Science.gov

Sample records for nanoscale duplex oxide

  1. A nanoscale duplex precipitation approach for improving the properties of Fe-base alloys

    SciTech Connect

    Zhang, Zhongwu; Liu, C T; Wang, Xun-Li; Wen, Y. R.; Fujita, T.; Hirata, A.; Chen, M.W.; Miller, Michael K; Chen, Guang; Chin, Bryan

    2013-01-01

    The precipitate size and number density are important factors for tailoring the mechanical behaviors of nanoscale precipitate-hardened alloys. However during thermal aging, the precipitate size and number density change leading to either poor strength or high strength but significantly reduced ductility. Here we demonstrate, by producing nanoprecipitates with unusual duplex structures in a composition-optimized multicomponent precipitation-hardened alloy, a unique approach to improve the stability of the alloy against the effects of thermal aging and consequently change in the mechanical properties. Our study provides compelling experimental evidence that these nanoscale precipitates consist of a duplex structures with a Cu-enriched bcc core that is partially encased by a B2-ordered Ni(Mn,Al) phase. This duplex structure enables the precipitate size and number density to be independently optimized, provides a more complex obstacle for dislocation movement due to the ordering and an additional interphase interface, and yields a high yield strength alloy without sacrificing the ductility.

  2. A nanoscale shape memory oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Jinxing; Ke, Xiaoxing; Gou, Gaoyang; Seidel, Jan; Xiang, Bin; Yu, Pu; Liang, Wen-I.; Minor, Andrew M.; Chu, Ying-Hao; van Tendeloo, Gustaaf; Ren, Xiaobing; Ramesh, Ramamoorthy

    2013-11-01

    Stimulus-responsive shape-memory materials have attracted tremendous research interests recently, with much effort focused on improving their mechanical actuation. Driven by the needs of nanoelectromechanical devices, materials with large mechanical strain, particularly at nanoscale level, are therefore desired. Here we report on the discovery of a large shape-memory effect in bismuth ferrite at the nanoscale. A maximum strain of up to ~14% and a large volumetric work density of ~600±90 J cm-3 can be achieved in association with a martensitic-like phase transformation. With a single step, control of the phase transformation by thermal activation or electric field has been reversibly achieved without the assistance of external recovery stress. Although aspects such as hysteresis, microcracking and so on have to be taken into consideration for real devices, the large shape-memory effect in this oxide surpasses most alloys and, therefore, demonstrates itself as an extraordinary material for potential use in state-of-art nanosystems.

  3. Effects of trimethylamine N-oxide and urea on DNA duplex and G-quadruplex

    PubMed Central

    Ueda, Yu-mi; Zouzumi, Yu-ki; Maruyama, Atsushi; Nakano, Shu-ichi; Sugimoto, Naoki; Miyoshi, Daisuke

    2016-01-01

    Abstract We systematically investigated effects of molecular crowding with trimethylamine N-oxide (TMAO) as a zwitterionic and protective osmolyte and urea as a nonionic denaturing osmolyte on conformation and thermodynamics of the canonical DNA duplex and the non-canonical DNA G-quadruplex. It was found that TMAO and urea stabilized and destabilized, respectively, the G-quadruplex. On the other hand, these osmolytes generally destabilize the duplex; however, it was observed that osmolytes having the trimethylamine group stabilized the duplex at the lower concentrations because of a direct binding to a groove of the duplex. These results are useful not only to predict DNA structures and their thermodynamics under physiological environments in living cells, but also design of polymers and materials to regulate structure and stability of DNA sequences. PMID:27933115

  4. Approaching nanoscale oxides: models and theoretical methods.

    PubMed

    Bromley, Stefan T; Moreira, Ibério de P R; Neyman, Konstantin M; Illas, Francesc

    2009-09-01

    This tutorial review deals with the rapidly developing area of modelling oxide materials at the nanoscale. Top-down and bottom-up modelling approaches and currently used theoretical methods are discussed with the help of a selection of case studies. We show that the critical oxide nanoparticle size required to be beyond the scale where every atom counts to where structural and chemical properties are essentially bulk-like (the scalable regime) strongly depends on the structural and chemical parameters of the material under consideration. This oxide-dependent behaviour with respect to size has fundamental implications with respect to their modelling. Strongly ionic materials such as MgO and CeO(2), for example, start to exhibit scalable-to-bulk crystallite-like characteristics for nanoparticles consisting of about 100 ions. For such systems there exists an overlap in nanoparticle size where both top-down and bottom-up theoretical techniques can be applied and the main problem is the choice of the most suitable computational method. However, for more covalent systems such TiO(2) or SiO(2) the onset of the scalable regime is still unclear and for intermediate sized nanoparticles there exists a gap where neither bottom-up nor top-down modelling are fully adequate. In such difficult cases new efforts to design adequate models are required. Further exacerbating these fundamental methodological concerns are oxide nanosystems exhibiting complex electronic and magnetic behaviour. Due to the need for a simultaneous accurate treatment of the atomistic, electronic and spin degrees of freedom for such systems, the top-down vs. bottom-up separation is still large, and only few studies currently exist.

  5. Emergent nanoscale superparamagnetism at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Anahory, Y.; Embon, L.; Li, C. J.; Banerjee, S.; Meltzer, A.; Naren, H. R.; Yakovenko, A.; Cuppens, J.; Myasoedov, Y.; Rappaport, M. L.; Huber, M. E.; Michaeli, K.; Venkatesan, T.; Ariando; Zeldov, E.

    2016-08-01

    Atomically sharp oxide heterostructures exhibit a range of novel physical phenomena that are absent in the parent compounds. A prominent example is the appearance of highly conducting and superconducting states at the interface between LaAlO3 and SrTiO3. Here we report an emergent phenomenon at the LaMnO3/SrTiO3 interface where an antiferromagnetic Mott insulator abruptly transforms into a nanoscale inhomogeneous magnetic state. Upon increasing the thickness of LaMnO3, our scanning nanoSQUID-on-tip microscopy shows spontaneous formation of isolated magnetic nanoislands, which display thermally activated moment reversals in response to an in-plane magnetic field. The observed superparamagnetic state manifests the emergence of thermodynamic electronic phase separation in which metallic ferromagnetic islands nucleate in an insulating antiferromagnetic matrix. We derive a model that captures the sharp onset and the thickness dependence of the magnetization. Our model suggests that a nearby superparamagnetic-ferromagnetic transition can be gate tuned, holding potential for applications in magnetic storage and spintronics.

  6. Emergent nanoscale superparamagnetism at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Zeldov, Eli

    Atomically sharp oxide heterostructures exhibit a range of novel physical phenomena that do not occur in the parent bulk compounds. The most prominent example is the appearance of highly conducting and superconducting states at the interface between the band insulators LaAlO3 and SrTiO3. We present a new emergent phenomenon at the LaMnO3/SrTiO3 interface in which an antiferromagnetic insulator abruptly transforms into a superparamagnetic state. Above a critical thickness of LaMnO3 of five unit cells, our scanning nanoSQUID-on-tip microscopy shows spontaneous formation of isolated magnetic islands with in-plane moment of 104 to 105μB with characteristic diameter of 10 to 50 nm. The nanoscale islands display superparamagnetic dynamics of random moment reversals by thermal activation or in response to an in-plane magnetic field. We propose a charge reconstruction model of the polar LaMnO3/SrTiO3 heterostructure which describes a sharp emergence of thermodynamic phase separation leading to nucleation of metallic ferromagnetic islands in an insulating antiferromagnetic matrix. The model suggests that a gate tunable superparamagnetic-ferromagnetic transition can be induced, holding potential for applications in magnetic storage and spintronics.

  7. Emergent nanoscale superparamagnetism at oxide interfaces

    PubMed Central

    Anahory, Y.; Embon, L.; Li, C. J.; Banerjee, S.; Meltzer, A.; Naren, H. R.; Yakovenko, A.; Cuppens, J.; Myasoedov, Y.; Rappaport, M. L.; Huber, M. E.; Michaeli, K.; Venkatesan, T.; Ariando; Zeldov, E.

    2016-01-01

    Atomically sharp oxide heterostructures exhibit a range of novel physical phenomena that are absent in the parent compounds. A prominent example is the appearance of highly conducting and superconducting states at the interface between LaAlO3 and SrTiO3. Here we report an emergent phenomenon at the LaMnO3/SrTiO3 interface where an antiferromagnetic Mott insulator abruptly transforms into a nanoscale inhomogeneous magnetic state. Upon increasing the thickness of LaMnO3, our scanning nanoSQUID-on-tip microscopy shows spontaneous formation of isolated magnetic nanoislands, which display thermally activated moment reversals in response to an in-plane magnetic field. The observed superparamagnetic state manifests the emergence of thermodynamic electronic phase separation in which metallic ferromagnetic islands nucleate in an insulating antiferromagnetic matrix. We derive a model that captures the sharp onset and the thickness dependence of the magnetization. Our model suggests that a nearby superparamagnetic–ferromagnetic transition can be gate tuned, holding potential for applications in magnetic storage and spintronics. PMID:27558907

  8. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical

  9. Nanoscale effects on thermodynamics and phase equilibria in oxide systems.

    PubMed

    Navrotsky, Alexandra

    2011-08-22

    Because different solid materials (phases) have different surface energies, equilibria among them will be significantly affected by particle size. This Minireview summarizes experimental (calorimetric) data for the surface energies of oxides and discusses shifts in the stability of polymorphs, the thermodynamics of hydration, and oxidation-reduction reactions in nanoscale oxide systems.

  10. Optical spectroscopy of nanoscale and heterostructured oxides

    NASA Astrophysics Data System (ADS)

    Senty, Tess R.

    Through careful analysis of a material's properties, devices are continually getting smaller, faster and more efficient each day. Without a complete scientific understanding of material properties, devices cannot continue to improve. This dissertation uses optical spectroscopy techniques to understand light-matter interactions in several oxide materials with promising uses mainly in light harvesting applications. Linear absorption, photoluminescence and transient absorption spectroscopy are primarily used on europium doped yttrium vanadate nanoparticles, copper gallium oxide delafossites doped with iron, and cadmium selenide quantum dots attached to titanium dioxide nanoparticles. Europium doped yttrium vanadate nanoparticles have promising applications for linking to biomolecules. Using Fourier-transform infrared spectroscopy, it was shown that organic ligands (benzoic acid, 3-nitro 4-chloro-benzoic acid and 3,4-dihydroxybenzoic acid) can be attached to the surface of these molecules using metal-carboxylate coordination. Photoluminescence spectroscopy display little difference in the position of the dominant photoluminescence peaks between samples with different organic ligands although there is a strong decrease in their intensity when 3,4-dihydroxybenzoic acid is attached. It is shown that this strong quenching is due to the presence of high-frequency hydroxide vibrational modes within the organic linker. Ultraviolet/visible linear absorption measurements on delafossites display that by doping copper gallium oxide with iron allows for the previously forbidden fundamental gap transition to be accessed. Using tauc plots, it is shown that doping with iron lowers the bandgap from 2.8 eV for pure copper gallium oxide, to 1.7 eV for samples with 1 -- 5% iron doping. Using terahertz transient absorption spectroscopy measurements, it was also determined that doping with iron reduces the charge mobility of the pure delafossite samples. A comparison of cadmium selenide

  11. EXAFS and XANES analysis of oxides at the nanoscale

    PubMed Central

    Kuzmin, Alexei; Chaboy, Jesús

    2014-01-01

    Worldwide research activity at the nanoscale is triggering the appearance of new, and frequently surprising, materials properties in which the increasing importance of surface and interface effects plays a fundamental role. This opens further possibilities in the development of new multifunctional materials with tuned physical properties that do not arise together at the bulk scale. Unfortunately, the standard methods currently available for solving the atomic structure of bulk crystals fail for nanomaterials due to nanoscale effects (very small crystallite sizes, large surface-to-volume ratio, near-surface relaxation, local lattice distortions etc.). As a consequence, a critical reexamination of the available local-structure characterization methods is needed. This work discusses the real possibilities and limits of X-ray absorption spectroscopy (XAS) analysis at the nanoscale. To this end, the present state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS) is described, including an advanced approach based on the use of classical molecular dynamics and its application to nickel oxide nanoparticles. The limits and possibilities of X-ray absorption near-edge spectroscopy (XANES) to determine several effects associated with the nanocrystalline nature of materials are discussed in connection with the development of ZnO-based dilute magnetic semiconductors (DMSs) and iron oxide nanoparticles. PMID:25485137

  12. Evaluation of Oxidation and Hydrogen Permeation of Al Containing Duplex Stainless Steels

    SciTech Connect

    Adams, Thad M.; Korinko, Paul; Duncan, Andrew

    2005-06-17

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings are typically applied to these steel to retard hydrogen ingress. The focal point of the reported work was to evaluate the potential for intentional alloying of commercial 300-series stainless steels to promote hydrogen permeation resistant oxide scales. Previous research on the Cr- and Fe-oxide scales inherent to 300-series stainless steels has proven to be inconsistent in effecting permeation resistance. The approach undertaken in this research was to add aluminum to the 300-series stainless steels in an attempt to promote a pure Al-oxide or and Al-rich oxide scale. Aloxide had been previously demonstrated to be an effective hydrogen permeation barrier. Results for 304L and 347H alloys doped with Al in concentration from 0.5-3.0 wt% with respect to oxidation kinetic studies, cyclic oxidation and characterization of the oxide scale chemistry are reported herein. Gaseous hydrogen permeation testing of the Al-doped alloys in both the unoxidized and oxidized (600 C, 30 mins) conditions are reported. A critical finding from this work is that at concentration as low as 0.5 wt% Al, the Al stabilizes the ferrite phase in these steels thus producing duplex austenitic-ferritic microstructures. As the Al-content increases the amount of measured ferrite increases thus resulting in hydrogen permeabilities more closely resembling ferritic steels.

  13. Characterizing nano-scale electrocatalysis during partial oxidation of methane

    PubMed Central

    Lee, Daehee; Kim, Dongha; Kim, Joosun; Moon, Jooho

    2014-01-01

    Electrochemical analysis allows in situ characterization of solid oxide electrochemical cells (SOCs) under operating conditions. However, the SOCs that have been analyzed in this way have ill-defined or uncommon microstructures in terms of porosity and tortuosity. Therefore, the nano-scale characterization of SOCs with respect to three-phase boundaries has been hindered. We introduce novel in situ electrochemical analysis for SOCs that uses combined solid electrolyte potentiometry (SEP) and impedance measurements. This method is employed to investigate the oscillatory behavior of a porous Ni-yttria-stabilized zirconia (YSZ) anode during the partial oxidation of methane under ambient pressure at 800°C. The cyclic oxidation and reduction of nickel induces the oscillatory behavior in the impedance and electrode potential. The in situ characterization of the nickel surface suggests that the oxidation of the nickel occurs predominantly at the two-phase boundaries, whereas the nickel at the three-phase boundaries remains in the metallic state during the cyclic redox reaction. PMID:24487242

  14. Simple Methods for Production of Nanoscale Metal Oxide Films from Household Sources

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Baliss, Michelle S.; Hinman, Jordan J.; Ziegenhorn, John W.; Andrews, Mark J.; Stevenson, Keith J.

    2013-01-01

    Production of thin metal oxide films was recently explored as part of an outreach program with a goal of producing nanoscale structures with household items. Household items coated with various metals or titanium compounds can be heated to produce colorful films with nanoscale thicknesses. As part of a materials chemistry laboratory experiment…

  15. Mapping structurally defined guanine oxidation products along DNA duplexes: influence of local sequence context and endogenous cytosine methylation.

    PubMed

    Ming, Xun; Matter, Brock; Song, Matthew; Veliath, Elizabeth; Shanley, Ryan; Jones, Roger; Tretyakova, Natalia

    2014-03-19

    DNA oxidation by reactive oxygen species is nonrandom, potentially leading to accumulation of nucleobase damage and mutations at specific sites within the genome. We now present the first quantitative data for sequence-dependent formation of structurally defined oxidative nucleobase adducts along p53 gene-derived DNA duplexes using a novel isotope labeling-based approach. Our results reveal that local nucleobase sequence context differentially alters the yields of 2,2,4-triamino-2H-oxal-5-one (Z) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG) in double stranded DNA. While both lesions are overproduced within endogenously methylated (Me)CG dinucleotides and at 5' Gs in runs of several guanines, the formation of Z (but not OG) is strongly preferred at solvent-exposed guanine nucleobases at duplex ends. Targeted oxidation of (Me)CG sequences may be caused by a lowered ionization potential of guanine bases paired with (Me)C and the preferential intercalation of riboflavin photosensitizer adjacent to (Me)C:G base pairs. Importantly, some of the most frequently oxidized positions coincide with the known p53 lung cancer mutational "hotspots" at codons 245 (GGC), 248 (CGG), and 158 (CGC) respectively, supporting a possible role of oxidative degradation of DNA in the initiation of lung cancer.

  16. Duplex ultrasound

    MedlinePlus

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines: Traditional ultrasound: This uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound: This ...

  17. Reproductive toxicity of nanoscale graphene oxide in male mice.

    PubMed

    Liang, Shanlu; Xu, Shun; Zhang, Ding; He, Junmin; Chu, Maoquan

    2015-02-01

    In the past few years, much work has been performed to explore the biomedical applications and toxicity of nano-graphene and its derivatives. However, the reproductive toxicity of those carbon nanomaterials has been rarely studied. In this study, we report on the male reproductive toxicity of nanoscale graphene oxide (GO) using a mouse model. The results showed that the adult male mice injected with high dosages of GO (25 mg/kg mouse) via the tail vein exhibited normal sex hormone secretion and retained normal reproductive activity. All untreated female mice mated with the GO-treated male mice could produce healthy pups. There were no significant differences in pup numbers, sex ratio, weights, pup survival rates or pup growth over time between the GO-treated and control groups. Furthermore, these GO-treated male mice could produce a second, third, fourth and even fifth litter of healthy offspring when they lived with the untreated female mice. The testicular and epididymal histology as well as the activities of several important epididymal enzymes including α-glucosidase, lactate dehydrogenase, glutathione peroxidase and acid phosphatase were not affected by GO treatment. In addition, no damaging effects were seen at high dose rates of GO (total 300 mg/kg male mouse, 60 mg/kg every 24 h for 5 days) via intra-abdominal injection. Thus, GO showed very low or nearly no toxicity for male reproduction. This work will greatly enable future investigations of GO nanosheets for in vivo biomedical applications.

  18. First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique

    NASA Astrophysics Data System (ADS)

    Deepa, Manchala; Sudhakar, Palagiri; Nagamadhuri, Kandula Venkata; Balakrishna Reddy, Kota; Giridhara Krishna, Thimmavajjula; Prasad, Tollamadugu Naga Venkata Krishna Vara

    2015-06-01

    Nanoscale materials, whose size typically falls below 100 nm, exhibit novel chemical, physical and biological properties which are different from their bulk counterparts. In the present investigation, we demonstrated that nanoscale calcium oxide particles (n-CaO) could transport through phloem tissue of groundnut unlike the corresponding bulk materials. n-CaO particles are prepared using sol-gel method. The size of the as prepared n-CaO measured (69.9 nm) using transmission electron microscopic technique (TEM). Results of the hydroponics experiment using solution culture technique revealed that foliar application of n-CaO at different concentrations (10, 50, 100, 500, 1,000 ppm) on groundnut plants confirmed the entry of calcium into leaves and stems through phloem compared to bulk source of calcium sprayed (CaO and CaNO3). After spraying of n-CaO, calcium content in roots, shoots and leaves significantly increased. Based on visual scoring of calcium deficiency correction and calcium content in plant parts, we may establish the fact that nanoscale calcium oxide particles (size 69.9 nm) could move through phloem tissue in groundnut. This is the first report on phloem transport of nanoscale calcium oxide particles in plants and this result points to the use of nanoscale calcium oxide particles as calcium source to the plants through foliar application, agricultural crops in particular, as bulk calcium application through foliar nutrition is restricted due to its non-mobility in phloem.

  19. G-quadruplex folds of the human telomere sequence alter the site reactivity and reaction pathway of guanine oxidation compared to duplex DNA.

    PubMed

    Fleming, Aaron M; Burrows, Cynthia J

    2013-04-15

    Telomere shortening occurs during oxidative and inflammatory stress with guanine (G) as the major site of damage. In this work, a comprehensive profile of the sites of oxidation and structures of products observed from G-quadruplex and duplex structures of the human telomere sequence was studied in the G-quadruplex folds (hybrid (K(+)), basket (Na(+)), and propeller (K(+) + 50% CH3CN)) resulting from the sequence 5'-(TAGGGT)4T-3' and in an appropriate duplex containing one telomere repeat. Oxidations with four oxidant systems consisting of riboflavin photosensitization, carbonate radical generation, singlet oxygen, and the copper Fenton-like reaction were analyzed under conditions of low product conversion to determine relative reactivity. The one-electron oxidants damaged the 5'-G in G-quadruplexes leading to spiroiminodihydantoin (Sp) and 2,2,4-triamino-2H-oxazol-5-one (Z) as major products as well as 8-oxo-7,8-dihydroguanine (OG) and 5-guanidinohydantoin (Gh) in low relative yields, while oxidation in the duplex context produced damage at the 5'- and middle-Gs of GGG sequences and resulted in Gh being the major product. Addition of the reductant N-acetylcysteine (NAC) to the reaction did not alter the riboflavin-mediated damage sites but decreased Z by 2-fold and increased OG by 5-fold, while not altering the hydantoin ratio. However, NAC completely quenched the CO3(•-) reactions. Singlet oxygen oxidations of the G-quadruplex showed reactivity at all Gs on the exterior faces of G-quartets and furnished the product Sp, while no oxidation was observed in the duplex context under these conditions, and addition of NAC had no effect. Because a long telomere sequence would have higher-order structures of G-quadruplexes, studies were also conducted with 5'-(TAGGGT)8-T-3', and it provided oxidation profiles similar to those of the single G-quadruplex. Lastly, Cu(II)/H2O2-mediated oxidations were found to be indiscriminate in the damage patterns, and 5-carboxamido-5

  20. Fabrication of self-aligned, nanoscale, complex oxide varactors

    NASA Astrophysics Data System (ADS)

    Fu, Richard X.; Toonen, Ryan C.; Hirsch, Samuel G.; Ivill, Mathew P.; Cole, Melanie W.; Strawhecker, Kenneth E.

    2015-01-01

    Applications in ferroelectric random access memory and superparaelectric devices require the fabrication of ferroelectric capacitors at the nanoscale that exhibit extremely small leakage currents. To systematically study the material-size dependence of ferroelectric varactor performance, arrays of parallel-plate structures have been fabricated with nanoscale dielectric diameters. Electron beam lithography and inductively coupled plasma dry etching have been used to fabricate arrays of ferroelectric varactors using top electrodes as a self-aligned etch mask. Parallel-plate test structures using RF-sputtered Ba0.6Sr0.4TiO3 thin-films were used to optimize the fabrication process. Varactors with diameters down to 20 nm were successfully fabricated. Current-voltage (I-V) characteristics were measured to evaluate the significance of etch-damage and fabrication quality by ensuring low leakage currents through the structures.

  1. Influence Of pH On The Transport Of Nanoscale Zinc Oxide In Saturated Porous Media

    EPA Science Inventory

    Widespread use of nanoscale zinc oxide (nZnO) in various fields causes subsurface environment contamination. Even though the transport of dissolved zinc ions in subsurface environments such as soils and sediments has been widely studied, the transport mechanism of nZnO in such e...

  2. Redox Deposition of Nanoscale Metal Oxides on Carbon for Next-Generation Electrochemical Capacitors

    DTIC Science & Technology

    2013-01-01

    ruthenium and manganese oxides) provide a strategy for bridging the power/energy performance gap between batteries and conventional ECs. These processes...buffer is added to the electrolyte to bring the pH to ∼8.5.24 Ruthenium Oxide. Ruthenium dioxide (RuO2) is the performance champion among the...Redox Deposition of Nanoscale Metal Oxides Sassin et al. RuO2, with up to 704 F g(RuO2) 1 but only at lower oxide loadings (25 wt %). Ruthenium

  3. Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale

    NASA Astrophysics Data System (ADS)

    Han, Lili; Meng, Qingping; Wang, Deli; Zhu, Yimei; Wang, Jie; Du, Xiwen; Stach, Eric A.; Xin, Huolin L.

    2016-12-01

    An understanding of bimetallic alloy oxidation is key to the design of hollow-structured binary oxides and the optimization of their catalytic performance. However, one roadblock encountered in studying these binary oxide systems is the difficulty in describing the heterogeneities that occur in both structure and chemistry as a function of reaction coordinate. This is due to the complexity of the three-dimensional mosaic patterns that occur in these heterogeneous binary systems. By combining real-time imaging and chemical-sensitive electron tomography, we show that it is possible to characterize these systems with simultaneous nanoscale and chemical detail. We find that there is oxidation-induced chemical segregation occurring on both external and internal surfaces. Additionally, there is another layer of complexity that occurs during the oxidation, namely that the morphology of the initial oxide surface can change the oxidation modality. This work characterizes the pathways that can control the morphology in binary oxide materials.

  4. Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale

    PubMed Central

    Han, Lili; Meng, Qingping; Wang, Deli; Zhu, Yimei; Wang, Jie; Du, Xiwen; Stach, Eric A.; Xin, Huolin L.

    2016-01-01

    An understanding of bimetallic alloy oxidation is key to the design of hollow-structured binary oxides and the optimization of their catalytic performance. However, one roadblock encountered in studying these binary oxide systems is the difficulty in describing the heterogeneities that occur in both structure and chemistry as a function of reaction coordinate. This is due to the complexity of the three-dimensional mosaic patterns that occur in these heterogeneous binary systems. By combining real-time imaging and chemical-sensitive electron tomography, we show that it is possible to characterize these systems with simultaneous nanoscale and chemical detail. We find that there is oxidation-induced chemical segregation occurring on both external and internal surfaces. Additionally, there is another layer of complexity that occurs during the oxidation, namely that the morphology of the initial oxide surface can change the oxidation modality. This work characterizes the pathways that can control the morphology in binary oxide materials. PMID:27928998

  5. Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale

    SciTech Connect

    Han, Lili; Meng, Qingping; Wang, Deli; Zhu, Yimei; Wang, Jie; Du, Xiwen; Stach, Eric A.; Xin, Huolin L.

    2016-12-08

    An understanding of bimetallic alloy oxidation is key to the design of hollow-structured binary oxides and the optimization of their catalytic performance. However, one roadblock encountered in studying these binary oxide systems is the difficulty in describing the heterogeneities that occur in both structure and chemistry as a function of reaction coordinate. This is due to the complexity of the three-dimensional mosaic patterns that occur in these heterogeneous binary systems. By combining real-time imaging and chemical-sensitive electron tomography, we show that it is possible to characterize these systems with simultaneous nanoscale and chemical detail. We find that there is oxidation-induced chemical segregation occurring on both external and internal surfaces. Additionally, there is another layer of complexity that occurs during the oxidation, namely that the morphology of the initial oxide surface can change the oxidation modality. As a result, this work characterizes the pathways that can control the morphology in binary oxide materials.

  6. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    PubMed

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.

  7. Research Update: New possibilities for the nanoscale engineering of complex oxide thin films

    NASA Astrophysics Data System (ADS)

    McMitchell, S. R. C.

    2015-06-01

    Complex oxides are becoming engrained into modern technology. Understanding the growth and properties of these materials is extremely important for development of novel devices and optimization of existing technologies. Control of the growth of thin film oxides is essential to facilitate the fine-tuning of properties needed for device optimization. In this article, some recent advances in nanoscale engineering of functional oxides are summarized. Control of film structure through manipulation of growth kinetics and substrate considerations is discussed. The construction of composites and artificial materials is also considered. Furthermore, a future outlook is investigated including a route to industrial scale application.

  8. Deposition of duplex Al 2O 3/aluminum coatings on steel using a combined technique of arc spraying and plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Gu, Weichao; Shen, Dejiu; Wang, Yulin; Chen, Guangliang; Feng, Wenran; Zhang, Guling; Fan, Songhua; Liu, Chizi; Yang, Size

    2006-02-01

    Plasma electrolytic oxidation (PEO) is a cost-effective technique that can be used to prepare ceramic coatings on metals such as Ti, Al, Mg, Nb, etc., and their alloys, but this promising technique cannot be used to modify the surface properties of steels, which are the most widely used materials in engineering. In order to prepare metallurgically bonded ceramic coatings on steels, a combined technique of arc spraying and plasma electrolytic oxidation (PEO) was adopted. In this work, metallurgically bonded ceramic coatings on steels were obtained using this method. We firstly prepared aluminum coatings on steels by arc spraying, and then obtained the metallurgically bonded ceramic coatings on aluminum coatings by PEO. The characteristics of duplex coatings were analyzed by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The corrosion and wear resistance of the ceramic coatings were also studied. The results show that, duplex Al 2O 3/aluminum coatings have been deposited on steel substrate after the combined treatment. The ceramic coatings are mainly composed of α-Al 2O 3, γ-Al 2O 3, θ-Al 2O 3 and some amorphous phase. The duplex coatings show favorable corrosion and wear resistance properties. The investigations indicate that the combination of arc spraying and plasma electrolytic oxidation proves a promising technique for surface modification of steels for protective purposes.

  9. Recent applications of liquid metals featuring nanoscale surface oxides

    NASA Astrophysics Data System (ADS)

    Neumann, Taylor V.; Dickey, Michael D.

    2016-05-01

    This proceeding describes recent efforts from our group to control the shape and actuation of liquid metal. The liquid metal is an alloy of gallium and indium which is non-toxic, has negligible vapor pressure, and develops a thin, passivating surface oxide layer. The surface oxide allows the liquid metal to be patterned and shaped into structures that do not minimize interfacial energy. The surface oxide can be selectively removed by changes in pH or by applying a voltage. The surface oxide allows the liquid metal to be 3D printed to form free-standing structures. It also allows for the liquid metal to be injected into microfluidic channels and to maintain its shape within the channels. The selective removal of the oxide results in drastic changes in surface tension that can be used to control the flow behavior of the liquid metal. The metal can also wet thin, solid films of metal that accelerates droplets of the liquid along the metal traces .Here we discuss the properties and applications of liquid metal to make soft, reconfigurable electronics.

  10. Nanoscale limitations in metal oxide electrocatalysts for oxygen evolution.

    PubMed

    Viswanathan, Venkatasubramanian; Pickrahn, Katie L; Luntz, Alan C; Bent, Stacey F; Nørskov, Jens K

    2014-10-08

    Metal oxides are attractive candidates for low cost, earth-abundant electrocatalysts. However, owing to their insulating nature, their widespread application has been limited. Nanostructuring allows the use of insulating materials by enabling tunneling as a possible charge transport mechanism. We demonstrate this using TiO2 as a model system identifying a critical thickness, based on theoretical analysis, of about ∼4 nm for tunneling at a current density of ∼1 mA/cm(2). This is corroborated by electrochemical measurements on conformal thin films synthesized using atomic layer deposition (ALD) identifying a similar critical thickness. We generalize the theoretical analysis deriving a relation between the critical thickness and the location of valence band maximum relative to the limiting potential of the electrochemical surface process. The critical thickness sets the optimum size of the nanoparticle oxide electrocatalyst and this provides an important nanostructuring requirement for metal oxide electrocatalyst design.

  11. Enhanced electroluminescence from nanoscale silicon p+ -n junctions made with an anodic aluminum oxide pattern.

    PubMed

    Hong, T; Chen, T; Ran, G Z; Wen, J; Li, Y Z; Dai, T; Qin, G G

    2010-01-15

    An enhancement of the electroluminescence (EL) from nanoscale silicon p(+)-n junctions made with an anodic aluminum oxide (AAO) pattern was demonstrated. The nanoporous AAO pattern with a pore density of 1.4 x 10(10) cm(-2) and a pore diameter of 50 +/- 10 nm was fabricated by the two-step anodic oxidation method on a n-type silicon wafer. The nanoscale AAO patterned Si p(+)-n junctions achieved an EL enhancement factor up to about 5 compared to the unpatterned Si p(+)-n junctions. The enhancement may originate from a reduction of nonradiative recombination due to partial passivation of the Si surface by the AAO pattern and improvement of the light extraction due to surface nanotextures.

  12. Fluctuations and patterns in nanoscale surface reaction systems: Influence of reactant phase separation during CO oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Da-Jiang; Evans, J. W.

    2007-02-01

    A realistic atomistic model is used to assess spatiotemporal behavior in nanoscale CO oxidation systems at higher pressures than for traditional ultrahigh vacuum studies. The strong influence of adspecies interactions in this regime of high reactant coverages leads to phase separation between oxygen-rich and CO-rich reactive states. Time-series studies reveal fluctuation-induced transitions between these states, as well as transitions between reactive and inactive states. In addition, we observe flickering spatial patterns with sharp boundaries.

  13. Superior coagulation of graphene oxides on nanoscale layered double hydroxides and layered double oxides.

    PubMed

    Zou, Yidong; Wang, Xiangxue; Chen, Zhongshan; Yao, Wen; Ai, Yuejie; Liu, Yunhai; Hayat, Tasawar; Alsaedi, Ahmed; Alharbi, Njud S; Wang, Xiangke

    2016-12-01

    With the development and application of graphene oxides (GO), the potential toxicity and environmental behavior of GO has become one of the most forefront environmental problems. Herein, a novel nanoscale layered double hydroxides (glycerinum-modified nanocrystallined Mg/Al layered double hydroxides, LDH-Gl), layered double oxides (calcined LDH-Gl, LDO-Gl) and metallic oxide (TiO2) were synthesized and applied as superior coagulants for the efficient removal of GO from aqueous solutions. Coagulation of GO as a function of coagulant contents, pH, ionic strength, GO contents, temperature and co-existing ions were studied and compared, and the results showed that the maximum coagulation capacities of GO were LDO-Gl (448.3 mg g(-1)) > TiO2 (365.7 mg g(-1)) > LDH-Gl (339.1 mg g(-1)) at pH 5.5, which were significantly higher than those of bentonite, Al2O3, CaCl2 or other natural materials due to their stronger reaction active and interfacial effect. The presence of SO3(2-) and HCO3(-) inhibited the coagulation of GO on LDH-Gl and LDO-Gl significantly, while other cations (K(+), Mg(2+), Ca(2+), Ni(2+), Al(3+)) or anion (Cl(-)) had slightly effect on GO coagulation. The interaction mechanism of GO coagulation on LDO-Gl and TiO2 might due to the electrostatic interactions and strong surface complexation, while the main driving force of GO coagulation on LDH-Gl might be attributed to electrostatic interaction and hydrogen bond, which were further evidenced by TEM, SEM, FT-IR and XRD analysis. The results of natural environmental simulation showed that LDO-Gl, TiO2 or other kinds of natural metallic oxides could be superior coagulants for the efficient elimination of GO or other toxic nanomaterials from aqueous solutions in real environmental pollution cleanup.

  14. Nanoscale characterization of oxidized ultrathin Co-films by ballistic electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Eng Johnson Goh, Kuan; Wang, Simin; Tan, Siew Ting Melissa; Zhang, Zheng; Kawai, Hiroyo; Troadec, Cedric; Ng, Vivian

    2016-01-01

    In anticipation of devices scaling down further to the few nanometer regime, the ability to characterize material localized within the few nm of a critical device region poses a current challenge, particularly when the material is already buried under other material layers such as under a metal contact. Conventional techniques typically provide indirect information of the nanoscale material quality through a surface or volume averaging perspective. Here we present a study of local (nm range) oxidation in few nanometer thick Co-films using Ballistic Electron Emission Microscopy/Spectroscopy (BEEM/BEES). Co films were grown on n-Si(111) substrates, oxidized in ambient atmosphere before capping with a thin Au film to prevent further oxidation and enable BEEM measurements. In addition to BEES, the temporal progression of Co oxidation was also tracked by X-ray Photoelectron Spectroscopy. At room temperature, we report that the electron injection thresholds are sufficiently different for local regions with Co and oxidized-Co enabling their distinction in BEEM measurements. Our results demonstrate the possibility of using BEEM for nanoscale spatial mapping of the oxidized regions in Co-films, and this can provide critical information toward the successful fabrication of next generation Co-based nano-devices.

  15. Thermodynamics of Manganese Oxides at Bulk and Nanoscale: Phase Formation, Transformation, Oxidation-Reduction, and Hydration

    NASA Astrophysics Data System (ADS)

    Birkner, Nancy R.

    Natural manganese oxides are generally formed in surficial environments that are near ambient temperature and water-rich, and may be exposed to wet-dry cycles and a variety of adsorbate species that influence dramatically their level of hydration. Manganese oxide minerals are often poorly crystalline, nanophase, and hydrous. In the near-surface environment they are involved in processes that are important to life, such as water column oxygen cycling, biomineralization, and transport of minerals/nutrients through soils and water. These processes, often involving transformations among manganese oxide polymorphs, are governed by a complex interplay between thermodynamics and kinetics. Manganese oxides are also used in technology as catalysts, and for other applications. The major goal of this dissertation is to examine the energetics of bulk and nanophase manganese oxide phases as a function of particle size, composition, and surface hydration. Careful synthesis and characterization of manganese oxide phases with different surface areas provided samples for the study of enthalpies of formation by high temperature oxide melt solution calorimetry and of the energetics of water adsorption on their surfaces. These data provide a quantitative picture of phase stability and how it changes at the nanoscale. The surface energy of the hydrous surface of Mn3O4 is 0.96 +/- 0.08 J/m2, of Mn2O3 is 1.29 +/- 0.10 J/m2, and of MnO2 is 1.64 +/- 0.10 J/m2. The surface energy of the anhydrous surface of Mn3O4 is 1.62 +/- 0.08 J/m 2, of Mn2O3 is 1.77 +/- 0.10 J/m 2, and of MnO2 is 2.05 +/- 0.10 J/m2. Supporting preliminary findings (Navrotsky et al., 2010), the spinel phase (Mn3O4) has a lower surface energy (more stabilizing) than bixbyite, while the latter has a smaller surface energy than pyrolusite. These differences significantly change the positions in oxygen fugacity---temperature space of the redox couples Mn3O4-Mn2O 3 and Mn2O3-MnO2 favoring the lower surface enthalpy phase (the

  16. Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution.

    PubMed

    Han, Binghong; Stoerzinger, Kelsey A; Tileli, Vasiliki; Gamalski, Andrew D; Stach, Eric A; Shao-Horn, Yang

    2017-01-01

    Understanding the interaction between water and oxides is critical for many technological applications, including energy storage, surface wetting/self-cleaning, photocatalysis and sensors. Here, we report observations of strong structural oscillations of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) in the presence of both H2O vapour and electron irradiation using environmental transmission electron microscopy. These oscillations are related to the formation and collapse of gaseous bubbles. Electron energy-loss spectroscopy provides direct evidence of O2 formation in these bubbles due to the incorporation of H2O into BSCF. SrCoO3-δ was found to exhibit small oscillations, while none were observed for La0.5Sr0.5CoO3-δ and LaCoO3. The structural oscillations of BSCF can be attributed to the fact that its oxygen 2p-band centre is close to the Fermi level, which leads to a low energy penalty for oxygen vacancy formation, high ion mobility, and high water uptake. This work provides surprising insights into the interaction between water and oxides under electron-beam irradiation.

  17. Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution

    DOE PAGES

    Han, Binghong; Stoerzinger, Kelsey A.; Tileli, Vasiliki; ...

    2016-10-03

    Understanding the interaction between water and oxides is critical for many technological applications, including energy storage, surface wetting/self-cleaning, photocatalysis and sensors. In this paper, we report observations of strong structural oscillations of Ba0.5Sr0.5Co0.8Fe0.2O3$-$δ (BSCF) in the presence of both H2O vapour and electron irradiation using environmental transmission electron microscopy. These oscillations are related to the formation and collapse of gaseous bubbles. Electron energy-loss spectroscopy provides direct evidence of O2 formation in these bubbles due to the incorporation of H2O into BSCF. SrCoO3$-$δ was found to exhibit small oscillations, while none were observed for La0.5Sr0.5CoO3$-$δ and LaCoO3. The structural oscillations ofmore » BSCF can be attributed to the fact that its oxygen 2p-band centre is close to the Fermi level, which leads to a low energy penalty for oxygen vacancy formation, high ion mobility, and high water uptake. This work provides surprising insights into the interaction between water and oxides under electron-beam irradiation.« less

  18. Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution

    SciTech Connect

    Han, Binghong; Stoerzinger, Kelsey A.; Tileli, Vasiliki; Gamalski, Andrew  D.; Stach, Eric A.; Shao-Horn, Yang

    2016-10-03

    Understanding the interaction between water and oxides is critical for many technological applications, including energy storage, surface wetting/self-cleaning, photocatalysis and sensors. In this paper, we report observations of strong structural oscillations of Ba0.5Sr0.5Co0.8Fe0.2O3$-$δ (BSCF) in the presence of both H2O vapour and electron irradiation using environmental transmission electron microscopy. These oscillations are related to the formation and collapse of gaseous bubbles. Electron energy-loss spectroscopy provides direct evidence of O2 formation in these bubbles due to the incorporation of H2O into BSCF. SrCoO3$-$δ was found to exhibit small oscillations, while none were observed for La0.5Sr0.5CoO3$-$δ and LaCoO3. The structural oscillations of BSCF can be attributed to the fact that its oxygen 2p-band centre is close to the Fermi level, which leads to a low energy penalty for oxygen vacancy formation, high ion mobility, and high water uptake. This work provides surprising insights into the interaction between water and oxides under electron-beam irradiation.

  19. Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution

    NASA Astrophysics Data System (ADS)

    Han, Binghong; Stoerzinger, Kelsey A.; Tileli, Vasiliki; Gamalski, Andrew D.; Stach, Eric A.; Shao-Horn, Yang

    2017-01-01

    Understanding the interaction between water and oxides is critical for many technological applications, including energy storage, surface wetting/self-cleaning, photocatalysis and sensors. Here, we report observations of strong structural oscillations of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) in the presence of both H2O vapour and electron irradiation using environmental transmission electron microscopy. These oscillations are related to the formation and collapse of gaseous bubbles. Electron energy-loss spectroscopy provides direct evidence of O2 formation in these bubbles due to the incorporation of H2O into BSCF. SrCoO3-δ was found to exhibit small oscillations, while none were observed for La0.5Sr0.5CoO3-δ and LaCoO3. The structural oscillations of BSCF can be attributed to the fact that its oxygen 2p-band centre is close to the Fermi level, which leads to a low energy penalty for oxygen vacancy formation, high ion mobility, and high water uptake. This work provides surprising insights into the interaction between water and oxides under electron-beam irradiation.

  20. Research Update: Nanoscale electrochemical transistors in correlated oxides

    NASA Astrophysics Data System (ADS)

    Kanki, Teruo; Tanaka, Hidekazu

    2017-04-01

    Large reversible changes of the electronic transport properties of solid-state oxide materials induced by electrochemical fields have received much attention as a new research avenue in iontronics. In this research update, dramatic transport changes in vanadium dioxide (VO2) nanowires were demonstrated by electric field-induced hydrogenation at room temperature through the nanogaps separated by humid air in a field-effect transistor structure with planar-type gates. This unique structure allowed us to investigate hydrogen intercalation and diffusion behavior in VO2 channels with respect to both time and space. Our results will contribute to further strategic researches to examine fundamental chemical and physical properties of devices and develop iontronic applications, as well as offering new directions to explore emerging functions for sensing, energy, and neuromorphologic devices combining ionic and electronic behaviors in solid-state materials.

  1. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.

    PubMed

    Sassin, Megan B; Chervin, Christopher N; Rolison, Debra R; Long, Jeffrey W

    2013-05-21

    Transition metal oxides that mix electronic and ionic conductivity are essential active components of many electrochemical charge-storage devices, ranging from primary alkaline cells to more advanced rechargeable Li-ion batteries. In these devices, charge storage occurs via cation-insertion/deinsertion mechanisms in conjunction with the reduction/oxidation of metal sites in the oxide. Batteries that incorporate such metal oxides are typically designed for high specific energy, but not necessarily for high specific power. Electrochemical capacitors (ECs), which are typically composed of symmetric high-surface-area carbon electrodes that store charge via double-layer capacitance, deliver their energy in time scales of seconds, but at much lower specific energy than batteries. The fast, reversible faradaic reactions (typically described as "pseudocapacitance") of particular nanoscale metal oxides (e.g., ruthenium and manganese oxides) provide a strategy for bridging the power/energy performance gap between batteries and conventional ECs. These processes enhance charge-storage capacity to boost specific energy, while maintaining the few-second timescale of the charge-discharge response of carbon-based ECs. In this Account, we describe three examples of redox-based deposition of EC-relevant metal oxides (MnO2, FeOx, and RuO2) and discuss their potential deployment in next-generation ECs that use aqueous electrolytes. To extract the maximum pseudocapacitance functionality of metal oxides, one must carefully consider how they are synthesized and subsequently integrated into practical electrode structures. Expressing the metal oxide in a nanoscale form often enhances electrochemical utilization (maximizing specific capacitance) and facilitates high-rate operation for both charge and discharge. The "wiring" of the metal oxide, in terms of both electron and ion transport, when fabricated into a practical electrode architecture, is also a critical design parameter for

  2. Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale

    DOE PAGES

    Han, Lili; Meng, Qingping; Wang, Deli; ...

    2016-12-08

    An understanding of bimetallic alloy oxidation is key to the design of hollow-structured binary oxides and the optimization of their catalytic performance. However, one roadblock encountered in studying these binary oxide systems is the difficulty in describing the heterogeneities that occur in both structure and chemistry as a function of reaction coordinate. This is due to the complexity of the three-dimensional mosaic patterns that occur in these heterogeneous binary systems. By combining real-time imaging and chemical-sensitive electron tomography, we show that it is possible to characterize these systems with simultaneous nanoscale and chemical detail. We find that there is oxidation-inducedmore » chemical segregation occurring on both external and internal surfaces. Additionally, there is another layer of complexity that occurs during the oxidation, namely that the morphology of the initial oxide surface can change the oxidation modality. As a result, this work characterizes the pathways that can control the morphology in binary oxide materials.« less

  3. Dyeing regions of oxidative hair dyes in human hair investigated by nanoscale secondary ion mass spectrometry.

    PubMed

    Kojima, Toru; Yamada, Hiromi; Yamamoto, Toshihiko; Matsushita, Yasuyuki; Fukushima, Kazuhiko

    2013-06-01

    To develop more effective oxidative hair coloring products, it is important to understand the localization of colored chromophores, which are formed from oxidative dyes, in the fine structure of hair. However, the dyeing regions of oxidative hair dyes in the fine structure of hair have not been extensively examined. In this study, we investigated the distribution and localization of colored chromophores formed by an oxidative hair coloring product in the fine structure of human hair by using a stable isotope-labeled oxidative dye with nanoscale secondary ion mass spectrometry (NanoSIMS). First, formation of the colored chromophore from a deuterium-labeled oxidative dye was examined by visible spectra similarly to a study of its formation using nonlabeled oxidative dye. Furthermore, the formation of binuclear indo dye containing deuterium in its chemical structure was confirmed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis. As a result of the NanoSIMS image on a cross-sectional dyed hair, although deuterium ions were detected in whole hair cross-section, quite a few of them were detected at particulate regions. These particulate regions of the dyed black hair in which deuterium ions were intensely detected were identified as melanin granules, by comparing the dyeing behaviors of black and white hair. NanoSIMS analysis revealed that melanin granules of black human hair are important dyeing regions in oxidative hair coloring.

  4. Self-Assembled Epitaxial Au–Oxide Vertically Aligned Nanocomposites for Nanoscale Metamaterials

    SciTech Connect

    Li, Leigang; Sun, Liuyang; Gomez-Diaz, Juan Sebastian; Hogan, Nicki L.; Lu, Ping; Khatkhatay, Fauzia; Zhang, Wenrui; Jian, Jie; Huang, Jijie; Su, Qing; Fan, Meng; Jacob, Clement; Li, Jin; Zhang, Xinghang; Jia, Quanxi; Sheldon, Matthew; Alù, Andrea; Li, Xiaoqin; Wang, Haiyan

    2016-05-17

    Metamaterials made of nanoscale inclusions or artificial unit cells exhibit exotic optical properties that do not exist in natural materials. Promising applications, such as super-resolution imaging, cloaking, hyperbolic propagation, and ultrafast phase velocities have been demonstrated based on mostly micrometer-scale metamaterials and few nanoscale metamaterials. To date, most metamaterials are created using costly and tedious fabrication techniques with limited paths toward reliable large-scale fabrication. In this work, we demonstrate the one-step direct growth of self-assembled epitaxial metal–oxide nanocomposites as a drastically different approach to fabricating large-area nanostructured metamaterials. Using pulsed laser deposition, we fabricated nanocomposite films with vertically aligned gold (Au) nanopillars (~20 nm in diameter) embedded in various oxide matrices with high epitaxial quality. Strong, broad absorption features in the measured absorbance spectrum are clear signatures of plasmon resonances of Au nanopillars. By tuning their densities on selected substrates, anisotropic optical properties are demonstrated via angular dependent and polarization resolved reflectivity measurements and reproduced by full-wave simulations and effective medium theory. Our model predicts exotic properties, such as zero permittivity responses and topological transitions. In conclusion, our studies suggest that these self-assembled metal–oxide nanostructures provide an exciting new material platform to control and enhance optical response at nanometer scales.

  5. Self-Assembled Epitaxial Au–Oxide Vertically Aligned Nanocomposites for Nanoscale Metamaterials

    DOE PAGES

    Li, Leigang; Sun, Liuyang; Gomez-Diaz, Juan Sebastian; ...

    2016-05-17

    Metamaterials made of nanoscale inclusions or artificial unit cells exhibit exotic optical properties that do not exist in natural materials. Promising applications, such as super-resolution imaging, cloaking, hyperbolic propagation, and ultrafast phase velocities have been demonstrated based on mostly micrometer-scale metamaterials and few nanoscale metamaterials. To date, most metamaterials are created using costly and tedious fabrication techniques with limited paths toward reliable large-scale fabrication. In this work, we demonstrate the one-step direct growth of self-assembled epitaxial metal–oxide nanocomposites as a drastically different approach to fabricating large-area nanostructured metamaterials. Using pulsed laser deposition, we fabricated nanocomposite films with vertically aligned goldmore » (Au) nanopillars (~20 nm in diameter) embedded in various oxide matrices with high epitaxial quality. Strong, broad absorption features in the measured absorbance spectrum are clear signatures of plasmon resonances of Au nanopillars. By tuning their densities on selected substrates, anisotropic optical properties are demonstrated via angular dependent and polarization resolved reflectivity measurements and reproduced by full-wave simulations and effective medium theory. Our model predicts exotic properties, such as zero permittivity responses and topological transitions. In conclusion, our studies suggest that these self-assembled metal–oxide nanostructures provide an exciting new material platform to control and enhance optical response at nanometer scales.« less

  6. Tantalum oxide nanoscale resistive switching devices: TEM/EELS study (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Norris, Kate J.; Zhang, Jiaming; Merced-Grafals, Emmanuelle; Musunuru, Srinitya; Zhang, Max; Samuels, Katy; Yang, Jianhua J.; Kobayashi, Nobuhiko P.

    2015-08-01

    The field of non-volatile memory devices has been boosted by resistive switching, a reversible change in electrical resistance of a dielectric layer through the application of a voltage potential. Tantalum oxide being one of the leading candidates for the dielectric component of resistance switching devices was investigated in this study. 55nm TaOx devices in all states were compared through cross sectional TEM techniques including HRTEM, EELS, and EFTEM and will be discussed in this presentation. Based on the chemical and physical features found in the cross sectioned nanodevices we will discuss the switching mechanism of these nanoscale devices.

  7. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis

    NASA Astrophysics Data System (ADS)

    Gong, Ming; Zhou, Wu; Tsai, Mon-Che; Zhou, Jigang; Guan, Mingyun; Lin, Meng-Chang; Zhang, Bo; Hu, Yongfeng; Wang, Di-Yan; Yang, Jiang; Pennycook, Stephen J.; Hwang, Bing-Joe; Dai, Hongjie

    2014-08-01

    Active, stable and cost-effective electrocatalysts are a key to water splitting for hydrogen production through electrolysis or photoelectrochemistry. Here we report nanoscale nickel oxide/nickel heterostructures formed on carbon nanotube sidewalls as highly effective electrocatalysts for hydrogen evolution reaction with activity similar to platinum. Partially reduced nickel interfaced with nickel oxide results from thermal decomposition of nickel hydroxide precursors bonded to carbon nanotube sidewalls. The metal ion-carbon nanotube interactions impede complete reduction and Ostwald ripening of nickel species into the less hydrogen evolution reaction active pure nickel phase. A water electrolyzer that achieves ~20 mA cm-2 at a voltage of 1.5 V, and which may be operated by a single-cell alkaline battery, is fabricated using cheap, non-precious metal-based electrocatalysts.

  8. Duplex Oxide Formation during Transient Oxidation of Cu-5%Ni(001) Investigated by In situ UHV-TEM and XPS

    SciTech Connect

    Yang, J.C.; Starr, D.; Kang, Y.; Luo, L.; Tong, X.; Zhou, G.

    2012-05-20

    The transient oxidation stage of a model metal alloy thin film was characterized with in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and analytic high-resolution TEM. We observed the formations of nanosized NiO and Cu{sub 2}O islands when Cu-5a5%Ni(100) was exposed to oxygen partial pressure, pO{sub 2} = 1 x 10{sup -4} Torr and various temperatures in situ. At 350 C epitaxial Cu{sub 2}O islands formed initially and then NiO islands appeared on the surface of the Cu{sub 2}O island, whereas at 750 C NiO appeared first. XPS and TEM was used to reveal a sequential formation of NiO and then Cu{sub 2}O islands at 550 C. The temperature-dependant oxide selection may be due to an increase of the diffusivity of Ni in Cu with increasing temperature.

  9. Giant piezoelectric resistance effect of nanoscale zinc oxide tunnel junctions: first principles simulations.

    PubMed

    Zhang, Genghong; Luo, Xin; Zheng, Yue; Wang, Biao

    2012-05-21

    Based on first principles simulations and quantum transport calculations, we have investigated in the present work the effect of the mechanical load on transport characteristics and the relative physical properties of nanoscale zinc oxide (ZnO) tunnel junctions, and verified an intrinsic giant piezoelectric resistance (GPR) effect. Our results show that the transport-relevant properties, e.g., the piezoelectric potential (piezopotential), built-in electric field, conduction band offset and electron transmission probability of the junction etc., can obviously be tuned by the applied strain. Accordingly, it is inspiring to find that the current-voltage characteristics and tunneling electro-resistance of the ZnO tunnel junction can significantly be adjusted with the strain. When the applied strain switches from -5% to 5%, an increase of more than 14 times in the tunneling current at a bias voltage of 1.1 V can be obtained. Meanwhile, an increase of up to 2000% of the electro-resistance ratio with respect to the zero strain state can be reached at the same bias voltage and with a 5% compression. According to our investigations, the giant piezoelectric resistance effect of nanoscale ZnO tunnel junctions exhibits great potential in exploiting tunable electronic devices. Furthermore, the methodology of strain engineering revealed in this work may shed light on the mechanical manipulations of electronic devices.

  10. Nanoscale Graphene Oxide (nGO) as Artificial Receptors: Implications for Biomolecular Interactions and Sensing

    PubMed Central

    Chou, Stanley S.; De, Mrinmoy; Luo, Jiayan; Rotello, Vincent M.; Huang, Jiaxing; Dravid, Vinayak. P.

    2013-01-01

    The role of conventional graphene-oxide in biosensing has been limited to that of a quenching substrate or signal transducer due to size inconsistencies and poor supramolecular response. We overcame these issues by using nanoscale GOs (nGO) as artificial receptors. Unlike conventional GO, nGOs are sheets with near uniform lateral dimension of 20 nm. Due to its nanoscale architecture, its supramolecular response was enhanced, with demonstrated improvements in biomacromolecular affinities. This rendered their surface capable of detecting unknown proteins with cognizance not seen with conventional GOs. Different proteins at 100 and 10 nM concentrations revealed consistent patterns that are quantitatively differentiable by linear discriminant analysis. Identification of 48 unknowns in both concentrations demonstrated a >95% success rate. The 10 nM detection represents a 10-fold improvement over analogous arrays. This demonstrates for the first time that the supramolecular chemistry of GO is highly size dependent and opens the possibility of improvement upon existing GO hybrid materials. PMID:22962967

  11. Compact chromium oxide thin film resistors for use in nanoscale quantum circuits

    SciTech Connect

    Nash, C. R.; Fenton, J. C.; Constantino, N. G. N.; Warburton, P. A.

