, and cross junctions, as well as 3D stacked nanowires were directly obtained by epitaxial filling of lithographically defined oxide templates. The benefit of TASE is exemplified by the straightforward fabrication of nanoscale Hall structures as well as multiple gate field effect transistors (MuG-FETs) grown co-planar to the SOI layer. Hall measurements on InAs nanowire cross junctions revealed an electron mobility of 5400 cm{sup 2}/V s, while the alongsidemore » fabricated InAs MuG-FETs with ten 55 nm wide, 23 nm thick, and 390 nm long channels exhibit an on current of 660 μA/μm and a peak transconductance of 1.0 mS/μm at V{sub DS} = 0.5 V. These results demonstrate TASE as a promising fabrication approach for heterogeneous material integration on Si.« less

  8. Influence of columnar defects on the thermodynamic properties of BSCCO

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Indenbom, M. V.; Berseth, V.; Konczykowski, M.; Li, T. W.; Kes, P. H.; Benoit, W.

    1996-03-01

    Amorphous columnar defects strongly affect the reversible magnetization of Bi2Sr2CaCu2O8+δ single crystals both in the vortex solid, where the change reflects the change in vortex energy due to pinning, and in the vortex liquid, where the randomly positioned columns disrupt the interaction between superconducting fluctuations.

  9. Direct comparison of Viking 2.3-GHz signal phase fluctuation and columnar electron density between 2 and 160 solar radii

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Wackley, J. A.; Hietzke, W. H.

    1982-01-01

    The relationship between solar wind induced signal phase fluctuation and solar wind columnar electron density has been the subject of intensive analysis during the last two decades. In this article, a sizeable volume of 2.3-GHz signal phase fluctuation and columnar electron density measurements separately and concurrently inferred from Viking spacecraft signals are compared as a function of solar geometry. These data demonstrate that signal phase fluctuation and columnar electron density are proportional over a very wide span of solar elongation angle. A radially dependent electron density model which provides a good fit to the columnar electron density measurements and, when appropriately scaled, to the signal phase fluctuation measurements, is given. This model is also in good agreement with K-coronameter observations at 2 solar radii (2r0), with pulsar time delay measurements at 10r0, and with spacecraft in situ electron density measurements at 1 AU.

  10. Vortex Escape from Columnar Defect in a Current-Loaded Superconductor

    NASA Astrophysics Data System (ADS)

    Fedirko, V. A.; Kasatkin, A. L.; Polyakov, S. V.

    2018-06-01

    The problem of Abrikosov vortices depinning from extended linear (columnar) defect in 3D-anisotropic superconductor film under non-uniformly distributed Lorentz force is studied for the case of low temperatures, disregarding thermal activation processes. We treat it as a problem of mechanical behavior of an elastic vortex string settled in a potential well of a linear defect and exerted to Lorentz force action within the screening layer about the London penetration depth near the specimen surface. The stability problem for the vortex pinning state is investigated by means of numerical modeling, and conditions for the instability threshold are obtained as well as the critical current density j_c and its dependence on the film thickness and magnetic field orientation. The instability leading to vortex depinning from extended linear defect first emerges near the surface and then propagates inside the superconductor. This scenario of vortex depinning mechanism at low temperatures is strongly supported by some recent experiments on high-Tc superconductors and other novel superconducting materials, containing columnar defects of various nature.

  11. Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; Von Allmen, Paul A.; Baron, Richard L.

    2010-01-01

    structurally and chemically compatible with the high-temperature synthesis of the PECVD-grown tubes. The techniques offer a wafer-scale process solution for integrating single PECVD-grown nanotubes into novel architectures that should accelerate their integration in 3D electronics in general. NASA can directly benefit from this technology for its extreme-environment planetary missions. Current Si transistors are inherently more susceptible to high radiation, and do not tolerate extremes in temperature. These novel 3D nanoscale architectures can form the basis for NEMS switches that are inherently less susceptible to radiation or to thermal extremes.

  12. Transistor-based particle detection systems and methods

    DOEpatents

    Jain, Ankit; Nair, Pradeep R.; Alam, Muhammad Ashraful

    2015-06-09

    Transistor-based particle detection systems and methods may be configured to detect charged and non-charged particles. Such systems may include a supporting structure contacting a gate of a transistor and separating the gate from a dielectric of the transistor, and the transistor may have a near pull-in bias and a sub-threshold region bias to facilitate particle detection. The transistor may be configured to change current flow through the transistor in response to a change in stiffness of the gate caused by securing of a particle to the gate, and the transistor-based particle detection system may configured to detect the non-charged particle at least from the change in current flow.

  13. Evaluating innate resistance to Flavobacterium Columnare in rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare (Fc) is the causative agent for columnaris disease and a problem for several fish species. Recently, columnaris has been recognized as an emerging problem in farmed trout cultured within the Hagerman valley of Idaho. A long term breeding program at the NCCCWA has produced ...

  14. A New Columnar CsI(Tl) Scintillator for iQID detectors

    PubMed Central

    Han, Ling; Miller, Brian W.; Barber, H. Bradford; Nagarkar, Vivek V.; Furenlid, Lars R.

    2015-01-01

    A 1650 μm thick columnar CsI(Tl) scintillator for upgrading iQID detectors, which is a high-resolution photon-counting gamma-ray and x-ray detector recently developed at the Center for Gamma-Ray Imaging (CGRI), has been studied in terms of sensitivity, spatial resolution and depth-of-interaction effects. To facilitate these studies, a new frame-parsing algorithm for processing raw event data is also proposed that has more degrees of freedom in data processing and can discriminate against a special kind of noise present in some low-cost intensifiers. The results show that in comparison with a 450 μm-thickness columnar CsI(Tl) scintillator, the 1650 μm thick CsI(Tl) scintillator provides more than twice the sensitivity at the expense of some spatial resolution degradation. The depth-of-interaction study also shows that event size and amplitude vary with scintillator thickness, which can assist in future detector simulations and 3D-interaction-position estimation. PMID:26146444

  15. A New Columnar CsI(Tl) Scintillator for iQID detectors.

    PubMed

    Han, Ling; Miller, Brian W; Barber, H Bradford; Nagarkar, Vivek V; Furenlid, Lars R

    2014-09-12

    A 1650 μm thick columnar CsI(Tl) scintillator for upgrading iQID detectors, which is a high-resolution photon-counting gamma-ray and x-ray detector recently developed at the Center for Gamma-Ray Imaging (CGRI), has been studied in terms of sensitivity, spatial resolution and depth-of-interaction effects. To facilitate these studies, a new frame-parsing algorithm for processing raw event data is also proposed that has more degrees of freedom in data processing and can discriminate against a special kind of noise present in some low-cost intensifiers. The results show that in comparison with a 450 μm-thickness columnar CsI(Tl) scintillator, the 1650 μm thick CsI(Tl) scintillator provides more than twice the sensitivity at the expense of some spatial resolution degradation. The depth-of-interaction study also shows that event size and amplitude vary with scintillator thickness, which can assist in future detector simulations and 3D-interaction-position estimation.

  16. Heterogeneous Integration of Epitaxial Ge on Si using AlAs/GaAs Buffer Architecture: Suitability for Low-power Fin Field-Effect Transistors

    PubMed Central

    Hudait, Mantu K.; Clavel, Michael; Goley, Patrick; Jain, Nikhil; Zhu, Yan

    2014-01-01

    Germanium-based materials and device architectures have recently appeared as exciting material systems for future low-power nanoscale transistors and photonic devices. Heterogeneous integration of germanium (Ge)-based materials on silicon (Si) using large bandgap buffer architectures could enable the monolithic integration of electronics and photonics. In this paper, we report on the heterogeneous integration of device-quality epitaxial Ge on Si using composite AlAs/GaAs large bandgap buffer, grown by molecular beam epitaxy that is suitable for fabricating low-power fin field-effect transistors required for continuing transistor miniaturization. The superior structural quality of the integrated Ge on Si using AlAs/GaAs was demonstrated using high-resolution x-ray diffraction analysis. High-resolution transmission electron microscopy confirmed relaxed Ge with high crystalline quality and a sharp Ge/AlAs heterointerface. X-ray photoelectron spectroscopy demonstrated a large valence band offset at the Ge/AlAs interface, as compared to Ge/GaAs heterostructure, which is a prerequisite for superior carrier confinement. The temperature-dependent electrical transport properties of the n-type Ge layer demonstrated a Hall mobility of 370 cm2/Vs at 290 K and 457 cm2/Vs at 90 K, which suggests epitaxial Ge grown on Si using an AlAs/GaAs buffer architecture would be a promising candidate for next-generation high-performance and energy-efficient fin field-effect transistor applications. PMID:25376723

  17. Impact of oral and waterborne administration of rhamnolipids on the susceptibility of channel catfish (Ictalurus punctatus) to Flavobacterium columnare infection

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare is the causative agent of columnaris disease and causes tremendous morbidity and mortality of farmed fish globally. Previously, we identified a potential lectin-mediator (a rhamnose-binding lectin; RBL1a) of F. columnare adhesion and showed higher RBL1a expression in suscept...

  18. Charge transport in nanoscale junctions.

    PubMed

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-03

    Understanding the fundamentals of nanoscale charge transfer is pivotal for designing future nano-electronic devices. Such devices could be based on individual or groups of molecular bridges, nanotubes, nanoparticles, biomolecules and other 'active' components, mimicking wire, diode and transistor functions. These have operated in various environments including vacuum, air and condensed matter, in two- or three-electrode configurations, at ultra-low and room temperatures. Interest in charge transport in ultra-small device components has a long history and can be dated back to Aviram and Ratner's letter in 1974 (Chem. Phys. Lett. 29 277-83). So why is there a necessity for a special issue on this subject? The area has reached some degree of maturity, and even subtle geometric effects in the nanojunction and noise features can now be resolved and rationalized based on existing theoretical concepts. One purpose of this special issue is thus to showcase various aspects of nanoscale and single-molecule charge transport from experimental and theoretical perspectives. The main principles have 'crystallized' in our minds, but there is still a long way to go before true single-molecule electronics can be implemented. Major obstacles include the stability of electronic nanojunctions, reliable operation at room temperature, speed of operation and, last but not least, integration into large networks. A gradual transition from traditional silicon-based electronics to devices involving a single (or a few) molecule(s) therefore appears to be more viable from technologic and economic perspectives than a 'quantum leap'. As research in this area progresses, new applications emerge, e.g. with a view to characterizing interfacial charge transfer at the single-molecule level in general. For example, electrochemical experiments with individual enzyme molecules demonstrate that catalytic processes can be studied with nanometre resolution, offering a route towards optimizing biosensors at

  19. Using Ultrathin Parylene Films as an Organic Gate Insulator in Nanowire Field-Effect Transistors.

    PubMed

    Gluschke, J G; Seidl, J; Lyttleton, R W; Carrad, D J; Cochrane, J W; Lehmann, S; Samuelson, L; Micolich, A P

    2018-06-27

    We report the development of nanowire field-effect transistors featuring an ultrathin parylene film as a polymer gate insulator. The room temperature, gas-phase deposition of parylene is an attractive alternative to oxide insulators prepared at high temperatures using atomic layer deposition. We discuss our custom-built parylene deposition system, which is designed for reliable and controlled deposition of <100 nm thick parylene films on III-V nanowires standing vertically on a growth substrate or horizontally on a device substrate. The former case gives conformally coated nanowires, which we used to produce functional Ω-gate and gate-all-around structures. These give subthreshold swings as low as 140 mV/dec and on/off ratios exceeding 10 3 at room temperature. For the gate-all-around structure, we developed a novel fabrication strategy that overcomes some of the limitations with previous lateral wrap-gate nanowire transistors. Finally, we show that parylene can be deposited over chemically treated nanowire surfaces, a feature generally not possible with oxides produced by atomic layer deposition due to the surface "self-cleaning" effect. Our results highlight the potential for parylene as an alternative ultrathin insulator in nanoscale electronic devices more broadly, with potential applications extending into nanobioelectronics due to parylene's well-established biocompatible properties.

  20. Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors.

    PubMed

    Fahad, Hossain Mohammad; Shiraki, Hiroshi; Amani, Matin; Zhang, Chuchu; Hebbar, Vivek Srinivas; Gao, Wei; Ota, Hiroki; Hettick, Mark; Kiriya, Daisuke; Chen, Yu-Ze; Chueh, Yu-Lun; Javey, Ali

    2017-03-01

    There is great interest in developing a low-power gas sensing technology that can sensitively and selectively quantify the chemical composition of a target atmosphere. Nanomaterials have emerged as extremely promising candidates for this technology due to their inherent low-dimensional nature and high surface-to-volume ratio. Among these, nanoscale silicon is of great interest because pristine silicon is largely inert on its own in the context of gas sensing, unless functionalized with an appropriate gas-sensitive material. We report a chemical-sensitive field-effect transistor (CS-FET) platform based on 3.5-nm-thin silicon channel transistors. Using industry-compatible processing techniques, the conventional electrically active gate stack is replaced by an ultrathin chemical-sensitive layer that is electrically nonconducting and coupled to the 3.5-nm-thin silicon channel. We demonstrate a low-power, sensitive, and selective multiplexed gas sensing technology using this platform by detecting H 2 S, H 2 , and NO 2 at room temperature for environment, health, and safety in the oil and gas industry, offering significant advantages over existing technology. Moreover, the system described here can be readily integrated with mobile electronics for distributed sensor networks in environmental pollution mapping and personal air-quality monitors.

  1. Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors

    PubMed Central

    Fahad, Hossain Mohammad; Shiraki, Hiroshi; Amani, Matin; Zhang, Chuchu; Hebbar, Vivek Srinivas; Gao, Wei; Ota, Hiroki; Hettick, Mark; Kiriya, Daisuke; Chen, Yu-Ze; Chueh, Yu-Lun; Javey, Ali

    2017-01-01

    There is great interest in developing a low-power gas sensing technology that can sensitively and selectively quantify the chemical composition of a target atmosphere. Nanomaterials have emerged as extremely promising candidates for this technology due to their inherent low-dimensional nature and high surface-to-volume ratio. Among these, nanoscale silicon is of great interest because pristine silicon is largely inert on its own in the context of gas sensing, unless functionalized with an appropriate gas-sensitive material. We report a chemical-sensitive field-effect transistor (CS-FET) platform based on 3.5-nm-thin silicon channel transistors. Using industry-compatible processing techniques, the conventional electrically active gate stack is replaced by an ultrathin chemical-sensitive layer that is electrically nonconducting and coupled to the 3.5-nm-thin silicon channel. We demonstrate a low-power, sensitive, and selective multiplexed gas sensing technology using this platform by detecting H2S, H2, and NO2 at room temperature for environment, health, and safety in the oil and gas industry, offering significant advantages over existing technology. Moreover, the system described here can be readily integrated with mobile electronics for distributed sensor networks in environmental pollution mapping and personal air-quality monitors. PMID:28378017

  2. The carbohydrate L-rhamnose promotes biofilm formation which enhances Flavobacterium columnare virulence

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare, the causative agent of columnaris disease causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry, continual efforts to better understand basic mechanisms that contribute to disease...

  3. High voltage power transistor development

    NASA Technical Reports Server (NTRS)

    Hower, P. L.

    1981-01-01

    Design considerations, fabrication procedures, and methods of evaluation for high-voltage power-transistor development are discussed. Technique improvements such as controlling the electric field at the surface and perserving lifetimes in the collector region which have advanced the state of the art in high-voltage transistors are discussed. These improvements can be applied directly to the development of 1200 volt, 200 ampere transistors.

  4. Colorimetric Method of Loop-Mediated Isothermal Amplification with the Pre-Addition of Calcein for Detecting Flavobacterium columnare and its Assessment in Tilapia Farms.

    PubMed

    Suebsing, Rungkarn; Kampeera, Jantana; Sirithammajak, Sarawut; Withyachumnarnkul, Boonsirm; Turner, Warren; Kiatpathomchai, Wansika

    2015-03-01

    Flavobacterium columnare, the causative agent of columnaris disease in fish, affects many economically important freshwater fish species. A colorimetric method of loop-mediated isothermal amplification with the pre-addition of calcein (LAMP-calcein) was developed and used to detect the presence of F. columnare in farmed tilapia (Nile Tilapia Oreochromis niloticus and red tilapia [Nile Tilapia × Mozambique Tilapia O. mossambicus]) and rearing water. The detection method, based on a change in color from orange to green, could be performed within 45 min at 63°C. The method was highly specific, as it had no cross-detections with 14 other bacterial species, including other fish pathogens and two Flavobacterium species. The method has a minimum detection limit of 2.2 × 10(2) F. columnare CFU; thus, it is about 10 times more sensitive than conventional PCR. With this method, F. columnare was detected in gonad, gill, and blood samples from apparently healthy tilapia broodstock as well as in samples of fertilized eggs, newly hatched fry, and rearing water. The bacteria isolated from the blood were further characterized biochemically and found to be phenotypically identical to F. columnare. The amplified products from the LAMP-calcein method had 97% homology with the DNA sequence of F. columnare.

  5. Silicon on insulator self-aligned transistors

    DOEpatents

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  6. Methylation of DAPK and THBS1 genes in esophageal gastric-type columnar metaplasia

    PubMed Central

    Herrera-Goepfert, Roberto; Oñate-Ocaña, Luis F; Mosqueda-Vargas, José Luis; Herrera, Luis A; Castro, Clementina; Mendoza, Julia; González-Barrios, Rodrigo

    2016-01-01

    AIM: To explore methylation of DAPK, THBS1, CDH-1, and p14 genes, and Helicobacter pylori (H. pylori) status in individuals harboring esophageal columnar metaplasia. METHODS: Distal esophageal mucosal samples obtained by endoscopy and histologically diagnosed as gastric-type (non-specialized) columnar metaplasia, were studied thoroughly. DNA was extracted from paraffin blocks, and methylation status of death-associated protein kinase (DAPK), thrombospondin-1 (THBS1), cadherin-1 (CDH1), and p14 genes, was examined using a methyl-sensitive polymerase chain reaction (MS-PCR) and sodium bisulfite modification protocol. H. pylori cagA status was determined by PCR. RESULTS: In total, 68 subjects (33 females and 35 males), with a mean age of 52 years, were included. H. pylori cagA positive was present in the esophageal gastric-type metaplastic mucosa of 18 individuals. DAPK, THSB1, CDH1, and p14 gene promoters were methylated by MS-PCR in 40 (58.8%), 33 (48.5%), 46 (67.6%), and 23 (33.8%) cases of the 68 esophageal samples. H. pylori status was associated with methylation of DAPK (P = 0.003) and THBS1 (P = 0.019). CONCLUSION: DNA methylation occurs in cases of gastric-type (non-specialized) columnar metaplasia of the esophagus, and this modification is associated with H. pylori cagA positive infection. PMID:27182166

  7. New hosts and genetic diversity of Flavobacterium columnare isolated from Brazilian native species and Nile tilapia.

    PubMed

    Barony, G M; Tavares, G C; Assis, G B N; Luz, R K; Figueiredo, H C P; Leal, C A G

    2015-11-17

    Flavobacterium columnare is responsible for disease outbreaks in freshwater fish farms. Several Brazilian native fish have been commercially exploited or studied for aquaculture purposes, including Amazon catfish Leiarius marmoratus × Pseudoplatystoma fasciatum and pacamã Lophiosilurus alexandri. This study aimed to identify the aetiology of disease outbreaks in Amazon catfish and pacamã hatcheries and to address the genetic diversity of F. columnare isolates obtained from diseased fish. Two outbreaks in Amazon catfish and pacamã hatcheries took place in 2010 and 2011. Four F. columnare strains were isolated from these fish and identified by PCR. The disease was successfully reproduced under experimental conditions for both fish species, fulfilling Koch's postulates. The genomovar of these 4 isolates and of an additional 11 isolates from Nile tilapia Oreochromis niloticus was determined by 16S rRNA restriction fragment length polymorphism PCR. The genetic diversity was evaluated by phylogenetic analysis of the 16S rRNA gene and repetitive extragenic palindromic PCR (REP-PCR). Most isolates (n = 13) belonged to genomovar II; the remaining 2 isolates (both from Nile tilapia) were assigned to genomovar I. Phylogenetic analysis and REP-PCR were able to demonstrate intragenomovar diversity. This is the first report of columnaris in Brazilian native Amazon catfish and pacamã. The Brazilian F. columnare isolates showed moderate diversity, and REP-PCR was demonstrated to be a feasible method to evaluate genetic variability in this bacterium.

  8. Single-transistor-clocked flip-flop

    DOEpatents

    Zhao, Peiyi; Darwish, Tarek; Bayoumi, Magdy

    2005-08-30

    The invention provides a low power, high performance flip-flop. The flip-flop uses only one clocked transistor. The single clocked transistor is shared by the first and second branches of the device. A pulse generator produces a clock pulse to trigger the flip-flop. In one preferred embodiment the device can be made as a static explicit pulsed flip-flop which employs only two clocked transistors.

  9. There must be something in the water (for F. columnare pathogenesis)

    USDA-ARS?s Scientific Manuscript database

    Why can we routinely produce columnaris infections in our lab, while the lab on the other side of the ditch can't? Anecdotal reports suggest that tannins may inhibit F. columnare. Do tannins in their water prevent this, or are other water chemistry parameters involved? In the first experiment, tw...

  10. 2D Quantum Mechanical Study of Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25, 50 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. Surprisingly, the self-consistent potential profile shows lower injection barrier in the channel in quantum case. These results are qualitatively consistent with ID Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  11. Influence of native catfish mucus on Flavobacterium columnare growth and proteolytic activity

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare causes columnaris disease of farmed and wild freshwater fish. Skin mucus is an important factor in early stages of columnaris pathogenesis, albeit little studied. Our objectives were to 1) characterize the terminal glycosylation pattern (TGP) of catfish mucus, 2) determine t...

  12. Extremophile extracts and enhancement techniques show promise for the development of a live vaccine against Flavobacterium columnare

    USGS Publications Warehouse

    Powell, D.B.; Palm, R.C.; MacKenzie, A.P.; Winton, J.R.

    2009-01-01

    The effects of temperature, ionic strength, and new cryopreservatives derived from polar ice bacteria were investigated to help accelerate the development of economical, live attenuated vaccines for aquaculture. Extracts of the extremophile Gelidibacter algens functioned very well as part of a lyophilization cryoprotectant formulation in a 15-week storage trial. The bacterial extract and trehalose additives resulted in significantly higher colony counts of columnaris bacteria (Flavobacterium columnare) compared to nonfat milk or physiological saline at all time points measured. The bacterial extract combined with trehalose appeared to enhance the relative efficiency of recovery and growth potential of columnaris in flask culture compared to saline, nonfat milk, or trehalose-only controls. Pre-lyophilization temperature treatments significantly affected F. columnare survival following rehydration. A 30-min exposure at 0 ??C resulted in a 10-fold increase in bacterial survival following rehydration compared to mid-range temperature treatments. The brief 30 and 35 ??C pre-lyophilization exposures appeared to be detrimental to the rehydration survival of the bacteria. The survival of F. columnare through the lyophilization process was also strongly affected by changes in ionic strength of the bacterial suspension. Changes in rehydration constituents were also found to be important in promoting increased survival and growth. As the sodium chloride concentration increased, the viability of rehydrated F. columnare decreased. ?? 2009 Elsevier Inc.

  13. Complementary spin transistor using a quantum well channel.

    PubMed

    Park, Youn Ho; Choi, Jun Woo; Kim, Hyung-Jun; Chang, Joonyeon; Han, Suk Hee; Choi, Heon-Jin; Koo, Hyun Cheol

    2017-04-20

    In order to utilize the spin field effect transistor in logic applications, the development of two types of complementary transistors, which play roles of the n- and p-type conventional charge transistors, is an essential prerequisite. In this research, we demonstrate complementary spin transistors consisting of two types of devices, namely parallel and antiparallel spin transistors using InAs based quantum well channels and exchange-biased ferromagnetic electrodes. In these spin transistors, the magnetization directions of the source and drain electrodes are parallel or antiparallel, respectively, depending on the exchange bias field direction. Using this scheme, we also realize a complementary logic operation purely with spin transistors controlled by the gate voltage, without any additional n- or p-channel transistor.

  14. Environmental Effects on Hysteresis of Transfer Characteristics in Molybdenum Disulfide Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Shimazu, Yoshihiro; Tashiro, Mitsuki; Sonobe, Satoshi; Takahashi, Masaki

    2016-07-01

    Molybdenum disulfide (MoS2) has recently received much attention for nanoscale electronic and photonic applications. To explore the intrinsic properties and enhance the performance of MoS2-based field-effect transistors, thorough understanding of extrinsic effects such as environmental gas and contact resistance of the electrodes is required. Here, we report the effects of environmental gases on the transport properties of back-gated multilayered MoS2 field-effect transistors. Comparisons between different gases (oxygen, nitrogen, and air and nitrogen with varying relative humidities) revealed that water molecules acting as charge-trapping centers are the main cause of hysteresis in the transfer characteristics. While the hysteresis persisted even after pumping out the environmental gas for longer than 10 h at room temperature, it disappeared when the device was cooled to 240 K, suggesting a considerable increase in the time constant of the charge trapping/detrapping at these modestly low temperatures. The suppression of the hysteresis or instability in the easily attainable temperature range without surface passivation is highly advantageous for the device application of this system. The humidity dependence of the threshold voltages in the transfer curves indicates that the water molecules dominantly act as hole-trapping centers. A strong dependence of the on-state current on oxygen pressure was also observed.

  15. Rocket Science at the Nanoscale.

    PubMed

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  16. Memory and learning behaviors mimicked in nanogranular SiO2-based proton conductor gated oxide-based synaptic transistors

    NASA Astrophysics Data System (ADS)

    Wan, Chang Jin; Zhu, Li Qiang; Zhou, Ju Mei; Shi, Yi; Wan, Qing

    2013-10-01

    In neuroscience, signal processing, memory and learning function are established in the brain by modifying ionic fluxes in neurons and synapses. Emulation of memory and learning behaviors of biological systems by nanoscale ionic/electronic devices is highly desirable for building neuromorphic systems or even artificial neural networks. Here, novel artificial synapses based on junctionless oxide-based protonic/electronic hybrid transistors gated by nanogranular phosphorus-doped SiO2-based proton-conducting films are fabricated on glass substrates by a room-temperature process. Short-term memory (STM) and long-term memory (LTM) are mimicked by tuning the pulse gate voltage amplitude. The LTM process in such an artificial synapse is due to the proton-related interfacial electrochemical reaction. Our results are highly desirable for building future neuromorphic systems or even artificial networks via electronic elements.In neuroscience, signal processing, memory and learning function are established in the brain by modifying ionic fluxes in neurons and synapses. Emulation of memory and learning behaviors of biological systems by nanoscale ionic/electronic devices is highly desirable for building neuromorphic systems or even artificial neural networks. Here, novel artificial synapses based on junctionless oxide-based protonic/electronic hybrid transistors gated by nanogranular phosphorus-doped SiO2-based proton-conducting films are fabricated on glass substrates by a room-temperature process. Short-term memory (STM) and long-term memory (LTM) are mimicked by tuning the pulse gate voltage amplitude. The LTM process in such an artificial synapse is due to the proton-related interfacial electrochemical reaction. Our results are highly desirable for building future neuromorphic systems or even artificial networks via electronic elements. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02987e

  17. TRANSISTOR HIGH VOLTAGE POWER SUPPLY

    DOEpatents

    Driver, G.E.

    1958-07-15

    High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

  18. Modelling the viscoplastic behavior and the heterogeneous intracrystalline deformation of columnar ice polycrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebensohn, Ricardo A; Montagnat, Maurine; Mansuy, Philippe

    2008-01-01

    A full-field formulation based on Fast Fourier Transforms (FFT) has been adapted and used to predict the micromechanical fields that develop in columnar Ih ice polycrystals deforming in compression by dislocation creep. The predicted intragranular mechanical fields are in qualitative good agreement with experimental observations, in particular those involving the formation of shear and kink bands. These localization bands are associated with the large internal stresses that develop during creep in such anisotropic material, and their location, intensity, morphology and extension are found to depend strongly on the crystallographic orientation of the grains and on their interaction with neighbor crystals.more » The predictions of the model are also discussed in relation with the deformation of columnar sea and lake ice, and with the mechanical behavior of granular ice of glaciers and polar ice sheets, as well.« less

  19. Photosensitive graphene transistors.

    PubMed

    Li, Jinhua; Niu, Liyong; Zheng, Zijian; Yan, Feng

    2014-08-20

    High performance photodetectors play important roles in the development of innovative technologies in many fields, including medicine, display and imaging, military, optical communication, environment monitoring, security check, scientific research and industrial processing control. Graphene, the most fascinating two-dimensional material, has demonstrated promising applications in various types of photodetectors from terahertz to ultraviolet, due to its ultrahigh carrier mobility and light absorption in broad wavelength range. Graphene field effect transistors are recognized as a type of excellent transducers for photodetection thanks to the inherent amplification function of the transistors, the feasibility of miniaturization and the unique properties of graphene. In this review, we will introduce the applications of graphene transistors as photodetectors in different wavelength ranges including terahertz, infrared, visible, and ultraviolet, focusing on the device design, physics and photosensitive performance. Since the device properties are closely related to the quality of graphene, the devices based on graphene prepared with different methods will be addressed separately with a view to demonstrating more clearly their advantages and shortcomings in practical applications. It is expected that highly sensitive photodetectors based on graphene transistors will find important applications in many emerging areas especially flexible, wearable, printable or transparent electronics and high frequency communications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Tracing a key player in the regulation of plant architecture: the columnar growth habit of apple trees (Malus × domestica).

    PubMed

    Petersen, Romina; Krost, Clemens

    2013-07-01

    Plant architecture is regulated by a complex interplay of some key players (often transcription factors), phytohormones and other signaling molecules such as microRNAs. The columnar growth habit of apple trees is a unique form of plant architecture characterized by thick and upright stems showing a compaction of internodes and carrying short fruit spurs instead of lateral branches. The molecular basis for columnar growth is a single dominant allele of the gene Columnar, whose identity, function and gene product are unknown. As a result of marker analyses, this gene has recently been fine-mapped to chromosome 10 at 18.51-19.09 Mb [according to the annotation of the apple genome by Velasco (2010)], a region containing a cluster of quantitative trait loci associated with plant architecture, but no homologs to the well-known key regulators of plant architecture. Columnar apple trees have a higher auxin/cytokinin ratio and lower levels of gibberellins and abscisic acid than normal apple trees. Transcriptome analyses corroborate these results and additionally show differences in cell membrane and cell wall function. It can be expected that within the next year or two, an integration of these different research methodologies will reveal the identity of the Columnar gene. Besides enabling breeders to efficiently create new apple (and maybe related pear, peach, cherry, etc.) cultivars which combine desirable characteristics of commercial cultivars with the advantageous columnar growth habit using gene technology, this will also provide new insights into an elevated level of plant growth regulation.

  1. Nanoscale Ionic Liquids

    DTIC Science & Technology

    2006-11-01

    Technical Report 11 December 2005 - 30 November 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanoscale Ionic Liquids 5b. GRANT NUMBER FA9550-06-1-0012...Title: Nanoscale Ionic Liquids Principal Investigator: Emmanuel P. Giannelis Address: Materials Science and Engineering, Bard Hall, Cornell University...based fluids exhibit high ionic conductivity. The NFs are typically synthesized by grafting a charged, oligomeric corona onto the nanoparticle cores

  2. Thermal analysis of continuous and patterned multilayer films in the presence of a nanoscale hot spot

    NASA Astrophysics Data System (ADS)

    Juang, Jia-Yang; Zheng, Jinglin

    2016-10-01

    Thermal responses of multilayer films play essential roles in state-of-the-art electronic systems, such as photo/micro-electronic devices, data storage systems, and silicon-on-insulator transistors. In this paper, we focus on the thermal aspects of multilayer films in the presence of a nanoscale hot spot induced by near field laser heating. The problem is set up in the scenario of heat assisted magnetic recording (HAMR), the next-generation technology to overcome the data storage density limit imposed by superparamagnetism. We characterized thermal responses of both continuous and patterned multilayer media films using transient thermal modeling. We observed that material configurations, in particular, the thermal barriers at the material layer interfaces crucially impact the temperature field hence play a key role in determining the hot spot geometry, transient response and power consumption. With a representative generic media model, we further explored the possibility of optimizing thermal performances by designing layers of heat sink and thermal barrier. The modeling approach demonstrates an effective way to characterize thermal behaviors of micro and nano-scale electronic devices with multilayer thin film structures. The insights into the thermal transport scheme will be critical for design and operations of such electronic devices.

  3. Quantum Thermal Transistor.

    PubMed

    Joulain, Karl; Drevillon, Jérémie; Ezzahri, Younès; Ordonez-Miranda, Jose

    2016-05-20

    We demonstrate that a thermal transistor can be made up with a quantum system of three interacting subsystems, coupled to a thermal reservoir each. This thermal transistor is analogous to an electronic bipolar one with the ability to control the thermal currents at the collector and at the emitter with the imposed thermal current at the base. This is achieved by determining the heat fluxes by means of the strong-coupling formalism. For the case of three interacting spins, in which one of them is coupled to the other two, that are not directly coupled, it is shown that high amplification can be obtained in a wide range of energy parameters and temperatures. The proposed quantum transistor could, in principle, be used to develop devices such as a thermal modulator and a thermal amplifier in nanosystems.

  4. Stencil Nano Lithography Based on a Nanoscale Polymer Shadow Mask: Towards Organic Nanoelectronics

    PubMed Central

    Yun, Hoyeol; Kim, Sangwook; Kim, Hakseong; Lee, Junghyun; McAllister, Kirstie; Kim, Junhyung; Pyo, Sengmoon; Sung Kim, Jun; Campbell, Eleanor E. B.; Hyoung Lee, Wi; Wook Lee, Sang

    2015-01-01

    A stencil lithography technique has been developed to fabricate organic-material-based electronic devices with sub-micron resolution. Suspended polymethylmethacrylate (PMMA) membranes were used as shadow masks for defining organic channels and top electrodes. Arrays of pentacene field effect transistors (FETs) with various channel lengths from 50 μm down to 500 nm were successfully produced from the same batch using this technique. Electrical transport measurements showed that the electrical contacts of all devices were stable and the normalized contact resistances were much lower than previously studied organic FETs. Scaling effects, originating from the bulk space charge current, were investigated by analyzing the channel-length-dependent mobility and hysteresis behaviors. This novel lithography method provides a reliable means for studying the fundamental transport properties of organic materials at the nanoscale as well as enabling potential applications requiring the fabrication of integrated organic nanoelectronic devices. PMID:25959389

  5. Stencil nano lithography based on a nanoscale polymer shadow mask: towards organic nanoelectronics.

    PubMed

    Yun, Hoyeol; Kim, Sangwook; Kim, Hakseong; Lee, Junghyun; McAllister, Kirstie; Kim, Junhyung; Pyo, Sengmoon; Sung Kim, Jun; Campbell, Eleanor E B; Hyoung Lee, Wi; Wook Lee, Sang

    2015-05-11

    A stencil lithography technique has been developed to fabricate organic-material-based electronic devices with sub-micron resolution. Suspended polymethylmethacrylate (PMMA) membranes were used as shadow masks for defining organic channels and top electrodes. Arrays of pentacene field effect transistors (FETs) with various channel lengths from 50 μm down to 500 nm were successfully produced from the same batch using this technique. Electrical transport measurements showed that the electrical contacts of all devices were stable and the normalized contact resistances were much lower than previously studied organic FETs. Scaling effects, originating from the bulk space charge current, were investigated by analyzing the channel-length-dependent mobility and hysteresis behaviors. This novel lithography method provides a reliable means for studying the fundamental transport properties of organic materials at the nanoscale as well as enabling potential applications requiring the fabrication of integrated organic nanoelectronic devices.