    2014-12-14

    We report on the electrical characterisation of a series of thin amorphous chromium oxide (CrO{sub x}) films, grown by dc sputtering, to evaluate their suitability for use as on-chip resistors in nanoelectronics. By increasing the level of oxygen doping, the room-temperature sheet resistance of the CrO{sub x} films was varied from 28 Ω/◻ to 32.6 kΩ/◻. The variation in resistance with cooling to 4.2 K in liquid helium was investigated; the sheet resistance at 4.2 K varied with composition from 65 Ω/◻ to above 20 GΩ/◻. All of the films measured displayed linear current–voltage characteristics at all measured temperatures. For on-chip devices for quantum phase-slip measurements using niobium–silicon nanowires, interfaces between niobium–silicon and chromium oxide are required. We also characterised the contact resistance for one CrO{sub x} composition at an interface with niobium–silicon. We found that a gold intermediate layer is favourable: the specific contact resistivity of chromium-oxide-to-gold interfaces was 0.14 mΩcm{sup 2}, much lower than the value for direct CrO{sub x} to niobium–silicon contact. We conclude that these chromium oxide films are suitable for use in nanoscale circuits as high-value resistors, with resistivity tunable by oxygen content.

  12. Time and voltage dependences of nanoscale dielectric constant modulation on indium tin oxide films

    NASA Astrophysics Data System (ADS)

    Li, Liang; Hao, Haoyue; Zhao, Hua

    2017-01-01

    The modulation of indium tin oxide (ITO) films through surface charge accumulation plays an important role in many different applications. In order to elaborately study the modulation, we measured the dielectric constant of the modulated layer through examining the excitation of surface plasmon polaritons. Charges were pumped on the surfaces of ITO films through applying high voltage in appropriate directions. Experiments unveiled that the dielectric constant of the modulated layer had large variation along with the nanoscale charge accumulation. Corresponding numerical results were worked out through combining Drude model and Mayadas-Shatzkes model. Based on the above results, we deduced the time and voltage dependences of accumulated charge density, which revealed a long-time charge accumulation process.

  13. Nanoscale conductive niobium oxides made through low temperature phase transformation for electrocatalyst support

    SciTech Connect

    Huang, K; Li, YF; Yan, LT; Xing, YC

    2014-01-01

    We report an effective approach to synthesize nanoscale Nb2O5 coated on carbon nanotubes (CNTs) and transform it at low temperatures to the conductive form of NbO2. The latter, when used as a Pt electrocatalyst support, shows significant enhancement in catalyst activity and durability in the oxygen reduction reaction (ORR). Direct phase transformation of Nb2O5 to NbO2 often requires temperatures above 1000 degrees C. Here we show that this can be achieved at a much lower temperature (e.g. 700 degrees C) if the niobium oxide is first activated with carbon. Low temperature processing allows retaining nanostructures of the oxide without sintering, keeping its high surface areas needed for being a catalyst support. We further show that Pt supported on the conductive oxides on CNTs has two times higher mass activity for the ORR than on bare CNTs. The electrochemical stability of Pt was also outstanding, with only ca. 5% loss in electrochemical surface areas and insignificant reduction in half-wave potential in ORR after 5000 potential cycles.

  14. Nano-scale islands of ruthenium oxide as an electrochemical sensor for iodate and periodate determination.

    PubMed

    Chatraei, Fatemeh; Zare, Hamid R

    2013-03-01

    In this study, a promising electrochemical sensor was fabricated by the electrodeposition of nano-scale islands of ruthenium oxide (ruthenium oxide nanoparticles, RuON) on a glassy carbon electrode (RuON-GCE). Then, the electrocatalytic oxidation of iodate and periodate was investigated on it, using cyclic voltammetry, chronoamperometry and amperometry as diagnostic techniques. The charge transfer coefficient, α, and the charge transfer rate constant, ks, for electron transfer between RuON and GCE were calculated as 0.5 ± 0.03 and 9.0 ± 0.7 s(-1) respectively. A comparison of the data obtained from the electrocatalytic reduction of iodate and periodate at a bare GCE (BGCE) and RuON-GCE clearly shows that the unique electronic properties of nanoparticles definitely improve the characteristics of iodate and periodate electrocatalytic reduction. The kinetic parameters such as the electron transfer coefficient, α, and the heterogeneous electron transfer rate constant, k', for the reduction of iodate and periodate at RuON-GCE surface were determined using cyclic voltammetry. Amperometry revealed a good linear relationship between the peak current and the concentration of iodate and periodate. The detection limits of 0.9 and 0.2 μM were calculated for iodate and periodate respectively.

  15. Oxide films at the nanoscale: new structures, new functions, and new materials.

    PubMed

    Giordano, Livia; Pacchioni, Gianfranco

    2011-11-15

    We all make use of oxide ultrathin films, even if we are unaware of doing so. They are essential components of many common devices, such as mobile phones and laptops. The films in these ubiquitous electronics are composed of silicon dioxide, an unsurpassed material in the design of transistors. But oxide films at the nanoscale (typically just 10 nm or less in thickness) are integral to many other applications. In some cases, they form under normal reactive conditions and confer new properties to a material: one example is the corrosion protection of stainless steel, which is the result of a passive film. A new generation of devices for energy production and communications technology, such as ferroelectric ultrathin film capacitors, tunneling magnetoresistance sensors, solar energy materials, solid oxide fuel cells, and many others, are being specifically designed to exploit the unusual properties afforded by reduced oxide thickness. Oxide ultrathin films also have tremendous potential in chemistry, representing a rich new source of catalytic materials. About 20 years ago, researchers began to prepare model systems of truly heterogeneous catalysts based on thin oxide layers grown on single crystals of metal. Only recently, however, was it realized that these systems may behave quite differently from their corresponding bulk oxides. One of the phenomena uncovered is the occurrence of a spontaneous charge transfer from the metal support to an adsorbed species through the thin insulating layer (or vice versa). The importance of this property is clear: conceptually, the activation and bond breaking of adsorbed molecules begin with precisely the same process, electron transfer into an antibonding orbital. But electron transfer can also be harnessed to make a supported metal particle more chemically active, increase its adhesion energy, or change its shape. Most importantly, the basic principles underlying electron transfer and other phenomena (such as structural

  16. Development of porosity in an oxide dispersion strengthened ferritic alloy containing nanoscale oxide particles

    SciTech Connect

    Schneibel, Joachim H; Liu, Chain T; Hoelzer, David T; Mills, Michael J.; Sarosi, P. M.; Hayashi, Taisuke; Wendt, Ullrich; Heyse, Hartmut

    2007-01-01

    The development of porosity at 1000 C in an oxide dispersion strengthened ferritic alloy containing ultra-fine oxide particles with diameters on the order of a few nm is investigated. A comparison with an alloy fabricated by internal oxidation demonstrates that the porosity formation is associated with mechanical alloying with Y2O3 in argon. The pores grow in spite of a sub-micron grain size suggesting that the grain boundaries are not effective paths for removing entrapped gas from the pores.

  17. Formation of Self-Assembled Nanoscale Graphene/Graphene Oxide Photomemristive Heterojunctions using Photocatalytic Oxidation.

    PubMed

    Kapitanova, Olesya; Panin, Gennady; Cho, Hak; Baranov, Andrey; Kang, Tae

    2017-03-08

    Photocatalytic oxidation of graphene with ZnO nanoparticles was found to create self-assembled graphene oxide/graphene (G/GO) photosensitive heterostructures, which can be used as memristors. Oxygen groups released during photodecomposition of water molecules on the nanoparticles under ultraviolet light oxidized graphene locally forming the G/GO heterojunctions with ultra-high density. The G/GO nanostructures have non-linear current-voltage characteristics and switch the resistance in the dark and under white light, providing four resistive states at room temperature. Photocatalytic oxidation of graphene with ZnO nanoparticles, is proposed as an effective method for creating two-dimensional memristors with a photoresistive switching for the ultra-high capacity non-volatile memory.

  18. Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces.

    PubMed

    Patel, Anisha N; McKelvey, Kim; Unwin, Patrick R

    2012-12-19

    Graphite-based electrodes (graphite, graphene, and nanotubes) are used widely in electrochemistry, and there is a long-standing view that graphite step edges are needed to catalyze many reactions, with the basal surface considered to be inert. In the present work, this model was tested directly for the first time using scanning electrochemical cell microscopy reactive patterning and shown to be incorrect. For the electro-oxidation of dopamine as a model process, the reaction rate was measured at high spatial resolution across a surface of highly oriented pyrolytic graphite. Oxidation products left behind in a pattern defined by the scanned electrochemical cell served as surface-site markers, allowing the electrochemical activity to be correlated directly with the graphite structure on the nanoscale. This process produced tens of thousands of electrochemical measurements at different locations across the basal surface, unambiguously revealing it to be highly electrochemically active, with step edges providing no enhanced activity. This new model of graphite electrodes has significant implications for the design of carbon-based biosensors, and the results are additionally important for understanding electrochemical processes on related sp(2)-hybridized materials such as pristine graphene and nanotubes.

  19. The need for nano-scale modeling in solid oxide fuel cells.

    PubMed

    Ryan, E M; Recknagle, K P; Liu, W; Khaleel, M A

    2012-08-01

    Solid oxide fuel cells (SOFCs) are high temperature fuel cells, which are being developed for large scale and distributed power systems. SOFCs promise to provide cleaner, more efficient electricity than traditional fossil fuel burning power plants. Research over the last decade has improved the design and materials used in SOFCs to increase their performance and stability for long-term operation; however, there are still challenges for SOFC researchers to overcome before SOFCs can be considered competitive with traditional fossil fuel burning and renewable power systems. In particular degradation due to contaminants in the fuel and oxidant stream is a major challenge facing SOFCs. In this paper we discuss ongoing computational and experimental research into different degradation and design issues in SOFC electrodes. We focus on contaminants in gasified coal which cause electrochemical and structural degradation in the anode, and chromium poisoning which affects the electrochemistry of the cathode. Due to the complex microstructures and multi-physics of SOFCs, multi-scale computational modeling and experimental research is needed to understand the detailed physics behind different degradation mechanisms, the local conditions within the cell which facilitate degradation, and its effects on the overall SOFC performance. We will discuss computational modeling research of SOFCs at the macro-, meso- and nano-scales which is being used to investigate the performance and degradation of SOFCs. We will also discuss the need for a multi-scale modeling framework of SOFCs, and the application of computational and multi-scale modeling to several degradation issues in SOFCs.

  20. Functionalized nanoscale graphene oxide for high efficient drug delivery of cisplatin

    NASA Astrophysics Data System (ADS)

    Tian, Lingyang; Pei, Xibo; Zeng, Yongxiang; He, Rui; Li, Zhongjie; Wang, Jian; Wan, Qianbing; Li, Xiaoyu

    2014-11-01

    Graphene oxide has attracted particular interests in drug delivery. The sp2-aromatic structure and abundant oxygen-containing groups of nanoscale graphene oxide (NGO) were frequently utilized to load anti-cancer drugs, resulting in high loading efficiency. This research employed a polyethylene glycol (PEG, PL-PEG(2000)-NH2) functionalized NGO as a drug delivery vehicle for cis-diamminedichloroplatinum (II) (cisplatin, CDDP). The covalent reaction between platinum (II) atom and carboxylic group was utilized to attach CDDP onto NGO-PEG. The NGO, NGO-PEG, and NGO-PEG/CDDP nanohybrids were characterized by atomic force microscope imaging, transmission electron microscope imaging, Fourier transform infrared spectroscopy, and Raman spectroscopy. From the AFM images, the average thickness of the nanohybrids was ranged from 3.4 to 7.0 nm and the average sheet diameter was ranged from 21.7 to 30.5 nm. NGO-PEG demonstrated improved CDDP loading efficiency as high as 0.58 mg mg-1. The NGO-PEG/CDDP nanohybrids released CDDP in a sustained profile for 72 h and demonstrated remarkable cytotoxicity to human breast cancer MCF-7 cells and oral adenosquamous carcinoma CAL-27 cells by in vitro assays. The drug vehicle NGO-PEG was observed nontoxic. The inhibited cell proliferation and morphology deformation induced by NGO-PEG/CDDP were further illustrated by fluorescent images.

  1. Exposure, Health and Ecological Effects Review of Engineered Nanoscale Cerium and Cerium Oxide Associated with its Use as a Fuel Additive

    EPA Science Inventory

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coa...

  2. Effects of nanoscale morphology and defects in oxide: optoelectronic functions of zinc oxide nanowires

    NASA Astrophysics Data System (ADS)

    Nagao, Tadaaki; Duy Dao, Thang; Sugavaneshwar, R. P.; Chen, Kai; Nanda, K. K.

    2016-02-01

    Oxide nanomaterials have been attracting growing interest for both fundamental research and industrial applications ranging from gas sensors, light-emitting devices, to photocatalysts, and solar cells. The optical and electronic properties of oxide nanomaterials are strongly dependent on their surface morphologies as well as defects, such as surface areas, aspect ratios, foreign atom impurities, and oxygen vacancies. In this review, we describe some examples of our recent contributions to the nanomaterials and devices that exhibit remarkable functionalities based on one-dimensional nanostructures of ZnO and their hetero junctions as well as their variants with appropriately incorporated dopants.

  3. Detection of Strand Cleavage And Oxidation Damage Using Model DNA Molecules Captured in a Nanoscale Pore

    NASA Technical Reports Server (NTRS)

    Vercoutere, W.; Solbrig, A.; DeGuzman, V.; Deamer, D.; Akeson, M.

    2003-01-01

    We use a biological nano-scale pore to distinguish among individual DNA hairpins that differ by a single site of oxidation or a nick in the sugar-phosphate backbone. In earlier work we showed that the protein ion channel alpha-hemolysin can be used as a detector to distinguish single-stranded from double-stranded DNA, single base pair and single nucleotide differences. This resolution is in part a result of sensitivity to structural changes that influence the molecular dynamics of nucleotides within DNA. The strand cleavage products we examined here included a 5-base-pair (5-bp) hairpin with a 5-prime five-nucleotide overhang, and a complementary five-nucleotide oligomer. These produced predictable shoulder-spike and rapid near-full blockade signatures, respectively. When combined, strand annealing was monitored in real time. The residual current level dropped to a lower discrete level in the shoulder-spike blockade signatures, and the duration lengthened. However, these blockade signatures had a shorter duration than the unmodified l0bp hairpin. To test the pore sensitivity to nucleotide oxidation, we examined a 9-bp hairpin with a terminal 8-oxo-deoxyguanosine (8-oxo-dG), or a penultimate 8-oxo-dG. Each produced blockade signatures that differed from the otherwise identical control 9bp hairpins. This study showed that DNA structure is modified sufficiently by strand cleavage or oxidation damage at a single site to alter in a predictable manner the ionic current blockade signatures produced. This technique improves the ability to assess damage to DNA, and can provide a simple means to help characterize the risks of radiation exposure. It may also provide a method to test radiation protection.

  4. Synthesis and Characterization of Thermoelectric Oxides at Macro- and Nano-scales

    NASA Astrophysics Data System (ADS)

    Ma, Feiyue

    Thermoelectric materials can directly convert a temperature difference into electrical voltage and vice versa. Due to this unique property, thermoelectric materials are widely used in industry and scientific laboratories for temperature sensing and thermal management applications. Waste heat harvesting, another potential application of thermoelectric materials, has long been limited by the low conversion efficiency of the materials. Potential high temperature applications, such as power plant waste heat harvesting and combustion engine exhaust heat recovery, make thermoelectric oxides a very promising class of thermoelectric materials. In this thesis, the synthesis and characterization of thermoelectric oxide materials are explored. In the first part of this thesis, the measurement methodologies and instrumentation processes employed to investigate different thermoelectric properties, such as the Seebeck coefficient and carrier concentration at the bulk scale and the thermal conductivity at the nanoscale, are detailed. Existing scientific and engineering challenges associated with these measurements are also reviewed. To overcome such problems, original parts and methodologies have been designed. Three fully functional systems were ultimately developed for the characterization of macroscale thermoelectric properties as well as localized thermal conductivity. In the second part of the thesis, the synthesis of NaxCo 2O4, a thermoelectric oxide material, is discussed. Modification of both composition and structure were carried out so as to optimize the thermoelectric performance of NaxCo2O4. Nanostructuring methods, such as ball milling, electrospinning, auto-combustion synthesis, and core-shell structure fabrication, have been developed to refine the grain size of NaxCo2O4 in order to reduce its thermal conductivity. However, the structure of the nanostructured materials is very unstable at high temperature and limited improvement on thermoelectric performance is

  5. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching

    NASA Astrophysics Data System (ADS)

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L.

    2016-08-01

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~1012 inch-2). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on-off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.

  6. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching

    PubMed Central

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L.

    2016-01-01

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (∼1012 inch−2). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on–off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics. PMID:27491392

  7. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Lin, Dingchang; Liu, Yayuan; Liang, Zheng; Lee, Hyun-Wook; Sun, Jie; Wang, Haotian; Yan, Kai; Xie, Jin; Cui, Yi

    2016-07-01

    Metallic lithium is a promising anode candidate for future high-energy-density lithium batteries. It is a light-weight material, and has the highest theoretical capacity (3,860 mAh g-1) and the lowest electrochemical potential of all candidates. There are, however, at least three major hurdles before lithium metal anodes can become a viable technology: uneven and dendritic lithium deposition, unstable solid electrolyte interphase and almost infinite relative dimension change during cycling. Previous research has tackled the first two issues, but the last is still mostly unsolved. Here we report a composite lithium metal anode that exhibits low dimension variation (˜20%) during cycling and good mechanical flexibility. The anode is composed of 7 wt% ‘lithiophilic’ layered reduced graphene oxide with nanoscale gaps that can host metallic lithium. The anode retains up to ˜3,390 mAh g-1 of capacity, exhibits low overpotential (˜80 mV at 3 mA cm-2) and a flat voltage profile in a carbonate electrolyte. A full-cell battery with a LiCoO2 cathode shows good rate capability and flat voltage profiles.

  8. Nanoscale patterning induced strain redistribution in ultrathin strained Si layers on oxide

    NASA Astrophysics Data System (ADS)

    Moutanabbir, O.; Reiche, M.; Hähnel, A.; Erfurth, W.; Gösele, U.; Motohashi, M.; Tarun, A.; Hayazawa, N.; Kawata, S.

    2010-04-01

    We present a comparative study of the influence of the thickness on the strain behavior upon nanoscale patterning of ultrathin strained Si layers directly on oxide. The strained layers were grown on a SiGe virtual substrate and transferred onto a SiO2/Si substrate using wafer bonding and hydrogen ion induced exfoliation. The post-patterning strain was evaluated using UV micro-Raman spectroscopy for thin (20 nm) and thick (60 nm) nanostructures with lateral dimensions in the range of 80-400 nm. We found that about 40-50% of the initial strain is maintained in the 20 nm thick nanostructures, whereas this fraction drops significantly to ~ 2-20% for the 60 nm thick ones. This phenomenon of free surface induced relaxation is described using detailed three-dimensional finite element simulations. The simulated strain 3D maps confirm the limited relaxation in thin nanostructures. This result has direct implications for the fabrication and manipulation of strained Si nanodevices.

  9. Nanoscale-alumina induces oxidative stress and accelerates amyloid beta (Aβ) production in ICR female mice

    NASA Astrophysics Data System (ADS)

    Shah, Shahid Ali; Yoon, Gwang Ho; Ahmad, Ashfaq; Ullah, Faheem; Amin, Faiz Ul; Kim, Myeong Ok

    2015-09-01

    The adverse effects of nanoscale-alumina (Al2O3-NPs) have been previously demonstrated in both in vitro and in vivo studies, whereas little is known about their mechanism of neurotoxicity. It is the goal of this research to determine the toxic effects of nano-alumina on human neuroblastoma SH-SY5Y and mouse hippocampal HT22 cells in vitro and on ICR female mice in vivo. Nano-alumina displayed toxic effects on SH-SY5Y cell lines in three different concentrations also increased aluminium abundance and induced oxidative stress in HT22 cells. Nano-alumina peripherally administered to ICR female mice for three weeks increased brain aluminium and ROS production, disturbing brain energy homeostasis, and led to the impairment of hippocampus-dependent memory. Most importantly, these nano-particles induced Alzheimer disease (AD) neuropathology by enhancing the amyloidogenic pathway of Amyloid Beta (Aβ) production, aggregation and implied the progression of neurodegeneration in the cortex and hippocampus of these mice. In conclusion, these data demonstrate that nano-alumina is toxic to both cells and female mice and that prolonged exposure may heighten the chances of developing a neurodegenerative disease, such as AD.

  10. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching

    DOE PAGES

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; ...

    2016-08-05

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~1012 inch–2). Here, we systematically show that these devicesmore » allow precise engineering of the resistance states, thus enabling large on–off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.« less

  11. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching

    SciTech Connect

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L.

    2016-08-05

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~1012 inch–2). Here, we systematically show that these devices allow precise engineering of the resistance states, thus enabling large on–off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.

  12. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching.

    PubMed

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L

    2016-08-05

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (∼10(12) inch(-2)). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on-off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.

  13. Multilevel Ultrafast Flexible Nanoscale Nonvolatile Hybrid Graphene Oxide-Titanium Oxide Memories.

    PubMed

    Nagareddy, V Karthik; Barnes, Matthew D; Zipoli, Federico; Lai, Khue T; Alexeev, Arseny M; Craciun, Monica Felicia; Wright, C David

    2017-02-27

    Graphene oxide (GO) resistive memories offer the promise of low-cost environmentally sustainable fabrication, high mechanical flexibility and high optical transparency, making them ideally suited to future flexible and transparent electronics applications. However, the dimensional and temporal scalability of GO memories, i.e., how small they can be made and how fast they can be switched, is an area that has received scant attention. Moreover, a plethora of GO resistive switching characteristics and mechanisms has been reported in the literature, sometimes leading to a confusing and conflicting picture. Consequently, the potential for graphene oxide to deliver high-performance memories operating on nanometer length and nanosecond time scales is currently unknown. Here we address such shortcomings, presenting not only the smallest (50 nm), fastest (sub-5 ns), thinnest (8 nm) GO-based memory devices produced to date, but also demonstrate that our approach provides easily accessible multilevel (4-level, 2-bit per cell) storage capabilities along with excellent endurance and retention performance-all on both rigid and flexible substrates. Via comprehensive experimental characterizations backed-up by detailed atomistic simulations, we also show that the resistive switching mechanism in our Pt/GO/Ti/Pt devices is driven by redox reactions in the interfacial region between the top (Ti) electrode and the GO layer.

  14. Interface proximity effects on ionic conductivity in nanoscale oxide-ion conducting yttria stabilized zirconia: an atomistic simulation study.

    PubMed

    Sankaranarayanan, Subramanian K R S; Ramanathan, Shriram

    2011-02-14

    We present an atomistic simulation study on the size dependence of dopant distribution and the influence of nanoscale film thickness on carrier transport properties of the model oxide-ion conductor yttria stabilized zirconia (YSZ). Simulated amorphization and recrystallization approach was utilized to generate YSZ films with varying thicknesses (3-9 nm) on insulating MgO substrates. The atomic trajectories generated in the molecular dynamics simulations are used to study the structural evolution of the YSZ thin films and correlate the resulting microstructure with ionic transport properties at the nanoscale. The interfacial conductivity increases by 2 orders of magnitude as the YSZ film size decreases from 9 to 3 nm owing to a decrease in activation energy barrier from 0.54 to 0.35 eV in the 1200-2000 K temperature range. Analysis of dopant distribution indicates surface enrichment, the extent of which depends on the film thickness. The mechanisms of oxygen conductivity for the various film thicknesses at the nanoscale are discussed in detail and comparisons with experimental and other modeling studies are presented where possible. The study offers insights into mesoscopic ion conduction mechanisms in low-dimensional solid oxide electrolytes.

  15. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    NASA Astrophysics Data System (ADS)

    Almuslem, A. S.; Hanna, A. N.; Yapici, T.; Wehbe, N.; Diallo, E. M.; Kutbee, A. T.; Bahabry, R. R.; Hussain, M. M.

    2017-02-01

    In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO2) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.

  16. Structure and properties of a duplex coating combining micro-arc oxidation and baking layer on AZ91D Mg alloy

    NASA Astrophysics Data System (ADS)

    Cui, Xue-Jun; Li, Ming-Tian; Yang, Rui-Song; Yu, Zu-Xiao

    2016-02-01

    A duplex coating (called MAOB coating) was fabricated on AZ91D Mg alloy by combining the process of micro-arc oxidation (MAO) with baking coating (B-coating). The structure, composition, corrosion resistance, and tribological behaviour of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrochemical and long-term immersion test, and ball-on-disc friction test. The results show that a dense 92 μm thick B-coating was tightly deposited onto the MAO-coated Mg alloy and exhibited a good mechanical interlock along the rough interface. Compared with the MAO-coated sample, the corrosion current density of the MAOB-coated Mg alloy decreased by two or three orders of magnitude and no corrosion phenomenon was observed during a long-term immersion test of about 500 h (severe corrosion pits were found for MAO-treated samples after about 168 h of immersion). The frictional coefficient values of the MAOB coating were similar to those of the MAO coating using dry sliding tests, while the B-coating on the MAO-coated surface significantly improved the wear resistance of the AZ91D Mg alloy. All of these results indicate that a B-coating can be used to further protect Mg alloys from corrosion and wear by providing a thick, dense barrier.

  17. Probing nanoscale interactions on biocompatible cluster-assembled titanium oxide surfaces by atomic force microscopy.

    PubMed

    Vyas, Varun; Podestà, Alessandro; Milani, Paolo

    2011-06-01

    We report on the investigation of the adhesive properties of cluster-assembled nanostructured TiO(x) (ns-TiO(x)) films against a Si3N4 AFM tip, in air and in water. The interacting AFM tip apex represents a model nanometer-sized probe, carrying both silanol (Si-OH) and silamine (Si2-NH) groups: it is therefore well suited to investigate biologically relevant molecular interactions with the biocompatible ns-TiO(x) surface. Coupling nanosphere lithography with supersonic cluster beam deposition we produced sub-micrometer patterns of ns-TiO(x) on a reference amorphous silica surface. These devices are ideal platforms for conducting comparative nanoscale investigations of molecular interactions between surfaces and specific groups. We have found that in the aqueous medium the adhesion is enhanced on ns-TiO(x) with respect to amorphous silica, opposed to the case of humid air. A comparative analysis of the different interactions channels (van der Waals, electrostatic, chemical bonding) led to the conclusion that the key for understanding this behavior can be the ability of incoming nucleophiles like nitrogen or oxygen on the Si3N4 tip to displace adsorbed molecules on ns-TiO(x) and link to Ti atoms via co-ordinate (dative covalent) bonding. This effect is likely enhanced on nanostructured TiO(x) with respect to crystalline or micro-porous TiO2, due to the greatly increased effective area and porosity. This study provides a clue for the understanding of interaction mechanisms of proteins with biocompatible ns-TiO(x), and in general with metal-oxide surfaces.

  18. Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide.

    PubMed

    Salimi, Abdollah; Sharifi, Ensiyeh; Noorbakhsh, Abdollah; Soltanian, Saied

    2007-02-01

    Cyclic voltammetry was used for simultaneous formation and immobilization of nickel oxide nano-scale islands and catalase on glassy carbon electrode. Electrodeposited nickel oxide may be a promising material for enzyme immobilization owing to its high biocompatibility and large surface. The catalase films assembled on nickel oxide exhibited a pair of well defined, stable and nearly reversible CV peaks at about -0.05 V vs. SCE at pH 7, characteristic of the heme Fe (III)/Fe (II) redox couple. The formal potential of catalase in nickel oxide film were linearly varied in the range 1-12 with slope of 58.426 mV/pH, indicating that the electron transfer is accompanied by single proton transportation. The electron transfer between catalase and electrode surface, (k(s)) of 3.7(+/-0.1) s(-1) was greatly facilitated in the microenvironment of nickel oxide film. The electrocatalytic reduction of hydrogen peroxide at glassy carbon electrode modified with nickel oxide nano-scale islands and catalase enzyme has been studied. The embedded catalase in NiO nanoparticles showed excellent electrocatalytic activity toward hydrogen peroxide reduction. Also the modified rotating disk electrode shows good analytical performance for amperometric determination of hydrogen peroxide. The resultant catalase/nickel oxide modified glassy carbon electrodes exhibited fast amperometric response (within 2 s) to hydrogen peroxide reduction (with a linear range from 1 microM to 1 mM), excellent stability, long term life and good reproducibility. The apparent Michaelis-Menten constant is calculated to be 0.96(+/-0.05)mM, which shows a large catalytic activity of catalase in the nickel oxide film toward hydrogen peroxide. The excellent electrochemical reversibility of redox couple, high stability, technical simplicity, lake of need for mediators and short preparations times are advantages of this electrode. Finally the activity of biosensor for nitrite reduction was also investigated.

  19. Heterogeneous Fenton oxidation of Direct Black G in dye effluent using functional kaolin-supported nanoscale zero iron.

    PubMed

    Liu, Xinwen; Wang, Feifeng; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2014-02-01

    This study investigated kaolin-supported nanoscale zero-valent iron (nZVI/K) as a heterogeneous Fenton-like catalyst for the adsorption and oxidation of an azo dye, Direct Black G (DBG). New findings suggest that kaolin as a support material not only reduced the aggregation of nanoscale zero-valent iron (nZVI) but also improved the adsorption of DBG. It consequently improved Fenton oxidation by increasing the local concentration of DBG in the vicinity of nZVI. This was confirmed by scanning electron microscopy and X-ray diffraction for the surface morphology of nZVI/K before and after the Fenton-like reaction. Furthermore, nZVI/K proved to be a catalyst for the heterogeneous Fenton-like oxidation of the DBG process in the neutral pH range. More than 87.22 % of DBG was degraded, and 54.60 % of total organic carbon was removed in the optimal conditions: 0.6 g/L dosage of nZVI/K, 33 mM H2O2, 100 mg/L initial DBG concentration, temperature of 303 K and pH of 7.06. Finally, it was demonstrated that nZVI/K removed DBG from dye wastewater through the processes of adsorption and oxidation.

  20. Cu oxide nanowire array grown on Si-based SiO{sub 2} nanoscale islands via nanochannels

    SciTech Connect

    Mei, Y.F. . E-mail: meiyongfeng@nju.org.cn; Siu, G.G.; Yang, Y.; Fu, Ricky K.Y.; Hung, T.F.; Chu, Paul K.; Wu, X.L.

    2004-10-04

    Cu oxide nanowire array on Si-based SiO{sub 2} nanoscale islands was fabricated via nanochannels of Si-based porous anodic alumina (PAA) template at room temperature under a pulse voltage in a conventional solution for copper electrodeposition. X-ray diffraction and X-ray photoelectron spectroscopy showed that the main composite of the oxide nanowire is Cu{sub 2}O. The nanowires had a preferential growth direction (1 1 1) and connected with the nanoscale SiO{sub 2} islands, which was confirmed by Transmission Electron Microscopy (TEM). Such Si-based nanostructure is useful in the nanoelectrics application. The growth mechanism of Cu oxide nanowires in Si-based PAA template was discussed. The formation of Cu{sub 2}O is due to the alkalinity of the anodized solution. However, the oscillations of the potential and current during the experiment trend to bring on a small amount of copper and CuO in the nanowires.

  1. Synthesis, characterization and catalytic application of nanoscale metal and metal oxide heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Xue

    Nanoscale metals or metal oxides with high surface area to volume ratios have been widely used as catalysts for various chemical reactions. A major challenge to utilize metal nanocatalysts commercially is their tendency to sinter under working reaction conditions. To overcome this, much research is being done to anchor metal nanocatalysts on various supports to prevent their agglomeration. Mesoporous silica, SBA-15 is an attractive support material candidate because of its high surface area, stable structure and chemical inertness. Scientists have anchored metal nanocatalysts onto the pore of SBA-15 and observed some improvement in the stability. However, the interactions between the nanocatalysts and SBA-15 are relatively weak and sintering still occurs resulting in a loss of activity. In order to impart enhanced robustness, a new type of stable metal/SBA-15 nanocomposite has been prepared by intercalating metal nanoparticles into the walls of mesoporous silica SBA-15 by a unique synthetic strategy using metal coordinating agents such as bis[3-(triethoxysilyl) propyl]-tetrasulfide (TESPTS). In this dissertation, systemic research on the preparation parameters and extension to other metals will be presented. The structure changes caused by addition of TESPTS to the preparation of mesoporous silica were investigated. The relationship between increasing amounts of TESPTS and the structural change was obtained. Afterwards, a new type of PdMS catalyst with Pd intercalated in the walls of SBA-15 was synthesized for the first time using a modified preparation pathway. These materials were characterized by N2 physisorption, X-ray diffraction, transmission electron microscopy and inductively coupled plasma. The PdMS system was utilized as an active and robust catalyst for Heck reactions. Notably, after the catalytic reaction, the PdMS catalysts maintained its reactivity and size without undergoing any agglomeration due to the stable nanocomposite structure. Carbon

  2. Characterization of Nano-scale Aluminum Oxide Transport Through Porous Media

    NASA Astrophysics Data System (ADS)

    Norwood, Sasha Norien

    Land application of biosolids has become common practice in the United States as an alternative to industrial fertilizers. Although nutrient rich, biosolids have been found to contain high concentrations of unregulated and/or unrecognized emerging contaminants (e.g., pharmaceuticals, personal care products) while containing a significant fraction of inorganic nano-scale colloidal materials such as oxides of iron, titanium, and aluminum. Given their reactivity and small size, there are many questions concerning the potential migration of these nano-sized colloidal materials through the soil column and into our surface and groundwater bodies. Transport of emerging pollutants of concern through the soil column, at minimum, is impacted by colloidal properties (e.g., chemical composition, shape, aggregation kinetics), solution chemistry (e.g., pH, ionic strength, natural organic matter), and water flow velocity. The purpose of this current research was to characterize the long-term transport behavior of aluminum oxide nanoparticles (Al 2O3) through a natural porous media with changes in pH, aqueous-phase concentration, pore-water velocity and electrolyte valence. Additionally, deposition rates during the initial stages of deposition were compared to several models developed based on colloid filtration theory and DLVO stability theory. Benchtop column laboratory experiments showed that, under environmentally relevant groundwater conditions, Al2O3 nanoparticles are mobile through saturated porous media. Mobility increased under conditions in which the nanoparticles and porous media were of like charge (pH 9). Changes in linear pore water velocity, under these same high pH conditions, showed similar transport behavior with little mass retained in the system. Deposition is believed to be kinetically controlled at pH 9, as evidenced by the slightly earlier breakthrough as flow rate increased and was further supported by observed concentration effects on the arrival wave

  3. [Renal duplex: clinical usefulness].

    PubMed

    Miralles, M; Giménez, A; Cairols, M A; Riambau, V; Sáez, A

    1993-01-01

    It is the purpose of this report to focus attention on the clinical usefulness of Renal Duplex for the diagnosis of patients with vasculo-renal diseases in terms of: 1. Accuracy of Duplex/Angiography in the measurement of the renal stenosis degree. 2. Correlationship between Duplex ans Isotopic Renogram with respect to the study of the parenchyma's perfusion. 3. The effect of the inhibitors of the conversor enzyme (Captopril) on the Doppler signal of the parenchyma, comparing it with the results from the captopril test about the peripheral plasmatic renin activity and the isotopic renogram, in patients with vasculo-renal HTA. Results obtains by Duplex and Angiography were compared in 92 renal arteries from 46 patients. For both technics, three degrees of stenosis were established: 0-59%, 60-99% and occlusion. The Duplex technique identified 49/54 stenosis < 60%, 28/33 stenosis > 60% and 5/5 occlusions (Kappa 0.8). Sensibility and specificity of Duplex for the diagnosis of stenosis > 60% were, respectively, 89.5% and 90.7%; with an exactness of 90.2%. The angiographies showed stenosis > 60% in 23 patients with HTA (diastolic pressures > 100 mmHg). In all of the patients, a measurement of the plasmatic renin activity, an isotopic renogram and a Doppler of the interlobar arteries basal and post-captopril, were performed. The correlationship between Duplex and isotopic renogram with respect to the measurement of the relative renal perfusion was statistically significant (r = 0.91; p < 0.0001). The captopril test for renin and isotopic renogram were positives for 5 patients (4 with unilateral stenosis an 1 with bilateral stenosis). All of them showed severe stenosis (> 80%).(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Characterization of AZ31 magnesium alloy by duplex process combining laser surface melting and plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Cancan; Liang, Jun; Zhou, Jiansong; Li, Qingbiao; Wang, Lingqian

    2016-09-01

    Top ceramic coatings were fabricated on the laser surface melting (LSM) modified AZ31 alloy by plasma electrolytic oxidation (PEO) in a phosphate electrolyte. The effect of LSM treatment on the microstructure and corrosion behavior of the bare and PEO treated AZ31 alloy was evaluated. Results showed that LSM treatment produced a homogeneous modified layer with redistributed intermetallic compounds, resulting in enhanced corrosion resistance of AZ31 alloy. The LSM treatment had no obvious influence on the surface and cross-sectional microstructures of the PEO coatings on AZ31 alloy. Besides, MgO was the main constituent for PEO coatings, regardless of LSM pretreatment. However, the long-term corrosion properties of the PEO coated AZ31 alloy with LSM pretreatment revealed large enhancement. Based on the analysis of microstructure and corrosion property, the corrosion mechanisms of the PEO and LSM-PEO coated AZ31 alloy were proposed.

  5. Removal of water contaminants by nanoscale zero-valent iron immobilized in PAN-based oxidized membrane

    NASA Astrophysics Data System (ADS)

    Liu, Chunyi; Li, Xiang; Ma, Bomou; Qin, Aiwen; He, Chunju

    2014-12-01

    The functionalizing nanoporous polyacrylonitrile-based oxidized membrane (PAN-OM) firmly immobilized with highly reactive nanoscale zero-valent iron (NZVI) are successfully prepared via an innovative in situ synthesis method. Due to the formation of ladder structure, the PAN-OM present excellent thermal and chemical stabilities as a new carrier for the in-situ growth of NZVI via firm chelation and reduction action, respectively, which prevent the aggregation and release of NZVI. The developed NZVI-immobilized membrane present effective decolorizing efficiency to both anionic methyl blue and cationic methylene blue with a pseudo-first-order decay and degrading efficiency to trichloroethylene (TCE). The regeneration and stability results show that NZVI-immobilized membrane system can be regenerated without obvious performance reduction, which remain the reactivity after half a year storage period. These results suggest that PAN-based oxidized membrane immobilized with NZVI exhibit significant potential for environmental applications.

  6. Bottom-up synthesis of ordered metal/oxide/metal nanodots on substrates for nanoscale resistive switching memory

    PubMed Central

    Han, Un-Bin; Lee, Jang-Sik

    2016-01-01

    The bottom-up approach using self-assembled materials/processes is thought to be a promising solution for next-generation device fabrication, but it is often found to be not feasible for use in real device fabrication. Here, we report a feasible and versatile way to fabricate high-density, nanoscale memory devices by direct bottom-up filling of memory elements. An ordered array of metal/oxide/metal (copper/copper oxide/copper) nanodots was synthesized with a uniform size and thickness defined by self-organized nanotemplate mask by sequential electrochemical deposition (ECD) of each layer. The fabricated memory devices showed bipolar resistive switching behaviors confirmed by conductive atomic force microscopy. This study demonstrates that ECD with bottom-up growth has great potential to fabricate high-density nanoelectronic devices beyond the scaling limit of top-down device fabrication processes. PMID:27157385

  7. 1. VIEW OF DUPLEX (FEATURE 7). CORNER OF DUPLEX (FEATURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF DUPLEX (FEATURE 7). CORNER OF DUPLEX (FEATURE 6) IS VISIBLE AT LEFT. MILL SITE IS VISIBLE IN THE BACKGROUND. FACING EAST. - Copper Canyon Camp of the International Smelting & Refining Company, Duplex, Copper Canyon, Battle Mountain, Lander County, NV

  8. Nano-Scale Metal Oxide Particles as Materials for Air Purification

    DTIC Science & Technology

    1994-02-22

    carried out. Methods for preparing the nanoscale particles, including core/shell overlayer particles, have been worked out. Surface characterization...since these heteroatoms are notorious for catalyst poisoning. Solid reagents that might serve as effective destructive adsorbents must have high capacity...to basic and applied science. Further understanding of their Avadlab1i1ty Codem vRiI1 and/ar Dgst Specle. |~1 1 I] Pagr 3 synthesis , properties, and

  9. Nanoscale current spreading analysis in solution-processed graphene oxide/silver nanowire transparent electrodes via conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph E.; Perumal, Ajay; Bradley, Donal D. C.; Stavrinou, Paul N.; Anthopoulos, Thomas D.

    2016-05-01

    We use conductive atomic force microscopy (CAFM) to study the origin of long-range conductivity in model transparent conductive electrodes composed of networks of reduced graphene oxide (rGOX) and silver nanowires (AgNWs), with nanoscale spatial resolution. Pristine networks of rGOX (1-3 monolayers-thick) and AgNWs exhibit sheet resistances of ˜100-1000 kΩ/□ and 100-900 Ω/□, respectively. When the materials are deposited sequentially to form bilayer rGOX/AgNW electrodes and thermally annealed at 200 °C, the sheet resistance reduces by up to 36% as compared to pristine AgNW networks. CAFM was used to analyze the current spreading in both systems in order to identify the nanoscale phenomena responsible for this effect. For rGOX networks, the low intra-flake conductivity and the inter-flake contact resistance is found to dominate the macroscopic sheet resistance, while for AgNW networks the latter is determined by the density of the inter-AgNW junctions and their associated resistance. In the case of the bilayer rGOX/AgNWs' networks, rGOX flakes are found to form conductive "bridges" between AgNWs. We show that these additional nanoscopic electrical connections are responsible for the enhanced macroscopic conductivity of the bilayer rGOX/AgNW electrodes. Finally, the critical role of thermal annealing on the formation of these nanoscopic connections is discussed.

  10. Controllable inhibition of cellular uptake of oxidized low-density lipoprotein: structure-function relationships for nanoscale amphiphilic polymers.

    PubMed

    Iverson, Nicole M; Sparks, Sarah M; Demirdirek, Bahar; Uhrich, Kathryn E; Moghe, Prabhas V

    2010-08-01

    A family of anionic nanoscale polymers based on amphiphilic macromolecules (AMs) was developed for controlled inhibition of highly oxidized low-density lipoprotein (hoxLDL) uptake by inflammatory macrophage cells, a process that triggers the escalation of a chronic arterial disease called atherosclerosis. The basic AM structure is composed of a hydrophobic portion formed from a mucic acid sugar backbone modified at the four hydroxyls with lauroyl groups conjugated to hydrophilic poly(ethylene glycol) (PEG). The AM structure-activity relationships were probed by synthesizing AMs with six key variables: length of the PEG chain, carboxylic acid location, type of anionic charge, number of anionic charges, rotational motion of the anionic group, and PEG architecture. All AM structures were confirmed by nuclear magnetic resonance spectroscopy and their ability to inhibit hoxLDL uptake in THP-1 human macrophage cells was compared in the absence and presence of serum. We report that AMs with one, rotationally restricted carboxylic acid within the hydrophobic portion of the polymer was sufficient to yield the most effective AM for inhibiting hoxLDL internalization by THP-1 human macrophage cells under serum-containing conditions. Further, increasing the number of charges and altering the PEG architecture in an effort to increase serum stabilization did not significantly impair the ability of AMs to inhibit hoxLDL internalization, suggesting that selected modifications to the AMs could potentially promote multifunctional characteristics of these nanoscale macromolecules.

  11. Different shades of oxide: from nanoscale wetting mechanisms to contact printing of gallium-based liquid metals.

    PubMed

    Doudrick, Kyle; Liu, Shanliangzi; Mutunga, Eva M; Klein, Kate L; Damle, Viraj; Varanasi, Kripa K; Rykaczewski, Konrad

    2014-06-17

    Gallium-based liquid metals are of interest for a variety of applications including flexible electronics, soft robotics, and biomedical devices. Still, nano- to microscale device fabrication with these materials is challenging because, despite having surface tension 10 times higher than water, they strongly adhere to a majority of substrates. This unusually high adhesion is attributed to the formation of a thin oxide shell; however, its role in the adhesion process has not yet been established. In this work, we demonstrate that, dependent on dynamics of formation and resulting morphology of the liquid metal-substrate interface, GaInSn adhesion can occur in two modes. The first mode occurs when the oxide shell is not ruptured as it makes contact with the substrate. Because of the nanoscale topology of the oxide surface, this mode results in minimal adhesion between the liquid metal and most solids, regardless of substrate's surface energy or texture. In the second mode, the formation of the GaInSn-substrate interface involves rupturing of the original oxide skin and formation of a composite interface that includes contact between the substrate and pieces of old oxide, bare liquid metal, and new oxide. We demonstrate that in this latter mode GaInSn adhesion is dominated by the intimate contact between new oxide and substrate. We also show that by varying the pinned contact line length using varied degrees of surface texturing, the adhesion of GaInSn in this mode can be either decreased or increased. Lastly, we demonstrate how these two adhesion modes limit microcontact printing of GaInSn patterns but can be exploited to repeatedly print individual sub-200 nm liquid metal drops.

  12. Superior Dielectric Performance of Engineering Thermoplastic as a Result of In situ Embedding of Nanoscale Mixed-Phase Molybdenum Oxide

    NASA Astrophysics Data System (ADS)

    Qureshi, Nilam; Shinde, Manish; Ratheesh, R.; Bhalerao, Anand; Kale, Bharat; Mulik, Uttam; Amalnerkar, Dinesh P.

    2015-07-01

    To facilitate in situ generation of single and mixed-phase molybdenum oxide on the nanoscale in a network of polyphenylene sulfide (PPS), a novel polymer-inorganic solid-state reaction is proposed. Ammonium molybdate was homogeneously mixed with PPS in 1:1 molar ratio and heated at 285°C for different times (6 h, 24 h, or 48 h) under ambient conditions. The products were characterized by x-ray diffractometry, field emission scanning electron microscopy, and transmission electron microscopy. Structural investigations revealed the co-existence of mix-phased molybdenum oxide, i.e. dominant orthorhombic α-MoO3, and minor monoclinic Mo8O23 phases, within the modified PPS matrix. The resulting molybdenum oxide nanostructures had rod and sheet-like morphology in the PPS matrix. Dielectric measurements on pellets prepared from the resulting nanocomposites revealed improvement of the dielectric properties compared with values reported for pure PPS. The resulting nano-composites may exhibit properties synergistically derived from those of their components (molybdenum oxide and PPS), i.e. lower dielectric constant and loss tangent, enabling application as relatively high-temperature capacitors.

  13. Duplex tab exhaust nozzle

    NASA Technical Reports Server (NTRS)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  14. Nanoporous palladium anode for direct ethanol solid oxide fuel cells with nanoscale proton-conducting ceramic electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Yong; Wong, Lai Mun; Xie, Hanlin; Wang, Shijie; Su, Pei-Chen

    2017-02-01

    In this work, we demonstrate the operation of micro-solid oxide fuel cells (μ-SOFCs) with nanoscale proton-conducting Y-BaZrO3 (BZY) electrolyte to avoid the fuel crossover problem for direct ethanol fuel cells (DEFCs). The μ-SOFCs are operated with the direct utilisation of ethanol vapour as a fuel and Pd as anode at the temperature range of 300-400 °C. The nanoporous Pd anode is achieved by DC sputtering at high Ar pressure of 80 mTorr. The Pd-anode/BYZ-electrolyte/Pt-cathode cell show peak power densities of 72.4 mW/cm2 using hydrogen and 15.3 mW/cm2 using ethanol at 400 °C. No obvious carbon deposition is seen from XPS analysis after fuel cell test with ethanol fuel.

  15. The Fundamental Role of Nano-Scale Oxide Films in the Oxidation of Hydrogen and the Reduction of Oxygen on Noble Metal Electrocatalysts

    SciTech Connect

    Digby Macdonald

    2005-04-15

    The derivation of successful fuel cell technologies requires the development of more effective, cheaper, and poison-resistant electrocatalysts for both the anode (H{sub 2} oxidation in the presence of small amounts of CO from the reforming of carbonaceous fuels) and the cathode (reduction of oxygen in the presence of carried-over fuel). The proposed work is tightly focused on one specific aspect of electrocatalysis; the fundamental role(s) played by nanoscale (1-2 nm thick) oxide (''passive'') films that form on the electrocatalyst surfaces above substrate-dependent, critical potentials, on charge transfer reactions, particularly at elevated temperatures (25 C < T < 200 C). Once the role(s) of these films is (are) adequately understood, we will then use this information to specify, at the molecular level, optimal properties of the passive layer for the efficient electrocatalysis of the oxygen reduction reaction.

  16. Oxidation of nanoscale zero-valent iron under sufficient and limited dissolved oxygen: Influences on aggregation behaviors.

    PubMed

    Jiang, Danlie; Hu, Xialin; Wang, Rui; Yin, Daqiang

    2015-03-01

    Oxidations of nanoscale zero-valent iron (nZVI) under aerobic (dissolved oxygen≈8mgL(-1)) and anaerobic (dissolved oxygen <3mgL(-1)) conditions were simulated, and their influences on aggregation behaviors of nZVI were investigated. The two oxidation products were noted as HO-nZVI (nZVI oxidized in highly oxygenated water) and LO-nZVI (nZVI oxidized in lowly oxygenated water) respectively. The metallic iron of the oxidized nZVI was almost exhausted (Fe(0)≈8±5%), thus magnetization mainly depended on magnetite content. Since sufficient dissolved oxygen led to the much less magnetite (∼15%) in HO-nZVI than that in LO-nZVI (>90%), HO-nZVI was far less magnetic (Ms=88kAm(-1)) than LO-nZVI (Ms=365kAm(-1)). Consequently, HO-nZVI formed small agglomerates (228±10nm), while LO-nZVI tended to form chain-like aggregations (>1μm) which precipitated rapidly. Based on the EDLVO theory, we suggested that dissolved oxygen level determined aggregation morphologies by controlling the degree of oxidation and the magnitude of magnetization. Then the chain-like alignment of LO-nZVI would promote further aggregation, but the agglomerate morphology of HO-nZVI would eliminate magnetic forces and inhibit the aggregation while HO-nZVI remained magnetic. Our results indicated the fine colloidal stability of HO-nZVI, which might lead to the great mobility in the environment.

  17. Crystal engineering in 3D: Converting nanoscale lamellar manganese oxide to cubic spinel while affixed to a carbon architecture

    DOE PAGES

    Donakowski, Martin D.; Wallace, Jean M.; Sassin, Megan B.; ...

    2016-06-17

    Here, by applying differential pair distribution function (DPDF) analyses to the energy–storage relevant MnOx/carbon system— but in a 3D architectural rather than powder–composite configuration—we can remove contributions of the carbon nanofoam paper scaffold and quantify the multiphasic oxide speciation as the nanoscale, disordered MnOx grafted to the carbon walls (MnOx@CNF) structurally rearranges in situ from birnessite AMnOx (A = Na+; Li+) to tetragonal Mn3O4 to spinel LiMn2O4. The first reaction step involves topotactic exchange of interlayer Na+ by Li+ in solution followed by thermal treatments to crystal engineer the –10–nm–thick 2D layered oxide throughout the macroscale nanofoam paper into amore » spinel phase. The oxide remains affixed to the walls of the nanofoam throughout the phase transformations. The DPDF fits are improved by retention of one plane of birnessite–like oxide after conversion to spinel. We support the DPDF–derived assignments by X–ray photoelectron spectroscopy and Raman spectroscopy, the latter of which tracks how crystal engineering the oxide affects the disorder of the carbon substrate. We further benchmark MnOx@CNF with nonaqueous electrochemical measurements versus lithium as the oxide converts from X–ray–amorphous birnessite to interlayer-registered LiMnOx to spinel. The lamellar AMnOx displays pseudocapacitive electrochemical behavior, with a doubling of specific capacitance for the interlayer–registered LiMnOx, while the spinel LiMn2O4@CNF displays a faradaic electrochemical response characteristic of Li–ion insertion. Our results highlight the need for holistic understanding when crystal engineering an (atomistic) charge–storing phase within the (architectural) structure of practical electrodes.« less

  18. Investigation of Device Performance and Negative Bias Temperature Instability of Plasma Nitrided Oxide in Nanoscale p-Channel Metal-Oxide-Semiconductor Field-Effect Transistor's

    NASA Astrophysics Data System (ADS)

    Han, In-Shik; Ji, Hee-Hwan; Goo, Tae-Gyu; Yoo, Ook-Sang; Choi, Won-Ho; Na, Min-Ki; Kim, Yong-Goo; Park, Sung-Hyung; Lee, Heui-Seung; Kang, Young-Seok; Kim, Dae-Byung; Lee, Hi-Deok

    2008-04-01

    In this paper, we investigated the device performance and negative bias temperature instability (NBTI) degradation for thermally nitrided oxide (TNO) and plasma nitrided oxide (PNO) in nanoscale p-channel metal oxide semiconductor field effect transistor (PMOSFET). PNOs show the improvement of dielectric performance compared to TNO with no change of the device performance. PNOs also show the improvement of NBTI immunity than TNO at low temperature stress, whereas NBTI immunity of PNO with high N concentration can be worse than TNO at high temperature stress. Recovery effect of NBTI degradation of PNO is lower than that of TNO and it is increased as the N concentration is increased in PNO because the dissociated Si dangling bonds and generated positive oxide charges are repassivated and neutralized, respectively. Moreover, complete recovery of ΔVth is dominated by neutralization of positive oxide charges. Therefore, N contents at polycrystalline Si/SiO2 interface as well as N contents at Si/SiO2 interface can affect significantly on NBTI degradation and recovery effect.

  19. Nanoscale characterization of the electrical properties of oxide electrodes at the organic semiconductor-oxide electrode interface in organic solar cells

    NASA Astrophysics Data System (ADS)

    MacDonald, Gordon Alex

    This dissertation focuses on characterizing the nanoscale and surface averaged electrical properties of transparent conducting oxide electrodes such as indium tin oxide (ITO) and transparent metal-oxide (MO) electron selective interlayers (ESLs), such as zinc oxide (ZnO), the ability of these materials to rapidly extract photogenerated charges from organic semiconductors (OSCs) used in organic photovoltaic (OPV) cells, and evaluating their impact on the power conversion efficiency (PCE) of OPV devices. In Chapter 1, we will introduce the fundamental principles, benefits, and the key innovations that have advanced this technology. In Chapter 2 of this dissertation, we demonstrate an innovative application of conductive probe atomic force microscopy (CAFM) to map the nanoscale electrical heterogeneity at the interface between ITO, and a well-studied OSC, copper phthalocyanine (CuPc).(MacDonald et al. (2012) ACS Nano, 6, p. 9623) In this work we collected arrays of current-voltage (J-V) curves, using a CAFM probe as the top contact of CuPc/ITO systems, to map the local J-V responses. By comparing J-V responses to known models for charge transport, we were able to determine if the local rate-limiting-step for charge transport is through the OSC (ohmic) or the CuPc/ITO interface (non-ohmic). Chapter 3 focus on the electrical property characterization of RF-magnetron sputtered ZnO (sp-ZnO) ESL films on ITO substrates. We have shown that the energetic alignment of ESLs and the OSC active materials plays a critical role in determining the PCE of OPV devices and UV light soaking sensitivity. We have used a combination of device testing, modeling, and impedance spectroscopy to characterize the effects that energetic alignment has on the charge carrier transport and distribution within the OPV device. In Chapter 4 we demonstrate that the local properties of sp-ZnO films varies as a function of the underlying ITO crystal face. We show that the local ITO crystal face determines

  20. Prominent thermodynamical interaction with surroundings on nanoscale memristive switching of metal oxides.

    PubMed

    Nagashima, Kazuki; Yanagida, Takeshi; Oka, Keisuke; Kanai, Masaki; Klamchuen, Annop; Rahong, Sakon; Meng, Gang; Horprathum, Mati; Xu, Bo; Zhuge, Fuwei; He, Yong; Park, Bae Ho; Kawai, Tomoji

    2012-11-14

    This study demonstrates the effect of surroundings on a memristive switching at nanoscale by utilizing an open top planar-type device. NiO(x) and CoO(x) planar-type devices have exhibited a memristive behavior under atmospheric pressure, whereas TiO(2-x) planar-type devices did not show a memristive switching even under the same surroundings. A memristive behavior of TiO(2-x) planar-type devices has emerged when reducing an ambient pressure and/or employing a SiO(2) passivation layer. These results reveal that a thermodynamical interaction with surroundings critically determines the occurrence of memristive switching via varying a stability of nonstoichiometry. Since this effect tends to be more significant for smaller devices with larger specific surface area, tailoring the surrounding effect by an appropriate passivation will be essential for high density devices.

  1. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries.

    PubMed

    Kang, ShinYoung; Mo, Yifei; Ong, Shyue Ping; Ceder, Gerbrand

    2014-02-12

    The thermodynamic stability of materials can depend on particle size due to the competition between surface and bulk energy. In this Letter, we show that, while sodium peroxide (Na2O2) is the stable bulk phase of Na in an oxygen environment at standard conditions, sodium superoxide (NaO2) is considerably more stable at the nanoscale. As a consequence, the superoxide requires a much lower nucleation energy than the peroxide, explaining why it can be observed as the discharge product in some Na-O2 batteries. As the superoxide can be recharged (decomposed) at much lower overpotentials than the peroxide, these findings are important to create highly reversible Na-O2 batteries. We derive the specific electrochemical conditions to nucleate and retain Na-superoxides and comment on the importance of considering the nanophase thermodynamics when optimizing an electrochemical system.

  2. Nanoscale Particulate Matter from Urban Traffic Rapidly Induces Oxidative Stress and Inflammation in Olfactory Epithelium with Concomitant Effects on Brain

    PubMed Central

    Cheng, Hank; Saffari, Arian; Sioutas, Constantinos; Forman, Henry J.; Morgan, Todd E.; Finch, Caleb E.

    2016-01-01

    Background: Rodent models for urban air pollution show consistent induction of inflammatory responses in major brain regions. However, the initial impact of air pollution particulate material on olfactory gateways has not been reported. Objective: We evaluated the olfactory neuroepithelium (OE) and brain regional responses to a nanosized subfraction of urban traffic ultrafine particulate matter (nPM, < 200 nm) in vivo, ex vivo, and in vitro. Methods: Adult mice were exposed to reaerosolized nPM for 5, 20, and 45 cumulative hours over 3 weeks. The OE, the olfactory bulb (OB), the cerebral cortex, and the cerebellum were analyzed for oxidative stress and inflammatory responses. Acute responses of the OE to liquid nPM suspensions were studied with ex vivo and primary OE cultures. Results: After exposure to nPM, the OE and OB had rapid increases of 4-hydroxy-2-nonenal (4-HNE) and 3-nitrotyrosine (3-NT) protein adducts, whereas the cerebral cortex and cerebellum did not respond at any time. All brain regions showed increased levels of tumor necrosis factor-α (TNFα) protein by 45 hr, with earlier induction of TNFα mRNA in OE and OB. These responses corresponded to in vitro OE and mixed glial responses, with rapid induction of nitrite and inducible nitric oxide synthase (iNOS), followed by induction of TNFα. Conclusions: These findings show the differential time course of oxidative stress and inflammatory responses to nPM between the OE and the brain. Slow cumulative transport of inhaled nPM into the brain may contribute to delayed responses of proximal and distal brain regions, with potential input from systemic factors. Citation: Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE. 2016. Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ Health Perspect 124:1537–1546; http://dx.doi.org/10.1289/EHP134 PMID:27187980

  3. Monitoring charge storage processes in nanoscale oxides using electrochemical scanning probe microscopy.

    SciTech Connect

    Zavadil, Kevin Robert; Lu, Ping; Huang, Jian Yu

    2010-11-01

    Advances in electrochemical energy storage science require the development of new or the refinement of existing in situ probes that can be used to establish structure - activity relationships for technologically relevant materials. The drive to develop reversible, high capacity electrodes from nanoscale building blocks creates an additional requirement for high spatial resolution probes to yield information of local structural, compositional, and electronic property changes as a function of the storage state of a material. In this paper, we describe a method for deconstructing a lithium ion battery positive electrode into its basic constituents of ion insertion host particles and a carbon current collector. This model system is then probed in an electrochemical environment using a combination of atomic force microscopy and tunneling spectroscopy to correlate local activity with morphological and electronic configurational changes. Cubic spinel Li{sub 1+x}Mn{sub 2-x}O{sub 4} nanoparticles are grown on graphite surfaces using vacuum deposition methods. The structure and composition of these particles are determined using transmission electron microscopy and Auger microprobe analysis. The response of these particles to initial de-lithiation, along with subsequent electrochemical cycling, is tracked using scanning probe microscopy techniques in polar aprotic electrolytes (lithium hexafluorophosphate in ethylene carbonate:diethylcarbonate). The relationship between nanoparticle size and reversible ion insertion activity will be a specific focus of this paper.

  4. Synthesis of hollow cobalt oxide nanopowders by a salt-assisted spray pyrolysis process applying nanoscale Kirkendall diffusion and their electrochemical properties.

    PubMed

    Ju, Hyeon Seok; Cho, Jung Sang; Kim, Jong Hwa; Choi, Yun Ju; Kang, Yun Chan

    2015-12-21

    A new concept for preparing hollow metal oxide nanopowders by salt-assisted spray pyrolysis applying nanoscale Kirkendall diffusion is introduced. The composite powders of metal oxide and indecomposable metal salt are prepared by spray pyrolysis. Post-treatment under a reducing atmosphere and subsequent washing using distilled water produce aggregation-free metal nanopowders. The metal nanopowders are then transformed into metal oxide hollow nanopowders by nanoscale Kirkendall diffusion. Co3O4 hollow nanopowders are prepared as first target materials. A cobalt oxide-NaCl composite powder prepared by spray pyrolysis transforms into several Co3O4 hollow nanopowders by several treatment processes. The discharge capacities of the Co3O4 nanopowders with filled and hollow structures at a current density of 1 A g(-1) for the 150th cycle are 605 and 775 mA h g(-1), respectively. The hollow structure formed by nanoscale Kirkendall diffusion improves the lithium-ion storage properties of Co3O4 nanopowders.

  5. Crystal engineering in 3D: Converting nanoscale lamellar manganese oxide to cubic spinel while affixed to a carbon architecture

    SciTech Connect

    Donakowski, Martin D.; Wallace, Jean M.; Sassin, Megan B.; Chapman, Karena W.; Parker, Joseph F.; Long, Jeffrey W.; Rolison, Debra R.

    2016-06-17

    Here, by applying differential pair distribution function (DPDF) analyses to the energy–storage relevant MnOx/carbon system— but in a 3D architectural rather than powder–composite configuration—we can remove contributions of the carbon nanofoam paper scaffold and quantify the multiphasic oxide speciation as the nanoscale, disordered MnOx grafted to the carbon walls (MnOx@CNF) structurally rearranges in situ from birnessite AMnOx (A = Na+; Li+) to tetragonal Mn3O4 to spinel LiMn2O4. The first reaction step involves topotactic exchange of interlayer Na+ by Li+ in solution followed by thermal treatments to crystal engineer the –10–nm–thick 2D layered oxide throughout the macroscale nanofoam paper into a spinel phase. The oxide remains affixed to the walls of the nanofoam throughout the phase transformations. The DPDF fits are improved by retention of one plane of birnessite–like oxide after conversion to spinel. We support the DPDF–derived assignments by X–ray photoelectron spectroscopy and Raman spectroscopy, the latter of which tracks how crystal engineering the oxide affects the disorder of the carbon substrate. We further benchmark MnOx@CNF with nonaqueous electrochemical measurements versus lithium as the oxide converts from X–ray–amorphous birnessite to interlayer-registered LiMnOx to spinel. The lamellar AMnOx displays pseudocapacitive electrochemical behavior, with a doubling of specific capacitance for the interlayer–registered LiMnOx, while the spinel LiMn2O4@CNF displays a faradaic electrochemical response characteristic of Li–ion insertion. Our results highlight the need for holistic understanding when crystal engineering an (atomistic) charge–storing phase within the (architectural) structure of practical electrodes.

  6. Nanoscale Zirconium-(oxyhydr)oxide in Contaminated Sediments From Hanford, WA - A New Host for Uranium

    NASA Astrophysics Data System (ADS)

    Stubbs, J. E.; Elbert, D. C.; Veblen, L. A.; Zachara, J. M.; Davis, J. A.; Veblen, D. R.

    2008-12-01

    Zirconium-, uranium-, and copper-bearing wastes have leached from former disposal ponds into vadose zone sediments in the 300 Area at the Department of Energy's Hanford Site. Zirconium is enriched in the shallow portion of the vadose zone, and we have discovered an amorphous Zr-(oxyhydr)oxide that contains 16% of the total uranium budget (84.24 ppm) in one of the shallow samples. We have characterized the oxide using electron microprobe analysis (EMPA), a focused ion beam (FIB) instrument, and transmission electron microscopy (TEM). It occurs in fine-grained coatings found on lithic and mineral fragments in these sediments. The oxide is intimately intergrown with the phyllosilicates and other minerals of the coatings, and in places can be seen coating individual, nano-sized phyllosilicate mineral grains. Electron energy-loss spectroscopy (EELS) shows that the Zr-(oxyhydr)oxide has a P:Zr atomic ratio around 0.2, suggesting it is either intergrown with minor amounts of a Zr-phosphate or has adsorbed a significant amount of phosphate. This material has adsorbed or incorporated a substantial amount of uranium. Thus, understanding its nature is critical to predicting the long-term fate of U in the Hanford vadose zone. While the low-temperature uptake of U by Zr-(oxhydr)oxides and phosphates has been studied for several decades in laboratory settings, to our knowledge ours is the first report of such uptake in the field.

  7. Nanoscale growth and patterning of inorganic oxides using DNA nanostructure templates.

    PubMed

    Surwade, Sumedh P; Zhou, Feng; Wei, Bryan; Sun, Wei; Powell, Anna; O'Donnell, Christina; Yin, Peng; Liu, Haitao

    2013-05-08

    We describe a method to form custom-shaped inorganic oxide nanostructures by using DNA nanostructure templates. We show that a DNA nanostructure can modulate the rate of chemical vapor deposition of SiO2 and TiO2 with nanometer-scale spatial resolution. The resulting oxide nanostructure inherits its shape from the DNA template. This method generates both positive-tone and negative-tone patterns on a wide range of substrates and is compatible with conventional silicon nanofabrication processes. Our result opens the door to the use of DNA nanostructures as general-purpose templates for high-resolution nanofabrication.

  8. The boron oxide{endash}boric acid system: Nanoscale mechanical and wear properties

    SciTech Connect

    Ma, X.; Unertl, W.N.; Erdemir, A.

    1999-08-01

    The film that forms spontaneously when boron oxide (B{sub 2}O{sub 3}) is exposed to humid air is a solid lubricant. This film is usually assumed to be boric acid (H{sub 3}BO{sub 3}), the stable bulk phase. We describe the nanometer-scale surface morphology, mechanical properties, and tribological properties of these films and compare them with crystals precipitated from saturated solutions of boric acid. Scanning force microscopy (SFM) and low-load indentation were the primary experimental tools. Mechanical properties and their variation with depth are reported. In all cases, the surfaces were covered with a layer that has different mechanical properties than the underlying bulk. The films formed on boron oxide showed no evidence of crystalline structure. A thin surface layer was rapidly removed, followed by slower wear of the underlying film. The thickness of this initial layer was sensitive to sample preparation conditions, including humidity. Friction on the worn surface was lower than on the as-formed surface in all cases. In contrast, the SFM tip was unable to cause any wear to the surface film on the precipitated crystals. Indentation pop-in features were common for precipitated crystals but did not occur on the films formed on boron oxide. The surface structures were more complex than assumed in models put forth previously to explain the mechanism of lubricity in the boron oxide{endash}boric acid{endash}water system. {copyright} {ital 1999 Materials Research Society.}

  9. Ultrasensitive DNA sequence detection using nanoscale ZnO sensor arrays

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Dorfman, Adam; Hahm, Jong-in

    2006-06-01

    We report that engineered nanoscale zinc oxide structures can be effectively used for the identification of the biothreat agent, Bacillus anthracis by successfully discriminating its DNA sequence from other genetically related species. We explore both covalent and non-covalent linking schemes in order to couple probe DNA strands to the zinc oxide nanostructures. Hybridization reactions are performed with various concentrations of target DNA strands whose sequence is unique to Bacillus anthracis. The use of zinc oxide nanomaterials greatly enhances the fluorescence signal collected after carrying out duplex formation reaction. Specifically, the covalent strategy allows detection of the target species at sample concentrations at a level as low as a few femtomolar as compared to the detection sensitivity in the tens of nanomolar range when using the non-covalent scheme. The presence of the underlying zinc oxide nanomaterials is critical in achieving increased fluorescence detection of hybridized DNA and, therefore, accomplishing rapid and extremely sensitive identification of the biothreat agent. We also demonstrate the easy integration potential of nanoscale zinc oxide into high density arrays by using various types of zinc oxide sensor prototypes in the DNA sequence detection. When combined with conventional automatic sample handling apparatus and computerized fluorescence detection equipment, our approach can greatly promote the use of zinc oxide nanomaterials as signal enhancing platforms for rapid, multiplexed, high-throughput, highly sensitive, DNA sensor arrays.

  10. Degradation of nano-scale cathodes: a new paradigm for selecting low-temperature solid oxide cell materials.

    PubMed

    Call, Ann V; Railsback, Justin G; Wang, Hongqian; Barnett, Scott A

    2016-05-11

    Oxygen electrodes have been able to meet area specific resistance targets for solid oxide cell operating temperatures as low as ∼500 °C, but their stability over expected device operation times of up to 50 000 h is unknown. Achieving good performance at such temperatures requires mixed ionically and electronically-conducting electrodes with nano-scale structure that makes the electrode susceptible to particle coarsening and, as a result, electrode resistance degradation. Here we describe accelerated life testing of nanostructured Sm0.5Sr0.5CoO3-Ce0.9Gd0.1O2 electrodes combining impedance spectroscopy and microstructural evaluation. Measured electrochemical performance degradation is accurately fitted using a coarsening model that is then used to predict cell operating conditions where required performance and long-term stability are both achieved. A new electrode material figure of merit based on both performance and stability metrics is proposed. An implication is that cation diffusion, which determines the coarsening rate, must be considered along with oxygen transport kinetics in the selection of optimal electrode materials.

  11. Minimizing Oxidation and Stable Nanoscale Dispersion Improves the Biocompatibility of Graphene in the Lung

    PubMed Central

    Duch, Matthew C.; Scott Budinger, G. R.; Liang, Yu Teng; Soberanes, Saul; Urich, Daniela; Chiarella, Sergio E.; Campochiaro, Laura A; Gonzalez, Angel; Chandel, Navdeep S.; Hersam, Mark C.; Mutlu, Gökhan M.

    2011-01-01

    To facilitate the proposed use of graphene and its derivative graphene oxide (GO) in widespread applications, we explored strategies that improve the biocompatibility of graphene nanomaterials in the lung. In particular, solutions of aggregated graphene, Pluronic dispersed graphene, and GO were administered directly into the lungs of mice. The introduction of GO resulted in severe and persistent lung injury. Furthermore, in cells, GO increased the rate of mitochondrial respiration and the generation of reactive oxygen species, activating inflammatory and apoptotic pathways. In contrast, this toxicity was significantly reduced in the case of pristine graphene after liquid phase exfoliation, and was further minimized when the unoxidized graphene was well-dispersed with the block copolymer Pluronic. Our results demonstrate that the covalent oxidation of graphene is a major contributor to its pulmonary toxicity and suggest that dispersion of pristine graphene in Pluronic provides a pathway for the safe handling and potential biomedical application of two-dimensional carbon nanomaterials. PMID:22023654

  12. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    PubMed Central

    Vander Wal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems. PMID:22408484

  13. Spatially coupled catalytic ignition of CO oxidation on Pt: mesoscopic versus nano-scale

    PubMed Central

    Spiel, C.; Vogel, D.; Schlögl, R.; Rupprechter, G.; Suchorski, Y.

    2015-01-01

    Spatial coupling during catalytic ignition of CO oxidation on μm-sized Pt(hkl) domains of a polycrystalline Pt foil has been studied in situ by PEEM (photoemission electron microscopy) in the 10−5 mbar pressure range. The same reaction has been examined under similar conditions by FIM (field ion microscopy) on nm-sized Pt(hkl) facets of a Pt nanotip. Proper orthogonal decomposition (POD) of the digitized FIM images has been employed to analyze spatiotemporal dynamics of catalytic ignition. The results show the essential role of the sample size and of the morphology of the domain (facet) boundary in the spatial coupling in CO oxidation. PMID:26021411

  14. Enhancing oxide ion incorporation kinetics by nanoscale Yttria-doped ceria interlayers.

    PubMed

    Fan, Zeng; Prinz, Fritz B

    2011-06-08

    Interlayering 17.5 nm of Yttria-doped ceria (YDC) thin films between bulk yttria-stabilized-zirconia electrolyte and a porous Pt cathode enhanced the performance of low-temperature solid oxide fuel cells. The added YDC interlayer (14.11% doped Y(2)O(3)) was fabricated by atomic layer deposition and reduced the cathode/electrolyte interfacial resistances while increasing the exchange current density j(0) by a factor of 4 at operating temperatures between 300-500 °C. Tafel plots and the fitted impedance data suggest that the charge transfer coefficient α of interlayered SOFCs was 1.25 times higher, and the electrode/interfacial activation energy was reduced from 0.85 to 0.76 eV.

  15. Reduction-Triggered Self-Assembly of Nanoscale Molybdenum Oxide Molecular Clusters

    DOE PAGES

    Yin, Panchao; Wu, Bin; Li, Tao; ...

    2016-07-26

    A 2.9 nm molybdenum oxide cluster {Mo132} (Formula: [MoVI72MoV60O372(CH3COO)30(H2O)72]42-) can be obtained by reducing ammonium molybdate with hydrazine sulfate in weakly acidic CH3COOH/CH3COO- buffers. This reaction has been monitored by time-resolved UV-Vis, 1H-NMR, small angle X-ray/neutron scattering, and X-ray absorption near edge structure spectroscopy. The growth of {Mo132} cluster shows a typical sigmoid curve, suggesting a multi-step assembly mechanism for this reaction. The reaction starts with a lag phase period when partial MoVI centers of molybdate precursors are reduced to form {MoV2(acetate)} structures under the coordination effect of the acetate groups. Once the concentration of {MoV2(acetate)} reaches a critical value,more » it triggers the assembly of MoV and MoVI species into {Mo132} clusters. Parameters such as the type and amount of reducing agent, the pH, the type of cation, and the type of organic ligand in the reaction buffer, have been studied for the roles they play in the formation of the target clusters.Understanding the formation mechanism of giant molecular clusters is essential for rational design and synthesis of cluster-based nanomaterials with required morphologies and functionalities. Here, typical synthetic reactions of a 2.9 nm spherical molybdenum oxide cluster, {Mo132} (formula: [MoVI72MoV60O372(CH3COO)30(H2O)72]42), with systematically varied reaction parameters have been fully explored to determine the morphologies and concentration of products, reduction of metal centers, and chemical environments of the organic ligands. The growth of these clusters shows a typical sigmoid curve, suggesting a general multistep self-assembly mechanism for the formation of giant molecular clusters. The reaction starts with a lag phase period when partial MoVI centers of molybdate precursors are reduced to form {MoV2(acetate)} structures under the coordination effect of the acetate groups. Once the concentration of {MoV2(acetate)} reaches a

  16. Breakdown into nanoscale of graphene oxide: Confined hot spot atomic reduction and fragmentation

    NASA Astrophysics Data System (ADS)

    Gonçalves, Gil; Vila, Mercedes; Bdikin, Igor; de Andrés, Alicia; Emami, Nazanin; Ferreira, Rute A. S.; Carlos, Luís D.; Grácio, José; Marques, Paula A. A. P.

    2014-10-01

    Nano-graphene oxide (nano-GO) is a new class of carbon based materials being proposed for biomedical applications due to its small size, intrinsic optical properties, large specific surface area, and easy to functionalize. To fully exploit nano-GO properties, a reproducible method for its production is of utmost importance. Herein we report, the study of the sequential fracture of GO sheets onto nano-GO with controllable lateral width, by a simple, and reproducible method based on a mechanism that we describe as a confined hot spot atomic fragmentation/reduction of GO promoted by ultrasonication. The chemical and structural changes on GO structure during the breakage were monitored by XPS, FTIR, Raman and HRTEM. We found that GO sheets starts breaking from the defects region and in a second phase through the disruption of carbon bonds while still maintaining crystalline carbon domains. The breaking of GO is accompanied by its own reduction, essentially by the elimination of carboxylic and carbonyl functional groups. Photoluminescence and photothermal studies using this nano-GO are also presented highlighting the potential of this nanomaterial as a unique imaging/therapy platform.

  17. Experimental study of combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol)

    PubMed Central

    2011-01-01

    An experimental investigation of the combustion behavior of nano-aluminum (n-Al) and nano-aluminum oxide (n-Al2O3) particles stably suspended in biofuel (ethanol) as a secondary energy carrier was conducted. The heat of combustion (HoC) was studied using a modified static bomb calorimeter system. Combustion element composition and surface morphology were evaluated using a SEM/EDS system. N-Al and n-Al2O3 particles of 50- and 36-nm diameters, respectively, were utilized in this investigation. Combustion experiments were performed with volume fractions of 1, 3, 5, 7, and 10% for n-Al, and 0.5, 1, 3, and 5% for n-Al2O3. The results indicate that the amount of heat released from ethanol combustion increases almost linearly with n-Al concentration. N-Al volume fractions of 1 and 3% did not show enhancement in the average volumetric HoC, but higher volume fractions of 5, 7, and 10% increased the volumetric HoC by 5.82, 8.65, and 15.31%, respectively. N-Al2O3 and heavily passivated n-Al additives did not participate in combustion reactively, and there was no contribution from Al2O3 to the HoC in the tests. A combustion model that utilized Chemical Equilibrium with Applications was conducted as well and was shown to be in good agreement with the experimental results. PMID:21711760

  18. Breakdown into nanoscale of graphene oxide: Confined hot spot atomic reduction and fragmentation

    PubMed Central

    Gonçalves, Gil; Vila, Mercedes; Bdikin, Igor; de Andrés, Alicia; Emami, Nazanin; Ferreira, Rute A. S.; Carlos, Luís D.; Grácio, José; Marques, Paula A. A. P.

    2014-01-01

    Nano-graphene oxide (nano-GO) is a new class of carbon based materials being proposed for biomedical applications due to its small size, intrinsic optical properties, large specific surface area, and easy to functionalize. To fully exploit nano-GO properties, a reproducible method for its production is of utmost importance. Herein we report, the study of the sequential fracture of GO sheets onto nano-GO with controllable lateral width, by a simple, and reproducible method based on a mechanism that we describe as a confined hot spot atomic fragmentation/reduction of GO promoted by ultrasonication. The chemical and structural changes on GO structure during the breakage were monitored by XPS, FTIR, Raman and HRTEM. We found that GO sheets starts breaking from the defects region and in a second phase through the disruption of carbon bonds while still maintaining crystalline carbon domains. The breaking of GO is accompanied by its own reduction, essentially by the elimination of carboxylic and carbonyl functional groups. Photoluminescence and photothermal studies using this nano-GO are also presented highlighting the potential of this nanomaterial as a unique imaging/therapy platform. PMID:25339424

  19. Reduction-Triggered Self-Assembly of Nanoscale Molybdenum Oxide Molecular Clusters

    SciTech Connect

    Yin, Panchao; Wu, Bin; Li, Tao; Bonnesen, Peter V.; Hong, Kunlun; Seifert, Soenke; Porcar, Lionel; Do, Changwoo; Keum, Jong Kahk

    2016-07-26

    A 2.9 nm molybdenum oxide cluster {Mo132} (Formula: [MoVI72MoV60O372(CH3COO)30(H2O)72]42-) can be obtained by reducing ammonium molybdate with hydrazine sulfate in weakly acidic CH3COOH/CH3COO- buffers. This reaction has been monitored by time-resolved UV-Vis, 1H-NMR, small angle X-ray/neutron scattering, and X-ray absorption near edge structure spectroscopy. The growth of {Mo132} cluster shows a typical sigmoid curve, suggesting a multi-step assembly mechanism for this reaction. The reaction starts with a lag phase period when partial MoVI centers of molybdate precursors are reduced to form {MoV2(acetate)} structures under the coordination effect of the acetate groups. Once the concentration of {MoV2(acetate)} reaches a critical value, it triggers the assembly of MoV and MoVI species into {Mo132} clusters. Parameters such as the type and amount of reducing agent, the pH, the type of cation, and the type of organic ligand in the reaction buffer, have been studied for the roles they play in the formation of the target clusters.Understanding the formation mechanism of giant molecular clusters is essential for rational design and synthesis of cluster-based nanomaterials with required morphologies and functionalities. Here, typical synthetic reactions of a 2.9 nm spherical molybdenum oxide cluster, {Mo132} (formula: [MoVI72MoV60O372(CH3COO)30(H2O)72]42), with systematically varied reaction parameters have been fully explored to determine the morphologies and concentration of products, reduction of metal centers, and chemical environments of the organic ligands. The growth of these clusters shows a typical sigmoid curve, suggesting a general

  20. Oxidation mechanism of T91 steel in liquid lead-bismuth eutectic: with consideration of internal oxidation

    PubMed Central

    Ye, Zhongfei; Wang, Pei; Dong, Hong; Li, Dianzhong; Zhang, Yutuo; Li, Yiyi

    2016-01-01

    Clarification of the microscopic events that occur during oxidation is of great importance for understanding and consequently controlling the oxidation process. In this study the oxidation product formed on T91 ferritic/martensitic steel in oxygen saturated liquid lead-bismuth eutectic (LBE) at 823 K was characterized at the nanoscale using focused-ion beam and transmission electron microscope. An internal oxidation zone (IOZ) under the duplex oxide scale has been confirmed and characterized systematically. Through the microscopic characterization of the IOZ and the inner oxide layer, the micron-scale and nano-scale diffusion of Cr during the oxidation in LBE has been determined for the first time. The micron-scale diffusion of Cr ensures the continuous advancement of IOZ and inner oxide layer, and nano-scale diffusion of Cr gives rise to the typical appearance of the IOZ. Finally, a refined oxidation mechanism including the internal oxidation and the transformation of IOZ to inner oxide layer is proposed based on the discussion. The proposed oxidation mechanism succeeds in bridging the gap between the existing models and experimental observations. PMID:27734928

  1. Oxidation mechanism of T91 steel in liquid lead-bismuth eutectic: with consideration of internal oxidation

    NASA Astrophysics Data System (ADS)

    Ye, Zhongfei; Wang, Pei; Dong, Hong; Li, Dianzhong; Zhang, Yutuo; Li, Yiyi

    2016-10-01

    Clarification of the microscopic events that occur during oxidation is of great importance for understanding and consequently controlling the oxidation process. In this study the oxidation product formed on T91 ferritic/martensitic steel in oxygen saturated liquid lead-bismuth eutectic (LBE) at 823 K was characterized at the nanoscale using focused-ion beam and transmission electron microscope. An internal oxidation zone (IOZ) under the duplex oxide scale has been confirmed and characterized systematically. Through the microscopic characterization of the IOZ and the inner oxide layer, the micron-scale and nano-scale diffusion of Cr during the oxidation in LBE has been determined for the first time. The micron-scale diffusion of Cr ensures the continuous advancement of IOZ and inner oxide layer, and nano-scale diffusion of Cr gives rise to the typical appearance of the IOZ. Finally, a refined oxidation mechanism including the internal oxidation and the transformation of IOZ to inner oxide layer is proposed based on the discussion. The proposed oxidation mechanism succeeds in bridging the gap between the existing models and experimental observations.

  2. [Carotid duplex ultrasonography for neurosurgeons].

    PubMed

    Sadahiro, Hirokazu; Ishihara, Hideyuki; Oka, Fumiaki; Suzuki, Michiyasu

    2011-12-01

    Carotid duplex ultrasonography (CDU) is one of the most well-known imaging methods for arteriosclerosis and ischemic stroke. For neurosurgeons, it is very important for the details of carotid plaque to be thoroughly investigated by CDU. Symptomatic carotid plaque is very fragile and easily changes morphologically, and so requires frequent CDU examination. Furthermore, after carotid endarterectomy (CEA) and carotid artery stenting (CAS), restenosis is evaluated with CDU. CDU facilitates not only morphological imaging in the B mode, but also allows a flow study with color Doppler and duplex imaging. So, CDU can help assess the presence of proximal and intracranial artery lesions in spite of only having a cervical view, and the patency of the extracranial artery to intracranial artery bypass is revealed with CDU, which shows a rich velocity and low pulsatility index (PI) in duplex imaging. For the examiner, it is necessary to ponder on what duplex imaging means in examinations, and to summarize all imaging finding.

  3. Structural destabilization of DNA duplexes containing single-base lesions investigated by nanopore measurements.

    PubMed

    Jin, Qian; Fleming, Aaron M; Ding, Yun; Burrows, Cynthia J; White, Henry S

    2013-11-12

    The influence of DNA duplex structural destabilization introduced by a single base-pair modification was investigated by nanopore measurements. A series of 11 modified base pairs were introduced into the context of an otherwise complementary DNA duplex formed by a 17-mer and a 65-mer such that the overhanging ends comprised poly(dT)23 tails, generating a representative set of duplexes that display a range of unzipping mechanistic behaviors and kinetic stabilities. The guanine oxidation products 8-oxo-7,8-dihydroguanine (OG), guanidinohydantoin (Gh), and spiroiminodihydantoin (Sp) were paired with either cytosine (C), adenine (A), or 2,6-diaminopurine (D) to form modified base pairs. The mechanism and kinetic rate constants of duplex dissociation were determined by threading either the 3' or 5' overhangs into an α-hemolysin (α-HL) channel under an electrical field and measuring the distributions of unzipping times at constant force. In order of decreasing thermodynamic stability (as measured by duplex melting points), the rate of duplex dissociation increases, and the mechanism evolves from a first-order reaction to two sequential first-order reactions. These measurements allow us to rank the kinetic stability of lesion-containing duplexes relative to the canonical G:C base pair in which the OG:C, Gh:C, and Sp:C base pairs are, respectively, 3-200 times less stable. The rate constants also depend on whether unzipping was initiated from the 3' versus 5' side of the duplex. The kinetic stability of these duplexes was interpreted in terms of the structural destabilization introduced by the single base-pair modification. Specifically, a large distortion of the duplex backbone introduced by the presence of the highly oxidized guanine products Sp and Gh leads to a rapid two-step unzipping. The number of hydrogen bonds in the modified base pair plays a lesser role in determining the kinetics of duplex dissociation.

  4. Eddy Current Assessment of Duplex Metallic Coatings

    NASA Astrophysics Data System (ADS)

    Krzywosz, K. J.

    2004-02-01

    EPRI is involved in a multi-year program with the Department of Energy to test, evaluate, and develop a field-deployable eddy current NDE system for life assessment of blade coatings for advanced gas turbines. The coatings evaluated from these advanced GE engines include CoCrAlY (GT 29) and NiCoCrAlY (GT 33) bond coats followed by top aluminide overlay coatings. These duplex metallic coatings commonly referred to as GT 29+ and GT 33+ coatings, respectively. In general, during cycling and continuous operation at higher operating temperature, coatings fail due to spallation of protective oxide layers, leading to consumption of protective coating by oxidation and to eventual failure of blades. To extend service life of these critical rotating components, an inspection-based condition assessment program has been initiated to help establish more optimum inspection intervals that are not dependent on time-in-service maintenance approach. This paper summarizes the latest results obtained to date using the state-of-the-art frequency-scanning eddy current tester with a built-in three-layer inversion analysis algorithm. Significant progress has been made in assessing and discriminating the duplex metallic coatings as normal, degraded, and/or cracked. In addition, quantitative assessment was conducted by estimating various coating and substrate conductivity values.

  5. Tin doped indium oxide anodes with artificially controlled nano-scale roughness using segregated Ag nanoparticles for organic solar cells

    PubMed Central

    Kim, Hyo-Joong; Ko, Eun-Hye; Noh, Yong-Jin; Na, Seok-In; Kim, Han-Ki

    2016-01-01

    Nano-scale surface roughness in transparent ITO films was artificially formed by sputtering a mixed Ag and ITO layer and wet etching of segregated Ag nanoparticles from the surface of the ITO film. Effective removal of self-segregated Ag particles from the grain boundaries and surface of the crystalline ITO film led to a change in only the nano-scale surface morphology of ITO film without changes in the sheet resistance and optical transmittance. A nano-scale rough surface of the ITO film led to an increase in contact area between the hole transport layer and the ITO anode, and eventually increased the hole extraction efficiency in the organic solar cells (OSCs). The heterojunction OSCs fabricated on the ITO anode with a nano-scale surface roughness exhibited a higher power conversion efficiency of 3.320%, than that (2.938%) of OSCs made with the reference ITO/glass. The results here introduce a new method to improve the performance of OSCs by simply modifying the surface morphology of the ITO anodes. PMID:27640723

  6. Tin doped indium oxide anodes with artificially controlled nano-scale roughness using segregated Ag nanoparticles for organic solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Joong; Ko, Eun-Hye; Noh, Yong-Jin; Na, Seok-In; Kim, Han-Ki

    2016-09-01

    Nano-scale surface roughness in transparent ITO films was artificially formed by sputtering a mixed Ag and ITO layer and wet etching of segregated Ag nanoparticles from the surface of the ITO film. Effective removal of self-segregated Ag particles from the grain boundaries and surface of the crystalline ITO film led to a change in only the nano-scale surface morphology of ITO film without changes in the sheet resistance and optical transmittance. A nano-scale rough surface of the ITO film led to an increase in contact area between the hole transport layer and the ITO anode, and eventually increased the hole extraction efficiency in the organic solar cells (OSCs). The heterojunction OSCs fabricated on the ITO anode with a nano-scale surface roughness exhibited a higher power conversion efficiency of 3.320%, than that (2.938%) of OSCs made with the reference ITO/glass. The results here introduce a new method to improve the performance of OSCs by simply modifying the surface morphology of the ITO anodes.

  7. Tin doped indium oxide anodes with artificially controlled nano-scale roughness using segregated Ag nanoparticles for organic solar cells.

    PubMed

    Kim, Hyo-Joong; Ko, Eun-Hye; Noh, Yong-Jin; Na, Seok-In; Kim, Han-Ki

    2016-09-19

    Nano-scale surface roughness in transparent ITO films was artificially formed by sputtering a mixed Ag and ITO layer and wet etching of segregated Ag nanoparticles from the surface of the ITO film. Effective removal of self-segregated Ag particles from the grain boundaries and surface of the crystalline ITO film led to a change in only the nano-scale surface morphology of ITO film without changes in the sheet resistance and optical transmittance. A nano-scale rough surface of the ITO film led to an increase in contact area between the hole transport layer and the ITO anode, and eventually increased the hole extraction efficiency in the organic solar cells (OSCs). The heterojunction OSCs fabricated on the ITO anode with a nano-scale surface roughness exhibited a higher power conversion efficiency of 3.320%, than that (2.938%) of OSCs made with the reference ITO/glass. The results here introduce a new method to improve the performance of OSCs by simply modifying the surface morphology of the ITO anodes.

  8. Duplex aluminized coatings

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Grisaffe, S. J. (Inventor)

    1975-01-01

    The surface of a metallic base system is initially coated with a metallic alloy layer that is ductile and oxidation resistant. An aluminide coating is then applied to the metallic alloy layer. The chemistry of the metallic alloy layer is such that the oxidation resistance of the subsequently aluminized outermost layer is not seriously degraded.

  9. Catalytic Conversion of Short-Chain Alcohols on Atomically Dispersed Au and Pd Supported on Nanoscale Metal Oxides

    NASA Astrophysics Data System (ADS)

    Wang, Chongyang

    With the development of technologies for cellulosic biomass conversion to fuels and chemicals, bio-alcohols are among the main alternative feedstocks to fossil fuels. The research pursued in my thesis was the investigation of gold and palladium as catalysts for the application of short aliphatic alcohols to hydrogen generation and value-added chemicals production. Specifically, selective methanol steam reforming and non-oxidative ethanol dehydrogenation to hydrogen and acetaldehyde were investigated in this thesis work. A major aim of the thesis was to develop atomically efficient catalysts with tuned surface chemistry for the desired reactions, using suitable synthesis methods. Methanol steam reforming (SRM) for hydrogen production has recently been investigated on gold catalysts to overcome the drawbacks of copper catalysts (deactivation, pyrophoricity). Previous work at Tufts University has shown that both CeO2 and ZnO are suitable supports for gold. In this thesis, nanoscale composite oxides ZnZrOx were prepared by a carbon hard-template method, which resulted in homogeneous distribution of Zn species in the matrix of ZrO2. Tunable surface chemistry of ZnZrO x was demonstrated by varying the Zn/Zr ratio to suppress the strong Lewis acidity of ZrO2, which leads to undesired production of CO through methanol decomposition. With atomic dispersion of gold, Au/ZnZrO x catalyzes the SRM reaction exclusively via the methanol self-coupling pathway up to 375°C. The activity of Au/ZnZrOx catalysts was compared to Au/TiO2, which is another catalyst system demonstrating atomic dispersion of gold. Similarity in the apparent activation energy of SRM on all the supported gold catalysts studied in this thesis and in the literature further confirms the same single-site Au-Ox-MO centers as active sites for SRM with indirect effects of the supports exploited. With this fundamental understanding of gold-catalyzed C1 alcohol reforming, the Au/ZnZrOx catalyst was evaluated for the

  10. Water-evaporation reduction by duplex films: application to the human tear film.

    PubMed

    Cerretani, Colin F; Ho, Nghia H; Radke, C J

    2013-09-01

    Water-evaporation reduction by duplex-oil films is especially important to understand the physiology of the human tear film. Secreted lipids, called meibum, form a duplex film that coats the aqueous tear film and purportedly reduces tear evaporation. Lipid-layer deficiency is correlated with the occurrence of dry-eye disease; however, in-vitro experiments fail to show water-evaporation reduction by tear-lipid duplex films. We review the available literature on water-evaporation reduction by duplex-oil films and outline the theoretical underpinnings of spreading and evaporation kinetics that govern behavior of these systems. A dissolution-diffusion model unifies the data reported in the literature and identifies dewetting of duplex films into lenses as a key challenge to obtaining significant evaporation reduction. We develop an improved apparatus for measuring evaporation reduction by duplex-oil films including simultaneous assessment of film coverage, stability, and temperature, all under controlled external mass transfer. New data reported in this study fit into the larger body of work conducted on water-evaporation reduction by duplex-oil films. Duplex-oil films of oxidized mineral oil/mucin (MOx/BSM), human meibum (HM), and bovine meibum (BM) reduce water evaporation by a dissolution-diffusion mechanism, as confirmed by agreement between measurement and theory. The water permeability of oxidized-mineral-oil duplex films agrees with those reported in the literature, after correction for the presence of mucin. We find that duplex-oil films of bovine and human meibum at physiologic temperature reduce water evaporation only 6-8% for a 100-nm film thickness pertinent to the human tear film. Comparison to in-vivo human tear-evaporation measurements is inconclusive because evaporation from a clean-water surface is not measured and because the mass-transfer resistance is not characterized.

  11. Duplex evaluation of venous insufficiency.

    PubMed

    Labropoulos, Nicos; Leon, Luis R

    2005-03-01

    Duplex ultrasound is the most useful examination for the evaluation of venous valvular incompetence. Multi-frequency 4 to 7-MHz linear array transducers are typically used for this assessment of superficial and deep reflux. The examination is done with the patient standing and manual compression maneuvers are used to initiate reflux. Automatic rapid inflation and deflation cuffs may be used when a standard stimulus is needed. Cutoff values for reflux have been defined. Perforating veins must be identified and flow direction during compression recorded. When ulcers are present, duplex ultrasound is used to investigate veins of the ulcerated legs. Venous outflow obstruction is also studied by duplex ultrasound and chronic changes in deep and superficial veins following deep venous thrombosis noted. The main drawback in evaluation of chronic obstruction is inability to quantify hemodynamic significance. Anatomic variations in superficial and deep veins are common and their identification is necessary. Reporting results of duplex ultrasound studies must take into consideration the proper classification of venous disease as well as the new anatomic terms that have been accepted.

  12. Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive.

    PubMed

    Cassee, Flemming R; van Balen, Erna C; Singh, Charanjeet; Green, David; Muijser, Hans; Weinstein, Jason; Dreher, Kevin

    2011-03-01

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coatings, electronics, biomedical, energy and fuel additives. Many applications of engineered CeO(2) nanoparticles are dispersive in nature increasing the risk of exposure and interactions with a variety of environmental media with unknown health, safety and environmental implications. As evident from a risk assessment perspective, the health effects of CeO(2) nanoparticles are not only dependent on their intrinsic toxicity but also on the level of exposure to these novel materials. Although this may seem logical, numerous studies have assessed the health effects of nanoparticles without this simple but critical risk assessment perspective. This review extends previous exposure and toxicological assessments for CeO(2) particles by summarizing the current state of micro and nano-scale cerium exposure and health risks derived from epidemiology, air quality monitoring, fuel combustion and toxicological studies to serve as a contemporary comprehensive and integrated toxicological assessment. Based on the new information presented in this review there is an ongoing exposure to a large population to new diesel emissions generated using fuel additives containing CeO2 nanoparticles for which the environmental (air quality and climate change) and public health impacts of this new technology are not known. Therefore, there is an absolute critical need for integrated exposure and toxicological studies in order to accurately assess the environmental, ecological and health implications of nanotechnology enabled diesel fuel additives with existing as well as new engine designs and fuel formulations.

  13. Oxidation and flow-injection amperometric determination of 5-hydroxytryptophan at an electrode modified by electrochemically assisted deposition of a sol-gel film with templated nanoscale pores

    PubMed Central

    Ranganathan, David; Zamponi, Silvia; Berrettoni, Mario; Mehdi, B. Layla; Cox, James A.

    2010-01-01

    The oxidation of 5-hydroxytryptophan (5-HTPP) yielded a passivating polymeric film at an indium tin oxide (ITO) electrode. Coating ITO with a nanoscale sol-gel film with a mesoporous structure was shown to change the pathway of the chemical reaction coupled to the electron transfer. The sol-gel film was deposited by an electrochemically assisted process, and the mesoporosity was imparted by including generation-4 poly(amidoamine) dendrimer in the precursor solution. The dendrimer was removed subsequently with an atmospheric oxygen plasma. This electrode remained active during cyclic voltammetry and controlled potential electrolysis of 5-HTPP, which was attributed to dimer, rather than polymer, formation from the oxidation product. Mass spectrometry confirmed this hypothesis. The anodic current was limited by the electron-transfer kinetics. Modification of the sol-gel film by inclusion of cobalt hexacyanoferrate, which catalyzes the oxidation, resulted in a diffusion-limited current. Determination of 5-HTPP by flow-injection amperometry had a detection limit of 17 nM. PMID:20801311

  14. Cavitation erosion of duplex and super duplex stainless steels

    SciTech Connect

    Kwok, C.T.; Man, H.C.; Cheng, F.T.

    1998-10-05

    Owing to their excellent corrosion resistance, stainless steels are widely used both in the marine, urban water, chemical and food industries. In addition to the corrosive environment, high fluid flow speeds are always encountered for components used in these industries. The cavitation characteristics of S30400 and S31600 austenitic stainless steels and duplex stainless steels were studied in detail by a number of authors. It was generally agreed that S30400 has higher cavitation erosion resistance than that of S31600 due to higher tendency of strain induced martensitic transformation under high impulse of stress. A considerable number of results on stress corrosion cracking characteristics of SDSS and duplex stainless steels have been published but data concerning their cavitation erosion property are extremely rare.

  15. Solar hydrogen generation by nanoscale p-n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide.

    PubMed

    Meng, Fanke; Li, Jiangtian; Cushing, Scott K; Zhi, Mingjia; Wu, Nianqiang

    2013-07-17

    Molybdenum disulfide (MoS2) is a promising candidate for solar hydrogen generation but it alone has negligible photocatalytic activity. In this work, 5-20 nm sized p-type MoS2 nanoplatelets are deposited on the n-type nitrogen-doped reduced graphene oxide (n-rGO) nanosheets to form multiple nanoscale p-n junctions in each rGO nanosheet. The p-MoS2/n-rGO heterostructure shows significant photocatalytic activity toward the hydrogen evolution reaction (HER) in the wavelength range from the ultraviolet light through the near-infrared light. The photoelectrochemical measurement shows that the p-MoS2/n-rGO junction greatly enhances the charge generation and suppresses the charge recombination, which is responsible for enhancement of solar hydrogen generation. The p-MoS2/n-rGO is an earth-abundant and environmentally benign photocatalyst for solar hydrogen generation.

  16. Nanoscale Wicking

    NASA Astrophysics Data System (ADS)

    Zhou, Jijie; Sansom, Elijah; Gharib, Mory; Noca, Flavio

    2003-11-01

    A wick is a bundle of fibers that by capillary attraction draws up to be burned a steady supply of the oil in lamps. In textile research, wicking is the process by which liquids are transported across or along fibers by capillary action (of relevance to perspiration). A similar phenomenon was recently discovered in our lab with mats of nanoscale fibers. A droplet containing a surfactant solution was placed on top of a well-aligned mat of carbon nanotubes: wicking was then observed as a film of liquid propagating within the nanocarpet, such as a stain or drop absorbed into a textile fabric. The nanoscale wicking process in carbon nano-arrays offers a simple and enabling technology for the processing (transport, mixing, filtering) of picoliters of fluids without any need for confinement (nanochannel) or bulky driving pressure apparatus. In this work, nanoscale wicking properties are quantified as a function of surfactant activity and carbon nanoarray geometry. The biomolecular sieving capability of the nanotube arrays is also put to test by the addition of biomolecules, while using the wicking process as the fluid driving force.

  17. Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions.

    PubMed

    Li, Jie; Chen, Changlun; Zhang, Rui; Wang, Xiangke

    2015-06-01

    Nanoscale zero-valent iron particles supported on reduced graphene oxides (NZVI/rGOs) from spent graphene oxide (GO)-bound iron ions were developed by using a hydrogen/argon plasma reduction method to improve the reactivity and stability of NZVI. The NZVI/rGOs exhibited excellent water treatment performance with excellent removal capacities of 187.16 and 396.37 mg g(-1) for chromium and lead, respectively. Moreover, the NZVI/rGOs could be regenerated by plasma treatment and maintained high removal ability after four cycles. X-ray photoelectron spectroscopy analysis results implied that the removal mechanisms could be attributed to adsorption/precipitation, reduction, or both. Such multiple removal mechanisms by the NZVI/rGOs were attributed to the reduction ability of the NZVI particles and the role of dispersing and stabilizing abilities of the rGOs. The results indicated that the NZVI/rGOs prepared by a hydrogen/argon plasma reduction method might be an effective composite for heavy-metal-ion removal.

  18. Nanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detection

    DOE PAGES

    Sutter, E.; Tong, X.; Medina-Plaza, C.; ...

    2015-10-09

    The presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanoparticles comprising bimetallic Au–In cores and mixed Au–In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ, their modification with Au–In core–shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated withmore » the initial composition of the bimetallic nanoparticle cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au–In oxide shells available for the electrochemical reaction. While adding core–shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ, the activity is highest for particles with AuIn cores (i.e., a Au:In ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone–hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au–In oxide shells. As a result the LODs were in the range of 10–5 – 10–6 M and were lower than those obtained using bulk Au.« less

  19. Nanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detection

    SciTech Connect

    Sutter, E.; Tong, X.; Medina-Plaza, C.; Rodriguez-Mendez, M. L.; Sutter, P.

    2015-10-09

    The presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanoparticles comprising bimetallic Au–In cores and mixed Au–In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ, their modification with Au–In core–shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated with the initial composition of the bimetallic nanoparticle cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au–In oxide shells available for the electrochemical reaction. While adding core–shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ, the activity is highest for particles with AuIn cores (i.e., a Au:In ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone–hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au–In oxide shells. As a result the LODs were in the range of 10–5 – 10–6 M and were lower than those obtained using bulk Au.

  20. Performance enhancement of metal nanowire-based transparent electrodes by electrically driven nanoscale nucleation of metal oxides

    NASA Astrophysics Data System (ADS)

    Shiau, Yu-Jeng; Chiang, Kai-Ming; Lin, Hao-Wu

    2015-07-01

    Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (<50 °C), and thus low energy consumption, are required for ZnO nucleation. This made the use of substrates with very low operating temperatures, such as PET and PEN, feasible. The optimized AgNW transparent conductive electrodes (TCE) fabricated using this promising linking method exhibited a low sheet resistance (13 Ω sq-1), a high transmission (92% at 550 nm), a high figure of merit (FOM; up to σDC/σOp = 340) and can be applied to wide range of next-generation flexible optoelectronic devices.Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (<50 °C), and thus

  1. Nanoscale Proteomics

    SciTech Connect

    Shen, Yufeng; Tolic, Nikola; Masselon, Christophe D.; Pasa-Tolic, Liljiana; Camp, David G.; Anderson, Gordon A.; Smith, Richard D.; Lipton, Mary S.

    2004-02-01

    This paper describes efforts to develop a liquid chromatography (LC)/mass spectrometry (MS) technology for ultra-sensitive proteomics studies, i.e. nanoscale proteomics. The approach combines high-efficiency nano-scale LC with advanced MS, including high sensitivity and high resolution Fourier transform ion cyclotron resonance (FTICR) MS, to perform both single-stage MS and tandem MS (MS/MS) proteomic analyses. The technology developed enables large-scale protein identification from nanogram size proteomic samples and characterization of more abundant proteins from sub-picogram size complex samples. Protein identification in such studies using MS is feasible from <75 zeptomole of a protein, and the average proteome measurement throughput is >200 proteins/h and ~3 h/sample. Higher throughput (>1000 proteins/h) and more sensitive detection limits can be obtained using a “accurate mass and time” tag approach developed at our laboratory. These capabilities lay the foundation for studies from single or limited numbers of cells.

  2. Nanoscale flexoelectricity.

    PubMed

    Nguyen, Thanh D; Mao, Sheng; Yeh, Yao-Wen; Purohit, Prashant K; McAlpine, Michael C

    2013-02-20

    Electromechanical effects are ubiquitous in biological and materials systems. Understanding the fundamentals of these coupling phenomena is critical to devising next-generation electromechanical transducers. Piezoelectricity has been studied in detail, in both the bulk and at mesoscopic scales. Recently, an increasing amount of attention has been paid to flexoelectricity: electrical polarization induced by a strain gradient. While piezoelectricity requires crystalline structures with no inversion symmetry, flexoelectricity does not carry this requirement, since the effect is caused by inhomogeneous strains. Flexoelectricity explains many interesting electromechanical behaviors in hard crystalline materials and underpins core mechanoelectric transduction phenomena in soft biomaterials. Most excitingly, flexoelectricity is a size-dependent effect which becomes more significant in nanoscale systems. With increasing interest in nanoscale and nano-bio hybrid materials, flexoelectricity will continue to gain prominence. This Review summarizes work in this area. First, methods to amplify or manipulate the flexoelectric effect to enhance material properties will be investigated, particularly at nanometer scales. Next, the nature and history of these effects in soft biomaterials will be explored. Finally, some theoretical interpretations for the effect will be presented. Overall, flexoelectricity represents an exciting phenomenon which is expected to become more considerable as materials continue to shrink.

  3. Additional base-pair formation in DNA duplexes by a double-headed nucleotide.

    PubMed

    Madsen, Charlotte S; Witzke, Sarah; Kumar, Pawan; Negi, Kushuma; Sharma, Pawan K; Petersen, Michael; Nielsen, Poul

    2012-06-11

    We have designed and synthesised a double-headed nucleotide that presents two nucleobases in the interior of a dsDNA duplex. This nucleotide recognises and forms Watson-Crick base pairs with two complementary adenosines in a Watson-Crick framework. Furthermore, with judicious positioning in complementary strands, the nucleotide recognises itself through the formation of a T:T base pair. Thus, two novel nucleic acid motifs can be defined by using our double-headed nucleotide. Both motifs were characterised by UV melting experiments, CD and NMR spectroscopy and molecular dynamics simulations. Both motifs leave the thermostability of the native dsDNA duplex largely unaltered. Molecular dynamics calculations showed that the double-headed nucleotides are accommodated in the dsDNA by entirely local perturbations and that the modified duplexes retain an overall B-type geometry with the dsDNA unwound by around 25 or 60°, respectively, in each of the modified motifs. Both motifs can be accommodated twice in a dsDNA duplex without incurring any loss of stability and extrapolating from this observation and the results of modelling, it is conceivable that both can be multiplied several times within a dsDNA duplex. These new motifs extend the DNA recognition repertoire and may form the basis for a complete series of double-headed nucleotides based on all 16 base combinations of the four natural nucleobases. In addition, both motifs can be used in the design of nanoscale DNA structures in which a specific duplex twist is required.

  4. Metallorganic routes to nanoscale iron and titanium oxide particles encapsulated in mesoporous alumina: formation, physical properties, and chemical reactivity.

    PubMed

    Schneider, J J; Czap, N; Hagen, J; Engstler, J; Ensling, J; Gütlich, P; Reinoehl, U; Bertagnolli, H; Luis, F; de Jongh, L J; Wark, M; Grubert, G; Hornyak, G L; Zanoni, R

    2000-12-01

    Iron and titanium oxide nanoparticles have been synthesized in parallel mesopores of alumina by a novel organometallic "chimie douce" approach that uses bis(toluene)iron(0) (1) and bis(toluene)titanium(0) (2) as precursors. These complexes are molecular sources of iron and titanium in a zerovalent atomic state. In the case of 1, core shell iron/iron oxide particles with a strong magnetic coupling between both components, as revealed by magnetic measurements, are formed. Mössbauer data reveal superparamagnetic particle behavior with a distinct particle size distribution that confirms the magnetic measurements. The dependence of the Mössbauer spectra on temperature and particle size is explained by the influence of superparamagnetic relaxation effects. The coexistence of a paramagnetic doublet and a magnetically split component in the spectra is further explained by a distribution in particle size. From Mössbauer parameters the oxide phase can be identified as low-crystallinity ferrihydrite oxide. In agreement with quantum size effects observed in UV-visible studies, TEM measurements determine the size of the particles in the range 5-8 nm. The particles are mainly arranged alongside the pore walls of the alumina template. TiO2 nanoparticles are formed by depositing 2 in mesoporous alumina template. This produces metallic Ti, which is subsequently oxidized to TiO2 (anatase) within the alumina pores. UV-visible studies show a strong quantum confinement effect for these particles. From UV-visible investigations the particle size is determined to be around 2 nm. XPS analysis of the iron- and titania- embedded nanoparticles reveal the presence of Fe2O3 and TiO2 according to experimental binding energies and the experimental line shapes. Ti4+ and Fe3+ are the only oxidation states of the particles which can be determined by this technique. Hydrogen reduction of the iron/iron-oxide nanoparticles at 500 degrees C under flowing H2/N2 produces a catalyst, which is active

  5. Thermodynamic Consequences of the Hyperoxidized Guanine Lesion Guanidinohydantoin in Duplex DNA

    PubMed Central

    Yennie, Craig J.; Delaney, Sarah

    2012-01-01

    Guanidinohydantoin (Gh) is a hyperoxidized DNA lesion produced by oxidation of 8-oxo-7,8-dihydroguanine (8-oxoG). Previous work has shown that Gh is potently mutagenic both in vitro and in vivo coding for G → T and G → C transversion mutations. In this work, analysis by circular dichroism shows that the Gh lesion does not significantly alter the global structure of a 15-mer duplex, and that the DNA remains in the B-form. However, we find that Gh causes a large decrease in the thermal stability, decreasing the duplex melting temperature by ~ 17 °C relative to an unmodified duplex control. Using optical melting analysis and differential scanning calorimetry the thermodynamic parameters describing duplex melting were also determined. We find that the Gh lesion causes a dramatic decrease in the enthalpic stability of the duplex. This enthalpic destabilization is somewhat tempered by entropic stabilization yet Gh results in an overall decrease in thermodynamic stability of the duplex relative to a control which lacks DNA damage, with a ΔΔG° of −7 kcal/mol. These results contribute to our understanding of the consequences of hyperoxidation of G and provide insight into how the thermal and thermodynamic destabilization caused by Gh may influence replication and/or repair of the lesion. PMID:22780843

  6. Nanoscale confinement effects on the relaxation dynamics in networks of diglycidyl ether of bisphenol-A and low-molecular-weight poly(ethylene oxide).