  6. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    NASA Astrophysics Data System (ADS)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  7. Simulation of the as-cast structure of Al-4.0wt.%Cu ingots with a 5-phase mixed columnar-equiaxed solidification model

    NASA Astrophysics Data System (ADS)

    Wu, M.; Ahmadein, M.; Kharicha, A.; Ludwig, A.; Li, J. H.; Schumacher, P.

    2012-07-01

    Empirical knowledge about the formation of the as-cast structure, mostly obtained before 1980s, has revealed two critical issues: one is the origin of the equiaxed crystals; one is the competing growth of the columnar and equiaxed structures, and the columnar-to-equiaxed transition (CET). Unfortunately, the application of empirical knowledge to predict and control the as-cast structure was very limited, as the flow and crystal transport were not considered. Therefore, a 5-phase mixed columnar-equiaxed solidification model was recently proposed by the current authors based on modeling the multiphase transport phenomena. The motivation of the recent work is to determine and evaluate the necessary modeling parameters, and to validate the mixed columnar-equiaxed solidification model by comparison with laboratory castings. In this regard an experimental method was recommended for in-situ determination of the nucleation parameters. Additionally, some classical experiments of the Al-Cu ingots were conducted and the as-cast structural information including distinct columnar and equiaxed zones, macrosegregation, and grain size distribution were analysed. The final simulation results exhibited good agreement with experiments in the case of high pouring temperature, whereas disagreement in the case of low pouring temperature. The reasons for the disagreement are discussed.

  8. Self-heating and scaling of thin body transistors

    NASA Astrophysics Data System (ADS)

    Pop, Eric

    The most often cited technological roadblock of nanoscale electronics is the "power problem," i.e. power densities and device temperatures reaching levels that will prevent their reliable operation. Technology roadmap (ITRS) requirements are expected to lead to more heat dissipation problems, especially with the transition towards geometrically confined device geometries (SOI, FinFET, nanowires), and new materials with poor thermal properties. This work examines the physics of heat generation in silicon, and in the context of nanoscale CMOS transistors. A new Monte Carlo code (MONET) is introduced which uses analytic descriptions of both the electron bands and the phonon dispersion. Detailed heat generation statistics are computed in bulk and strained silicon, and within simple device geometries. It is shown that non-stationary transport affects heat generation near strongly peaked electric fields, and that self-heating occurs almost entirely in the drain end of short, quasi-ballistic devices. The dissipated power is spectrally distributed between the (slow) optical and (fast) acoustic phonon modes approximately by a ratio of two to one. In addition, this work explores the limits of device design and scaling from an electrical and thermal point of view. A self-consistent electro-thermal compact model for thin-body (SOI, GOI) devices is introduced for calculating operating temperature, saturation current and intrinsic gate delay. Self-heating is sensitive to several device parameters, such as raised source/drain height and material boundary thermal resistance. An experimental method is developed for extracting via/contact thermal resistance from electrical measurements. The analysis suggests it is possible to optimize device geometry in order to simultaneously minimize operating temperature and intrinsic gate delay. Electro-thermal contact and device design are expected to become more important with continued scaling.

  9. Kaolinitic clay protects against Flavobacterium columnare infection in channel catfish Ictalurus punctatus (Rafinesque)

    USDA-ARS?s Scientific Manuscript database

    Columnaris disease, caused by the bacterial pathogen Flavobacterium columnare, continues to be a major problem worldwide in aquaculture settings. Despite the far-reaching negative impacts of columnaris disease, safe and efficacious preventatives and curatives for this disease remain limited. In th...

  10. Assessment of Flavobacterium columnare from golden shiners Notemingonus crysoleucas subject to crowding stress

    USDA-ARS?s Scientific Manuscript database

    Intensive aquaculture practices and exposure to environmental stressors can trigger outbreaks of Flavobacterium columnare, a bacterial pathogen that causes columnaris disease in commercially important fish including Golden Shiners. A rapid assessment of the bacterial load is essential to prevent out...

  11. Columnar Metaplasia in Three Types of Surgical Mouse Models of Esophageal Reflux.

    PubMed

    Terabe, Fabio; Aikou, Susumu; Aida, Junko; Yamamichi, Nobutake; Kaminishi, Michio; Takubo, Kaiyo; Seto, Yasuyuki; Nomura, Sachiyo

    2017-07-01

    Esophageal adenocarcinoma develops in the setting of gastroesophageal reflux and columnar metaplasia in distal esophagus. Columnar metaplasia arising in gastroesophageal reflux models has developed in rat; however, gastroesophageal reflux models in mice have not been well-characterized. One hundred thirty-five C57Bl/6J mice aged 8 weeks old were divided into the following operations: esophagogastrojejunostomy (side-to-side) (EGJ), esophageal separation and esophagojejunostomy (end-to-side) (EJ), and EJ and gastrectomy (end-to-side) (EJ/TG). The animals were euthanized after 40 weeks and the histology of the junction was examined. Immunohistochemistry for p53, PDX-1, and CDX-2 was performed. Metaplasia developed in 15/33 (45.5%) of EGJ, 0/38 (0%) of EJ, and 6/39 (15.4%) of EJ/TG ( P < .05) and dysplasia developed 7/33 (21.2%) of EGJ, 0% of EJ, and 1/39 (2.6%) of EJ/TG. p53 was positive in all of the dysplastic regions, 12/15 (80%) metaplasias in the EGJ model, and 1/6 (16.7%) metaplasia in the EJ/TG model. CDX-2 was positive in all cases of metaplasias, but decreased in some cases of dysplasia. PDX-1 was positive in 7/8 (88%) cases of dysplasia and in 15/21 (71%) cases of metaplasia ( P < .05). The EGJ model, which causes reflux of gastric acid and duodenal content, developed metaplasia and dysplasia most frequently. No metaplasia developed in the EJ model in which gastric juice and duodenal content mixed before reflux. Thus, duodenal contents alone can induce columnar metaplasia and dysplasia; however, the combination of gastric acid with duodenal content reflux can cause metaplasia and dysplasia more efficiently.

  12. Boron nitride housing cools transistors

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Boron nitride ceramic heat sink cools transistors in r-f transmitter and receiver circuits. Heat dissipated by the transistor is conducted by the boron nitride housing to the metal chassis on which it is mounted.

  13. Preface: Charge transport in nanoscale junctions

    NASA Astrophysics Data System (ADS)

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-01

    Understanding the fundamentals of nanoscale charge transfer is pivotal for designing future nano-electronic devices. Such devices could be based on individual or groups of molecular bridges, nanotubes, nanoparticles, biomolecules and other 'active' components, mimicking wire, diode and transistor functions. These have operated in various environments including vacuum, air and condensed matter, in two- or three-electrode configurations, at ultra-low and room temperatures. Interest in charge transport in ultra-small device components has a long history and can be dated back to Aviram and Ratner's letter in 1974 (Chem. Phys. Lett. 29 277-83). So why is there a necessity for a special issue on this subject? The area has reached some degree of maturity, and even subtle geometric effects in the nanojunction and noise features can now be resolved and rationalized based on existing theoretical concepts. One purpose of this special issue is thus to showcase various aspects of nanoscale and single-molecule charge transport from experimental and theoretical perspectives. The main principles have 'crystallized' in our minds, but there is still a long way to go before true single-molecule electronics can be implemented. Major obstacles include the stability of electronic nanojunctions, reliable operation at room temperature, speed of operation and, last but not least, integration into large networks. A gradual transition from traditional silicon-based electronics to devices involving a single (or a few) molecule(s) therefore appears to be more viable from technologic and economic perspectives than a 'quantum leap'. As research in this area progresses, new applications emerge, e.g. with a view to characterizing interfacial charge transfer at the single-molecule level in general. For example, electrochemical experiments with individual enzyme molecules demonstrate that catalytic processes can be studied with nanometre resolution, offering a route towards optimizing biosensors at

  14. Friction laws at the nanoscale.

    PubMed

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  15. Correlation between nano-scale microstructural behavior and the performance of ZnO thin-film transistors.

    PubMed

    Ahn, Cheol Hyoun; Lee, Ju Ho; Lee, Jeong Yong; Cho, Hyung Koun

    2014-12-01

    Binary ZnO active layers possessing a polycrystalline structure were deposited with various argon/oxygen flow ratios at 250 degrees C via sputtering. Then ZnO thin-film-transistors (TFTs) were fabricated without additional thermal treatments. As the oxygen content increased during the deposition, the preferred orientation along the (0002) was weakened and the rotation of the grains increased, and furthermore, less conducting films were observed. On the other hand, the reduced oxygen flow rate induced the formation of amorphous-like transition layers during the initial growth due to a high growth rate and high energetic bombardment of the adatoms. As a result, the amorphous phases at the gate dielectric/channel interface were responsible for the formation of a hump shape in the subthreshold region of the TFT transfer curve. In addition, the relationship between the crystal properties and the shift in the threshold voltage was experimentally confirmed by a hysteresis test.

  16. Volumetric and x-ray investigations of the crystalline and columnar phases of copper (II) soaps under pressure

    NASA Astrophysics Data System (ADS)

    Ibn-Elhaj, M.; Guillon, D.; Skoulios, A.

    1992-12-01

    Binuclear copper (II) carboxylates, Cu2(CnH2n+1O2)4, crystallize at room temperature in layered systems in which planes of polar cores are separated by a double layer of alkyl chains. These compounds are mesomorphic in nature above ca. 100 °C. Pseudopolymeric chains of regularly stacked binuclear cores are located at the nodes of a two-dimensional hexagonal lattice and are surrounded by disordered aliphatic chains. The transition from the crystal to the columnar mesophase is characterized by a change in the repeat distance of the binuclear cores along the pseudopolymeric axis. In the crystalline phase, these cores are all oriented in the same direction with a repeat distance of 5.2 Å in the columnar mesophase, the polar cores are perpendicular to the columnar axis and superposed in a fourfold helicoidal fashion, at least on a local scale, with a repeat distance of 4.7 Å. We present here the effect of pressure on these anisotropic systems in a direction parallel to the columnar axis, and in the plane of the two-dimensional lattice. In a first part, we report the pressure-volume-temperature (P-V-T) relationship of these compounds (n=12, 18, and 24) in the temperature range from 30 to 200 °C, and in the pressure range from 1 to 2000 bars. Isothermal compressibility and isobaric expansion are determined in the crystalline and mesomorphic phases. In the mesophase, pressure-volume isotherms can be described by the Tait equation, as in most liquids or molten polymers. In a second part, we discuss the x-ray-diffraction experiments performed under pressure. In the mesophase, the area of the two-dimensional lattice decreases with increasing pressure and, at sufficiently high pressure, the columnar mesophase transforms into a crystalline lamellar phase. By combining P-V-T and x-ray results, we deduce an increase of the stacking period of the binuclear cores as a function of increasing pressure.

  17. Immunohistochemical/histochemical double staining method in the study of the columnar metaplasia of the oesophagus.

    PubMed

    Cabibi, D; Giannone, A G; Mascarella, C; Guarnotta, C; Castiglia, M; Pantuso, G; Fiorentino, E

    2014-03-05

    Intestinal metaplasia in Barrett's oesophagus (BO) represents an important risk factor for oesophageal adenocarcinoma. Instead, few and controversial data are reported about the progression risk of columnar-lined oesophagus without intestinal metaplasia (CLO), posing an issue about its clinical management. The aim was to evaluate if some immunophenotypic changes were present in CLO independently of the presence of the goblet cells. We studied a series of oesophageal biopsies from patients with endoscopic finding of columnar metaplasia, by performing some immunohistochemical stainings (CK7, p53, AuroraA) combined with histochemistry (Alcian-blue and Alcian/PAS), with the aim of simultaneously assess the histochemical features in cells that shows an aberrant expression of such antigens. We evidenced a cytoplasmic expression of CK7 and a nuclear expression of Aurora A and p53,  both in goblet cells of BO and in non-goblet cells of CLO, some of which showing mild dysplasia. These findings suggest that some immunophenotypic changes are present in CLO and they can precede the appearance of the goblet cells or can be present independently of them, confirming the conception of BO as the condition characterized by any extention of columnar epithelium. This is the first study in which a combined immunohistochemical/histochemical method has been applied to Barrett pathology.

  18. The resonant body transistor.

    PubMed

    Weinstein, Dana; Bhave, Sunil A

    2010-04-14

    This paper introduces the resonant body transistor (RBT), a silicon-based dielectrically transduced nanoelectromechanical (NEM) resonator embedding a sense transistor directly into the resonator body. Combining the benefits of FET sensing with the frequency scaling capabilities and high quality factors (Q) of internal dielectrically transduced bar resonators, the resonant body transistor achieves >10 GHz frequencies and can be integrated into a standard CMOS process for on-chip clock generation, high-Q microwave circuits, fundamental quantum-state preparation and observation, and high-sensitivity measurements. An 11.7 GHz bulk-mode RBT is demonstrated with a quality factor Q of 1830, marking the highest frequency acoustic resonance measured to date on a silicon wafer.

  19. The stress hormone cortisol: a (co)regulator of biofilm formation in Flavobacterum columnare?

    USDA-ARS?s Scientific Manuscript database

    Previously, we demonstrated a direct effect of cortisol on Flavobacterium columnare, a notorious fish pathogenic bacterium, engendering a new perspective to bacteria-host communication in aquaculture. As stressed fish harbour increased cortisol levels in the skin and gill mucus, highly virulent F. c...

  20. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, Albert G.; Drummond, Timothy J.; Robertson, Perry J.; Zipperian, Thomas E.

    1995-01-01

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.

  1. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.

    1995-12-26

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.

  2. Assessment of Phospohrene Field Effect Transistors

    DTIC Science & Technology

    2018-01-28

    electronics industry. To this end, transistor test structures would initially be fabricated on phosphorene exfoliated from black phosphorus and, later, on...34Phosphorene FETs-Promising Transistors Based on a few Layers of Phosphorus Atoms," Nanjing Electronic Devices Institute, Nanjing, China, Jul. 2015...OH, Nov. 2015. J.C. M. Hwang, "Phosphorene Transistors-Transient or Lasting Electronics ?" Workshop Frontier Electronics , San Juan, PR, Dec. 2015

  3. Oxide Based Transistor for Flexible Displays

    DTIC Science & Technology

    2014-09-15

    thin film transistors (TFTs) for next generation display technologies. A detailed and comprehensive study was carried out to ascertain the process...Box 12211 Research Triangle Park, NC 27709-2211 Thin film transistors , flexible electronics, RF sputtering, Transparent amorphous oxide semiconductors...NC A&T and RTI, International investigated In free GaSnZnO (GSZO) material system, as the active channel in thin film transistors (TFTs) for next

  4. Silicide Nanowires for Low-Resistance CMOS Transistor Contacts.

    NASA Astrophysics Data System (ADS)

    Zollner, Stefan

    2007-03-01

    Transition metal (TM) silicide nanowires are used as contacts for modern CMOS transistors. (Our smallest wires are ˜20 nm thick and ˜50 nm wide.) While much research on thick TM silicides was conducted long ago, materials perform differently at the nanoscale. For example, the usual phase transformation sequences (e.g., Ni, Ni2Si, NiSi, NiSi2) for the reaction of thick metal films on Si no longer apply to nanostructures, because the surface and interface energies compete with the bulk energy of a given crystal structure. Therefore, a NiSi film will agglomerate into hemispherical droplets of NiSi by annealing before it reaches the lowest-energy (NiSi2) crystalline structure. These dynamics can be tuned by addition of impurities (such as Pt in Ni). The Si surface preparation is also a more important factor for nanowires than for silicidation of thick TM films. Ni nanowires formed on Si surfaces that were cleaned and amorphized by sputtering with Ar ions have a tendency to form NiSi2 pyramids (``spikes'') even at moderate temperatures (˜400^oC), while similar Ni films formed on atomically clean or hydrogen-terminated Si form uniform NiSi nanowires. Another issue affecting TM silicides is the barrier height between the silicide contact and the silicon transistor. For most TM silicides, the Fermi level of the silicide is aligned with the center of the Si band gap. Therefore, silicide contacts experience Schottky barrier heights of around 0.5 eV for both n-type and p-type Si. The resulting contact resistance becomes a significant term for the overall resistance of modern CMOS transistors. Lowering this contact resistance is an important goal in CMOS research. New materials are under investigation (for example PtSi, which has a barrier height of only 0.3 eV to p-type Si). This talk will describe recent results, with special emphasis on characterization techniques and electrical testing useful for the development of silicide nanowires for CMOS contacts. In collaboration

  5. Anisotropic stress in narrow sGe fin field-effect transistor channels measured using nano-focused Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nuytten, T.; Bogdanowicz, J.; Witters, L.; Eneman, G.; Hantschel, T.; Schulze, A.; Favia, P.; Bender, H.; De Wolf, I.; Vandervorst, W.

    2018-05-01

    The continued importance of strain engineering in semiconductor technology demands fast and reliable stress metrology that is non-destructive and process line-compatible. Raman spectroscopy meets these requirements but the diffraction limit prevents its application in current and future technology nodes. We show that nano-focused Raman scattering overcomes these limitations and can be combined with oil-immersion to obtain quantitative anisotropic stress measurements. We demonstrate accurate stress characterization in strained Ge fin field-effect transistor channels without sample preparation or advanced microscopy. The detailed analysis of the enhanced Raman response from a periodic array of 20 nm-wide Ge fins provides direct access to the stress levels inside the nanoscale channel, and the results are validated using nano-beam diffraction measurements.

  6. Induced nano-scale self-formed metal-oxide interlayer in amorphous silicon tin oxide thin film transistors.

    PubMed

    Liu, Xianzhe; Xu, Hua; Ning, Honglong; Lu, Kuankuan; Zhang, Hongke; Zhang, Xiaochen; Yao, Rihui; Fang, Zhiqiang; Lu, Xubing; Peng, Junbiao

    2018-03-07

    Amorphous Silicon-Tin-Oxide thin film transistors (a-STO TFTs) with Mo source/drain electrodes were fabricated. The introduction of a ~8 nm MoO x interlayer between Mo electrodes and a-STO improved the electron injection in a-STO TFT. Mo adjacent to the a-STO semiconductor mainly gets oxygen atoms from the oxygen-rich surface of a-STO film to form MoO x interlayer. The self-formed MoO x interlayer acting as an efficient interface modification layer could conduce to the stepwise internal transport barrier formation while blocking Mo atoms diffuse into a-STO layer, which would contribute to the formation of ohmic contact between Mo and a-STO film. It can effectively improve device performance, reduce cost and save energy for the realization of large-area display with high resolution in future.

  7. Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors

    PubMed Central

    Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C. P.; Gelinck, Gerwin H.; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2016-01-01

    Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics. PMID:27762321

  8. Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors.

    PubMed

    Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C P; Gelinck, Gerwin H; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2016-10-20

    Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics.

  9. Ultra-high gain diffusion-driven organic transistor

    PubMed Central

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-01-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal–semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics. PMID:26829567

  10. Ultra-high gain diffusion-driven organic transistor.

    PubMed

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-02-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal-semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics.

  11. Ultra-high gain diffusion-driven organic transistor

    NASA Astrophysics Data System (ADS)

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-02-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal-semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics.

  12. High-Performance Vertical Organic Electrochemical Transistors.

    PubMed

    Donahue, Mary J; Williamson, Adam; Strakosas, Xenofon; Friedlein, Jacob T; McLeod, Robert R; Gleskova, Helena; Malliaras, George G

    2018-02-01

    Organic electrochemical transistors (OECTs) are promising transducers for biointerfacing due to their high transconductance, biocompatibility, and availability in a variety of form factors. Most OECTs reported to date, however, utilize rather large channels, limiting the transistor performance and resulting in a low transistor density. This is typically a consequence of limitations associated with traditional fabrication methods and with 2D substrates. Here, the fabrication and characterization of OECTs with vertically stacked contacts, which overcome these limitations, is reported. The resulting vertical transistors exhibit a reduced footprint, increased intrinsic transconductance of up to 57 mS, and a geometry-normalized transconductance of 814 S m -1 . The fabrication process is straightforward and compatible with sensitive organic materials, and allows exceptional control over the transistor channel length. This novel 3D fabrication method is particularly suited for applications where high density is needed, such as in implantable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structural studies in columnar basalts from crystallographic and magnetic fabrics

    NASA Astrophysics Data System (ADS)

    Tiphaine, Boiron; Jérôme, Bascou; Pierre, Camps; Eric, Ferre; Claire, Maurice; Bernard, Guy; Marie-Christine, Gerbe

    2010-05-01

    The purpose of this study is to better characterize the columnar and the associated microstructure development in basalt flows. The thermal contraction (O'Reilly, 1879) is the main hypothesis to explain the columnar formation. However, neither the structures which appear in basalt flow constituted of three levels (Tomkeieff, 1940) nor circular and radial structures within the prisms (for which weathering nor fracturing can account for) can be explained by the thermal contraction theory alone. An early structuring process during solidification (Guy and Le Coze, 1990) could play for a part that must be discussed (Guy, 2010). We studied two recent basalt flows (75 000 years) from the French Massif Central, in which the three flow levels are clearly observed. In the first basalt flow (La Palisse, Ardèche), the emission centre and the flow direction are known. In the second one (Saint Arcons d'Allier, Haute Loire), the prismatic columns are particularly well developed. In order to characterize the flow structure at different scales, from the flow to the grain scale, anisotropy of magnetic susceptibility (AMS) measurements were performed. The AMS data were coupled with crystallographic preferred orientation measurements of magnetite, plagioclase and clinopyroxene using Electron Backscattered Diffraction (EBSD) and image analyses from perpendicular thin sections. Magnetic mineralogy studies of the La Palisse basalts, in particular the thermomagnetic curves, indicate that the main carrier of AMS is high-Ti titanomagnetite (Tc≈130°C). AMS measurements of about a hundred samples show a higher degree of AMS (P parameter) in the middle level in comparison to the base. Inversely, the bulk magnetic susceptibility (Km) is higher at the flow base. Distinctive parameters for the different levels of the basaltic flows could be then provided by AMS measurements.. Moreover, the comparison between AMS and EBSD data indicate that the magnetic susceptibility carried by the magnetic

  14. Discotic columnar liquid crystal studied in the bulk and nanoconfined states by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Busselez, Rémi; Cerclier, Carole V.; Ndao, Makha; Ghoufi, Aziz; Lefort, Ronan; Morineau, Denis

    2014-10-01

    A prototypical Gay Berne discotic liquid crystal was studied by means of molecular dynamics simulations both in the bulk state and under confinement in a nanoporous channel. The phase behavior of the confined system strongly differs from its bulk counterpart: the bulk isotropic-to-columnar transition is replaced by a continuous ordering from a paranematic to a columnar phase. Moreover, a new transition is observed at a lower temperature in the confined state, which corresponds to a reorganization of the intercolumnar order. It reflects the competing effects of pore surface interaction and genuine hexagonal packing of the columns. The translational molecular dynamics in the different phases has been thoroughly studied and discussed in terms of collective relaxation modes, non-Gaussian behavior, and hopping processes.

  15. High transconductance organic electrochemical transistors

    NASA Astrophysics Data System (ADS)

    Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G.

    2013-07-01

    The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications.

  16. High transconductance organic electrochemical transistors

    PubMed Central

    Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G.

    2013-01-01

    The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications. PMID:23851620

  17. Recent progress in photoactive organic field-effect transistors.

    PubMed

    Wakayama, Yutaka; Hayakawa, Ryoma; Seo, Hoon-Seok

    2014-04-01

    Recent progress in photoactive organic field-effect transistors (OFETs) is reviewed. Photoactive OFETs are divided into light-emitting (LE) and light-receiving (LR) OFETs. In the first part, LE-OFETs are reviewed from the viewpoint of the evolution of device structures. Device performances have improved in the last decade with the evolution of device structures from single-layer unipolar to multi-layer ambipolar transistors. In the second part, various kinds of LR-OFETs are featured. These are categorized according to their functionalities: phototransistors, non-volatile optical memories, and photochromism-based transistors. For both, various device configurations are introduced: thin-film based transistors for practical applications, single-crystalline transistors to investigate fundamental physics, nanowires, multi-layers, and vertical transistors based on new concepts.

  18. An evaluation method for nanoscale wrinkle

    NASA Astrophysics Data System (ADS)

    Liu, Y. P.; Wang, C. G.; Zhang, L. M.; Tan, H. F.

    2016-06-01

    In this paper, a spectrum-based wrinkling analysis method via two-dimensional Fourier transformation is proposed aiming to solve the difficulty of nanoscale wrinkle evaluation. It evaluates the wrinkle characteristics including wrinkling wavelength and direction simply using a single wrinkling image. Based on this method, the evaluation results of nanoscale wrinkle characteristics show agreement with the open experimental results within an error of 6%. It is also verified to be appropriate for the macro wrinkle evaluation without scale limitations. The spectrum-based wrinkling analysis is an effective method for nanoscale evaluation, which contributes to reveal the mechanism of nanoscale wrinkling.

  19. Growing large columnar grains of CH3NH3PbI3 using the solid-state reaction method enhanced by less-crystallized nanoporous PbI2 films

    NASA Astrophysics Data System (ADS)

    Zheng, Huifeng; Wang, Weiqi; Liu, Yangqiao; Sun, Jing

    2017-03-01

    Compact, pinhole-free and PbI2-free perovskite films, are desirable for high-performance perovskite solar cells (PSCs), especially if large columnar grains are obtained in which the adverse effects of grain boundaries will be minimized. However, the conventional solid-state reaction methods, originated from the two-step method, failed to grow columnar grains of CH3NH3PbI3 in a facile way. Here, we demonstrate a strategy for growing large columnar grains of CH3NH3PbI3, by less-crystallized nanoporous PbI2 (ln-PbI2) film enhanced solid-state reaction method. We demonstrated columnar grains were obtainable only when ln-PbI2 films were applied. Therefore, the replacement of compact PbI2 by ln-PbI2 in the solid-sate reaction, leads to higher power conversion efficiency, better reproducibility, better stability and less hysteresis. Furthermore, by systematically investigating the effects of annealing temperature and duration, we found that an annealing temperature ≥120 °C was also critical for growing columnar grains. With the optimal process, a champion efficiency of 16.4% was obtained and the average efficiency reached 14.2%. Finally, the mechanism of growing columnar grains was investigated, in which a VPb″ -assisted hooping model was proposed. This work reveals the origins of grain growth in the solid-state reaction method, which will contribute to preparing high quality perovskite films with much larger columnar grains.

  20. High-Speed, high-power, switching transistor

    NASA Technical Reports Server (NTRS)

    Carnahan, D.; Ohu, C. K.; Hower, P. L.

    1979-01-01

    Silicon transistor rate for 200 angstroms at 400 to 600 volts combines switching speed of transistors with ruggedness, power capacity of thyristor. Transistor introduces unique combination of increased power-handling capability, unusally low saturation and switching losses, and submicrosecond switching speeds. Potential applications include high power switching regulators, linear amplifiers, chopper controls for high frequency electrical vehicle drives, VLF transmitters, RF induction heaters, kitchen cooking ranges, and electronic scalpels for medical surgery.

  1. Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project

    NASA Astrophysics Data System (ADS)

    Zimmermann, G.; Sturz, L.; Nguyen-Thi, H.; Mangelinck-Noel, N.; Li, Y. Z.; Gandin, C.-A.; Fleurisson, R.; Guillemot, G.; McFadden, S.; Mooney, R. P.; Voorhees, P.; Roosz, A.; Ronaföldi, A.; Beckermann, C.; Karma, A.; Chen, C.-H.; Warnken, N.; Saad, A.; Grün, G.-U.; Grohn, M.; Poitrault, I.; Pehl, T.; Nagy, I.; Todt, D.; Minster, O.; Sillekens, W.

    2017-08-01

    During casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton-finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements.

  2. Endocytosis of Nanoscale Systems for Cancer Treatments.

    PubMed

    Chen, Kai; Li, Xue; Zhu, Hongyan; Gong, Qiyong; Luo, Kui

    2017-04-28

    Advances of nanoscale systems for cancer treatment have been involved in enabling highly regulated site-specific localization to sub cellular organelles hidden beneath cell membranes. Thus far, the cellular entry of these nanoscale systems has been not fully understood. Endocytosisis a form of active transport in which cell transports elected extracellular molecules (such as proteins, viruses, micro-organisms and nanoscale systems) are allowed into cell interiors by engulfing them in an energy-dependent process. This process appears at the plasma membrane surface and contains internalization of the cell membrane as well as the membrane proteins and lipids of cell. There are multiform pathways of endocytosis for nanoscale systems. Further comprehension for the mechanisms of endocytosis is achieved with a combination of efficient genetic manipulations, cell dynamic imaging, and chemical endocytosis inhibitors. This review provides an account of various endocytic pathways, itemizes current methods to study endocytosis of nanoscale systems, discusses some factors associated with cellular uptake for nanoscale systems and introduces the trafficking behavior for nanoscale systems with active targeting. An insight into the endocytosis mechanism is urgent and significant for developing safe and efficient nanoscale systems for cancer diagnosis and therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Evaluation of the therapeutic effect of potassium permanganate at early stages of an experimental acute infection of Flavobacterium columnare in channel catfish (Ictalurus punctatus)

    USDA-ARS?s Scientific Manuscript database

    The efficacy of potassium permanganate (KMnO4) against early stages of an experimental acute infection of Flavobacterium columnare in channel catfish (Ictalurus punctatus) was evaluated. Fish were experimentally challenged, by waterborne exposure for 2 h to F. columnare after cutaneous abrasion, an...

  4. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grezes, C.; Alzate, J. G.; Cai, X.

    2016-01-04

    We report electric-field-induced switching with write energies down to 6 fJ/bit for switching times of 0.5 ns, in nanoscale perpendicular magnetic tunnel junctions (MTJs) with high resistance-area product and diameters down to 50 nm. The ultra-low switching energy is made possible by a thick MgO barrier that ensures negligible spin-transfer torque contributions, along with a reduction of the Ohmic dissipation. We find that the switching voltage and time are insensitive to the junction diameter for high-resistance MTJs, a result accounted for by a macrospin model of purely voltage-induced switching. The measured performance enables integration with same-size CMOS transistors in compact memorymore » and logic integrated circuits.« less

  5. Universal power transistor base drive control unit

    DOEpatents

    Gale, Allan R.; Gritter, David J.

    1988-01-01

    A saturation condition regulator system for a power transistor which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition.

  6. Universal power transistor base drive control unit

    DOEpatents

    Gale, A.R.; Gritter, D.J.

    1988-06-07

    A saturation condition regulator system for a power transistor is disclosed which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition. 2 figs.

  7. Evaluation of the antibody response to the LV-359-01 strain of flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare, the causative agent of columnaris disease produces substantial mortality worldwide among numerous freshwater farmed finfish species. As aquaculture production continues to increase the frequency of columnaris disease will only continue to rise. Add to this an increase in re...

  8. Hyperplasia of the submucosal glands of the columnar-lined oesophagus.

    PubMed

    Lörinc, Ester; Öberg, Stefan

    2015-04-01

    To evaluate the presence of multi-layered epithelium (ME) and to compare the distribution, size and morphology of the oesophageal submucosal glands (SMG) beneath reflux exposed metaplastic columnar mucosa with those of normal squamous epithelium in patients with columnar-lined oesophagus (CLO). In eight oesophageal resection specimens, the SMG of the metaplastic segments were significantly larger than those in the squamous segments of patients with CLO (0.81 versus 0.56 mm(2) , P = <0.001). There was an accumulation of SMG close to the neosquamocolumnar junction (NSCJ), as indicated by a higher median frequency of SMG (0.080 SMG/mm) compared with that of the squamous (0.013 SMG/mm) and metaplastic segments (0.031 SMG/mm) (P = 0.022). The frequency of ME was significantly higher in the metaplastic compared with the normal squamous segments (1/158 mm and 1/341 mm, respectively, P = 0.028) and ME was found almost exclusively (96%) in direct connection with the excretory ducts of SMG. Hyperplasia of SMG in the metaplastic segment, accumulation of SMG near the NSCJ, the presence of ME in connection with the excretory ducts of SMG and metaplasia are all reflux-induced morphological changes, possibly induced by stimulation of progenitors in the excretory ducts of the SMG. © 2014 John Wiley & Sons Ltd.

  9. Hafnium transistor design for neural interfacing.

    PubMed

    Parent, David W; Basham, Eric J

    2008-01-01

    A design methodology is presented that uses the EKV model and the g(m)/I(D) biasing technique to design hafnium oxide field effect transistors that are suitable for neural recording circuitry. The DC gain of a common source amplifier is correlated to the structural properties of a Field Effect Transistor (FET) and a Metal Insulator Semiconductor (MIS) capacitor. This approach allows a transistor designer to use a design flow that starts with simple and intuitive 1-D equations for gain that can be verified in 1-D MIS capacitor TCAD simulations, before final TCAD process verification of transistor properties. The DC gain of a common source amplifier is optimized by using fast 1-D simulations and using slower, complex 2-D simulations only for verification. The 1-D equations are used to show that the increased dielectric constant of hafnium oxide allows a higher DC gain for a given oxide thickness. An additional benefit is that the MIS capacitor can be employed to test additional performance parameters important to an open gate transistor such as dielectric stability and ionic penetration.

  10. Center for Nanoscale Science and Technology

    National Institute of Standards and Technology Data Gateway

    NIST Center for Nanoscale Science and Technology (Program website, free access)   Currently there is no database matching your keyword search, but the NIST Center for Nanoscale Science and Technology website may be of interest. The Center for Nanoscale Science and Technology enables science and industry by providing essential measurement methods, instrumentation, and standards to support all phases of nanotechnology development, from discovery to production.

  11. Stable Isotopic Variations in Columnar Cacti: are Responses to Climate Recorded in Spines?

    NASA Astrophysics Data System (ADS)

    English, N. B.; Dettman, D. L.; Williams, D. G.

    2004-12-01

    The behavior of the North American monsoon (NAM), particularly with respect to times of continental drought and its relationship to the Pacific-North American (PNA) teleconnection pattern and the El Nino/Southern Oscillation (ENSO) is of great interest to paleoclimatologists and water managers. Long-term instrumental precipitation and tree ring records in the southwestern United States and northwestern Mexico at low elevations are sparse and this has hindered research on NAM variability at interannual timescales. Saguaro cacti (Carnegiea gigantea) and other columnar cacti in North and South America are long-lived and have the potential to record climate variability on land with high temporal and spatial resolution. The vertical sequence of spines on the saguaro's exterior represents a high resolution (4 to 6 per year), and long (over 150 years) record of environmental change. We present results from an experiment where we tracked the oxygen isotopic values in the source waters, stem tissue waters and spine tissue for three treatments over the course of three months. These data are then compared to a previously developed mechanistic model of isotopic variation that reflects the physiological responses of Saguaro to climate variation over seasonal to century long time-scales. We also present the rationale for a new method to determine the growth rate of columnar cacti using the radiocarbon bomb spike. Our measurements reveal that oxygen and hydrogen isotopic variation among the sequentially produced and persistent spines covering the saguaro body record fluctuations in saguaro water balance. The model successfully predicts isotopic variation in spines and constrains controlling variables, yielding a powerful and high-resolution stable isotope index of water stress in the low desert. The development and refinement of an isotopic model for saguaro will serve as the basis for models applied to other species of columnar cacti in North and South America. The role of the

  12. Planar-Processed Polymer Transistors.

    PubMed

    Xu, Yong; Sun, Huabin; Shin, Eul-Yong; Lin, Yen-Fu; Li, Wenwu; Noh, Yong-Young

    2016-10-01

    Planar-processed polymer transistors are proposed where the effective charge injection and the split unipolar charge transport are all on the top surface of the polymer film, showing ideal device characteristics with unparalleled performance. This technique provides a great solution to the problem of fabrication limitations, the ambiguous operating principle, and the performance improvements in practical applications of conjugated-polymer transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Graphene-based flexible and stretchable thin film transistors.