    PubMed

    Kalogeras, Ioannis M; Stathopoulos, Andreas; Vassilikou-Dova, Aglaia; Brostow, Witold

    2007-03-22

    Thermoplastic poly(ethylene oxide) (PEO) (Mw(PEO) approximately 4000) has been used to prepare thermosetting nanocomposites incorporating diglycidyl ether of bisphenol A (DGEBA) epoxy oligomer. Blends with various PEO/DGEBA weight ratios were cured using stoichiometric portions of 4,4'-diaminodiphenylmethane. The resulting semi-interpenetrating polymer networks were studied by several techniques. Nanoscale confinement effects, thermal (glass transition, melting and crystallization temperatures) and structural features of our materials are similar to those for networks with much higher Mw(PEO) and different curing agents; however, the polyether crystallization onset occurs in our case at a lower PEO concentration; shorter PEO chains organize themselves more easily into crystalline domains. Very low estimates of the k parameter of the Gordon-Taylor equation, used to fit the compositional dependences of the dielectric and calorimetric glass transition temperatures, and a strong plasticization of the motion of the glyceryl segments (beta-relaxation) in the epoxy resin were observed. These illustrate an intensified weakening in the strength of the intermolecular interactions in the modified networks, as compared to the high strength of the self-association of hydroxyls in the neat resin. The significance of hydrogen-bonding interactions between the components for obtaining structurally homogeneous thermoset-i-thermoplastic networks is discussed.

  7. Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer

    PubMed Central

    Li, Yong; Wang, Shijie; Su, Pei-Chen

    2016-01-01

    An 8 nm-thick gadolinium-doped ceria (GDC) layer was inserted as a cathodic interlayer between the nanoscale proton-conducting yttrium-doped barium zirconate (BZY) electrolyte and the porous platinum cathode of a micro-solid oxide fuel cell (μ-SOFC), which has effectively improved the cathode reaction kinetics and rendered high cell power density. The addition of the GDC interlayer significantly reduced the cathodic activation loss and increased the peak power density of the μ-SOFC by 33% at 400 °C. The peak power density reached 445 mW/cm2 at 425 °C, which is the highest among the reported μ-SOFCs using proton-conducting electrolytes. The impressive performance was attributed to the mixed protonic and oxygen ionic conducting properties of the nano-granular GDC, and also to the high densities of grain boundaries and lattice defects in GDC interlayer that favored the oxygen incorporation and transportation during the oxygen reduction reaction (ORR) and the water evolution reaction at cathode. PMID:26928192

  8. Coherent Fe-rich nano-scale perovskite oxide phase in epitaxial Sr2FeMoO6 films grown on cubic and scandate substrates

    NASA Astrophysics Data System (ADS)

    Deniz, Hakan; Preziosi, Daniele; Alexe, Marin; Hesse, Dietrich

    2017-01-01

    We report the growth of high-quality epitaxial Sr2FeMoO6 (SFMO) thin films on various unconventional oxide substrates, such as TbScO3, DyScO3, and Sr2Al0.3Ga0.7TaO6 (SAGT) as well as on the most commonly used one, SrTiO3 (STO), by pulsed laser deposition. The films were found to contain a foreign nano-scale phase coherently embedded inside the SFMO film matrix. Through energy dispersive X-ray spectroscopy and scanning transmission electron microscopy, we identified the foreign phase to be Sr2-xFe1+yMo1-yO6, an off-stoichiometric derivative of the SFMO compound with Fe rich content (y ≈ 0.6) and a fairly identical crystal structure to SFMO. The films on STO and SAGT exhibited very good magnetic properties with high Curie temperature values. All the samples have fairly good conducting behavior albeit the presence of a foreign phase. Despite the relatively large number of items of the foreign phase, there is no significant deterioration in the properties of the SFMO films. We discuss in detail how magneto-transport properties are affected by the foreign phase.

  9. Degradation pathway and kinetics of 1-alkyl-3-methylimidazolium bromides oxidation in an ultrasonic nanoscale zero-valent iron/hydrogen peroxide system.

    PubMed

    Zhou, Haimei; Shen, Yuanyuan; Lv, Ping; Wang, Jianji; Li, Pu

    2015-03-02

    Fenton and Fenton-like oxidation has been already demonstrated to be efficient for the degradation of imidazolium ionic liquids (ILs), but little is known for their degradation pathway and kinetics in such systems. In this work, degradation pathway and kinetics of 1-alkyl-3-methylimidazolium bromides ([Cnmim]Br, n=2, 4, 6, 8, and 10) were investigated in an ultrasound nanoscale zero-valent iron/hydrogen peroxide (US-nZVI/H2O2) system. For this purpose, 1-butyl-3-methylimidazolium bromide ([C4mim]Br) was used as a representative ionic liquid to optimize pH value, nZVI dose, and H2O2 concentration for the degradation reaction. Then, the degradation kinetics of [Cnmim]Br was investigated under optimal conditions, and their degradation intermediates were monitored by gas chromatography-mass spectrometry (GC-MS). It was shown that the degradation of [Cnmim]Br in such a heterogeneous Fenton-like system could be described by a second order kinetic model, and a number of intermediate products were detected. Based on these intermediate products, detailed pathways were proposed for the degradation of [Cnmim]Br in the ultrasound-assisted nZVI/H2O2 system. These findings may be useful for the better understanding of degradation mechanism of the imidazolium ILs in aqueous solutions.

  10. Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer.

    PubMed

    Li, Yong; Wang, Shijie; Su, Pei-Chen

    2016-02-29

    An 8 nm-thick gadolinium-doped ceria (GDC) layer was inserted as a cathodic interlayer between the nanoscale proton-conducting yttrium-doped barium zirconate (BZY) electrolyte and the porous platinum cathode of a micro-solid oxide fuel cell (μ-SOFC), which has effectively improved the cathode reaction kinetics and rendered high cell power density. The addition of the GDC interlayer significantly reduced the cathodic activation loss and increased the peak power density of the μ-SOFC by 33% at 400 °C. The peak power density reached 445 mW/cm(2) at 425 °C, which is the highest among the reported μ-SOFCs using proton-conducting electrolytes. The impressive performance was attributed to the mixed protonic and oxygen ionic conducting properties of the nano-granular GDC, and also to the high densities of grain boundaries and lattice defects in GDC interlayer that favored the oxygen incorporation and transportation during the oxygen reduction reaction (ORR) and the water evolution reaction at cathode.

  11. Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer

    NASA Astrophysics Data System (ADS)

    Li, Yong; Wang, Shijie; Su, Pei-Chen

    2016-02-01

    An 8 nm-thick gadolinium-doped ceria (GDC) layer was inserted as a cathodic interlayer between the nanoscale proton-conducting yttrium-doped barium zirconate (BZY) electrolyte and the porous platinum cathode of a micro-solid oxide fuel cell (μ-SOFC), which has effectively improved the cathode reaction kinetics and rendered high cell power density. The addition of the GDC interlayer significantly reduced the cathodic activation loss and increased the peak power density of the μ-SOFC by 33% at 400 °C. The peak power density reached 445 mW/cm2 at 425 °C, which is the highest among the reported μ-SOFCs using proton-conducting electrolytes. The impressive performance was attributed to the mixed protonic and oxygen ionic conducting properties of the nano-granular GDC, and also to the high densities of grain boundaries and lattice defects in GDC interlayer that favored the oxygen incorporation and transportation during the oxygen reduction reaction (ORR) and the water evolution reaction at cathode.

  12. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine an activation energy for the catalyst-assisted systems.

  13. Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect

    NASA Astrophysics Data System (ADS)

    Park, G. D.; Cho, J. S.; Kang, Y. C.

    2015-10-01

    Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the 150th cycle of the nickel sulfide/rGO composite powders prepared by sulfidation of the Ni/rGO composite and nickel acetate/GO composite powders at a current density of 0.3 A g-1 are 449 and 363 mA h g-1, respectively; their capacity retentions, calculated from the tenth cycle, are 100 and 87%. The nickel sulfide hollow nanospheres/rGO composite powders possess structural stability over repeated Na-ion insertion and extraction processes, and also show excellent rate performance for Na-ion storage.Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the

  14. Duplex Direct Data Distribution System

    NASA Technical Reports Server (NTRS)

    Greenfield, Israel (Technical Monitor)

    2001-01-01

    The NASA Glenn Research Center (GRC) is developing and demonstrating communications and network technologies that are helping to enable the near-Earth space Internet. GRC envisions several service categories. The first of these categories is direct data distribution or D3 (pronounced "D-cubed"). Commercially provided D3 will make it possible to download a data set from a spacecraft, like the International Space Station. as easily as one can extract a file from a remote server today, using a file transfer protocol. In a second category, NASA spacecraft will make use of commercial satellite communication (SATCOM) systems. Some of those services will come from purchasing time on unused transponders that cover landmasses. While it is likely there will be gaps in service coverage, Internet services should be available using these systems. This report addresses alternative methods of implementing a full duplex enhancement of the GRC developed experimental Ka-Band Direct Data Distribution (D3) space-to-ground communication link. The resulting duplex version is called the Duplex Direct Data Distribution (D4) system. The D4 system is intended to provide high-data-rate commercial direct or internet-based communications service between the NASA spacecraft in low earth orbit (LEO) and the respective principal investigators associated with these spacecraft. Candidate commercial services were assessed regarding their near-term potential to meet NASA requirements. Candidates included Ka-band and V-band geostationary orbit and non-geostationary orbit satellite relay services and direct downlink ("LEO teleport") services. End-to-end systems concepts were examined and characterized in terms of alternative link layer architectures. Alternatives included a Direct Link, a Relay Link, a Hybrid Link, and a Dual Mode Link. The direct link assessment examined sample ground terminal placements and antenna angle issues. The SATCOM-based alternatives examined existing or proposed commercial

  15. Na-ion Storage Performances of FeSex and Fe2O3 Hollow Nanoparticles-Decorated Reduced Graphene Oxide Balls prepared by Nanoscale Kirkendall Diffusion Process

    PubMed Central

    Park, Gi Dae; Cho, Jung Sang; Lee, Jung-Kul; Kang, Yun Chan

    2016-01-01

    Uniquely structured FeSex-reduced graphene oxide (rGO) composite powders, in which hollow FeSex nanoparticles are uniformly distributed throughout the rGO matrix, were prepared by spray pyrolysis applying the nanoscale Kirkendall diffusion process. Iron oxide-rGO composite powders were transformed into FeSex-rGO composite powders by a two-step post-treatment process. Metallic Fe nanocrystals formed during the first-step post-treatment process were transformed into hollow FeSex nanoparticles during the selenization process. The FeSex-rGO composite powders had mixed crystal structures of FeSe and FeSe2 phases. A rGO content of 33% was estimated from the TG analysis of the FeSex-rGO composite powders. The FeSex-rGO composite powders had superior sodium-ion storage properties compared to those of the Fe2O3-rGO composite powders with similar morphological characteristics. The discharge capacities of the FeSex- and Fe2O3-rGO composite powders for the 200th cycle at a constant current density of 0.3 A g−1 were 434 and 174 mA h g−1, respectively. The FeSex-rGO composite powders had a high discharge capacity of 311 mA h g−1 for the 1000th cycle at a high current density of 1 A g−1. PMID:26928312

  16. Nanoscale 2013

    NASA Astrophysics Data System (ADS)

    Koenders, Ludger; Ducourtieux, Sebastien

    2014-04-01

    The accurate determination of the properties of micro- and nano-structures is essential in research and development. It is also a prerequisite in process control and quality assurance in industry. In most cases, especially at the nanometer range, knowledge of the dimensional properties of structures is the fundamental base, to which further physical properties are linked. Quantitative measurements presuppose reliable and stable instruments, suitable measurement procedures as well as calibration artifacts and methods. This special issue of Measurement Science and Technology presents selected contributions from the NanoScale 2013 seminar held in Paris, France, on 25 and 26 April. It was the 6th Seminar on NanoScale Calibration Standards and Methods and the 10th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized with the Nanometrology Group of the Technical Committee-Length of EURAMET, the Physikalisch-Technische Bundesanstalt and the Laboratoire National de Métrologie et d'Essais. Three satellite meetings related to nanometrology were coupled to the seminar. The first one was an open Symposium on Scanning Probe Microscopy Standardization organized by the ISO/TC 201/SC9 technical committee. The two others were specific meetings focused on two European Metrology Research Projects funded by the European Association of National Metrology Institutes (EURAMET) (see www.euramet.org), the first one focused on the improvement of the traceability for high accuracy devices dealing with sub-nm length measurement and implementing optical interferometers or capacitive sensors (JRP SIB08 subnano), the second one aiming to develop a new metrological traceability for the measurement of the mechanical properties of nano-objects (JRP NEW05 MechProNo). More than 100 experts from industry, calibration laboratories and metrology institutes from around the world joined the NanoScale 2013 Seminar to attend 23 oral and 64 poster

  17. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Picotto, G. B.; Koenders, L.; Wilkening, G.

    2009-08-01

    Instrumentation and measurement techniques at the nanoscale play a crucial role not only in extending our knowledge of the properties of matter and processes in nanosciences, but also in addressing new measurement needs in process control and quality assurance in industry. Micro- and nanotechnologies are now facing a growing demand for quantitative measurements to support the reliability, safety and competitiveness of products and services. Quantitative measurements presuppose reliable and stable instruments and measurement procedures as well as suitable calibration artefacts to ensure the quality of measurements and traceability to standards. This special issue of Measurement Science and Technology presents selected contributions from the Nanoscale 2008 seminar held at the Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, in September 2008. This was the 4th Seminar on Nanoscale Calibration Standards and Methods and the 8th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized by the Nanometrology Group within EUROMET (The European Collaboration in Measurement Standards), the German Nanotechnology Competence Centre 'Ultraprecise Surface Figuring' (CC-UPOB), the Physikalisch-Technische Bundesanstalt (PTB) and INRIM. A special event during the seminar was the 'knighting' of Günter Wilkening from PTB, Braunschweig, Germany, as the 1st Knight of Dimensional Nanometrology. Günter Wilkening received the NanoKnight Award for his outstanding work in the field of dimensional nanometrology over the last 20 years. The contributions in this special issue deal with the developments and improvements of instrumentation and measurement methods for scanning force microscopy (SFM), electron and optical microscopy, high-resolution interferometry, calibration of instruments and new standards, new facilities and applications including critical dimension (CD) measurements on small and medium structures and nanoparticle

  18. Studying the buckling and vibration characteristics of single-walled zinc oxide nanotubes using a nanoscale finite element model

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Rouhi, S.; Mirnezhad, M.; Sadeghiyeh, F.

    2013-09-01

    The free vibration and axial buckling of achiral zinc oxide nanotubes (ZnONTs) are studied in this paper based on a three-dimensional finite-element model in which bonds are modeled using beam elements and mass elements are placed at the joints of beams instead of atoms. To determine the mechanical properties of the nanotubes, a linkage is established between molecular mechanics and density functional theory. The fundamental frequency and critical buckling load of ZnONTs with different geometries, chiralities and boundary conditions are calculated. It is shown that zigzag nanotubes are more stable than armchair ones. Investigating the effect of aspect ratio on the critical force shows that longer nanotubes are less stable. Also, it is indicated that increasing the length of the nanotubes will result in decreasing the frequency. Moreover, as the aspect ratio increases, the effect of end conditions diminishes.

  19. Purification of Nanoscale Electron-Beam-Induced Platinum Deposits via a Pulsed Laser-Induced Oxidation Reaction

    DOE PAGES

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; ...

    2014-11-05

    Platinum–carbon deposits made via electron-beam-induced deposition were purified in this study via a pulsed laser-induced oxidation reaction and erosion of the amorphous carbon to form pure platinum. Purification proceeds from the top down and is likely catalytically facilitated via the evolving platinum layer. Thermal simulations suggest a temperature threshold of ~485 K, and the purification rate is a function of the PtC5 thickness (80–360 nm) and laser pulse width (1–100 μs) in the ranges studied. The thickness dependence is attributed to the ~235 nm penetration depth of the PtC5 composite at the laser wavelength, and the pulse-width dependence is attributedmore » to the increased temperatures achieved at longer pulse widths. Finally, remarkably fast purification is realized at cumulative laser exposure times of less than 1 s.« less

  20. Purification of Nanoscale Electron-Beam-Induced Platinum Deposits via a Pulsed Laser-Induced Oxidation Reaction

    SciTech Connect

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; Fowlkes, Jason Davidson; Roberts, Nicholas A.; Plank, Harald; Rack, Philip D.

    2014-11-05

    Platinum–carbon deposits made via electron-beam-induced deposition were purified in this study via a pulsed laser-induced oxidation reaction and erosion of the amorphous carbon to form pure platinum. Purification proceeds from the top down and is likely catalytically facilitated via the evolving platinum layer. Thermal simulations suggest a temperature threshold of ~485 K, and the purification rate is a function of the PtC5 thickness (80–360 nm) and laser pulse width (1–100 μs) in the ranges studied. The thickness dependence is attributed to the ~235 nm penetration depth of the PtC5 composite at the laser wavelength, and the pulse-width dependence is attributed to the increased temperatures achieved at longer pulse widths. Finally, remarkably fast purification is realized at cumulative laser exposure times of less than 1 s.

  1. Direct fabrication of thin layer MoS{sub 2} field-effect nanoscale transistors by oxidation scanning probe lithography

    SciTech Connect

    Espinosa, Francisco M.; Ryu, Yu K.; Garcia, Ricardo; Marinov, Kolyo; Dumcenco, Dumitru; Kis, Andras

    2015-03-09

    Thin layer MoS{sub 2}-based field effect transistors (FET) are emerging candidates to fabricate very fast and sensitive devices. Here, we demonstrate a method to fabricate very narrow transistor channel widths on a single layer MoS{sub 2} flake connected to gold electrodes. Oxidation scanning probe lithography is applied to pattern insulating barriers on the flake. The process narrows the electron path to about 200 nm. The output and transfer characteristics of the fabricated FET show a behavior that is consistent with the minimum channel width of the device. The method relies on the direct and local chemical modification of MoS{sub 2}. The straightforward character and the lack of specific requirements envisage the controlled patterning of sub-100 nm electron channels in MoS{sub 2} FETs.

  2. PCR hot-start using duplex primers.

    PubMed

    Kong, Deming; Shen, Hanxi; Huang, Yanping; Mi, Huaifeng

    2004-02-01

    A new technique of PCR hot-start using duplex primers has been developed which can decrease the undesirable products arising throughout PCR amplification thereby giving better results than a manual hot-start method.

  3. Nanoscale amphiphilic macromolecules with variable lipophilicity and stereochemistry modulate inhibition of oxidized low-density lipoprotein uptake.

    PubMed

    Poree, Dawanne E; Zablocki, Kyle; Faig, Allison; Moghe, Prabhas V; Uhrich, Kathryn E

    2013-08-12

    Amphiphilic macromolecules (AMs) based on carbohydrate domains functionalized with poly(ethylene glycol) can inhibit the uptake of oxidized low density lipoprotein (oxLDL) and counteract foam cell formation, a key characteristic of early atherogenesis. To investigate the influence of lipophilicity and stereochemistry on the AMs' physicochemical and biological properties, mucic acid-based AMs bearing four aliphatic chains (2a) and tartaric acid-based AMs bearing two (2b and 2l) and four aliphatic chains (2g and 2k) were synthesized and evaluated. Solution aggregation studies suggested that both the number of hydrophobic arms and the length of the hydrophobic domain impact AM micelle sizes, whereas stereochemistry impacts micelle stability. 2l, the meso analogue of 2b, elicited the highest reported oxLDL uptake inhibition values (89%), highlighting the crucial effect of stereochemistry on biological properties. This study suggests that stereochemistry plays a critical role in modulating oxLDL uptake and must be considered when designing biomaterials for potential cardiovascular therapies.

  4. Cu2ZnSnS4/MoS2-Reduced Graphene Oxide Heterostructure: Nanoscale Interfacial Contact and Enhanced Photocatalytic Hydrogen Generation

    PubMed Central

    Ha, Enna; Liu, Wei; Wang, Luyang; Man, Ho-Wing; Hu, Liangsheng; Tsang, Shik Chi Edman; Chan, Chris Tsz-Leung; Kwok, Wai-Ming; Lee, Lawrence Yoon Suk; Wong, Kwok-Yin

    2017-01-01

    Hydrogen generation from water using noble metal-free photocatalysts presents a promising platform for renewable and sustainable energy. Copper-based chalcogenides of earth-abundant elements, especially Cu2ZnSnS4 (CZTS), have recently arisen as a low-cost and environment-friendly material for photovoltaics and photocatalysis. Herein, we report a new heterostructure consisting of CZTS nanoparticles anchored onto a MoS2-reduced graphene oxide (rGO) hybrid. Using a facile two-step method, CZTS nanoparticles were in situ grown on the surface of MoS2-rGO hybrid, which generated high density of nanoscale interfacial contact between CZTS and MoS2-rGO hybrid. The photoexcited electrons of CZTS can be readily transported to MoS2 through rGO backbone, reducing the electron-hole pair recombination. In photocatalytic hydrogen generation under visible light irradiation, the presence of MoS2-rGO hybrids enhanced the hydrogen production rate of CZTS by 320%, which can be attributed to the synergetic effect of increased charge separation by rGO and more catalytically active sites from MoS2. Furthermore, this CZTS/MoS2-rGO heterostructure showed much higher photocatalytic activity than both Au and Pt nanoparticle-decorated CZTS (Au/CZTS and Pt/CZTS) photocatalysts, indicating the MoS2-rGO hybrid is a better co-catalyst for photocatalytic hydrogen generation than the precious metal. The CZTS/MoS2-rGO system also demonstrated stable photocatalytic activity for a continuous 20 h reaction. PMID:28045066

  5. Cu2ZnSnS4/MoS2-Reduced Graphene Oxide Heterostructure: Nanoscale Interfacial Contact and Enhanced Photocatalytic Hydrogen Generation

    NASA Astrophysics Data System (ADS)

    Ha, Enna; Liu, Wei; Wang, Luyang; Man, Ho-Wing; Hu, Liangsheng; Tsang, Shik Chi Edman; Chan, Chris Tsz-Leung; Kwok, Wai-Ming; Lee, Lawrence Yoon Suk; Wong, Kwok-Yin

    2017-01-01

    Hydrogen generation from water using noble metal-free photocatalysts presents a promising platform for renewable and sustainable energy. Copper-based chalcogenides of earth-abundant elements, especially Cu2ZnSnS4 (CZTS), have recently arisen as a low-cost and environment-friendly material for photovoltaics and photocatalysis. Herein, we report a new heterostructure consisting of CZTS nanoparticles anchored onto a MoS2-reduced graphene oxide (rGO) hybrid. Using a facile two-step method, CZTS nanoparticles were in situ grown on the surface of MoS2-rGO hybrid, which generated high density of nanoscale interfacial contact between CZTS and MoS2-rGO hybrid. The photoexcited electrons of CZTS can be readily transported to MoS2 through rGO backbone, reducing the electron-hole pair recombination. In photocatalytic hydrogen generation under visible light irradiation, the presence of MoS2-rGO hybrids enhanced the hydrogen production rate of CZTS by 320%, which can be attributed to the synergetic effect of increased charge separation by rGO and more catalytically active sites from MoS2. Furthermore, this CZTS/MoS2-rGO heterostructure showed much higher photocatalytic activity than both Au and Pt nanoparticle-decorated CZTS (Au/CZTS and Pt/CZTS) photocatalysts, indicating the MoS2-rGO hybrid is a better co-catalyst for photocatalytic hydrogen generation than the precious metal. The CZTS/MoS2-rGO system also demonstrated stable photocatalytic activity for a continuous 20 h reaction.

  6. Cu2ZnSnS4/MoS2-Reduced Graphene Oxide Heterostructure: Nanoscale Interfacial Contact and Enhanced Photocatalytic Hydrogen Generation.

    PubMed

    Ha, Enna; Liu, Wei; Wang, Luyang; Man, Ho-Wing; Hu, Liangsheng; Tsang, Shik Chi Edman; Chan, Chris Tsz-Leung; Kwok, Wai-Ming; Lee, Lawrence Yoon Suk; Wong, Kwok-Yin

    2017-01-03

    Hydrogen generation from water using noble metal-free photocatalysts presents a promising platform for renewable and sustainable energy. Copper-based chalcogenides of earth-abundant elements, especially Cu2ZnSnS4 (CZTS), have recently arisen as a low-cost and environment-friendly material for photovoltaics and photocatalysis. Herein, we report a new heterostructure consisting of CZTS nanoparticles anchored onto a MoS2-reduced graphene oxide (rGO) hybrid. Using a facile two-step method, CZTS nanoparticles were in situ grown on the surface of MoS2-rGO hybrid, which generated high density of nanoscale interfacial contact between CZTS and MoS2-rGO hybrid. The photoexcited electrons of CZTS can be readily transported to MoS2 through rGO backbone, reducing the electron-hole pair recombination. In photocatalytic hydrogen generation under visible light irradiation, the presence of MoS2-rGO hybrids enhanced the hydrogen production rate of CZTS by 320%, which can be attributed to the synergetic effect of increased charge separation by rGO and more catalytically active sites from MoS2. Furthermore, this CZTS/MoS2-rGO heterostructure showed much higher photocatalytic activity than both Au and Pt nanoparticle-decorated CZTS (Au/CZTS and Pt/CZTS) photocatalysts, indicating the MoS2-rGO hybrid is a better co-catalyst for photocatalytic hydrogen generation than the precious metal. The CZTS/MoS2-rGO system also demonstrated stable photocatalytic activity for a continuous 20 h reaction.

  7. Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness

    NASA Astrophysics Data System (ADS)

    Barthwal, Sumit; Lim, Si-Hyung

    2015-02-01

    We have demonstrated a simple and cost-effective technique for the large-area fabrication of a superoleophobic surface using copper as a substrate. The whole process included three simple steps: First, the copper substrate was oxidized under hot alkaline conditions to fabricate flower-like copper oxide microspheres by heating at a particular temperature for an interval of time. Second, the copper-oxide-covered copper substrate was further heated in a solution of cobalt nitrate and ammonium nitrate in the presence of an ammonia solution to fabricate cobalt oxide nanostructures. We applied this second step to increase the surface roughness because it is an important criterion for improved superoleophobicity. Finally, to reduce the surface energy of the fabricated structures, the surfaces were chemically modified with perfluorooctyltrichlorosilane. Contact-angle measurements indicate that the micro-nano binary (MNB) hierarchical structures fabricated on the copper substrate became super-repellent toward a broad range of liquids with surface tension in the range of 21.5-72 mN/m. In an attempt to significantly improve the superoleophobic property of the surface, we also examined and compared the role of nanostructures in MNB hierarchical structures with only micro-fabricated surfaces. The fabricated MNB hierarchical structures also displays thermal stability and excellent long-term stability after exposure in air for more than 9 months. Our method might provide a general route toward the preparation of novel hierarchical films on metal substrates for various industrial applications.

  8. Thermodynamic profiles and nuclear magnetic resonance studies of oligonucleotide duplexes containing single diastereomeric spiroiminodihydantoin lesions.

    PubMed

    Khutsishvili, Irine; Zhang, Na; Marky, Luis A; Crean, Conor; Patel, Dinshaw J; Geacintov, Nicholas E; Shafirovich, Vladimir

    2013-02-26

    The spiroiminodihydantoins (Sp) are highly mutagenic oxidation products of guanine and 8-oxo-7,8-dihydroguanine in DNA. The Sp lesions have recently been detected in the liver and colon of mice infected with Helicobacter hepaticus that induces inflammation and the development of liver and colon cancers in murine model systems [Mangerich, A., et al. (2012) Proc. Natl. Acad. Sci. U.S.A. 109, E1820-E1829]. The impact of Sp lesions on the thermodynamic characteristics and the effects of the diastereomeric Sp-R and Sp-S lesions on the conformational features of double-stranded 11-mer oligonucleotide duplexes have been studied by a combination of microcalorimetric methods, analysis of DNA melting curves, and two-dimensional nuclear magnetic resonance methods. The nonplanar, propeller-like shapes of the Sp residues strongly diminish the extent of local base stacking interactions that destabilize the DNA duplexes characterized by unfavorable enthalpy contributions. Relative to that of an unmodified duplex, the thermally induced unfolding of the duplexes with centrally positioned Sp-R and Sp-S lesions into single strands is accompanied by a smaller release of cationic counterions (Δn(Na⁺) = 0.6 mol of Na⁺/mol of duplex) and water molecules (Δn(w) = 17 mol of H₂O/mol of duplex). The unfolding parameters are similar for the Sp-R and Sp-S lesions, although their orientations in the duplexes are different. The structural disturbances radiate one base pair beyond the flanking C:G pair, although Watson-Crick hydrogen bonding is maintained at all flanking base pairs. The observed relatively strong destabilization of B-form DNA by the physically small Sp lesions is expected to have a significant impact on the processing of these lesions in biological environments.

  9. Duplex sampling apparatus and method

    DOEpatents

    Brown, Paul E.; Lloyd, Robert

    1992-01-01

    An improved apparatus is provided for sampling a gaseous mixture and for measuring mixture components. The apparatus includes two sampling containers connected in series serving as a duplex sampling apparatus. The apparatus is adapted to independently determine the amounts of condensable and noncondensable gases in admixture from a single sample. More specifically, a first container includes a first port capable of selectively connecting to and disconnecting from a sample source and a second port capable of selectively connecting to and disconnecting from a second container. A second container also includes a first port capable of selectively connecting to and disconnecting from the second port of the first container and a second port capable of either selectively connecting to and disconnecting from a differential pressure source. By cooling a mixture sample in the first container, the condensable vapors form a liquid, leaving noncondensable gases either as free gases or dissolved in the liquid. The condensed liquid is heated to drive out dissolved noncondensable gases, and all the noncondensable gases are transferred to the second container. Then the first and second containers are separated from one another in order to separately determine the amount of noncondensable gases and the amount of condensable gases in the sample.

  10. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction.

    PubMed

    Pang, Su-Yan; Jiang, Jin; Ma, Jun

    2011-01-01

    Previous studies have shown that the corrosion of zerovalent iron (ZVI) by oxygen (O(2)) via the Fenton reaction can lead to the oxidation of various organic and inorganic compounds. However, the nature of the oxidants involved (i.e., ferryl ion (Fe(IV)) versus hydroxyl radical (HO(•))) is still a controversial issue. In this work, we reevaluated the relative importance of these oxidants and their role in As(III) oxidation during the corrosion of nanoscale ZVI (nZVI) in air-saturated water. It was shown that Fe(IV) species could react with sulfoxides (e.g., dimethyl sulfoxide, methyl phenyl sulfoxide, and methyl p-tolyl sulfoxide) through a 2-electron transfer step producing corresponding sulfones, which markedly differed from their HO(•)-involved products. When using these sulfoxides as probe compounds, the formation of oxidation products indicative of HO(•) but no generation of sulfone products supporting Fe(IV) participation were observed in the nZVI/O(2) system over a wide pH range. As(III) could be completely or partially oxidized by nZVI in air-saturated water. Addition of scavengers for solution-phase HO(•) and/or Fe(IV) quenched As(III) oxidation at acidic pH but had little effect as solution pH increased, highlighting the importance of the heterogeneous iron surface reactions for As(III) oxidation at circumneutral pH.

  11. Nanoscale connectivity in a TiO2/CdSe quantum dots/functionalized graphene oxide nanosheets/Au nanoparticles composite for enhanced photoelectrochemical solar cell performance.

    PubMed

    Narayanan, Remya; Deepa, Melepurath; Srivastava, Avanish Kumar

    2012-01-14

    Electron transfer dynamics in a photoactive coating made of CdSe quantum dots (QDs) and Au nanoparticles (NPs) tethered to a framework of ionic liquid functionalized graphene oxide (FGO) nanosheets and mesoporous titania (TiO(2)) was studied. High resolution transmission electron microscopy analyses on TiO(2)/CdSe/FGO/Au not only revealed the linker mediated binding of CdSe QDs with TiO(2) but also, surprisingly, revealed a nanoscale connectivity between CdSe QDs, Au NPs and TiO(2) with FGO nanosheets, achieved by a simple solution processing method. Time resolved fluorescence decay experiments coupled with the systematic quenching of CdSe emission by Au NPs or FGO nanosheets or by a combination of the latter two provide concrete evidences favoring the most likely pathway of ultrafast decay of excited CdSe in the composite to be a relay mechanism. A balance between energetics and kinetics of the system is realized by alignment of conduction band edges, whereby, CdSe QDs inject photogenerated electrons into the conduction band of TiO(2), from where, electrons are promptly transferred to FGO nanosheets and then through Au NPs to the current collector. Conductive-atomic force microscopy also provided a direct correlation between the local nanostructure and the enhanced ability of composite to conduct electrons. Point contact I-V measurements and average photoconductivity results demonstrated the current distribution as well as the population of conducting domains to be uniform across the TiO(2)/CdSe/FGO/Au composite, thus validating the higher photocurrent generation. A six-fold enhancement in photocurrent and a 100 mV increment in photovoltage combined with an incident photon to current conversion efficiency of 27%, achieved in the composite, compared to the inferior performance of the TiO(2)/CdSe/Au composite imply that FGO nanosheets and Au NPs work in tandem to promote charge separation and furnish less impeded pathways for electron transfer and transport. Such a

  12. FACILITY 810, REAR OF DUPLEX SHOWING COURTYARD BETWEEN WINGS, OBLIQUE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 810, REAR OF DUPLEX SHOWING COURTYARD BETWEEN WINGS, OBLIQUE VIEW FACING EAST. - Schofield Barracks Military Reservation, Duplex Housing Type with Corner Entries, Between Hamilton & Tidball Streets near Williston Avenue, Wahiawa, Honolulu County, HI

  13. 3. VIEW OF DUPLEX (FEATURE 7), FACING NORTH. OFFICE (FEATURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF DUPLEX (FEATURE 7), FACING NORTH. OFFICE (FEATURE 11) VISIBLE IN BACKGROUND. - Copper Canyon Camp of the International Smelting & Refining Company, Duplex, Copper Canyon, Battle Mountain, Lander County, NV

  14. 1. VIEW OF DUPLEX (FEATURE 9), FACING NORTHEAST. MILL SITE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF DUPLEX (FEATURE 9), FACING NORTHEAST. MILL SITE IS SHOWN IN UPPER RIGHT CORNER OF PHOTOGRAPH. - Copper Canyon Camp of the International Smelting & Refining Company, Duplex, Copper Canyon, Battle Mountain, Lander County, NV

  15. Extensional duplex in the Purcell Mountains of southeastern British Columbia

    SciTech Connect

    Root, K.G. )

    1990-05-01

    An extensional duplex consisting of fault-bounded blocks (horses) located between how-angle normal faults is exposed in Proterozoic strata in the Purcell Mountains of British Columbia, Canada. This is one of the first documented extensional duplexes, and it is geometrically and kinematically analogous to duplexes developed in contractional and strike-slip fault systems. The duplex formed within an extensional fault with a ramp and flat geometry when horses were sliced from the ramp and transported within the fault system.

  16. Full-duplex optical communication system

    NASA Technical Reports Server (NTRS)

    Shay, Thomas M. (Inventor); Hazzard, David A. (Inventor); Horan, Stephen (Inventor); Payne, Jason A. (Inventor)

    2004-01-01

    A method of full-duplex electromagnetic communication wherein a pair of data modulation formats are selected for the forward and return data links respectively such that the forward data electro-magnetic beam serves as a carrier for the return data. A method of encoding optical information is used wherein right-hand and left-hand circular polarizations are assigned to optical information to represent binary states. An application for an earth to low earth orbit optical communications system is presented which implements the full-duplex communication and circular polarization keying modulation format.

  17. Nanoscale thermal probing

    PubMed Central

    Yue, Yanan; Wang, Xinwei

    2012-01-01

    Nanoscale novel devices have raised the demand for nanoscale thermal characterization that is critical for evaluating the device performance and durability. Achieving nanoscale spatial resolution and high accuracy in temperature measurement is very challenging due to the limitation of measurement pathways. In this review, we discuss four methodologies currently developed in nanoscale surface imaging and temperature measurement. To overcome the restriction of the conventional methods, the scanning thermal microscopy technique is widely used. From the perspective of measuring target, the optical feature size method can be applied by using either Raman or fluorescence thermometry. The near-field optical method that measures nanoscale temperature by focusing the optical field to a nano-sized region provides a non-contact and non-destructive way for nanoscale thermal probing. Although the resistance thermometry based on nano-sized thermal sensors is possible for nanoscale thermal probing, significant effort is still needed to reduce the size of the current sensors by using advanced fabrication techniques. At the same time, the development of nanoscale imaging techniques, such as fluorescence imaging, provides a great potential solution to resolve the nanoscale thermal probing problem. PMID:22419968

  18. Base pairing and structural insights into the 5-formylcytosine in RNA duplex

    PubMed Central

    Wang, Rui; Luo, Zhipu; He, Kaizhang; Delaney, Michael O.; Chen, Doris; Sheng, Jia

    2016-01-01

    5-Formylcytidine (f5C), a previously discovered natural nucleotide in the mitochondrial tRNA of many species including human, has been recently detected as the oxidative product of 5-methylcytidine (m5C) through 5-hydroxymethylcytidine (hm5C) in total RNA of mammalian cells. The discovery indicated that these cytosine derivatives in RNA might also play important epigenetic roles similar as in DNA, which has been intensively investigated in the past few years. In this paper, we studied the base pairing specificity of f5C in different RNA duplex contexts. We found that the 5-formyl group could increase duplex thermal stability and enhance base pairing specificity. We present three high-resolution crystal structures of an octamer RNA duplex [5′-GUA(f5C)GUAC-3′]2 that have been solved under three crystallization conditions with different buffers and pH values. Our results showed that the 5-formyl group is located in the same plane as the cytosine base and forms an intra-residue hydrogen bond with the amino group in the N4 position. In addition, this modification increases the base stacking between the f5C and the neighboring bases while not causing significant global and local structure perturbations. This work provides insights into the effects of 5-formylcytosine on RNA duplex. PMID:27079978

  19. Stress corrosion cracking of duplex stainless steels in caustic solutions

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ananya

    Duplex stainless steels (DSS) with roughly equal amount of austenite and ferrite phases are being used in industries such as petrochemical, nuclear, pulp and paper mills, de-salination plants, marine environments, and others. However, many DSS grades have been reported to undergo corrosion and stress corrosion cracking in some aggressive environments such as chlorides and sulfide-containing caustic solutions. Although stress corrosion cracking of duplex stainless steels in chloride solution has been investigated and well documented in the literature but the SCC mechanisms for DSS in caustic solutions were not known. Microstructural changes during fabrication processes affect the overall SCC susceptibility of these steels in caustic solutions. Other environmental factors, like pH of the solution, temperature, and resulting electrochemical potential also influence the SCC susceptibility of duplex stainless steels. In this study, the role of material and environmental parameters on corrosion and stress corrosion cracking of duplex stainless steels in caustic solutions were investigated. Changes in the DSS microstructure by different annealing and aging treatments were characterized in terms of changes in the ratio of austenite and ferrite phases, phase morphology and intermetallic precipitation using optical micrography, SEM, EDS, XRD, nano-indentation and microhardness methods. These samples were then tested for general and localized corrosion susceptibility and SCC to understand the underlying mechanisms of crack initiation and propagation in DSS in the above-mentioned environments. Results showed that the austenite phase in the DSS is more susceptible to crack initiation and propagation in caustic solutions, which is different from that in the low pH chloride environment where the ferrite phase is the more susceptible phase. This study also showed that microstructural changes in duplex stainless steels due to different heat treatments could affect their SCC

  20. Dislocation substructure in fatigued duplex stainless steel

    SciTech Connect

    Polak, J. . Lab. de Mecanique de Lille Inst. of Physical Metallurgy, Brno . Academy of Sciences); Degallaix, S. . Lab. de Mecanique de Lille); Kruml, T. . Academy of Sciences)

    1993-12-15

    Cyclic plastic straining of crystalline materials results in the formation of specific dislocation structures. Considerable progress in mapping and understanding internal dislocation structures has been achieved by studying single crystal behavior: however, most structural materials have a polycrystalline structure and investigations of polycrystals in comparison to single crystal behavior of simple metals prove to be very useful in understanding more complex materials. There are some classes of materials, however, with complicated structure which do not have a direct equivalent in single crystalline form. Moreover, the specific dimensions and shapes of individual crystallites play an important role both in the cyclic stress-strain response of these materials and in the formation of their interior structure in cyclic straining. Austenitic-ferritic duplex stainless steel, which is a kind of a natural composite, is a material of this type. The widespread interest in the application of duplex steels is caused by approximately doubled mechanical properties and equal corrosion properties, when compared with classical austenitic stainless steels. Fatigue resistance of these steels as well as the surface damage evolution in cyclic straining have been studied; however, much less is known about the internal substructure development in cyclic straining. In this study the dislocation arrangement in ferritic and austenitic grains of the austenitic-ferritic duplex steel alloyed with nitrogen and cyclically strained with two strain amplitudes, is reported and compared to the dislocation arrangement found in single and polycrystals of austenitic and ferritic materials of a similar composition and with the surface relief produced in cyclic plastic straining.

  1. Bench-scale synthesis of nanoscale materials

    NASA Technical Reports Server (NTRS)

    Buehler, M. F.; Darab, J. G.; Matson, D. W.; Linehan, J. C.

    1994-01-01

    A novel flow-through hydrothermal method used to synthesize nanoscale powders is introduced by Pacific Northwest Laboratory. The process, Rapid Thermal Decomposition of precursors in Solution (RTDS), uniquely combines high-pressure and high-temperature conditions to rapidly form nanoscale particles. The RTDS process was initially demonstrated on a laboratory scale and was subsequently scaled up to accommodate production rates attractive to industry. The process is able to produce a wide variety of metal oxides and oxyhydroxides. The powders are characterized by scanning and transmission electron microscopic methods, surface-area measurements, and x-ray diffraction. Typical crystallite sizes are less than 20 nanometers, with BET surface areas ranging from 100 to 400 sq m/g. A description of the RTDS process is presented along with powder characterization results. In addition, data on the sintering of nanoscale ZrO2 produced by RTDS are included.

  2. Characterization of thermal aging of duplex stainless steel by SQUID

    SciTech Connect

    Isobe, Y.; Kamimura, A.; Aoki, K.; Nakayasu, F.

    1995-08-01

    Thermal aging is a growing concern for long-term-aged duplex stainless steel piping in nuclear power plants. Superconducting QUantum Interference Device (SQUID) was used for the detection of thermal aging of SUS329 rolled duplex stainless steel and SCS16 cast duplex stainless steel. It was found that the SQUID output signal pattern in the presence of AC magnetic field applied to the specimen was sensitive to the changes in electromagnetic properties due to thermal aging.

  3. Excess electron trapping in duplex DNA: long range transfer via stacked adenines.

    PubMed

    Black, Paul J; Bernhard, William A

    2012-11-08

    An understanding of charge transfer (CT) in DNA lies at the root of assessing the risks and benefits of exposure to ionizing radiation. Energy deposition by high-energy photons and fast-charged particles creates holes and excess electrons (EEs) in DNA, and the subsequent reactions determine the complexity of DNA damage and ultimately the risk of disease. Further interest in CT comes from the possibility that hole transfer, excess electron transfer (EET), or both in DNA might be used to develop nanoscale circuits. To study EET in DNA, EPR spectroscopy was used to determine the distribution of EE trapping by oligodeoxynucleotides irradiated and observed at 4 K. Our results indicate that stretches of consecutive adenine bases on the same strand serve as an ideal conduit for intrastrand EET in duplex DNA at 4 K. Specifically, we show that A is an efficient trap for EE at 4 K if, and only if, the A strand of the duplex does not contain one of the other three bases. If there is a T, C, or G on the A strand, then trapping occurs at T or C instead of A. This holds true for stretches up to 32 A's. Whereas T competes effectively against A for the EE, it does not compete effectively against C. Long stretches of T pass the majority of EE to C. Our results show that AT stretches channel EE to cytosine, an end point with significance to both radiation damage and the photochemical repair of pyrimidine dimers.

  4. Full Duplex, Spread Spectrum Radio System

    NASA Technical Reports Server (NTRS)

    Harvey, Bruce A.

    2000-01-01

    The goal of this project was to support the development of a full duplex, spread spectrum voice communications system. The assembly and testing of a prototype system consisting of a Harris PRISM spread spectrum radio, a TMS320C54x signal processing development board and a Zilog Z80180 microprocessor was underway at the start of this project. The efforts under this project were the development of multiple access schemes, analysis of full duplex voice feedback delays, and the development and analysis of forward error correction (FEC) algorithms. The multiple access analysis involved the selection between code division multiple access (CDMA), frequency division multiple access (FDMA) and time division multiple access (TDMA). Full duplex voice feedback analysis involved the analysis of packet size and delays associated with full loop voice feedback for confirmation of radio system performance. FEC analysis included studies of the performance under the expected burst error scenario with the relatively short packet lengths, and analysis of implementation in the TMS320C54x digital signal processor. When the capabilities and the limitations of the components used were considered, the multiple access scheme chosen was a combination TDMA/FDMA scheme that will provide up to eight users on each of three separate frequencies. Packets to and from each user will consist of 16 samples at a rate of 8,000 samples per second for a total of 2 ms of voice information. The resulting voice feedback delay will therefore be 4 - 6 ms. The most practical FEC algorithm for implementation was a convolutional code with a Viterbi decoder. Interleaving of the bits of each packet will be required to offset the effects of burst errors.

  5. Duplex unwinding with DEAD-box proteins.

    PubMed

    Jankowsky, Eckhard; Putnam, Andrea

    2010-01-01

    DEAD-box proteins, which comprise the largest helicase family, are involved in virtually all aspects of RNA metabolism. DEAD-box proteins catalyze diverse ATP-driven functions including the unwinding of RNA secondary structures. In contrast to many well-studied DNA and viral RNA helicases, DEAD-box proteins do not rely on translocation on one of the nucleic acid strands for duplex unwinding, but directly load onto helical regions and then locally pry the strands apart in an ATP-dependent fashion. In this chapter, we outline substrate design and unwinding protocols for DEAD-box proteins and focus on the quantitative evaluation of their unwinding activity.

  6. Sensing at the nanoscale

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Hierold, Christofer

    2013-11-01

    The merits of nanostructures in sensing may seem obvious, yet playing these attributes to their maximum advantage can be a work of genius. As fast as sensing technology is improving, expectations are growing, with demands for cheaper devices with higher sensitivities and an ever increasing range of functionalities and compatibilities. At the same time tough scientific challenges like low power operation, noise and low selectivity are keeping researchers busy. This special issue on sensing at the nanoscale with guest editor Christofer Hierold from ETH Zurich features some of the latest developments in sensing research pushing at the limits of current capabilities. Cheap and easy fabrication is a top priority. Among the most popular nanomaterials in sensing are ZnO nanowires and in this issue Dario Zappa and colleagues at Brescia University in Italy simplify an already cheap and efficient synthesis method, demonstrating ZnO nanowire fabrication directly onto silicon substrates [1]. Meanwhile Nicolae Barson and colleagues in Germany point out the advantages of flame spray pyrolysis fabrication in a topical review [2] and, maximizing on existing resources, researchers in Denmark and Taiwan report cantilever sensing using a US20 commercial DVD-ROM optical pickup unit as the readout source [3]. The sensor is designed to detect physiological concentrations of soluble urokinase plasminogen activator receptor, a protein associated with inflammation due to HIV, cancer and other infectious diseases. With their extreme properties carbon nanostructures feature prominently in the issue, including the demonstration of a versatile and flexible carbon nanotube strain sensor [4] and a graphene charge sensor with sensitivities of the order of 1.3 × 10-3 e Hz-1/2 [5]. The issue of patterning for sensing devices is also tackled by researchers in the US who demonstrate a novel approach for multicomponent pattering metal/metal oxide nanoparticles on graphene [6]. Changes in electrical

  7. Criteria for the Segmentation of Vowels on Duplex Oscillograms.

    ERIC Educational Resources Information Center

    Naeser, Margaret A.

    This paper develops criteria for the segmentation of vowels on duplex oscillograms. Previous vowel duration studies have primarily used sound spectrograms. The use of duplex oscillograms, rather than sound spectrograms, permits faster production (real time) at less expense (adding machine paper may be used). The speech signal can be more spread…

  8. 52. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Photocopy of copy of original Officers' Duplex Quarters drawing by Copeland, 7 April 1932 (Original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University). Heating - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  9. 53. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. Photocopy of copy of original Officers' Duplex Quarters drawing by A.G.D., 7 April 1932 (original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University). Electrical - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  10. Methods And Devices For Characterizing Duplex Nucleic Acid Molecules

    DOEpatents

    Akeson, Mark; Vercoutere, Wenonah; Haussler, David; Winters-Hilt, Stephen

    2005-08-30

    Methods and devices are provided for characterizing a duplex nucleic acid, e.g., a duplex DNA molecule. In the subject methods, a fluid conducting medium that includes a duplex nucleic acid molecule is contacted with a nanopore under the influence of an applied electric field and the resulting changes in current through the nanopore caused by the duplex nucleic acid molecule are monitored. The observed changes in current through the nanopore are then employed as a set of data values to characterize the duplex nucleic acid, where the set of data values may be employed in raw form or manipulated, e.g., into a current blockade profile. Also provided are nanopore devices for practicing the subject methods, where the subject nanopore devices are characterized by the presence of an algorithm which directs a processing means to employ monitored changes in current through a nanopore to characterize a duplex nucleic acid molecule responsible for the current changes. The subject methods and devices find use in a variety of applications, including, among other applications, the identification of an analyte duplex DNA molecule in a sample, the specific base sequence at a single nulceotide polymorphism (SNP), and the sequencing of duplex DNA molecules.

  11. Helix-Dependent Spin Filtering through the DNA Duplex.

    PubMed

    Zwang, Theodore J; Hürlimann, Sylvia; Hill, Michael G; Barton, Jacqueline K

    2016-12-07

    Recent work suggests that electrons can travel through DNA and other chiral molecules in a spin-selective manner, but little is known about the origin of this spin selectivity. Here we describe experiments on magnetized DNA-modified electrodes to explore spin-selective electron transport through hydrated duplex DNA. Our results show that the two spins migrate through duplex DNA with a different yield and that spin selectivity requires charge transport through the DNA duplex. Significantly, shifting the same duplex DNA between right-handed B- and left-handed Z-forms leads to a diode-like switch in spin selectivity; which spin moves more efficiently through the duplex depends upon the DNA helicity. With DNA, the supramolecular organization of chiral moieties, rather than the chirality of the individual monomers, determines the selectivity in spin, and thus a conformational change can switch the spin selectivity.

  12. DNA Duplex Engineering for Enantioselective Fluorescent Sensor.

    PubMed

    Hu, Yuehua; Lin, Fan; Wu, Tao; Zhou, Yufeng; Li, Qiusha; Shao, Yong; Xu, Zhiai

    2017-02-21

    The rapid identification of biomacromolecule structure that has a specific association with chiral enantiomers especially from natural sources will be helpful in developing enantioselective sensor and in speeding up drug exploitation. Herein, owing to its existence also in living cells, apurinic/apyrimidinic site (AP site) was first engineered into ds-DNA duplex to explore its competence in enantiomer selectivity. An AP site-specific fluorophore was utilized as an enantioselective discrimination probe to develop a straightforward chiral sensor using natural tetrahydropalmatine (L- and D-THP) as enantiomer representatives. We found that only L-THP can efficiently replace the prebound fluorophore to cause a significant fluorescence increase due to its specific binding with the AP site (two orders magnitude higher in affinity than binding with D-THP). The AP site binding specificity of L-THP over D-THP was assessed via intrinsic fluorescence, isothermal titration calorimetry, and DNA stability. The enantioselective performance can be easily tuned by the sequences near the AP site and the number of AP sites. A single AP site provides a perfect binding pocket to differentiate the chiral atom-induced structure discrepancy. We expect that our work will inspire interest in engineering local structures into a ds-DNA duplex for developing novel enantioselective sensors.

  13. Spermine Condenses DNA, but Not RNA Duplexes

    SciTech Connect

    Katz, Andrea M.; Tolokh, Igor S.; Pabit, Suzette A.; Baker, Nathan; Onufriev, Alexey V.; Pollack, Lois

    2017-01-01

    Interactions between the polyamine spermine and nucleic acids drive important cellular processes. Spermine condenses DNA, and some RNAs such as poly(rA):poly(rU). A large fraction of the spermine present in cells is bound to RNA, but apparently does not condense it. Here, we study the effect of spermine binding to short duplex RNA and DNA and compare our findings with predictions of molecular dynamics simulations. When small numbers of spermine are introduced, RNA with a designed sequence, containing a mixture of 14 GC pairs and 11 AU pairs, resists condensation relative to DNA of an equivalent sequence or to 25 base pair poly(rA):poly(rU) RNA. Comparison of wide-angle x-ray scattering profiles with simulation suggests that spermine is sequestered deep within the major groove of mixed sequence RNA, preventing condensation by limiting opportunities to bridge to other molecules as well as stabilizing the RNA by locking it into a particular conformation. In contrast, for DNA, simulations suggest that spermine binds external to the duplex, offering opportunities for intermolecular interaction. The goal of this study is to explain how RNA can remain soluble, and available for interaction with other molecules in the cell, despite the presence of spermine at concentrations high enough to precipitate DNA.

  14. Toward nanoscale genome sequencing.

    PubMed

    Ryan, Declan; Rahimi, Maryam; Lund, John; Mehta, Ranjana; Parviz, Babak A

    2007-09-01

    This article reports on the state-of-the-art technologies that sequence DNA using miniaturized devices. The article considers the miniaturization of existing technologies for sequencing DNA and the opportunities for cost reduction that 'on-chip' devices can deliver. The ability to construct nano-scale structures and perform measurements using novel nano-scale effects has provided new opportunities to identify nucleotides directly using physical, and not chemical, methods. The challenges that these technologies need to overcome to provide a US$1000-genome sequencing technology are also presented.

  15. An exploration of sequence specific DNA-duplex/pyrene interactions for intercalated and surface-associated pyrene species. Technical progress report

    SciTech Connect

    Netzel, T.L.

    1994-01-07

    The use of both short (5-atom) and long (12-atom) covalent linking chains to attach, respectively, a pyrenesulfonate or a pyrenebutyrate moiety to a central region of a DNA duplex allows construction of DNA-duplex/pyrene assemblies of two types. Long linking chains permit pyrene to intercalate within the DNA duplex, while the short chains constrain pyrene to remain in the outer-surface region of the major-groove of the duplex. Electrochemical data suggest that reductive electron-transfer (ET) quenching of photoexcited pyrene (pyrene*) labels will be most exothermic for guanosine than for the other three DNA nucleosides and that oxidative ET quenching of pyrene* will be most exothermic for thymidine than for the other three DNA nucleosides. The study combines two effects, (1) differential DNA/pyrene geometries in covalent assemblies with different length linking chains and (2) differential ET quenching reactivities among the DNA nucleotides to explore sequence specific and duplex/pyrene association specific effects on DNA-base ionization reactions. This report describes progress in synthesizing target pyrene-labeled nucleosides and oligonucleotides, in commissioning our fluorescence lifetime measurement system, and in the photochemical behavior of pyrene-labeled nucleosides, single strands of DNA, and duplexes of DNA.

  16. Linkage of iron elution and dissolved oxygen consumption with removal of organic pollutants by nanoscale zero-valent iron: Effects of pH on iron dissolution and formation of iron oxide/hydroxide layer.

    PubMed

    Fujioka, Nanae; Suzuki, Moe; Kurosu, Shunji; Kawase, Yoshinori

    2016-02-01

    The iron elution and dissolved oxygen (DO) consumption in organic pollutant removal by nanoscale zero-valent iron (nZVI) was examined in the range of solution pH from 3.0 to 9.0. Their behaviors were linked with the removal of organic pollutant through the dissolution of iron and the formation of iron oxide/hydroxide layer affected strongly by solution pH and DO. As an example of organic pollutants, azo-dye Orange II was chosen in this study. The chemical composition analyses before and after reaction confirmed the corrosion of nZVI into ions, the formation of iron oxide/hydroxide layer on nZVI surface and the adsorption of the pollutant and its intermediates. The complete decolorization of Orange II with nZVI was accomplished very quickly. On the other hand, the total organic carbon (TOC) removal was considerably slow and the maximum TOC removal was around 40% obtained at pH 9.0. The reductive cleavage of azo-bond by emitted electrons more readily took place as compared with the cleavage of aromatic rings of Orange II leading to the degradation to smaller molecules and subsequently the mineralization. A reaction kinetic model based on the Langmuir-Hinshelwood/Eley-Rideal approach was developed to elucidate mechanisms for organic pollutant removal controlled by the formation of iron oxide/hydroxide layer, the progress of which could be characterized by considering the dynamic concentration changes in Fe(2+) and DO. The dynamic profiles of Orange II removal linked with Fe(2+) and DO could be reasonably simulated in the range of pH from 3.0 to 9.0.

  17. Potential dependence of cuprous/cupric duplex film growth on copper electrode in alkaline media

    NASA Astrophysics Data System (ADS)

    He, Jian-Bo; Lu, Dao-Yong; Jin, Guan-Ping

    2006-11-01

    The duplex oxide film potentiostatically formed on copper in concentrated alkaline media has been investigated by XRD, XPS, negative-going voltammetry and cathodic chronopotentiometry. The interfacial capacity was also measured using fast triangular voltage method under quasi-stationary condition. The obvious differences in the thickness, composition, passivation degree and capacitance behavior were observed between the duplex film formed in lower potential region (-0.13 to 0.18 V versus Hg|HgO electrode with the same solution as the electrolyte) and that formed in higher potential region (0.18-0.60 V). Cuprous oxides could be formed and exist stably in the inner layer in the both potential regions, and three cupric species, soluble ions and Cu(OH) 2 and CuO, could be independently produced from the direct oxidation of metal copper, as indicated by three pairs of redox voltammetric peaks. One of the oxidation peaks appeared only after the scan was reversed from high potential and could be attributed to CuO formation upon the pre-accumulation of O 2- ions within the film under high anodic potentials. A new mechanism for the film growth on the investigated time scale from 1 to 30 min is proposed, that is, the growth of the duplex film in the lower potential region takes place at the film|solution interface to form a thick Cu(OH) 2 outer layer by field-assisted transfer of Cu 2+ ions through the film to solution, whereas the film in the higher potential region grows depressingly and slowly at the metal|film interface to form Cu 2O and less CuO by the transfer of O 2- ions through the film to electrode.

  18. Nanoscale science and engineering forum (706c) design of solid lipid particles with iron oxide quantum dots for the delivery of therapeutic agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid lipid particles provide a method to encapsulate and control the release of drugs in vivo but lack the imaging capability provided by CdS quantum dots. This shortcoming was addressed by combining these two technologies into a model system that uses iron oxide as a non-toxic imaging component in...

  19. Reliability analysis of a repairable duplex system

    NASA Astrophysics Data System (ADS)

    Vanderperre, E. J.; Makhanov, S. S.

    2014-09-01

    We analyse the survival time of a repairable duplex system characterised by cold standby and by a pre-emptive priority rule. We allow general probability distributions for failure and repair. Moreover, an important realistic feature of the system is the general assumption that the non-priority unit has a memory. This combination of features has not been analysed in the previous literature. Our (new) methodology is based on a concatenation of a Cauchy-type integral representation of the modified Heaviside unit-step function and a two-sided stochastic inequality. Finally, we introduce a security interval related to a security level and a suitable risk-criterion based on the survival function of the system. As a practical application, we analyse some particular cases of the survival function jointly with the security interval corresponding to a security level of 90.

  20. Diagnosing erectile dysfunction: the penile dynamic colour duplex ultrasound revisited.

    PubMed

    Aversa, A; Bruzziches, R; Spera, G

    2005-12-01

    A number of disease processes of the penis including Peyronie's disease, priapism, penile fractures and tumors are clearly visualized with ultrasound. Diagnostic evaluation of erectile dysfunction (ED) by penile dynamic colour-duplex Doppler ultrasonography (D-CDDU) is actually considered a second level approach to ED patients because of the fact that intracavernous injections test IV with prostaglandin-E(1) may provide important information about the patients' erectile capacity. However, no direct vascular imaging and a high percentage of false negative diagnoses of vasculogenic ED are its major pitfalls and subsequent treatment decisions remain quite limited. The occurrence of ED and its sentinel relationship to cardiovascular disease has prompted more accurate vascular screening in all patients even in the absence of cardiovascular risk factors. The sonographic evaluation of the intima-media thickness of the carotid arteries may sometimes represent an early manifestation of diffuse atherosclerotic disease and endothelial damage. This latter finding is often the cause of failure to oral agents, i.e. phosphodiesterase inhibitors, because of inability of the dysfunctional endothelium to release nitric oxide. D-CDDU represents an accurate tool to investigate cavernous artery inflow and venous leakage when compared with more invasive diagnostic techniques i.e. selective arteriography and dynamic infusion cavernosometry along with cavernosography.

  1. Local structure and nanoscale homogeneity of CeO2-ZrO2: differences and similarities to parent oxides revealed by luminescence with temporal and spectral resolution.

    PubMed

    Tiseanu, Carmen; Parvulescu, Vasile; Avram, Daniel; Cojocaru, Bogdan; Boutonnet, Magali; Sanchez-Dominguez, Margarita

    2014-01-14

    Although homogeneity at the atomic level of CeO2-ZrO2 with a Ce/Zr atomic ratio close to unity is considered to be one of the main causes for the increased total oxygen storage capacity (OSC), the characterization approaches of homogeneity remain a major challenge. We propose a simple, yet effective method, to assess both structural and compositional homogeneity of CeO2-ZrO2 by using Eu(3+) luminescence measured with time and dual spectral resolution (emission and excitation). For Eu(3+)-CeO2-ZrO2 calcined at 750 °C, the X-ray diffraction, Raman and High-Resolution Transmission Electron Microscopy data converge to a single pseudo-cubic phase. However, the evolution of Eu(3+)-delayed luminescence from cubic ceria-like to tetragonal zirconia-like emission reveals the formation of CeO2- and ZrO2-rich nanodomains and provides evidence for early phase separation. For Eu(3+)-CeO2-ZrO2 calcined at 1000 °C, the emission of Eu(3+) reveals both structural and compositional inhomogeneity. Our study identifies the differences between the local structure properties of CeO2 and ZrO2 parent oxides and CeO2-ZrO2 mixed oxide, also confirming the special chemical environment of the oxygen atoms in the mixed oxide as reported earlier by Extended X-ray Absorption Fine Structure investigations.

  2. The influence of MoO{sub x} gap states on hole injection from aluminum doped zinc oxide with nanoscale MoO{sub x} surface layer anodes for organic light emitting diodes

    SciTech Connect

    Jha, Jitendra Kumar; Santos-Ortiz, Reinaldo; Du, Jincheng; Shepherd, Nigel D.

    2015-08-14

    The effective workfunction of Al doped ZnO films (AZO) increased from 4.1 eV to 5.55 eV after surface modification with nanoscale molybdenum sub-oxides (MoO{sub x}). Hole only devices with anodes consisting of 3 nm of MoO{sub x} on AZO exhibited a lower turn-on voltage (1.5 vs 1.8 V), and larger charge injection (190 vs 118 mA/cm{sup 2}) at the reference voltage, compared to indium tin oxide (ITO). AZO devices with 10 nm of MoO{sub x} exhibited the highest workfunction but performed poorly compared to devices with 3 nm of MoO{sub x}, or standard ITO. Ultraviolet photoelectron, X-ray photoelectron, and optical spectroscopies indicate that the 3 nm MoO{sub x} films are more reduced and farther away from MoO{sub 3} stoichiometry than their 10 nm equivalents. The vacancies associated with non-stoichiometry result in donor-like gap states which we assign to partially occupied Mo 4d levels. We propose that Fowler-Nordheim tunneling from these levels is responsible for the reduction in threshold voltage measured in devices with 3 nm of MoO{sub x}. A schematic band diagram is proposed. The thicker MoO{sub x} layers are more stoichiometric and resistive, and the voltage drop across these layers dominates their electrical performance, leading to an increase in threshold voltage. The results indicate that AZO with MoO{sub x} layers of optimal thickness may be potential candidates for anode use in organic light emitting diodes.

  3. The influence of MoOx gap states on hole injection from aluminum doped zinc oxide with nanoscale MoOx surface layer anodes for organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Jha, Jitendra Kumar; Santos-Ortiz, Reinaldo; Du, Jincheng; Shepherd, Nigel D.

    2015-08-01

    The effective workfunction of Al doped ZnO films (AZO) increased from 4.1 eV to 5.55 eV after surface modification with nanoscale molybdenum sub-oxides (MoOx). Hole only devices with anodes consisting of 3 nm of MoOx on AZO exhibited a lower turn-on voltage (1.5 vs 1.8 V), and larger charge injection (190 vs 118 mA/cm2) at the reference voltage, compared to indium tin oxide (ITO). AZO devices with 10 nm of MoOx exhibited the highest workfunction but performed poorly compared to devices with 3 nm of MoOx, or standard ITO. Ultraviolet photoelectron, X-ray photoelectron, and optical spectroscopies indicate that the 3 nm MoOx films are more reduced and farther away from MoO3 stoichiometry than their 10 nm equivalents. The vacancies associated with non-stoichiometry result in donor-like gap states which we assign to partially occupied Mo 4d levels. We propose that Fowler-Nordheim tunneling from these levels is responsible for the reduction in threshold voltage measured in devices with 3 nm of MoOx. A schematic band diagram is proposed. The thicker MoOx layers are more stoichiometric and resistive, and the voltage drop across these layers dominates their electrical performance, leading to an increase in threshold voltage. The results indicate that AZO with MoOx layers of optimal thickness may be potential candidates for anode use in organic light emitting diodes.

  4. Na-ion Storage Performances of FeSe(x) and Fe2O3 Hollow Nanoparticles-Decorated Reduced Graphene Oxide Balls prepared by Nanoscale Kirkendall Diffusion Process.

    PubMed

    Park, Gi Dae; Cho, Jung Sang; Lee, Jung-Kul; Kang, Yun Chan

    2016-02-29

    Uniquely structured FeSe(x)-reduced graphene oxide (rGO) composite powders, in which hollow FeSe(x) nanoparticles are uniformly distributed throughout the rGO matrix, were prepared by spray pyrolysis applying the nanoscale Kirkendall diffusion process. Iron oxide-rGO composite powders were transformed into FeSe(x)-rGO composite powders by a two-step post-treatment process. Metallic Fe nanocrystals formed during the first-step post-treatment process were transformed into hollow FeSe(x) nanoparticles during the selenization process. The FeSe(x)-rGO composite powders had mixed crystal structures of FeSe and FeSe2 phases. A rGO content of 33% was estimated from the TG analysis of the FeSe(x)-rGO composite powders. The FeSe(x)-rGO composite powders had superior sodium-ion storage properties compared to those of the Fe2O3-rGO composite powders with similar morphological characteristics. The discharge capacities of the FeSe(x)- and Fe2O3-rGO composite powders for the 200(th) cycle at a constant current density of 0.3 A g(-1) were 434 and 174 mA h g(-1), respectively. The FeSe(x)-rGO composite powders had a high discharge capacity of 311 mA h g(-1) for the 1000(th) cycle at a high current density of 1 A g(-1).

  5. Kinetic and thermodynamic characterization of telomeric G-quadruplex by nonequilibrium capillary electrophoresis: application to G-quadruplex/duplex competition.

    PubMed

    Xu, Youzhi; Feng, Xiaojun; Du, Wei; Liu, Xin; Luo, Qingming; Liu, Bi-Feng

    2008-09-15

    In this paper, nonequilibrium capillary electrophoresis (NECE) was attempted for the first time to investigate a dual equilibrium system, where the intramolecular G-quadruplex folding was in competition with the intermolecular duplex formation. Samples of an equilibrium mixture of human telomeric DNA and its complementary strands were separated in capillaries under nonequilibrium conditions without K (+). Polyethylene oxide was added to the running buffer facilitating the separation of single-stranded DNA, duplex, and G-quadruplex. Thus, the folding/unfolding rate constants of the G-quadruplex and the association/dissociation constants of the duplex could be simultaneously derived from the same experiment. Results indicated that the duplex formation induced minimal influence on the G-quadruplex folding. On the basis of the kinetic characterization of the G-quadruplex at varying temperatures, the thermodynamic parameters of the G-quadruplex could also be determined. Thus, the NECE method provided a new avenue for studying the kinetics and thermodynamics of nucleic acids within dual equilibrium systems with significant advantages of extreme-low sample cost (approximately 10 (-18) mol) and high repeatability.

  6. Mapping nanoscale light fields

    NASA Astrophysics Data System (ADS)

    Rotenberg, N.; Kuipers, L.

    2014-12-01

    The control of light fields on subwavelength scales in nanophotonic structures has become ubiquitous, driven by both curiosity and a multitude of applications in fields ranging from biosensing to quantum optics. Mapping these fields in detail is crucial, as theoretical modelling is far from trivial and highly dependent on nanoscale geometry. Recent developments of nanoscale field mapping, particularly with near-field microscopy, have not only led to a vastly increased resolution, but have also resulted in increased functionality. The phase and amplitude of different vector components of both the electric and magnetic fields are now accessible, as is the ultrafast temporal or spectral evolution of propagating pulses in nanostructures. In this Review we assess the current state-of-the-art of subwavelength light mapping, highlighting the new science and nanostructures that have subsequently become accessible.

  7. Tunable nanoscale graphene magnetometers.

    PubMed

    Pisana, Simone; Braganca, Patrick M; Marinero, Ernesto E; Gurney, Bruce A

    2010-01-01

    The detection of magnetic fields with nanoscale resolution is a fundamental challenge for scanning probe magnetometry, biosensing, and magnetic storage. Current technologies based on giant magnetoresistance and tunneling magnetoresistance are limited at small sizes by thermal magnetic noise and spin-torque instability. These limitations do not affect Hall sensors consisting of high mobility semiconductors or metal thin films, but the loss of magnetic flux throughout the sensor's thickness greatly limits spatial resolution and sensitivity. Here we demonstrate graphene extraordinary magnetoresistance devices that combine the Hall effect and enhanced geometric magnetoresistance, yielding sensitivities rivaling that of state of the art sensors but do so with subnanometer sense layer thickness at the sensor surface. Back-gating provides the ability to control sensor characteristics, which can mitigate both inherent variations in material properties and fabrication-induced device-to-device variability that is unavoidable at the nanoscale.

  8. Thermoacoustic Duplex Technology for Cooling and Powering a Venus Lander

    NASA Astrophysics Data System (ADS)

    Walker, A. R.; Haberbusch, M. S.; Sasson, J.

    2015-04-01

    A Thermoacoustic Stirling Heat Engine (TASHE) is directly coupled to a Pulse Tube Refrigerator (PTR) in a duplex configuration, providing simultaneous cooling and electrical power, thereby suiting the needs of a long-lived Venus lander.

  9. 43. View of station from southwest side with duplex keepers' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. View of station from southwest side with duplex keepers' dwelling to the left. USLHB photo by Herbert Bamber, June 9, 1893. - Bodie Island Light Station, Off Highway 12, Nags Head, Dare County, NC

  10. 1. VIEW OF STAFF HOUSE (FEATURE 10), FACING SOUTHWEST. DUPLEX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF STAFF HOUSE (FEATURE 10), FACING SOUTHWEST. DUPLEX (FEATURE 7) IS VISIBLE IN THE BACKGROUND AT RIGHT. - Copper Canyon Camp of the International Smelting & Refining Company, Staff House, Copper Canyon, Battle Mountain, Lander County, NV

  11. 1. VIEW OF RESIDENCE (FEATURE 12), FACING SOUTHWEST. DUPLEX (FEATURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF RESIDENCE (FEATURE 12), FACING SOUTHWEST. DUPLEX (FEATURE 9) IS VISIBLE IN THE BACKGROUND. - Copper Canyon Camp of the International Smelting & Refining Company, Residence, Copper Canyon, Battle Mountain, Lander County, NV

  12. Duplex ultrasound assessment of femorodistal grafts: correlation with angiography.

    PubMed

    McShane, M D; Gazzard, V M; Clifford, P C; Hacking, C N; Fairhurst, J J; Humphries, K N; Birch, S J; Webster, J H; Chant, A D

    1987-12-01

    Fifty-eight grafts have been assessed using duplex scanning and ankle brachial pressure indices. This assessment is compared with the findings by angiography. Eighteen grafts were occluded and 40 patent. Duplex scanning defined graft status with a greater accuracy than pressure indices. Pressure indices alone would not differentiate "satisfactory" grafts from those with localised, haemodynamically significant disease. Only 55% of those grafts with localised stenoses demonstrated a fall of greater than 0.2 in ankle brachial pressure index after exercise. When the information obtained using pressure indices and duplex scanning was combined non-invasive assessment had a sensitivity of 86% and specificity of 94% for detection of localised, haemodynamically significant disease in patent grafts. Haemodynamically significant disease, as defined by angiography, can be detected and localised with duplex scanning complementing the use of pressure indices in graft assessment.

  13. Evaluation of Interface Property and DC Characteristics Enhancement in Nanoscale n-Channel Metal-Oxide-Semiconductor Field-Effect Transistor Using Stress Memorization Technique

    NASA Astrophysics Data System (ADS)

    Huang, Po Chin; Lein Wu, San; Jinn Chang, Shoou; Huang, Yao Tsung; Kuo, Cheng Wen; Chang, Ching Yao; Cheng, Yao Chin; Cheng, Osbert

    2010-09-01

    In this letter, the advanced 40 nm technology n-channel metal-oxide-semiconductor field-effect transistor devices using the stress memorization technique (SMT) are presented. We demonstrate that SMT process would not affect the electrical characteristics of devices and can introduce higher tensile stress on channels, which enhances drive current. Through charge pumping measurement, it can be verified that SMT does not affect Si/SiO2 interface quality. Moreover, SMT-induced higher tensile stress decreases not only scattering coefficient but also tunneling attenuation length, resulting in smaller input-referred noise, which represents an intrinsic advantage of low-frequency noise performance.

  14. The Origins of Microtexture in Duplex Ti Alloys (Preprint)

    DTIC Science & Technology

    2008-06-01

    To) June 2008 Journal Article Preprint 4 . TITLE AND SUBTITLE THE ORIGINS OF MICROTEXTURE IN DUPLEX Ti ALLOYS (PREPRINT) 5a. CONTRACT NUMBER In...house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6 . AUTHOR(S) M.G. Glavic (UES, Inc.) B.B. Bartha (United Technologies Corporation...applicable to duplex alpha/beta titanium microstructures. The crystallographic coherency of the primary and secondary alpha phase with the prior beta

  15. Ternary Pt9RhFex Nanoscale Alloys as Highly Efficient Catalysts with Enhanced Activity and Excellent CO-Poisoning Tolerance for Ethanol Oxidation.

    PubMed

    Wang, Peng; Yin, Shibin; Wen, Ying; Tian, Zhiqun; Wang, Ningzhang; Key, Julian; Wang, Shuangbao; Shen, Pei Kang

    2017-03-13

    To address the problems of high cost and poor stability of anode catalysts in direct ethanol fuel cells (DEFCs), ternary nanoparticles Pt9RhFex (x = 1, 3, 5, 7, and 9) supported on carbon powders (XC-72R) have been synthesized via a facile method involving reduction by sodium borohydride followed by thermal annealing in N2 at ambient pressure. The catalysts are physically characterized by X-ray diffraction, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy, and their catalytic performance for the ethanol oxidation reaction (EOR) is evaluated by cyclic and linear scan voltammetry, CO-stripping voltammograms, and chronopotentiometry. All the Pt9RhFex/C catalysts of different atomic ratios produce high EOR catalytic activity. The catalyst of atomic ratio composition 9:1:3 (Pt/Rh/Fe) has the highest activity and excellent CO-poisoning tolerance. Moreover, the enhanced EOR catalytic activity on Pt9RhFe3/C when compared to Pt9Rh/C, Pt3Fe/C, and Pt/C clearly demonstrates the presence of Fe improves catalytic performance. Notably, the onset potential for CO oxidation on Pt9RhFe3/C (0.271 V) is ∼55, 75, and 191 mV more negative than on Pt9Rh/C (0.326 V), Pt3Fe/C (0.346 V), and Pt/C (0.462 V), respectively, which implies the presence of Fe atoms dramatically improves CO-poisoning tolerance. Meanwhile, compared to the commercial PtRu/C catalyst, the peak potential on Pt9RhFe3/C for CO oxidation was just slightly changed after several thousand cycles, which shows high stability against the potential cycling. The possible mechanism by which Fe and Rh atoms facilitate the observed enhanced performance is also considered herein, and we conclude Pt9RhFe3/C offers a promising anode catalyst for direct ethanol fuel cells.

  16. Phase Transformations in Cast Duplex Stainless Steels

    SciTech Connect

    Kim, Yoon-Jun

    2004-01-01

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as σ and χ can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (σ + χ) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, σ was stabilized with increasing Cr addition and χ by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by

  17. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts

    PubMed Central

    Willhite, Calvin C.; Karyakina, Nataliya A.; Yokel, Robert A.; Yenugadhati, Nagarajkumar; Wisniewski, Thomas M.; Arnold, Ian M. F.; Momoli, Franco; Krewski, Daniel

    2016-01-01

    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al” assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+2 and Al(H2O)6+3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2•− and OH•. Thus, it is the Al+3-induced formation of oxygen radicals that accounts for the oxidative damage that

  18. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts.

    PubMed

    Willhite, Calvin C; Karyakina, Nataliya A; Yokel, Robert A; Yenugadhati, Nagarajkumar; Wisniewski, Thomas M; Arnold, Ian M F; Momoli, Franco; Krewski, Daniel

    2014-10-01

    oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer's disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances.

  19. Terahertz absorption of DNA decamer duplex.

    PubMed

    Li, Xiaowei; Globus, Tatiana; Gelmont, Boris; Salay, Luiz C; Bykhovski, Alexei

    2008-11-27

    This work combines experimental and theoretical approaches to investigate terahertz absorption spectra of the DNA formed by the sequence oligomer 5'-CCGGCGCCGG-3'. The three-dimensional structure of this self-complimentary DNA decamer has been well-studied, permitting us to perform direct identification of the low-frequency phonon modes associated with specific conformation and to conduct comprehensive computer simulations. Two modeling techniques, normal-mode analysis and nanosecond molecular dynamics with explicit solvent molecules, were employed to extract the low-frequency vibrational modes based on which the absorption spectra were calculated. The absorption spectra of the DNA decamer in aqueous solution were measured in the frequency range 10-25 cm(-1) using the terahertz Fourier transform infrared spectroscopy. Multiple well-resolved and reproducible resonance modes were observed. When calculated and experimental spectra were compared, the spectrum based on molecular dynamics simulations showed a better correlation with the experimental spectra than the one based on normal-mode analysis. These results demonstrate that there exist a considerable number of active low-frequency phonon modes in this short DNA duplex.

  20. Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O.'

    2015-06-01

    Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness.

  1. Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films.

    PubMed

    Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A; O'Dwyer, Colm

    2015-06-30

    Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness.

  2. Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films

    PubMed Central

    Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O’

    2015-01-01

    Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness. PMID:26123117

  3. Nanoscale Semiconductor Electronics

    DTIC Science & Technology

    2015-02-25

    MONITOR’S REPORT Kirtland AFB, NM 87117-5776 NUMBER(S) AFRL -RV-PS-TR-2014-0202 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release...Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSE/Jesse Mee 1 cy ... AFRL -RV-PS- AFRL -RV-PS- TR-2014-0202 TR-2014-0202 NANOSCALE SEMICONDUCTOR ELECTRONICS Steven R. J. Brueck and Ganesh Balakrishnan University of New

  4. Nanotribology and Nanoscale Friction

    SciTech Connect

    Guo, Yi; Qu, Zhihua; Braiman, Yehuda; Zhang, Zhenyu; Barhen, Jacob

    2008-01-01

    Tribology is the science and technology of contacting solid surfaces in relative motion, including the study of lubricants, lubrication, friction, wear, and bearings. It is estimated that friction and wear cost the U.S. economy 6% of the gross national product (Persson, 2000). For example, 5% of the total energy generated in an automobile engine is lost to frictional resistance. The study of nanoscale friction has a technological impact in reducing energy loss in machines, in microelectromechanical systems (MEMS), and in the development of durable, low-friction surfaces and ultra-thin lubrication films.

  5. ES and H-compatible lubrication for duplex bearings

    SciTech Connect

    Steinhoff, R.G.

    1997-10-01

    Two ES and H-compatible lubricants (environment, safety, and health) for duplex bearing applications and one hybrid material duplex bearing were evaluated and compared against duplex bearings with trichlorotrifluoroethane (Freon) deposition of low molecular weight polytetrafluoroethylene (PTFE) bearing lubricant extracted from Vydax{trademark}. Vydax is a product manufactured by DuPont consisting of various molecular weights of PTFE suspended in trichlorotrifluoroethane (Freon), which is an ozone-depleting solvent. Vydax has been used as a bearing lubricant in strong link mechanisms since 1974. Hybrid duplex bearings with silicon nitride balls and molded glass-nylon-Teflon retainers, duplex bearings lubricated with sputtered MoS{sub 2} on races and retainers, and duplex bearings lubricated with electrophoretic deposited MoS{sub 2} were evaluated. Bearings with electrophoretic deposited MoS{sub 2} performed as well as bearings with Freon deposition of PTFE from Freon-based Vydax. Hybrid bearings with silicon nitride balls performed worse than bearings lubricated with Vydax, but their performance would still be acceptable for most applications. Bearings lubricated with sputtered MoS{sub 2} on the races and retainers had varying amounts of film on the bearings. This affected the performance of the bearings. Bearings with a uniform coating performed to acceptable levels, but bearings with no visible MoS{sub 2} on the races and retainers did not perform as well as bearings with the other coatings. Unless process controls are incorporated in the sputtering process or the bearings are screened, they do not appear to be acceptable for duplex bearing applications.

  6. Nanoscale subsurface imaging.

    PubMed

    Soliman, Mikhael; Ding, Yi; Tetard, Laurene

    2017-01-31

    The ability to probe structures and functional properties of complex systems at the nanoscale, both at their surface and in their volume, has drawn substantial attention in recent years. Besides detecting heterogeneities, cracks and defects below the surface, more advanced explorations of chemical or electrical properties are of great interest. In this review article, we review some approaches developed to explore heterogeneities below the surface, including recent progress in the different aspects of metrology in optics, electron microscopy, and scanning probe microscopy. We discuss the principle and mechanisms of image formation associated with each technique, including data acquisition, data analysis and modeling for nanoscale structural and functional imaging. We highlight the advances based on atomic force microscopy (AFM). Our discussion first introduces methods providing structural information of the buried structures, such as position in the volume and geometry. Next we present how functional properties including conductivity, capacitance, and composition can be extracted from the modalities available to date and how they could eventually enable tomography reconstructions of systems such as overlay structures in transistors or living systems. Finally we propose a perspective regarding the outstanding challenges and needs to push the field forward.

  7. Nanoscale relaxation oscillator

    DOEpatents

    Zettl, Alexander K.; Regan, Brian C.; Aloni, Shaul

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  8. 2-Thiouracil deprived of thiocarbonyl function preferentially base pairs with guanine rather than adenine in RNA and DNA duplexes.

    PubMed

    Sochacka, Elzbieta; Szczepanowski, Roman H; Cypryk, Marek; Sobczak, Milena; Janicka, Magdalena; Kraszewska, Karina; Bartos, Paulina; Chwialkowska, Anna; Nawrot, Barbara

    2015-03-11

    2-Thiouracil-containing nucleosides are essential modified units of natural and synthetic nucleic acids. In particular, the 5-substituted-2-thiouridines (S2Us) present in tRNA play an important role in tuning the translation process through codon-anticodon interactions. The enhanced thermodynamic stability of S2U-containing RNA duplexes and the preferred S2U-A versus S2U-G base pairing are appreciated characteristics of S2U-modified molecular probes. Recently, we have demonstrated that 2-thiouridine (alone or within an RNA chain) is predominantly transformed under oxidative stress conditions to 4-pyrimidinone riboside (H2U) and not to uridine. Due to the important biological functions and various biotechnological applications for sulfur-containing nucleic acids, we compared the thermodynamic stabilities of duplexes containing desulfured products with those of 2-thiouracil-modified RNA and DNA duplexes. Differential scanning calorimetry experiments and theoretical calculations demonstrate that upon 2-thiouracil desulfuration to 4-pyrimidinone, the preferred base pairing of S2U with adenosine is lost, with preferred base pairing with guanosine observed instead. Therefore, biological processes and in vitro assays in which oxidative desulfuration of 2-thiouracil-containing components occurs may be altered. Moreover, we propose that the H2U-G base pair is a suitable model for investigation of the preferred recognition of 3'-G-ending versus A-ending codons by tRNA wobble nucleosides, which may adopt a 4-pyrimidinone-type structural motif.

  9. Rocket Science at the Nanoscale.

    PubMed

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  10. Cavitation Erosion of Sensitized UNS S31803 Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Mitelea, Ion; Micu, Lavinia Mădălina; Bordeaşu, Ilare; Crăciunescu, Corneliu Marius

    2016-05-01

    During processing or use, duplex steels can be subjected to heating at high temperatures that can affect their behavior. This work aims to correlate the influence of the sensitization treatment on the ultrasonic cavitation erosion behavior of a UNS S31803 (X2CrNiMoN22-5-3) duplex stainless steel. Duplex stainless steels, formed as a result of rapid cooling after solution annealing, are sensitized at temperatures of 475 and 850 °C, respectively, leading to hardening and embrittlement due to the spinodal decomposition of the ferrite and the precipitation of secondary phases. The ultrasonic cavitation erosion experiments showed that the sensitization at 850 °C reduced the mean depth of erosion by about 11% and the mean depth of erosion rate by 28%. By contrast, the sensitization at 475 °C deteriorates the cavitation erosion resistance, increasing the erosion parameters by up to 22%, compared to the solution annealed state.

  11. Defined presentation of carbohydrates on a duplex DNA scaffold.

    PubMed

    Schlegel, Mark K; Hütter, Julia; Eriksson, Magdalena; Lepenies, Bernd; Seeberger, Peter H

    2011-12-16

    A new method for the spatially defined alignment of carbohydrates on a duplex DNA scaffold is presented. The use of an N-hydroxysuccinimide (NHS)-ester phosphoramidite along with carbohydrates containing an alkylamine linker allows for on-column labeling during solid-phase oligonucleotide synthesis. This modification method during solid-phase synthesis only requires the use of minimal amounts of complex carbohydrates. The covalently attached carbohydrates are presented in the major groove of the B-form duplex DNA as potential substrates for murine type II C-type lectin receptors mMGL1 and mMGL2. CD spectroscopy and thermal melting revealed only minimal disturbance of the overall helical structure. Surface plasmon resonance and cellular uptake studies with bone-marrow-derived dendritic cells were used to assess the capability of these carbohydrate-modified duplexes to bind to mMGL receptors.

  12. CMOS serial link for fully duplexed data communication

    NASA Astrophysics Data System (ADS)

    Lee, Kyeongho; Kim, Sungjoon; Ahn, Gijung; Jeong, Deog-Kyoon

    1995-04-01

    This paper describes a CMOS serial link allowing fully duplexed 500 Mbaud serial data communication. The CMOS serial link is a robust and low-cost solution to high data rate requirements. A central charge pump PLL for generating multiphase clocks for oversampling is shared by several serial link channels. Fully duplexed serial data communication is realized in the bidirectional bridge by separating incoming data from the mixed signal on the cable end. The digital PLL accomplishes process-independent data recovery by using a low-ratio oversampling, a majority voting, and a parallel data recovery scheme. Mostly, digital approach could extend its bandwidth further with scaled CMOS technology. A single channel serial link and a charge pump PLL are integrated in a test chip using 1.2 micron CMOS process technology. The test chip confirms upto 500 Mbaud unidirectional mode operation and 320 Mbaud fully duplexed mode operation with pseudo random data patterns.

  13. On the thermomechanical deformation behavior of duplex-type materials

    NASA Astrophysics Data System (ADS)

    Siegmund, T.; Werner, E.; Fischer, F. D.

    1995-04-01

    Two-phase duplex-type materials possess microstructures containing roughly the same amounts of the constituent phases whose grains form interwoven networks. Duplex stainless steels are typical representatives of this material group. In these steels the constituent phases austenite and ferrite have different coefficients of thermal expansion. On pure thermal loading or thermomechanical loading the yield strength of the phases can be exceeded. Specimens of a forged duplex steel with a uniaxially anisotropic micro-structure deform irreversibly even under pure thermal cycling conditions with a monotonic accumulation of strain. The results of a systematic finite element based micromechanical analysis of the thermomechanical deformation behavior of duplex steels are presented and discussed. The analysis is based on a quantitative characterization of both the real and model microstructures. Additionally, an extended constitutive material law for the thermomechanical loading of the duplex steel is proposed. For dual-phase materials this description incorporates an additional thermomechanical strain increment as a very important contribution to the total strain increment. Both the micromechanical model and the analytical model are used to analyse the experimental findings from dilatometer tests. The micromechanical approach allows the evolution of the irreversible strains in the two phases generated in a thermal cycle to be modeled. It is shown that the matrix-phase is always more deformed than the inclusion-phase, irrespective of which of the two phases (austenite or ferrite) forms the matrix. This prediction is confirmed by electron microscopic observations of a thermally cycled duplex steel. Based on these results a mechanism driving the ratchet effect is proposed.

  14. Small molecule-mediated duplex formation of nucleic acids with 'incompatible' backbones.

    PubMed

    Cafferty, Brian J; Musetti, Caterina; Kim, Keunsoo; Horowitz, Eric D; Krishnamurthy, Ramanarayanan; Hud, Nicholas V

    2016-04-07

    Proflavine, a known intercalator of DNA and RNA, promotes duplex formation by nucleic acids with natural and non-natural backbones that otherwise form duplexes with low thermal stability, and even some that show no sign of duplex formation in the absence of proflavine. These findings demonstrate the potential for intercalators to be used as cofactors for the assembly of rationally designed nucleic acid structures, and could provide fundamental insights regarding intercalation of natural nucleic acid duplexes.

  15. Synthesis of nanoscale superconducting YBCO by a novel technique

    NASA Astrophysics Data System (ADS)

    Xu, X. L.; Guo, J. D.; Wang, Y. Z.; Sozzi, A.

    2002-06-01

    A novel technique using citrate pyrolysis was developed to prepare nanoscale superconducting oxide materials. This paper describes the details on synthesizing nanocrystalline YBCO with a Tc of ∼80 K using this method. The morphology and structure of the nanoscale products were characterized by powder X-ray diffraction and scanning electron microscopy. The obtained YBCO grains have a mean particle size of 40-60 nm (for unannealed samples) and 100-150 nm (for the annealed products). The crystalline size was only ∼20 nm. Currently there are attempts at using such fine powder to fabricate longer superconducting tapes, which should induce a technical revolution in the production of superconducting tapes.

  16. Computer Maintenance Operations Center (CMOC), showing duplexed cyber 170174 computers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Computer Maintenance Operations Center (CMOC), showing duplexed cyber 170-174 computers - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  17. FRONT VIEW OF FACILITY 561, WHICH WAS ORIGINALLY A DUPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONT VIEW OF FACILITY 561, WHICH WAS ORIGINALLY A DUPLEX. PHOTO SHOWS THE ONLY UNIT REMAINING, UNIT B (UNIT A WAS DEMOLISHED AFTER A FIRE). VIEW FACING NORTH - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  18. Deformability Calculation for Estimation of the Relative Stability of Chemically Modified RNA Duplexes.

    PubMed

    Masaki, Yoshiaki; Sekine, Mitsuo; Seio, Kohji

    2017-03-02

    Chemical modification of RNA duplexes alters their stability. We have attempted to develop a computational approach to estimate the thermal stability of chemically modified duplexes. These studies revealed that the deformability of chemically modified RNA duplexes, calculated from molecular dynamics simulations, could be used as a good indicator for estimating the effect of chemical modification on duplex thermal stability. This unit describes how deformability calculation can be applied to estimate the relative stability of chemically modified RNA duplexes. © 2017 by John Wiley & Sons, Inc.

  19. Friction laws at the nanoscale.

    PubMed

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  20. Nanoscale Electrostatics in Mitosis

    NASA Astrophysics Data System (ADS)

    Gagliardi, L. John; West, Patrick Michael

    2001-04-01

    Primitive biological cells had to divide with very little biology. This work simulates a physicochemical mechanism, based upon nanoscale electrostatics, which explains the anaphase A poleward motion of chromosomes. In the cytoplasmic medium that exists in biological cells, electrostatic fields are subject to strong attenuation by Debye screening, and therefore decrease rapidly over a distance equal to several Debye lengths. However, the existence of microtubules within cells changes the situation completely. Microtubule dimer subunits are electric dipolar structures, and can act as intermediaries that extend the reach of the electrostatic interaction over cellular distances. Experimental studies have shown that intracellular pH rises to a peak at mitosis, and decreases through cytokinesis. This result, in conjunction with the electric dipole nature of microtubule subunits and the Debye screened electrostatic force is sufficient to explain and unify the basic events during mitosis and cytokinesis: (1) assembly of asters, (2) motion of the asters to poles, (3) poleward motion of chromosomes (anaphase A), (4) cell elongation, and (5) cytokinesis. This paper will focus on a simulation of the dynamics if anaphase A motion based on this comprehensive model. The physicochemical mechanisms utilized by primitive cells could provide important clues regarding our understanding of cell division in modern eukaryotic cells.

  1. Capillarity at the nanoscale.

    PubMed

    van Honschoten, Joost W; Brunets, Nataliya; Tas, Niels R

    2010-03-01

    In this critical review we treat the phenomenon of capillarity in nanoscopic confinement, based on application of the Young-Laplace equation. In classical capillarity the curvature of the meniscus is determined by the confining geometry and the macroscopic contact angle. We show that in narrow confinement the influence of the disjoining pressure and the related wetting films have to be considered as they may significantly change the meniscus curvature. Nanochannel based static and dynamic capillarity experiments are reviewed. A typical effect of nanoscale confinement is the appearance of capillarity induced negative pressure. Special attention is paid to elasto-capillarity and electro-capillarity. The presence of electric fields leads to an extra stress term to be added in the Young-Laplace equation. A typical example is the formation of the Taylor cone, essential in the theory of electrospray. Measurements of the filling kinetics of nanochannels with water and aqueous salt solutions are discussed. These experiments can be used to characterize viscosity and apparent viscosity effects of water in nanoscopic confinement. In the final section we show four examples of appearances of capillarity in engineering and in nature (112 references).

  2. Electrostatics at the nanoscale.

    PubMed

    Walker, David A; Kowalczyk, Bartlomiej; de la Cruz, Monica Olvera; Grzybowski, Bartosz A

    2011-04-01

    Electrostatic forces are amongst the most versatile interactions to mediate the assembly of nanostructured materials. Depending on experimental conditions, these forces can be long- or short-ranged, can be either attractive or repulsive, and their directionality can be controlled by the shapes of the charged nano-objects. This Review is intended to serve as a primer for experimentalists curious about the fundamentals of nanoscale electrostatics and for theorists wishing to learn about recent experimental advances in the field. Accordingly, the first portion introduces the theoretical models of electrostatic double layers and derives electrostatic interaction potentials applicable to particles of different sizes and/or shapes and under different experimental conditions. This discussion is followed by the review of the key experimental systems in which electrostatic interactions are operative. Examples include electroactive and "switchable" nanoparticles, mixtures of charged nanoparticles, nanoparticle chains, sheets, coatings, crystals, and crystals-within-crystals. Applications of these and other structures in chemical sensing and amplification are also illustrated.

  3. Free energy estimation of short DNA duplex hybridizations

    PubMed Central

    2010-01-01

    Background Estimation of DNA duplex hybridization free energy is widely used for predicting cross-hybridizations in DNA computing and microarray experiments. A number of software programs based on different methods and parametrizations are available for the theoretical estimation of duplex free energies. However, significant differences in free energy values are sometimes observed among estimations obtained with various methods, thus being difficult to decide what value is the accurate one. Results We present in this study a quantitative comparison of the similarities and differences among four published DNA/DNA duplex free energy calculation methods and an extended Nearest-Neighbour Model for perfect matches based on triplet interactions. The comparison was performed on a benchmark data set with 695 pairs of short oligos that we collected and manually curated from 29 publications. Sequence lengths range from 4 to 30 nucleotides and span a large GC-content percentage range. For perfect matches, we propose an extension of the Nearest-Neighbour Model that matches or exceeds the performance of the existing ones, both in terms of correlations and root mean squared errors. The proposed model was trained on experimental data with temperature, sodium and sequence concentration characteristics that span a wide range of values, thus conferring the model a higher power of generalization when used for free energy estimations of DNA duplexes under non-standard experimental conditions. Conclusions Based on our preliminary results, we conclude that no statistically significant differences exist among free energy approximations obtained with 4 publicly available and widely used programs, when benchmarked against a collection of 695 pairs of short oligos collected and curated by the authors of this work based on 29 publications. The extended Nearest-Neighbour Model based on triplet interactions presented in this work is capable of performing accurate estimations of free energies

  4. Charge transport in nanoscale junctions.

    PubMed

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-03

    the molecular level. Nanoscale charge transport experiments in ionic liquids extend the field to high temperatures and to systems with intriguing interfacial potential distributions. Other directions may include dye-sensitized solar cells, new sensor applications and diagnostic tools for the study of surface-bound single molecules. Another motivation for this special issue is thus to highlight activities across different research communities with nanoscale charge transport as a common denominator. This special issue gathers 27 articles by scientists from the United States, Germany, the UK, Denmark, Russia, France, Israel, Canada, Australia, Sweden, Switzerland, the Netherlands, Belgium and Singapore; it gives us a flavour of the current state-of-the-art of this diverse research area. While based on contributions from many renowned groups and institutions, it obviously cannot claim to represent all groups active in this very broad area. Moreover, a number of world-leading groups were unable to take part in this project within the allocated time limit. Nevertheless, we regard the current selection of papers to be representative enough for the reader to draw their own conclusions about the current status of the field. Each paper is original and has its own merit, as all papers in Journal of Physics: Condensed Matter special issues are subjected to the same scrutiny as regular contributions. The Guest Editors have deliberately not defined the specific subjects covered in this issue. These came out logically from the development of this area, for example: 'Traditional' solid state nanojunctions based on adsorbed layers, oxide films or nanowires sandwiched between two electrodes: effects of molecular structure (aromaticity, anchoring groups), symmetry, orientation, dynamics (noise patterns) and current-induced heating. Various 'physical effects': inelastic tunnelling and Coulomb blockade, polaron effects, switching modes, and negative differential resistance; the role of

  5. Dustiness of Fine and Nanoscale Powders

    PubMed Central

    Evans, Douglas E.; Baron, Paul A.

    2013-01-01

    Dustiness may be defined as the propensity of a powder to form airborne dust by a prescribed mechanical stimulus; dustiness testing is typically intended to replicate mechanisms of dust generation encountered in workplaces. A novel dustiness testing device, developed for pharmaceutical application, was evaluated in the dustiness investigation of 27 fine and nanoscale powders. The device efficiently dispersed small (mg) quantities of a wide variety of fine and nanoscale powders, into a small sampling chamber. Measurements consisted of gravimetrically determined total and respirable dustiness. The following materials were studied: single and multiwalled carbon nanotubes, carbon nanofibers, and carbon blacks; fumed oxides of titanium, aluminum, silicon, and cerium; metallic nanoparticles (nickel, cobalt, manganese, and silver) silicon carbide, Arizona road dust; nanoclays; and lithium titanate. Both the total and respirable dustiness spanned two orders of magnitude (0.3–37.9% and 0.1–31.8% of the predispersed test powders, respectively). For many powders, a significant respirable dustiness was observed. For most powders studied, the respirable dustiness accounted for approximately one-third of the total dustiness. It is believed that this relationship holds for many fine and nanoscale test powders (i.e. those primarily selected for this study), but may not hold for coarse powders. Neither total nor respirable dustiness was found to be correlated with BET surface area, therefore dustiness is not determined by primary particle size. For a subset of test powders, aerodynamic particle size distributions by number were measured (with an electrical low-pressure impactor and an aerodynamic particle sizer). Particle size modes ranged from approximately 300nm to several micrometers, but no modes below 100nm, were observed. It is therefore unlikely that these materials would exhibit a substantial sub-100nm particle contribution in a workplace. PMID:23065675

  6. Nanoscale Microelectronic Circuit Development

    DTIC Science & Technology

    2011-06-17

    using conventional ring-oscillator-like structures, for process portability. Such low-power high- 10 speed links will be useful for massively parallel...systems MESFET Metal-Semiconductor Field-Effect-Transistor MHz Megahertz MIMO Multiple input, multiple output MOSFET Metal Oxide Semiconductor Field

  7. Directed Nanoscale Assembly of Graphene Based Materials

    NASA Astrophysics Data System (ADS)

    Kim, Sang Ouk

    Graphene based materials, including fullerene, carbon nanotubes and graphene, are two-dimensional polymeric materials consisting of sp2 hybrid carbons. Those carbon materials have attracted enormous research attention for their outstanding material properties along with molecular scale dimension. The optimized utilization of those materials in various application fields inevitably requires the subtle controllability of their structures and properties. In this presentation, our research achievements associated to directed nanoscale assembly of B- or N-doped graphene based materials will be introduced. Graphene based materials can be efficiently processed into various three-dimensional structures via self-assembly principles. Those carbon assembled structures with extremely large surface and high electro-conductivity are potentially useful for energy and environmental applications. Aqueous dispersion of graphene oxide shows liquid crystalline phase, whose spontaneous molecular ordering is useful for display or fiber spinning. Along with the structure control by directed nanoscale assembly, substitutional doping of graphene based materials with B- or N- can be attained via various chemical treatment methods. The resultant chemically modified carbon materials with tunable workfunction, charge carrier density and enhanced surface activity could be employed for various nanomaterials and nanodevices for improved functionalities and performances.

  8. Synthesis and properties of nanoscale titanium boride

    NASA Astrophysics Data System (ADS)

    Efimova, K. A.; Galevskiy, G. V.; Rudneva, V. V.

    2015-09-01

    This work reports the scientific and technological grounds for plasma synthesis of titanium diboride, including thermodynamic and kinetic conditions of boride formation when titanium and titanium dioxide are interacting with products resulting from boron gasification in the nitrogen - hydrogen plasma flow, and two variations of its behavior using the powder mixtures: titanium - boron and titanium dioxide - boron. To study these technology variations, the mathematical models were derived, describing the relation between element contents in the synthesized products of titanium and free boron and basic parameters. The probable mechanism proposed for forming titanium diboride according to a "vapour - melt - crystal" pattern was examined, covering condensation of titanium vapour in the form of aerosol, boriding of nanoscale melt droplets by boron hydrides and crystallization of titanium - boron melt. The comprehensive physical - chemical certification of titanium diboride was carried out, including the study of its crystal structure, phase and chemical composition, dispersion, morphology and particle oxidation. Technological application prospects for use of titanium diboride nanoscale powder as constituent element in the wettable coating for carbon cathodes having excellent physical and mechanical performance and protective properties.

  9. Deposition of adherent Ag-Ti duplex films on ceramics in a multiple-cathode sputter deposition system

    NASA Technical Reports Server (NTRS)

    Honecy, Frank S.

    1992-01-01

    The adhesion of Ag films deposited on oxide ceramics can be increased by first depositing intermediate films of active metals such as Ti. Such duplex coatings can be fabricated in a widely used three target sputter deposition system. It is shown here that the beneficial effect of the intermediate Ti film can be defeated by commonly used in situ target and substrate sputter cleaning procedures which result in Ag under the Ti. Auger electron spectroscopy and wear testing of the coatings are used to develop a cleaning strategy resulting in an adherent film system.

  10. NMR spectroscopy of RNA duplexes containing pseudouridine in supercooled water.

    PubMed

    Schroeder, Kersten T; Skalicky, Jack J; Greenbaum, Nancy L

    2005-07-01

    We have performed NMR experiments in supercooled water in order to decrease the temperature-dependent exchange of protons in RNA duplexes. NMR spectra of aqueous samples of RNA in bundles of narrow capillaries that were acquired at temperatures as low as -18 degrees C reveal resonances of exchangeable protons not seen at higher temperatures. In particular, we detected the imino protons of terminal base pairs and the imino proton of a non-base-paired pseudouridine in a duplex representing the eukaryotic pre-mRNA branch site helix. Analysis of the temperature dependence of chemical shift changes (thermal coefficients) for imino protons corroborated hydrogen bonding patterns observed in the NMR-derived structural model of the branch site helix. The ability to observe non-base-paired imino protons of RNA is of significant value in structure determination of RNA motifs containing loop and bulge regions.

  11. Microstructure, Properties and Weldability of Duplex Stainless Steel 2101

    NASA Astrophysics Data System (ADS)

    Ma, Li; Hu, Shengsun; Shen, Junqi

    2017-01-01

    The continuous development of duplex stainless steels (DSSs) is due to their excellent corrosion resistance in aggressive environments and their mechanical strength, which is usually twice of conventional austenitic stainless steels (ASSs). In this paper, a designed lean duplex stainless steel 2101, with the alloy design of reduced nickel content and increased additions of manganese and nitrogen, is studied by being partly compared with typical ASS 304L steels. The microstructure, mechanical properties, impact toughness, corrosion resistance and weldability of the designed DSS 2101 were conducted. The results demonstrated that both 2101 steel and its weldment show excellent mechanical properties, impact toughness and corrosion resistance, so DSS 2101 exhibits good comprehensive properties and can be used to replace 304L in numerous applications.

  12. Investigation of plastic deformation heterogeneities in duplex steel by EBSD

    SciTech Connect

    Wronski, S.; Tarasiuk, J.; Bacroix, B.; Baczmanski, A.; Braham, C.

    2012-11-15

    An EBSD analysis of a duplex steel (austeno-ferritic) deformed in tension up to fracture is presented. The main purpose of the paper is to describe, qualitatively and quantitatively, the differences in the behavior of the two phases during plastic deformation. In order to do so, several topological maps are measured on the deformed state using the electron backscatter diffraction technique. Distributions of grain size, misorientation, image quality factor and texture are then analyzed in detail. - Highlights: Black-Right-Pointing-Pointer Heterogeneities in duplex steel is studied. Black-Right-Pointing-Pointer The behavior of the two phases during plastic deformation is studied. Black-Right-Pointing-Pointer IQ factor distribution and misorientation characteristics are examined using EBSD.

  13. Direct surface-enhanced Raman scattering analysis of DNA duplexes.

    PubMed

    Guerrini, Luca; Krpetić, Željka; van Lierop, Danny; Alvarez-Puebla, Ramon A; Graham, Duncan

    2015-01-19

    The exploration of the genetic information carried by DNA has become a major scientific challenge. Routine DNA analysis, such as PCR, still suffers from important intrinsic limitations. Surface-enhanced Raman spectroscopy (SERS) has emerged as an outstanding opportunity for the development of DNA analysis, but its application to duplexes (dsDNA) has been largely hampered by reproducibility and/or sensitivity issues. A simple strategy is presented to perform ultrasensitive direct label-free analysis of unmodified dsDNA with the means of SERS by using positively charged silver colloids. Electrostatic adhesion of DNA promotes nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at nanogram level. As potential applications, we report the quantitative recognition of hybridization events as well as the first examples of SERS recognition of single base mismatches and base methylations (5-methylated cytosine and N6-methylated Adenine) in duplexes.

  14. Laser Safety Method For Duplex Open Loop Parallel Optical Link

    DOEpatents

    Baumgartner, Steven John; Hedin, Daniel Scott; Paschal, Matthew James

    2003-12-02

    A method and apparatus are provided to ensure that laser optical power does not exceed a "safe" level in an open loop parallel optical link in the event that a fiber optic ribbon cable is broken or otherwise severed. A duplex parallel optical link includes a transmitter and receiver pair and a fiber optic ribbon that includes a designated number of channels that cannot be split. The duplex transceiver includes a corresponding transmitter and receiver that are physically attached to each other and cannot be detached therefrom, so as to ensure safe, laser optical power in the event that the fiber optic ribbon cable is broken or severed. Safe optical power is ensured by redundant current and voltage safety checks.

  15. Herpes Zoster Duplex Unilateralis: Two Cases and Brief Literature Review

    PubMed Central

    Son, Jee Hee; Chung, Bo Young; Kim, Hye One; Cho, Hee Jin

    2016-01-01

    Cases involving dermatomal herpes zoster in two or more locations are rare, especially in immunocompetent patients. When two noncontiguous dermatomes are involved, if affected unilaterally, it is called herpes zoster duplex unilateralis; if bilaterally, bilateralis. Here, we report two cases of herpes zoster duplex unilateralis. A 66-year-old man presented with painful erythematous grouped vesicles on his left scalp, forehead, trunk, and back (left [Lt.] V1, Lt. T8). Histologic findings were consistent with herpetic infection. A 33-year-old woman presented with painful erythematous grouped vesicles and crust on her left forehead and neck (Lt. V1, Lt. C5). Both patients were treated with oral administration of famcyclovir 750 mg/day for seven days. PMID:27904277

  16. Smectic phase in suspensions of gapped DNA duplexes

    NASA Astrophysics Data System (ADS)

    Salamonczyk, Miroslaw; Zhang, Jing; Portale, Giuseppe; Zhu, Chenhui; Kentzinger, Emmanuel; Gleeson, James T.; Jakli, Antal; de Michele, Cristiano; Dhont, Jan K. G.; Sprunt, Samuel; Stiakakis, Emmanuel

    2016-11-01

    Smectic ordering in aqueous solutions of monodisperse stiff double-stranded DNA fragments is known not to occur, despite the fact that these systems exhibit both chiral nematic and columnar mesophases. Here, we show, unambiguously, that a smectic-A type of phase is formed by increasing the DNA's flexibility through the introduction of an unpaired single-stranded DNA spacer in the middle of each duplex. This is unusual for a lyotropic system, where flexibility typically destabilizes the smectic phase. We also report on simulations suggesting that the gapped duplexes (resembling chain-sticks) attain a folded conformation in the smectic layers, and argue that this layer structure, which we designate as smectic-fA phase, is thermodynamically stabilized by both entropic and energetic contributions to the system's free energy. Our results demonstrate that DNA as a building block offers an exquisitely tunable means to engineer a potentially rich assortment of lyotropic liquid crystals.

  17. Smectic phase in suspensions of gapped DNA duplexes

    PubMed Central

    Salamonczyk, Miroslaw; Zhang, Jing; Portale, Giuseppe; Zhu, Chenhui; Kentzinger, Emmanuel; Gleeson, James T.; Jakli, Antal; De Michele, Cristiano; Dhont, Jan K. G.; Sprunt, Samuel; Stiakakis, Emmanuel

    2016-01-01

    Smectic ordering in aqueous solutions of monodisperse stiff double-stranded DNA fragments is known not to occur, despite the fact that these systems exhibit both chiral nematic and columnar mesophases. Here, we show, unambiguously, that a smectic-A type of phase is formed by increasing the DNA's flexibility through the introduction of an unpaired single-stranded DNA spacer in the middle of each duplex. This is unusual for a lyotropic system, where flexibility typically destabilizes the smectic phase. We also report on simulations suggesting that the gapped duplexes (resembling chain-sticks) attain a folded conformation in the smectic layers, and argue that this layer structure, which we designate as smectic-fA phase, is thermodynamically stabilized by both entropic and energetic contributions to the system's free energy. Our results demonstrate that DNA as a building block offers an exquisitely tunable means to engineer a potentially rich assortment of lyotropic liquid crystals. PMID:27845332

  18. Compact, precision duplex bearing mount for high vibration environments

    NASA Technical Reports Server (NTRS)

    Bouzakis, George Elias (Inventor); Bowman, James Edward (Inventor); Devine, Edward J. (Inventor); Joffe, Benjamin (Inventor); Segal, Kenneth Neal (Inventor); Webb, Merritt J. (Inventor)

    2002-01-01

    A duplex bearing mount including at least one duplex bearing having an inner race and an outer race, the inner race disposed within the outer race and being rotatable relative to the outer race about an axis, the inner race having substantially no relative movement relative to the outer race in at least one direction along the axis, the inner and outer races each having first and second axial faces which are respectively located at the same axial end of the duplex bearing. The duplex bearing is radially supported by a housing, and a shaft extends through the inner race, the shaft radially and axially supported by the inner race. A first retainer is connected to the housing and engages the first axial surface of a bearing race, the movement of which race in a first direction along the axis being constrained by the first retainer. A second, resilient retainer is connected to the housing or the shaft and is deflected through engagement with the second axial face of a bearing race, the movement of which race in a second direction along the axis, opposite to the first direction, being constrained by the deflected second retainer. The bearing is preloaded by its being clamped between the first and second retainers, and the second retainer forms at least a portion of a spring having the characteristic of a substantially constant force value correlating to a range of various deflection values, whereby the preload of the bearing is substantially unaffected by variations in the deflection of the second retainer.