    PubMed

    Yan, Chao; Cho, Jeong Ho; Ahn, Jong-Hyun

    2012-08-21

    Graphene has been attracting wide attention owing to its superb electronic, thermal and mechanical properties. These properties allow great applications in the next generation of optoelectronics, where flexibility and stretchability are essential. In this context, the recent development of graphene growth/transfer and its applications in field-effect transistors are involved. In particular, we provide a detailed review on the state-of-the-art of graphene-based flexible and stretchable thin film transistors. We address the principles of fabricating high-speed graphene analog transistors and the key issues of producing an array of graphene-based transistors on flexible and stretchable substrates. It provides a platform for future work to focus on understanding and realizing high-performance graphene-based transistors.

  14. Ultraviolet spectrophotometer for measuring columnar atmospheric ozone from aircraft

    NASA Technical Reports Server (NTRS)

    Hanser, F. A.; Sellers, B.; Briehl, D. C.

    1978-01-01

    An ultraviolet spectrophotometer (UVS) to measure downward solar fluxes from an aircraft or other high altitude platform is described. The UVS uses an ultraviolet diffuser to obtain large angular response with no aiming requirement, a twelve-position filter wheel with narrow (2-nm) and broad (20-nm) bandpass filters, and an ultraviolet photodiode. The columnar atmospheric ozone above the UVS (aircraft) is calculated from the ratios of the measured ultraviolet fluxes. Comparison with some Dobson station measurements gives agreement to 2%. Some UVS measured ozone profiles over the Pacific Ocean for November 1976 are shown to illustrate the instrument's performance.

  15. Draft genome sequence of the fish pathogen Flavobacterium columnare strain CSF-298-10

    USDA-ARS?s Scientific Manuscript database

    We announce the genome assembly of Flavobacterium columnare strain CSF-298-10, a strain isolated from an outbreak of Columnaris disease at a commercial trout farm in Snake River Valley Idaho, USA. The complete genome consists of 13 contigs totaling 3,284,579 bp, average G+C content of 31.5% and 2933...

  16. Compounds from Terminalli brownii extracts with toxicity against the fish pathogenic bacterium Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    The pond-raised channel catfish (Ictalurus punctatus) industry in the United States of America can incur losses of over a $100 million annually due to bacterial diseases including columnaris disease caused by Flavobacterium columnare. One management approach available to catfish producers is the use...

  17. Effectiveness of copper sulfate and potassium permanganate on channel catfish infected with Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Copper sulfate (CuSO4) and potassium permanganate (KMnO4) were evaluated for their effectiveness to curtail mortality and decrease bacterial load in fish tissues and water in channel catfish Ictalurus punctatus naturally infected with Flavobacterium columnare, the causative agent of columnaris. Fis...

  18. Coaxial inverted geometry transistor having buried emitter

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Cress, S. B.; Dunn, W. R. (Inventor)

    1973-01-01

    The invention relates to an inverted geometry transistor wherein the emitter is buried within the substrate. The transistor can be fabricated as a part of a monolithic integrated circuit and is particularly suited for use in applications where it is desired to employ low actuating voltages. The transistor may employ the same doping levels in the collector and emitter, so these connections can be reversed.

  19. Highly Crumpled All-Carbon Transistors for Brain Activity Recording.

    PubMed

    Yang, Long; Zhao, Yan; Xu, Wenjing; Shi, Enzheng; Wei, Wenjing; Li, Xinming; Cao, Anyuan; Cao, Yanping; Fang, Ying

    2017-01-11

    Neural probes based on graphene field-effect transistors have been demonstrated. Yet, the minimum detectable signal of graphene transistor-based probes is inversely proportional to the square root of the active graphene area. This fundamentally limits the scaling of graphene transistor-based neural probes for improved spatial resolution in brain activity recording. Here, we address this challenge using highly crumpled all-carbon transistors formed by compressing down to 16% of its initial area. All-carbon transistors, chemically synthesized by seamless integration of graphene channels and hybrid graphene/carbon nanotube electrodes, maintained structural integrity and stable electronic properties under large mechanical deformation, whereas stress-induced cracking and junction failure occurred in conventional graphene/metal transistors. Flexible, highly crumpled all-carbon transistors were further verified for in vivo recording of brain activity in rats. These results highlight the importance of advanced material and device design concepts to make improvements in neuroelectronics.

  20. Nanoscale potentiometry.

    PubMed

    Bakker, Eric; Pretsch, Ernö

    2008-01-01

    Potentiometric sensors share unique characteristics that set them apart from other electrochemical sensors. Potentiometric nanoelectrodes have been reported and successfully used for many decades, and we review these developments. Current research chiefly focuses on nanoscale films at the outer or the inner side of the membrane, with outer layers for increasing biocompatibility, expanding the sensor response, or improving the limit of detection (LOD). Inner layers are mainly used for stabilizing the response and eliminating inner aqueous contacts or undesired nanoscale layers of water. We also discuss the ultimate detectability of ions with such sensors and the power of coupling the ultra-low LODs of ion-selective electrodes with nanoparticle labels to give attractive bioassays that can compete with state-of-the-art electrochemical detection.

  1. Photo-assisted hysteresis of electronic transport for ZnO nanowire transistors

    NASA Astrophysics Data System (ADS)

    Du, Qianqian; Ye, Jiandong; Xu, Zhonghua; Zhu, Shunming; Tang, Kun; Gu, Shulin; Zheng, Youdou

    2018-03-01

    Recently, ZnO nanowire field effect transistors (FETs) have received renewed interest due to their extraordinary low dimensionality and high sensitivity to external chemical environments and illumination conditions. These prominent properties have promising potential in nanoscale chemical and photo-sensors. In this article, we have fabricated ZnO nanowire FETs and have found hysteresis behavior in their transfer characteristics. The mechanism and dynamics of the hysteresis phenomena have been investigated in detail by varying the sweeping rate and range of the gate bias with and without light irradiation. Significantly, light irradiation is of great importance on charge trapping by regulating adsorption and desorption of oxygen at the interface of ZnO/SiO2. Carriers excited by light irradiation can dramatically promote trapping/detrapping processes. With the assistance of light illumination, we have demonstrated a photon-assisted nonvolatile memory which employs the ZnO nanowire FET. The device exhibits reliable programming/erasing operations and a large on/off ratio. The proposed proto-type memory has thus provided a possible novel path for creating a memory functionality to other low-dimensional material systems.

  2. High Accuracy Transistor Compact Model Calibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hembree, Charles E.; Mar, Alan; Robertson, Perry J.

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirementsmore » require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.« less

  3. Architecture of Columnar Nacre, and Implications for Its Formation Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzler, Rebecca A.; Olabisi, Ronke M.; Coppersmith, Susan N.

    2007-06-29

    We analyze the structure of Haliotis rufescens nacre, or mother-of-pearl, using synchrotron spectromicroscopy and x-ray absorption near-edge structure spectroscopy. We observe imaging contrast between adjacent individual nacre tablets, arising because different tablets have different crystal orientations with respect to the radiation's polarization vector. Comparing previous data and our new data with models for columnar nacre growth, we find the data are most consistent with a model in which nacre tablets are nucleated by randomly distributed sites in the organic matrix layers.

  4. A transistor based on 2D material and silicon junction

    NASA Astrophysics Data System (ADS)

    Kim, Sanghoek; Lee, Seunghyun

    2017-07-01

    A new type of graphene-silicon junction transistor based on bipolar charge-carrier injection was designed and investigated. In contrast to many recent studies on graphene field-effect transistor (FET), this device is a new type of bipolar junction transistor (BJT). The transistor fully utilizes the Fermi level tunability of graphene under bias to increase the minority-carrier injection efficiency of the base-emitter junction in the BJT. Single-layer graphene was used to form the emitter and the collector, and a p-type silicon was used as the base. The output of this transistor was compared with a metal-silicon junction transistor ( i.e. surface-barrier transistor) to understand the difference between a graphene-silicon junction and metal-silicon Schottky junction. A significantly higher current gain was observed in the graphene-silicon junction transistor as the base current was increased. The graphene-semiconductor heterojunction transistor offers several unique advantages, such as an extremely thin device profile, a low-temperature (< 110 °C) fabrication process, low cost (no furnace process), and high-temperature tolerance due to graphene's stability. A transistor current gain ( β) of 33.7 and a common-emitter amplifier voltage gain of 24.9 were achieved.

  5. Estimation of columnar concentrations of absorbing and scattering fine mode aerosol components using AERONET data

    NASA Astrophysics Data System (ADS)

    Choi, Yongjoo; Ghim, Young Sung

    2016-11-01

    Columnar concentrations of absorbing and scattering components of fine mode aerosols were estimated using Aerosol Robotic Network (AERONET) data for a site downwind of Seoul. The study period was between March 2012 and April 2013 including the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia campaign in March to May 2012. The Maxwell Garnett mixing rule was assumed for insoluble components embedded in a host solution, while the volume average mixing rule was assumed for the aqueous solution of soluble components. During the DRAGON-Asia campaign the surface concentrations of major components of fine particles were measured. The columnar mass fractions of black carbon (BC), organic carbon (OC), mineral dust (MD), and ammonium sulfate (AS) were 1.5, 5.9, 6.6, and 52%, respectively, which were comparable to the mass fractions measured at the surface for BC, OC, and secondary inorganic aerosols at 2.3, 18, and 55%. The vertical distributions of BC and AS were investigated by employing the concept of a column height. While the column height for BC was similar to the planetary boundary layer (PBL) height, that for AS was 4.4 times higher than the PBL height and increased with air temperature from March to May. The monthly variations of the columnar mass concentrations during the study period were generally well explained in term of meteorology and emission characteristics. However, certain variations of MD were different from those typically observed primarily because only fine mode aerosols were considered.

  6. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagamura, Naoka, E-mail: NAGAMURA.Naoka@nims.go.jp; Kitada, Yuta; Honma, Itaru

    2015-06-22

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO{sub 2} (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying −30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift correspondingmore » to band bending by the field effect, resulting in p-type doping.« less

  7. Effect of grain-boundary flux pinning in MgB 2 with columnar structure

    NASA Astrophysics Data System (ADS)

    Kim, D. H.; Hwang, T. J.; Cha, Y. J.; Seong, W. K.; Kang, W. N.

    2009-10-01

    We studied the flux pinning properties by grain boundaries in MgB 2 films prepared by using a hybrid physical chemical vapor deposition method on the c-axis oriented sapphire substrates. All the films we report here had the columnar grains with the growth direction perpendicular to the substrates and the grain sizes in the range of a few hundred nanometers. At very low magnetic fields, no discernable grain-boundary (GB) pinning effect was observed in all measuring temperatures, but above those fields, the effect of GB flux pinning was observed as enhanced critical current densities ( Jcs) and reduced resistances when an external magnetic field ( B) was aligned parallel to the c-axis. We interpret the B dependence of Jc in the terms of flux line lattice shear inside the columnar grains activated by dislocations of Frank-Read source while the flux lines pinned by GB act as anchors for dislocations. Magnetic field dependence of flux pinning force density for B parallel to the c-axis was reasonably explained by the above model.

  8. Dependence of columnar aerosol size distribution, optical properties, and chemical components on regional transport in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Zhao, Weixiong; Xu, Xuezhe; Fang, Bo; Zhang, Qilei; Qian, Xiaodong; Zhang, Weijun; Chen, Weidong; Pu, Wei; Wang, Xin

    2017-11-01

    Seasonal dependence of the columnar aerosol optical and chemical properties on regional transport in Beijing over 10 years (from January 2005 to December 2014) were analyzed by using the ground-based remote sensing combined with backward trajectory analysis. Daily air mass backward trajectories terminated in Beijing were computed with HYSPLIT-4 model and were categorized into five clusters. The columnar mass concentrations of black carbon (BC), brown carbon (BrC), dust (DU), aerosol water content (AW), and ammonium sulfate like aerosol (AS) of each cluster were retrieved from the optical data obtained from the Aerosol Robotic NETwork (AERONET) with five-component model. It was found that the columnar aerosol properties in different seasons were changed, and they were related to the air mass origins. In spring, aerosol was dominated by coarse particles. Summer was characterized by higher single scattering albedo (SSA), lower real part of complex refractive index (n), and obvious hygroscopic growth due to humid air from the south. During autumn and winter, there was an observable increase in absorption aerosol optical thickness (AAOT) and the imaginary part of complex refraction (k), with high levels of retrieved BC and BrC. However, concentrations of BC showed less dependence on the clusters during the two seasons owing to the widely spread coal heating in north China.

  9. Multiple-channel detection of cellular activities by ion-sensitive transistors

    NASA Astrophysics Data System (ADS)

    Machida, Satoru; Shimada, Hideto; Motoyama, Yumi

    2018-04-01

    An ion-sensitive field-effect transistor to record cellular activities was demonstrated. This field-effect transistor (bio transistor) includes cultured cells on the gate insulator instead of gate electrode. The bio transistor converts a change in potential underneath the cells into variation of the drain current when ion channels open. The bio transistor has high detection sensitivity to even minute variations in potential utilizing a subthreshold swing region. To open ion channels, a reagent solution (acetylcholine) was added to a human-originating cell cultured on the bio transistor. The drain current was successfully decreased with the addition of acetylcholine. Moreover, we attempted to detect the opening of ion channels using a multiple-channel measurement circuit containing several bio transistors. As a consequence, the drain current distinctly decreased only after the addition of acetylcholine. We confirmed that this measurement system including bio transistors enables to observation of cellular activities sensitively and simultaneously.

  10. Multimode Silicon Nanowire Transistors

    PubMed Central

    2014-01-01

    The combined capabilities of both a nonplanar design and nonconventional carrier injection mechanisms are subject to recent scientific investigations to overcome the limitations of silicon metal oxide semiconductor field effect transistors. In this Letter, we present a multimode field effect transistors device using silicon nanowires that feature an axial n-type/intrinsic doping junction. A heterostructural device design is achieved by employing a self-aligned nickel-silicide source contact. The polymorph operation of the dual-gate device enabling the configuration of one p- and two n-type transistor modes is demonstrated. Not only the type but also the carrier injection mode can be altered by appropriate biasing of the two gate terminals or by inverting the drain bias. With a combined band-to-band and Schottky tunneling mechanism, in p-type mode a subthreshold swing as low as 143 mV/dec and an ON/OFF ratio of up to 104 is found. As the device operates in forward bias, a nonconventional tunneling transistor is realized, enabling an effective suppression of ambipolarity. Depending on the drain bias, two different n-type modes are distinguishable. The carrier injection is dominated by thermionic emission in forward bias with a maximum ON/OFF ratio of up to 107 whereas in reverse bias a Schottky tunneling mechanism dominates the carrier transport. PMID:25303290

  11. Self-protecting transistor oscillator for treating animal tissues

    DOEpatents

    Doss, James D.

    1980-01-01

    A transistor oscillator circuit wherein the load current applied to animal tissue treatment electrodes is fed back to the transistor. Removal of load is sensed to automatically remove feedback and stop oscillations. A thermistor on one treatment electrode senses temperature, and by means of a control circuit controls oscillator transistor current.

  12. Orientation Dependence of Columnar Dendritic Growth with Sidebranching Behaviors in Directional Solidification: Insights from Phase-Field Simulations

    NASA Astrophysics Data System (ADS)

    Xing, Hui; Dong, Xianglei; Wang, Jianyuan; Jin, Kexin

    2018-04-01

    In this study, a thin-interface phase-field model was employed to study the orientation dependence of the columnar dendritic growth with sidebranching behaviors in directional solidification. It was found that the dimensionless tip undercooling increases with the increase of misorientation angle for three pulling velocities. The primary spacing is found to be a function of misorientation angle, and the dimensionless primary spacing with respect to the misorientation angle follows the orientation correction given by Gandin and Rappaz (Acta. Metall. 42:2233-2246, 1994). For the analysis of the dendritic tip, the two-dimensional (2-D) form of the nonaxisymmetric needle crystal was used to determine the radius of the tilted columnar dendrite. Based on the definitions of open side and constrained side of the dendrite, the analysis of the width active sidebranches and the dendritic area in 2-D with respect to the distance from the dendritic tip was carried out to investigate the asymmetrical dendrite envelop and sidebranching behaviors on the two sides in directional solidification. The obtained prefactor and exponent with respect to misorientation angle are discussed, showing that the sidebranching behaviors of a tilted columnar dendritic array obey a similar power-law relationship with that of a free dendritic growth.

  13. More than just antibodies: protective mechanisms of a mucosal vaccine against fish pathogen Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    A recently developed attenuated vaccine (17-23) for Flavobacterium columnare has been demonstrated to provide superior protection for channel catfish, Ictalurus punctatus, against genetically diverse columnaris isolates. First, we were interested in elucidating the host responses generated by a viru...

  14. More than just antibodies: protective mechanisms of a muscosal vaccine against fish pathogen Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    A recently developed attenuated vaccine (17-23) for Flavobacterium columnare has been demonstrated to provide superior protection for channel catfish, Ictalurus punctatus, against genetically diverse columnaris isolates (Mohammed et al. 2013). We were interested in examining the mechanisms of this p...

  15. Simulation and observation of line-slip structures in columnar structures of soft spheres

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.; Haffner, B.; Weaire, D.; Mughal, A.; Hutzler, S.

    2017-07-01

    We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.

  16. Simulation and observation of line-slip structures in columnar structures of soft spheres.

    PubMed

    Winkelmann, J; Haffner, B; Weaire, D; Mughal, A; Hutzler, S

    2017-07-01

    We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.

  17. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    EPA Science Inventory

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  18. Doped organic transistors operating in the inversion and depletion regime

    PubMed Central

    Lüssem, Björn; Tietze, Max L.; Kleemann, Hans; Hoßbach, Christoph; Bartha, Johann W.; Zakhidov, Alexander; Leo, Karl

    2013-01-01

    The inversion field-effect transistor is the basic device of modern microelectronics and is nowadays used more than a billion times on every state-of-the-art computer chip. In the future, this rigid technology will be complemented by flexible electronics produced at extremely low cost. Organic field-effect transistors have the potential to be the basic device for flexible electronics, but still need much improvement. In particular, despite more than 20 years of research, organic inversion mode transistors have not been reported so far. Here we discuss the first realization of organic inversion transistors and the optimization of organic depletion transistors by our organic doping technology. We show that the transistor parameters—in particular, the threshold voltage and the ON/OFF ratio—can be controlled by the doping concentration and the thickness of the transistor channel. Injection of minority carriers into the doped transistor channel is achieved by doped contacts, which allows forming an inversion layer. PMID:24225722

  19. Decoding the Vertical Phase Separation and Its Impact on C8-BTBT/PS Transistor Properties.

    PubMed

    Pérez-Rodríguez, Ana; Temiño, Inés; Ocal, Carmen; Mas-Torrent, Marta; Barrena, Esther

    2018-02-28

    Disentangling the details of the vertical distribution of small semiconductor molecules blended with polystyrene (PS) and the contact properties are issues of fundamental value for designing strategies to optimize small-molecule:polymer blend organic transistors. These questions are addressed here for ultrathin blends of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and PS processed by a solution-shearing technique using three different blend composition ratios. We show that friction force microscopy (FFM) allows the determination of the lateral and vertical distribution of the two materials at the nanoscale. Our results demonstrate a three-layer stratification of the blend: a film of C8-BTBT of few molecular layers with crystalline order sandwiched between a PS-rich layer at the bottom (a few nm thick) acting as a passivating dielectric layer and a PS-rich skin layer on the top (∼1 nm) conferring stability to the devices. Kelvin probe force microscopy (KPFM) measurements performed in operating organic field-effect transistors (OFETs) reveal that the devices are strongly contact-limited and suggest contact doping as a route for device optimization. By excluding the effect of the contacts, field-effect mobility values in the channel as high as 10 cm 2 V -1 s -1 are obtained. Our findings, obtained via a combination of FFM and KPFM, provide a satisfactory explanation of the different electrical performances of the OFETs as a function of the blend composition ratio and by doping the contacts.

  20. Design considerations for FET-gated power transistors

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Chin, S. A.

    1983-01-01

    An FET-bipolar combinational power transistor configuration (tested up to 300 V, 20 A at 100 kHz) is described. The critical parameters for integrating the chips in hybrid form are examined, and an effort to optimize the overall characteristics of the configuration is discussed. Chip considerations are examined with respect to the voltage and current rating of individual chips, the FET surge capability, the choice of triple diffused transistor or epitaxial transistor for the bipolar element, the current tailing effect, and the implementation of the bipolar transistor and an FET as single chip or separate chips. Package considerations are discussed with respect to package material and geometry, surge current capability of bipolar base terminal bonding, and power losses distribution.

  1. CMOS-based carbon nanotube pass-transistor logic integrated circuits

    PubMed Central

    Ding, Li; Zhang, Zhiyong; Liang, Shibo; Pei, Tian; Wang, Sheng; Li, Yan; Zhou, Weiwei; Liu, Jie; Peng, Lian-Mao

    2012-01-01

    Field-effect transistors based on carbon nanotubes have been shown to be faster and less energy consuming than their silicon counterparts. However, ensuring these advantages are maintained for integrated circuits is a challenge. Here we demonstrate that a significant reduction in the use of field-effect transistors can be achieved by constructing carbon nanotube-based integrated circuits based on a pass-transistor logic configuration, rather than a complementary metal-oxide semiconductor configuration. Logic gates are constructed on individual carbon nanotubes via a doping-free approach and with a single power supply at voltages as low as 0.4 V. The pass-transistor logic configurarion provides a significant simplification of the carbon nanotube-based circuit design, a higher potential circuit speed and a significant reduction in power consumption. In particular, a full adder, which requires a total of 28 field-effect transistors to construct in the usual complementary metal-oxide semiconductor circuit, uses only three pairs of n- and p-field-effect transistors in the pass-transistor logic configuration. PMID:22334080

  2. Columnaris (Flavobacterium columnare) challenge using fathead minnows (Pimephales promelas) in an ultra-low flow system

    USDA-ARS?s Scientific Manuscript database

    Arkansas baitfish farms routinely struggle with columnaris disease, which is caused by Flavobacterium columnare. Columnaris is ubiquitous in fathead minnows (Pimephales promelas) especially after harvest while they are being held in vats and during the transport prior to being sold. Columnaris disea...

  3. [Effects of Guilin Watermelon Frost on the mRNA expressions of basic fibroblast growth factor in patients with uterine cervical columnar ectopy].

    PubMed

    Qiu-Yan, Jiang; Jin-Ling, Song; Hai-Xia, Mo

    2012-01-01

    To study the molecular biological effects of Guilin Watermelon Frost (GWF) on the mRNA expressions of basic fibroblast growth factor (bFGF) in patients with uterine uterine cervical columnar ectopy. One hundred and sixty patients with uterine cervical columnar ectopy were assigned to two groups by the random digit table. Patients in the treatment group were treated with local spray of GWF, while those in the control group were local applied with bFGF-collagen sponge. The mRNA expressions of bFGF of the uterine tissue were detected in the two groups before and after treatment using RT-PCR. Before treatment the mRNA expression of bFGF in the uterine cervical columnar ectopy was 0.55 +/- 0.10 in the treatment group and 0.58 +/- 0.13 in the control group, without insignificant difference (P > 0.05). After treatment it significantly increased in the two groups, being 0.82 +/- 0.17 and 0.78 +/- 0.15 respectively, showing statistical difference from before treatment (P < 0.01). But no statistical difference existed between the two groups after treatment (P > 0.05). GWF showed enhancement on the mRNA expressions of bFGF in patients with uterine cervical columnar ectopy.

  4. Triple-mode single-transistor graphene amplifier and its applications.

    PubMed

    Yang, Xuebei; Liu, Guanxiong; Balandin, Alexander A; Mohanram, Kartik

    2010-10-26

    We propose and experimentally demonstrate a triple-mode single-transistor graphene amplifier utilizing a three-terminal back-gated single-layer graphene transistor. The ambipolar nature of electronic transport in graphene transistors leads to increased amplifier functionality as compared to amplifiers built with unipolar semiconductor devices. The ambipolar graphene transistors can be configured as n-type, p-type, or hybrid-type by changing the gate bias. As a result, the single-transistor graphene amplifier can operate in the common-source, common-drain, or frequency multiplication mode, respectively. This in-field controllability of the single-transistor graphene amplifier can be used to realize the modulation necessary for phase shift keying and frequency shift keying, which are widely used in wireless applications. It also offers new opportunities for designing analog circuits with simpler structure and higher integration densities for communications applications.

  5. Water-gel for gating graphene transistors.

    PubMed

    Kim, Beom Joon; Um, Soong Ho; Song, Woo Chul; Kim, Yong Ho; Kang, Moon Sung; Cho, Jeong Ho

    2014-05-14

    Water, the primary electrolyte in biology, attracts significant interest as an electrolyte-type dielectric material for transistors compatible with biological systems. Unfortunately, the fluidic nature and low ionic conductivity of water prevents its practical usage in such applications. Here, we describe the development of a solid state, megahertz-operating, water-based gate dielectric system for operating graphene transistors. The new electrolyte systems were prepared by dissolving metal-substituted DNA polyelectrolytes into water. The addition of these biocompatible polyelectrolytes induced hydrogelation to provide solid-state integrity to the system. They also enhanced the ionic conductivities of the electrolytes, which in turn led to the quick formation of an electric double layer at the graphene/electrolyte interface that is beneficial for modulating currents in graphene transistors at high frequencies. At the optimized conditions, the Na-DNA water-gel-gated flexible transistors and inverters were operated at frequencies above 1 MHz and 100 kHz, respectively.

  6. Columnar to nematic mesophase transition in mixtures of rhodium or copper soaps with hydrocarbon solvents

    NASA Astrophysics Data System (ADS)

    Ibn-Elhaj, M.; Guillon, D.; Skoulios, A.; Giroud-Godquin, A. M.; Marchon, J.-C.

    1992-12-01

    This paper describes observations of the mesomorphic behaviour of mixtures of rhodium eicosanoate or copper dodecanoate with solvents such as toluene, decahydronaphthalene, and (+) camphene. The mesophase found with these compounds at high temperatures turns from columnar to nematic when the weight fraction of the solvent (toluene, decahydronaphthalene is increased beyond a value of about 50%. The binary phase diagram of the copper compound with toluene was experimentally determined using polarizing optical microscopy, differential scanning calorimetry and X-ray diffraction. The novel feature of the nematic phase is that the basic physical object which align parallel to the nematic director are not individual molecules, but columns of molecules (one-dimensional supramolecular assemblies) which have lost the long-range lateral positional order characteristic of the columnar mesophase. These observations are discussed on the grounds of recent theoretical calculations. Cholesteric-like textures are observed for mixtures of rhodium eicosanoate with the chiral solvent (+) camphene.

  7. Expression of a putative dioxygenase gene adjacent to an insertion mutation is involved in the short internodes of columnar apples (Malus × domestica).

    PubMed

    Okada, Kazuma; Wada, Masato; Moriya, Shigeki; Katayose, Yuichi; Fujisawa, Hiroko; Wu, Jianzhong; Kanamori, Hiroyuki; Kurita, Kanako; Sasaki, Harumi; Fujii, Hiroshi; Terakami, Shingo; Iwanami, Hiroshi; Yamamoto, Toshiya; Abe, Kazuyuki

    2016-11-01

    Determining the molecular mechanism of fruit tree architecture is important for tree management and fruit production. An apple mutant 'McIntosh Wijcik', which was discovered as a bud mutation from 'McIntosh', exhibits a columnar growth phenotype that is controlled by a single dominant gene, Co. In this study, the mutation and the Co gene were analyzed. Fine mapping narrowed the Co region to a 101 kb region. Sequence analysis of the Co region and the original wild-type co region identified an insertion mutation of an 8202 bp long terminal repeat (LTR) retroposon in the Co region. Segregation analysis using a DNA marker based on the insertion polymorphism showed that the LTR retroposon was closely associated with the columnar growth phenotype. RNA-seq and RT-PCR analysis identified a promising Co candidate gene (91071-gene) within the Co region that is specifically expressed in 'McIntosh Wijcik' but not in 'McIntosh'. The 91071-gene was located approximately 16 kb downstream of the insertion mutation and is predicted to encode a 2-oxoglutarate-dependent dioxygenase involved in an unknown reaction. Overexpression of the 91071-gene in transgenic tobaccos and apples resulted in phenotypes with short internodes, like columnar apples. These data suggested that the 8202 bp retroposon insertion in 'McIntosh Wijcik' is associated with the short internodes of the columnar growth phenotype via upregulated expression of the adjacent 91071-gene. Furthermore, the DNA marker based on the insertion polymorphism could be useful for the marker-assisted selection of columnar apples.

  8. Columnar processing in primate pFC: evidence for executive control microcircuits.

    PubMed

    Opris, Ioan; Hampson, Robert E; Gerhardt, Greg A; Berger, Theodore W; Deadwyler, Sam A

    2012-12-01

    A common denominator for many cognitive disorders of human brain is the disruption of neural activity within pFC, whose structural basis is primarily interlaminar (columnar) microcircuits or "minicolumns." The importance of this brain region for executive decision-making has been well documented; however, because of technological constraints, the minicolumnar basis is not well understood. Here, via implementation of a unique conformal multielectrode recording array, the role of interlaminar pFC minicolumns in the executive control of task-related target selection is demonstrated in nonhuman primates performing a visuomotor DMS task. The results reveal target-specific, interlaminar correlated firing during the decision phase of the trial between multielectrode recording array-isolated minicolumnar pairs of neurons located in parallel in layers 2/3 and layer 5 of pFC. The functional significance of individual pFC minicolumns (separated by 40 μm) was shown by reduced correlated firing between cell pairs within single minicolumns on error trials with inappropriate target selection. To further demonstrate dependence on performance, a task-disrupting drug (cocaine) was administered in the middle of the session, which also reduced interlaminar firing in minicolumns that fired appropriately in the early (nondrug) portion of the session. The results provide a direct demonstration of task-specific, real-time columnar processing in pFC indicating the role of this type of microcircuit in executive control of decision-making in primate brain.

  9. Nanoscale thermocapillarity enabled purification for horizontally aligned arrays of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Jin, Sung Hun; Dunham, Simon; Xie, Xu; Rogers, John A.

    2015-09-01

    Among the remarkable variety of semiconducting nanomaterials that have been discovered over the past two decades, single-walled carbon nanotubes remain uniquely well suited for applications in high-performance electronics, sensors and other technologies. The most advanced opportunities demand the ability to form perfectly aligned, horizontal arrays of purely semiconducting, chemically pristine carbon nanotubes. Here, we present strategies that offer this capability. Nanoscale thermos-capillary flows in thin-film organic coatings followed by reactive ion etching serve as highly efficient means for selectively removing metallic carbon nanotubes from electronically heterogeneous aligned arrays grown on quartz substrates. The low temperatures and unusual physics associated with this process enable robust, scalable operation, with clear potential for practical use. Especially for the purpose of selective joule heating over only metallic nanotubes, two representative platforms are proposed and confirmed. One is achieved by selective joule heating associated with thin film transistors with partial gate structure. The other is based on a simple, scalable, large-area scheme through microwave irradiation by using micro-strip dipole antennas of low work-function metals. In this study, based on purified semiconducting SWNTs, we demonstrated field effect transistors with mobility (> 1,000 cm2/Vsec) and on/off switching ratio (~10,000) with current outputs in the milliamp range. Furthermore, as one demonstration of the effectiveness over large area-scalability and simplicity, implementing the micro-wave based purification, on large arrays consisting of ~20,000 SWNTs completely removes all of the m-SWNTs (~7,000) to yield a purity of s-SWNTs that corresponds, quantitatively, to at least to 99.9925% and likely significantly higher.

  10. Field effect transistors improve buffer amplifier

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Unity gain buffer amplifier with a Field Effect Transistor /FET/ differential input stage responds much faster than bipolar transistors when operated at low current levels. The circuit uses a dual FET in a unity gain buffer amplifier having extremely high input impedance, low bias current requirements, and wide bandwidth.

  11. Photon-triggered nanowire transistors

    NASA Astrophysics Data System (ADS)

    Kim, Jungkil; Lee, Hoo-Cheol; Kim, Kyoung-Ho; Hwang, Min-Soo; Park, Jin-Sung; Lee, Jung Min; So, Jae-Pil; Choi, Jae-Hyuck; Kwon, Soon-Hong; Barrelet, Carl J.; Park, Hong-Gyu

    2017-10-01

    Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 106. A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.

  12. Photon-triggered nanowire transistors.

    PubMed

    Kim, Jungkil; Lee, Hoo-Cheol; Kim, Kyoung-Ho; Hwang, Min-Soo; Park, Jin-Sung; Lee, Jung Min; So, Jae-Pil; Choi, Jae-Hyuck; Kwon, Soon-Hong; Barrelet, Carl J; Park, Hong-Gyu

    2017-10-01

    Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 10 6 . A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.

  13. The type IX secretion system is required for virulence of the fish pathogen Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare, a member of the phylum Bacteroidetes, causes columnaris disease in wild and aquaculture-reared freshwater fish. The mechanisms responsible for columnaris disease are not known. Many members of the phylum Bacteroidetes use type IX secretion systems (T9SSs) to secrete enzymes...

  14. Modeling of short channel MOS transistors

    NASA Technical Reports Server (NTRS)

    Lin, H. C.; Kokalis, D. P.; Bandy, W. R.

    1976-01-01

    Higher frequency response in MOS technology can be obtained by shortening the channel length. One approach for doing this involves an employment of higher resolution lithography technology. A second approach makes use of a double-diffused MOS transistor (DMOS). It is pointed out that the ordinary method of modeling the transistors used in both approaches is not accurate. An investigation is conducted of the questions which have to be considered for DMOS modeling. The modeling of a short channel MOS transistor is discussed, taking into account the derivation of the threshold voltage equation. Excellent agreement between theoretical and experimental data shows the accuracy of the described modeling approach.

  15. Pass-transistor very large scale integration

    NASA Technical Reports Server (NTRS)

    Maki, Gary K. (Inventor); Bhatia, Prakash R. (Inventor)

    2004-01-01

    Logic elements are provided that permit reductions in layout size and avoidance of hazards. Such logic elements may be included in libraries of logic cells. A logical function to be implemented by the logic element is decomposed about logical variables to identify factors corresponding to combinations of the logical variables and their complements. A pass transistor network is provided for implementing the pass network function in accordance with this decomposition. The pass transistor network includes ordered arrangements of pass transistors that correspond to the combinations of variables and complements resulting from the logical decomposition. The logic elements may act as selection circuits and be integrated with memory and buffer elements.

  16. Nanoscale chemical mapping of laser-solubilized silk

    NASA Astrophysics Data System (ADS)

    Ryu, Meguya; Kobayashi, Hanae; Balčytis, Armandas; Wang, Xuewen; Vongsvivut, Jitraporn; Li, Jingliang; Urayama, Norio; Mizeikis, Vygantas; Tobin, Mark; Juodkazis, Saulius; Morikawa, Junko

    2017-11-01

    A water soluble amorphous form of silk was made by ultra-short laser pulse irradiation and detected by nanoscale IR mapping. An optical absorption-induced nanoscale surface expansion was probed to yield the spectral response of silk at IR molecular fingerprinting wavelengths with a high  ˜ 20 nm spatial resolution defined by the tip of the probe. Silk microtomed sections of 1-5 μm in thickness were prepared for nanoscale spectroscopy and a laser was used to induce amorphisation. Comparison of silk absorbance measurements carried out by table-top and synchrotron Fourier transform IR spectroscopy proved that chemical imaging obtained at high spatial resolution and specificity (able to discriminate between amorphous and crystalline silk) is reliably achieved by nanoscale IR. Differences in absorbance and spectral line-shapes of the bands are related to the different sensitivity of the applied methods to real and imaginary parts of permittivity. A nanoscale material characterization by combining synchrotron IR radiation and nano-IR is discussed.

  17. Nanoscale phase change memory materials.

    PubMed

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  18. Self-assembly Columnar Structure in Active Layer of Bulk Heterojunction Solar Cell

    NASA Astrophysics Data System (ADS)

    Pan, Cheng; Segui, Jennifer; Yu, Yingjie; Li, Hongfei; Akgun, Bulent; Satijia, Sushil. K.; Gersappe, Dilip; Nam, Chang-Yong; Rafailovich, Miriam

    2012-02-01

    Bulk Heterojunction (BHJ) polymer solar cells are an area of intense interest due to their flexibility and relatively low cost. However, due to the disordered inner structure in active layer, the power conversion efficiency of BHJ solar cell is relatively low. Our research provides the method to produce ordered self-assembly columnar structure within active layer of bulk heterojunction (BHJ) solar cell by introducing polystyrene (PS) into the active layer. The blend thin film of polystyrene, poly (3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) at different ratio are spin coated on substrate and annealed in vacuum oven for certain time. Atomic force microscopy (AFM) images show uniform phase segregation on the surface of polymer blend thin film and highly ordered columnar structure is then proven by etching the film with ion sputtering. TEM cross-section technology is also used to investigate the column structure. Neutron reflectometry was taken to establish the confinement of PCBM at the interface of PS and P3HT. The different morphological structures formed via phase segregation will be correlated with the performance of the PEV cells to be fabricated at the BNL-CFN.

  19. Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Piwko, Markus; Kuntze, Thomas; Winkler, Sebastian; Straach, Steffen; Härtel, Paul; Althues, Holger; Kaskel, Stefan

    2017-05-01

    Silicon is a promising anode material for next generation lithium secondary batteries. To significantly increase the energy density of state of the art batteries with silicon, new concepts have to be developed and electrode structuring will become a key technology. Structuring is essential to reduce the macroscopic and microscopic electrode deformation, caused by the volume change during cycling. We report pulsed laser structuring for the generation of hierarchical columnar silicon films with outstanding high areal capacities up to 7.5 mAh cm-2 and good capacity retention. Unstructured columnar electrodes form a micron-sized block structure during the first cycle to compensate the volume expansion leading to macroscopic electrode deformation. At increased silicon loading, without additional structuring, pronounced distortion and the formation of cracks through the current collector causes cell failure. Pulsed laser ablation instead is demonstrated to avoid macroscopic electrode deformation by initial formation of the block structure. A full cell with lithiated silicon versus a carbon-sulfur cathode is assembled with only 15% overbalanced anode and low electrolyte amount (8 μl mgsulfur-1). While the capacity retention over 50 cycles is identical to a cell with high excess lithium anode, the volumetric energy density could be increased by 30%.

  20. Ultrashort Channel Length Black Phosphorus Field-Effect Transistors.

    PubMed

    Miao, Jinshui; Zhang, Suoming; Cai, Le; Scherr, Martin; Wang, Chuan

    2015-09-22

    This paper reports high-performance top-gated black phosphorus (BP) field-effect transistors with channel lengths down to 20 nm fabricated using a facile angle evaporation process. By controlling the evaporation angle, the channel length of the transistors can be reproducibly controlled to be anywhere between 20 and 70 nm. The as-fabricated 20 nm top-gated BP transistors exhibit respectable on-state current (174 μA/μm) and transconductance (70 μS/μm) at a VDS of 0.1 V. Due to the use of two-dimensional BP as the channel material, the transistors exhibit relatively small short channel effects, preserving a decent on-off current ratio of 10(2) even at an extremely small channel length of 20 nm. Additionally, unlike the unencapsulated BP devices, which are known to be chemically unstable in ambient conditions, the top-gated BP transistors passivated by the Al2O3 gate dielectric layer remain stable without noticeable degradation in device performance after being stored in ambient conditions for more than 1 week. This work demonstrates the great promise of atomically thin BP for applications in ultimately scaled transistors.

  1. Low electron mobility of field-effect transistor determined by modulated magnetoresistance

    NASA Astrophysics Data System (ADS)

    Tauk, R.; Łusakowski, J.; Knap, W.; Tiberj, A.; Bougrioua, Z.; Azize, M.; Lorenzini, P.; Sakowicz, M.; Karpierz, K.; Fenouillet-Beranger, C.; Cassé, M.; Gallon, C.; Boeuf, F.; Skotnicki, T.

    2007-11-01

    Room temperature magnetotransport experiments were carried out on field-effect transistors in magnetic fields up to 10 T. It is shown that measurements of the transistor magnetoresistance and its first derivative with respect to the gate voltage allow the derivation of the electron mobility in the gated part of the transistor channel, while the access/contact resistances and the transistor gate length need not be known. We demonstrate the potential of this method using GaN and Si field-effect transistors and discuss its importance for mobility measurements in transistors with nanometer gate length.

  2. Origin of Degradation Phenomenon under Drain Bias Stress for Oxide Thin Film Transistors using IGZO and IGO Channel Layers

    PubMed Central

    Bak, Jun Yong; Kang, Youngho; Yang, Shinhyuk; Ryu, Ho-Jun; Hwang, Chi-Sun; Han, Seungwu; Yoon, Sung-Min

    2015-01-01

    Top-gate structured thin film transistors (TFTs) using In-Ga-Zn-O (IGZO) and In-Ga-O (IGO) channel compositions were investigated to reveal a feasible origin for degradation phenomenon under drain bias stress (DBS). DBS-driven instability in terms of VTH shift, deviation of the SS value, and increase in the on-state current were detected only for the IGZO-TFT, in contrast to the IGO-TFT, which did not demonstrate VTH shift. These behaviors were visually confirmed via nanoscale transmission electron microscopy and energy-dispersive x-ray spectroscopy observations. To understand the degradation mechanism, we performed ab initio molecular dynamic simulations on the liquid phases of IGZO and IGO. The diffusivities of Ga and In atoms were enhanced in IGZO, confirming the degradation mechanism to be increased atomic diffusion. PMID:25601183

  3. Origin of degradation phenomenon under drain bias stress for oxide thin film transistors using IGZO and IGO channel layers.

    PubMed

    Bak, Jun Yong; Kang, Youngho; Yang, Shinhyuk; Ryu, Ho-Jun; Hwang, Chi-Sun; Han, Seungwu; Yoon, Sung-Min

    2015-01-20

    Top-gate structured thin film transistors (TFTs) using In-Ga-Zn-O (IGZO) and In-Ga-O (IGO) channel compositions were investigated to reveal a feasible origin for degradation phenomenon under drain bias stress (DBS). DBS-driven instability in terms of V(TH) shift, deviation of the SS value, and increase in the on-state current were detected only for the IGZO-TFT, in contrast to the IGO-TFT, which did not demonstrate V(TH) shift. These behaviors were visually confirmed via nanoscale transmission electron microscopy and energy-dispersive x-ray spectroscopy observations. To understand the degradation mechanism, we performed ab initio molecular dynamic simulations on the liquid phases of IGZO and IGO. The diffusivities of Ga and In atoms were enhanced in IGZO, confirming the degradation mechanism to be increased atomic diffusion.

  4. Application of the Johnson criteria to graphene transistors

    NASA Astrophysics Data System (ADS)

    Kelly, M. J.

    2013-12-01

    For 60 years, the Johnson criteria have guided the development of materials and the materials choices for field-effect and bipolar transistor technology. Intrinsic graphene is a semi-metal, precluding transistor applications, but only under lateral bias is a gap opened and transistor action possible. This first application of the Johnson criteria to biased graphene suggests that this material will struggle to ever achieve competitive commercial applications.

  5. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    NASA Astrophysics Data System (ADS)

    Almuslem, A. S.; Hanna, A. N.; Yapici, T.; Wehbe, N.; Diallo, E. M.; Kutbee, A. T.; Bahabry, R. R.; Hussain, M. M.

    2017-02-01

    In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO2) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.

  6. Water availability and the competitive effect of a columnar cactus on its nurse plant

    NASA Astrophysics Data System (ADS)

    Flores-Martínez, Arturo; Ezcurra, Exequiel; Sánchez-Colón, Salvador

    1998-02-01

    A field study was conducted in a semi-arid tropical ecosystem in Mexico to test whether competition for soil water is the causal mechanism underlying the negative effect of the columnar cactus Neobuxbaumia tetetzo on its nurse plant Mimosa luisana and to examine how this relationship varies over time. The effect of irrigation was evaluated by recording the production of leaves, modules (i.e. internodes with an axillary bud), inflorescences and fruits in shrubs growing either isolated or associated with juvenile or adult columnar cacti. 4 001 of water, in five doses of 801 each every 15 d, were added to the treatment plants; no water other than rainfall was added to control plants. Additionally, to evaluate how the effect of the columnar cacti on the shrubs may vary among years we made a comparison of the production of plant structures between 2 years of contrasting rainfall. The irrigation treatment increased the production of modules, inflorescences and fruits, but not of leaves. Shrub response to watering was also dependent on class of association: those associated with juvenile cacti showed a higher response to irrigation than any other treatment. Our results show that water addition increases the production of structures and partially reduces the negative effect of the cactus on nurse shrub, thus supporting the hypothesis of competition for water. The negative effect of the cacti on their nurse plants was present during both years of observations, but the intensity of the negative effect varies from relatively wet to dry years. The results are discussed in relation to how temporal changes in resource availability affect the results of competitive interactions and the importance of this mechanism in the structure and dynamics of this dryland community.

  7. Outlook and emerging semiconducting materials for ambipolar transistors.

    PubMed

    Bisri, Satria Zulkarnaen; Piliego, Claudia; Gao, Jia; Loi, Maria Antonietta

    2014-02-26

    Ambipolar or bipolar transistors are transistors in which both holes and electrons are mobile inside the conducting channel. This device allows switching among several states: the hole-dominated on-state, the off-state, and the electron-dominated on-state. In the past year, it has attracted great interest in exotic semiconductors, such as organic semiconductors, nanostructured materials, and carbon nanotubes. The ability to utilize both holes and electrons inside one device opens new possibilities for the development of more compact complementary metal-oxide semiconductor (CMOS) circuits, and new kinds of optoelectronic device, namely, ambipolar light-emitting transistors. This progress report highlights the recent progresses in the field of ambipolar transistors, both from the fundamental physics and application viewpoints. Attention is devoted to the challenges that should be faced for the realization of ambipolar transistors with different material systems, beginning with the understanding of the importance of interface modification, which heavily affects injections and trapping of both holes and electrons. The recent development of advanced gating applications, including ionic liquid gating, that open up more possibility to realize ambipolar transport in materials in which one type of charge carrier is highly dominant is highlighted. Between the possible applications of ambipolar field-effect transistors, we focus on ambipolar light-emitting transistors. We put this new device in the framework of its prospective for general lightings, embedded displays, current-driven laser, as well as for photonics-electronics interconnection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Interobserver reproducibility in pathologist interpretation of columnar-lined esophagus.

    PubMed

    Mastracci, Luca; Piol, Nataniele; Molinaro, Luca; Pitto, Francesca; Tinelli, Carmine; De Silvestri, Annalisa; Fiocca, Roberto; Grillo, Federica

    2016-02-01

    Confirmation of endoscopically suspected esophageal metaplasia (ESEM) requires histology, but confusion in the histological definition of columnar-lined esophagus (CLE) is a longstanding problem. The aim of this study is to evaluate interpathologist variability in the interpretation of CLE. Thirty pathologists were invited to review three ten-case sets of CLE biopsies. In the first set, the cases were provided with descriptive endoscopy only; in the second and the third sets, ESEM extent using Prague criteria was provided. Moreover, participants were required to refer to a diagnostic chart for evaluation of the third set. Agreement was statistically assessed using Randolph's free-marginal multirater kappa. While substantial agreement in recognizing columnar epithelium (K = 0.76) was recorded, the overall concordance in clinico-pathological diagnosis was low (K = 0.38). The overall concordance rate improved from the first (K = 0.27) to the second (K = 0.40) and third step (K = 0.46). Agreement was substantial when diagnosing Barrett's esophagus (BE) with intestinal metaplasia or inlet patch (K = 0.65 and K = 0.89), respectively, in the third step, while major problems in interpretation of CLE were observed when only cardia/cardia-oxyntic atrophic-type epithelium was present (K = 0.05-0.29). In conclusion, precise endoscopic description and the use of a diagnostic chart increased consistency in CLE interpretation of esophageal biopsies. Agreement was substantial for some diagnostic categories (BE with intestinal metaplasia and inlet patch) with a well-defined clinical profile. Interpretation of cases with cardia/cardia-oxyntic atrophic-type epithelium, with or without ESEM, was least consistent, which reflects lack of clarity of definition and results in variable management of this entity.

  9. Flexible Proton-Gated Oxide Synaptic Transistors on Si Membrane.

    PubMed

    Zhu, Li Qiang; Wan, Chang Jin; Gao, Ping Qi; Liu, Yang Hui; Xiao, Hui; Ye, Ji Chun; Wan, Qing

    2016-08-24

    Ion-conducting materials have received considerable attention for their applications in fuel cells, electrochemical devices, and sensors. Here, flexible indium zinc oxide (InZnO) synaptic transistors with multiple presynaptic inputs gated by proton-conducting phosphorosilicate glass-based electrolyte films are fabricated on ultrathin Si membranes. Transient characteristics of the proton gated InZnO synaptic transistors are investigated, indicating stable proton-gating behaviors. Short-term synaptic plasticities are mimicked on the proposed proton-gated synaptic transistors. Furthermore, synaptic integration regulations are mimicked on the proposed synaptic transistor networks. Spiking logic modulations are realized based on the transition between superlinear and sublinear synaptic integration. The multigates coupled flexible proton-gated oxide synaptic transistors may be interesting for neuroinspired platforms with sophisticated spatiotemporal information processing.

  10. Proton Damage Effects on Carbon Nanotube Field-Effect Transistors

    DTIC Science & Technology

    2014-06-19

    PROTON DAMAGE EFFECTS ON CARBON NANOTUBE FIELD-EFFECT TRANSISTORS THESIS Evan R. Kemp, Ctr...United States. AFIT-ENP-T-14-J-39 PROTON DAMAGE EFFECTS ON CARBON NANOTUBE FIELD-EFFECT TRANSISTORS THESIS Presented to...PROTON DAMAGE EFFECTS ON CARBON NANOTUBE FIELD-EFFECT TRANSISTORS Evan R. Kemp, BS Ctr, USAF Approved: // Signed

  11. Atomistic Design and Simulations of Nanoscale Machines and Assembly

    NASA Technical Reports Server (NTRS)

    Goddard, William A., III; Cagin, Tahir; Walch, Stephen P.

    2000-01-01

    Over the three years of this project, we made significant progress on critical theoretical and computational issues in nanoscale science and technology, particularly in:(1) Fullerenes and nanotubes, (2) Characterization of surfaces of diamond and silicon for NEMS applications, (3) Nanoscale machine and assemblies, (4) Organic nanostructures and dendrimers, (5) Nanoscale confinement and nanotribology, (6) Dynamic response of nanoscale structures nanowires (metals, tubes, fullerenes), (7) Thermal transport in nanostructures.

  12. Lateral energy band profile modulation in tunnel field effect transistors based on gate structure engineering

    NASA Astrophysics Data System (ADS)

    Cui, Ning; Liang, Renrong; Wang, Jing; Xu, Jun

    2012-06-01

    Choosing novel materials and structures is important for enhancing the on-state current in tunnel field-effect transistors (TFETs). In this paper, we reveal that the on-state performance of TFETs is mainly determined by the energy band profile of the channel. According to this interpretation, we present a new concept of energy band profile modulation (BPM) achieved with gate structure engineering. It is believed that this approach can be used to suppress the ambipolar effect. Based on this method, a Si TFET device with a symmetrical tri-material-gate (TMG) structure is proposed. Two-dimensional numerical simulations demonstrated that the special band profile in this device can boost on-state performance, and it also suppresses the off-state current induced by the ambipolar effect. These unique advantages are maintained over a wide range of gate lengths and supply voltages. The BPM concept can serve as a guideline for improving the performance of nanoscale TFET devices.

  13. A Columnar Storage Strategy with Spatiotemporal Index for Big Climate Data

    NASA Astrophysics Data System (ADS)

    Hu, F.; Bowen, M. K.; Li, Z.; Schnase, J. L.; Duffy, D.; Lee, T. J.; Yang, C. P.

    2015-12-01

    Large collections of observational, reanalysis, and climate model output data may grow to as large as a 100 PB in the coming years, so climate dataset is in the Big Data domain, and various distributed computing frameworks have been utilized to address the challenges by big climate data analysis. However, due to the binary data format (NetCDF, HDF) with high spatial and temporal dimensions, the computing frameworks in Apache Hadoop ecosystem are not originally suited for big climate data. In order to make the computing frameworks in Hadoop ecosystem directly support big climate data, we propose a columnar storage format with spatiotemporal index to store climate data, which will support any project in the Apache Hadoop ecosystem (e.g. MapReduce, Spark, Hive, Impala). With this approach, the climate data will be transferred into binary Parquet data format, a columnar storage format, and spatial and temporal index will be built and attached into the end of Parquet files to enable real-time data query. Then such climate data in Parquet data format could be available to any computing frameworks in Hadoop ecosystem. The proposed approach is evaluated using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. Experimental results show that this approach could efficiently overcome the gap between the big climate data and the distributed computing frameworks, and the spatiotemporal index could significantly accelerate data querying and processing.

  14. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.

    PubMed

    Jin, Jae Sik; Lee, Joon Sik

    2007-11-01

    An electron-phonon interaction model is proposed and applied to thermal transport in semiconductors at micro/nanoscales. The high electron energy induced by the electric field in a transistor is transferred to the phonon system through electron-phonon interaction in the high field region of the transistor. Due to this fact, a hot spot occurs, which is much smaller than the phonon mean free path in the Si-layer. The full phonon dispersion model based on the Boltzmann transport equation (BTE) with the relaxation time approximation is applied for the interactions among different phonon branches and different phonon frequencies. The Joule heating by the electron-phonon scattering is modeled through the intervalley and intravalley processes for silicon by introducing average electron energy. The simulation results are compared with those obtained by the full phonon dispersion model which treats the electron-phonon scattering as a volumetric heat source. The comparison shows that the peak temperature in the hot spot region is considerably higher and more localized than the previous results. The thermal characteristics of each phonon mode are useful to explain the above phenomena. The optical mode phonons of negligible group velocity obtain the highest energy density from electrons, and resides in the hot spot region without any contribution to heat transport, which results in a higher temperature in that region. Since the acoustic phonons with low group velocity show the higher energy density after electron-phonon scattering, they induce more localized heating near the hot spot region. The ballistic features are strongly observed when phonon-phonon scattering rates are lower than 4 x 10(10) S(-1).

  15. Electrochemical doping for lowering contact barriers in organic field effect transistors

    PubMed Central

    Schaur, Stefan; Stadler, Philipp; Meana-Esteban, Beatriz; Neugebauer, Helmut; Serdar Sariciftci, N.

    2012-01-01

    By electrochemically p-doping pentacene in the vicinity of the source-drain electrodes in organic field effect transistors the injection barrier for holes is decreased. The focus of this work is put on the influence of the p-doping process on the transistor performance. Cyclic voltammetry performed on a pentacene based transistor exhibits a reversible p-doping response. This doped state is evoked at the transistor injection electrodes. An improvement is observed when comparing transistor characteristics before and after the doping process apparent by an improved transistor on-current. This effect is reflected in the analysis of the contact resistances of the devices. PMID:23483101

  16. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Picotto, G. B.; Koenders, L.; Wilkening, G.

    2009-08-01

    Instrumentation and measurement techniques at the nanoscale play a crucial role not only in extending our knowledge of the properties of matter and processes in nanosciences, but also in addressing new measurement needs in process control and quality assurance in industry. Micro- and nanotechnologies are now facing a growing demand for quantitative measurements to support the reliability, safety and competitiveness of products and services. Quantitative measurements presuppose reliable and stable instruments and measurement procedures as well as suitable calibration artefacts to ensure the quality of measurements and traceability to standards. This special issue of Measurement Science and Technology presents selected contributions from the Nanoscale 2008 seminar held at the Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, in September 2008. This was the 4th Seminar on Nanoscale Calibration Standards and Methods and the 8th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized by the Nanometrology Group within EUROMET (The European Collaboration in Measurement Standards), the German Nanotechnology Competence Centre 'Ultraprecise Surface Figuring' (CC-UPOB), the Physikalisch-Technische Bundesanstalt (PTB) and INRIM. A special event during the seminar was the 'knighting' of Günter Wilkening from PTB, Braunschweig, Germany, as the 1st Knight of Dimensional Nanometrology. Günter Wilkening received the NanoKnight Award for his outstanding work in the field of dimensional nanometrology over the last 20 years. The contributions in this special issue deal with the developments and improvements of instrumentation and measurement methods for scanning force microscopy (SFM), electron and optical microscopy, high-resolution interferometry, calibration of instruments and new standards, new facilities and applications including critical dimension (CD) measurements on small and medium structures and nanoparticle

  17. Magnetic Vortex Based Transistor Operations

    PubMed Central

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  18. Magnetic vortex based transistor operations.

    PubMed

    Kumar, D; Barman, S; Barman, A

    2014-02-17

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan-out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT).

  19. Magnetic Vortex Based Transistor Operations

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Barman, S.; Barman, A.

    2014-02-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan-out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT).

  20. High current gain transistor laser

    PubMed Central

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-01-01

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge. PMID:27282466

  1. Dynamics of systems on the nanoscale

    NASA Astrophysics Data System (ADS)

    Korol, Andrei V.; Solov'yov, Andrey V.

    2017-12-01

    Various aspects of the structure formation and dynamics of animate and inanimate matter on the nanoscale is a highly interdisciplinary field of rapidly emerging research interest by both experimentalists and theorists. The International Conference on Dynamics of Systems on the Nanoscale (DySoN) is the premier forum to present cutting-edge research in this field. It was established in 2010 and the most recent conference was held in Bad Ems, Germany in October of 2016. This Topical Issue presents original research results from some of the participants, who attended this conference. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  2. Liquid crystals for organic transistors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hanna, Jun-ichi; Iino, Hiroaki

    2016-09-01

    Liquid crystals are a new type of organic semiconductors exhibiting molecular orientation in self-organizing manner, and have high potential for device applications. In fact, various device applications have been proposed so far, including photosensors, solar cells, light emitting diodes, field effect transistors, and so on.. However, device performance in those fabricated with liquid crystals is less than those of devices fabricated with conventional materials in spite of unique features of liquid crystals. Here we discuss how we can utilize the liquid crystallinity in organic transistors and how we can overcome conventional non-liquid crystalline organic transistor materials. Then, we demonstrate high performance organic transistors fabricated with a smectic E liquid crystal of Ph-BTBT-10, which show high mobility of over 10cm2/Vs and high thermal durability of over 200oC in OFETs fabricated with its spin-coated polycrystalline thin films.

  3. Protonospheric columnar electron content determination. I - Analysis.

    NASA Technical Reports Server (NTRS)

    Almeida, O. G.

    1973-01-01

    A combination of phase-path length difference and Faraday rotation angle data obtained from geostationary satellite transmissions is used to determine the integration constant necessary to convert phase-path length difference information into absolute values of total slant columnar electron content. The total content thus determined, which is the sum of the ionospheric and protonospheric contents, is measured with uncertainties about one order of magnitude smaller than the value of the protonospheric content. It is thus, in principle, possible to determine the latter by subtracting from the measurement the so-called 'Faraday content.' This idea, proposed by several authors in the past, is critically examined in the present paper. It is impossible to totally eliminate the ionospheric contribution to the measurements; however, it is shown that the degree of elimination depends on the type of distribution of the longitudinal component of the geomagnetic field along the path of observation. Satisfactory minimization of the ionospheric contribution can be accomplished only under certain geometries of observation.

  4. Transistor circuit increases range of logarithmic current amplifier

    NASA Technical Reports Server (NTRS)

    Gilmour, G.

    1966-01-01

    Circuit increases the range of a logarithmic current amplifier by combining a commercially available amplifier with a silicon epitaxial transistor. A temperature compensating network is provided for the transistor.

  5. Bio-fabrication of nanomesh channels of single-walled carbon nanotubes for locally gated field-effect transistors

    NASA Astrophysics Data System (ADS)

    Byeon, Hye-Hyeon; Lee, Woo Chul; Kim, Wonbin; Kim, Seong Keun; Kim, Woong; Yi, Hyunjung

    2017-01-01

    Single-walled carbon nanotubes (SWNTs) are one of the promising electronic components for nanoscale electronic devices such as field-effect transistors (FETs) owing to their excellent device characteristics such as high conductivity, high carrier mobility and mechanical flexibility. Localized gating gemometry of FETs enables individual addressing of active channels and allows for better electrostatics via thinner dielectric layer of high k-value. For localized gating of SWNTs, it becomes critical to define SWNTs of controlled nanostructures and functionality onto desired locations in high precision. Here, we demonstrate that a biologically templated approach in combination of microfabrication processes can successfully produce a nanostructured channels of SWNTs for localized active devices such as local bottom-gated FETs. A large-scale nanostructured network, nanomesh, of SWNTs were assembled in solution using an M13 phage with strong binding affinity toward SWNTs and micrometer-scale nanomesh channels were defined using negative photolithography and plasma-etching processes. The bio-fabrication approach produced local bottom-gated FETs with remarkably controllable nanostructures and successfully enabled semiconducting behavior out of unsorted SWNTs. In addition, the localized gating scheme enhanced the device performances such as operation voltage and I on/I off ratio. We believe that our approach provides a useful and integrative method for fabricating electronic devices out of nanoscale electronic materials for applications in which tunable electrical properties, mechanical flexibility, ambient stability, and chemical stability are of crucial importance.

  6. Columnar cell lesions without atypia initially diagnosed on breast needle biopsies: is imaging follow-up enough?

    PubMed

    Seo, Mirinae; Chang, Jung Min; Kim, Won Hwa; Park, In-Ae; Lee, Su Hyun; Cho, Nariya; Moon, Woo Kyung

    2013-10-01

    The purpose of this study was to evaluate the underestimation rate and predictive factor of underestimation of columnar cell lesions (CCLs) without atypia diagnosed through breast core needle biopsies (CNBs). From January 2007 through December 2011, 141 CCLs without atypia, including columnar cell change and columnar cell hyperplasia, were diagnosed in 138 women by CNB. Excisional (n = 16) or imaging follow-up (n = 125) findings were available in all cases. On a per-lesion basis, the underestimation rate and predictive factor of underestimation were evaluated. Among the 16 surgically excised lesions, there were two malignancies (one ductal carcinoma in situ and one invasive ductal carcinoma) and one lobular carcinoma in situ. Overall, the pooled underestimation rate of malignancy was 1.4% (2/141). With regard to lesion variables, the mean lesion size was significantly larger in the underestimation group of CCLs (p = 0.007). Fine pleomorphic morphology of microcalcifications (p < 0.001), the distribution of the microcalcifications (p = 0.007), BI-RADS final assessment (p = 0.001), and imaging-pathologic correlation (p < 0.001) were significantly associated with underestimation. Multivariate analysis showed that fine pleomorphic morphology of microcalcifications (p < 0.0001) was an independent predictor of underestimation in 58 lesions with microcalcifications on mammography. The overall underestimation rate of malignancy was 1.4%. Imaging follow-up is reasonable for CCLs without atypia at CNB, especially in small lesions with less suspicious imaging findings. Fine pleomorphic microcalcifications and higher BI-RADS category might be helpful in the prediction of underestimation of a high-risk lesion or malignancy.

  7. Stretchable transistors with buckled carbon nanotube films as conducting channels

    DOEpatents

    Arnold, Michael S; Xu, Feng

    2015-03-24

    Thin-film transistors comprising buckled films comprising carbon nanotubes as the conductive channel are provided. Also provided are methods of fabricating the transistors. The transistors, which are highly stretchable and bendable, exhibit stable performance even when operated under high tensile strains.

  8. Metal nanoparticle film-based room temperature Coulomb transistor.

    PubMed

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-07-01

    Single-electron transistors would represent an approach to developing less power-consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations.

  9. Npn double heterostructure bipolar transistor with ingaasn base region

    DOEpatents

    Chang, Ping-Chih; Baca, Albert G.; Li, Nein-Yi; Hou, Hong Q.; Ashby, Carol I. H.

    2004-07-20

    An NPN double heterostructure bipolar transistor (DHBT) is disclosed with a base region comprising a layer of p-type-doped indium gallium arsenide nitride (InGaAsN) sandwiched between n-type-doped collector and emitter regions. The use of InGaAsN for the base region lowers the transistor turn-on voltage, V.sub.on, thereby reducing power dissipation within the device. The NPN transistor, which has applications for forming low-power electronic circuitry, is formed on a gallium arsenide (GaAs) substrate and can be fabricated at commercial GaAs foundries. Methods for fabricating the NPN transistor are also disclosed.

  10. [Smart drug delivery systems based on nanoscale ZnO].

    PubMed

    Huang, Xiao; Chen, Chun; Yi, Caixia; Zheng, Xi

    2018-04-01

    In view of the excellent biocompatibility as well as the low cost, nanoscale ZnO shows great potential for drug delivery application. Moreover, The charming character enable nanoscale ZnO some excellent features (e.g. dissolution in acid, ultrasonic permeability, microwave absorbing, hydrophobic/hydrophilic transition). All of that make nanoscale ZnO reasonable choices for smart drug delivery. In the recent decade, more and more studies have focused on controlling the drug release behavior via smart drug delivery systems based on nanoscale ZnO responsive to some certain stimuli. Herein, we review the recent exciting progress on the pH-responsive, ultrasound-responsive, microwave-responsive and UV-responsive nanoscale ZnO-based drug delivery systems. A brief introduction of the drug controlled release behavior and its effect of the drug delivery systems is presented. The biocompatibility of nanoscale ZnO is also discussed. Moreover, its development prospect is looked forward.

  11. Organic field effect transistor with ultra high amplification

    NASA Astrophysics Data System (ADS)

    Torricelli, Fabrizio

    2016-09-01

    High-gain transistors are essential for the large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show organic transistors fabricated on plastic foils enabling unipolar amplifiers with ultra-gain. The proposed approach is general and opens up new opportunities for ultra-large signal amplification in organic circuits and sensors.

  12. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Klapetek, P.; Koenders, L.

    2011-09-01

    This special issue of Measurement Science and Technology presents selected contributions from the NanoScale 2010 seminar held in Brno, Czech Republic. It was the 5th Seminar on Nanoscale Calibration Standards and Methods and the 9th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized with the Czech Metrology Institute (CMI) and the Nanometrology Group of the Technical Committee-Length of EURAMET. There were two workshops that were integrated into NanoScale 2010: first a workshop presenting the results obtained in NANOTRACE, a European Metrology Research Project (EMRP) on displacement-measuring optical interferometers, and second a workshop about the European metrology landscape in nanometrology related to thin films, scanning probe microscopy and critical dimension. The aim of this workshop was to bring together developers, applicants and metrologists working in this field of nanometrology and to discuss future needs. For more information see www.co-nanomet.eu. The articles in this special issue of Measurement Science and Technology cover some novel scientific results. This issue can serve also as a representative selection of topics that are currently being investigated in the field of European and world-wide nanometrology. Besides traditional topics of dimensional metrology, like development of novel interferometers or laser stabilization techniques, some novel interesting trends in the field of nanometrology are observed. As metrology generally reflects the needs of scientific and industrial research, many research topics addressed refer to current trends in nanotechnology, too, focusing on traceability and improved measurement accuracy in this field. While historically the most studied standards in nanometrology were related to simple geometric structures like step heights or 1D or 2D gratings, now we are facing tasks to measure 3D structures and many unforeseen questions arising from interesting physical

  13. Carrier mobility in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Benwadih, Mohamed; Gwoziecki, Romain; Coppard, Romain; Minari, Takeo; Liu, Chuan; Tsukagoshi, Kazuhito; Chroboczek, Jan; Balestra, Francis; Ghibaudo, Gerard

    2011-11-01

    A study of carrier transport in top-gate and bottom-contact TIPS-pentacene organic field-effect transistors (OFETs) based on mobility is presented. Among three mobilities extracted by different methods, the low-field mobility obtained by the Y function exhibits the best reliability and ease for use, whereas the widely applied field-effect mobility is not reliable, particularly in short-channel transistors and at low temperatures. A detailed study of contact transport reveals its strong impact on short-channel transistors, suggesting that a more intrinsic transport analysis is better implemented in relatively longer-channel devices. The observed temperature dependences of mobility are well explained by a transport model with Gaussian-like diffusivity band tails, different from diffusion in localized states band tails. This model explicitly interprets the non-zero constant mobility at low temperatures and clearly demonstrates the effects of disorder and hopping transport on temperature and carrier density dependences of mobility in organic transistors.

  14. Observation of strong reflection of electron waves exiting a ballistic channel at low energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaz, Canute I.; Campbell, Jason P.; Ryan, Jason T.

    2016-06-15

    Wave scattering by a potential step is a ubiquitous concept. Thus, it is surprising that theoretical treatments of ballistic transport in nanoscale devices, from quantum point contacts to ballistic transistors, assume no reflection even when the potential step is encountered upon exiting the device. Experiments so far seem to support this even if it is not clear why. Here we report clear evidence of coherent reflection when electron wave exits the channel of a nanoscale transistor and when the electron energy is low. The observed behavior is well described by a simple rectangular potential barrier model which the Schrodinger’s equationmore » can be solved exactly. We can explain why reflection is not observed in most situations but cannot be ignored in some important situations. Our experiment also represents a direct measurement of electron injection velocity - a critical quantity in nanoscale transistors that is widely considered not measurable.« less

  15. Theory of Magnetic Bipolar Transistors

    NASA Astrophysics Data System (ADS)

    Zutic, Igor; Fabian, Jaroslav; Das Sarma, S.

    2003-03-01

    We introduce the concept of a magnetic bipolar transistor (MBT) (J. Fabian, I. Zutic, S. Das Sarma, cond-mat/0211639.), which can be realized using already available materials. The transistor has at least one magnetic region (emitter, base, or collector) characterized by spin-splitting of the carrier bands. In addition, nonequilibrium (source) spin in MBTs can be induced by external means (electrically or optically). The theory of ideal MBTs is developed and discussed in the forward active regime where the transistors can amplify signals. It is shown that source spin can be injected from the emitter to the collector. It is predicted that electrical current gain (amplification) can be controlled effectively by magnetic field and source spin. If a base is a ferromagnetic semiconductor we suggest several methods for using spin-polarized bipolar transport (I. Zutic, J. Fabian, S. Das Sarma, Phys. Rev. Lett. f 88, 066603 (2002); J. Fabian, I. Zutic, S. Das Sarma, Phys. Rev. B f 66, 165301 (2002).) to manipulate semiconductor ferromagnetism.

  16. Development of Columnar Topography in the Excitatory Layer 4 to Layer 2/3 Projection in Rat Barrel Cortex

    PubMed Central

    Bender, Kevin J.; Rangel, Juliana; Feldman, Daniel E.