  19. View from east to west of family housing unit (duplex; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from east to west of family housing unit (duplex; either #27 or #87, as only the 7 is visible). Unit #27 was three-bedroom and located on 9th Street south. Unit #87 was a two-bedroom located on 4th Street north. These housing units have been removed - Stanley R. Mickelsen Safeguard Complex, Family Housing Units, In area bounded by Tenth Street North, Avenue A, & Avenue J, Nekoma, Cavalier County, ND

  20. Integrated optic broadband duplexer made by ion exchange

    NASA Astrophysics Data System (ADS)

    Ghibaudo, E.; Broquin, J.-E.; Benech, P.

    2003-02-01

    The development of optical amplification and bidirectional traffic in local and wide area networks requires broadband multiplexers which are able to treat the signal of an entire telecommunication window. A device made by ion exchange and answering to these needs is proposed in this letter. Its working principle, based on a leaky structure is first explained. An experimental result confirming a good broadband spectral behavior is then presented. Its spectral response displays two duplexing bands of at least 100 nm.

  1. Investigation of hot cracking resistance of 2205 duplex steel

    NASA Astrophysics Data System (ADS)

    Adamiec, J.; Ścibisz, B.

    2010-02-01

    Austenitic duplex steel of the brand 2205 according to Avesta Sheffield is used for welded constructions (pipelines, tanks) in the petrol industry, chemical industry and food industry. It is important to know the range of high-temperature brittleness in designing welding technology for constructions made of this steel type. There is no data in literature concerning this issue. High-temperature brittleness tests using the simulator of heat flow device Gleeble 3800 were performed. The tests results allowed the evaluation of the characteristic temperatures in the brittleness temperature range during the joining of duplex steels, specifically the nil-strength temperature (NST) and nil-ductility temperatures (NDT) during heating, the strength and ductility recovery temperatures (DRT) during cooling, the Rfparameter (Rf = (Tliquidus - NDT)/NDT) describing the duplex steel inclination for hot cracking, and the brittleness temperature range (BTR). It has been stated that, for the examined steel, this range is wide and amounts to ca. 90 °C. The joining of duplex steels with the help of welding techniques creates a significant risk of hot cracks. After analysis of the DTA curves a liquidus temperature of TL = 1465 °C and a solidus temperature of TS = 1454 °C were observed. For NST a mean value was assumed, in which the cracks appeared for six samples; the temperature was 1381 °C. As the value of the NDT temperature 1367 °C was applied while for DRT the assumed temperature was 1375 °C. The microstructure of the fractures was observed using a Hitachi S-3400N scanning electron microscope (SEM). The analyses of the chemical composition were performed using an energy-dispersive X-ray spectrometer (EDS), Noran System Six of Thermo Fisher Scientific. Essential differences of fracture morphology type over the brittle temperature range were observed and described.

  2. All-atom crystal simulations of DNA and RNA duplexes

    PubMed Central

    Liu, Chunmei; Janowski, Pawel A.; Case, David A.

    2014-01-01

    Background Molecular dynamics simulations can complement experimental measures of structure and dynamics of biomolecules. The quality of such simulations can be tested by comparisons to models refined against experimental crystallographic data. Methods We report simulations of a DNA and RNA duplex in their crystalline environment. The calculations mimic the conditions for PDB entries 1D23 [d(CGATCGATCG)2] and 1RNA [(UUAUAUAUAUAUAA)2], and contain 8 unit cells, each with 4 copies of the Watson-Crick duplex; this yields in aggregate 64 µs of duplex sampling for DNA and 16 µs for RNA. Results The duplex structures conform much more closely to the average structure seen in the crystal than do structures extracted from a solution simulation with the same force field. Sequence-dependent variations in helical parameters, and in groove widths, are largely maintained in the crystal structure, but are smoothed out in solution. However, the integrity of the crystal lattice is slowly degraded in both simulations, with the result that the interfaces between chains become heterogeneous. This problem is more severe for the DNA crystal, which has fewer inter-chain hydrogen bond contacts than does the RNA crystal. Conclusions Crystal simulations using current force fields reproduce many features of observed crystal structures, but suffer from a gradual degradation of the integrity of the crystal lattice. General significance The results offer insights into force-field simulations that tests their ability to preserve weak interactions between chains, which will be of importance also in non-crystalline applications that involve binding and recognition. PMID:25255706

  3. Thermoelectric effects in nanoscale junctions.

    PubMed

    Dubi, Yonatan; Di Ventra, Massimiliano

    2009-01-01

    Despite its intrinsic nonequilibrium origin, thermoelectricity in nanoscale systems is usually described within a static scattering approach which disregards the dynamical interaction with the thermal baths that maintain energy flow. Using the theory of open quantum systems, we show instead that unexpected properties, such as a resonant structure and large sign sensitivity, emerge if the nonequilibrium nature of this problem is considered. Our approach also allows us to define and study a local temperature, which shows hot spots and oscillations along the system according to the coupling of the latter to the electrodes. This demonstrates that Fourier's lawa paradigm of statistical mechanicsis generally violated in nanoscale junctions.

  4. Fabrication of nanoscale electrostatic lenses

    NASA Astrophysics Data System (ADS)

    Sinno, I.; Sanz-Velasco, A.; Kang, S.; Jansen, H.; Olsson, E.; Enoksson, P.; Svensson, K.

    2010-09-01

    The fabrication of cylindrical multi-element electrostatic lenses at the nanoscale presents a challenge; they are high-aspect-ratio structures that should be rotationally symmetric, well aligned and freestanding, with smooth edges and flat, clean surfaces. In this paper, we present the fabrication results of a non-conventional process, which uses a combination of focused gallium ion-beam milling and hydrofluoric acid vapor etching. This process makes it possible to fabricate nanoscale electrostatic lenses down to 140 nm in aperture diameter and 4.2 µm in column length, with a superior control of the geometry as compared to conventional lithography-based techniques.

  5. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    EPA Science Inventory

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  6. Apparatus for producing nanoscale ceramic powders

    DOEpatents

    Helble, Joseph J.; Moniz, Gary A.; Morse, Theodore F.

    1995-09-05

    An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

  7. Apparatus for producing nanoscale ceramic powders

    DOEpatents

    Helble, Joseph J.; Moniz, Gary A.; Morse, Theodore F.

    1997-02-04

    An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

  8. Computer Simulation Methods for Defect Configurations and Nanoscale Structures

    SciTech Connect

    Gao, Fei

    2010-01-01

    This chapter will describe general computer simulation methods, including ab initio calculations, molecular dynamics and kinetic Monte-Carlo method, and their applications to the calculations of defect configurations in various materials (metals, ceramics and oxides) and the simulations of nanoscale structures due to ion-solid interactions. The multiscale theory, modeling, and simulation techniques (both time scale and space scale) will be emphasized, and the comparisons between computer simulation results and exprimental observations will be made.

  9. WDM Nanoscale Laser Diodes for Si Photonic Interconnects

    DTIC Science & Technology

    2016-07-25

    SECURITY CLASSIFICATION OF: The goal of this work has been to develop nanoscale VCSELs for integration into various optical systems , including for...developed that deliver high power and low threshold. Slightly larger VCSELs of 2 µm size produce high efficiency , reaching 50 % power conversion... efficiency . Stress testing has shown that the new VCSEL can produce reliability that exceeds commercial oxide 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND

  10. Binding of tobamovirus replication protein with small RNA duplexes.

    PubMed

    Kurihara, Yukio; Inaba, Naoko; Kutsuna, Natsumaro; Takeda, Atsushi; Tagami, Yuko; Watanabe, Yuichiro

    2007-08-01

    The sequence profiles of small interfering RNAs (siRNAs) in Arabidopsis infected with the crucifer tobamovirus tobacco mosaic virus (TMV)-Cg were determined by using a small RNA cloning technique. The majority of TMV-derived siRNAs were 21 nt in length. The size of the most abundant endogenous small RNAs in TMV-infected plants was 21 nt, whilst in mock-inoculated plants, it was 24 nt. Northern blot analysis revealed that some microRNAs (miRNAs) accumulated more in TMV-infected plants than in mock-inoculated plants. The question of whether the TMV-Cg-encoded 126K replication protein, an RNA-silencing suppressor, caused small RNA enrichment was examined. Transient expression of the replication protein did not change the pattern of miRNA processing. However, miRNA, miRNA* (the opposite strand of the miRNA duplex) and hairpin-derived siRNA all co-immunoprecipitated with the replication protein. Gel mobility-shift assays indicated that the replication protein binds small RNA duplexes. These results suggest that the tobamovirus replication protein functions as a silencing suppressor by binding small RNA duplexes, changing the small RNA profile in infected plants.

  11. Duplex-Selective Ruthenium-based DNA Intercalators

    PubMed Central

    Shade, Chad M.; Kennedy, Robert D.; Rouge, Jessica L.; Rosen, Mari S.; Wang, Mary X.; Seo, Soyoung E.; Clingerman, Daniel J.

    2016-01-01

    We report the design and synthesis of small molecules that exhibit enhanced luminescence in the presence of duplex rather than single-stranded DNA. The local environment presented by a well-known [Ru(dipyrido[2,3-a:3',2'-c]phenazine)L2]2+-based DNA intercalator was modified by functionalizing the bipyridine ligands with esters and carboxylic acids. By systematically varying the number and charge of the pendant groups, it was determined that decreasing the electrostatic interaction between the intercalator and the anionic DNA backbone reduced single-strand interactions and translated to better duplex specificity. In studying this class of complexes, a single RuII complex emerged that selectively luminesces in the presence of duplex DNA with little to no background from interacting with single stranded DNA. This complex shows promise as a new dye capable of selectively staining double versus single-stranded DNA in gel electrophoresis, which cannot be done with conventional SYBR dyes. PMID:26119581

  12. Superthermostability of nanoscale TIC-reinforced copper alloys manufactured by a two-step ball-milling process

    NASA Astrophysics Data System (ADS)

    Wang, Fenglin; Li, Yunping; Xu, Xiandong; Koizumi, Yuichiro; Yamanaka, Kenta; Bian, Huakang; Chiba, Akihiko

    2015-12-01

    A Cu-TiC alloy, with nanoscale TiC particles highly dispersed in the submicron-grained Cu matrix, was manufactured by a self-developed two-step ball-milling process on Cu, Ti and C powders. The thermostability of the composite was evaluated by high-temperature isothermal annealing treatments, with temperatures ranging from 727 to 1273 K. The semicoherent nanoscale TiC particles with Cu matrix, mainly located along the grain boundaries, were found to exhibit the promising trait of blocking grain boundary migrations, which leads to a super-stabilized microstructures up to approximately the melting point of copper (1223 K). Furthermore, the Cu-TiC alloys after annealing at 1323 K showed a slight decrease in Vickers hardness as well as the duplex microstructure due to selective grain growth, which were discussed in terms of hardness contributions from various mechanisms.

  13. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    SciTech Connect

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  14. 2-Thiouracil deprived of thiocarbonyl function preferentially base pairs with guanine rather than adenine in RNA and DNA duplexes

    PubMed Central

    Sochacka, Elzbieta; Szczepanowski, Roman H.; Cypryk, Marek; Sobczak, Milena; Janicka, Magdalena; Kraszewska, Karina; Bartos, Paulina; Chwialkowska, Anna; Nawrot, Barbara

    2015-01-01

    2-Thiouracil-containing nucleosides are essential modified units of natural and synthetic nucleic acids. In particular, the 5-substituted-2-thiouridines (S2Us) present in tRNA play an important role in tuning the translation process through codon–anticodon interactions. The enhanced thermodynamic stability of S2U-containing RNA duplexes and the preferred S2U-A versus S2U-G base pairing are appreciated characteristics of S2U-modified molecular probes. Recently, we have demonstrated that 2-thiouridine (alone or within an RNA chain) is predominantly transformed under oxidative stress conditions to 4-pyrimidinone riboside (H2U) and not to uridine. Due to the important biological functions and various biotechnological applications for sulfur-containing nucleic acids, we compared the thermodynamic stabilities of duplexes containing desulfured products with those of 2-thiouracil-modified RNA and DNA duplexes. Differential scanning calorimetry experiments and theoretical calculations demonstrate that upon 2-thiouracil desulfuration to 4-pyrimidinone, the preferred base pairing of S2U with adenosine is lost, with preferred base pairing with guanosine observed instead. Therefore, biological processes and in vitro assays in which oxidative desulfuration of 2-thiouracil-containing components occurs may be altered. Moreover, we propose that the H2U-G base pair is a suitable model for investigation of the preferred recognition of 3′-G-ending versus A-ending codons by tRNA wobble nucleosides, which may adopt a 4-pyrimidinone-type structural motif. PMID:25690900

  15. The N domain of Argonaute drives duplex unwinding during RISC assembly.

    PubMed

    Kwak, Pieter Bas; Tomari, Yukihide

    2012-01-10

    Small RNAs, such as microRNAs and small interfering RNAs, act through Argonaute (Ago) proteins as a part of RNA-induced silencing complexes (RISCs). To make RISCs, Ago proteins bind and subsequently unwind small RNA duplexes, finally leaving one strand stably incorporated. Here we identified the N domain of human AGO2 as the initiator of duplex unwinding during RISC assembly. We discovered that a functional N domain is strictly required for small RNA duplex unwinding but not for precedent duplex loading or subsequent target cleavage. We postulate that RISC assembly is tripartite, comprising (i) RISC loading, whereby Ago undergoes conformational opening and loads a small RNA duplex, forming pre-RISC; (ii) wedging, whereby the end of the duplex is pried open through active wedging by the N domain, in preparation for unwinding; and (iii) unwinding, whereby the passenger strand is removed through slicer-dependent or slicer-independent unwinding, forming mature RISC.

  16. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    SciTech Connect

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-15

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreased the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.

  17. Nanoscale wicking methods and devices

    NASA Technical Reports Server (NTRS)

    Zhou, Jijie (Inventor); Bronikowski, Michael (Inventor); Noca, Flavio (Inventor); Sansom, Elijah B. (Inventor)

    2011-01-01

    A fluid transport method and fluid transport device are disclosed. Nanoscale fibers disposed in a patterned configuration allow transport of a fluid in absence of an external power source. The device may include two or more fluid transport components having different fluid transport efficiencies. The components may be separated by additional fluid transport components, to control fluid flow.

  18. Nanoscale surface cues and in vitro neuronal growth

    NASA Astrophysics Data System (ADS)

    Nam, Yoonkey; Jang, Min Jee; Kang, Kyungtae; Choi, Insung S.

    2012-10-01

    Nerve cells (neurons) have been used for a convenient and effective model for basic neurobiology and it has also served as a test bed for the development of neural prosthetic devices. The characterization of neuronal growth in vitro has become an important part of neural tissue engineering. In this talk, I will present recent progresses on the investigation of nano-scale effects on neuronal growth in vitro. Hippocampal neurons from a small brain tissue dissected from E-18 (embryonic stage 18 days) Sprague-Dawley rat were used as a developing neuron model. They were seeded on substrates with carbon nanotube patterned glass substrates, anodized aluminum oxide surfaces with two different pitch sizes (60 nm, 400 nm), and silica nano bead surfaces with five different bead sizes (110, 190, 320, 480, 670 nm). These surfaces uniquely defined nano-scale surfaces with different topographical features. We observed longer neurite outgrowth and faster neuronal development on nano-scale surfaces compared to plain glass surfaces. The results from nano-scale cell culture platforms will be useful to understand nano-environments of the brain during the early neural developments. In addition, the promoted neuronal development could be further applied for neural tissue scaffolds or implantable neural interface systems.

  19. Recent advances in superhydrophobic nanomaterials and nanoscale systems.

    PubMed

    Nagappan, Saravanan; Park, Sung Soo; Ha, Chang-Sik

    2014-02-01

    This review describes the recent advances in the field of superhydrophobic nanomaterials and nanoscale systems. The term superhydrophobic is defined from the surface properties when the surface shows the contact angle (CA) higher than 150 degrees. This could be well known from the lotus effect due to the non-stick and self-cleaning properties of the lotus leaf (LL). We briefly introduced the methods of preparing superhydrophobic surfaces using top-down approaches, bottom-up approaches and a combination of top-down and bottom-up approaches and various ways to prepare superhydrophobic nanomaterials and nanoscale systems using the bio-inspired materials, polymer nanocomposites, metal nanoparticles graphene oxide (GO) and carbon nanotubes (CNTs). We also pointed out the recent applications of the superhydrophobic nanomaterials and nanoscale systems in oil-spill capture and separations, self-cleaning and self-healing systems, bio-medicals, anti-icing and anti-corrosive, electronics, catalysis, textile fabrics and papers etc. The review also highlights the visionary outlook for the future development and use of the superhydrophobic nanomaterials and nanoscale systems for a wide variety of applications.

  20. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution.

  1. Effect of QPQ nitriding time on microstructure and wear resistance of SAF2906 duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Liu, D.; Wu, G. X.; Shen, L. X.

    2017-01-01

    QPQ salt bath treatment of SAF2906 duplex stainless steel was conducted at 570 °C for 60 min, 90 min,120 min,150 min and 180 min, followed by post-oxidation process with heating temperature of 400°C and holding duration of 30 min. The effect of QPQ nitriding time on microstructure and wear resistance of SAF2906 duplex stainless steel was investigated by means of OM, SEM, XRD, microhardness test, adhesion strength test and wear resistance test. Microstructure observation showed outer layer was composed of Fe3O4. The main phase of the intermediate layer was CrN, αN and Fe2-3N. The main phase of the inner layer was CrN and S. The adhesion strength test of the surface layer-substrate showed the QPQ treated samples have favorable adhesion strength of HF-1 level. With the increase of nitriding time, the growth rate of the compound layer gradually slowed down and the surface hardness first increased and then decreased, and the maximum hardness was 1283 HV0.2 at 150 min. The dry siliding results showed that the wear resistance of the QPQ treated samples was at least 20 times than that of the substrate, and the optimum nitriding time to obtain the best wear resistance is 150 min. The worn surface morphology observation showed the main wear mechanism of the substrate was plough wear, while micro-cutting is the main wear mechanism that causes the damage of the QPQ treated samples.

  2. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy

    SciTech Connect

    Ramírez-Salgado, J.; Domínguez-Aguilar, M.A.; Castro-Domínguez, B.; Hernández-Hernández, P.; Newman, R.C.

    2013-12-15

    The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite was detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.

  3. Formation of hollow nanocrystals through the nanoscale kirkendall effect

    SciTech Connect

    Yin, Yadong; Rioux, Robert M.; Erdonmez, Can K.; Hughes, Steven; Somorjai, Gabor A.; Alivisatos, A. Paul

    2004-03-11

    We demonstrate that hollow nanocrystals can be synthesized through a mechanism analogous to the Kirkendall Effect, in which pores form due to the difference in diffusion rates between two components in a diffusion couple. Cobalt nanocrystals are chosen as a primary example to show that their reaction in solution with oxygen, sulfur or selenium leads to the formation of hollow nanocrystals of the resulting oxide and chalcogenides. This process provides a general route to the synthesis of hollow nanostructures of large numbers of compounds. A simple extension of this process yields platinum-cobalt oxide yolk-shell nanostructures which may serve as nanoscale reactors in catalytic applications.

  4. Ladderphanes: a new type of duplex polymers.

    PubMed

    Luh, Tien-Yau

    2013-02-19

    Soret band splitting experiments suggest that strong interactions take place between the linkers. The antiferromagnetism of the oxidized ferrocene-based ladderphanes further indicates strong coupling between linkers in these ladderphanes. These polynorbornene-based ladderphanes can easily aggregate to form a two-dimensional, highly ordered array on the graphite surface with areas that can reach the submicrometer range. These morphological patterns result from interactions between vinyl and styryl end groups via π-π stacking along the longitudinal axis of the polymer and van der Waals interaction between backbones of polymers. Such assembly orients planar arene moieties cofacially, and polynorbornene backbones insulate each linear array of arenes from the adjacent arrays. Dihydroxylation converts the double bonds in polynorbornene backbones of ladderphanes into more hydrophilic polyols. Hydrogen bonding between these polyol molecules leads to self-assembly and produces structures with longitudinally staggered morphologies on the graphite surface.

  5. The effect of chloride ions on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation.

    PubMed

    Wan, Tong; Xiao, Ning; Shen, Hanjie; Yong, Xingyue

    2016-11-01

    The effects of Cl(-) on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation in chloride solutions were investigated using nanoindentation in conjunction with XRD and XPS. The results demonstrate that Cl(-) had a strong effect on the nano-mechanical properties of the corroded surface layer under cavitation, and there was a threshold Cl(-) concentration. Furthermore, a close relationship between the nano-mechanical properties and the cavitation corrosion resistance of 00Cr22Ni5Mo3N duplex stainless steel was observed. The degradation of the nano-mechanical properties of the corroded surface layer was accelerated by the synergistic effect between cavitation erosion and corrosion. A key factor was the adsorption of Cl(-), which caused a preferential dissolution of the ferrous oxides in the passive film layer on the corroded surface layer. Cavitation further promoted the preferential dissolution of the ferrous oxides in the passive film layer. Simultaneously, cavitation accelerated the erosion of the ferrite in the corroded surface layer, resulting in the degradation of the nano-mechanical properties of the corroded surface layer on 00Cr22Ni5Mo3N duplex stainless steel under cavitation.

  6. Aromatic oligomers that form hetero duplexes in aqueous solution.

    PubMed

    Gabriel, Gregory J; Iverson, Brent L

    2002-12-25

    The electron-deficient 1,4,5,8-naphthalenetetracarboxylic diimide (Ndi) and electron-rich 1,5-dialkoxynaphthalene (Dan) have been shown to complex strongly with each other in water due to the hydrophobic effect as modulated through the electrostatic complementarity of the stacked dimer. Previously, oligomers of alternating Ndi and Dan units, termed aedamers, were the first foldamers to employ intramolecular aromatic stacking to effect the formation of secondary structure of nonnatural chains in aqueous solution. Described here is the use of this aromatic-aromatic (or pi-pi) interaction, this time in an intermolecular format, to demonstrate the self-assembly of stable hetero duplexes from a set of molecular strands (1a-4a) and (1b-4b) incorporating Ndi and Dan units, respectively. A 1-to-1 binding stoichiometry was determined from NMR and isothermal titration calorimetry (ITC) investigations, and these experiments indicated that association is enthalpically favored with the tetra-Ndi (4a) and tetra-Dan (4b) strands forming hetero duplexes (4a:4b) with a stability constant of 350 000 M-1 at T = 318 K. Polyacrylamide gel electrophoresis (PAGE) also illustrated the strong interaction between 4a and 4b and support a 1-to-1 binding mode even when one component is in slight excess. Overall, this system is the first to utilize complementary aromatic units to drive discrete self-assembly in aqueous solution. This new approach for designing assemblies is encouraging for future development of duplex systems with highly programmable modes of binding in solution or on surfaces.

  7. Diagnostic value of three-dimensional transcranial contrast duplex sonography.

    PubMed

    Delcker, A; Turowski, B

    1997-07-01

    This study evaluated intracranial cerebral arteries using a new data acquisition system for transcranial three-dimensional (3D) ultrasonography with and without an echo contrast agent, with confirmation by cerebral angiography. Ten patients, studied with diagnostic cerebral angiography, were examined without knowledge of the angiographic results. Data acquisition through the transtemporal acoustic window was performed using a magnetic sensor system to track the spatial orientation of the ultrasound probe while scanning the volume of interest. A color transcranial duplex system with a power Doppler mode was used, and 3D data sets were acquired before and after the injection of transpulmonary-stable ultrasound contrast medium. Ipsilateral to the transducer, the anterior cerebral artery (ACA) in 90%, middle cerebral artery (MCA) in 60%, all three or more branches of the MCA in 60%, posterior cerebral artery (PCA) in 60%, and posterior communicating artery (PCoA) in 60% were successfully imaged without the echo contrast agent. With the contrast agent, the ACA, MCA, three or more branches of the MCA, PCA, and PCoA were visible in 100%. The anterior communicating artery was visualized in 40% without contrast enhancement and in 90% with contrast enhancement. Contralateral to the transducer, the ACA (60%), MCA (30%), all three or more branches of the MCA (10%), PCA (20%), and PCoA (20%) were successfully imaged without contrast. Contrast enhancement improved the imaging success rate for the ACA (90%), MCA (80%), three or more branches of the MCA (80%), PCA (100%), and PCoA (100%). A transpulmonary-stable ultrasound contrast agent used in combination with 3D transcranial duplex ultrasonography can significantly improve the success rate for transcranial color duplex imaging of intracranial arteries.

  8. Experience with duplex bearings in narrow angle oscillating applications

    NASA Technical Reports Server (NTRS)

    Phinney, D. D.; Pollard, C. L.; Hinricks, J. T.

    1988-01-01

    Duplex ball bearings are matched pairs on which the abutting faces of the rings have been accurately ground so that when the rings are clamped together, a controlled amount of interference (preload) exists across the balls. These bearings are vulnerable to radial temperature gradients, blocking in oscillation and increased sensitivity to contamination. These conditions decrease the service life of these bearings. It was decided that an accelerated thermal vacuum life test should be conducted. The test apparatus and results are described and the rationale is presented for reducing a multiyear life test on oil lubricated bearings to less than a year.

  9. Sequence Recognition in the Pairing of DNA Duplexes

    NASA Astrophysics Data System (ADS)

    Kornyshev, A. A.; Leikin, S.

    2001-04-01

    Pairing of DNA fragments with homologous sequences occurs in gene shuffling, DNA repair, and other vital processes. While chemical individuality of base pairs is hidden inside the double helix, x ray and NMR revealed sequence-dependent modulation of the structure of DNA backbone. Here we show that the resulting modulation of the DNA surface charge pattern enables duplexes longer than ~50 base pairs to recognize sequence homology electrostatically at a distance of up to several water layers. This may explain the local recognition observed in pairing of homologous chromosomes and the observed length dependence of homologous recombination.

  10. Use of duplex stainless steel castings in control valves

    SciTech Connect

    Gossett, J.L.

    1996-07-01

    Duplex stainless steels have enjoyed rapidly increasing popularity in recent years. For numerous reasons the availability of these alloys in the cast form has lagged behind the availability of the wrought form. Commercial demand for control valves in these alloys has driven development of needed information to move into production. A systematic approach was used to develop specifications, suppliers and weld procedures. Corrosion, stress corrosion cracking (SCC), sulfide stress cracking (SSC) and hardness results are also presented for several alloys including; CD3MN (UNS J92205), CD4MCu (UNS J93370) and CD7MCuN (cast UNS S32550).

  11. Optical antennas as nanoscale resonators.

    PubMed

    Agio, Mario

    2012-02-07

    Recent progress in nanotechnology has enabled us to fabricate sub-wavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing quantum emitters and review the designs that increase the spontaneous emission rate by orders of magnitude from the ultraviolet up to the near-infrared spectral range. To further explore how optical antennas may lead to unprecedented regimes of light-matter interactions, we draw a relationship between metal nanoparticles, radio-wave antennas and optical resonators. Our analysis points out how optical antennas may function as nanoscale resonators and how these may offer unique opportunities with respect to state-of-the-art microcavities.

  12. Systems engineering at the nanoscale

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason J.; Breidenich, Jennifer L.; Wei, Michael C.; Clatterbaughi, Guy V.; Keng, Pei Yuin; Pyun, Jeffrey

    2012-06-01

    Nanomaterials have provided some of the greatest leaps in technology over the past twenty years, but their relatively early stage of maturity presents challenges for their incorporation into engineered systems. Perhaps even more challenging is the fact that the underlying physics at the nanoscale often run counter to our physical intuition. The current state of nanotechnology today includes nanoscale materials and devices developed to function as components of systems, as well as theoretical visions for "nanosystems," which are systems in which all components are based on nanotechnology. Although examples will be given to show that nanomaterials have indeed matured into applications in medical, space, and military systems, no complete nanosystem has yet been realized. This discussion will therefore focus on systems in which nanotechnology plays a central role. Using self-assembled magnetic artificial cilia as an example, we will discuss how systems engineering concepts apply to nanotechnology.

  13. Biosafe Nanoscale Pharmaceutical Adjuvant Materials

    PubMed Central

    Jin, Shubin; Li, Shengliang; Wang, Chongxi; Liu, Juan; Yang, Xiaolong; Wang, Paul C.; Zhang, Xin; Liang, Xing-Jie

    2014-01-01

    Thanks to developments in the field of nanotechnology over the past decades, more and more biosafe nanoscale materials have become available for use as pharmaceutical adjuvants in medical research. Nanomaterials possess unique properties which could be employed to develop drug carriers with longer circulation time, higher loading capacity, better stability in physiological conditions, controlled drug release, and targeted drug delivery. In this review article, we will review recent progress in the application of representative organic, inorganic and hybrid biosafe nanoscale materials in pharmaceutical research, especially focusing on nanomaterial-based novel drug delivery systems. In addition, we briefly discuss the advantages and notable functions that make these nanomaterials suitable for the design of new medicines; the biosafety of each material discussed in this article is also highlighted to provide a comprehensive understanding of their adjuvant attributes. PMID:25429253

  14. Cavitation dynamics on the nanoscale

    SciTech Connect

    Kotaidis, Vassilios; Plech, Anton

    2005-11-21

    The ultrafast excitation of gold nanoparticle sols causes a strong nonequilibrium heating of the particle lattice and subsequently of the water shell close to the particle surface. Above a threshold in laser fluence, which is defined by the onset of homogeneous nucleation, nanoscale vapor bubbles develop around the particles, expand and collapse again within the first nanosecond after excitation. We show the existence of cavitation on the nanometer and subnanosecond time scale, described within the framework of continuum thermodynamics.

  15. Cavitation dynamics on the nanoscale

    NASA Astrophysics Data System (ADS)

    Kotaidis, Vassilios; Plech, Anton

    2005-11-01

    The ultrafast excitation of gold nanoparticle sols causes a strong nonequilibrium heating of the particle lattice and subsequently of the water shell close to the particle surface. Above a threshold in laser fluence, which is defined by the onset of homogeneous nucleation, nanoscale vapor bubbles develop around the particles, expand and collapse again within the first nanosecond after excitation. We show the existence of cavitation on the nanometer and subnanosecond time scale, described within the framework of continuum thermodynamics.

  16. Nanoscale deformation mechanisms in bone.

    PubMed

    Gupta, Himadri S; Wagermaier, Wolfgang; Zickler, Gerald A; Raz-Ben Aroush, D; Funari, Sérgio S; Roschger, Paul; Wagner, H Daniel; Fratzl, Peter

    2005-10-01

    Deformation mechanisms in bone matrix at the nanoscale control its exceptional mechanical properties, but the detailed nature of these processes is as yet unknown. In situ tensile testing with synchrotron X-ray scattering allowed us to study directly and quantitatively the deformation mechanisms at the nanometer level. We find that bone deformation is not homogeneous but distributed between a tensile deformation of the fibrils and a shearing in the interfibrillar matrix between them.

  17. Comparison of duplex ultrasonography and venography in the diagnosis of deep venous thrombosis.

    PubMed

    Mitchell, D C; Grasty, M S; Stebbings, W S; Nockler, I B; Lewars, M D; Levison, R A; Wood, R F

    1991-05-01

    Sixty-five patients with suspected deep venous thrombosis (DVT) in 68 limbs were entered consecutively into a study to compare venography with duplex ultrasonography scanning. Both tests were performed on 64 limbs, venography being contraindicated in four. Overall, duplex scanning correctly identified 86 per cent of DVTs diagnosed on venography and correctly excluded 80 per cent with negative venograms. Nearly all errors arose in the diagnosis of calf DVT. In the femoral vein duplex scanning had a specificity of 100 per cent and a sensitivity of 95 per cent. In addition, duplex scanning provided data on the limb not undergoing venography. Of 55 limbs that underwent bilateral duplex scanning, five had thrombus in the femoropopliteal segment and a negative contralateral venogram. In addition, three Baker's cysts were diagnosed. Duplex scanning can be used in patients in whom venography is contraindicated and may also provide information about the contralateral limb. We regard femoropopliteal duplex scanning as sufficiently accurate that treatment can be initiated on the basis of the scan. Duplex scanning should replace venography as the standard method of diagnosing femoropopliteal DVT; radiographic studies should now be required only when the scan result is in doubt.

  18. Synthesis of native-like crosslinked duplex RNA and study of its properties.

    PubMed

    Onizuka, Kazumitsu; Hazemi, Madoka E; Thomas, Justin M; Monteleone, Leanna R; Yamada, Ken; Imoto, Shuhei; Beal, Peter A; Nagatsugi, Fumi

    2017-04-01

    A variety of enzymes have been found to interact with double-stranded RNA (dsRNA) in order to carry out its functions. We have endeavored to prepare the covalently crosslinked native-like duplex RNA, which could be useful for biochemical studies and RNA nanotechnology. In this study, the interstrand covalently linked duplex RNA was formed by a crosslinking reaction between vinylpurine (VP) and the target cytosine or uracil in RNA. We measured melting temperatures and CD spectra to identify the properties of the VP crosslinked duplex RNA. The crosslinking formation increased the thermodynamic stability without disturbing the natural conformation of dsRNA. In addition, a competitive binding experiment with the duplex RNA binding enzyme, ADAR2, showed the crosslinked dsRNA bound the protein with nearly the same binding affinity as the natural dsRNA, confirming that it has finely preserved the natural traits of duplex RNA.

  19. Hole Transport in A-form DNA/RNA Hybrid Duplexes

    PubMed Central

    Wong, Jiun Ru; Shao, Fangwei

    2017-01-01

    DNA/RNA hybrid duplexes are prevalent in many cellular functions and are an attractive target form for electrochemical biosensing and electric nanodevice. However the electronic conductivities of DNA/RNA hybrid duplex remain relatively unexplored and limited further technological applications. Here cyclopropyl-modified deoxyribose- and ribose-adenosines were developed to explore hole transport (HT) in both DNA duplex and DNA/RNA hybrids by probing the transient hole occupancies on adenine tracts. HT yields through both B-form and A-form double helixes displayed similar shallow distance dependence, although the HT yields of DNA/RNA hybrid duplexes were lower than those of DNA duplexes. The lack of oscillatory periods and direction dependence in HT through both helixes implied efficient hole propagation can be achieved via the hole delocalization and coherent HT over adenine tracts, regardless of the structural variations. PMID:28084308

  20. Hole Transport in A-form DNA/RNA Hybrid Duplexes

    NASA Astrophysics Data System (ADS)

    Wong, Jiun Ru; Shao, Fangwei

    2017-01-01

    DNA/RNA hybrid duplexes are prevalent in many cellular functions and are an attractive target form for electrochemical biosensing and electric nanodevice. However the electronic conductivities of DNA/RNA hybrid duplex remain relatively unexplored and limited further technological applications. Here cyclopropyl-modified deoxyribose- and ribose-adenosines were developed to explore hole transport (HT) in both DNA duplex and DNA/RNA hybrids by probing the transient hole occupancies on adenine tracts. HT yields through both B-form and A-form double helixes displayed similar shallow distance dependence, although the HT yields of DNA/RNA hybrid duplexes were lower than those of DNA duplexes. The lack of oscillatory periods and direction dependence in HT through both helixes implied efficient hole propagation can be achieved via the hole delocalization and coherent HT over adenine tracts, regardless of the structural variations.

  1. Unusual Presentation of Duplex Kidneys: Ureteropelvic Junction Obstruction

    PubMed Central

    Başdaş, Cemile; Özaydın, Seyithan; Karaaslan, Birgül; Alim, Elmas Reyhan; Güvenç, Ünal; Sander, Serdar

    2016-01-01

    Aim. Ureteropelvic junction obstruction (UPJO) is rarely associated with a duplex collecting system. We review this unusual anomaly in terms of presentation, diagnostic evaluation, and surgical management. Method. We retrospectively reviewed the medical records of patients diagnosed with a duplex system with UPJO. Result. Sixteen patients (6 girls, 10 boys) with 18 moieties were treated surgically and four patients were treated conservatively. The median age at surgery was two years (range, 2 months to 7 years). The lower pole and upper moiety were affected in 12 and two kidneys, respectively, and both were affected in two patients. The anomaly was right-sided in 12 moieties and left-sided in six. The duplication was incomplete in seven patients and complete in nine. The mean renal pelvis diameter at the time of surgery was 25.6 (range 11–48 mm) mm by USG. The mean renal function of the involved moiety was 28.3% before surgery. Management included pyelopyelostomy or ureteropyelostomy in six moieties, dismembered pyeloplasty in eight moieties, heminephrectomy in four cases, and simultaneous upper heminephrectomy and lower pole ureteropyelostomy in one patient. Conclusion. There is no standard approach for these patients and treatment should be individualized according to physical presentation, detailed anatomy, and severity of obstruction. PMID:27829833

  2. Sex determination in 6 bovid species by duplex PCR.

    PubMed

    Prashant; Gour, Digpal S; Dubey, Prem P; Jain, Anubhav; Gupta, Subhash C; Joshi, Balwinder K; Kumar, Dinesh

    2008-01-01

    Sex determination in domestic animals is of potential value to livestock breeding programs. The aim of this study was to develop a simple and accurate PCR-based sex determination protocol, which can be applicable to 6 major domesticated species of the family Bovidae, viz. Bos frontalis, B. grunniens, B. indicus, Bubalus bubalis, Capra hircus, and Ovis aries. In silico analysis was done to identify conserved DNA sequence in the HMG box region of the sex-determining region of the Y-chromosome (SRY gene) across the bovids. Duplex PCR assay, including the SRY gene and the GAPDH housekeeping gene, was optimized by using genomic DNA extracted from blood samples of known sex. It was possible to identify the sex of animals by amplifying both gender-specific (SRY) and autosomal (GAPDH) genes simultaneously in the duplex reaction, with the male yielding two bands and the female one band. The protocol was subjected to a blind test that showed a 100 percent specificity and accuracy, thus it can be used in sex determination in livestock breeding programs.

  3. Moessbauer measurements of microstructural change in aged duplex stainless steel

    SciTech Connect

    Kirihigashi, A.; Sakamoto, N.; Yamaoka, T.; Nasu, S.

    1995-08-01

    A duplex stainless steel (ASME SA351 CF8M) has usually been manufactured by a continuous casting technique. It consists of a paramagnetic austenite phase and a ferromagnetic ferrite phase. It has been known that the ferrite phase decomposition occurs in this steel after aging between 300 and 450 C. As a result of phase decomposition, a Fe-rich phase and a Cr-rich phase are produced in the ferrite phase. It is difficult to detect the phase decomposition even by not only optical microscopy but also transmission electron microscopy, since the decomposed structure is very fine. However, Moessbauer measurements that can detect the magnetic hyperfine field of magnetic substance may detect the microstructural change. An averaged magnetic hyperfine field increases in the ferrite phase, due to the production of the Fe-rich phase which has high magnetic hyperfine field. Therefore, the authors investigated the phase decomposition of the duplex stainless steel caused by aging, utilization Moessbauer spectroscopy which has capability of detecting this structural change in the atomic level quantitatively. The authors also investigated the potential of backscattering Moessbauer method for NDE technique.

  4. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    SciTech Connect

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  5. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    SciTech Connect

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2016-02-28

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr–rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  6. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2016-02-01

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  7. Exposure and Health Effects Review of Engineered Nanoscale Cerium and Cerium Dioxide Associated with its Use as a Fuel Additive - NOW IN PRINT IN THE JOURNAL

    EPA Science Inventory

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels that are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (Ce02) has recently gained a wide range of applications which includes coatin...

  8. Center for Nanoscale Science and Technology

    National Institute of Standards and Technology Data Gateway

    NIST Center for Nanoscale Science and Technology (Program website, free access)   Currently there is no database matching your keyword search, but the NIST Center for Nanoscale Science and Technology website may be of interest. The Center for Nanoscale Science and Technology enables science and industry by providing essential measurement methods, instrumentation, and standards to support all phases of nanotechnology development, from discovery to production.

  9. Microstructural evidence for dynamic recrystallization during creep of a duplex near-{gamma} TiAl-alloy

    SciTech Connect

    Skrotzki, B.; Rudolf, T.; Eggeler, G.; Dlouhy, A.

    1998-11-03

    Intermetallic near-{gamma} titanium aluminides (TiAl) have attractive properties such as high strength, low density, good oxidation resistance and good high temperature properties. In the present study the authors consider an alloy with duplex microstructure which is attractive in combining good creep strength with reasonable ductility. In order to be able to safely use such materials for high temperature components operating in the creep range, the mechanical creep behavior has to be well characterized and the dominating microstructural creep processes must be understood. Dynamic recrystallization can occur during high temperature plastic deformation, i.e, hot working (rolling, extrusion, forging) or creep and represents a softening process. It is presently not clear how much dynamic recrystallization affects the creep rate and what role it plays in the overall creep deformation mechanism. The objective of the present study was to (i) determine whether dynamic recrystallization occurs during creep of the duplex material studied here at stresses and temperatures which are low in comparison to the large majority of literature experiments, (ii) identify the critical condition for the onset of dynamic recrystallization and (iii) perceive the role of dynamic recrystallization as part of the creep mechanism in TiAl based alloys.

  10. A High Power Density Intermediate-Temperature Solid Oxide Fuel Cell with Thin (La 0.9 Sr 0.1 ) 0.98 (Ga 0.8 Mg 0.2 )O 3-δ Electrolyte and Nano-Scale Anode

    SciTech Connect

    Gao, Zhan; Miller, Elizabeth C.; Barnett, Scott A.

    2014-07-14

    Solid oxide fuel cells (SOFCs) with thin (La0.9Sr0.1)0.98Ga0.8Mg0.2O3-δ (LSGM) electrolytes are primary candidates for achieving high (> 1 W cm-2) power density at intermediate (< 650 °C) temperatures. Although high power density LSGM-electrolyte SOFCs have been reported, it is still necessary to develop a fabrication process suitable for large-scale manufacturing and to minimize the amount of LSGM used. Here we show that SOFCs made with a novel processing method and a Sr0.8La0.2TiO3-α (SLT) oxide support can achieve high power density at intermediate temperature. The SLT support is advantageous, especially compared to LSGM supports, because of its low materials cost, electronic conductivity, and good mechanical strength. The novel process is to first co-fire the ceramic layers – porous SLT support, porous LSGM layer, and dense LSGM layer – followed by infiltration of nano-scale Ni into the porous layers. Low polarization resistance of 0.188 Ωcm2 was achieved at 650 °C for a cell with an optimized anode functional layer (AFL) and an (La,Sr)(Fe,Co)O3 cathode. Maximum power density reached 1.12 W cm-2 at 650 °C, limited primarily by cathode polarization and ohmic resistances, so there is considerable potential to further improve the power density.

  11. Development and Evaluation of Nanoscale Sorbents for Mercury Capture from Warm Fuel Gas

    SciTech Connect

    Raja A. Jadhav; Howard Meyer; Slawomir Winecki

    2006-03-01

    Several nanocrystalline sorbents were synthesized by GTI's subcontractor NanoScale Materials, Inc. (NanoScale) and submitted to GTI for evaluation. A total of seventeen sorbent formulations were synthesized and characterized by NanoScale, including four existing sorbent formulations (NanoActive{trademark} TiO{sub 2}, NanoActive CeO{sub 2}, NanoActive ZnO, and NanoActive CuO), three developmental nanocrystalline metal oxides (MnO{sub 2}, MoO{sub 3}, and Cr{sub 2}O{sub 3}), and ten supported forms of metal oxides. These sorbents were characterized for physical and chemical properties using a variety of analytical equipments, which confirmed their nanocrystalline structure.

  12. Spin manipulation in nanoscale superconductors.

    PubMed

    Beckmann, D

    2016-04-27

    The interplay of superconductivity and magnetism in nanoscale structures has attracted considerable attention in recent years due to the exciting new physics created by the competition of these antagonistic ordering phenomena, and the prospect of exploiting this competition for superconducting spintronics devices. While much of the attention is focused on spin-polarized supercurrents created by the triplet proximity effect, the recent discovery of long range quasiparticle spin transport in high-field superconductors has rekindled interest in spin-dependent nonequilibrium properties of superconductors. In this review, the experimental situation on nonequilibrium spin injection into superconductors is discussed, and open questions and possible future directions of the field are outlined.

  13. Young's Equation at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Seveno, David; Blake, Terence D.; De Coninck, Joël

    2013-08-01

    In 1805, Thomas Young was the first to propose an equation to predict the value of the equilibrium contact angle of a liquid on a solid. Today, the force exerted by a liquid on a solid, such as a flat plate or fiber, is routinely used to assess this angle. Moreover, it has recently become possible to study wetting at the nanoscale using an atomic force microscope. Here, we report the use of molecular-dynamics simulations to investigate the force distribution along a 15 nm fiber dipped into a liquid meniscus. We find very good agreement between the measured force and that predicted by Young’s equation.

  14. Electronic transport in nanoscale structures

    NASA Astrophysics Data System (ADS)

    Lagerqvist, Johan

    In this dissertation electronic transport in nanoscale structures is discussed. An expression for the shot noise, a fluctuation in current due to the discreteness of charge, is derived directly from the wave functions of a nanoscale system. Investigation of shot noise is of particular interest due to the rich fundamental physics involved. For example, the study of shot noise can provide fundamental insight on the nature of electron transport in a nanoscale junction. We report calculations of the shot noise properties of parallel wires in the regime in which the interwire distance is much smaller than the inelastic mean free path. The validity of quantized transverse momenta in a nanoscale structure and its effect on shot noise is also discussed. We theoretically propose and show the feasibility of a novel protocol for DNA sequencing based on the electronic signature of single-stranded DNA while it translocates through a nanopore. We find that the currents for the bases are sufficiently different to allow for efficient sequencing. Our estimates reveal that sequencing of an entire human genome could be done with very high accuracy in a matter of hours, e.g., orders of magnitude faster than present techniques. We also find that although the overall magnitude of the current may change dramatically with different detection conditions, the intrinsic distinguishability of the bases is not significantly affected by pore size and transverse field strength. Finally, we study the ability of water to screen charges in nanopores by using all-atom molecular dynamics simulations coupled to electrostatic calculations. Due to the short length scales of the nanopore geometry and the large local field gradient of a single ion, the energetics of transporting an ion through the pore is strongly dependent on the microscopic details of the electric field. We show that as long as the pore allows the first hydration shell to stay intact, e.g., ˜6 nearby water molecules, the electric field

  15. Hoogsteen-paired homopurine [RP-PS]-DNA and homopyrimidine RNA strands form a thermally stable parallel duplex.

    PubMed

    Guga, Piotr; Janicka, Magdalena; Maciaszek, Anna; Rebowska, Beata; Nowak, Genowefa

    2007-11-15

    Homopurine deoxyribonucleoside phosphorothioates possessing all internucleotide linkages of R(P) configuration form a duplex with an RNA or 2'-OMe-RNA strand with Hoogsteen complementarity. The duplexes formed with RNA templates are thermally stable at pH 5.3, while those formed with a 2'-OMe-RNA are stable at neutrality. Melting temperature and fluorescence quenching experiments indicate that the strands are parallel. Remarkably, these duplexes are thermally more stable than parallel Hoogsteen duplexes and antiparallel Watson-Crick duplexes formed by unmodified homopurine DNA molecules of the same sequence with corresponding RNA templates.

  16. Charge conduction properties of a parallel-stranded DNA G-quadruplex: implications for chromosomal oxidative damage.

    PubMed

    Huang, Yu Chuan; Cheng, Alan K H; Yu, Hua-Zhong; Sen, Dipankar

    2009-07-28

    The charge-flow properties and concomitant guanine damage patterns of a number of intermolecular and wholly parallel-stranded DNA G-quadruplexes were investigated. The DNA constructs were structurally well-defined and consisted of the G-quadruplex sandwiched and stacked between two Watson-Crick base-paired duplexes. Such duplex-quadruplex-duplex constructs were designed to minimize torsional stress as well as steric crowding at the duplex-quadruplex junctions. When anthraquinone was used to induce charge flow within the constructs, it was found that the quadruplex served both as a sink and as a moderately good conductor of electron holes, relative to DNA duplexes. Most strikingly, the quadruplex suffered very little charge-flow generated oxidative damage relative to guanines in the duplex regions and, indeed, to guanines in antiparallel quadruplexes reported in prior studies. It is likely that these differences result from a combination of steric and electronic factors. A biological conclusion that may be drawn from these data is that if, as anticipated, G-quadruplex structures form in vivo at the telomeres and other loci in eukaryotic chromosomes, their ability to serve as protective sinks against chromosomal oxidative damage may depend on their specific character and topology. From a separate perspective, our results on the conduction properties of duplex-quadruplex-duplex DNA composites suggest the utility of G-quadruplexes as junction modules in the construction of DNA-based biosensors and nanocircuitry.

  17. NMR studies of DNA duplexes singly cross-linked by different synthetic linkers.

    PubMed Central

    Altmann, S; Labhardt, A M; Bur, D; Lehmann, C; Bannwarth, W; Billeter, M; Wüthrich, K; Leupin, W

    1995-01-01

    Molecular modelling studies resulted in the design of a variety of non-nucleotidic covalent linkers to bridge the 3'-end of the (+)-strand and the 5'-end of the (-)-strand in DNA duplexes. Three of these linkers were synthesized and used to prepare singly cross-linked duplexes d(GTGGAATTC)-linker-d(GAATTCCAC). Linker I is an assembly of a propylene-, a phosphate- and a second propylene-group and is thought to mimic the backbone of two nucleotides. Linkers II and III consist of five and six ethyleneglycol units, respectively. The melting temperatures of the cross-linked duplexes are 65 degrees C for I and 73 degrees C for II and III, as compared with 36 degrees C for the corresponding non-linked nonadeoxynucleotide duplex. The three cross-linked duplexes were structurally characterized by nuclear magnetic resonance spectroscopy. The 1H and 31P resonance assignments in the DNA stem were obtained using standard methods. For the resonance assignment of the linker protons, two-dimensional 1H-31P heteronuclear COSY and two-quantum-experiments were used. Distance geometry calculations with NOE-derived distance constraints were performed and the resulting structures were energy-minimized. In duplex I, the nucleotides flanking the propylene-phosphate-propylene-linker do not form a Watson-Crick base pair, whereas in duplexes II and III the entire DNA stem is in a B-type double helix conformation. Images PMID:8532525

  18. Cooperative translocation enhances the unwinding of duplex DNA by SARS coronavirus helicase nsP13.

    PubMed

    Lee, Na-Ra; Kwon, Hyun-Mi; Park, Kkothanahreum; Oh, Sangtaek; Jeong, Yong-Joo; Kim, Dong-Eun

    2010-11-01

    SARS coronavirus encodes non-structural protein 13 (nsP13), a nucleic acid helicase/NTPase belonging to superfamily 1 helicase, which efficiently unwinds both partial-duplex RNA and DNA. In this study, unwinding of DNA substrates that had different duplex lengths and 5'-overhangs was examined under single-turnover reaction conditions in the presence of excess enzyme. The amount of DNA unwound decreased significantly as the length of the duplex increased, indicating a poor in vitro processivity. However, the quantity of duplex DNA unwound increased as the length of the single-stranded 5'-tail increased for the 50-bp duplex. This enhanced processivity was also observed for duplex DNA that had a longer single-stranded gap in between. These results demonstrate that nsP13 requires the presence of a long 5'-overhang to unwind longer DNA duplexes. In addition, enhanced DNA unwinding was observed for gapped DNA substrates that had a 5'-overhang, indicating that the translocated nsP13 molecules pile up and the preceding helicase facilitate DNA unwinding. Together with the propensity of oligomer formation of nsP13 molecules, we propose that the cooperative translocation by the functionally interacting oligomers of the helicase molecules loaded onto the 5'-overhang account for the observed enhanced processivity of DNA unwinding.

  19. Preparation and property of duplex Ni-B-TiO2/Ni nano-composite coatings

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Jen; Wang, Yuxin; Shu, Xin; Tay, Seeleng; Gao, Wei; Shakoor, R. A.; Kahraman, Ramazan

    2015-03-01

    The duplex Nickel-Boron-Titania/Nickel (Ni-B-TiO2/Ni) coatings were deposited on mild steel by using two baths with Ni as the inner layer. TiO2 nanoparticles were incorporated into the Ni-B coatings as the outer layer by using solid particle mixing method. The microstructure, morphology and corrosion resistance of the duplex Ni-B-TiO2/Ni nanocomposite coatings were systemically investigated. The results show that the duplex interface was uniform and the adhesion between two layers was very good. The microhardness of duplex Ni-B-TiO2/Ni coating was much higher than the Ni coating due to the outer layer of Ni-B-TiO2 coating. The corrosion resistance of the duplex Ni-B-TiO2/Ni coating was also significantly improved comparing with single Ni-B coating. The Ni-B-10 g/L TiO2/Ni coating was found to have the best corrosion resistance among these duplex coatings. This type of duplex Ni-B-TiO2/Ni coating, with high hardness and good corrosion resistance properties, should be able to find broad applications under adverse environmental conditions.

  20. Nanoscale Strontium Titanate Photocatalysts for Overall Water Splitting

    SciTech Connect

    Townsend, Troy K.; Browning, Nigel D.; Osterloh, Frank

    2012-08-28

    SrTiO3 (STO) is a large band gap (3.2 eV) semiconductor that catalyzes the overall water splitting reaction under UV light irradiation in the presence of a NiO cocatalyst. As we show here, the reactivity persists in nanoscale particles of the material, although the process is less effective at the nanoscale. To reach these conclusions, Bulk STO, 30 ± 5 nm STO, and 6.5 ± 1 nm STO were synthesized by three different methods, their crystal structures verified with XRD and their morphology observed with HRTEM before and after NiO deposition. In connection with NiO, all samples split water into stoichiometric mixtures of H2 and O2, but the activity is decreasing from 28 μmol H2 g–1 h–1 (bulk STO), to 19.4 μmol H2 g–1 h–1 (30 nm STO), and 3.0 μmol H2 g–1 h–1 (6.5 nm STO). The reasons for this decrease are an increase of the water oxidation overpotential for the smaller particles and reduced light absorption due to a quantum size effect. Overall, these findings establish the first nanoscale titanate photocatalyst for overall water splitting.

  1. Influence of two bulge loops on the stability of RNA duplexes.

    PubMed

    Crowther, Claire V; Jones, Laura E; Morelli, Jessica N; Mastrogiacomo, Eric M; Porterfield, Claire; Kent, Jessica L; Serra, Martin J

    2017-02-01

    Fifty-three RNA duplexes containing two single nucleotide bulge loops were optically melted in 1 M NaCl in order to determine the thermodynamic parameters ΔH°, ΔS°, ΔG°37, and TM for each duplex. Because of the large number of possible combinations and lack of sequence effects observed previously, we limited our initial investigation to adenosine bulges, the most common naturally occurring bulge. For example, the following duplexes were investigated: 5'GGCAXYAGGC/3'CCG YX CCG, 5'GGCAXY GCC/3'CCG YXACGG, and 5'GGC XYAGCC/3'CCGAYX CGG. The identity of XY (where XY are Watson-Crick base pairs) and the total number of base pairs in the terminal and central stems were varied. As observed for duplexes with a single bulge loop, the effect of the two bulge loops on duplex stability is primarily influenced by non-nearest neighbor interactions. In particular, the stability of the stems influences the destabilization of the duplex by the inserted bulge loops. The model proposed to predict the influence of multiple bulge loops on duplex stability suggests that the destabilization of each bulge is related to the stability of the adjacent stems. A database of RNA secondary structures was examined to determine the naturally occurring abundance of duplexes containing multiple bulge loops. Of the 2000 examples found in the database, over 65% of the two bulge loops occur within 3 base pairs of each other. A database of RNA three-dimensional structures was examined to determine the structure of duplexes containing two single nucleotide bulge loops. The structures of the bulge loops are described.

  2. Nucleic acid duplexes incorporating a dissociable covalent base pair

    NASA Technical Reports Server (NTRS)

    Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.

  3. Nucleic Acid Duplexes Incorporating a Dissociable Covalent Base Pair

    NASA Astrophysics Data System (ADS)

    Gao, Kui; Orgel, Leslie E.

    1999-12-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.