    2011-01-01

    The excitatory feedforward projection from layer (L) 4 to L2/3 in rat primary somatosensory (S1) cortex exhibits precise, columnar topography that is critical for columnar processing of whisker inputs. Here, we characterize the development of axonal topography in this projection using single-cell reconstructions in S1 slices. In the mature projection [postnatal day (P) 14 –26], axons of L4 cells extending into L2/3 were confined almost entirely to the home barrel column, consistent with previous results. At younger ages (P8 –11), however, axonal topography was significantly less columnar, with a large proportion of branches innervating neighboring barrel columns representing adjacent whisker rows. Mature topography developed from this initial state by targeted axonal growth within the home column and by growth of barrel columns themselves. Raising rats with all or a subset of whiskers plucked from P8 –9, manipulations that induce reorganization of functional whisker maps and synaptic depression at L4 to L2/3 synapses, did not alter normal anatomical development of L4 to L2/3 axons. Thus, development of this projection does not require normal sensory experience after P8, and deprivation-induced reorganization of whisker maps at this age is unlikely to involve physical remodeling of L4 to L2/3 axons. PMID:14507976

  17. Columnar epitaxy of hexagonal and orthorhombic silicides on Si(111)

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Nieh, C. W.; Xiao, Q. F.; Hashimoto, Shin

    1990-01-01

    Columnar grains of PtSi and CrSi2 surrounded by high-quality epitaxial silicon are obtained by ultrahigh vacuum codeposition of Si and metal in an approximately 10:1 ratio on Si(111) substrates heated to 610-840 C. This result is similar to that found previously for CoSi2 (a nearly-lattice-matched cubic-fluorite crystal) on Si(111), in spite of the respective orthorhombic and hexagonal structures of PtSi and CrSi2. The PtSi grains are epitaxial and have one of three variants of the relation defined by PtSi(010)/Si(111), with PtSi 001 line/Si 110 line type.

  18. Quality control ranges for testing broth microdilution susceptibility of Flavobacterium columnare and F. psychrophilium to nine antimicrobials

    USDA-ARS?s Scientific Manuscript database

    A multi-laboratory broth microdilution method trial was performed to standardize the specialized test conditions required for fish pathogens Flavobacterium columnare and F. pyschrophilum. Nine laboratories tested the quality control (QC) strains Escherichia coli ATCC 25922 and Aeromonas salmonicid...

  19. New directions for nanoscale thermoelectric materials research

    NASA Technical Reports Server (NTRS)

    Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, F.; Fleurial, J. P.; Gogna, P.

    2005-01-01

    Many of the recent advances in enhancing the thermoelectric figure of merit are linked to nanoscale phenomena with both bulk samples containing nanoscale constituents and nanoscale materials exhibiting enhanced thermoelectric performance in their own right. Prior theoretical and experimental proof of principle studies on isolated quantum well and quantum wire samples have now evolved into studies on bulk samples containing nanostructured constituents. In this review, nanostructural composites are shown to exhibit nanostructures and properties that show promise for thermoelectric applications. A review of some of the results obtained to date are presented.

  20. A steep-slope transistor based on abrupt electronic phase transition

    NASA Astrophysics Data System (ADS)

    Shukla, Nikhil; Thathachary, Arun V.; Agrawal, Ashish; Paik, Hanjong; Aziz, Ahmedullah; Schlom, Darrell G.; Gupta, Sumeet Kumar; Engel-Herbert, Roman; Datta, Suman

    2015-08-01

    Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance transistors have experienced little success. Here, we demonstrate a pathway for harnessing the abrupt resistivity transformation across the insulator-to-metal transition in vanadium dioxide (VO2), to design a hybrid-phase-transition field-effect transistor that exhibits gate controlled steep (`sub-kT/q') and reversible switching at room temperature. The transistor design, wherein VO2 is implemented in series with the field-effect transistor's source rather than into the channel, exploits negative differential resistance induced across the VO2 to create an internal amplifier that facilitates enhanced performance over a conventional field-effect transistor. Our approach enables low-voltage complementary n-type and p-type transistor operation as demonstrated here, and is applicable to other insulator-to-metal transition materials, offering tantalizing possibilities for energy-efficient logic and memory applications.

  1. A steep-slope transistor based on abrupt electronic phase transition.

    PubMed

    Shukla, Nikhil; Thathachary, Arun V; Agrawal, Ashish; Paik, Hanjong; Aziz, Ahmedullah; Schlom, Darrell G; Gupta, Sumeet Kumar; Engel-Herbert, Roman; Datta, Suman

    2015-08-07

    Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance transistors have experienced little success. Here, we demonstrate a pathway for harnessing the abrupt resistivity transformation across the insulator-to-metal transition in vanadium dioxide (VO2), to design a hybrid-phase-transition field-effect transistor that exhibits gate controlled steep ('sub-kT/q') and reversible switching at room temperature. The transistor design, wherein VO2 is implemented in series with the field-effect transistor's source rather than into the channel, exploits negative differential resistance induced across the VO2 to create an internal amplifier that facilitates enhanced performance over a conventional field-effect transistor. Our approach enables low-voltage complementary n-type and p-type transistor operation as demonstrated here, and is applicable to other insulator-to-metal transition materials, offering tantalizing possibilities for energy-efficient logic and memory applications.

  2. Enhanced transconductance in a double-gate graphene field-effect transistor

    NASA Astrophysics Data System (ADS)

    Hwang, Byeong-Woon; Yeom, Hye-In; Kim, Daewon; Kim, Choong-Ki; Lee, Dongil; Choi, Yang-Kyu

    2018-03-01

    Multi-gate transistors, such as double-gate, tri-gate and gate-all-around transistors are the most advanced Si transistor structure today. Here, a genuine double-gate transistor with a graphene channel is experimentally demonstrated. The top and bottom gates of the double-gate graphene field-effect transistor (DG GFET) are electrically connected so that the conductivity of the graphene channel can be modulated simultaneously by both the top and bottom gate. A single-gate graphene field-effect transistor (SG GFET) with only the top gate is also fabricated as a control device. For systematical analysis, the transfer characteristics of both GFETs were measured and compared. Whereas the maximum transconductance of the SG GFET was 17.1 μS/μm, that of the DG GFET was 25.7 μS/μm, which is approximately a 50% enhancement. The enhancement of the transconductance was reproduced and comprehensively explained by a physics-based compact model for GFETs. The investigation of the enhanced transfer characteristics of the DG GFET in this work shows the possibility of a multi-gate architecture for high-performance graphene transistor technology.

  3. Modeling of charge transport in ion bipolar junction transistors.

    PubMed

    Volkov, Anton V; Tybrandt, Klas; Berggren, Magnus; Zozoulenko, Igor V

    2014-06-17

    Spatiotemporal control of the complex chemical microenvironment is of great importance to many fields within life science. One way to facilitate such control is to construct delivery circuits, comprising arrays of dispensing outlets, for ions and charged biomolecules based on ionic transistors. This allows for addressability of ionic signals, which opens up for spatiotemporally controlled delivery in a highly complex manner. One class of ionic transistors, the ion bipolar junction transistors (IBJTs), is especially attractive for these applications because these transistors are functional at physiological conditions and have been employed to modulate the delivery of neurotransmitters to regulate signaling in neuronal cells. Further, the first integrated complementary ionic circuits were recently developed on the basis of these ionic transistors. However, a detailed understanding of the device physics of these transistors is still lacking and hampers further development of components and circuits. Here, we report on the modeling of IBJTs using Poisson's and Nernst-Planck equations and the finite element method. A two-dimensional model of the device is employed that successfully reproduces the main characteristics of the measurement data. On the basis of the detailed concentration and potential profiles provided by the model, the different modes of operation of the transistor are analyzed as well as the transitions between the different modes. The model correctly predicts the measured threshold voltage, which is explained in terms of membrane potentials. All in all, the results provide the basis for a detailed understanding of IBJT operation. This new knowledge is employed to discuss potential improvements of ion bipolar junction transistors in terms of miniaturization and device parameters.

  4. Metal nanoparticle film–based room temperature Coulomb transistor

    PubMed Central

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-01-01

    Single-electron transistors would represent an approach to developing less power–consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations. PMID:28740864

  5. Development and fabrication of improved power transistor switches

    NASA Technical Reports Server (NTRS)

    Hower, P. L.; Chu, C. K.

    1979-01-01

    A new class of high-voltage power transistors was achieved by adapting present interdigitated thyristor processing techniques to the fabrication of npn Si transistors. Present devices are 2.3 cm in diameter and have V sub CEO (sus) in the range of 400 to 600V. V sub CEO (sus) = 450V devices were made with an (h sub FE)(I sub C) product of 900A at V sub CE = 2.5V. The electrical performance obtained was consistent with the predictions of an optimum design theory specifically developed for power switching transistors. The device design, wafer processing, and assembly techniques are described. Experimental measurements of the dc characteristics, forward SOA, and switching times are included. A new method of characterizing the switching performance of power transistors is proposed.

  6. Large scale electromechanical transistor with application in mass sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Leisheng; Li, Lijie, E-mail: L.Li@swansea.ac.uk

    Nanomechanical transistor (NMT) has evolved from the single electron transistor, a device that operates by shuttling electrons with a self-excited central conductor. The unfavoured aspects of the NMT are the complexity of the fabrication process and its signal processing unit, which could potentially be overcome by designing much larger devices. This paper reports a new design of large scale electromechanical transistor (LSEMT), still taking advantage of the principle of shuttling electrons. However, because of the large size, nonlinear electrostatic forces induced by the transistor itself are not sufficient to drive the mechanical member into vibration—an external force has to bemore » used. In this paper, a LSEMT device is modelled, and its new application in mass sensing is postulated using two coupled mechanical cantilevers, with one of them being embedded in the transistor. The sensor is capable of detecting added mass using the eigenstate shifts method by reading the change of electrical current from the transistor, which has much higher sensitivity than conventional eigenfrequency shift approach used in classical cantilever based mass sensors. Numerical simulations are conducted to investigate the performance of the mass sensor.« less

  7. Ideal Channel Field Effect Transistors

    DTIC Science & Technology

    2010-03-01

    well as on /?-GaAs/w-GaAs homojunctions grown by molecular beam epitaxy (MBE). The diode I-Vs at reverse bias are plotted below. The measured breakdown...transistors and composite channel InAlAs/InGaAs/lnP/InAlAs high electron mobility transistors ( HEMTs ), which have taken the full advantage of the matched...result in a large number of dislocations in GaAs films epitaxially grown on wurtzite GaN. In this work, we have successfully integrated GaAs with GaN

  8. Organic transistors manufactured using inkjet technology with subfemtoliter accuracy

    PubMed Central

    Sekitani, Tsuyoshi; Noguchi, Yoshiaki; Zschieschang, Ute; Klauk, Hagen; Someya, Takao

    2008-01-01

    A major obstacle to the development of organic transistors for large-area sensor, display, and circuit applications is the fundamental compromise between manufacturing efficiency, transistor performance, and power consumption. In the past, improving the manufacturing efficiency through the use of printing techniques has inevitably resulted in significantly lower performance and increased power consumption, while attempts to improve performance or reduce power have led to higher process temperatures and increased manufacturing cost. Here, we lift this fundamental limitation by demonstrating subfemtoliter inkjet printing to define metal contacts with single-micrometer resolution on the surface of high-mobility organic semiconductors to create high-performance p-channel and n-channel transistors and low-power complementary circuits. The transistors employ an ultrathin low-temperature gate dielectric based on a self-assembled monolayer that allows transistors and circuits on rigid and flexible substrates to operate with very low voltages. PMID:18362348

  9. Transistors using crystalline silicon devices on glass

    DOEpatents

    McCarthy, Anthony M.

    1995-01-01

    A method for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed.

  10. Field-effect transistors (2nd revised and enlarged edition)

    NASA Astrophysics Data System (ADS)

    Bocharov, L. N.

    The design, principle of operation, and principal technical characteristics of field-effect transistors produced in the USSR are described. Problems related to the use of field-effect transistors in various radioelectronic devices are examined, and tables of parameters and mean statistical characteristics are presented for the main types of field-effect transistors. Methods for calculating various circuit components are discussed and illustrated by numerical examples.

  11. Three dimensional-stacked complementary thin-film transistors using n-type Al:ZnO and p-type NiO thin-film transistors.

    PubMed

    Lee, Ching-Ting; Chen, Chia-Chi; Lee, Hsin-Ying

    2018-03-05

    The three dimensional inverters were fabricated using novel complementary structure of stacked bottom n-type aluminum-doped zinc oxide (Al:ZnO) thin-film transistor and top p-type nickel oxide (NiO) thin-film transistor. When the inverter operated at the direct voltage (V DD ) of 10 V and the input voltage from 0 V to 10 V, the obtained high performances included the output swing of 9.9 V, the high noise margin of 2.7 V, and the low noise margin of 2.2 V. Furthermore, the high performances of unskenwed inverter were demonstrated by using the novel complementary structure of the stacked n-type Al:ZnO thin-film transistor and p-type nickel oxide (NiO) thin-film transistor.

  12. A PWM transistor inverter for an ac electric vehicle drive

    NASA Technical Reports Server (NTRS)

    Slicker, J. M.

    1981-01-01

    A prototype system consisting of closely integrated motor, inverter, and transaxle has been built in order to demonstrate the feasibility of a three-phase ac transistorized inverter for electric vehicle applications. The microprocessor-controlled inverter employs monolithic power transistors to drive an oil-cooled, three-phase induction traction motor at a peak output power of 30 kW from a 144 V battery pack. Transistor safe switching requirements are discussed, and a circuit is presented for recovering trapped snubber inductor energy at transistor turn-off.

  13. Columnar and ground-level aerosol optical properties: sensitivity to the transboundary pollution, daily and weekly patterns, and relationships.

    PubMed

    Perrone, M R; Romano, S; Orza, J A G

    2015-11-01

    Columnar and ground-level aerosol optical properties co-located in space and time and retrieved from sun/sky photometer and nephelometer measurements, respectively, have been analyzed to investigate the impact of local and transboundary pollution, to analyze their relationships, and hence to contribute to the aerosol load characterization over the Central Mediterranean. The aerosol optical depth (AOD) at 440 nm, the Ångström exponent (Å) calculated from the AOD at 440 and 675 nm, and the asymmetry parameter (g col ) at 440 nm represent the investigated columnar aerosol parameters. The scattering coefficient (σ p) at 450 nm, the scattering Ångström exponent (å) calculated from σ p at 450 and 635 nm, and the asymmetry parameter (g) at 450 nm are the corresponding ground-level parameters. It is shown that the columnar and ground-level aerosol properties were significantly and similarly affected by the main airflows identified with backtrajectory cluster analysis. The yearly averaged daily evolution of σ p, å, and g was fairly correlated to the one of the AOD, Å, and g col , respectively. These results indicate that the aerosol particles were on average characterized by similar yearly averaged optical properties up to the ground level. In particular, the yearly means of columnar and ground-level Ångström exponents, 1.3 ± 0.4 and 1.1 ± 0.4, respectively, which are close to one, reveal a coarse-mode aerosol contribution in addition to the fine-mode particle contribution up to the ground level. Hourly means, day-by-day, and seasonal daily patterns of ground-level parameters were, however, very weakly correlated with the corresponding columnar parameters. The large impact of the local meteorology on the daily evolution of the ground-level aerosol properties, which makes the impact of long-range transported particles less apparent, was mainly responsible for these last results. It has also been found that columnar Ångström exponents much smaller

  14. Switching Transistor

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Westinghouse Electric Corporation's D60T transistors are used primarily as switching devices for controlling high power in electrical circuits. It enables reduction in the number and size of circuit components and promotes more efficient use of energy. Wide range of application from a popcorn popper to a radio frequency generator for solar cell production.

  15. Programmable, automated transistor test system

    NASA Technical Reports Server (NTRS)

    Truong, L. V.; Sundburg, G. R.

    1986-01-01

    A programmable, automated transistor test system was built to supply experimental data on new and advanced power semiconductors. The data will be used for analytical models and by engineers in designing space and aircraft electric power systems. A pulsed power technique was used at low duty cycles in a nondestructive test to examine the dynamic switching characteristic curves of power transistors in the 500 to 1000 V, 10 to 100 A range. Data collection, manipulation, storage, and output are operator interactive but are guided and controlled by the system software.

  16. Influence of chirality on the thermal and electric properties of the columnar mesophase exhibited by homomeric dipeptides

    NASA Astrophysics Data System (ADS)

    Parthasarathi, Srividhya; Shankar Rao, D. S.; Prabhu, Rashmi; Yelamaggad, C. V.; Krishna Prasad, S.

    2017-10-01

    We present the first investigation of the influence of chirality on the thermal and electric properties in a biologically important homomeric dipeptide that exhibits a hexagonal columnar liquid crystal mesophase. The peptide employed has two chiral centres, and thus the two possible enantiopures are the (R,R) and (S,S) forms having opposite chirality. The measurements reported the span of the binary phase space between these two enantiopures. Any point in the binary diagram is identified by the enantiomeric excess Xee (the excess content of the R,R enantiopure over its S,S counterpart). We observe that the magnitude of Xee plays a pivotal role in governing the properties as evidenced by X-ray diffraction (XRD), electric polarization (Ps), dielectric relaxation spectroscopy (DRS) measurements, and the isotropic-columnar transition temperature. For example, XRD shows that while other features pointing to a hexagonal columnar phase remain the same, additional short-range ordering, indicating correlated discs within the column, is present for the enantiopures (Xee = ±1) but not for the racemate (Xee = 0). Similarly, an electric-field driven switching whose profile suggests the phase structure to be antiferroelectric is seen over the entire binary space, but the magnitude is dependent on Xee; interestingly the polarization direction is axial, i.e., along the column axis. DRS studies display two dielectric modes over a limited temperature range and one mode (mode 2) connected with the antiferroelectric nature of the columnar structure covering the entire mesophase. The relaxation frequency and the thermal behaviour of mode 2 are strongly influenced by Xee. The most attractive effect of chirality is its influence on the polar order, a measure of which is the magnitude of the axial polarization. This result can be taken to be a direct evidence of the manifestation of molecular recognition and the delicate interplay between chiral perturbations and the magnitude of the

  17. I-V Characteristics of a Ferroelectric Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen

    1999-01-01

    There are many possible uses for ferroelectric field effect transistors.To understand their application, a fundamental knowledge of their basic characteristics must first be found. In this research, the current and voltage characteristics of a field effect transistor are described. The effective gate capacitance and charge are derived from experimental data on an actual FFET. The general equation for a MOSFET is used to derive the internal characteristics of the transistor: This equation is modified slightly to describe the FFET characteristics. Experimental data derived from a Radiant Technologies FFET is used to calculate the internal transistor characteristics using fundamental MOSFET equations. The drain current was measured under several different gate and drain voltages and with different initial polarizations on the ferroelectric material in the transistor. Two different polarization conditions were used. One with the gate ferroelectric material polarized with a +9.0 volt write pulse and one with a -9.0 volt pulse.

  18. Theory and Device Modeling for Nano-Structured Transistor Channels

    DTIC Science & Technology

    2011-06-01

    zinc oxide ( ZnO ) thin film transistors ( TFTs ) that contain nanocrystalline grains on the order of ~20nm. The authors of ref. 1 present results...problem in order to determine the threshold voltage. 15. SUBJECT TERMS nano-structured transistor , mesoscopic, zinc oxide , ZnO , field-effect...and R. Neidhard, “Microwave ZnO Thin - Film Transistors ”, IEEE Electron Dev. Lett. 29, 1024 (2008); doi: 10.1109/LED.2008.2001635.

  19. AlGaSb Buffer Layers for Sb-Based Transistors

    DTIC Science & Technology

    2010-01-01

    transistor ( HEMT ), molecular beam epitaxy (MBE), field-effect transistor (FET), buffer layer INTRODUCTION High-electron-mobility transistors ( HEMTs ) with InAs...monolayers/s. The use of thinner buffer layers reduces molecular beam epitaxial growth time and source consumption. The buffer layers also exhibit...source. In addition, some of the flux from an Sb cell in a molecular beam epitaxy (MBE) system will deposit near the mouth of the cell, eventually

  20. Creating nanoscale emulsions using condensation.

    PubMed

    Guha, Ingrid F; Anand, Sushant; Varanasi, Kripa K

    2017-11-08

    Nanoscale emulsions are essential components in numerous products, ranging from processed foods to novel drug delivery systems. Existing emulsification methods rely either on the breakup of larger droplets or solvent exchange/inversion. Here we report a simple, scalable method of creating nanoscale water-in-oil emulsions by condensing water vapor onto a subcooled oil-surfactant solution. Our technique enables a bottom-up approach to forming small-scale emulsions. Nanoscale water droplets nucleate at the oil/air interface and spontaneously disperse within the oil, due to the spreading dynamics of oil on water. Oil-soluble surfactants stabilize the resulting emulsions. We find that the oil-surfactant concentration controls the spreading behavior of oil on water, as well as the peak size, polydispersity, and stability of the resulting emulsions. Using condensation, we form emulsions with peak radii around 100 nm and polydispersities around 10%. This emulsion formation technique may open different routes to creating emulsions, colloidal systems, and emulsion-based materials.

  1. Field Effect Transistor in Nanoscale

    DTIC Science & Technology

    2017-04-26

    analogues) and BxCyNz (Napathalene analogues with x+y+z=10) molecules using quantum many body approach coupled with kinetic (master) equations...analogues with x +y+z=10) molecules using quantum many body approach coupled with kinetic (master) equations. Interestingly, various types of non-linear...Small molecules (such as benzene), double quantum dots (like GaAs-based QDs) which are coupled weakly to metallic electrodes have shown their

  2. Mixed protonic and electronic conductors hybrid oxide synaptic transistors

    NASA Astrophysics Data System (ADS)

    Fu, Yang Ming; Zhu, Li Qiang; Wen, Juan; Xiao, Hui; Liu, Rui

    2017-05-01

    Mixed ionic and electronic conductor hybrid devices have attracted widespread attention in the field of brain-inspired neuromorphic systems. Here, mixed protonic and electronic conductor (MPEC) hybrid indium-tungsten-oxide (IWO) synaptic transistors gated by nanogranular phosphorosilicate glass (PSG) based electrolytes were obtained. Unique field-configurable proton self-modulation behaviors were observed on the MPEC hybrid transistor with extremely strong interfacial electric-double-layer effects. Temporally coupled synaptic plasticities were demonstrated on the MPEC hybrid IWO synaptic transistor, including depolarization/hyperpolarization, synaptic facilitation and depression, facilitation-stead/depression-stead behaviors, spiking rate dependent plasticity, and high-pass/low-pass synaptic filtering behaviors. MPEC hybrid synaptic transistors may find potential applications in neuron-inspired platforms.

  3. In2O3 nanowire based field effect transistor for biological sensors.

    NASA Astrophysics Data System (ADS)

    Zeng, Zhongming; Wang, Kai; Zhou, Weilie

    2008-03-01

    Semiconductor nanowires (NWs) are attracting considerable attention due to their nanoscale dimensions and enormous surface-to-volume ratios. Many applications have been demonstrated in toxic gas, protein, small molecule and viruses sensing because of their superior sensing performances. Indium oxide (In2O3) NWs have been successfully applied for toxic gas and small organic molecule sensing. In our experiment, In2O3 NWs based field effect transistors (FET) are fabricated for virus (Ricin) detections. Single-crystalline In2O3 NWs with diameters around 100 nm were synthesized by the thermal evaporation. The nanodevice based on In2O3 NWs bridges the source/drain electrodes with a channel length of ˜5 μm. Basic transport properties of devices were measured before biological detection. The I-V curves with the gate voltage Vg=0 shows good ohmic contact and the resistance is about 10 Mφ. The back-gate effect on the conductivity showed that In2O3 NW is working as n-type channel with obvious back-gate effect, which is much stronger than the reported results. The nanodevices used as virus detection will be also discussed.

  4. Scalable fabrication of self-aligned graphene transistors and circuits on glass.

    PubMed

    Liao, Lei; Bai, Jingwei; Cheng, Rui; Zhou, Hailong; Liu, Lixin; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2012-06-13

    Graphene transistors are of considerable interest for radio frequency (rf) applications. High-frequency graphene transistors with the intrinsic cutoff frequency up to 300 GHz have been demonstrated. However, the graphene transistors reported to date only exhibit a limited extrinsic cutoff frequency up to about 10 GHz, and functional graphene circuits demonstrated so far can merely operate in the tens of megahertz regime, far from the potential the graphene transistors could offer. Here we report a scalable approach to fabricate self-aligned graphene transistors with the extrinsic cutoff frequency exceeding 50 GHz and graphene circuits that can operate in the 1-10 GHz regime. The devices are fabricated on a glass substrate through a self-aligned process by using chemical vapor deposition (CVD) grown graphene and a dielectrophoretic assembled nanowire gate array. The self-aligned process allows the achievement of unprecedented performance in CVD graphene transistors with a highest transconductance of 0.36 mS/μm. The use of an insulating substrate minimizes the parasitic capacitance and has therefore enabled graphene transistors with a record-high extrinsic cutoff frequency (> 50 GHz) achieved to date. The excellent extrinsic cutoff frequency readily allows configuring the graphene transistors into frequency doubling or mixing circuits functioning in the 1-10 GHz regime, a significant advancement over previous reports (∼20 MHz). The studies open a pathway to scalable fabrication of high-speed graphene transistors and functional circuits and represent a significant step forward to graphene based radio frequency devices.

  5. Transistors using crystalline silicon devices on glass

    DOEpatents

    McCarthy, A.M.

    1995-05-09

    A method is disclosed for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed. 13 figs.

  6. Development of Similar Broth Microdilution Methods to Determine the Antimicrobial Susceptibility of Flavobacterium columnare and F. psychrophilum.

    PubMed

    Gieseker, Charles M; Crosby, Tina C; Mayer, Tamara D; Bodeis, Sonya M; Stine, Cynthia B

    2016-03-01

    Flavobacterium columnare and F. psychrophilum are major fish pathogens that cause diseases that may require antimicrobial therapy. Choice of appropriate treatment is dependent upon determining the antimicrobial susceptibility of isolates. Therefore we optimized methods for broth microdilution testing of F. columnare and F. psychrophilum to facilitate standardizing an antimicrobial susceptibility test. We developed adaptations to make reproducible broth inoculums and confirmed the proper incubation time and media composition. We tested the stability of potential quality-control bacteria and compared test results between different operators. Log phase occurred at 48 h for F. columnare and 72-96 h for F. psychrophilum, confirming the test should be incubated at 28°C for approximately 48 h and at 18°C for approximately 96 h, respectively. The most consistent susceptibility results were achieved with plain, 4-g/L, dilute Mueller-Hinton broth supplemented with dilute calcium and magnesium. Supplementing the broth with horse serum did not improve growth. The quality-control strains, Escherichia coli ATCC 25922 and Aeromonas salmonicida subsp. salmonicida ATCC 33658, yielded stable minimal inhibitory concentrations (MIC) against all seven antimicrobials tested after 30 passes at 28°C and 15 passes at 18°C. In comparison tests, most MICs of the isolates agreed 100% within one drug dilution for ampicillin, florfenicol, and oxytetracycline. The agreement was lower with the ormetoprim-sulfdimethoxine combination, but there was at least 75% agreement for all but one isolate. These experiments have provided methods to help standardize antimicrobial susceptibility testing of these nutritionally fastidious aquatic bacteria. Received June 24, 2015; accepted October 2, 2015.

  7. Nanoscale thermal transport: Theoretical method and application

    NASA Astrophysics Data System (ADS)

    Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2018-03-01

    With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).

  8. Controlled n-Type Doping of Carbon Nanotube Transistors by an Organorhodium Dimer.

    PubMed

    Geier, Michael L; Moudgil, Karttikay; Barlow, Stephen; Marder, Seth R; Hersam, Mark C

    2016-07-13

    Single-walled carbon nanotube (SWCNT) transistors are among the most developed nanoelectronic devices for high-performance computing applications. While p-type SWCNT transistors are easily achieved through adventitious adsorption of atmospheric oxygen, n-type SWCNT transistors require extrinsic doping schemes. Existing n-type doping strategies for SWCNT transistors suffer from one or more issues including environmental instability, limited carrier concentration modulation, undesirable threshold voltage control, and/or poor morphology. In particular, commonly employed benzyl viologen n-type doping layers possess large thicknesses, which preclude top-gate transistor designs that underlie high-density integrated circuit layouts. To overcome these limitations, we report here the controlled n-type doping of SWCNT thin-film transistors with a solution-processed pentamethylrhodocene dimer. The charge transport properties of organorhodium-treated SWCNT thin films show consistent n-type behavior when characterized in both Hall effect and thin-film transistor geometries. Due to the molecular-scale thickness of the organorhodium adlayer, large-area arrays of top-gated, n-type SWCNT transistors are fabricated with high yield. This work will thus facilitate ongoing efforts to realize high-density SWCNT integrated circuits.

  9. Columnar-thin-film acquisition of fingerprint topology

    NASA Astrophysics Data System (ADS)

    Shaler, Robert C.; Lakhtakia, Akhlesh; Rogers, Jessica W.; Pulsifer, Drew P.; Martín-Palma, Raúl J.

    2011-01-01

    Fingerprint visualization obtained from physical evidence taken from crime scenes for subsequent comparison typically requires the use of physical and chemical techniques. One physical technique to visualize or develop sebaceous fingerprints on various surfaces employs the deposition of metals such as gold and zinc thereon. We have developed a different vacuum technology: the conformal-evaporated-film-by-rotation technique to deposit dense columnar thin films (CTFs) on latent fingerprints on different types of surfaces. Sample fingerprints, acting as nonplanar substrates, deposited on different surfaces were placed in a vacuum chamber with the fingerprint side facing a boat containing an evaporant material such as chalcogenide glass. Thermal evaporation of the solid material led to the formation of a dense CTF on the fingerprint, thereby capturing the topographical texture with high resolution. Our results show that it is possible to acquire the topology of latent fingerprints on nonporous surfaces. Additionally, deposition of CTFs on overlapping fingerprints suggested ours may be a technique for elucidating the sequence of deposition of the fingerprints at the scene.

  10. Columnar-thin-film acquisition of fingermark topology

    NASA Astrophysics Data System (ADS)

    Shaler, Robert C.; Lakhtakia, Akhlesh; Rogers, Jessica W.; Pulsifer, Drew P.; Martín-Palma, Raúl J.

    2010-08-01

    Fingerprint visualization obtained from physical evidence taken from crime scenes for subsequent comparison typically requires the use of physical and chemical techniques. One physical technique to visualize or develop sebaceous fingerprints on various surfaces employs the deposition of metals such as gold and zinc thereon. We have developed a different vacuum technology: the conformal-evaporated-film-by-rotation technique to deposit dense columnar thin films (CTFs) on latent fingerprints on different types of surfaces. Sample fingerprints, acting as nonplanar substrates, deposited on different surfaces were placed in a vacuum chamber with the fingerprint side facing a boat containing an evaporant material such as chalcogenide glass. Thermal evaporation of the solid material led to the formation of a dense CTF on the fingerprint, thereby capturing the topographical texture with high resolution. Our results show that it is possible to acquire the topology of latent fingerprints on non-porous surfaces. Additionally, deposition of CTFs on overlapping fingerprints suggested ours may be a technique for elucidating the sequence of deposition of the fingerprints at the scene.

  11. Coordinative nanoporous polymers synthesized with hydrogen-bonded columnar liquid crystals.

    PubMed

    Ishihara, Shinsuke; Furuki, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Takeoka, Shinji

    2012-10-01

    In this paper, we report the development of nanoporous polymer which demonstrates the coordination property toward zinc porphyrin. A hydrogen-bonded columnar liquid crystalline precursor composed of a triphenylene template and three equivalent of the surrounding dendric amphiphile bearing a pyridyl head group and a polymerizable aliphatic chain, was covalently fixed by photopolymerization, and then the subsequent selective removal of the template successively resulted in a nanoporous polymer in which the pore wall is modified with pyridyl groups. The nanoporous polymer reflected the conformation of template, and displayed considerable coordination ability of the pyridyl groups towards zinc porphyrin. The coordinative nanoporous polymer is promising as a nano-scaled scaffold for the organization of dyes into functional supramolecular architectures.

  12. Organic transistors making use of room temperature ionic liquids as gating medium

    NASA Astrophysics Data System (ADS)

    Hoyos, Jonathan Javier Sayago

    The ability to couple ionic and electronic transport in organic transistors, based on pi conjugated organic materials for the transistor channel, can be particularly interesting to achieve low voltage transistor operation, i.e. below 1 V. The operation voltage in typical organic transistors based on conventional dielectrics (200 nm thick SiO2) is commonly higher than 10 V. Electrolyte-gated (EG) transistors, i.e. employing an electrolyte as the gating medium, permit current modulations of several orders of magnitude at relatively low gate voltages thanks to the exceptionally high capacitance at the electrolyte/transistor channel interface, in turn due to the low thickness (ca. 3 nm) of the electrical double layers forming at the electrolyte/semiconductor interface. Electrolytes based on room temperature ionic liquids (RTILs) are promising in EG transistor applications for their high electrochemical stability and good ionic conductivity. The main motivation behind this work is to achieve low voltage operation in organic transistors by making use of RTILs as gating medium. First we demonstrate the importance of the gate electrode material in the EG transistor performance. The use of high surface area carbon gate electrodes limits undesirable electrochemical processes and renders unnecessary the presence of a reference electrode to monitor the channel potential. This was demonstrated using activated carbon as gate electrode, the electronic conducting polymer MEH-PPV, poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene] channel material, and the ionic liquid [EMIM][TFSI] (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), as gating medium. Using high surface area gate electrodes resulted in sub-1 V operation and charge carrier mobilities of (1.0 +/- 0.5) x 10-2 cm2V -1s-1. A challenge in the field of EG transistors is to decrease their response time, a consequence of the slow ion redistribution in the transistor channel upon application of electric

  13. Organic electrochemical transistors

    NASA Astrophysics Data System (ADS)

    Rivnay, Jonathan; Inal, Sahika; Salleo, Alberto; Owens, Róisín M.; Berggren, Magnus; Malliaras, George G.

    2018-02-01

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  14. Magnetophoretic transistors in a tri-axial magnetic field.

    PubMed

    Abedini-Nassab, Roozbeh; Joh, Daniel Y; Albarghouthi, Faris; Chilkoti, Ashutosh; Murdoch, David M; Yellen, Benjamin B

    2016-10-18

    The ability to direct and sort individual biological and non-biological particles into spatially addressable locations is fundamentally important to the emerging field of single cell biology. Towards this goal, we demonstrate a new class of magnetophoretic transistors, which can switch single magnetically labeled cells and magnetic beads between different paths in a microfluidic chamber. Compared with prior work on magnetophoretic transistors driven by a two-dimensional in-plane rotating field, the addition of a vertical magnetic field bias provides significant advantages in preventing the formation of particle clumps and in better replicating the operating principles of circuits in general. However, the three-dimensional driving field requires a complete redesign of the magnetic track geometry and switching electrodes. We have solved this problem by developing several types of transistor geometries which can switch particles between two different tracks by either presenting a local energy barrier or by repelling magnetic objects away from a given track, hereby denoted as "barrier" and "repulsion" transistors, respectively. For both types of transistors, we observe complete switching of magnetic objects with currents of ∼40 mA, which is consistent over a range of particle sizes (8-15 μm). The switching efficiency was also tested at various magnetic field strengths (50-90 Oe) and driving frequencies (0.1-0.6 Hz); however, we again found that the device performance only weakly depended on these parameters. These findings support the use of these novel transistor geometries to form circuit architectures in which cells can be placed in defined locations and retrieved on demand.

  15. Tunable organic transistors that use microfluidic source and drain electrodes

    NASA Astrophysics Data System (ADS)

    Maltezos, George; Nortrup, Robert; Jeon, Seokwoo; Zaumseil, Jana; Rogers, John A.

    2003-09-01

    This letter describes a type of transistor that uses conducting fluidic source and drain electrodes of mercury which flow on top of a thin film of the organic semiconductor pentacene. Pumping the mercury through suitably designed microchannels changes the width of the transistor channel and, therefore, the electrical characteristics of the device. Measurements on transistors with a range of channel lengths reveal low contact resistances between mercury and pentacene. Data collected before, during, and after pumping the mercury through the microchannels demonstrate reversible and systematic tuning of the devices. This unusual type of organic transistor has the potential to be useful in plastic microfluidic devices that require active elements for pumps, sensors, or other components. It also represents a noninvasive way to build transistor test structures that incorporate certain classes of chemically and mechanically fragile organic semiconductors.

  16. Tetrahedral Arrangements of Perylene Bisimide Columns via Supramolecular Orientational Memory.

    PubMed

    Sahoo, Dipankar; Peterca, Mihai; Aqad, Emad; Partridge, Benjamin E; Heiney, Paul A; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Percec, Virgil

    2017-01-24

    Chiral, shape, and liquid crystalline memory effects are well-known to produce commercial macroscopic materials with important applications as springs, sensors, displays, and memory devices. A supramolecular orientational memory effect that provides complex nanoscale arrangements was only recently reported. This supramolecular orientational memory was demonstrated to preserve the molecular orientation and packing within supramolecular units of a self-assembling cyclotriveratrylene crown at the nanoscale upon transition between its columnar hexagonal and Pm3̅n cubic periodic arrays. Here we report the discovery of supramolecular orientational memory in a dendronized perylene bisimide (G2-PBI) that self-assembles into tetrameric crowns and subsequently self-organizes into supramolecular columns and spheres. This supramolecular orientation memory upon transition between columnar hexagonal and body-centered cubic (BCC) mesophases preserves the 3-fold cubic [111] orientations rather than the 4-fold [100] axes, generating an unusual tetrahedral arrangement of supramolecular columns. These results indicate that the supramolecular orientational memory concept may be general for periodic arrays of self-assembling dendrons and dendrimers as well as for other periodic and quasiperiodic nanoscale organizations comprising supramolecular spheres, generated from other organized complex soft matter including block copolymers and surfactants.

  17. Draft Genome Sequence of the Fish Pathogen Flavobacterium columnare Genomovar III Strain PH-97028 (=CIP 109753).

    PubMed

    Criscuolo, Alexis; Chesneau, Olivier; Clermont, Dominique; Bizet, Chantal

    2018-04-05

    Flavobacterium columnare strain PH-97028 (=CIP 109753) is a genomovar III reference strain that was isolated from a diseased Ayu fish in Japan. We report here the analysis of the first available genomovar III sequence of this species to aid in identification, epidemiological tracking, and virulence studies. Copyright © 2018 Criscuolo et al.

  18. X-band T/R switch with body-floating multi-gate PDSOI NMOS transistors

    NASA Astrophysics Data System (ADS)

    Park, Mingyo; Min, Byung-Wook

    2018-03-01

    This paper presents an X-band transmit/receive switch using multi-gate NMOS transistors in a silicon-on-insulator CMOS process. For low loss and high power handling capability, floating body multi-gate NMOS transistors are adopted instead of conventional stacked NMOS transistors, resulting in 53% reduction of transistor area. Comparing to the stacked NMOS transistors, the multi gate transistor shares the source and drain region between stacked transistors, resulting in reduced chip area and parasitics. The impedance between bodies of gates in multi-gate NMOS transistors is assumed to be very large during design and confirmed after measurement. The measured input 1 dB compression point is 34 dBm. The measured insertion losses of TX and RX modes are respectively 1.7 dB and 2.0 dB at 11 GHz, and the measured isolations of TX and RX modes are >27 dB and >20 dB in X-band, respectively. The chip size is 0.086 mm2 without pads, which is 25% smaller than the T/R switch with stacked transistors.

  19. Self-assembled electrical materials from contorted aromatics

    NASA Astrophysics Data System (ADS)

    Xiao, Shengxiong

    This thesis describes the design, synthesis, self-assembly and electrical properties of new types of contorted polycyclic aromatic hydrocarbons. These topologically interesting contorted aromatics show promising transistor characteristics as new building blocks for organic field-effect transistors (OFETs) at different length scales. In chapter 2, a class of pentacenes that are substituted along their long edges with aromatic rings were synthesized. Their solid-state assemblies were studied by X-ray crystallography. Their performance as thin film transistors (TFTs) and single crystal field effect transistors (SCFETs) were systematically evaluated. A structure-property relationship between these highly phenylated pentacenes was found. Chapter 3 explores the new concept of whether a non-planar aromatic core could yield efficacious electronic materials, as the ultimate success in the organic electronics will require a holistic approach to creating new building blocks. Synthesis, functionalization and assembly of a new type of contorted hexabenzocoronene (HBC) whose aromatic core is heavily distorted away from planarity due to the steric congestion around its proximal carbons were discussed. Structural studies by X-ray crystallography showed that these HBC molecules stack into columnar structures in the solid state, which are ideal for conduction. Chapter 4 describes that microscale liquid crystalline thin film OFETs of tetradodecyloxy HBC showed the best transistor properties of all discotic columnar materials. Chapter 5 details the fabrication and characterization of nanoscale single crystalline fiber OFETs of octadodecyloxyl HBC. In Chapter 6 we show that a molecular scale monolayer of HBC acid chlorides could be self-assembled on SiO2 insulating layer and could be organized laterally between the ends of 2 nm carbon nanotube gaps to form high quality FETs that act as environmental and chemical sensors. Chapter 7 details the enforced one-dimensional photoconductivity

  20. Nanoscale tissue engineering: spatial control over cell-materials interactions

    PubMed Central

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G.; Jabbari, Esmaiel; Khademhosseini, Ali

    2011-01-01

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness the interactions through nanoscale biomaterials engineering in order to study and direct cellular behaviors. Here, we review the nanoscale tissue engineering technologies for both two- and three-dimensional studies (2- and 3D), and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffolds technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D, however, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and the temporal changes in cellular microenvironment. PMID:21451238

  1. A Klein-tunneling transistor with ballistic graphene

    NASA Astrophysics Data System (ADS)

    Wilmart, Quentin; Berrada, Salim; Torrin, David; Nguyen, V. Hung; Fève, Gwendal; Berroir, Jean-Marc; Dollfus, Philippe; Plaçais, Bernard

    2014-06-01

    Today, the availability of high mobility graphene up to room temperature makes ballistic transport in nanodevices achievable. In particular, p-n-p transistors in the ballistic regime give access to Klein tunneling physics and allow the realization of devices exploiting the optics-like behavior of Dirac Fermions (DFs) as in the Veselago lens or the Fabry-Pérot cavity. Here we propose a Klein tunneling transistor based on the geometrical optics of DFs. We consider the case of a prismatic active region delimited by a triangular gate, where total internal reflection may occur, which leads to the tunable suppression of transistor transmission. We calculate the transmission and the current by means of scattering theory and the finite bias properties using non-equilibrium Green's function (NEGF) simulation.

  2. Top-gated chemical vapor deposition grown graphene transistors with current saturation.

    PubMed

    Bai, Jingwei; Liao, Lei; Zhou, Hailong; Cheng, Rui; Liu, Lixin; Huang, Yu; Duan, Xiangfeng

    2011-06-08

    Graphene transistors are of considerable interest for radio frequency (rf) applications. In general, transistors with large transconductance and drain current saturation are desirable for rf performance, which is however nontrivial to achieve in graphene transistors. Here we report high-performance top-gated graphene transistors based on chemical vapor deposition (CVD) grown graphene with large transconductance and drain current saturation. The graphene transistors were fabricated with evaporated high dielectric constant material (HfO(2)) as the top-gate dielectrics. Length scaling studies of the transistors with channel length from 5.6 μm to 100 nm show that complete current saturation can be achieved in 5.6 μm devices and the saturation characteristics degrade as the channel length shrinks down to the 100-300 nm regime. The drain current saturation was primarily attributed to drain bias induced shift of the Dirac points. With the selective deposition of HfO(2) gate dielectrics, we have further demonstrated a simple scheme to realize a 300 nm channel length graphene transistors with self-aligned source-drain electrodes to achieve the highest transconductance of 250 μS/μm reported in CVD graphene to date.

  3. Tunneling modulation of a quantum-well transistor laser

    NASA Astrophysics Data System (ADS)

    Feng, M.; Qiu, J.; Wang, C. Y.; Holonyak, N.

    2016-11-01

    Different than the Bardeen and Brattain transistor (1947) with the current gain depending on the ratio of the base carrier spontaneous recombination lifetime to the emitter-collector transit time, the Feng and Holonyak transistor laser current gain depends upon the base electron-hole (e-h) stimulated recombination, the base dielectric relaxation transport, and the collector stimulated tunneling. For the n-p-n transistor laser tunneling operation, the electron-hole pairs are generated at the collector junction under the influence of intra-cavity photon-assisted tunneling, with electrons drifting to the collector and holes drifting to the base. The excess charge in the base lowers the emitter junction energy barrier, allowing emitter electron injection into the base and satisfying charge neutrality via base dielectric relaxation transport (˜femtoseconds). The excess electrons near the collector junction undergo stimulated recombination at the base quantum-well or transport to the collector, thus supporting tunneling current amplification and optical modulation of the transistor laser.

  4. Development and fabrication of an augmented power transistor

    NASA Technical Reports Server (NTRS)

    Geisler, M. J.; Hill, F. E.; Ostop, J. A.

    1983-01-01

    The development of device design and processing techniques for the fabrication of an augmented power transistor capable of fast switching and high voltage power conversion is discussed. The major device goals sustaining voltages in the range of 800 to 1000 V at 80 A and 50 A, respectively, at a gain of 14. The transistor switching rise and fall times were both to have been less than 0.5 microseconds. The development of a passivating glass technique to shield the device high voltage junction from moisture and ionic contaminants is discussed as well as the development of an isolated package that separates the thermal and electrical interfaces. A new method was found to alloy the transistors to the molybdenum disc at a relatively low temperature. The measured electrical performance compares well with the predicted optimum design specified in the original proposed design. A 40 mm diameter transistor was fabricated with seven times the emitter area of the earlier 23 mm diameter device.

  5. Traceable nanoscale measurement at NML-SIRIM

    NASA Astrophysics Data System (ADS)

    Dahlan, Ahmad M.; Abdul Hapip, A. I.

    2012-06-01

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  6. Neuromorphic computing with nanoscale spintronic oscillators.

    PubMed

    Torrejon, Jacob; Riou, Mathieu; Araujo, Flavio Abreu; Tsunegi, Sumito; Khalsa, Guru; Querlioz, Damien; Bortolotti, Paolo; Cros, Vincent; Yakushiji, Kay; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Stiles, Mark D; Grollier, Julie

    2017-07-26

    Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 10 8 oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals and several candidates, including memristive and superconducting oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction) can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.

  7. Enhanced Amplification and Fan-Out Operation in an All-Magnetic Transistor

    PubMed Central

    Barman, Saswati; Saha, Susmita; Mondal, Sucheta; Kumar, Dheeraj; Barman, Anjan

    2016-01-01

    Development of all-magnetic transistor with favorable properties is an important step towards a new paradigm of all-magnetic computation. Recently, we showed such possibility in a Magnetic Vortex Transistor (MVT). Here, we demonstrate enhanced amplification in MVT achieved by introducing geometrical asymmetry in a three vortex sequence. The resulting asymmetry in core to core distance in the three vortex sequence led to enhanced amplification of the MVT output. A cascade of antivortices travelling in different trajectories including a nearly elliptical trajectory through the dynamic stray field is found to be responsible for this amplification. This asymmetric vortex transistor is further used for a successful fan-out operation, which gives large and nearly equal gains in two output branches. This large amplification in magnetic vortex gyration in magnetic vortex transistor is proposed to be maintained for a network of vortex transistor. The above observations promote the magnetic vortex transistors to be used in complex circuits and logic operations. PMID:27624662

  8. Columnar interactions determine horizontal propagation of recurrent network activity in neocortex

    PubMed Central

    Wester, Jason C.; Contreras, Diego

    2012-01-01

    The cortex is organized in vertical and horizontal circuits that determine the spatiotemporal properties of distributed cortical activity. Despite detailed knowledge of synaptic interactions among individual cells in the neocortex, little is known about the rules governing interactions among local populations. Here we used self-sustained recurrent activity generated in cortex, also known as up-states, in rat thalamocortical slices in vitro to understand interactions among laminar and horizontal circuits. By means of intracellular recordings and fast optical imaging with voltage sensitive dyes, we show that single thalamic inputs activate the cortical column in a preferential L4→L2/3→L5 sequence, followed by horizontal propagation with a leading front in supra and infragranular layers. To understand the laminar and columnar interactions, we used focal injections of TTX to block activity in small local populations, while preserving functional connectivity in the rest of the network. We show that L2/3 alone, without underlying L5, does not generate self-sustained activity and is inefficient propagating activity horizontally. In contrast, L5 sustains activity in the absence of L2/3 and is necessary and sufficient to propagate activity horizontally. However, loss of L2/3 delays horizontal propagation via L5. Finally, L5 amplifies activity in L2/3. Our results show for the first time that columnar interactions between supra and infragranular layers are required for the normal propagation of activity in the neocortex. Our data suggest that supra and infragranular circuits with their specific and complex set of inputs and outputs, work in tandem to determine the patterns of cortical activation observed in vivo. PMID:22514308

  9. Involvement of two glycoside hydrolase family 19 members in colony morphotype and virulence in Flavobacterium columnare

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolin; Li, Nan; Qin, Ting; Huang, Bei; Nie, Pin

    2017-11-01

    Flavobacterium columnare is the pathogenic agent of columnaris disease in aquaculture. Using a recently developed gene deletion strategy, two genes that encode the Glyco_hydro_19 domain (GH19 domain) containing proteins, ghd-1 and ghd-2, were deleted separately and together from the F. columnare G4 wild type strain. Surprisingly, the single-, Δ ghd-1 and Δ ghd-2, and double-gene mutants, Δ ghd-1 Δghd -2, all had rhizoid and non-rhizoid colony morphotypes, which we named Δ ghd-1, Δ ghd-2, Δ ghd-1 Δ ghd-2, and NΔ ghd-1, NΔ ghd-2, and NΔ ghd-1 Δ ghd-2. However, chitin utilization was not detected in either these mutants or in the wild type. Instead, skimmed milk degradation was observed for the mutants and the wild type; the non-rhizoid strain NΔ ghd-2 exhibited higher degradation activity as revealed by the larger transparent circle on the skimmed milk plate. Using zebrafish as the model organism, we found that non-rhizoid mutants had higher LD50 values and were less virulent because zebrafish infected with these survived longer. Transcriptome analysis between the non-rhizoid and rhizoid colony morphotypes of each mutant, i.e., NΔ ghd -1 versus (vs) Δ ghd-1, NΔ ghd-2 vs Δ ghd-2, and NΔ ghd-1 Δ ghd-2 vs Δ ghd-1 Δ ghd-2, revealed a large number of differentially expressed genes, among which 39 genes were common in three of the pairs compared. Although most of these genes encode hypothetical proteins, a few molecules such as phage tail protein, rhs element Vgr protein, thiol-activated cytolysin, and TonB-dependent outer membrane receptor precursor, expression of which was down-regulated in non-rhizoid mutants but up-regulated in rhizoid mutants, may play a role F. columnare virulence.

  10. Bench-scale synthesis of nanoscale materials

    NASA Technical Reports Server (NTRS)

    Buehler, M. F.; Darab, J. G.; Matson, D. W.; Linehan, J. C.

    1994-01-01

    A novel flow-through hydrothermal method used to synthesize nanoscale powders is introduced by Pacific Northwest Laboratory. The process, Rapid Thermal Decomposition of precursors in Solution (RTDS), uniquely combines high-pressure and high-temperature conditions to rapidly form nanoscale particles. The RTDS process was initially demonstrated on a laboratory scale and was subsequently scaled up to accommodate production rates attractive to industry. The process is able to produce a wide variety of metal oxides and oxyhydroxides. The powders are characterized by scanning and transmission electron microscopic methods, surface-area measurements, and x-ray diffraction. Typical crystallite sizes are less than 20 nanometers, with BET surface areas ranging from 100 to 400 sq m/g. A description of the RTDS process is presented along with powder characterization results. In addition, data on the sintering of nanoscale ZrO2 produced by RTDS are included.

  11. A novel serrated columnar phased array ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Song, Hongwei; Chen, Qiang

    2016-02-01

    Traditionally, wedges are required to generate transverse waves in a solid specimen and mechanical rotation device is needed for interrogation of a specimen with a hollow bore, such as high speed railway locomotive axles, turbine rotors, etc. In order to eliminate the mechanical rotation process, a novel array pattern of phased array ultrasonic transducers named as serrated columnar phased array ultrasonic transducer (SCPAUT) is designed. The elementary transducers are planar rectangular, located on the outside surface of a cylinder. This layout is aimed to generate electrically rotating transverse waveforms so as to inspect the longitudinal cracks on the outside surface of a specimen which has a hollow bore at the center, such as the high speed railway locomotive axles. The general geometry of the SCPAUT and the inspection system are illustrated. A FEM model and mockup experiment has been carried out. The experiment results are in good agreement with the FEM simulation results.

  12. A Flush Toilet Model for the Transistor

    NASA Astrophysics Data System (ADS)

    Organtini, Giovanni

    2012-04-01

    In introductory physics textbooks, diodes working principles are usually well described in a relatively simple manner. According to our experience, they are well understood by students. Even when no formal derivation of the physics laws governing the current flow through a diode is given, the use of this device as a check valve is easily accepted. This is not true for transistors. In most textbooks the behavior of a transistor is given without formal explanation. When the amplification is computed, for some reason, students have difficulties in identifying the basic physical mechanisms that give rise to such an effect. In this paper we give a simple and captivating illustration of the working principles of a transistor as an amplifier, tailored to high school students even with almost no background in electronics nor in modern physics. We assume that the target audience is familiar with the idea that a diode works as a check valve for currents. The lecture emphasis is on the illustration of physics principles governing the behavior of a transistor, rather than on a formal description of the processes leading to amplification.

  13. The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium

    PubMed Central

    Grego-Bessa, Joaquim; Bloomekatz, Joshua; Castel, Pau; Omelchenko, Tatiana; Baselga, José; Anderson, Kathryn V

    2016-01-01

    Epithelial morphogenesis and stability are essential for normal development and organ homeostasis. The mouse neural plate is a cuboidal epithelium that remodels into a columnar pseudostratified epithelium over the course of 24 hr. Here we show that the transition to a columnar epithelium fails in mutant embryos that lack the tumor suppressor PTEN, although proliferation, patterning and apical-basal polarity markers are normal in the mutants. The Pten phenotype is mimicked by constitutive activation of PI3 kinase and is rescued by the removal of PDK1 (PDPK1), but does not depend on the downstream kinases AKT and mTORC1. High resolution imaging shows that PTEN is required for stabilization of planar cell packing in the neural plate and for the formation of stable apical-basal microtubule arrays. The data suggest that appropriate levels of membrane-associated PDPK1 are required for stabilization of apical junctions, which promotes cell elongation, during epithelial morphogenesis. DOI: http://dx.doi.org/10.7554/eLife.12034.001 PMID:26809587

  14. AlGaN/GaN field effect transistors for power electronics—Effect of finite GaN layer thickness on thermal characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodges, C., E-mail: chris.hodges@bristol.ac.uk; Anaya Calvo, J.; Kuball, M.

    2013-11-11

    AlGaN/GaN heterostructure field effect transistors with a 150 nm thick GaN channel within stacked Al{sub x}Ga{sub 1−x}N layers were investigated using Raman thermography. By fitting a thermal simulation to the measured temperatures, the thermal conductivity of the GaN channel was determined to be 60 W m{sup −1} K{sup −1}, over 50% less than typical GaN epilayers, causing an increased peak channel temperature. This agrees with a nanoscale model. A low thermal conductivity AlGaN buffer means the GaN spreads heat; its properties are important for device thermal characteristics. When designing power devices with thin GaN layers, as well as electrical considerations, the reducedmore » channel thermal conductivity must be considered.« less

  15. PH-Sensitive WO(3)-Based Microelectrochemical Transistors.

    DTIC Science & Technology

    1986-09-22

    electronics, microelectrochemistry, microelectrodes, surface L- modification, molecuale based transistors, polyaniline , poly-3-methylthiophene Chemical...polymer, as in the cases of polypyrrole,8 poly(N-methyl pyrrole), 8b polyaniline , 9 or poly(3-methylthiophene),1 0 the polymer- % .4_. connected...Polypyrrole, 8 polyaniline , 9 and poly(3-methylthiophene) I0 are similar in that they are conducting when oxidized, and transistors based on these materials

  16. The effect of high total ammonia concentration on the survival of channel catfish experimentally infected with Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Although it is generally accepted that elevated ammonia levels in the water increase mortalities of Flavobacterium columnare infected fish, recent observation at our laboratory indicated otherwise. Two trials were conducted to determine the effect of a single immersion flush treatment of total ammo...

  17. Characterization of tlr-4 in fathead minnow challenged with columnaris (flavobacterium columnare) in an ultra-low flow system

    USDA-ARS?s Scientific Manuscript database

    Columnaris disease, caused by the bacteria Flavobacterium columnare, is one of the most serious bacterial infections affecting the aquaculture industry today. Columnaris is transmitted horizontally from fish to fish. The disease is highly contagious and may be spread through contaminated nets, speci...

  18. Thin Film Transistors On Plastic Substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  19. Micellar Electrolytes in Organic Electrochemical Transistors

    NASA Astrophysics Data System (ADS)

    Cicoira, Fabio; Giuseppe, Tarabella; Nanda, Gaurav; Iannotta, Salvatore; Santato, Clara

    2012-02-01

    Organic electrochemical transistors (OECTs) are promising for applications in sensing and bioelectronics. OECTs consist of a conducting polymer film (transistor channel) in contact with an electrolyte. A gate electrode immersed in the electrolyte controls the doping/dedoping level of the conducting polymer. OECTs can be operated in aqueous electrolytes, making possible the implementation of organic electronic materials at the interface with biology. The inherent signal amplification of OECTs has the potential to yield sensors with low detection limits and high sensitivity. In this talk we will present recent studies on OECTs using ionic surfactants (such as hexadecyl-trimethyl-ammonium bromide) as electrolytes. As the conducting polymer we used PEDOT:PSS, i.e. (Poly,3-4 ethylenedioxythiopene) doped with Poly(styrene sulphonate). Interestingly, ionic surfactant electrolytes result in large transistor current modulation, especially beyond the critical micellar concentration (CMC). Since micelles play a primary role in biological processes and drug-delivery systems, the use for micellar electrolytes opens new exciting opportunities for the use of OECTs in bioelectronics.

  20. Effect of Pseudomonas sp. MT5 baths on Flavobacterium columnare infection of rainbow trout and on microbial diversity on fish skin and gills.

    PubMed

    Suomalainen, L R; Tiirola, M A; Valtonen, E T

    2005-01-25

    Use of Pseudomonas sp. strain MT5 to prevent and treat Flavobacterium columnare infection was studied in 2 experiments with fingerling rainbow trout Oncorhynchus mykiss. In the first experiment, length heterogeneity analysis of PCR-amplified DNA fragments (LH-PCR) was used to assess the effect of antagonistic baths on the microbial diversity of healthy and experimentally infected fish. In the 148 samples studied, no difference was found between bathed and unbathed fish, and 3 fragment lengths were detected most frequently: 500 (in 75.7% of the samples), 523 (62.2%) and 517 bp (40.5%). The species contributing to these fragment sizes were Pseudomonas sp., Rhodococcus sp. and F. columnare, respectively. A specific PCR for detection of Pseudomonas sp. MT5 was designed, but none of the tissue samples were found to be positive, most likely indicating poor adhesion of the strain during bathing. LH-PCR was found to be a more powerful tool for detecting F. columnare in fish tissue than traditional culture methods (chi2 = 3.9, df = 1, p < 0.05). Antagonistic baths had no effect on the outbreak of infection or on fish mortality. F. columnare was also detected in healthy fish prior to and after experimental infection, indicating that these fish were carriers of the disease. In the second experiment, intensive Pseudomonas sp. MT5 antagonistic baths were given daily to rainbow trout suffering from a natural columnaris infection. Again, the antagonistic bacteria had no effect on fish mortality, which reached 95 % in both control and antagonist-treated groups in 7 d.

  1. A gallium phosphide high-temperature bipolar junction transistor

    NASA Technical Reports Server (NTRS)

    Zipperian, T. E.; Dawson, L. R.; Chaffin, R. J.

    1981-01-01

    Preliminary results are reported on the development of a high temperature (350 C) gallium phosphide bipolar junction transistor (BJT) for geothermal and other energy applications. This four-layer p(+)n(-)pp(+) structure was formed by liquid phase epitaxy using a supercooling technique to insure uniform nucleation of the thin layers. Magnesium was used as the p-type dopant to avoid excessive out-diffusion into the lightly doped base. By appropriate choice of electrodes, the device may also be driven as an n-channel junction field-effect transistor. The initial design suffers from a series resistance problem which limits the transistor's usefulness at high temperatures.

  2. Transport Mechanisms in Organic Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Fung, A. W. P.

    1996-03-01

    Recent success in fabricating field-effect transistors with polycrystalline α-sexithiophene (α-6T) has allowed us to study charge transport in this organic semiconductor. The appealing structural property that the oligomer chains are seated almost perpendicular to the substrate provides a model π-conjugated system which we find exhibits band transport at low temperatures. We observe a behavioral transition around 50K which is consistent with the metal-insulator transition in Holstein's small-polaron theory. The fact that we can observe intrinsic behavior means that the ambient-temperature mobility obtained in these transistors is optimal for α-6T. Agreement with the Holstein theory provides us with a prescription for rational design of materials for organic transistor applications. Work done in collaboration with L. Torsi, A. Dodabalapur, L. J. Rothberg and H. E. Katz.

  3. P-channel differential multiple-time programmable memory cells by laterally coupled floating metal gate fin field-effect transistors

    NASA Astrophysics Data System (ADS)

    Wang, Tai-Min; Chien, Wei-Yu; Hsu, Chia-Ling; Lin, Chrong Jung; King, Ya-Chin

    2018-04-01

    In this paper, we present a new differential p-channel multiple-time programmable (MTP) memory cell that is fully compatible with advanced 16 nm CMOS fin field-effect transistors (FinFET) logic processes. This differential MTP cell stores complementary data in floating gates coupled by a slot contact structure, which make different read currents possible on a single cell. In nanoscale CMOS FinFET logic processes, the gate dielectric layer becomes too thin to retain charges inside floating gates for nonvolatile data storage. By using a differential architecture, the sensing window of the cell can be extended and maintained by an advanced blanket boost scheme. The charge retention problem in floating gate cells can be improved by periodic restoring lost charges when significant read window narrowing occurs. In addition to high programming efficiency, this p-channel MTP cells also exhibit good cycling endurance as well as disturbance immunity. The blanket boost scheme can remedy the charge loss problem under thin gate dielectrics.

  4. Reprogrammable read only variable threshold transistor memory with isolated addressing buffer

    DOEpatents

    Lodi, Robert J.

    1976-01-01

    A monolithic integrated circuit, fully decoded memory comprises a rectangular array of variable threshold field effect transistors organized into a plurality of multi-bit words. Binary address inputs to the memory are decoded by a field effect transistor decoder into a plurality of word selection lines each of which activates an address buffer circuit. Each address buffer circuit, in turn, drives a word line of the memory array. In accordance with the word line selected by the decoder the activated buffer circuit directs reading or writing voltages to the transistors comprising the memory words. All of the buffer circuits additionally are connected to a common terminal for clearing all of the memory transistors to a predetermined state by the application to the common terminal of a large magnitude voltage of a predetermined polarity. The address decoder, the buffer and the memory array, as well as control and input/output control and buffer field effect transistor circuits, are fabricated on a common substrate with means provided to isolate the substrate of the address buffer transistors from the remainder of the substrate so that the bulk clearing function of simultaneously placing all of the memory transistors into a predetermined state can be performed.

  5. Low-Temperature Scanning Capacitance Probe for Imaging Electron Motion

    NASA Astrophysics Data System (ADS)

    Bhandari, S.; Westervelt, R. M.

    2014-12-01

    Novel techniques to probe electronic properties at the nanoscale can shed light on the physics of nanoscale devices. In particular, studying the scattering of electrons from edges and apertures at the nanoscale and imaging the electron profile in a quantum dot, have been of interest [1]. In this paper, we present the design and implementation of a cooled scanning capacitance probe that operates at liquid He temperatures to image electron waves in nanodevices. The conducting tip of a scanned probe microscope is held above the nanoscale structure, and an applied sample-to-tip voltage creates an image charge that is measured by a cooled charge amplifier [2] adjacent to the tip. The circuit is based on a low-capacitance, high- electron-mobility transistor (Fujitsu FHX35X). The input is a capacitance bridge formed by a low capacitance pinched-off HEMT transistor and tip-sample capacitance. We have achieved low noise level (0.13 e/VHz) and high spatial resolution (100 nm) for this technique, which promises to be a useful tool to study electronic behavior in nanoscale devices.

  6. Ion bipolar junction transistors

    PubMed Central

    Tybrandt, Klas; Larsson, Karin C.; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-01-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated. PMID:20479274

  7. Failure rates for accelerated acceptance testing of silicon transistors

    NASA Technical Reports Server (NTRS)

    Toye, C. R.

    1968-01-01

    Extrapolation tables for the control of silicon transistor product reliability have been compiled. The tables are based on a version of the Arrhenius statistical relation and are intended to be used for low- and medium-power silicon transistors.

  8. T-gate aligned nanotube radio frequency transistors and circuits with superior performance.

    PubMed

    Che, Yuchi; Lin, Yung-Chen; Kim, Pyojae; Zhou, Chongwu

    2013-05-28

    In this paper, we applied self-aligned T-gate design to aligned carbon nanotube array transistors and achieved an extrinsic current-gain cutoff frequency (ft) of 25 GHz, which is the best on-chip performance for nanotube radio frequency (RF) transistors reported to date. Meanwhile, an intrinsic current-gain cutoff frequency up to 102 GHz is obtained, comparable to the best value reported for nanotube RF transistors. Armed with the excellent extrinsic RF performance, we performed both single-tone and two-tone measurements for aligned nanotube transistors at a frequency up to 8 GHz. Furthermore, we utilized T-gate aligned nanotube transistors to construct mixing and frequency doubling analog circuits operated in gigahertz frequency regime. Our results confirm the great potential of nanotube-based circuit applications and indicate that nanotube transistors are promising building blocks in high-frequency electronics.

  9. Identification of genes encoding the type IX secretion system and secreted proteins in Flavobacterium columnare IA-S-4

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare, a member of the phylum Bacteroidetes, causes columnaris disease in wild and aquaculture-reared freshwater fish. The mechanisms responsible for columnaris disease are not known. Many members of the phylum Bacteroidetes use type IX secretion systems (T9SSs) to secrete enzymes...

  10. AlN/GaN heterostructures for normally-off transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuravlev, K. S., E-mail: zhur@isp.nsc.ru; Malin, T. V.; Mansurov, V. G.

    The structure of AlN/GaN heterostructures with an ultrathin AlN barrier is calculated for normally-off transistors. The molecular-beam epitaxy technology of in situ passivated SiN/AlN/GaN heterostructures with a two-dimensional electron gas is developed. Normally-off transistors with a maximum current density of ~1 A/mm, a saturation voltage of 1 V, a transconductance of 350 mS/mm, and a breakdown voltage of more than 60 V are demonstrated. Gate lag and drain lag effects are almost lacking in these transistors.

  11. Photolithographically Patterned TiO2 Films for Electrolyte-Gated Transistors.

    PubMed

    Valitova, Irina; Kumar, Prajwal; Meng, Xiang; Soavi, Francesca; Santato, Clara; Cicoira, Fabio

    2016-06-15

    Metal oxides constitute a class of materials whose properties cover the entire range from insulators to semiconductors to metals. Most metal oxides are abundant and accessible at moderate cost. Metal oxides are widely investigated as channel materials in transistors, including electrolyte-gated transistors, where the charge carrier density can be modulated by orders of magnitude upon application of relatively low electrical bias (2 V). Electrolyte gating offers the opportunity to envisage new applications in flexible and printed electronics as well as to improve our current understanding of fundamental processes in electronic materials, e.g. insulator/metal transitions. In this work, we employ photolithographically patterned TiO2 films as channels for electrolyte-gated transistors. TiO2 stands out for its biocompatibility and wide use in sensing, electrochromics, photovoltaics and photocatalysis. We fabricated TiO2 electrolyte-gated transistors using an original unconventional parylene-based patterning technique. By using a combination of electrochemical and charge carrier transport measurements we demonstrated that patterning improves the performance of electrolyte-gated TiO2 transistors with respect to their unpatterned counterparts. Patterned electrolyte-gated (EG) TiO2 transistors show threshold voltages of about 0.9 V, ON/OFF ratios as high as 1 × 10(5), and electron mobility above 1 cm(2)/(V s).

  12. Coherent Femtosecond Spectroscopy and Nonlinear Optical Imaging on the Nanoscale

    NASA Astrophysics Data System (ADS)

    Kravtsov, Vasily

    four-wave mixing response from the tip apex and investigate its microscopic mechanism. Our results reveal a significant contribution to the third order nonlinearity of plasmonic structures due to large near-field gradients associated with nanofocused plasmons. In combination with scanning probe imaging and femtosecond pulse shaping, the nanofocused four-wave mixing response provides a basis for a novel type of ultrafast optical microscopy on the nanoscale. We demonstrate its capabilities by nano-imaging the coherent dynamics of localized plasmonic modes in a rough gold film edge with simultaneous sub-50 nm spatial and sub-5 fs temporal resolution. We capture the coherent decay and extract the dephasing times of individual plasmonic modes. Lastly, we apply our technique to study nanoscale spatial heterogeneity of the nonlinear optical response in novel two-dimensional materials: monolayer and few-layer graphene. An enhanced four-wave mixing signal is revealed on the edges of graphene flakes. We investigate the mechanism of this enhancement by performing nano-imaging on a graphene field-effect transistor with the variable carrier density controlled by electrostatic gating.

  13. Nanoscale platforms for messenger RNA delivery.

    PubMed

    Li, Bin; Zhang, Xinfu; Dong, Yizhou

    2018-05-04

    Messenger RNA (mRNA) has become a promising class of drugs for diverse therapeutic applications in the past few years. A series of clinical trials are ongoing or will be initiated in the near future for the treatment of a variety of diseases. Currently, mRNA-based therapeutics mainly focuses on ex vivo transfection and local administration in clinical studies. Efficient and safe delivery of therapeutically relevant mRNAs remains one of the major challenges for their broad applications in humans. Thus, effective delivery systems are urgently needed to overcome this limitation. In recent years, numerous nanoscale biomaterials have been constructed for mRNA delivery in order to protect mRNA from extracellular degradation and facilitate endosomal escape after cellular uptake. Nanoscale platforms have expanded the feasibility of mRNA-based therapeutics, and enabled its potential applications to protein replacement therapy, cancer immunotherapy, therapeutic vaccines, regenerative medicine, and genome editing. This review focuses on recent advances, challenges, and future directions in nanoscale platforms designed for mRNA delivery, including lipid and lipid-derived nanoparticles, polymer-based nanoparticles, protein derivatives mRNA complexes, and other types of nanomaterials. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures. © 2018 Wiley Periodicals, Inc.