  4. Efficiency of coaxial stacking depends on the DNA duplex structure.

    PubMed

    Pyshnyi, Dmitrii V; Goldberg, Eugenii L; Ivanova, Eugenia M

    2003-12-01

    Thermodynamic parameters of coaxial stacking at complementary helix-helix interfaces GX*pYG/CZVC (X,Y=A,C,T,G;*-nick) created by contiguous oligonucleotide hybridization were determined. The data obtained were compared to the thermodynamic parameters of coaxial stacking at the interfaces CX*pYC/GZVG. Multiple linear regression analysis has revealed that the free-energy increments of interaction for the contacts GX*pYG/CZVC and CX*pYC/GZVG can be described by a set of uniform Delta G degrees(X*pY/ZV) values. The difference in the observed free-energy of the coaxial stacking between the two sets is defined by the contribution from the factors reflecting structural differences between compared DNA duplexes.

  5. Reduced-stringency DNA reassociation: sequence specific duplex formation.

    PubMed Central

    Burr, H E; Schimke, R T

    1982-01-01

    Reduced-stringency DNA reassociation conditions allow low stability duplexes to be detected in prokaryotic, plant, fish, avian, mammalian, and primate genomes. Highly diverged families of sequences can be detected in avian, mouse, and human unique sequence dNAs. Such a family has been described among twelve species of birds; based on species specific melting profiles and fractionation of sequences belonging to this family, it was concluded that permissive reassociation conditions did not artifactually produce low stability structures (1). We report S1 nuclease and optical melting experiments, and further fractionation of the diverged family to confirm sequence specific DNA reassociation at 50 degrees in 0.5 M phosphate buffer. PMID:6278429

  6. Fault Injection Campaign for a Fault Tolerant Duplex Framework

    NASA Technical Reports Server (NTRS)

    Sacco, Gian Franco; Ferraro, Robert D.; von llmen, Paul; Rennels, Dave A.

    2007-01-01

    Fault tolerance is an efficient approach adopted to avoid or reduce the damage of a system failure. In this work we present the results of a fault injection campaign we conducted on the Duplex Framework (DF). The DF is a software developed by the UCLA group [1, 2] that uses a fault tolerant approach and allows to run two replicas of the same process on two different nodes of a commercial off-the-shelf (COTS) computer cluster. A third process running on a different node, constantly monitors the results computed by the two replicas, and eventually restarts the two replica processes if an inconsistency in their computation is detected. This approach is very cost efficient and can be adopted to control processes on spacecrafts where the fault rate produced by cosmic rays is not very high.

  7. Properties of nanoscale metal hydrides.

    PubMed

    Fichtner, Maximilian

    2009-05-20

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption.

  8. Nanoscale pore formation dynamics during aluminum anodization.

    PubMed

    Thamida, Sunil Kumar; Chang, Hsueh-Chia

    2002-03-01

    A theoretical analysis of nanoscale pore formation during anodization reveals its fundamental instability mechanism to be a field focusing phenomenon when perturbations on the minima of the two oxide interfaces are in phase. Lateral leakage of the layer potential at high wave number introduces a layer tension effect that balances the previous destabilizing effect to produce a long-wave instability and a selected pore separation that scales linearly with respect to voltage. At pH higher than 1.77, pores do not form due to a very thick barrier layer. A weakly nonlinear theory based on long-wave expansion of double free surface problem yields two coupled interface evolution equations that can be reduced to one without altering the dispersion relationship by assuming an equal and in-phase amplitude for the two interfaces. This interface evolution equation faithfully reproduces the initial pore ordering and their dynamics. A hodograph transformation technique is then used to determine the interior dimension of the well-developed pores in two dimensions. The ratio of pore diameter to pore separation is found to be a factor independent of voltage but varies with the pH of the electrolyte. Both the predicted pH range where pores are formed and the predicted pore dimensions are favorably compared to experimental data. (c) 2002 American Institute of Physics.

  9. Mechanical Computing Redux: Limitations at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Liu, Tsu-Jae King

    2014-03-01

    Technology solutions for overcoming the energy efficiency limits of nanoscale complementary metal oxide semiconductor (CMOS) technology ultimately will be needed in order to address the growing issue of integrated-circuit chip power density. Off-state leakage current sets a fundamental lower limit in energy per operation for any voltage-level-based digital logic implemented with transistors (CMOS and beyond), which leads to practical limits for device density (i.e. cost) and operating frequency (i.e. system performance). Mechanical switches have zero off-state leakag and hence can overcome this fundamental limit. Contact adhesive force sets a lower limit for the switching energy of a mechanical switch, however, and also directly impacts its performance. This paper will review recent progress toward the development of nano-electro-mechanical relay technology and discuss remaining challenges for realizing the promise of mechanical computing for ultra-low-power computing. Supported by the Center for Energy Efficient Electronics Science (NSF Award 0939514).

  10. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    DOE PAGES

    Byun, T. S.; Yang, Y.; Overman, N. R.; ...

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to providemore » an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.« less

  11. An extremely stable, self-complementary hydrogen-bonded duplex

    SciTech Connect

    Zeng, Huang; Yang, Xiaowu; Brown, A L.; Martinovic, Suzana; Smith, Richard D.; Gong, Bing

    2003-07-30

    This paper describes the design, synthesis and characterization of a self-complementary six-H-bonded duplex with an association constant greater than 10{sup 9}/M in CHCl3. Numerous unnatural self-assembly systems have been developed in recent years. Most of these previously described systems are case-dependent, i.e., the individual components carry the information that defines only the formation of the specific assembly. An alternative approach involves the design of highly specific and highly stable recognition units (modules)that are compatible with a variety of structural components. Such recognition modules or ''molecular glues'' then direct the assembly of these structural components. In this regard,hydrogen-bonded complexes based on rigid heterocycles with multiple H-bonding donor (D) and acceptor (A) sites have received the most attention in recent years. Other complexes, most based on H-bonding interactions, have also been reported. Highly stable, self-complementary H-bonded complexes are particularly attractive for developing supramolecular homopolymers of very high molecular weights. In spite of the intriguing perspective, only a very small number of self-complementary H-bonded complexes with high stabilities are known. The best known examples involve two pairs of quadruply H-bonded, self-complementary complexes, both based on the AADD-DDAA array, and with association constants greater than 10{sup 7}/M. We report here the design and characterization of our first six-H-bonded, self-complementary duplex that contains the AADADD-DDADAA array.

  12. Duplex Doppler ultrasound study of the temporomandibular joint.

    PubMed

    Stagnitti, A; Marini, A; Impara, L; Drudi, F M; Lo Mele, L; Lillo Odoardi, G

    2012-06-01

    Sommario INTRODUZIONE: La fisiologia articolare dell’articolazione temporo-mandibolare (ATM) può essere esaminata sia dal punto di vista clinico che strumentale. La diagnostica per immagini ha da tempo contribuito con la risonanza magnetica (RM) e anche con la radiografia (Rx) e la tomografia computerizzata (TC) all’analisi della morfologia dei capi articolari e della cinetica condilare. L’esame duplex-ecodoppler è una metodica di largo impiego nello studio delle strutture in movimento in particolar modo a livello delle strutture del sistema vascolare. MATERIALI E METODI: È stata utilizzata un’apparecchiatura Toshiba APLIO SSA-770A, con l’uso di tecnica duplex-ecodoppler multi display, che consente la visualizzazione contemporanea dell’immagine ecografica e dei segnali Doppler utilizzando una sonda lineare del tipo phased array con cristalli trasduttori funzionanti ad una frequenza fondamentale di 6 MHz per gli spettri Doppler pulsati e 7.5 MHz per l’imaging ecografico. Sono stati esaminati nel Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo-patologiche dell’Università “Sapienza” di Roma, 30 pazienti del reparto di Ortognatodonzia dell’Istituto di Odontoiatria della stessa Università. RISULTATI: Nei pazienti normali si è ottenuta un’alternanza regolare degli spettri Doppler, mentre nei soggetti con disfunzioni del complesso condilo-meniscale, si è persa la regolarità della sommatoria degli spettri di Fourier, con altezze incostanti in relazione a spostamenti irregolari del complesso condilo-meniscale. CONCLUSIONI: L’esame ecodoppler si è dimostrato, in tutti i pazienti, capace di discriminare quelli normali dai patologici e tra questi ultimi ha permesso di identificare gli aspetti più significativi delle patologie disfunzionali.

  13. Geometry of an outcrop-scale duplex in Devonian flysch, Maine

    USGS Publications Warehouse

    Bradley, D.C.; Bradley, L.M.

    1994-01-01

    We describe an outcrop-scale duplex consisting of 211 exposed repetitions of a single bed. The duplex marks an early Acadian (Middle Devonian) oblique thrust zone in the Lower Devonian flysch of northern Maine. Detailed mapping at a scale of 1:8 has enabled us to measure accurately parameters such as horse length and thickness, ramp angles and displacements; we compare these and derivative values with those of published descriptions of duplexes, and with theoretical models. Shortening estimates based on line balancing are consistently smaller than two methods of area balancing, suggesting that layer-parallel shortening preceded thrusting. ?? 1994.

  14. Integrated nanoscale tools for interrogating living cells

    NASA Astrophysics Data System (ADS)

    Jorgolli, Marsela

    The development of next-generation, nanoscale technologies that interface biological systems will pave the way towards new understanding of such complex systems. Nanowires -- one-dimensional nanoscale structures -- have shown unique potential as an ideal physical interface to biological systems. Herein, we focus on the development of nanowire-based devices that can enable a wide variety of biological studies. First, we built upon standard nanofabrication techniques to optimize nanowire devices, resulting in perfectly ordered arrays of both opaque (Silicon) and transparent (Silicon dioxide) nanowires with user defined structural profile, densities, and overall patterns, as well as high sample consistency and large scale production. The high-precision and well-controlled fabrication method in conjunction with additional technologies laid the foundation for the generation of highly specialized platforms for imaging, electrochemical interrogation, and molecular biology. Next, we utilized nanowires as the fundamental structure in the development of integrated nanoelectronic platforms to directly interrogate the electrical activity of biological systems. Initially, we generated a scalable intracellular electrode platform based on vertical nanowires that allows for parallel electrical interfacing to multiple mammalian neurons. Our prototype device consisted of 16 individually addressable stimulation/recording sites, each containing an array of 9 electrically active silicon nanowires. We showed that these vertical nanowire electrode arrays could intracellularly record and stimulate neuronal activity in dissociated cultures of rat cortical neurons similar to patch clamp electrodes. In addition, we used our intracellular electrode platform to measure multiple individual synaptic connections, which enables the reconstruction of the functional connectivity maps of neuronal circuits. In order to expand and improve the capability of this functional prototype device we designed

  15. Two-flux transfer matrix model for predicting the reflectance and transmittance of duplex halftone prints.

    PubMed

    Mazauric, Serge; Hébert, Mathieu; Simonot, Lionel; Fournel, Thierry

    2014-12-01

    We introduce a model allowing convenient calculation of the spectral reflectance and transmittance of duplex prints. It is based on flux transfer matrices and enables retrieving classical Kubelka-Munk formulas, as well as extended formulas for nonsymmetric layers. By making different assumptions on the flux transfers, we obtain two predictive models for the duplex halftone prints: the "duplex Clapper-Yule model," which is an extension of the classical Clapper-Yule model, and the "duplex primary reflectance-transmittance model." The two models can be calibrated from either reflectance or transmittance measurements; only the second model can be calibrated from both measurements, thus giving optimal accuracy for both reflectance and transmittance predictions. The conceptual differences between the two models are deeply analyzed, as well as their advantages and drawbacks in terms of calibration. According to the test carried out in this study with paper printed in inkjet, their predictive performances are good provided appropriate calibration options are selected.

  16. Rapid method to detect duplex formation in sequencing by hybridization methods

    DOEpatents

    Mirzabekov, A.D.; Timofeev, E.N.; Florentiev, V.L.; Kirillov, E.V.

    1999-01-19

    A method for determining the existence of duplexes of oligonucleotide complementary molecules is provided. A plurality of immobilized oligonucleotide molecules, each of a specific length and each having a specific base sequence, is contacted with complementary, single stranded oligonucleotide molecules to form a duplex. Each duplex facilitates intercalation of a fluorescent dye between the base planes of the duplex. The invention also provides for a method for constructing oligonucleotide matrices comprising confining light sensitive fluid to a surface and exposing the light-sensitive fluid to a light pattern. This causes the fluid exposed to the light to coalesce into discrete units and adhere to the surface. This places each of the units in contact with a set of different oligonucleotide molecules so as to allow the molecules to disperse into the units. 13 figs.

  17. Structural basis for duplex RNA recognition and cleavage by Archaeoglobus fulgidus C3PO

    PubMed Central

    Parizotto, Eneida A; Lowe, Edward D; Parker, James S

    2013-01-01

    Oligomeric complexes of Trax and Translin proteins, known as C3POs, participate in a variety of eukaryotic nucleic acid metabolism pathways including RNAi and tRNA processing. In RNAi in humans and Drosophila, C3PO activates pre-RISC by removing the passenger strand of the siRNA precursor duplex using nuclease activity present in Trax. It is not known how C3POs engage with nucleic acid substrates. Here we identify a single protein from Archaeoglobus fulgidus that assembles into an octamer with striking similarity to human C3PO. The structure in complex with duplex RNA reveals that the octamer entirely encapsulates a single thirteen base-pair RNA duplex inside a large inner cavity. Trax-like subunit catalytic sites target opposite strands of the duplex for cleavage, separated by seven base pairs. The structure provides insight into the mechanism of RNA recognition and cleavage by an archaeal C3PO-like complex. PMID:23353787

  18. View of 501 8th St., a sidegable duplex bungalow with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of 501 8th St., a side-gable duplex bungalow with engaged porch and paired and clustered columns. Built as worker housing for Lanett Cotton Mill - 501 Eighth Street (House), 501 Eighth Street, Lanett, Chambers County, AL

  19. Nanoscale materials for hyperthermal theranostics

    PubMed Central

    Smith, Bennett E.; Roder, Paden B.; Zhou, Xuezhe; Pauzauskie, Peter J.

    2016-01-01

    Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. This mini-review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reduce angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods. PMID:25816102

  20. Nanoscale Engineering of Designer Cellulosomes.

    PubMed

    Gunnoo, Melissabye; Cazade, Pierre-André; Galera-Prat, Albert; Nash, Michael A; Czjzek, Mirjam; Cieplak, Marek; Alvarez, Beatriz; Aguilar, Marina; Karpol, Alon; Gaub, Hermann; Carrión-Vázquez, Mariano; Bayer, Edward A; Thompson, Damien

    2016-07-01

    Biocatalysts showcase the upper limit obtainable for high-speed molecular processing and transformation. Efforts to engineer functionality in synthetic nanostructured materials are guided by the increasing knowledge of evolving architectures, which enable controlled molecular motion and precise molecular recognition. The cellulosome is a biological nanomachine, which, as a fundamental component of the plant-digestion machinery from bacterial cells, has a key potential role in the successful development of environmentally-friendly processes to produce biofuels and fine chemicals from the breakdown of biomass waste. Here, the progress toward so-called "designer cellulosomes", which provide an elegant alternative to enzyme cocktails for lignocellulose breakdown, is reviewed. Particular attention is paid to rational design via computational modeling coupled with nanoscale characterization and engineering tools. Remaining challenges and potential routes to industrial application are put forward.

  1. Nanoscale materials for hyperthermal theranostics

    NASA Astrophysics Data System (ADS)

    Smith, Bennett E.; Roder, Paden B.; Zhou, Xuezhe; Pauzauskie, Peter J.

    2015-04-01

    Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. This mini-review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reduce angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods.

  2. Nanoscale materials for hyperthermal theranostics

    DOE PAGES

    Smith, Bennett E.; Roder, Paden B.; Zhou, Xuezhe; ...

    2015-03-18

    Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. Our mini review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reducemore » angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods.« less

  3. Nanoscale materials for hyperthermal theranostics

    SciTech Connect

    Smith, Bennett E.; Roder, Paden B.; Zhou, Xuezhe; Pauzauskie, Peter J.

    2015-03-18

    Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. Our mini review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reduce angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods.

  4. Nanoscale metal-organic materials.

    PubMed

    Carné, Arnau; Carbonell, Carlos; Imaz, Inhar; Maspoch, Daniel

    2011-01-01

    Metal-organic materials are found to be a fascinating novel class of functional nanomaterials. The limitless combinations between inorganic and organic building blocks enable researchers to synthesize 0- and 1-D metal-organic discrete nanostructures with varied compositions, morphologies and sizes, fabricate 2-D metal-organic thin films and membranes, and even structure them on surfaces at the nanometre length scale. In this tutorial review, the synthetic methodologies for preparing these miniaturized materials as well as their potential properties and future applications are discussed. This review wants to offer a panoramic view of this embryonic class of nanoscale materials that will be of interest to a cross-section of researchers working in chemistry, physics, medicine, nanotechnology, materials chemistry, etc., in the next years.

  5. Optical Spectroscopy at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Hong, Xiaoping

    Recent advances in material science and fabrication techniques enabled development of nanoscale applications and devices with superior performances and high degree of integration. Exotic physics also emerges at nanoscale where confinement of electrons and phonons leads to drastically different behavior from those in the bulk materials. It is therefore rewarding and interesting to investigate and understand material properties at the nanoscale. Optical spectroscopy, one of the most versatile techniques for studying material properties and light-matter interactions, can provide new insights into the nanomaterials. In this thesis, I explore advanced laser spectroscopic techniques to probe a variety of different nanoscale phenomena. A powerful tool in nanoscience and engineering is scanning tunneling microscopy (STM). Its capability in atomic resolution imaging and spectroscopy unveiled the mystical quantum world of atoms and molecules. However identification of molecular species under investigation is one of the limiting functionalities of the STM. To address this need, we take advantage of the molecular `fingerprints' - vibrational spectroscopy, by combining an infrared light sources with scanning tunneling microscopy. In order to map out sharp molecular resonances, an infrared continuous wave broadly tunable optical parametric oscillator was developed with mode-hop free fine tuning capabilities. We then combine this laser with STM by shooting the beam onto the STM substrate with sub-monolayer diamondoids deposition. Thermal expansion of the substrate is detected by the ultrasensitive tunneling current when infrared frequency is tuned across the molecular vibrational range. Molecular vibrational spectroscopy could be obtained by recording the thermal expansion as a function of the excitation wavelength. Another interesting field of the nanoscience is carbon nanotube, an ideal model of one dimensional physics and applications. Due to the small light absorption with

  6. Nanoscale cryptography: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Masoumi, Massoud; Shi, Weidong; Xu, Lei

    2015-11-01

    While most of the electronics industry is dependent on the ever-decreasing size of lithographic transistors, this scaling cannot continue indefinitely. To improve the performance of the integrated circuits, new emerging and paradigms are needed. In recent years, nanoelectronics has become one of the most important and exciting forefront in science and engineering. It shows a great promise for providing us in the near future with many breakthroughs that change the direction of technological advances in a wide range of applications. In this paper, we discuss the contribution that nanotechnology may offer to the evolution of cryptographic hardware and embedded systems and demonstrate how nanoscale devices can be used for constructing security primitives. Using a custom set of design automation tools, it is demonstrated that relative to a conventional 45-nm CMOS system, performance gains can be obtained up to two orders of magnitude reduction in area and up to 50 % improvement in speed.

  7. Nanoscale cryptography: opportunities and challenges.

    PubMed

    Masoumi, Massoud; Shi, Weidong; Xu, Lei

    2015-01-01

    While most of the electronics industry is dependent on the ever-decreasing size of lithographic transistors, this scaling cannot continue indefinitely. To improve the performance of the integrated circuits, new emerging and paradigms are needed. In recent years, nanoelectronics has become one of the most important and exciting forefront in science and engineering. It shows a great promise for providing us in the near future with many breakthroughs that change the direction of technological advances in a wide range of applications. In this paper, we discuss the contribution that nanotechnology may offer to the evolution of cryptographic hardware and embedded systems and demonstrate how nanoscale devices can be used for constructing security primitives. Using a custom set of design automation tools, it is demonstrated that relative to a conventional 45-nm CMOS system, performance gains can be obtained up to two orders of magnitude reduction in area and up to 50 % improvement in speed.

  8. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    NASA Astrophysics Data System (ADS)

    Borghi, F.; Sogne, E.; Lenardi, C.; Podestà, A.; Merlini, M.; Ducati, C.; Milani, P.

    2016-08-01

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments.

  9. Hardness analysis of welded joints of austenitic and duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Topolska, S.

    2016-08-01

    Stainless steels are widely used in the modern world. The continuous increase in the use of stainless steels is caused by getting greater requirements relating the corrosion resistance of all types of devices. The main property of these steels is the ability to overlap a passive layer of an oxide on their surface. This layer causes that they become resistant to oxidation. One of types of corrosion-resistant steels is ferritic-austenitic steel of the duplex type, which has good strength properties. It is easily formable and weldable as well as resistant to erosion and abrasive wear. It has a low susceptibility to stress-corrosion cracking, to stress corrosion, to intercrystalline one, to pitting one and to crevice one. For these reasons they are used, among others, in the construction of devices and facilities designed for chemicals transportation and for petroleum and natural gas extraction. The paper presents the results which shows that the particular specimens of the ][joint representing both heat affected zones (from the side of the 2205 steel and the 316L one) and the weld are characterized by higher hardness values than in the case of the same specimens for the 2Y joint. Probably this is caused by machining of edges of the sections of metal sheets before the welding process, which came to better mixing of native materials and the filler metal. After submerged arc welding the 2205 steel still retains the diphase, austenitic-ferritic structure and the 316L steel retains the austenitic structure with sparse bands of ferrite σ.

  10. Heat Capacity Changes Associated with DNA Duplex Formation: Salt- and Sequence-Dependent Effects†

    PubMed Central

    Mikulecky, Peter J.; Feig, Andrew L.

    2008-01-01

    Duplexes are the most fundamental elements of nucleic acid folding. Although it has become increasingly clear that duplex formation can be associated with a significant change in heat capacity (ΔCp), this parameter is typically overlooked in thermodynamic studies of nucleic acid folding. Analogy to protein folding suggests that base stacking events coupled to duplex formation should give rise to a ΔCp due to the release of waters solvating aromatic surfaces of nucleotide bases. In previous work, we showed that the ΔCp observed by isothermal titration calorimetry (ITC) for RNA duplex formation depended on salt and sequence. In the present work, we apply calorimetric and spectroscopic techniques to a series of designed DNA duplexes to demonstrate that both the salt dependence and sequence dependence of ΔCps observed by ITC reflect perturbations to the same fundamental phenomenon: stacking in the single-stranded state. By measuring the thermodynamics of single strand melting, one can accurately predict the ΔCps observed for duplex formation by ITC at high and low ionic strength. We discuss our results in light of the larger issue of contributions to ΔCp from coupled equilibria and conclude that observed ΔCps can be useful indicators of intermediate states in nucleic acid folding phenomena. PMID:16401089

  11. Thermal stability and energetics of 15-mer DNA duplex interstrand crosslinked by trans-diamminedichloroplatinum(II).

    PubMed

    Hofr, Ctirad; Brabec, Viktor

    2005-03-01

    The effect of the location of the interstrand cross-link formed by trans-diamminedichloroplatinum(II) (transplatin) on the thermal stability and energetics of 15-mer DNA duplex has been investigated. The duplex containing single, site-specific cross-link, thermodynamically equivalent model structures (hairpins) and nonmodified duplexes were characterized by differential scanning calorimetry, temperature-dependent uv absorption, and circular dichroism. The results demonstrate that the formation of the interstrand cross-link of transplatin does not affect pronouncedly thermodynamic stability of DNA: the cross-link induces no marked changes not only in enthalpy, but also in "reduced" (concentration independent) monomolecular transition entropy. These results are consistent with the previous observations that interstrand cross-links of transplatin structurally perturb DNA only to a relatively small extent. On the other hand, constraining the duplex with the interstrand cross-link of transplatin results in a significant increase in thermal stability that is primarily due to entropic effects: the cross-link reduces the molecularity of the oligomer system from bimolecular to monomolecular. Importantly, the position of the interstrand cross-link within the duplex modulates cooperativity of the melting transition of the duplex and consequently its thermal stability.

  12. PREFACE: Nanoscale science and technology

    NASA Astrophysics Data System (ADS)

    Bellucci, Stefano

    2008-11-01

    optical throughput of the probe and scanning position accuracy. Prato showed a method to characterize force sensitivity of piezoelectric transducers and we've implemented a test system for off line characterization of probes. Recent improvements in aperture SNOM were also illustrated in this talk by some biological applications. H Stadler showed the development of a new instrumentation, combining optical and scanning probe microscopy (SPM) multimodal characterization, specifically designed for SPM based life science research and full integration with optical microscopy. The prerequisites and design of such equipment besides newer application examples in this area were discussed. Stadler also overviewed work on improving quantitative mechanical characterization on the nanoscale. This included hardware like SPM control electronics and probe development as theoretical aspects and software for data evaluation. Comparative field emission studies of as-produced CNTs vis á vis commercially obtained SWCNT were presented by A Tiberia. Carbon nanotubes synthesized at INFN-Laboratori Nazionali di Frascati in the nanotechnology group of S Bellucci by DC thermal plasma process were analyzed by electron microscope and studied for their field emission properties. These carbon nanotubes were deposited on a tungsten wire, which acted as the cathode. Care was taken to ensure complete covering of the wire. The emission studies were performed in a stainless steel chamber under a dynamic vacuum in the range of 10-8 Torr. The field emitted current was detected using a phosphorous coated ITO (indium tin oxide) glass plate. The phosphorous coat also helped in imaging the tips of the nanotubes. This was crucial in accurately estimating the emitting area and thus the field enhancement factor. The I-V curves for the field emission were recorded for various distances between the electrodes. Similar studies were performed for commercially obtained single walled carbon nanotubes and the results

  13. Atom Probe Tomography of Nanoscale Electronic Materials

    SciTech Connect

    Larson, David J.; Prosa, Ty J.; Perea, Daniel E.; Inoue, Hidekazu; Mangelinck, D.

    2016-01-01

    Atom probe tomography (APT) is a mass spectrometry based on time-of-flight measurements which also concurrently produces 3D spatial information. The reader is referred to any of the other papers in this volume or to the following references for further information 4–8. The current capabilities of APT, such as detecting a low number of dopant atoms in nanoscale devices or segregation at a nanoparticle interface, make this technique an important component in the nanoscale metrology toolbox. In this manuscript, we review some of the applications of APT to nanoscale electronic materials, including transistors and finFETs, silicide contact microstructures, nanowires, and nanoparticles.

  14. Duplex ultrasound in the assessment of peripheral arterial disease

    NASA Astrophysics Data System (ADS)

    Aly, Sayed A. A. F.

    Arteriography plays a central role in the assessment of peripheral arterial disease. Arteriography is associated with the risk of damage to the artery, peripheral embolisation, hazards of intra-arterial injection and exposure to ionising radiation. Arteriography provides an anatomical assessment of arterial stenosis but does not measure the functional results of the stenosis. Modern high resolution ultrasound imaging technology enables non-invasive assessment of vascular diseases and allows functional assessment of blood flow. This investigation is of proven value in studying carotid disease. The aim of the study was to determine the accuracy of duplex ultrasonography (DUS) in assessment of lower limb arterial disease in comparison with arteriography (IA DSA). A technical comparison has been made between the description of arterial lesion as indicated by DUS and IA DSA. In addition, the sensitivity of DUS in assessing multisegmental arterial disease has been determined. The clinical decision has been investigated in a further study in which five surgeons were asked to determine patient management based on IA DSA and DUS data in the same patient group. Concordance between management strategies was assessed. DUS was used as the primary method of investigation in further series of patients. Criteria were established to determine which patients would require angiography. The computer-assisted image analysis was used to study the ultrasound images of arterial stenosis and a method of analysing such images objectively was established. Two studies have been included in this section. These assess the technical accuracy of ultrasound image analysis compared with histological examination of plaque. The reproducibility of the image analysis has also been tested. I have developed a classification for peripheral arterial disease to be used to facilitate the communication between vascular laboratory staff who perform the duplex ultrasonography and surgeons who use this

  15. A new diffusion-inhibited oxidation-resistant coating for superalloys

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Glasgow, T. K.; Levine, S. R.

    1981-01-01

    A concept for enhanced protection of superalloys consists of adding an oxidation- and diffusion-resistant cermet layer between the superalloy and the outer oxidation-resistant metallic alloy coating. Such a duplex coating was compared with a physical-vapor-deposited (PVD) NiCrAlY coating in cyclic oxidation at 1150 C. The substrate alloy was MA 754 - an oxide-dispersion-strengthened superalloy that is difficult to coat. The duplex coating, applied by plasma spraying, outperformed the PVD coating on the basis of weight change and both macroscopic and metallographic observations.

  16. Nanoscale spinel LiFeTiO4 for intercalation pseudocapacitive Li(+) storage.

    PubMed

    Chen, Ruiyong; Knapp, Michael; Yavuz, Murat; Ren, Shuhua; Witte, Ralf; Heinzmann, Ralf; Hahn, Horst; Ehrenberg, Helmut; Indris, Sylvio

    2015-01-14

    Intercalation pseudocapacitive Li(+) storage has been recognized recently in metal oxide materials, wherein Li(+) intercalation into the lattice is not solid-state diffusion-limited. This may bridge the performance gap between electrochemical capacitors and battery materials. To date, only a few materials with desired crystal structure and with well-defined nanoarchitectures have been found to exhibit such attractive behaviour. Herein, we report for the first time that nanoscale spinel LiFeTiO4 as a cathode material for Li-ion batteries exhibits intercalation pseudocapacitive Li(+) storage behaviour. Nanoscale LiFeTiO4 nanoparticles with native carbon coating were synthesized by a sol-gel route. A fast and large-amount of Li(+) storage (up to 1.6 Li(+) per formula unit over cycling) in the nanoscale LiFeTiO4 host has been achieved without compromising kinetics.

  17. Nanoscale Substances on the TSCA Inventory

    EPA Pesticide Factsheets

    This document is to help the regulated community comply with the requirements of the Toxic Substances Control Act (TSCA) Section 5 Premanufacturing Notice (PMN) Program for nanoscale chemical substances.

  18. Power-Aware Asynchronous Peer-to-Peer Duplex Communication System Based on Multiple-Valued One-Phase Signaling

    NASA Astrophysics Data System (ADS)

    Mizusawa, Kazuyasu; Onizawa, Naoya; Hanyu, Takahiro

    This paper presents a design of an asynchronous peer-to-peer half-duplex/full-duplex-selectable data-transfer system on-chip interconnected. The data-transfer method between channels is based on a 1-phase signaling scheme realized by using multiple-valued current-mode (MVCM) circuits and encoding, which performs high-speed communication. A data transmission is selectable by adding a mode-detection circuit that observes data-transmission modes; full-duplex, half duplex and standby modes. Especially, since current sources are completely cut off during the standby mode, the power dissipation can be greatly reduced. Moreover, both half-duplex and full-duplex communication can be realized by sharing a common circuit except a signal-level conversion circuit. The proposed interface is implemented using 0.18-μm CMOS, and its performance improvement is discussed in comparison with those of the other ordinary asynchronous methods.

  19. Advanced STEM Characterization of Nanoscale Materials

    NASA Astrophysics Data System (ADS)

    Dey, Sanchita

    Nanoscale materials are the key structures in determining the properties of many technologically-important materials. Two such important nanoscale materials for different technological applications are investigated in this dissertation. They are: Fischer-Tropsch (FT) catalysts and irradiated metallic bi-layers. Catalytic activity depends on the structural parameters such as size, shape, and distribution on support. On the other hand, the radiation resistance of the model metallic multi-layers is influenced by the presence of interphase, phase-boundaries, and grain-boundaries. The focus of this dissertation is to use different TEM and STEM techniques to understand the structure of these materials. This dissertation begins with a review of the microscopy techniques used in the experiments. Then, in the next two chapters, literature review followed by results and discussions on the two above-mentioned nano materials are presented. Future research directions are included in the concluding chapter. To obtain three-dimensional morphological information of the FT catalysts during reduced/active state, STEM tomography is used. The oxidized state and reduced state is clarified by using STEM-EELS (in the form of spectrum imaging). We used a special vacuum transfer tomography holder and ex-situ gas assembly for reduction, and the reduction parameters are optimized for complete reduction. It was observed that the particle was reduced with 99.99% H2, and at 400°C for 15 minutes. The tomographic results in before-reduction condition depict that the Co-oxide particles are distributed randomly inside the alumina support. After reduction, the tomogram reveals that metallic Co nucleated and sintered towards the surface of the alumina support. The overall metallic Co distribution shows an outward segregation by subsurface diffusion mechanism. In the study of metallic bi-layer, He-irradiated gold twist grain boundary (AuTGB) was chosen as it is one of the least-studied systems in the

  20. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay.

    PubMed

    Huang, Yong; Xing, Na; Wang, Zengguo; Zhang, Xiujuan; Zhao, Xiaomin; Du, Qian; Chang, Lingling; Tong, Dewen

    2015-01-01

    Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility.

  1. Reaction-diffusion processes and metapopulation models on duplex networks

    NASA Astrophysics Data System (ADS)

    Xuan, Qi; Du, Fang; Yu, Li; Chen, Guanrong

    2013-03-01

    Reaction-diffusion processes, used to model various spatially distributed dynamics such as epidemics, have been studied mostly on regular lattices or complex networks with simplex links that are identical and invariant in transferring different kinds of particles. However, in many self-organized systems, different particles may have their own private channels to keep their purities. Such division of links often significantly influences the underlying reaction-diffusion dynamics and thus needs to be carefully investigated. This article studies a special reaction-diffusion process, named susceptible-infected-susceptible (SIS) dynamics, given by the reaction steps β→α and α+β→2β, on duplex networks where links are classified into two groups: α and β links used to transfer α and β particles, which, along with the corresponding nodes, consist of an α subnetwork and a β subnetwork, respectively. It is found that the critical point of particle density to sustain reaction activity is independent of the network topology if there is no correlation between the degree sequences of the two subnetworks, and this critical value is suppressed or extended if the two degree sequences are positively or negatively correlated, respectively. Based on the obtained results, it is predicted that epidemic spreading may be promoted on positive correlated traffic networks but may be suppressed on networks with modules composed of different types of diffusion links.

  2. Phase Separation in Lean Grade Duplex Stainless Steel 2101

    SciTech Connect

    Garfinkel, D.; Poplawsky, Jonathan D.; Guo, Wei; Young, Jr., George A.; Tucker, Julie

    2015-08-19

    The use of duplex stainless steels (DSS) in nuclear power generation systems is limited by thermal instability that leads to embrittlement in the temperature range of 204°C - 538°C. New lean grade alloys, such as 2101, offer the potential to mitigate these effects. Thermal embrittlement was quantified through impact toughness and hardness testing on samples of alloy 2101 after aging at 427°C for various durations (1-10,000 hours). Additionally, atom probe tomography (APT) was utilized in order to observe the kinetics of α-α’ separation and G-phase formation. Mechanical testing and APT data for two other DSS alloys, 2003 and 2205 were used as a reference to 2101. The results show that alloy 2101 exhibits superior performance compared to the standard grade DSS alloy, 2205, but inferior to the lean grade alloy, 2003, in mechanical testing. APT data demonstrates that the degree of α-α’ separation found in alloy 2101 closely resembles that of 2205, and greatly exceeds 2003. Additionally, contrary to what was observed in 2003, 2101 demonstrated G-phase like precipitates after long aging times, though precipitates were not as abundant as was observed in 2205.

  3. Aging of cast duplex stainless steels in LWR systems

    SciTech Connect

    Chopra, O.K.; Chung, H.M.

    1984-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are evaluated to determine the expected embrittlement of cast components during the operating lifetime of reactors and to define the objectives and scope of the investigation. This presentation describes the status of the program. Data for the metallurgical characterization of the various cast stainless steels used in the investigation are presented. Charpy impact tests on short-term aged material indicate that CF-3 stainless steels are less susceptible to embrittlement than CF-8 or CF-8M stainless steels. Microstructural characterization of cast stainless steels that were obtained from Georg Fischer Co. and aged for up to 70,000 h at 300, 350, and 400/sup 0/C reveals the formation of four different types of precipitates that are not ..cap alpha..'. Embrittlement of the ferrite phase is primarily due to pinning of the dislocations by two of these precipitates, designated as Type M and Type X. The ferrite phase is embrittled after approx. 8 y at 300/sup 0/C and shows cleavage fracture. Examination of the fracture surfaces of the impact-test specimens indicates that the toughness of the long-term aged material is determined by the austenite phase. 8 figures, 3 tables.

  4. Superplastic Forming of Duplex Stainless Steel for Aerospace Part

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo

    2011-08-01

    In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 °C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.

  5. Carburizing of Duplex Stainless Steel (DSS) Under Compression Superplastic Deformation

    NASA Astrophysics Data System (ADS)

    Ahamad, Nor Wahida; Jauhari, Iswadi

    2012-12-01

    A new surface carburizing technique which combines superplastic deformation with superplastic carburizing (SPC) is introduced. SPC was conducted on duplex stainless steel under compression mode at a fixed 0.5 height reduction strain rates ranging from 6.25 × 10-5 to 1 × 10-3 s-1 and temperature ranging from 1173 K to 1248 K (900 °C to 975 °C). The results are compared with those from conventional and non-superplastic carburizing. The results show that thick hard carburized layers are formed at a much faster rate compared with the other two processes. A more gradual hardness transition from the surface to the substrate is also obtained. The highest carburized layer thickness and surface hardness are attained under SPC process at 1248 K (975 °C) and 6.25 × 10-5 s-1 with a value of (218.3 ± 0.5) μm and (1581.0 ± 5.0) HV respectively. Other than that, SPC also has the highest scratch resistance.

  6. Eddy current techniques for super duplex stainless steel characterization

    NASA Astrophysics Data System (ADS)

    Camerini, C.; Sacramento, R.; Areiza, M. C.; Rocha, A.; Santos, R.; Rebello, J. M.; Pereira, G.

    2015-08-01

    Super duplex stainless steel (SDSS) is a two-phase material where the microstructure consists of grains of ferrite (δ) and austenite (γ). SDSS exhibit an attractive combination of properties, such as: strength, toughness and stress corrosion cracking resistance. Nevertheless, SDSS attain these properties after a controlled solution heat treatment, leading to a similar volumetric fraction of δ and γ. Any further heat treatment, welding operation for example, can change the balance of the original phases, or may also lead to precipitation of a deleterious phase, such as sigma (σ). For these situations, the material corrosion resistance is severely impaired. In the present study, several SDSS samples with low σ phase content and non-balanced microstructure were intentionally obtained by thermally treating SDSS specimens. Electromagnetic techniques, conventional Eddy Current Testing (ECT) and Saturated Low Frequency Eddy Current (SLOFEC), were employed to characterize the SDSS samples. The results showed that ECT and SLOFEC are reliable techniques to evaluate σ phase presence in SDSS and can provide an estimation of the δ content.

  7. Phase Separation in Lean Grade Duplex Stainless Steel 2101

    DOE PAGES

    Garfinkel, D.; Poplawsky, Jonathan D.; Guo, Wei; ...

    2015-08-19

    The use of duplex stainless steels (DSS) in nuclear power generation systems is limited by thermal instability that leads to embrittlement in the temperature range of 204°C - 538°C. New lean grade alloys, such as 2101, offer the potential to mitigate these effects. Thermal embrittlement was quantified through impact toughness and hardness testing on samples of alloy 2101 after aging at 427°C for various durations (1-10,000 hours). Additionally, atom probe tomography (APT) was utilized in order to observe the kinetics of α-α’ separation and G-phase formation. Mechanical testing and APT data for two other DSS alloys, 2003 and 2205 weremore » used as a reference to 2101. The results show that alloy 2101 exhibits superior performance compared to the standard grade DSS alloy, 2205, but inferior to the lean grade alloy, 2003, in mechanical testing. APT data demonstrates that the degree of α-α’ separation found in alloy 2101 closely resembles that of 2205, and greatly exceeds 2003. Additionally, contrary to what was observed in 2003, 2101 demonstrated G-phase like precipitates after long aging times, though precipitates were not as abundant as was observed in 2205.« less

  8. Beamforming Based Full-Duplex for Millimeter-Wave Communication.

    PubMed

    Liu, Xiao; Xiao, Zhenyu; Bai, Lin; Choi, Jinho; Xia, Pengfei; Xia, Xiang-Gen

    2016-07-21

    In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors.

  9. Beamforming Based Full-Duplex for Millimeter-Wave Communication

    PubMed Central

    Liu, Xiao; Xiao, Zhenyu; Bai, Lin; Choi, Jinho; Xia, Pengfei; Xia, Xiang-Gen

    2016-01-01

    In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors. PMID:27455256

  10. Cavitation corrosion behavior of cast duplex stainless steel in seawater

    SciTech Connect

    Shalaby, H.M.; Al-Hashem, A.

    1996-10-01

    The cavitation corrosion behavior of a commercial cast duplex stainless steel was studied in seawater using an ultrasonically induced cavitation facility at a frequency of 20 kHz and an amplitude of 25 {micro}m. The work included measurements of the free corrosion potential and mass loss in addition to microscopic examinations. Cavitation caused an active shift in the free corrosion potential. The rate of mass loss was negligible in quiescent seawater, while it significantly increased in the presence of cavitation. The application of cathodic protection reduced the rate of mass loss by 19%. Microscopic examinations revealed that the first signs of cavitation damage were in the form of slip bands and small cavities in the austenite islands and at the ferrite/austenite boundaries. With the progress of cavitation, material loss became mainly at the austenite phase and spread to the ferrite phase at a later stage. Cathodic protection decreased slightly the number of cavities. Cross-sectional examinations revealed the presence of microcracks in the bulk of the material. The microcracks initiated at the surface in the ferrite matrix. Crack propagation was impeded by the austenite islands and branched along parallel slip systems.

  11. Superplastic Forming of Duplex Stainless Steel for Aerospace Part

    SciTech Connect

    Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo

    2011-08-22

    In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 deg. C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.

  12. Fabricating Ohmic contact on Nb-doped SrTiO3 surface in nanoscale

    NASA Astrophysics Data System (ADS)

    Wang, Yuhang; Shi, Xiaolan; Lai, Xubo; Gao, Zhipeng; Liu, Lixin; Wang, Yuan; Zhu, Wenjun; Meng, Chuanmin; Zhang, Liuwan

    2016-05-01

    Fabricating reliable nano-Ohmic contact on wide gap semiconductors is an important yet difficult step in oxide nanoelectronics. We fabricated Ohmic contact on the n-type wide gap oxide Nb-doped SrTiO3 in nanoscale by mechanically scratching the surface using an atomic force microscopy tip. Although contacted to high work function metal, the scratched area exhibits nearly linear IV behavior with low contact resistance, which maintains for hours in vacuum. In contrast, the unscratched area shows Fowler-Nordheim tunneling dominated Schottky rectifying behavior with high contact resistance. It was found that the Ohmic conductivity in the scratched area was drastically suppressed by oxygen gas indicating the oxygen vacancy origin of the Ohmic behavior. The surface oxygen vacancy induced barrier width reduction was proposed to explain the phenomena. The nanoscale approach is also applicable to macroscopic devices and has potential application in all-oxide devices.

  13. Structural transitions in nanoscale systems

    NASA Astrophysics Data System (ADS)

    Yoon, Mina

    In this work I investigate three different materials: nanoscale carbon systems, ferrofluid systems, and molecular-electronic devices. In particular, my study is focused on the theoretical understanding of structural changes and the associated electronic, mechanical, and magnetic properties of these materials. To study the equilibrium packing of fullerenes in carbon nanotube peapods optimization techniques were applied. In agreement with experimental measurements, my results for nanotubes containing fullerenes with 60--84 atoms indicate that the axial separation between the fullerenes is smaller than in the bulk crystal. The reduction of the inter-fullerene distance and also the structural relaxation of fullerenes result from a large internal pressure within the peapods. This naturally induced "static" pressure may qualify nanotubes as nanoscale autoclaves for chemical reactions. Combining total energy calculations with a search of phase space, I investigated the microscopic fusion mechanism of C60 fullerenes. I show that the (2+2) cycloaddition reaction, a necessary precursor for fullerene fusion, can be accelerated inside a nanotube. Fusion occurs along the minimum energy path as a finite sequence of Stone-Wales (SW) transformations. A detailed analysis of the transition states shows that Stone-Wales transformations are multi-step processes. I propose a new microscopic mechanism to explain the unusually fast fusion process of carbon nanotubes. The detailed pathway for two adjacent (5, 5) nanotubes to gradually merge into a (10, 10) tube, and the transition states have been identified. The propagation of the fused region is energetically favorable and proceeds in a morphology reminiscent of a Y-junction via a so called zipper mechanism, involving only SW bond rearrangements with low activation barriers. Using density functional theory, the equilibrium structure, stability, and electronic properties of nanostructured, hydrogen terminated diamond fragments have been

  14. Shear piezoelectricity in bone at the nanoscale

    NASA Astrophysics Data System (ADS)

    Minary-Jolandan, Majid; Yu, Min-Feng

    2010-10-01

    Recent demonstration of shear piezoelectricity in an isolated collagen fibril, which is the origin of piezoelectricity in bone, necessitates investigation of shear piezoelectric behavior in bone at the nanoscale. Using high resolution lateral piezoresponse force microcopy (PFM), shear piezoelectricity in a cortical bone sample was studied at the nanoscale. Subfibrillar structure of individual collagen fibrils with a periodicity of 60-70 nm were revealed in PFM map, indicating the direct contribution of collagen fibrils to the shear piezoelectricity of bone.

  15. Guanine oxidation by electron transfer: one- versus two-electron oxidation mechanism.

    PubMed

    Kupan, Adam; Saulière, Aude; Broussy, Sylvain; Seguy, Christel; Pratviel, Geneviève; Meunier, Bernard

    2006-01-01

    The degeneracy of the guanine radical cation, which is formed in DNA by oxidation of guanine by electron transfer, was studied by a detailed analysis of the oxidation products of guanine on oligonucleotide duplexes and by labeling experiments. It was shown that imidazolone, the major product of guanine oxidation, is formed through a one-electron oxidation process and incorporates one oxygen atom from O2. The formation of 8-oxo-7,8-dihydroguanine by a two-electron oxidation process was a minor pathway. The two-electron oxidation mechanism was also evidenced by the formation of a tris(hydroxymethyl)aminomethane adduct.

  16. Molecular Photovoltaics in Nanoscale Dimension

    PubMed Central

    Burtman, Vladimir; Zelichonok, Alexander; Pakoulev, Andrei V.

    2011-01-01

    This review focuses on the intrinsic charge transport in organic photovoltaic (PVC) devices and field-effect transistors (SAM-OFETs) fabricated by vapor phase molecular self-assembly (VP-SAM) method. The dynamics of charge transport are determined and used to clarify a transport mechanism. The 1,4,5,8-naphthalene-tetracarboxylic diphenylimide (NTCDI) SAM devices provide a useful tool to study the fundamentals of polaronic transport at organic surfaces and to discuss the performance of organic photovoltaic devices in nanoscale. Time-resolved photovoltaic studies allow us to separate the charge annihilation kinetics in the conductive NTCDI channel from the overall charge kinetic in a SAM-OFET device. It has been demonstrated that tuning of the type of conductivity in NTCDI SAM-OFET devices is possible by changing Si substrate doping. Our study of the polaron charge transfer in organic materials proposes that a cation-radical exchange (redox) mechanism is the major transport mechanism in the studied SAM-PVC devices. The role and contribution of the transport through delocalized states of redox active surface molecular aggregates of NTCDI are exposed and investigated. This example of technological development is used to highlight the significance of future technological development of nanotechnologies and to appreciate a structure-property paradigm in organic nanostructures. PMID:21339983

  17. Nanoscale pillar arrays for separations

    DOE PAGES

    Kirchner, Teresa; Strickhouser, Rachel; Hatab, Nahla; ...

    2015-04-01

    The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.e. pillar heights are 1-2μm and pillar diameters are typically in the 200- 400nm range. In addition to the intrinsic nanoscale aspects of the systems, it is shown they can be further functionalized with nanoporous layers and traditional stationary phases for chromatography; hence exhibit broad-rangingmore » lab-on-a-chip and point-of-care potential. Because of an inherent high permeability and very small effective mass transfer distance between pillars, chromatographic efficiency can be very high but is enhanced herein by stacking during development and focusing while drying, yielding plate heights in the nm range separated band volumes. Practical separations of fluorescent dyes, fluorescently derivatized amines, and anti-tumor drugs are illustrated.« less

  18. Nanoscale Mixing of Soft Solids

    SciTech Connect

    Choi, Soo-Hyung; Lee, Sangwoo; Soto, Haidy E.; Lodge, Timothy P.; Bates, Frank S.

    2013-03-07

    Assessing the state of mixing on the molecular scale in soft solids is challenging. Concentrated solutions of micelles formed by self-assembly of polystyrene-block-poly(ethylene-alt-propylene) (PS-PEP) diblock copolymers in squalane (C{sub 30}H{sub 62}) adopt a body-centered cubic (bcc) lattice, with glassy PS cores. Utilizing small-angle neutron scattering (SANS) and isotopic labeling ({sup 1}H and {sup 2}H (D) polystyrene blocks) in a contrast-matching solvent (a mixture of squalane and perdeuterated squalane), we demonstrate quantitatively the remarkable fact that a commercial mixer can create completely random mixtures of micelles with either normal, PS(H), or deuterium-labeled, PS(D), cores on a well-defined bcc lattice. The resulting SANS intensity is quantitatively modeled by the form factor of a single spherical core. These results demonstrate both the possibility of achieving complete nanoscale mixing in a soft solid and the use of SANS to quantify the randomness.

  19. Nanoscale pillar arrays for separations

    SciTech Connect

    Kirchner, Teresa; Strickhouser, Rachel; Hatab, Nahla; Charlton, Jennifer; Kravchenko, Ivan I.; Lavrik, Nickolay V.; Sepaniak, Michael J.

    2015-04-01

    The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.e. pillar heights are 1-2μm and pillar diameters are typically in the 200- 400nm range. In addition to the intrinsic nanoscale aspects of the systems, it is shown they can be further functionalized with nanoporous layers and traditional stationary phases for chromatography; hence exhibit broad-ranging lab-on-a-chip and point-of-care potential. Because of an inherent high permeability and very small effective mass transfer distance between pillars, chromatographic efficiency can be very high but is enhanced herein by stacking during development and focusing while drying, yielding plate heights in the nm range separated band volumes. Practical separations of fluorescent dyes, fluorescently derivatized amines, and anti-tumor drugs are illustrated.

  20. Nanoscale pillar arrays for separations.

    PubMed

    Kirchner, Teresa B; Strickhouser, Rachel B; Hatab, Nahla A; Charlton, Jennifer J; Kravchenko, Ivan I; Lavrik, Nickolay V; Sepaniak, Michael J

    2015-05-21

    The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.e. pillar heights are 1-2 μm and pillar diameters are typically in the 200-400 nm range. In addition to the intrinsic nanoscale aspects of the systems, it is shown they can be further functionalized with nanoporous layers and traditional stationary phases for chromatography; hence exhibit broad-ranging lab-on-a-chip and point-of-care potential. Because of an inherent high permeability and very small effective mass transfer distance between pillars, chromatographic efficiency can be very high but is enhanced herein by stacking during development and focusing while drying, yielding plate heights in the nm range separated band volumes. Practical separations of fluorescent dyes, fluorescently derivatized amines, and anti-tumor drugs are illustrated.

  1. Modeling stopped-flow data for nucleic acid duplex formation reactions: the importance of off-path intermediates.

    PubMed

    Sikora, Jacqueline R; Rauzan, Brittany; Stegemann, Rachel; Deckert, Alice

    2013-08-01

    Evidence for unexpected off-path intermediates to DNA duplex formation is presented. These off-path intermediates are shown to involve unimolecular and, in one case, bimolecular structure in one of the single strands of complementary DNA. Three models are developed to account for the observed single-stranded structures that are formed in parallel with duplex formation. These models are applied to the analysis of stopped-flow data for eight different nonself-complementary duplex formation reactions in order to extract the elementary rate constant for formation of the duplex from the complementary random coil single-stranded DNA. The free energy of activation (at 25 °C) for the denaturation of each duplex is calculated from these data and is shown to have a linear correlation to the overall standard free energy for duplex formation (also at 25 °C). Duplexes that contain mismatches obey a parallel linear free-energy (LFE) relationship with a y-intercept that is greater than that of duplexes without mismatches. Slopes near unity for the LFE relationships indicate that all duplexes go through an early, unstructured transition state.

  2. Preface: Charge transport in nanoscale junctions

    NASA Astrophysics Data System (ADS)

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-01

    the molecular level. Nanoscale charge transport experiments in ionic liquids extend the field to high temperatures and to systems with intriguing interfacial potential distributions. Other directions may include dye-sensitized solar cells, new sensor applications and diagnostic tools for the study of surface-bound single molecules. Another motivation for this special issue is thus to highlight activities across different research communities with nanoscale charge transport as a common denominator. This special issue gathers 27 articles by scientists from the United States, Germany, the UK, Denmark, Russia, France, Israel, Canada, Australia, Sweden, Switzerland, the Netherlands, Belgium and Singapore; it gives us a flavour of the current state-of-the-art of this diverse research area. While based on contributions from many renowned groups and institutions, it obviously cannot claim to represent all groups active in this very broad area. Moreover, a number of world-leading groups were unable to take part in this project within the allocated time limit. Nevertheless, we regard the current selection of papers to be representative enough for the reader to draw their own conclusions about the current status of the field. Each paper is original and has its own merit, as all papers in Journal of Physics: Condensed Matter special issues are subjected to the same scrutiny as regular contributions. The Guest Editors have deliberately not defined the specific subjects covered in this issue. These came out logically from the development of this area, for example: 'Traditional' solid state nanojunctions based on adsorbed layers, oxide films or nanowires sandwiched between two electrodes: effects of molecular structure (aromaticity, anchoring groups), symmetry, orientation, dynamics (noise patterns) and current-induced heating. Various 'physical effects': inelastic tunnelling and Coulomb blockade, polaron effects, switching modes, and negative differential resistance; the role of

  3. Microstructure and cytotoxicity evaluation of duplex-treated silver-containing antibacterial TiO₂ coatings.

    PubMed

    Zhang, Xiangyu; Wu, Haibo; Geng, Zhenhua; Huang, Xiaobo; Hang, Ruiqiang; Ma, Yong; Yao, Xiaohong; Tang, Bin

    2014-12-01

    Implant-related infection is one of the most common and serious complications associated with biomedical implantation. To prevent bacterial adhesion, a series of porous TiO2 coatings with different concentrations of silver (designated as M0, M1, M2 and M3) were prepared on pure titanium substrates by a duplex-treatment technique combining magnetron sputtering with micro-arc oxidation. All coatings are porous with pore size less than 5 μm and the concentrations of silver in the M0, M1, M2 and M3 are 0, 0.95, 1.36 and 1.93 wt.%, respectively. Silver is found to be distributed throughout the thickness of the coatings by scanning electron microscopy. The release of silver from the TiO2 coatings was confirmed by an inductively-coupled plasma mass spectroscopy. The antibacterial effects of these coatings were tested against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli), and the cytotoxicity was evaluated using the mouse pre-osteoblast cells. The results indicate that the antibacterial activities of TiO2 coatings are greatly improved due to the incorporation of silver. No cytotoxic effect is found for the M1 surfaces from the observation of pre-osteoblast cell by MTT assay and fluorescence microscopy. Although the M2 and M3 coatings appeared to be toxic for pre-osteoblast cells after 1 day in culture, the cell viability on M2 and M3 surfaces was greatly raised after culturing for 2 days. Our results suggested that the TiO2 coatings incorporated with an optimum amount of silver can possess excellent antibacterial activities without cytotoxic effect, which has promising applications in biomedical devices.

  4. Dimensional reduction of duplex DNA under confinement to nanofluidic slits.

    PubMed

    Vargas-Lara, Fernando; Stavis, Samuel M; Strychalski, Elizabeth A; Nablo, Brian J; Geist, Jon; Starr, Francis W; Douglas, Jack F

    2015-11-14

    There has been much interest in the dimensional properties of double-stranded DNA (dsDNA) confined to nanoscale environments as a problem of fundamental importance in both biological and technological fields. This has led to a series of measurements by fluorescence microscopy of single dsDNA molecules under confinement to nanofluidic slits. Despite the efforts expended on such experiments and the corresponding theory and simulations of confined polymers, a consistent description of changes of the radius of gyration of dsDNA under strong confinement has not yet emerged. Here, we perform molecular dynamics (MD) simulations to identify relevant factors that might account for this inconsistency. Our simulations indicate a significant amplification of excluded volume interactions under confinement at the nanoscale due to the reduction of the effective dimensionality of the system. Thus, any factor influencing the excluded volume interaction of dsDNA, such as ionic strength, solution chemistry, and even fluorescent labels, can greatly influence the dsDNA size under strong confinement. These factors, which are normally less important in bulk solutions of dsDNA at moderate ionic strengths because of the relative weakness of the excluded volume interaction, must therefore be under tight control to achieve reproducible measurements of dsDNA under conditions of dimensional reduction. By simulating semi-flexible polymers over a range of parameter values relevant to the experimental systems and exploiting past theoretical treatments of the dimensional variation of swelling exponents and prefactors, we have developed a novel predictive relationship for the in-plane radius of gyration of long semi-flexible polymers under slit-like confinement. Importantly, these analytic expressions allow us to estimate the properties of dsDNA for the experimentally and biologically relevant range of contour lengths that is not currently accessible by state-of-the-art MD simulations.