  14. Bottom–Up Electrodeposition of Large-Scale Nanotwinned Copper within 3D Through Silicon Via

    PubMed Central

    Sun, Fu-Long; Li, Cai-Fu; Zhu, Qing-Sheng; Zhang, Hao; Suganuma, Katsuaki

    2018-01-01

    This paper is the first to report a large-scale directcurrent electrodeposition of columnar nanotwinned copper within through silicon via (TSV) with a high aspect ratio (~4). With this newly developed technique, void-free nanotwinned copper array could be fabricated in low current density (30 mA/cm2) and convection conditions (300 rpm), which are the preconditions for copper deposition with a uniform deep-hole microstructure. The microstructure of a whole cross-section of deposited copper array was made up of (111) orientated columnar grains with parallel nanoscale twins that had thicknesses of about 22 nm. The hardness was also uniform along the growth direction, with 2.34 and 2.68 GPa for the top and bottom of the TSV, respectively. The gelatin additive is also first reported hereas a key factor in forming nanoscale twins by adsorbing on the cathode surface, in order to enhance the overpotential for cathodic reaction during the copper deposition process. PMID:29473865

  15. Bottom-Up Electrodeposition of Large-Scale Nanotwinned Copper within 3D Through Silicon Via.

    PubMed

    Sun, Fu-Long; Liu, Zhi-Quan; Li, Cai-Fu; Zhu, Qing-Sheng; Zhang, Hao; Suganuma, Katsuaki

    2018-02-23

    This paper is the first to report a large-scale directcurrent electrodeposition of columnar nanotwinned copper within through silicon via (TSV) with a high aspect ratio (~4). With this newly developed technique, void-free nanotwinned copper array could be fabricated in low current density (30 mA/cm²) and convection conditions (300 rpm), which are the preconditions for copper deposition with a uniform deep-hole microstructure. The microstructure of a whole cross-section of deposited copper array was made up of (111) orientated columnar grains with parallel nanoscale twins that had thicknesses of about 22 nm. The hardness was also uniform along the growth direction, with 2.34 and 2.68 GPa for the top and bottom of the TSV, respectively. The gelatin additive is also first reported hereas a key factor in forming nanoscale twins by adsorbing on the cathode surface, in order to enhance the overpotential for cathodic reaction during the copper deposition process.

  16. Design of surface modifications for nanoscale sensor applications.

    PubMed

    Reimhult, Erik; Höök, Fredrik

    2015-01-14

    Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges.

  17. Metal Oxide Silicon /MOS/ transistors protected from destructive damage by wire

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.; Devine, E. J.

    1966-01-01

    Loop of flexible, small diameter, nickel wire protects metal oxide silicon /MOS/ transistors from a damaging electrostatic potential. The wire is attached to a music-wire spring, slipped over the MOS transistor case, and released so the spring tensions the wire loop around all the transistor leads, shorting them together. This allows handling without danger of damage.

  18. Switching Characteristics of Ferroelectric Transistor Inverters

    NASA Technical Reports Server (NTRS)

    Laws, Crystal; Mitchell, Coey; MacLeod, Todd C.; Ho, Fat D.

    2010-01-01

    This paper presents the switching characteristics of an inverter circuit using a ferroelectric field effect transistor, FeFET. The propagation delay time characteristics, phl and plh are presented along with the output voltage rise and fall times, rise and fall. The propagation delay is the time-delay between the V50% transitions of the input and output voltages. The rise and fall times are the times required for the output voltages to transition between the voltage levels V10% and V90%. Comparisons are made between the MOSFET inverter and the ferroelectric transistor inverter.

  19. Current-Induced Transistor Sensorics with Electrogenic Cells

    PubMed Central

    Fromherz, Peter

    2016-01-01

    The concepts of transistor recording of electroactive cells are considered, when the response is determined by a current-induced voltage in the electrolyte due to cellular activity. The relationship to traditional transistor recording, with an interface-induced response due to interactions with the open gate oxide, is addressed. For the geometry of a cell-substrate junction, the theory of a planar core-coat conductor is described with a one-compartment approximation. The fast electrical relaxation of the junction and the slow change of ion concentrations are pointed out. On that basis, various recording situations are considered and documented by experiments. For voltage-gated ion channels under voltage clamp, the effects of a changing extracellular ion concentration and the enhancement/depletion of ion conductances in the adherent membrane are addressed. Inhomogeneous ion conductances are crucial for transistor recording of neuronal action potentials. For a propagating action potential, the effects of an axon-substrate junction and the surrounding volume conductor are distinguished. Finally, a receptor-transistor-sensor is described, where the inhomogeneity of a ligand–activated ion conductance is achieved by diffusion of the agonist and inactivation of the conductance. Problems with regard to a development of reliable biosensors are mentioned. PMID:27120627

  20. Low-frequency switching in a transistor amplifier.

    PubMed

    Carroll, T L

    2003-04-01

    It is known from extensive work with the diode resonator that the nonlinear properties of a P-N junction can lead to period doubling, chaos, and other complicated behaviors in a driven circuit. There has been very little work on what happens when more than one P-N junction is present. In this work, the first step towards multiple P-N junction circuits is taken by doing both experiments and simulations with a single-transistor amplifier using a bipolar transistor. Period doubling and chaos are seen when the amplifier is driven with signals between 100 kHz and 1 MHz, and they coincide with a very low frequency switching between different period doubled (or chaotic) wave forms. The switching frequencies are between 5 and 10 Hz. The switching behavior was confirmed in a simplified model of the transistor amplifier.

  1. Molecular thermal transistor: Dimension analysis and mechanism

    NASA Astrophysics Data System (ADS)

    Behnia, S.; Panahinia, R.

    2018-04-01

    Recently, large challenge has been spent to realize high efficient thermal transistors. Outstanding properties of DNA make it as an excellent nano material in future technologies. In this paper, we introduced a high efficient DNA based thermal transistor. The thermal transistor operates when the system shows an increase in the thermal flux despite of decreasing temperature gradient. This is what called as negative differential thermal resistance (NDTR). Based on multifractal analysis, we could distinguish regions with NDTR state from non-NDTR state. Moreover, Based on dimension spectrum of the system, it is detected that NDTR state is accompanied by ballistic transport regime. The generalized correlation sum (analogous to specific heat) shows that an irregular decrease in the specific heat induces an increase in the mean free path (mfp) of phonons. This leads to the occurrence of NDTR.

  2. Thermal transistor behavior of a harmonic chain

    NASA Astrophysics Data System (ADS)

    Kim, Sangrak

    2017-09-01

    Thermal transistor behavior of a harmonic chain with three heat reservoirs is explicitly analyzed. Temperature profile and heat currents of the rather general system are formulated and then heat currents for the simplest system are exactly calculated. The matrix connecting the three temperatures of the reservoirs and those of the particles comprises a stochastic matrix. The ratios R 1 and R 2 between heat currents, characterizing thermal signals can be expressed in terms of two external variables and two material parameters. It is shown that the ratios R 1 and R 2 can have wide range of real values. The thermal system shows a thermal transistor behavior such as the amplification of heat current by appropriately controlling the two variables and two parameters. We explicitly demonstrate the characteristics and mechanisms of thermal transistor with the simplest model.

  3. A III-V nanowire channel on silicon for high-performance vertical transistors.

    PubMed

    Tomioka, Katsuhiro; Yoshimura, Masatoshi; Fukui, Takashi

    2012-08-09

    Silicon transistors are expected to have new gate architectures, channel materials and switching mechanisms in ten years' time. The trend in transistor scaling has already led to a change in gate structure from two dimensions to three, used in fin field-effect transistors, to avoid problems inherent in miniaturization such as high off-state leakage current and the short-channel effect. At present, planar and fin architectures using III-V materials, specifically InGaAs, are being explored as alternative fast channels on silicon because of their high electron mobility and high-quality interface with gate dielectrics. The idea of surrounding-gate transistors, in which the gate is wrapped around a nanowire channel to provide the best possible electrostatic gate control, using InGaAs channels on silicon, however, has been less well investigated because of difficulties in integrating free-standing InGaAs nanostructures on silicon. Here we report the position-controlled growth of vertical InGaAs nanowires on silicon without any buffering technique and demonstrate surrounding-gate transistors using InGaAs nanowires and InGaAs/InP/InAlAs/InGaAs core-multishell nanowires as channels. Surrounding-gate transistors using core-multishell nanowire channels with a six-sided, high-electron-mobility transistor structure greatly enhance the on-state current and transconductance while keeping good gate controllability. These devices provide a route to making vertically oriented transistors for the next generation of field-effect transistors and may be useful as building blocks for wireless networks on silicon platforms.

  4. Development and Experimental Evaluation of an Automated Multi-Media Course on Transistors.

    ERIC Educational Resources Information Center

    Whitted, J.H., Jr.; And Others

    A completely automated multi-media self-study program for teaching a portion of electronic solid-state fundamentals was developed. The subject matter areas included were fundamental theory of transistors, transistor amplifier fundamentals, and simple mathematical analysis of transistors including equivalent circuits, parameters, and characteristic…

  5. PH Sensitive WO3-Based Microelectrochemical Transistors.

    DTIC Science & Technology

    1986-09-22

    molecular electronics, microelectrochemistr microelectrodes, sur ace modtfication, molecule-based transistors, .... " polyaniline , poly-3-methylthiophene...polypyrrole,8 poly(N-methyl pyrrole),8b polyaniline , 9 or poly(3-methylthiophene),1 0 the polymer- ’-p2 ’ -p " ; , Q ’ , : ’ ’ ’ ... , , ’ i connected...VD. Polypyrrole, 8 polyaniline , 9 and poly(3-methylthiophene)1 0 are similar in that they are conducting when oxidized, and transistors based on these

  6. Comparison of the columnar-thin-film and vacuum-metal-deposition techniques to develop sebaceous fingermarks on nonporous substrates.

    PubMed

    Williams, Stephanie F; Pulsifer, Drew P; Shaler, Robert C; Ramotowski, Robert S; Brazelle, Shelly; Lakhtakia, Akhlesh

    2015-03-01

    Both the columnar-thin-film (CTF) and the vacuum-metal-deposition (VMD) techniques for visualizing sebaceous fingermarks require the deposition of a material thereon in a vacuum chamber. Despite that similarity, there are many differences between the two techniques. The film deposited with the CTF technique has a columnar morphology, but the film deposited with the VMD technique comprises discrete islands. A split-print methodology on a variety of fingermarked substrates was used to determine that the CTF technique is superior for developing fingermarks on clear sandwich bags and partial bloody fingermarks on stainless steel. Both techniques are similar in their ability to develop fingermarks on glass but the CTF technique yields higher contrast. The VMD technique is superior for developing fingermarks on white grocery bags and the smooth side of Gloss Finish Scotch Multitask(™) tape. Neither technique worked well for fingermarks on black garbage bags. © 2014 American Academy of Forensic Sciences.

  7. Scaling of Device Variability and Subthreshold Swing in Ballistic Carbon Nanotube Transistors

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Tersoff, Jerry; Han, Shu-Jen; Penumatcha, Ashish V.

    2015-08-01

    In field-effect transistors, the inherent randomness of dopants and other charges is a major cause of device-to-device variability. For a quasi-one-dimensional device such as carbon nanotube transistors, even a single charge can drastically change the performance, making this a critical issue for their adoption as a practical technology. Here we calculate the effect of the random charges at the gate-oxide surface in ballistic carbon nanotube transistors, finding good agreement with the variability statistics in recent experiments. A combination of experimental and simulation results further reveals that these random charges are also a major factor limiting the subthreshold swing for nanotube transistors fabricated on thin gate dielectrics. We then establish that the scaling of the nanotube device uniformity with the gate dielectric, fixed-charge density, and device dimension is qualitatively different from conventional silicon transistors, reflecting the very different device physics of a ballistic transistor with a quasi-one-dimensional channel. The combination of gate-oxide scaling and improved control of fixed-charge density should provide the uniformity needed for large-scale integration of such novel one-dimensional transistors even at extremely scaled device dimensions.

  8. Pseudo 2-transistor active pixel sensor using an n-well/gate-tied p-channel metal oxide semiconductor field eeffect transistor-type photodetector with built-in transfer gate

    NASA Astrophysics Data System (ADS)

    Seo, Sang-Ho; Seo, Min-Woong; Kong, Jae-Sung; Shin, Jang-Kyoo; Choi, Pyung

    2008-11-01

    In this paper, a pseudo 2-transistor active pixel sensor (APS) has been designed and fabricated by using an n-well/gate-tied p-channel metal oxide semiconductor field effect transistor (PMOSFET)-type photodetector with built-in transfer gate. The proposed sensor has been fabricated using a 0.35 μm 2-poly 4-metal standard complementary metal oxide semiconductor (CMOS) logic process. The pseudo 2-transistor APS consists of two NMOSFETs and one photodetector which can amplify the generated photocurrent. The area of the pseudo 2-transistor APS is 7.1 × 6.2 μm2. The sensitivity of the proposed pixel is 49 lux/(V·s). By using this pixel, a smaller pixel area and a higher level of sensitivity can be realized when compared with a conventional 3-transistor APS which uses a pn junction photodiode.

  9. Radio-frequency Bloch-transistor electrometer.

    PubMed

    Zorin, A B

    2001-04-09

    A quantum electrometer is proposed which is based on charge modulation of the Josephson supercurrent in the Bloch transistor inserted in a superconducting ring. As this ring is inductively coupled to a high- Q resonance tank circuit, the variations of the charge on the transistor island are converted into variations of amplitude and phase of oscillations in the tank. These variations are amplified and then detected. At sufficiently low temperature of the tank the device sensitivity is determined by the energy resolution of the amplifier, that can be reduced down to the standard quantum limit of 1 / 2Planck's over 2pi. A "back-action-evading" scheme of subquantum limit measurements is proposed.

  10. Monolithic acoustic graphene transistors based on lithium niobate thin film

    NASA Astrophysics Data System (ADS)

    Liang, J.; Liu, B.-H.; Zhang, H.-X.; Zhang, H.; Zhang, M.-L.; Zhang, D.-H.; Pang, W.

    2018-05-01

    This paper introduces an on-chip acoustic graphene transistor based on lithium niobate thin film. The graphene transistor is embedded in a microelectromechanical systems (MEMS) acoustic wave device, and surface acoustic waves generated by the resonator induce a macroscopic current in the graphene due to the acousto-electric (AE) effect. The acoustic resonator and the graphene share the lithium niobate film, and a gate voltage is applied through the back side of the silicon substrate. The AE current induced by the Rayleigh and Sezawa modes was investigated, and the transistor outputs a larger current in the Rayleigh mode because of a larger coupling to velocity ratio. The output current increases linearly with the input radiofrequency power and can be effectively modulated by the gate voltage. The acoustic graphene transistor realized a five-fold enhancement in the output current at an optimum gate voltage, outperforming its counterpart with a DC input. The acoustic graphene transistor demonstrates a paradigm for more-than-Moore technology. By combining the benefits of MEMS and graphene circuits, it opens an avenue for various system-on-chip applications.

  11. Reverse micelle synthesis of nanoscale metal containing catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni{sub 3}Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less

  12. DEVICE TECHNOLOGY. Nanomaterials in transistors: From high-performance to thin-film applications.

    PubMed

    Franklin, Aaron D

    2015-08-14

    For more than 50 years, silicon transistors have been continuously shrunk to meet the projections of Moore's law but are now reaching fundamental limits on speed and power use. With these limits at hand, nanomaterials offer great promise for improving transistor performance and adding new applications through the coming decades. With different transistors needed in everything from high-performance servers to thin-film display backplanes, it is important to understand the targeted application needs when considering new material options. Here the distinction between high-performance and thin-film transistors is reviewed, along with the benefits and challenges to using nanomaterials in such transistors. In particular, progress on carbon nanotubes, as well as graphene and related materials (including transition metal dichalcogenides and X-enes), outlines the advances and further research needed to enable their use in transistors for high-performance computing, thin films, or completely new technologies such as flexible and transparent devices. Copyright © 2015, American Association for the Advancement of Science.

  13. Columnar-Structured Mg-Al-Spinel Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Ebert, S.; Mauer, G.; Vaßen, R.

    2015-01-01

    The suspension plasma spraying (SPS) process has been developed to permit the feeding of sub-micrometer-sized powder into the plasma plume. In contrast to electron beam-physical vapor deposition and plasma spray-physical vapor deposition, SPS enables the cost-efficient deposition of columnar-structured coatings. Due to their strain tolerance, these coatings play an important role in the field of thermal barrier coatings (TBCs). In addition to the cost-efficient process, attention was turned to the TBC material. Nowadays, yttria partially stabilized zirconia (YSZ) is used as standard TBC material. However, its long-term application at temperatures higher than 1200 °C is problematic. At these high temperatures, phase transitions and sintering effects lead to the degradation of the TBC system. To overcome those deficits of YSZ, Mg-Al-spinel was chosen as TBC material. Even though it has a lower melting point (~2135 °C) and a higher thermal conductivity (~2.5 W/m/K) than YSZ, Mg-Al-spinel provides phase stability at high temperatures in contrast to YSZ. The Mg-Al-spinel deposition by SPS resulted in columnar-structured coatings, which have been tested for their thermal cycling lifetime. Furthermore, the influence of substrate cooling during the spraying process on thermal cycling behavior, phase composition, and stoichiometry of the Mg-Al-spinel has been investigated.

  14. Dual-mode operation of 2D material-base hot electron transistors

    PubMed Central

    Lan, Yann-Wen; Torres, Jr., Carlos M.; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.

    2016-01-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550

  15. Dual-mode operation of 2D material-base hot electron transistors.

    PubMed

    Lan, Yann-Wen; Torres, Carlos M; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R; Lerner, Mitchell B; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  16. Comparative effects of copper sulfate or potassium permanganate on channel catfish concurrently infected with Flavobacterium columnare and Ichthyobodo necator

    USDA-ARS?s Scientific Manuscript database

    An opportunistic study was conducted to determine the effects of two chemical therapeutants on channel catfish (CCF) Ictalurus punctatus concurrently infected Flavobacterium columnare and Ichthyobodo necator. Copper sulfate (CuSO4) and potassium permanganate (KMnO4) were investigated for their abil...

  17. Back bias induced dynamic and steep subthreshold swing in junctionless transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parihar, Mukta Singh; Kranti, Abhinav, E-mail: akranti@iiti.ac.in

    In this work, we analyze back bias induced steep and dynamic subthreshold swing in junctionless double gate transistors operated in the asymmetric mode. This impact ionization induced dynamic subthreshold swing is explained in terms of the ratio between minimum hole concentration and peak electron concentration, and the dynamic change in the location of the conduction channel with applied front gate voltage. The reason for the occurrence of impact ionization at sub-bandgap drain voltages in silicon junctionless transistors is also accounted for. The optimum junctionless transistor operating at a back gate bias of −0.9 V, achieves over 5 orders of change inmore » drain current at a gate overdrive of 200 mV and drain bias of 1 V. These results for junctionless transistors are significantly better than those exhibited by silicon tunnel field effect transistors operating at the same drain bias.« less

  18. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    The recent technological developments in the synthesis and characterization of high-quality nanostructures and developments in the theoretical techniques needed to model these materials, have motivated this focus section of Superconductor Science and Technology. Another motivation is the compelling evidence that all new superconducting materials, such as iron pnictides and chalcogenides, diborides (doped MgB2) and fullerides (alkali-doped C60 compounds), are heterostrucures at the atomic limit, such as the cuprates made of stacks of nanoscale superconducting layers intercalated by different atomic layers with nanoscale periodicity. Recently a great amount of interest has been shown in the role of lattice nano-architecture in controlling the fine details of Fermi surface topology. The experimental and theoretical study of superconductivity in the nanoscale started in the early 1960s, shortly after the discovery of the BCS theory. Thereafter there has been rapid progress both in experiments and the theoretical understanding of nanoscale superconductors. Experimentally, thin films, granular films, nanowires, nanotubes and single nanoparticles have all been explored. New quantum effects appear in the nanoscale related to multi-component condensates. Advances in the understanding of shape resonances or Fano resonances close to 2.5 Lifshitz transitions near a band edge in nanowires, 2D films and superlattices [1, 2] of these nanosized modules, provide the possibility of manipulating new quantum electronic states. Parity effects and shell effects in single, isolated nanoparticles have been reported by several groups. Theoretically, newer techniques based on solving Richardson's equation (an exact theory incorporating finite size effects to the BCS theory) numerically by path integral methods or solving the entire Bogoliubov-de Gennes equation in these limits have been attempted, which has improved our understanding of the mechanism of superconductivity in these confined

  19. High-performance carbon nanotube thin-film transistors on flexible paper substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Na; Yun, Ki Nam; Yu, Hyun-Yong

    Single-walled carbon nanotubes (SWCNTs) are promising materials as active channels for flexible transistors owing to their excellent electrical and mechanical properties. However, flexible SWCNT transistors have never been realized on paper substrates, which are widely used, inexpensive, and recyclable. In this study, we fabricated SWCNT thin-film transistors on photo paper substrates. The devices exhibited a high on/off current ratio of more than 10{sup 6} and a field-effect mobility of approximately 3 cm{sup 2}/V·s. The proof-of-concept demonstration indicates that SWCNT transistors on flexible paper substrates could be applied as low-cost and recyclable flexible electronics.

  20. Ferroelectric field-effect transistors based on solution-processed electrochemically exfoliated graphene

    NASA Astrophysics Data System (ADS)

    Heidler, Jonas; Yang, Sheng; Feng, Xinliang; Müllen, Klaus; Asadi, Kamal

    2018-06-01

    Memories based on graphene that could be mass produced using low-cost methods have not yet received much attention. Here we demonstrate graphene ferroelectric (dual-gate) field effect transistors. The graphene has been obtained using electrochemical exfoliation of graphite. Field-effect transistors are realized using a monolayer of graphene flakes deposited by the Langmuir-Blodgett protocol. Ferroelectric field effect transistor memories are realized using a random ferroelectric copolymer poly(vinylidenefluoride-co-trifluoroethylene) in a top gated geometry. The memory transistors reveal ambipolar behaviour with both electron and hole accumulation channels. We show that the non-ferroelectric bottom gate can be advantageously used to tune the on/off ratio.

  1. The Influence of Ionic Environment and Histone Tails on Columnar Order of Nucleosome Core Particles

    PubMed Central

    Berezhnoy, Nikolay V.; Liu, Ying; Allahverdi, Abdollah; Yang, Renliang; Su, Chun-Jen; Liu, Chuan-Fa; Korolev, Nikolay; Nordenskiöld, Lars

    2016-01-01

    The nucleosome core particle (NCP) is the basic building block of chromatin. Nucleosome-nucleosome interactions are instrumental in chromatin compaction, and understanding NCP self-assembly is important for understanding chromatin structure and dynamics. Recombinant NCPs aggregated by multivalent cations form various ordered phases that can be studied by x-ray diffraction (small-angle x-ray scattering). In this work, the effects on the supramolecular structure of aggregated NCPs due to lysine histone H4 tail acetylations, histone H2A mutations (neutralizing the acidic patch of the histone octamer), and the removal of histone tails were investigated. The formation of ordered mainly hexagonal columnar NCP phases is in agreement with earlier studies; however, the highly homogeneous recombinant NCP systems used in this work display a more compact packing. The long-range order of the NCP columnar phase was found to be abolished or reduced by acetylation of the H4 tails, acidic patch neutralization, and removal of the H3 and H2B tails. Loss of nucleosome stacking upon removal of the H3 tails in combination with other tails was observed. In the absence of the H2A tails, the formation of an unknown highly ordered phase was observed. PMID:27119633

  2. Reverse micelle synthesis of nanoscale metal containing catalysts. [Nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide nanoscale powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni[sub 3]Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less

  3. Floating gate transistors as biosensors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Frisbie, C. Daniel

    2016-11-01

    Electrolyte gated transistors (EGTs) are a sub-class of thin film transistors that are extremely promising for biological sensing applications. These devices employ a solid electrolyte as the gate insulator; the very large capacitance of the electrolyte results in low voltage operation and high transconductance or gain. This talk will describe the fabrication of floating gate EGTs and their use as ricin sensors. The critical performance metrics for EGTs compared with other types of TFTs will also be reviewed.

  4. Transistor Laser Optical NOR Gate for High Speed Optical Logic Processors

    DTIC Science & Technology

    2017-03-20

    proposes an optical bistable latch can be built with two universal photonic NOR gate circuits, which are implemented by the three-port tunneling ... Tunneling Junction Transistor Laser (TJ-TL); Optical NOR Gate. Introduction To fulfill the future national security and intelligence needs in this...two-terminal diode lasers. Three-Port Transistor Laser – an Integration of Quantum-Wells into Heterojunction Bipolar Transistor Different than

  5. Design of Surface Modifications for Nanoscale Sensor Applications

    PubMed Central

    Reimhult, Erik; Höök, Fredrik

    2015-01-01

    Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges. PMID:25594599

  6. Magnon transistor for all-magnon data processing.

    PubMed

    Chumak, Andrii V; Serga, Alexander A; Hillebrands, Burkard

    2014-08-21

    An attractive direction in next-generation information processing is the development of systems employing particles or quasiparticles other than electrons--ideally with low dissipation--as information carriers. One such candidate is the magnon: the quasiparticle associated with the eigen-excitations of magnetic materials known as spin waves. The realization of single-chip all-magnon information systems demands the development of circuits in which magnon currents can be manipulated by magnons themselves. Using a magnonic crystal--an artificial magnetic material--to enhance nonlinear magnon-magnon interactions, we have succeeded in the realization of magnon-by-magnon control, and the development of a magnon transistor. We present a proof of concept three-terminal device fabricated from an electrically insulating magnetic material. We demonstrate that the density of magnons flowing from the transistor's source to its drain can be decreased three orders of magnitude by the injection of magnons into the transistor's gate.

  7. Effects of aging treatment on the microstructure and superelasticity of columnar-grained Cu71Al18Mn11 shape memory alloy

    NASA Astrophysics Data System (ADS)

    Liu, Ji-li; Huang, Hai-you; Xie, Jian-xin

    2016-10-01

    The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu71Al18Mn11 shape memory alloy (SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu71Al18Mn11 SMA with aging temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ·mol-1. Finally, a columnar-grained Cu71Al18Mn11 SMA with both excellent superelasticity (5%-9%) and high martensitic transformation critical stress (443-677 MPa) is obtained through the application of the appropriate aging treatments.

  8. In vitro comparisons of the inhibitory activity of florfenicol copper sulfate and potassium permanganate towards Aeromonas hydrophila and Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Aeromonas hydrophila and Flavobacterium columnare, the etiological agents of motile aeromonas septicemia (MAS) and columnaris disease, respectively, have been recently causing crippling moralities to the sunshine bass, Morone chrysops female X Morone saxatilis male (Percichthyidae), industry in the ...

  9. Transistor-based filter for inhibiting load noise from entering a power supply

    DOEpatents

    Taubman, Matthew S

    2013-07-02

    A transistor-based filter for inhibiting load noise from entering a power supply is disclosed. The filter includes a first transistor having an emitter coupled to a power supply, a collector coupled to a load, and a base. The filter also includes a first capacitor coupled between the base of the first transistor and a ground terminal. The filter further includes an impedance coupled between the base and a node between the collector and the load, or a second transistor and second capacitor. The impedance can be a resistor or an inductor.

  10. Transistor-based filter for inhibiting load noise from entering a power supply

    DOEpatents

    Taubman, Matthew S

    2015-02-24

    A transistor-based filter for inhibiting load noise from entering a power supply is disclosed. The filter includes a first transistor having an emitter coupled to a power supply, a collector coupled to a load, and a base. The filter also includes a first capacitor coupled between the base of the first transistor and a ground terminal The filter further includes an impedance coupled between the base and a node between the collector and the load, or a second transistor and second capacitor. The impedance can be a resistor or an inductor.

  11. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    PubMed Central

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-01-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing. PMID:26349444

  12. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  13. Transistor analogs of emergent iono-neuronal dynamics.

    PubMed

    Rachmuth, Guy; Poon, Chi-Sang

    2008-06-01

    Neuromorphic analog metal-oxide-silicon (MOS) transistor circuits promise compact, low-power, and high-speed emulations of iono-neuronal dynamics orders-of-magnitude faster than digital simulation. However, their inherently limited input voltage dynamic range vs power consumption and silicon die area tradeoffs makes them highly sensitive to transistor mismatch due to fabrication inaccuracy, device noise, and other nonidealities. This limitation precludes robust analog very-large-scale-integration (aVLSI) circuits implementation of emergent iono-neuronal dynamics computations beyond simple spiking with limited ion channel dynamics. Here we present versatile neuromorphic analog building-block circuits that afford near-maximum voltage dynamic range operating within the low-power MOS transistor weak-inversion regime which is ideal for aVLSI implementation or implantable biomimetic device applications. The fabricated microchip allowed robust realization of dynamic iono-neuronal computations such as coincidence detection of presynaptic spikes or pre- and postsynaptic activities. As a critical performance benchmark, the high-speed and highly interactive iono-neuronal simulation capability on-chip enabled our prompt discovery of a minimal model of chaotic pacemaker bursting, an emergent iono-neuronal behavior of fundamental biological significance which has hitherto defied experimental testing or computational exploration via conventional digital or analog simulations. These compact and power-efficient transistor analogs of emergent iono-neuronal dynamics open new avenues for next-generation neuromorphic, neuroprosthetic, and brain-machine interface applications.

  14. Ultrathin strain-gated field effect transistor based on In-doped ZnO nanobelts

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Du, Junli; Li, Bing; Zhang, Shuhao; Hong, Mengyu; Zhang, Xiaomei; Liao, Qingliang; Zhang, Yue

    2017-08-01

    In this work, we fabricated a strain-gated piezoelectric transistor based on single In-doped ZnO nanobelt with ±(0001) top/bottom polar surfaces. In the vertical structured transistor, the Pt tip of the AFM and Au film are used as source and drain electrode. The electrical transport performance of the transistor is gated by compressive strains. The working mechanism is attributed to the Schottky barrier height changed under the coupling effect of piezoresistive and piezoelectric. Uniquely, the transistor turns off under the compressive stress of 806 nN. The strain-gated transistor is likely to have important applications in high resolution mapping device and MEMS devices.

  15. A Novel Metal-Ferroelectric-Semiconductor Field-Effect Transistor Memory Cell Design

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; Bailey, Mark; Ho, Fat Duen

    2004-01-01

    The use of a Metal-Ferroelectric-Semiconductor Field-Effect Transistor (MFSFET) in a resistive-load SRAM memory cell has been investigated A typical two-transistor resistive-load SRAM memory cell architecture is modified by replacing one of the NMOS transistors with an n-channel MFSFET. The gate of the MFSFET is connected to a polling voltage pulse instead of the other NMOS transistor drain. The polling voltage pulses are of sufficient magnitude to saturate the ferroelectric gate material and force the MFSFET into a particular logic state. The memory cell circuit is further modified by the addition of a PMOS transistor and a load resistor in order to improve the retention characteristics of the memory cell. The retention characteristics of both the "1" and "0" logic states are simulated. The simulations show that the MFSFET memory cell design can maintain both the "1" and "0" logic states for a long period of time.

  16. Dynamic structural disorder in supported nanoscale catalysts

    NASA Astrophysics Data System (ADS)

    Rehr, J. J.; Vila, F. D.

    2014-04-01

    We investigate the origin and physical effects of "dynamic structural disorder" (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  17. Probing and manipulating magnetization at the nanoscale

    NASA Astrophysics Data System (ADS)

    Samarth, Nitin

    2012-02-01

    Combining semiconductors with magnetism in hetero- and nano-structured geometries provides a powerful means of exploring the interplay between spin-dependent transport and nanoscale magnetism. We describe two recent studies in this context. First, we use spin-dependent transport in ferromagnetic semiconductor thin films to provide a new window into nanoscale magnetism [1]: here, we exploit the large anomalous Hall effect in a ferromagnetic semiconductor as a nanoscale probe of the reversible elastic behavior of magnetic domain walls and gain insight into regimes of domain wall behavior inaccessible to more conventional optical techniques. Next, we describe novel ways to create self-assembled hybrid semiconductor/ferromagnet core-shell nanowires [2] and show how magnetoresistance measurements in single nanowires, coupled with micromagnetic simulations, can provide detailed insights into the magnetization reversal process in nanoscale ferromagnets [3]. The work described here was carried out in collaboration with Andrew Balk, Jing Liang, Nicholas Dellas, Mark Nowakowski, David Rench, Mark Wilson, Roman Engel-Herbert, Suzanne Mohney, Peter Schiffer and David Awschalom. This work is supported by ONR, NSF and the NSF-MRSEC program.[4pt] [1] A. L. Balk et al., Phys. Rev.Lett. 107, 077205 (2011).[0pt] [2] N. J. Dellas et al., Appl. Phys. Lett. 97, 072505 (2010).[0pt] [3] J. Liang et al., in preparation.

  18. Columnar characteristics of aerosols by spectroradiometer measurements in the maritime area of the Cadiz Gulf (Spain)

    NASA Astrophysics Data System (ADS)

    Vergaz, Ricardo; Cachorro, Victoria E.; de Frutos, Ángel M.; Vilaplana, José M.; de La Morena, Benito A.

    2005-11-01

    Atmospheric aerosol characteristics represented by the spectral aerosol optical depth AOD) and the Ångström turbidity parameter were determined in the coastal area of the Gulf of Cádiz, (southwest of Spain). The columnar aerosol properties presented here correspond to the 1996-1999 period, and were obtained by solar direct irradiance measurements carried out by a Licor1800 spectroradiometer. The performance of this type of medium-spectral resolution radiometric system is analysed over the measured period. The detailed spectral information of these irradiance measurements enabled the use of selected non-absorption gases spectral windows to determine the columnar spectral AOD that was modelled by Ångström formula to obtain the coefficient. Temporal evolutions of instantaneous values together with a general statistical analysis represented by seasonal values, frequency distributions and some representative correlations for the AOD and the derived Ångström coefficient gave us the first insight of aerosol characteristics in this coastal area. Special attention was paid to the analysis of these aerosol properties at the nominal wavelengths of 440 nm, 670 nm, 870 nm and 1020 nm for the near-future comparisons with the Cimel sun-photometer data. However, taking the most representative aerosol wavelength of 500 nm, the variability of the AOD ranges from 0.005 to 0.53, with a mean of 0.12 (s.d = 0.07) and that of the parameter is given by a mean value of 0.93 (s.d. = 0.58) falling inside the range of marine aerosols. A quantitative discrimination of aerosol types was conducted on the basis of the spectral aerosol properties and air mass back trajectory analysis, which resulted in a mixed type because of the specificity of this area, given by very frequent desert dust episodes, continental and polluted local influences. This study represents the first extended data characterization about columnar properties of aerosols in Spain which has been continued by Cimel

  19. Method to determine thermal profiles of nanoscale circuitry

    DOEpatents

    Zettl, Alexander K; Begtrup, Gavi E

    2013-04-30

    A platform that can measure the thermal profiles of devices with nanoscale resolution has been developed. The system measures the local temperature by using an array of nanoscale thermometers. This process can be observed in real time using a high resolution imagining technique such as electron microscopy. The platform can operate at extremely high temperatures.

  20. Osteoblastic cells trigger gate currents on nanocrystalline diamond transistor.

    PubMed

    Izak, Tibor; Krátká, Marie; Kromka, Alexander; Rezek, Bohuslav

    2015-05-01

    We show the influence of osteoblastic SAOS-2 cells on the transfer characteristics of nanocrystalline diamond solution-gated field-effect transistors (SGFET) prepared on glass substrates. Channels of these fully transparent SGFETs are realized by hydrogen termination of undoped diamond film. After cell cultivation, the transistors exhibit about 100× increased leakage currents (up to 10nA). During and after the cell delamination, the transistors return to original gate currents. We propose a mechanism where this triggering effect is attributed to ions released from adhered cells, which depends on the cell adhesion morphology, and could be used for cell culture monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Controlling charge current through a DNA based molecular transistor

    NASA Astrophysics Data System (ADS)

    Behnia, S.; Fathizadeh, S.; Ziaei, J.

    2017-01-01

    Molecular electronics is complementary to silicon-based electronics and may induce electronic functions which are difficult to obtain with conventional technology. We have considered a DNA based molecular transistor and study its transport properties. The appropriate DNA sequence as a central chain in molecular transistor and the functional interval for applied voltages is obtained. I-V characteristic diagram shows the rectifier behavior as well as the negative differential resistance phenomenon of DNA transistor. We have observed the nearly periodic behavior in the current flowing through DNA. It is reported that there is a critical gate voltage for each applied bias which above it, the electrical current is always positive.

  2. Acoustic transistor: Amplification and switch of sound by sound

    NASA Astrophysics Data System (ADS)

    Liang, Bin; Kan, Wei-wei; Zou, Xin-ye; Yin, Lei-lei; Cheng, Jian-chun

    2014-08-01

    We designed an acoustic transistor to manipulate sound in a manner similar to the manipulation of electric current by its electrical counterpart. The acoustic transistor is a three-terminal device with the essential ability to use a small monochromatic acoustic signal to control a much larger output signal within a broad frequency range. The output and controlling signals have the same frequency, suggesting the possibility of cascading the structure to amplify an acoustic signal. Capable of amplifying and switching sound by sound, acoustic transistors have various potential applications and may open the way to the design of conceptual devices such as acoustic logic gates.

  3. Nanoscale Membrane Curvature detected by Polarized Localization Microscopy

    NASA Astrophysics Data System (ADS)

    Kelly, Christopher; Maarouf, Abir; Woodward, Xinxin

    Nanoscale membrane curvature is a necessary component of countless cellular processes. Here we present Polarized Localization Microscopy (PLM), a super-resolution optical imaging technique that enables the detection of nanoscale membrane curvature with order-of-magnitude improvements over comparable optical techniques. PLM combines the advantages of polarized total internal reflection fluorescence microscopy and fluorescence localization microscopy to reveal single-fluorophore locations and orientations without reducing localization precision by point spread function manipulation. PLM resolved nanoscale membrane curvature of a supported lipid bilayer draped over polystyrene nanoparticles on a glass coverslip, thus creating a model membrane with coexisting flat and curved regions and membrane radii of curvature as small as 20 nm. Further, PLM provides single-molecule trajectories and the aggregation of curvature-inducing proteins with super-resolution to reveal the correlated effects of membrane curvature, dynamics, and molecular sorting. For example, cholera toxin subunit B has been observed to induce nanoscale membrane budding and concentrate at the bud neck. PLM reveals a previously hidden and critical information of membrane topology.

  4. Balancing Hole and Electron Conduction in Ambipolar Split-Gate Thin-Film Transistors.

    PubMed

    Yoo, Hocheon; Ghittorelli, Matteo; Lee, Dong-Kyu; Smits, Edsger C P; Gelinck, Gerwin H; Ahn, Hyungju; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2017-07-10

    Complementary organic electronics is a key enabling technology for the development of new applications including smart ubiquitous sensors, wearable electronics, and healthcare devices. High-performance, high-functionality and reliable complementary circuits require n- and p-type thin-film transistors with balanced characteristics. Recent advancements in ambipolar organic transistors in terms of semiconductor and device engineering demonstrate the great potential of this route but, unfortunately, the actual development of ambipolar organic complementary electronics is currently hampered by the uneven electron (n-type) and hole (p-type) conduction in ambipolar organic transistors. Here we show ambipolar organic thin-film transistors with balanced n-type and p-type operation. By manipulating air exposure and vacuum annealing conditions, we show that well-balanced electron and hole transport properties can be easily obtained. The method is used to control hole and electron conductions in split-gate transistors based on a solution-processed donor-acceptor semiconducting polymer. Complementary logic inverters with balanced charging and discharging characteristics are demonstrated. These findings may open up new opportunities for the rational design of complementary electronics based on ambipolar organic transistors.

  5. Transistorized PWM inverter-induction motor drive system

    NASA Technical Reports Server (NTRS)

    Peak, S. C.; Plunkett, A. B.

    1982-01-01

    This paper describes the development of a transistorized PWM inverter-induction motor traction drive system. A vehicle performance analysis was performed to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of inverter and motor specifications. The inverter was a transistorized three-phase bridge using General Electric power Darlington transistors. The description of the design and development of this inverter is the principal object of this paper. The high-speed induction motor is a design which is optimized for use with an inverter power source. The primary feedback control is a torque angle control with voltage and torque outer loop controls. A current-controlled PWM technique is used to control the motor voltage. The drive has a constant torque output with PWM operation to base motor speed and a constant horsepower output with square wave operation to maximum speed. The drive system was dynamometer tested and the results are presented.

  6. Integrated logic circuits using single-atom transistors

    PubMed Central

    Mol, J. A.; Verduijn, J.; Levine, R. D.; Remacle, F.

    2011-01-01

    Scaling down the size of computing circuits is about to reach the limitations imposed by the discrete atomic structure of matter. Reducing the power requirements and thereby dissipation of integrated circuits is also essential. New paradigms are needed to sustain the rate of progress that society has become used to. Single-atom transistors, SATs, cascaded in a circuit are proposed as a promising route that is compatible with existing technology. We demonstrate the use of quantum degrees of freedom to perform logic operations in a complementary-metal–oxide–semiconductor device. Each SAT performs multilevel logic by electrically addressing the electronic states of a dopant atom. A single electron transistor decodes the physical multivalued output into the conventional binary output. A robust scalable circuit of two concatenated full adders is reported, where by utilizing charge and quantum degrees of freedom, the functionality of the transistor is pushed far beyond that of a simple switch. PMID:21808050

  7. Local bipolar-transistor gain measurement for VLSI devices

    NASA Astrophysics Data System (ADS)

    Bonnaud, O.; Chante, J. P.

    1981-08-01

    A method is proposed for measuring the gain of a bipolar transistor region as small as possible. The measurement then allows the evaluation particularly of the effect of the emitter-base junction edge and the technology-process influence of VLSI-technology devices. The technique consists in the generation of charge carriers in the transistor base layer by a focused laser beam in order to bias the device in as small a region as possible. To reduce the size of the conducting area, a transversal reverse base current is forced through the base layer resistance in order to pinch in the emitter current in the illuminated region. Transistor gain is deduced from small signal measurements. A model associated with this technique is developed, and this is in agreement with the first experimental results.

  8. Bioassay-directed isolation and evaluation of Harmine from the terrestrial plant Peganum harmala L. for antibacterial activity against Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    The antibacterial activities of crude extracts obtained from the aerial portions and roots of Peganum harmala L. were evaluated against the common fish pathogenic bacteria species Edwardsiella ictaluri, Flavobacterium columnare, and Streptococcus iniae using a rapid bioassay. Enteric septicemia of c...

  9. High-frequency noise characterization of graphene field effect transistors on SiC substrates

    NASA Astrophysics Data System (ADS)

    Yu, C.; He, Z. Z.; Song, X. B.; Liu, Q. B.; Dun, S. B.; Han, T. T.; Wang, J. J.; Zhou, C. J.; Guo, J. C.; Lv, Y. J.; Cai, S. J.; Feng, Z. H.

    2017-07-01

    Considering its high carrier mobility and high saturation velocity, a low-noise amplifier is thought of as being the most attractive analogue application of graphene field-effect transistors. The noise performance of graphene field-effect transistors at frequencies in the K-band remains unknown. In this work, the noise parameters of a graphene transistor are measured from 10 to 26 GHz and noise models are built with the data. The extrinsic minimum noise figure for a graphene transistor reached 1.5 dB, and the intrinsic minimum noise figure was as low as 0.8 dB at a frequency of 10 GHz, which were comparable with the results from tests on Si CMOS and started to approach those for GaAs and InP transistors. Considering the short development time, the current results are a significant step forward for graphene transistors and show their application potential in high-frequency electronics.

  10. Electrical coupling of single cardiac rat myocytes to field-effect and bipolar transistors.

    PubMed

    Kind, Thomas; Issing, Matthias; Arnold, Rüdiger; Müller, Bernt

    2002-12-01

    A novel bipolar transistor for extracellular recording the electrical activity of biological cells is presented, and the electrical behavior compared with the field-effect transistor (FET). Electrical coupling is examined between single cells separated from the heart of adults rats (cardiac myocytes) and both types of transistors. To initiate a local extracellular voltage, the cells are periodically stimulated by a patch pipette in voltage clamp and current clamp mode. The local extracellular voltage is measured by the planar integrated electronic sensors: the bipolar and the FET. The small signal transistor currents correspond to the local extracellular voltage. The two types of sensor transistors used here were developed and manufactured in the laboratory of our institute. The manufacturing process and the interfaces between myocytes and transistors are described. The recordings are interpreted by way of simulation based on the point-contact model and the single cardiac myocyte model.

  11. Pentacene Organic Thin-Film Transistors on Flexible Paper and Glass Substrates

    DTIC Science & Technology

    2014-02-12

    FEB 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Pentacene organic thin - film transistors on flexible...Nanotechnology 25 (2014) 094005 (7pp) doi:10.1088/0957-4484/25/9/094005 Pentacene organic thin - film transistors on flexible paper and glass substrates Adam T...organic thin - film transistors (OTFTs) were fabricated on several types of flexible substrate: commercial photo paper, ultra-smooth specialty paper and

  12. Dopant atoms as quantum components in silicon nanoscale devices

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaosong; Han, Weihua; Wang, Hao; Ma, Liuhong; Li, Xiaoming; Zhang, Wang; Yan, Wei; Yang, Fuhua

    2018-06-01

    Recent progress in nanoscale fabrication allows many fundamental studies of the few dopant atoms in various semiconductor nanostructures. Since the size of nanoscale devices has touched the limit of the nature, a single dopant atom may dominate the performance of the device. Besides, the quantum computing considered as a future choice beyond Moore's law also utilizes dopant atoms as functional units. Therefore, the dopant atoms will play a significant role in the future novel nanoscale devices. This review focuses on the study of few dopant atoms as quantum components in silicon nanoscale device. The control of the number of dopant atoms and unique quantum transport characteristics induced by dopant atoms are presented. It can be predicted that the development of nanoelectronics based on dopant atoms will pave the way for new possibilities in quantum electronics. Project supported by National Key R&D Program of China (No. 2016YFA0200503).

  13. Talin determines the nanoscale architecture of focal adhesions.

    PubMed

    Liu, Jaron; Wang, Yilin; Goh, Wah Ing; Goh, Honzhen; Baird, Michelle A; Ruehland, Svenja; Teo, Shijia; Bate, Neil; Critchley, David R; Davidson, Michael W; Kanchanawong, Pakorn

    2015-09-01

    Insight into how molecular machines perform their biological functions depends on knowledge of the spatial organization of the components, their connectivity, geometry, and organizational hierarchy. However, these parameters are difficult to determine in multicomponent assemblies such as integrin-based focal adhesions (FAs). We have previously applied 3D superresolution fluorescence microscopy to probe the spatial organization of major FA components, observing a nanoscale stratification of proteins between integrins and the actin cytoskeleton. Here we combine superresolution imaging techniques with a protein engineering approach to investigate how such nanoscale architecture arises. We demonstrate that talin plays a key structural role in regulating the nanoscale architecture of FAs, akin to a molecular ruler. Talin diagonally spans the FA core, with its N terminus at the membrane and C terminus demarcating the FA/stress fiber interface. In contrast, vinculin is found to be dispensable for specification of FA nanoscale architecture. Recombinant analogs of talin with modified lengths recapitulated its polarized orientation but altered the FA/stress fiber interface in a linear manner, consistent with its modular structure, and implicating the integrin-talin-actin complex as the primary mechanical linkage in FAs. Talin was found to be ∼97 nm in length and oriented at ∼15° relative to the plasma membrane. Our results identify talin as the primary determinant of FA nanoscale organization and suggest how multiple cellular forces may be integrated at adhesion sites.

  14. Multiplexing of Radio-Frequency Single Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We present results on wavelength division multiplexing of radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. A two-channel demonstration of this concept using discrete components successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.

  15. The Integration of Nanoscale Techniques for an Improved Battery Technology

    DTIC Science & Technology

    2012-06-08

    anodized aluminum oxide ( AAO ) membranes that were 13...nanoporous anodized aluminum oxide ( AAO ) substrate [13]. During sputtering, thickened columnar growths form around the pores of the substrate...investigates an interpenetrating network structure where ―tubes‖ of polymer electrolyte are placed in the nanopores of anodic aluminum oxide ( AAO

  16. Mixed electrochemical–ferroelectric states in nanoscale ferroelectrics

    DOE PAGES

    Yang, Sang Mo; Morozovska, Anna N.; Kumar, Rajeev; ...

    2017-05-01

    Ferroelectricity on the nanoscale has been the subject of much fascination in condensed-matter physics for over half a century. In recent years, multiple reports claiming ferroelectricity in ultrathin ferroelectric films based on the formation of remnant polarization states, local electromechanical hysteresis loops, and pressure-induced switching were made. But, similar phenomena were reported for traditionally non-ferroelectric materials, creating a significant level of uncertainty in the field. We show that in nanoscale systems the ferroelectric state is fundamentally inseparable from the electrochemical state of the surface, leading to the emergence of a mixed electrochemical–ferroelectric state. We explore the nature, thermodynamics, and thicknessmore » evolution of such states, and demonstrate the experimental pathway to establish its presence. Our analysis reconciles multiple prior studies, provides guidelines for studies of ferroelectric materials on the nanoscale, and establishes the design paradigm for new generations of ferroelectric-based devices.« less

  17. Going ballistic: Graphene hot electron transistors

    NASA Astrophysics Data System (ADS)

    Vaziri, S.; Smith, A. D.; Östling, M.; Lupina, G.; Dabrowski, J.; Lippert, G.; Mehr, W.; Driussi, F.; Venica, S.; Di Lecce, V.; Gnudi, A.; König, M.; Ruhl, G.; Belete, M.; Lemme, M. C.

    2015-12-01

    This paper reviews the experimental and theoretical state of the art in ballistic hot electron transistors that utilize two-dimensional base contacts made from graphene, i.e. graphene base transistors (GBTs). Early performance predictions that indicated potential for THz operation still hold true today, even with improved models that take non-idealities into account. Experimental results clearly demonstrate the basic functionality, with on/off current switching over several orders of magnitude, but further developments are required to exploit the full potential of the GBT device family. In particular, interfaces between graphene and semiconductors or dielectrics are far from perfect and thus limit experimental device integrity, reliability and performance.

  18. Understanding Cooperative Chirality at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Yu, Shangjie; Wang, Pengpeng; Govorov, Alexander; Ouyang, Min

    Controlling chirality of organic and inorganic structures plays a key role in many physical, chemical and biochemical processes, and may offer new opportunity to create technology applications based on chiroptical effect. In this talk, we will present a theoretical model and simulation to demonstrate how to engineer nanoscale chirality in inorganic nanostructures via synergistic control of electromagnetic response of both lattice and geometry, leading to rich tunability of chirality at the nanoscale. Our model has also been applied to understand recent materials advancement of related control with excellent agreement, and can elucidate physical origins of circular dichroism features in the experiment.

  19. Tin Dioxide Electrolyte-Gated Transistors Working in Depletion and Enhancement Modes.

    PubMed

    Valitova, Irina; Natile, Marta Maria; Soavi, Francesca; Santato, Clara; Cicoira, Fabio

    2017-10-25

    Metal oxide semiconductors are interesting for next-generation flexible and transparent electronics because of their performance and reliability. Tin dioxide (SnO 2 ) is a very promising material that has already found applications in sensing, photovoltaics, optoelectronics, and batteries. In this work, we report on electrolyte-gated, solution-processed polycrystalline SnO 2 transistors on both rigid and flexible substrates. For the transistor channel, we used both unpatterned and patterned SnO 2 films. Since decreasing the SnO 2  area in contact with the electrolyte increases the charge-carrier density, patterned transistors operate in the depletion mode, whereas unpatterned ones operate in the enhancement mode. We also fabricated flexible SnO 2 transistors that operate in the enhancement mode that can withstand moderate mechanical bending.

  20. Bottom-Up Tri-gate Transistors and Submicrosecond Photodetectors from Guided CdS Nanowalls.

    PubMed

    Xu, Jinyou; Oksenberg, Eitan; Popovitz-Biro, Ronit; Rechav, Katya; Joselevich, Ernesto

    2017-11-08

    Tri-gate transistors offer better performance than planar transistors by exerting additional gate control over a channel from two lateral sides of semiconductor nanowalls (or "fins"). Here we report the bottom-up assembly of aligned CdS nanowalls by a simultaneous combination of horizontal catalytic vapor-liquid-solid growth and vertical facet-selective noncatalytic vapor-solid growth and their parallel integration into tri-gate transistors and photodetectors at wafer scale (cm 2 ) without postgrowth transfer or alignment steps. These tri-gate transistors act as enhancement-mode transistors with an on/off current ratio on the order of 10 8 , 4 orders of magnitude higher than the best results ever reported for planar enhancement-mode CdS transistors. The response time of the photodetector is reduced to the submicrosecond level, 1 order of magnitude shorter than the best results ever reported for photodetectors made of bottom-up semiconductor nanostructures. Guided semiconductor nanowalls open new opportunities for high-performance 3D nanodevices assembled from the bottom up.

  1. Light programmable organic transistor memory device based on hybrid dielectric

    NASA Astrophysics Data System (ADS)

    Ren, Xiaochen; Chan, Paddy K. L.

    2013-09-01

    We have fabricated the transistor memory devices based on SiO2 and polystyrene (PS) hybrid dielectric. The trap states densities with different semiconductors have been investigated and a maximum 160V memory window between programming and erasing is realized. For DNTT based transistor, the trapped electron density is limited by the number of mobile electrons in semiconductor. The charge transport mechanism is verified by light induced Vth shift effect. Furthermore, in order to meet the low operating power requirement of portable electronic devices, we fabricated the organic memory transistor based on AlOx/self-assembly monolayer (SAM)/PS hybrid dielectric, the effective capacitance of hybrid dielectric is 210 nF cm-2 and the transistor can reach saturation state at -3V gate bias. The memory window in transfer I-V curve is around 1V under +/-5V programming and erasing bias.

  2. Method for double-sided processing of thin film transistors

    DOEpatents

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2008-04-08

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  3. Democratization of Nanoscale Imaging and Sensing Tools Using Photonics

    PubMed Central

    2015-01-01

    Providing means for researchers and citizen scientists in the developing world to perform advanced measurements with nanoscale precision can help to accelerate the rate of discovery and invention as well as improve higher education and the training of the next generation of scientists and engineers worldwide. Here, we review some of the recent progress toward making optical nanoscale measurement tools more cost-effective, field-portable, and accessible to a significantly larger group of researchers and educators. We divide our review into two main sections: label-based nanoscale imaging and sensing tools, which primarily involve fluorescent approaches, and label-free nanoscale measurement tools, which include light scattering sensors, interferometric methods, photonic crystal sensors, and plasmonic sensors. For each of these areas, we have primarily focused on approaches that have either demonstrated operation outside of a traditional laboratory setting, including for example integration with mobile phones, or exhibited the potential for such operation in the near future. PMID:26068279

  4. Democratization of Nanoscale Imaging and Sensing Tools Using Photonics.

    PubMed

    McLeod, Euan; Wei, Qingshan; Ozcan, Aydogan

    2015-07-07

    Providing means for researchers and citizen scientists in the developing world to perform advanced measurements with nanoscale precision can help to accelerate the rate of discovery and invention as well as improve higher education and the training of the next generation of scientists and engineers worldwide. Here, we review some of the recent progress toward making optical nanoscale measurement tools more cost-effective, field-portable, and accessible to a significantly larger group of researchers and educators. We divide our review into two main sections: label-based nanoscale imaging and sensing tools, which primarily involve fluorescent approaches, and label-free nanoscale measurement tools, which include light scattering sensors, interferometric methods, photonic crystal sensors, and plasmonic sensors. For each of these areas, we have primarily focused on approaches that have either demonstrated operation outside of a traditional laboratory setting, including for example integration with mobile phones, or exhibited the potential for such operation in the near future.

  5. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors.

    PubMed

    Kim, David K; Lai, Yuming; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2012-01-01

    Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high-performance nanocrystal field-effect transistors in large-area integrated circuits has not been shown. This is needed to understand and demonstrate the applicability of these discrete nanocrystal field-effect transistors for advanced electronic technologies. Here we report solution-deposited nanocrystal integrated circuits, showing nanocrystal integrated circuit inverters, amplifiers and ring oscillators, constructed from high-performance, low-voltage, low-hysteresis CdSe nanocrystal field-effect transistors with electron mobilities of up to 22 cm(2) V(-1) s(-1), current modulation >10(6) and subthreshold swing of 0.28 V dec(-1). We fabricated the nanocrystal field-effect transistors and nanocrystal integrated circuits from colloidal inks on flexible plastic substrates and scaled the devices to operate at low voltages. We demonstrate that colloidal nanocrystal field-effect transistors can be used as building blocks to construct complex integrated circuits, promising a viable material for low-cost, flexible, large-area electronics.

  6. Silicon switching transistor with high power and low saturation voltage

    NASA Technical Reports Server (NTRS)

    Stonebraker, E.; Stoneburner, D.; Ferree, H.

    1973-01-01

    Assembly of two individually encapsulated silicon-chip transistors produces silicon power-transistor that has low electrical resistance and low thermal impedance. Electrical resistance and thermal impedance are low because of short lead lengths, and external contact surfaces are plated to reduce resistance at interfaces.

  7. All diamond self-aligned thin film transistor

    DOEpatents

    Gerbi, Jennifer [Champaign, IL

    2008-07-01

    A substantially all diamond transistor with an electrically insulating substrate, an electrically conductive diamond layer on the substrate, and a source and a drain contact on the electrically conductive diamond layer. An electrically insulating diamond layer is in contact with the electrically conductive diamond layer, and a gate contact is on the electrically insulating diamond layer. The diamond layers may be homoepitaxial, polycrystalline, nanocrystalline or ultrananocrystalline in various combinations.A method of making a substantially all diamond self-aligned gate transistor is disclosed in which seeding and patterning can be avoided or minimized, if desired.

  8. VHDL simulation with access to transistor models

    NASA Technical Reports Server (NTRS)

    Gibson, J.

    1991-01-01

    Hardware description languages such as VHDL have evolved to aid in the design of systems with large numbers of elements and a wide range of electronic and logical abstractions. For high performance circuits, behavioral models may not be able to efficiently include enough detail to give designers confidence in a simulation's accuracy. One option is to provide a link between the VHDL environment and a transistor level simulation environment. The coupling of the Vantage Analysis Systems VHDL simulator and the NOVA simulator provides the combination of VHDL modeling and transistor modeling.

  9. Electron transporting water-gated thin film transistors

    NASA Astrophysics Data System (ADS)

    Al Naim, Abdullah; Grell, Martin

    2012-10-01

    We demonstrate an electron-transporting water-gated thin film transistor, using thermally converted precursor-route zinc-oxide (ZnO) intrinsic semiconductors with hexamethyldisilazene (HMDS) hydrophobic surface modification. Water gated HMDS-ZnO thin film transistors (TFT) display low threshold and high electron mobility. ZnO films constitute an attractive alternative to organic semiconductors for TFT transducers in sensor applications for waterborne analytes. Despite the use of an electrolyte as gate medium, the gate geometry (shape of gate electrode and distance between gate electrode and TFT channel) is relevant for optimum performance of water-gated TFTs.

  10. Static Characteristics of the Ferroelectric Transistor Inverter

    NASA Technical Reports Server (NTRS)

    Mitchell, Cody; Laws, crystal; MacLeond, Todd C.; Ho, Fat D.

    2010-01-01

    The inverter is one of the most fundamental building blocks of digital logic, and it can be used as the foundation for understanding more complex logic gates and circuits. This paper presents the characteristics of an inverter circuit using a ferroelectric field-effect transistor. The voltage transfer characteristics are analyzed with respect to varying parameters such as supply voltage, input voltage, and load resistance. The effects of the ferroelectric layer between the gate and semiconductor are examined, and comparisons are made between the inverters using ferroelectric transistors and those using traditional MOSFETs.

  11. Fabrication of eco-friendly PNP transistor using RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kumar, B. Santhosh; Harinee, N.; Purvaja, K.; Shanker, N. Praveen; Manikandan, M.; Aparnadevi, N.; Mukilraj, T.; Venkateswaran, C.

    2018-05-01

    An effort has been made to fabricate a thin film transistor using eco-friendly oxide semiconductor materials. Oxide semiconductor materials are cost - effective, thermally and chemically stable with high electron/hole mobility. Copper (II) oxide is a p-type semiconductor and zinc oxide is an n-type semiconductor. A pnp thin film transistor was fabricated using RF magnetron sputtering. The films deposited have been subjected to structural characterization using AFM. I-V characterization of the fabricated device, Ag/CuO/ZnO/CuO/Ag, confirms transistor behaviour. The mechanism of electron/hole transport of the device is discussed below.

  12. Quantum Optical Transistor and Other Devices Based on Nanostructures

    NASA Astrophysics Data System (ADS)

    Li, Jin-Jin; Zhu, Ka-Di

    Laser and strong coupling can coexist in a single quantum dot (QD) coupled to nanostructures. This provides an important clue toward the realization of quantum optical devices, such as quantum optical transistor, slow light device, fast light device, or light storage device. In contrast to conventional electronic transistor, a quantum optical transistor uses photons as signal carriers rather than electrons, which has a faster and more powerful transfer efficiency. Under the radiation of a strong pump laser, a signal laser can be amplified or attenuated via passing through a single quantum dot coupled to a photonic crystal (PC) nanocavity system. Such a switching and amplifying behavior can really implement the quantum optical transistor. By simply turning on or off the input pump laser, the amplified or attenuated signal laser can be obtained immediately. Based on this transistor, we further propose a method to measure the vacuum Rabi splitting of exciton in all-optical domain. Besides, we study the light propagation in a coupled QD and nanomechanical resonator (NR) system. We demonstrate that it is possible to achieve the slow light, fast light, and quantum memory for light on demand, which is based on the mechanically induced coherent population oscillation (MICPO) and exciton polaritons. These QD devices offer a route toward the use of all-optical technique to investigate the coupled QD systems and will make contributions to quantum internets and quantum computers.

  13. Facile Fabrication of Binary Nanoscale Interface for No-Loss Microdroplet Transportation.

    PubMed

    Liang, Weitao; Zhu, Liqun; Li, Weiping; Xu, Chang; Liu, Huicong

    2016-06-07

    Binary nanoscale interfacial materials are fundamental issues in many applications for smart surfaces. A binary nanoscale interface with binary surface morphology and binary wetting behaviors has been prepared by a facile wet-chemical method. The prepared surface presents superhydrophobicity and high adhesion with the droplet at the same time. The composition, surface morphology, and wetting behaviors of the prepared surface have been systematic studied. The special wetting behaviors can be contributed to the binary nanoscale effect. The stability of the prepared surface was also investigated. As a primary application, a facile device based on the prepared binary nanoscale interface with superhydrophobicity and high adhesion was constructed for microdroplet transportation.

  14. Derivation of Aerosol Columnar Mass from MODIS Optical Depth

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Hegg, Dean A.

    2003-01-01

    In order to verify performance, aerosol transport models (ATM) compare aerosol columnar mass (ACM) with those derived from satellite measurements. The comparison is inherently indirect since satellites derive optical depths and they use a proportionality constant to derive the ACM. Analogously, ATMs output a four dimensional ACM distribution and the optical depth is linearly derived. In both cases, the proportionality constant requires a direct intervention of the user by prescribing the aerosol composition and size distribution. This study introduces a method that minimizes the direct user intervention by making use of the new aerosol products of MODIS. A parameterization is introduced for the derivation of columnar aerosol mass (AMC) and CCN concentration (CCNC) and comparisons between sunphotometer, MODIS Airborne Simulator (MAS) and in-measurements are shown. The method still relies on the scaling between AMC and optical depth but the proportionality constant is dependent on the MODIS derived r$_{eff}$,\\eta (contribution of the accumulation mode radiance to the total radiance), ambient RH and an assumed constant aerosol composition. The CCNC is derived fkom a recent parameterization of CCNC as a function of the retrieved aerosol volume. By comparing with in-situ data (ACE-2 and TARFOX campaigns), it is shown that retrievals in dry ambient conditions (dust) are improved when using a proportionality constant dependent on r$ {eff}$ and \\eta derived in the same pixel. In high humidity environments, the improvement inthe new method is inconclusive because of the difficulty in accounting for the uneven vertical distribution of relative humidity. Additionally, two detailed comparisons of AMC and CCNC retrieved by the MAS algorithm and the new method are shown. The new method and MAS retrievals of AMC are within the same order of magnitude with respect to the in-situ measurements of aerosol mass. However, the proposed method is closer to the in-situ measurements than

  15. Study on the Hydrogenated ZnO-Based Thin Film Transistors. Part 1

    DTIC Science & Technology

    2011-04-30

    IGZO film on the performance of thin film transistors 5 Chapter 2. Hydrogenation of a- IGZO channel layer in the thin film transistors 12...effect of substrate temperature during the deposition of a- IGZO film on the performance of thin film transistors Introduction The effect of substrate...temperature during depositing IGZO channel layer on the performance of amorphous indium-gallium-zinc oxide (a- IGZO

  16. Feasibility Study of Extended-Gate-Type Silicon Nanowire Field-Effect Transistors for Neural Recording

    PubMed Central

    Kang, Hongki; Kim, Jee-Yeon; Choi, Yang-Kyu; Nam, Yoonkey

    2017-01-01

    In this research, a high performance silicon nanowire field-effect transistor (transconductance as high as 34 µS and sensitivity as 84 nS/mV) is extensively studied and directly compared with planar passive microelectrode arrays for neural recording application. Electrical and electrochemical characteristics are carefully characterized in a very well-controlled manner. We especially focused on the signal amplification capability and intrinsic noise of the transistors. A neural recording system using both silicon nanowire field-effect transistor-based active-type microelectrode array and platinum black microelectrode-based passive-type microelectrode array are implemented and compared. An artificial neural spike signal is supplied as input to both arrays through a buffer solution and recorded simultaneously. Recorded signal intensity by the silicon nanowire transistor was precisely determined by an electrical characteristic of the transistor, transconductance. Signal-to-noise ratio was found to be strongly dependent upon the intrinsic 1/f noise of the silicon nanowire transistor. We found how signal strength is determined and how intrinsic noise of the transistor determines signal-to-noise ratio of the recorded neural signals. This study provides in-depth understanding of the overall neural recording mechanism using silicon nanowire transistors and solid design guideline for further improvement and development. PMID:28350370

  17. Feasibility Study of Extended-Gate-Type Silicon Nanowire Field-Effect Transistors for Neural Recording.

    PubMed

    Kang, Hongki; Kim, Jee-Yeon; Choi, Yang-Kyu; Nam, Yoonkey

    2017-03-28

    In this research, a high performance silicon nanowire field-effect transistor (transconductance as high as 34 µS and sensitivity as 84 nS/mV) is extensively studied and directly compared with planar passive microelectrode arrays for neural recording application. Electrical and electrochemical characteristics are carefully characterized in a very well-controlled manner. We especially focused on the signal amplification capability and intrinsic noise of the transistors. A neural recording system using both silicon nanowire field-effect transistor-based active-type microelectrode array and platinum black microelectrode-based passive-type microelectrode array are implemented and compared. An artificial neural spike signal is supplied as input to both arrays through a buffer solution and recorded simultaneously. Recorded signal intensity by the silicon nanowire transistor was precisely determined by an electrical characteristic of the transistor, transconductance. Signal-to-noise ratio was found to be strongly dependent upon the intrinsic 1/f noise of the silicon nanowire transistor. We found how signal strength is determined and how intrinsic noise of the transistor determines signal-to-noise ratio of the recorded neural signals. This study provides in-depth understanding of the overall neural recording mechanism using silicon nanowire transistors and solid design guideline for further improvement and development.

  18. Printing Semiconductor-Insulator Polymer Bilayers for High-Performance Coplanar Field-Effect Transistors.

    PubMed

    Bu, Laju; Hu, Mengxing; Lu, Wanlong; Wang, Ziyu; Lu, Guanghao

    2018-01-01

    Source-semiconductor-drain coplanar transistors with an organic semiconductor layer located within the same plane of source/drain electrodes are attractive for next-generation electronics, because they could be used to reduce material consumption, minimize parasitic leakage current, avoid cross-talk among different devices, and simplify the fabrication process of circuits. Here, a one-step, drop-casting-like printing method to realize a coplanar transistor using a model semiconductor/insulator [poly(3-hexylthiophene) (P3HT)/polystyrene (PS)] blend is developed. By manipulating the solution dewetting dynamics on the metal electrode and SiO 2 dielectric, the solution within the channel region is selectively confined, and thus make the top surface of source/drain electrodes completely free of polymers. Subsequently, during solvent evaporation, vertical phase separation between P3HT and PS leads to a semiconductor-insulator bilayer structure, contributing to an improved transistor performance. Moreover, this coplanar transistor with semiconductor-insulator bilayer structure is an ideal system for injecting charges into the insulator via gate-stress, and the thus-formed PS electret layer acts as a "nonuniform floating gate" to tune the threshold voltage and effective mobility of the transistors. Effective field-effect mobility higher than 1 cm 2 V -1 s -1 with an on/off ratio > 10 7 is realized, and the performances are comparable to those of commercial amorphous silicon transistors. This coplanar transistor simplifies the fabrication process of corresponding circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Theoretical and experimental characterization of the DUal-BAse transistor (DUBAT)

    NASA Astrophysics Data System (ADS)

    Wu, Chung-Yu; Wu, Ching-Yuan

    1980-11-01

    A new A-type integrated voltage controlled differential negative resistance device using an extra effective base region to form a lateral pnp (npn) bipolar transistor beside the original base region of a vertical npn (pnp) bipolar junction transistor, and so called the DUal BAse Transistor (DUBAT), is studied both experimentally and theoretically, The DUBAT has three terminals and is fully comparible with the existing bipolar integrated circuits technologies. Based upon the equivalent circuit of the DUBAT, a simple first-order analytical theory is developed, and important device parameters, such as: the I-V characteristic, the differential negative resistance, and the peak and valley points, are also characterized. One of the proposed integrated structures of the DUBAT, which is similar in structure to I 2L but with similar high density and a normally operated vertical npn transistor, has been successfully fabricated and studied. Comparisons between the experimental data and theoretical analyses are made, and show in satisfactory agreements.

  20. High-frequency self-aligned graphene transistors with transferred gate stacks

    PubMed Central

    Cheng, Rui; Bai, Jingwei; Liao, Lei; Zhou, Hailong; Chen, Yu; Liu, Lixin; Lin, Yung-Chen; Jiang, Shan; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Graphene has attracted enormous attention for radio-frequency transistor applications because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. Herein we report a new approach for the scalable fabrication of high-performance graphene transistors with transferred gate stacks. Specifically, arrays of gate stacks are first patterned on a sacrificial substrate, and then transferred onto arbitrary substrates with graphene on top. A self-aligned process, enabled by the unique structure of the transferred gate stacks, is then used to position precisely the source and drain electrodes with minimized access resistance or parasitic capacitance. This process has therefore enabled scalable fabrication of self-aligned graphene transistors with unprecedented performance including a record-high cutoff frequency up to 427 GHz. Our study defines a unique pathway to large-scale fabrication of high-performance graphene transistors, and holds significant potential for future application of graphene-based devices in ultra–high-frequency circuits. PMID:22753503