  5. Exposure of the Lesser Himalayan Duplex in Central Nepal

    NASA Astrophysics Data System (ADS)

    Robinson, Delores; Martin, Aaron

    2013-04-01

    In central Nepal, between the Main Central thrust and the Main Boundary thrust, only Lesser Himalayan rock is exposed in structurally complex relationships; whereas in other regions of Nepal, Lesser Himalayan rocks are buried under klippen of Greater Himalayan rock. Thus, central Nepal along the Modi Khola south through the Kali Gandaki River and the village of Tansen is one of the few locations along the Himalayan thrust belt where the entire Lesser Himalayan duplex is exposed. This location is critical to determining the kinematics of the thrust belt. The purpose of this study is to determine the structural architecture of central Nepal using the collected structural data, incorporating available age data, drawing and balancing cross sections and testing variations in shortening given different stratigraphic assumptions. The two balanced cross sections are constructed from the same topography but have different underlying assumptions and decisions made during the development. We tested whether major changes in the stratigraphy and simplifications regarding the evolution of the Lesser Himalayan duplex affected the amount of shortening. Cross section 1 has a shortening estimate from the Main Central thrust to the Main Boundary thrust, including motion on the Main Central thrust, of 359 km or 77.8%. Cross section 2 has a shortening estimate of 371 km or 78.4% over the same region. These shortening estimates do not include meso-scale and micro-scale shortening in the Lesser and Greater Himalayan rocks nor do they include intra-Greater Himalayan faults. The percentage of shortening between the two cross sections is the same and the amount of shortening is not significantly different. These are striking outcomes given the different choices made when constructing the cross sections especially with regards to the stratigraphy. This suggests that the different choices made when drawing a cross section may be fairly unimportant for the estimate of shortening and percentage

  6. Thermodynamics of HMGB1 interaction with duplex DNA.

    PubMed

    Müller, S; Bianchi, M E; Knapp, S

    2001-08-28

    The high mobility group protein HMGB1 is a small, highly abundant protein that binds to DNA in a non-sequence-specific manner. HMGB1 consists of 2 DNA binding domains, the HMG boxes A and B, followed by a short basic region and a continuous stretch of 30 glutamate or aspartate residues. Isothermal titration calorimetry was used to characterize the binding of HMGB1 to the double-stranded model DNAs poly(dAdT).(dTdA) and poly(dGdC).(dCdG). To elucidate the contribution of the different structural motifs to DNA binding, calorimetric measurements were performed comparing the single boxes A and B, the two boxes plus or minus the basic sequence stretch (AB(bt) and AB), and the full-length HMGB1 protein. Thermodynamically, binding of HMGB1 and all truncated constructs to duplex DNA was characterized by a positive enthalpy change at 15 degrees C. From the slopes of the temperature dependence of the binding enthalpies, heat capacity changes of -0.129 +/- 0.02 and -0.105 +/- 0.05 kcal mol(-1) K(-1) were determined for box A and full-length HMGB1, respectively. Significant differences in the binding characteristics were observed using full-length HMGB1, suggesting an important role for the acid tail in modulating DNA binding. Moreover, full-length HMGB1 binds differently these two DNA templates: binding to poly(dAdT).(dTdA) was cooperative, had a larger apparent binding site size, and proceeded with a much larger unfavorable binding enthalpy than binding to poly(dGdC).(dCdG).

  7. The Usefulness of Duplex Ultrasound for Hemodialysis Access Selection

    PubMed Central

    Choi, Jeong Won; Joh, Jin Hyun; Park, Ho-Chul

    2017-01-01

    Purpose A native vessel is preferable to an artificial graft for dialysis access. Duplex ultrasound (DUS) is noninvasive, cost-effective modality to evaluate the vessels for dialysis. The purpose of this study was to compare the rates of utilization of native vessels after preoperative imaging with DUS and contrast venography (CV). Materials and Methods A retrospective review was performed on patients who received an arteriovenous fistula (AVF) or arteriovenous graft (AVG) between June 2006 and July 2010. Patients were classified into 3 groups. In group 1, CV was used to evaluate the vessel. Both DUS and CV were used in group 2. In group 3, only DUS was used. The frequency of utilization of a native vessel was analyzed in each group. The chi-square test was used for statistical analysis. Results During the study period, 173 patients received an AVF or AVG. Eighty-nine patients were male. The mean age was 60.6±14.6 years. A native vessel was used in 56/81 patients (69.1%) and 74/81 patients (91.4%) in groups 1 and 3, respectively (P<0.001). In group 2, all patients underwent access procedures using native vessels. AVG was initially planned for 2 patients in group 2 after vessel evaluation using CV, but a native vessel was successfully used because DUS identified optimal vessels for AVF. The 1-year primary patency rate was similar in 3 groups. Conclusion Preoperative DUS is safe and easy to use for vessel evaluation, and can be used as a primary imaging modality for creation of access. PMID:28377908

  8. Use of Symmetry in Calibration of Looped Duplex DTS Measurements

    NASA Astrophysics Data System (ADS)

    Van De Giesen, N.; van der Spek, A.

    2014-12-01

    A looped duplex Distributed Temperature Sensing (DTS) deployment uses a bifilar arrangement of two optical fibres in the same cable or conduit. On one end of the cable the ends of the fibres are spliced together. The other ends are connected to a (double ended) DTS system or one end is connected to a (single ended) DTS system. A light pulse shot from one end will eventually emerge from the other end and vice versa. Back scattered Raman-shifted photons will thus be detected twice for each posistion along the cable or conduit but delayed in time by twice the distance from the symmetry point (turn around sub) divided by the speed of light in the fibre.Calibration of a DTS system requires, first and foremost that differential loss; i.e. the difference in optical attenuation between Stokes and anti-Stokes backscattered signals, is compensated for. It will be shown that residual errors due to uncompensated differential loss can only be due to the uneven part of the (non-uniform) differential loss distribution. A bifilar deployment is therefore highly insensitive to uncompensated differential loss because ageing, chemical or mechanical damage to the cable as well as thermal or mechanical strain may vary over the length of the cable but remain symmetrical and therefore even with respect to the turn around sub.By writing the (non-)uniform differential loss as the sum of an even and an uneven part it is possible to derive an equation for the residual error of a DTS temperature measurement expressed as an integral over the uneven part of the differential loss distribution only. Thus it is possible to estimate any residual temperature error under field conditions. Such a capability is especially useful where no access to one end of the cable is possible, such as is the case in borehole applications.

  9. Full-Duplex Digital Communication on a Single Laser Beam

    NASA Technical Reports Server (NTRS)

    Hazzard, D. A.; MacCannell, J. A.; Lee, G.; Selves, E. R.; Moore, D.; Payne, J. A.; Garrett, C. D.; Dahlstrom, N.; Shay, T. M.

    2006-01-01

    A proposed free-space optical communication system would operate in a full-duplex mode, using a single constant-power laser beam for transmission and reception of binary signals at both ends of the free-space optical path. The system was conceived for two-way data communication between a ground station and a spacecraft in a low orbit around the Earth. It has been estimated that in this application, a data rate of 10 kb/s could be achieved at a ground-station-to-spacecraft distance of 320 km, using a laser power of only 100 mW. The basic system concept is also applicable to terrestrial free-space optical communications. The system (see figure) would include a diode laser at one end of the link (originally, the ground station) and a liquid-crystal- based retroreflecting modulator at the other end of the link (originally, the spacecraft). At the laser end, the beam to be transmitted would be made to pass through a quarter-wave plate, which would convert its linear polarization to right circular polarization. For transmission of data from the laser end to the retroreflector end, the laser beam would be modulated with subcarrier phase-shift keying (SC-PSK). The transmitted beam would then pass through an aperture- sharing element (ASE) - basically, a mirror with a hole in it, used to separate the paths of the transmitted and received light beams. The transmitted beam would continue outward through a telescope (which, in the original application, would be equipped with a spacecraft-tracking system) that would launch the transmitted beam along the free-space optical path to the retroreflector end.

  10. Preoperative duplex ultrasound parameters predicting male fertility after successful varicocelectomy

    PubMed Central

    Alshehri, Fahad M.; Akbar, Mahboob H.; Altwairgi, Adel K.; AlThaqufi, Omar J.

    2015-01-01

    Objectives: To assess duplex ultrasound (DUS) parameters, and predicti the outcome of varicocele ligation in male infertility. Methods: This retrospective and follow up study was conducted at Dr. Sulaiman Al Habib Hospital, AlQassim, Saudi Arabia between January 2011 and December 2012. Eighty-two patients were selected, who presented with clinical/subclinical varicocele and male infertility. All these patients had DUS of the scrotum and underwent for low ligation varicocelectomy. These patients were followed for a period of 12-24 months after surgery for the occurrence of paternity. We reviewed pre-operative scrotal DUS of these 82 patients for the testicular size and volume, pampiniform veins caliber and duration of reflux in the dilated veins at rest, and after valsalva maneuver. These DUS parameters were correlated with the postoperative paternity rate. Results: Postoperative paternity was achieved in 18 patients (31.6%) with normal-sized testes, and in 3 patients (12%) with small size testes. The positive paternity rate was higher (38.5%) in patients with clinically detected varicocele, compared with only 16.7% of patients with subclinical varicocele (detected by ultrasound only). In addition, postoperative paternity was significantly higher in patients with bilateral varicocele (70.6%), with shunt-type varicocele (71.4%), and patients with a permanent grade of venous reflux (62.5%). Conclusion: Selection of patients for the successful paternity after varicocele repair depends mainly on DUS parameters, which includes normal size testicles with shunt type of bilateral varicocele and continuous reflux. PMID:26620986

  11. Duplex ultrasound of the superior mesenteric artery in chronic pancreatitis.

    PubMed

    Hornum, M; Larsen, S; Olsen, O; Pedersen, J F

    2006-10-01

    Blood flow in the superior mesenteric artery (SMA) increases after a meal due to a vasoactive effect of the decomposed food. In exocrine pancreatic insufficiency, the digestion of food is compromised. We used duplex ultrasound to test the hypothesis that blood flow in the SMA after a meal increases less in patients with pancreatic insufficiency than in control persons. We studied 16 patients with chronic pancreatitis, eight of them with exocrine insufficiency, and eight healthy volunteers. The resistive index (RI) in the SMA was determined before and after a liquid meal. The RI reflects the downstream circulatory resistance, giving a precise description of mesenteric hyperaemia. Both groups of patients with chronic pancreatitis unexpectedly had lower fasting RI than controls, 0.818 and 0.815 vs 0.851, p = 0.028 and p = 0.0030, respectively. Postprandialy there was significantly less decrease in RI (less increase in flow) in patients with exocrine insufficiency than in controls, 0.055 vs 0.099, p = 0.0047. There was a significant trend for a less pronounced postprandial decrease in RI with more impaired pancreatic function (p = 0.0036). Our study thus demonstrates a reduced postprandial increase in SMA flow in patients with exocrine pancreatic insufficiency, and suggests an increased fasting SMA flow in chronic pancreatitis. Further studies are needed to evaluate the possible role of the test-meal-induced shift in RI in the SMA and of a lower-than-normal fasting RI in the diagnosis and monitoring of chronic pancreatitis.

  12. Pharmaco Penile Duplex Ultrasonography in the Evaluation of Erectile Dysfunction

    PubMed Central

    Ramanjaneyulu, Harshavardhana Kuruba; Susarla, Rammurti; Yarlagadda, Jyotsna; Devraj, Rahul; Palanisamy, Prabakaran

    2017-01-01

    Introduction The National Institute of Health defined ‘erectile dysfunction’ as the persistent inability to achieve and/or to maintain an erection for a satisfactory sexual performance. In last few years, the concept of erectile dysfunction has evolved from that of a disorder referred to as ‘impotence’ which used to be considered predominantly psychogenic to that of ‘Erectile Dysfunction’ (ED), a well understood physiologic result of multiple risk factors, both psychological and organic. The most common cause of organic erectile dysfunction is vasculogenic causes. Doppler evaluation of cavernosal arteries after intracavernosal injection of Papaverine is particularly useful in the evaluation of vasculogenic causes. Aim To define the role of intracavernosal injection of Papaverine in the evaluation of vasculogenic causes of erectile dysfunction that includes arterial insufficiency and veno occlusive nature. Materials and Methods Pharmaco Penile Duplex Ultrasonography (PPDU) was done using a linear broadband phased array transducer (7–12 MHz) on a E-Saote MyLab 60 ultrasound colour Doppler system on 73 patients over a period of three years. Informed consent was taken from all patients. Visual grading score for erection, Cavernosal Artery Diameter (CAD), PSV (Peak Systolic Velocity), EDV (End Diastolic Velocity), RI (Resistive Index), AT (Acceleration Time) and dorsal vein changes were obtained in all patients following intracavernosal injection of Papaverine. Results Visual grading for erectile response was E0 in one patient, E1 in 11 patients, E2 in 9 patients, E3 in 7 patients, E4 in 4 patients and E5 in 41 patients. Eighteen patients were diagnosed as having arterial insufficiency, three patients were diagnosed as having venous insufficiency and two patients showed indeterminate results. Conclusion In our study, Papaverine induced PPDU proved to be highly accurate and excellent method for assessing patients with erectile dysfunction. PMID:28274021

  13. The use of hairpin DNA duplexes as HIV-1 fusion inhibitors: synthesis, characterization, and activity evaluation.

    PubMed

    Xu, Liang; Jiang, Xifeng; Xu, Xiaoyu; Zheng, Baohua; Chen, Xueliang; Zhang, Tao; Gao, Fang; Cai, Lifeng; Cheng, Maosheng; Keliang Liu

    2014-07-23

    Discovery of new drugs for the treatment of AIDS that possess unique structures associated with novel mechanisms of action are of great importance due the rapidity with which drug-resistant HIV-1 strains evolve. Recently we reported on a novel class of DNA duplex-based HIV-1 fusion inhibitors modified with hydrophobic groups. The present study describes a new category of hairpin fusion inhibitor DNA duplexes bearing a 3 nucleotide loop located at either the hydrophobic or hydrophilic end. The new loop structures were designed to link 2 separate duplex-forming oligodeoxynucleotides (ODNs) to make helix-assembly easier and more thermally stable resulting in a more compact form of DNA duplex based HIV-1 fusion inhibitors. A series of new hairpin duplexes were tested for anti-HIV-1 cell-cell membrane fusion activity. In addition, Tm, CD, fluorescent resonance energy transfer assays, and molecular modeling analyses were carried out to define their structural activity relationships and possible mechanisms of action.

  14. Venous thromboembolic disease after hybrid hip arthroplasty with negative duplex screening.

    PubMed

    Beuhler, K O; D'Lima, D D; Colwell, C W; Otis, S M; Walker, R H

    1999-04-01

    Postoperative duplex ultrasonography screening after total hip arthroplasty has been shown to identify patients who may require treatment or additional monitoring for venous thromboembolic disease. The potential for manifestation of venous thromboembolic disease subsequent to screening remains a concern. The objective of this study was to determine the prevalence of symptomatic venous thromboembolic disease after total hip arthroplasty and after inhospital prophylaxis, inhospital screening with negative results for proximal deep venous thrombosis, and no posthospitalization venous thromboembolic disease prophylaxis. One hundred fifty patients undergoing primary hybrid total hip arthroplasty and using pneumatic compression stockings and aspirin as prophylaxis against venous thromboembolic disease were screened for deep venous thrombosis with duplex ultrasonography on the fourth day after surgery. Duplex ultrasonography screening revealed 17 (11.3%) patients with asymptomatic proximal deep venous thrombosis. In response to duplex ultrasonography screening, these patients with proximal deep venous thrombosis received therapeutic anticoagulation. Of 133 patients with a duplex screen with negative results for proximal deep venous thrombosis, 131 (98.5%) continued to have no symptoms of venous thromboembolic disease and two (1.5%) began to have symptoms for venous thromboembolic disease (one with proximal deep venous thrombosis, one with nonfatal pulmonary embolism) during 12 months of clinical followup after total hip arthroplasty. The overall prevalence of venous thromboembolic disease requiring anticoagulation was 19 of 150 (12.6%) patients. The remaining 131 (87.4%) were not exposed to the risks of postoperative anticoagulation and did not have subsequent symptomatic venous thromboembolic disease.

  15. Localization of duplex thrust-ramps by buckling: analog and numerical modelling

    NASA Astrophysics Data System (ADS)

    Liu, Shumin; Dixon, John M.

    1995-06-01

    Duplex structures in natural fold-thrust belts occur over a wide range of geometric scales. Duplex thrust ramps exhibit a regular spacing linearly related to the thickness of strata involved in the duplex. We suggest that buckling instability in layered systems can produce local stress concentrations which localize thrust ramps with regular spacing. This mechanism is demonstrated through analog (centrifuge) and numerical (finite element) modelling. Centrifuge models containing finely-laminated multilayers composed of plasticine and silicone putty (simulating rocks such as limestone and shale) are compressed from one edge; folds propagate from hinterland to foreland. As shortening continues, the lowest competent unit is thrust into a blind duplex structure by breakthrusting. The duplex develops by serial nucleation of faults from hinterland to foreland; the ramp locations are inherited from the initial buckling instability. Finite-element models based on the analog models and their natural prototypes demonstrate that stress concentrations develop in fore-limbs of anticlines within competent stratigraphie units. Models containing thrust discontinuities (at sites of calculated stress concentration) display additional stress concentrations in the forelimbs of unfaulted folds closer to the foreland. The locus of stress concentration thus propagates towards the foreland, consistent with foreland thrust propagation in nature. The location and regular spacing of ramps are inherited from early (possibly even incipient) buckle folds.

  16. Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure

    SciTech Connect

    Martins, Marcelo; E-mail: marcelo.martins@sulzer.com; Casteletti, Luiz Carlos

    2005-09-15

    Duplex and super duplex stainless steels are ferrous alloys with up to 26% chromium, 8% nickel, 5% molybdenum and 0.3% nitrogen, which are largely used in applications in media containing ions from the halogen family, mainly the chloride ion (Cl{sup -}). The emergence of this material aimed at substituting Copper-Nickel alloys (Cupro-Nickel) that despite presenting good corrosion resistance, has mechanical properties quite inferior to steel properties. The metallurgy of duplex and super duplex stainless steel is complex due to high sensitiveness to sigma phase precipitation that becomes apparent, due to the temperatures they are exposed on cooling from solidification as well as from heat treatment processes. The objective of this study was to verify the influence of heat treating temperatures on the microstructure and hardness of ASTM A890/A890M Gr 6A super duplex stainless steel type. Microstructure control is of extreme importance for castings, as the chemical composition and cooling during solidification inevitably provide conditions for precipitation of sigma phase. Higher hardness in these materials is directly associated to high sigma phase concentration in the microstructure, precipitated in the ferrite/austenite interface. While heat treatment temperature during solution treatment increases, the sigma phase content in the microstructure decreases and consequently, the material hardness diminishes. When the sigma phase was completely dissolved by the heat treatment, the material hardness was influenced only due to ferrite and austenite contents in the microstructure.

  17. Fluorescence Turn-On Sensing of DNA Duplex Formation by a Tricyclic Cytidine Analogue.

    PubMed

    Burns, Dillon D; Teppang, Kristine L; Lee, Raymond W; Lokensgard, Melissa E; Purse, Byron W

    2017-02-01

    Most fluorescent nucleoside analogues are quenched when base stacked and some maintain their brightness, but there has been little progress toward developing nucleoside analogues that markedly increase their fluorescence upon duplex formation. Here, we report on the design and synthesis of a new tricyclic cytidine analogue, 8-diethylamino-tC (8-DEA-tC), that responds to DNA duplex formation with up to a 20-fold increase in fluorescent quantum yield as compared with the free nucleoside, depending on neighboring bases. This turn-on response to duplex formation is the greatest of any reported nucleoside analogue that can participate in Watson-Crick base pairing. Measurements of the quantum yield of 8-DEA-tC mispaired with adenosine and, separately, opposite an abasic site show that there is almost no fluorescence increase without the formation of correct Watson-Crick hydrogen bonds. Kinetic isotope effects from the use of deuterated buffer show that the duplex protects 8-DEA-tC against quenching by excited state proton transfer. These results, supported by DFT calculations, suggest a rationale for the observed photophysical properties that is dependent on duplex integrity and the electronic structure of the analogue.

  18. Fluorescence Turn-On Sensing of DNA Duplex Formation by a Tricyclic Cytidine Analogue

    PubMed Central

    Burns, Dillon D.; Teppang, Kristine L.; Lee, Raymond W.; Lokensgard, Melissa E.; Purse, Byron W.

    2017-01-01

    Most fluorescent nucleoside analogues are quenched when base stacked and some maintain their brightness, but there has been little progress toward developing nucleoside analogues that markedly increase their fluorescence upon duplex formation. Here, we report on the design and synthesis of a new tricyclic cytidine analogue, 8-diethylamino-tC (8-DEA-tC), that responds to DNA duplex formation with up to a 20-fold increase in fluorescent quantum yield as compared with the free nucleoside, depending on neighboring bases. This turn-on response to duplex formation is the greatest of any reported nucleoside analogue that can participate in Watson–Crick base pairing. Measurements of the quantum yield of 8-DEA-tC mispaired with adenosine and, separately, opposite an abasic site show that there is almost no fluorescence increase without the formation of correct Watson–Crick hydrogen bonds. Kinetic isotope effects from the use of deuterated buffer show that the duplex protects 8-DEA-tC against quenching by excited state proton transfer. These results, supported by DFT calculations, suggest a rationale for the observed photophysical properties that is dependent on duplex integrity and the electronic structure of the analogue. PMID:28080035

  19. Different duplex/quadruplex junctions determine the properties of anti-thrombin aptamers with mixed folding.

    PubMed

    Russo Krauss, Irene; Spiridonova, Vera; Pica, Andrea; Napolitano, Valeria; Sica, Filomena

    2016-01-29

    Mixed duplex/quadruplex oligonucleotides have attracted great interest as therapeutic targets as well as effective biomedical aptamers. In the case of thrombin-binding aptamer (TBA), the addition of a duplex motif to the G-quadruplex module improves the aptamer resistance to biodegradation and the affinity for thrombin. In particular, the mixed oligonucleotide RE31 is significantly more effective than TBA in anticoagulation experiments and shows a slower disappearance rate in human plasma and blood. In the crystal structure of the complex with thrombin, RE31 adopts an elongated structure in which the duplex and quadruplex regions are perfectly stacked on top of each other, firmly connected by a well-structured junction. The lock-and-key shape complementarity between the TT loops of the G-quadruplex and the protein exosite I gives rise to the basic interaction that stabilizes the complex. However, our data suggest that the duplex motif may have an active role in determining the greater anti-thrombin activity in biological fluids with respect to TBA. This work gives new information on mixed oligonucleotides and highlights the importance of structural data on duplex/quadruplex junctions, which appear to be varied, unpredictable, and fundamental in determining the aptamer functional properties.

  20. Attosecond physics at the nanoscale.

    PubMed

    Ciappina, M F; Pérez-Hernández, J A; Landsman, A S; Okell, W A; Zherebtsov, S; Förg, B; Schötz, J; Seiffert, L; Fennel, T; Shaaran, T; Zimmermann, T; Chacón, A; Guichard, R; Zaïr, A; Tisch, J W G; Marangos, J P; Witting, T; Braun, A; Maier, S A; Roso, L; Krüger, M; Hommelhoff, P; Kling, M F; Krausz, F; Lewenstein, M

    2017-01-06

    Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond  =  1 as  =  10(-18) s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is  ∼152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the

  1. Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries.

    PubMed

    Li, Lingjun; Xu, Ming; Yao, Qi; Chen, Zhaoyong; Song, Liubin; Zhang, Zhian; Gao, Chunhui; Wang, Peng; Yu, Ziyang; Lai, Yanqing

    2016-11-16

    Nickel-rich layered oxide cathode materials for advanced lithium-ion batteries have received much attention recently because of their high specific capacities and significant reduction of cost. However, these cathodes are facing a fundamental challenge of loss in performance as a result of surface lithium residue, side reactions with the electrolyte and structure rearrangement upon long-term cycling. Herein, by capturing the lithium residue on the surface of LiNi0.8Co0.1Mn0.1O2 (NCM) cathode material as Li source, we propose a hybrid coating strategy incorporating lithium ions conductor LixAlO2 with superconductor LixTi2O4 to overcome those obstinate issues. By taking full advantage of this unique hybrid nanomembrane coating architecture, both the lithium ion diffusion ability and electronic conductivity of LiNi0.8Co0.1Mn0.1O2 cathode material are improved, resulting in remarkably enhanced electrochemical performances during high voltage operation, including good cycle performance, high reversible capacity, and excellent rate capability. A high initial discharge capacity of 227 mAh g(-1) at 4.4 V cutoff voltage with Coulombic efficiency of 87.3%, and reversible capacity of 200 mAh g(-1) with 98% capacity retention after 100 cycles at a current density of 0.5 C can be attained. The improved electrochemical performance can be attributed to the synergetic contribution from the removal of lithium residues and the unique hybrid nanomembrane coating architecture. Most importantly, this surface modification technique could save some cost, simplify the technical procedure, and show great potential to optimize battery performance, apply in a large scale and extend to all nickel-rich cathode material.

  2. Ionic Liquid-Assisted Synthesis of Nanoscale (MoS2)x(SnO2)1-x on Reduced Graphene Oxide for the Electrocatalytic Hydrogen Evolution Reaction.

    PubMed

    Ravula, Sudhir; Zhang, Chi; Essner, Jeremy B; Robertson, J David; Lin, Jian; Baker, Gary A

    2017-03-08

    Layered transition metal dichalcogenides (TMDs) have attracted increased attention due to their enhanced hydrogen evolution reaction (HER) performance. More specifically, ternary TMD nanohybrids, such as MoS2(1-x)Se2x or bimetallic sulfides, have arisen as promising electrocatalysts compared to MoS2 and MoSe2 due to their electronic, morphologic, and size tunabilities. Herein, we report the successful synthesis of few-layered MoS2/rGO, SnS2/rGO, and (MoS2)x(SnO2)1-x/rGO nanohybrids anchored on reduced graphene oxide (rGO) through a facile hydrothermal reaction in the presence of ionic liquids as stabilizing, delayering agents. Spectroscopic and microscopic techniques (electron microscopy, X-ray diffraction, Raman spectroscopy, neutron activation analysis, and UV-vis spectrophotometry) are used to validate the hierarchical properties, phase identity, and the smooth compositional tunability of the (MoS2)x(SnO2)1-x/rGO nanohybrids. Linear sweep voltammetry measurements reveal that incorporation of Sn into the ternary nanohybrids (as a discrete SnO2 phase) greatly reduces the overpotential by 90-130 mV relative to the MoS2 electrocatalyst. Significantly, the (MoS2)0.6(SnO2)0.4/rGO nanohybrid displays superior catalytic performance over MoS2 alone, exhibiting a low overpotential (η10) of 263 ± 5 mV and a small Tafel slope of 50.8 mV dec(-1). The hybrid catalyst shows high stability for the HER in acidic solutions, with negligible activity loss after 1000 cycles. The hierarchical structures and large surface areas possessing exposed, active edge sites make few-layered (MoS2)x(SnO2)1-x/rGO nanohybrids promising nonprecious metal electrocatalysts for the HER.

  3. Nanoscale optimization of quantum dot solar sells

    NASA Astrophysics Data System (ADS)

    Li, Yanshu; Sergeev, Andrei; Vagidov, Nizami; Mitin, Vladimir; Sablon, Kimberly; State Univ of NY-Buffalo Team; Army Research Laboratory Team

    2015-03-01

    Quantum dots (QDs) offer possibilities for nanoscale control of photoelectron processes via engineering the band structure and potential profile. Nanoscale potential profile (potential barriers) and nanoscale band engineering (AlGaAs atomically thin barriers) effectively suppress the photoelectron capture to QDs. QDs also increase conversion efficiency of the above-bandgap photons due to extraction of electrons from QDs via Coulomb interaction with hot electrons that excited by high-energy photons. To study the effects of the band structure engineering and nanoscale potential barriers on the photovoltaic performance we fabricated 3- μm base GaAs devices with various InAs quantum dot media and selective doping. All quantum dot devices show improvement in conversion efficiency compared with the reference cell. Quantum efficiency measurements allow us to associate the spectral characteristics of photoresponse enhancement with nanoscale structure of QD media. The dark current analysis provides valuable information about recombination in QD solar cells. The two-diode model well fit the scope of data and recovers the measured open circuit voltage.

  4. A new method to produce nanoscale iron for nitrate removal

    NASA Astrophysics Data System (ADS)

    Chen, Shiao-Shing; Hsu, Hong-Der; Li, Chi-Wang

    2004-12-01

    This article proposes a novel technology combining electrochemical and ultrasonic methods to produce nanoscale zero valent iron (NZVI). With platinum placed in the cathode and the presence of the dispersion agent, 0.2g/l cetylpyridinium chloride (CPC), a cation surfactant, in the solution, the nanoscale iron particle was successfully produced with diameter of 1-20 nm and specific surface area of 25.4m2/g. The produced NZVI was tested in batch experiments for nitrate removal. The results showed that the nitrate reduction was affected by pH. Al low pH, nitrate was shown faster decline and more reduction in term of g NO 3 - -N/g NZVI. The reaction was first order and kinetic coefficients for the four pHs were directly related to pH with R 2 >0.95. Comparing with microscale zero-valent iron (45μm, 0.183m2/g), microscale zero-valent iron converted nitrate to ammonia completely, but NZVI converted nitrate to ammonia partially from 36.2 to 45.3% dependent on pH. For mass balance of iron species, since the dissolved iron in the solution was very low (<1mg/l), Electron Spectroscopy for Chemical Analysis (ESCA) was used for identification of oxidation state of the surface species on the NZVI and Fe2O3 was recognized. Thus the reaction mechanisms can be determined.

  5. Rapid method to detect duplex formation in sequencing by hybridization methods

    DOEpatents

    Mirzabekov, Andrei Darievich; Timofeev, Edward Nikolaevich; Florentiev, Vladimer Leonidovich; Kirillov, Eugene Vladislavovich

    1999-01-01

    A method for determining the existence of duplexes of oligonucleotide complementary molecules is provided whereby a plurality of immobilized oligonucleotide molecules, each of a specific length and each having a specific base sequence, is contacted with complementary, single stranded oligonucleotide molecules to form a duplex so as to facilitate intercalation of a fluorescent dye between the base planes of the duplex. The invention also provides for a method for constructing oligonucleotide matrices comprising confining light sensitive fluid to a surface, exposing said light-sensitive fluid to a light pattern so as to cause the fluid exposed to the light to coalesce into discrete units and adhere to the surface; and contacting each of the units with a set of different oligonucleotide molecules so as to allow the molecules to disperse into the units.

  6. Final Report, Volume 3, Guidance Document for the Evaluation of Cast Super Duplex Stainless Steel

    SciTech Connect

    Hariharan, Vasudevan; Lundin, Carl, W.

    2005-09-30

    Volume 3 is comprised of the Development of Qualification Standards for Cast Super Duplex Stainless Steel (A890-5A) which is equivalent to wrought 2507. The objective of this work was to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). The various tests which were carried out were ASTM A923 Test Method A, B and C (Sodium Hydroxide Etch Test, Charpy Impact Test and Ferric Chloride Corrosion Test), ferrite measurement using Feritscope®, ASTM E562 Manual Point Count Method and X-Ray Diffraction, hardness measurement using Rockwell B and C and microstructural analysis using SEM and EDS.

  7. Specific DNA duplex formation at an artificial lipid bilayer: towards a new DNA biosensor technology.

    PubMed

    Werz, Emma; Korneev, Sergei; Montilla-Martinez, Malayko; Wagner, Richard; Hemmler, Roland; Walter, Claudius; Eisfeld, Jörg; Gall, Karsten; Rosemeyer, Helmut

    2012-02-01

    A novel technique is described which comprises a base-specific DNA duplex formation at a lipid bilayer-H(2) O-phase boundary layer. Two different probes of oligonucleotides both carrying a double-tailed lipid at the 5'-terminus were incorporated into stable artificial lipid bilayers separating two compartments (cis/trans-channel) of an optically transparent microfluidic sample carrier with perfusion capabilities. Both the cis- and trans-channels are filled with saline buffer. Injection of a cyanine-5-labeled target DNA sequence, which is complementary to only one of the oligonucleotide probes, into the cis-channel, followed by a thorough perfusion, leads to an immobilization of the labeled complementary oligonucleotide on the membrane as detected by single-molecule fluorescence spectroscopy and microscopy. In the case of fluorescent but non-complementary DNA sequences, no immobilized fluorescent oligonucleotide duplex could be detected on the membrane. This clearly verifies a specific duplex formation at the membrane interface.

  8. A macrocyclic bis-acridine shifts the equilibrium from duplexes towards DNA hairpins.

    PubMed Central

    Slama-Schwok, A; Peronnet, F; Hantz-Brachet, E; Taillandier, E; Teulade-Fichou, M P; Vigneron, J P; Best-Belpomme, M; Lehn, J M

    1997-01-01

    Nucleic acids can undergo dynamic conformational changes associated with the regulation of biological processes. A molecule presenting larger affinities for alternative structures relative to a duplex is expected to modify such conformational equilibria. We have previously reported that macrocyclic bis-acridine binds preferentially to single-stranded regions, especially DNA hairpins, due to steric effects. Here, we show, using gel electrophoresis, fluorescence and melting temperature experiments, that the macrocycle bis-acridine shifts an equilibrium from a duplex towards the corresponding hairpins. Competition experiments enlighten the higher affinity of the macrocycle for hairpins compared with double-stranded DNA. The macrocycle bis-acridine destabilizes a synthetic polynucleotide, by the formation of premelted areas. By extrapolation, the macrocycle bis-acridine should be able to disrupt, at least locally, genomic DNA duplexes and to stabilize unpaired areas, especially palindromic ones forming hairpins. Such macrocyclic compounds may have potential applications in the therapy of diseases involving hairpins. PMID:9185566

  9. Positive-intrinsic-negative diode-based duplexer for microcoil nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Seeber, D. A.; Hoftiezer, J. H.; Pennington, C. H.

    2000-07-01

    Microcoil nuclear magnetic resonance (NMR), using receiver coils of diameters of order 100 μm, is increasingly employed to observe very small (˜0.3 nl) samples with high sensitivity. However, many experimental aspects of microcoil NMR differ greatly from conventional NMR. In particular, the duplexer is a device used to switch between the transmit and receive phases of the experiment. The conventional duplexer is a passive device employing crossed diodes, that switch automatically to transmit mode when high rf power is present. In microcoil NMR, however, the transmitter power is necessarily quite low, with voltages that do not greatly exceed characteristic diode voltage drops. Here we present the complete design and construction methods for a duplexer well suited to the special demands of microcoil NMR.

  10. Signal processors in duplex sonography: in vitro comparison between analog and digital methods.

    PubMed

    Zoller, W G; Wierscher, C; Wagner, D R

    1993-01-01

    Using a new flow-test phantom, which respects the acoustic properties of real blood as well as the proximal and distal impedances of body circulation, we assessed the performance of two duplex sonography signal processors on blood-flow measurements. With both the analog and the dynamic signal processor (Fast Fourier Transform), the correlation between duplex sonography and quantitative flow measurements was high (0.96-0.99) for different dynamic conditions (steady or pulsatile blood flow, varying heart rate, blood pressure, and hematocrit) and for different mechanical conditions (silicon tube or animal vessel). The real blood flow was overestimated by duplex sonography; the over-estimation was more pronounced with the analog processor (factor 1.87-4.20) than with the digital processor (factor 1.22-1.64, P < 0.05). Applied to the study of asymmetric stenoses, the digital processor was not superior to the analog processors described in the literature.

  11. Experimental Analysis and Modelling of Fe-Mn-Al-C Duplex Steel Mechanical Behaviour

    SciTech Connect

    Shiekhelsouk, M. N.; Favier, V.; Cherkaoui, M.; Inal, K.; Bouaziz, O.

    2007-04-07

    A new variety of duplex steels with high content of manganese and aluminum has been elaborated in Arcelor Research. These steels contain two phases: austenite and ferrite combining the best features of austenitic and ferritic steels. In this work, four duplex steels with different chemical composition and phase volume fraction are studied. The evolution of internal stresses for the two phases has been determined by X-ray diffraction during an in situ tensile test. These measurements results were used to determine the mechanical behaviour of the duplex steel using a micromechanical approach by scale transition for tensile tests. Though a good agreement between experiments and simulations is found at the macroscopic level, the calculated internal stresses of the austenitic phase do not match experimental results. These discrepancies are attributed to (i) a bad estimation of the austenite yield stress or (ii) the presence of kinematic hardening in the austenitic phase. A new step is then proposed to test these two hypotheses.

  12. [Study on preparation of composite nano-scale Fe3O4 for phosphorus control].

    PubMed

    Li, Lei; Pan, Gang; Chen, Hao

    2010-03-01

    Composite nano-scale Fe3O4 particles were prepared in sodium carboxymethyl cellulose (CMC) solution by the oxidation deposition method. The adsorptions of phosphorus by micro-scale Fe3O4 and composite nano-scale Fe3O4 were investigated in water and soil, and the role of cellulase in the adsorption of composite nano-scale Fe3O4 was studied. Kinetic tests indicated that the equilibrium adsorption capacity of phosphorous on the composite nano-scale Fe3O4 (2.1 mg/g) was less than that of micro-scale Fe3O4 (3.2 mg/g). When cellulase was added to the solution of composite nano-scale Fe3O4 to degrade CMC, the removal rate of P by the nanoparticles (86%) was enhanced to the same level as the microparticles (90%). In the column tests, when the composite nano-scale Fe3O4 suspension was introduced in the downflow mode through the soil column, 72% of Fe3O4 penetrated through the soil bed under gravity. In contrast, the micro-scale Fe3O4 failed to pass through the soil column. The retention rate of P was 45% in the soil column when treated by the CMC-stabilized nanoparticles, in comparison with only 30% for the untreated soil column, however it could be improved to 74% in the soil column when treated by both the CMC-stabilized nanoparticles and cellulase, which degraded CMC after the nanoparticles were delivered into the soil.

  13. Using hiCLIP to identify RNA duplexes that interact with a specific RNA-binding protein.

    PubMed

    Sugimoto, Yoichiro; Chakrabarti, Anob M; Luscombe, Nicholas M; Ule, Jernej

    2017-03-01

    The structure of RNA molecules has a critical role in regulating gene expression, largely through influencing their interactions with RNA-binding proteins (RBPs). RNA hybrid and individual-nucleotide resolution UV cross-linking and immunoprecipitation (hiCLIP) is a transcriptome-wide method of monitoring these interactions by identifying RNA duplexes bound by a specific RBP. The hiCLIP protocol consists of the following steps: in vivo cross-linking of RBPs to their bound RNAs; partial RNA digestion and purification of RNA duplexes interacting with the specific RBP using immunoprecipitation; ligation of the two arms of RNA duplexes via a linker; reverse transcription; cDNA library amplification; and finally high-throughput DNA sequencing. Mapping of the sequenced arms to a reference transcriptome identifies the exact locations of duplexes. hiCLIP data can directly identify all types of RNA duplexes bound by RBPs, including those that are challenging to predict computationally, such as intermolecular and long-range intramolecular duplexes. Moreover, the use of an adaptor that links the two arms of the RNA duplex permits hiCLIP to unambiguously identify the duplexes. Here we describe in detail the procedure for a hiCLIP experiment and the subsequent streamlined data analysis with an R package, 'hiclipr' (https://github.com/luslab/hiclipr/). Preparation of the library for high-throughput DNA sequencing takes ∼7 d and the basic bioinformatic pipeline takes 1 d.

  14. A Commentary on "Updating the Duplex Design for Test-Based Accountability in the Twenty-First Century"

    ERIC Educational Resources Information Center

    Brandt, Steffen

    2010-01-01

    This article presents the author's commentary on "Updating the Duplex Design for Test-Based Accountability in the Twenty-First Century," in which Isaac I. Bejar and E. Aurora Graf propose the application of a test design--the duplex design (which was proposed in 1988 by Bock and Mislevy) for application in current accountability assessments.…

  15. Corrosion studies using potentiodynamic and EIS electrochemical techniques of welded lean duplex stainless steel UNS S82441

    NASA Astrophysics Data System (ADS)

    Brytan, Z.; Niagaj, J.; Reiman, Ł.

    2016-12-01

    The corrosion characterisation of lean duplex stainless steel (1.4662) UNS S82441 welded joints using the potentiodynamic test and electrochemical impedance spectroscopy in 1 M NaCl solution are discussed. The influence of autogenous TIG welding parameters (amount of heat input and composition of shielding gases like Ar and Ar-N2 and an Ar-He mixture), as well as A-TIG welding was studied. The influence of welding parameters on phase balance, microstructural changes and the protective properties of passive oxide films formed at the open circuit potential or during the anodic polarisation were studied. From the results of the potentiodynamic test and electrochemical impedance spectroscopy of TIG and A-TiG, welded joints show a lower corrosion resistance compared to non-welded parent metal, but introducing heat input properly during welding and applying shielding gases rich in nitrogen or helium can increase austenitic phase content, which is beneficial for corrosion resistance, and improves surface oxide layer resistance in 1 M NaCl solution.

  16. Structural, electronic, and optical properties of metallo base pairs in duplex DNA: a theoretical insight.

    PubMed

    Samanta, Pralok K; Manna, Arun K; Pati, Swapan K

    2012-11-01

    Using density functional theory calculations, we investigated the structural, energetic, electronic, and optical properties of recently synthesized duplex DNA containing metal-mediated base pairs. The studied duplex DNA consists of three imidazole (Im) units linked through metal (Im-M-Im, M = metal) and four flanking A:T base pairs (two on each side). We examined the role of artificial base pairing in the presence of two distinctive metal ions, diamagnetic Ag(+) and magnetic Cu(2+) ions, on the stability of duplex DNA. We found that metal-mediated base pairs form stable duplex DNA by direct metal ion coordination to the Im bases. Our results suggest a higher binding stability of base pairing mediated by Cu(2+) ions than by Ag(+) ions, which is attributed to a larger extent of orbital hybridization. We furthermore found that DNA modified with Im-Ag(+)-Im shows the low-energy optical absorption characteristic of π-π*orbital transition of WC A:T base pairs. On the other hand, we found that the low-energy optical absorption peaks for DNA modified with Im-Cu(2+)-Im originate from spin-spin interactions. Additionally, this complex exhibits weak ferromagnetic coupling between Cu(2+) ions and strong spin polarization, which could be used for memory devices. Moreover, analyzing the role of counter ions (Na(+)) and the presence of explicit water molecules on the structural stability and electronic properties of the DNA duplex modified with Im-Ag(+)-Im, we found that the impact of these two factors is negligible. Our results are fruitful for understanding the experimental data and suggest a potential route for constructing effective metal-mediated base pairs in duplex DNA for optoelectronic applications.

  17. Structural, Dynamical, and Electronic Transport Properties of Modified DNA Duplexes Containing Size-Expanded Nucleobases

    SciTech Connect

    Fuentes-Cabrera, Miguel A; Orozco, Modesto; Luque, Javier; Sumpter, Bobby G; Blas, Jose; Ordejon, Pablo J; Huertas, Oscar; Tabares, Carolina

    2011-01-01

    Among the distinct strategies proposed to expand the genetic alphabet, sizeexpanded nucleobases are promising for the development of modified DNA duplexes with improved biotechnological properties. In particular, duplexes built up by replacing canonical bases with the corresponding benzo-fused counterparts could be valuable as molecular nanowires. In this context, this study reports the results of classical molecular dynamics simulations carried out to examine the structural and dynamical features of size-expanded DNAs, including both hybrid duplexes containing mixed pairs of natural and benzo-fused bases (xDNA) and pure size-expanded (xxDNA) duplexes. Furthermore, the electronic structure of both natural and size-expanded duplexes is examined by means of density functional computations. The results confirm that the structural and flexibility properties of the canonical DNA are globally little affected by the presence of benzo-fused bases. Themost relevant differences are found in the enhanced size of the grooves, and the reduction in the twist. However, the analysis also reveals subtle structural effects related to the nature and sequence of benzo-fused bases in the duplex. On the other hand, electronic structure calculations performed for xxDNAs confirm the reduction in the HOMOLUMO gap predicted from the analysis of the natural bases and their size-expanded counterparts, which suggests that pure size-expanded DNAs can be good conductors. A more complex situation is found for xDNAs, where fluctuations in the electrostatic interaction between base pairs exerts a decisive influence on the modulation of the energy gap.

  18. Stability of DNA duplexes containing GG, CC, AA, and TT mismatches.

    PubMed

    Tikhomirova, Anna; Beletskaya, Irina V; Chalikian, Tigran V

    2006-09-05

    We employed salt-dependent differential scanning calorimetric measurements to characterize the stability of six oligomeric DNA duplexes (5'-GCCGGAXTGCCGG-3'/5'-CCGGCAYTCCGGC-3') that contain in the central XY position the GC, AT, GG, CC, AA, or TT base pair. The heat-induced helix-to-coil transitions of all the duplexes are associated with positive changes in heat capacity, DeltaC(p), ranging from 0.43 to 0.53 kcal/mol. Positive values of DeltaC(p) result in strong temperature dependences of changes in enthalpy, DeltaH degrees, and entropy, DeltaS degrees , accompanying duplex melting and cause melting free energies, DeltaG degrees, to exhibit characteristically curved shapes. These observations suggest that DeltaC(p) needs to be carefully taken into account when the parameters of duplex stability are extrapolated to temperatures distant from the transition temperature, T(M). Comparison of the calorimetric and van't Hoff enthalpies revealed that none of the duplexes studied in this work exhibits two-state melting. Within the context of the central AXT/TYA triplet, the thermal and thermodynamic stabilities of the duplexes in question change in the following order: GC > AT > GG > AA approximately TT > CC. Our estimates revealed that the thermodynamic impact of the GG, AA, and TT mismatches is confined within the central triplet. In contrast, the thermodynamic impact of the CC mismatch propagates into the adjacent helix domains and may involve 7-9 bp. We discuss implications of our results for understanding the origins of initial recognition of mismatched DNA sites by enzymes of the DNA repair machinery.

  19. Nanoscale assemblies and their biomedical applications

    PubMed Central

    Doll, Tais A. P. F.; Raman, Senthilkumar; Dey, Raja; Burkhard, Peter

    2013-01-01

    Nanoscale assemblies are a unique class of materials, which can be synthesized from inorganic, polymeric or biological building blocks. The multitude of applications of this class of materials ranges from solar and electrical to uses in food, cosmetics and medicine. In this review, we initially highlight characteristic features of polymeric nanoscale assemblies as well as those built from biological units (lipids, nucleic acids and proteins). We give special consideration to protein nanoassemblies found in nature such as ferritin protein cages, bacterial microcompartments and vaults found in eukaryotic cells and designed protein nanoassemblies, such as peptide nanofibres and peptide nanotubes. Next, we focus on biomedical applications of these nanoscale assemblies, such as cell targeting, drug delivery, bioimaging and vaccine development. In the vaccine development section, we report in more detail the use of virus-like particles and self-assembling polypeptide nanoparticles as new vaccine delivery platforms. PMID:23303217

  20. Decomposition kinetics of ammonia in gaseous stream by a nanoscale copper-cerium bimetallic catalyst.

    PubMed

    Hung, Chang-Mao

    2008-01-15

    This study performance is to examine the kinetics over nanoscale copper-cerium bimetallic catalyst under selective catalytic oxidation (SCO) of ammonia to N(2) in a tubular fixed-bed reactor (TFBR) at temperatures from 150 to 400 degrees C in the presence of oxygen. The nanoscale copper-cerium bimetallic catalyst was prepared by co-precipitation with Cu(NO(3))(2) and Ce(NO(3))(3) at molar ratio of 6:4. Experimental results showed that the catalyst with transmission electron microscopy (TEM) revealed that copper and cerium are well dispersed and catalyst in the form of nanometer-sized particles. Moreover, the kinetic behavior of NH(3) oxidation with catalysis can be accounted by using the rate expression of the Langmuir-Hinshelwood type kinetic model. Kinetic parameters are also developed on the basis of the differential reactor data. Also, experimental results are compared with those of the model predicted.

  1. Self-Size-Limiting Nanoscale Perforation of Graphene for Dense Heteroatom Doping.

    PubMed

    Maiti, Uday Narayan; Thapa, Ranjit; Lim, Joonwon; Li, Dong Jun; Kim, Kwang Ho; Kim, Sang Ouk

    2015-11-25

    A scalable and controllable nanoscale perforation method for graphene is developed on the basis of the two-step thermal activation of a graphene aerogel. Different resistance to the thermal oxidation between graphitic and defective domains in the weakly reduced graphene oxide is exploited for the self-limiting nanoscale perforation in the graphene basal plane via selective thermal degradation of the defective domains. The resultant nanoporous graphene with a narrow pore-size distribution addresses the long-standing challenge for the high-level doping of graphene with lattice-mismatched large-size heteroatoms (S and P). Noticeably, this novel heteroatom doping strategy is demonstrated to be highly effective for oxygen reduction reaction (ORR) catalysis. Not only the higher level of heteroatom doping but also favorable spin and charge redistribution around the pore edges leads to a strong ORR activity as supported by density functional theory calculations.

  2. Alternative strategy for adjusting the association specificity of hydrogen-bonded duplexes.

    PubMed

    Zhang, Penghui; Chu, Hongzhu; Li, Xianghui; Feng, Wen; Deng, Pengchi; Yuan, Lihua; Gong, Bing

    2011-01-07

    A strategy for creating new association specificity of hydrogen-bonded duplexes by varying the spacings between neighboring hydrogen bonds is described. Incorporation of naphthalene-based residues has provided oligoamide strands that pair into duplexes sharing the same H-bonding sequences (e.g., DDAA) but differing in the spacings between their intermolecular hydrogen bonds, leading to homo- or heteroduplexes. The ability to manipulate association-specificity as demonstrated by this work may be extended to other multiple hydrogen bonded systems, thereby further enhancing the diversity of multiple hydrogen-bonded association units for constructing supramolecular structures.

  3. A case report of laparoscopic ipsilateral ureteroureterostomy in children with renal duplex

    PubMed Central

    Wong, Yuen Shan; Tam, Yuk Him; Pang, Kristine Kit Yi

    2016-01-01

    We report on two children aged 2 and 6 years, who underwent laparoscopic ipsilateral ureteroureterostomy for their renal duplex anomalies. Both patients had complete duplex and were investigated by ultrasound, micturating cystourethrogram, magnetic resonance urography, and radioisotope scan. One patient had high-grade vesicoureteral reflux to lower moiety complicated with recurrent urinary tract infections, while the other had obstruction to upper moiety due to ectopic ureter. The pathological moieties of both patients were functional. Both patients underwent laparoscopic ipsilateral ureteroureterostomy uneventfully without any intraoperative complications. Postoperative imagings confirmed successful outcomes after surgery. PMID:27014651

  4. Herpes Zoster Duplex Bilateralis in Immuno-Competent Patients: Report of Two Cases.

    PubMed

    Vijay, Atul; Dalela, Gaurav

    2015-12-01

    Herpes Zoster is a common viral disorder, occurs due to reactivation of latent Varicella Zoster Virus (VZV) usually in adults or elderly patients, usually confined to a single dermatome. Herpes zoster duplex is a rare but well established entity which is simultaneous, occurring of herpes zoster at two different non contiguous dermatomes, can be unilateralis or bilateralis. Here we are reporting two cases of herpes zoster duplex bilateralis, in case-1 lesions occurs in two different distant dermatomes while in case-2 it appeared in a single dermatome but both sides were involved. Both the patients were healthy immuno-competent male.

  5. The microstructure and formation of duplex and black plessite in iron meteorites

    NASA Technical Reports Server (NTRS)

    Zhang, J.; Williams, D. B.; Goldstein, J. I.

    1993-01-01

    Two of the most common plessite structures, duplex and black plessite, in the taenite region of the Windmanstatten pattern of two iron meteorites (Grant and Carlton) are characterized using high-resolution electron microscopy and microanalysis techniques. Two types of gamma precipitates, found in the duplex plessite and black plessite regions, respectively, are identified, and their morphologies are described. The formation of the plessite structure is discussed using the information obtained in this study and results of a parallel investigation of decomposed martensitic Fe-Ni laboratory alloys.

  6. Congenital Giant Hydroureteric Cistern in a Duplex System of an Infant

    PubMed Central

    Awolaran, O. T.; Abdur-Rahman, L. O.; Bamigbola, K. T.; Adesiyun, O. M.; Nasir, A. A.

    2013-01-01

    Duplex collecting system is a congenital genitourinary anomaly commonly found incidentally. Our experience with a duplex system associated with giant hydroureter presenting as mobile abdominal swelling that was noticed from birth, constipation, and failure to thrive is described. Ultrasound and IVU did not assist in making the diagnosis, while a barium enema suggested a colonic duplication. Congenital giant hydroureter should be considered as a differential diagnosis in infants with cystic abdominal swelling. A preserved renal moiety attributed to a dilated ureteric cistern was a unique theory in this case. PMID:24171132

  7. A Structural Transition in Duplex DNA Induced by Ethylene Glycol

    PubMed Central

    Brewood, Greg P.; Aliwarga, Theresa; Schurr, J. Michael

    2010-01-01

    The twist energy parameter (ET) that governs the supercoiling free energy, and the linking difference (Δl) are measured for p30 δ DNA in solutions containing 0 to 40 w/v% ethylene glycol (EG). A plot of ET vs. −ln aw, where aw is the water activity, displays the full (reverse) sigmoidal profile of a discrete structural transition. A general theory for the effect of added osmolyte on a cooperative structural transition between two duplex states, 1□ 2, is formulated in terms of parameters applicable to individual base-pairs subunits. The resulting fraction of base-pairs in the 2-state ( f20), is incorporated into expressions for the effective torsion and bending elastic constants, the effective twist energy parameter ( ETeff), and the change in intrinsic twist (δl0). Fitting the expression for ETeff to the measured ET -values yields reasonably unambiguous estimates of ET1and ET2, the midpoint value (ln aw)1/2, and midpoint slope (∂ET/∂ln aw)1/2, but does not yield unambiguous estimates of the equilibrium constant ( K0), the difference in DNA-water preferential interaction coefficient (ΔΓ), or the inverse cooperativity parameter, J. Fitting a non-cooperative model (assumed J=1.0) to the data yields, K0 = 0.067, and ΔΓ = − 30.0 per base-pair (bp). Essentially equivalent fits are provided by models with a wide range of correlated J, ΔΓ, and K0 values. Other results favor ΔΓ in the range − 1.0 to 0, which then requires K0 ≥ 0.914, and a cooperativity parameter, 1/J ≥ 30.0 bp. The measured δl0 and circular dichroism (CD) at 272 nm are found to be compatible with curves predicted using the same f20-values that best-fit the ET -data. At least 7 to 10 % of the base-pairs are inferred to exist in the 2-state in 0.1 M NaCl in the complete absence of added osmolyte. Compared with the 1-state, the 2-state has a ~2.0- to 2.1-fold greater torsion elastic constant, a ~0.70-fold smaller bending elastic constant, a ~0.91-fold smaller ET -value, a ~0

  8. High-performance planar nanoscale dielectric capacitors

    NASA Astrophysics Data System (ADS)

    Özçelik, V. Ongun; Ciraci, S.

    2015-05-01

    We propose a model for planar nanoscale dielectric capacitors consisting of a single layer, insulating hexagonal boron nitride (BN) stripe placed between two metallic graphene stripes, all forming commensurately a single atomic plane. First-principles density functional calculations on these nanoscale capacitors for different levels of charging and different widths of graphene-BN stripes mark high gravimetric capacitance values, which are comparable to those of supercapacitors made from other carbon-based materials. Present nanocapacitor models allow the fabrication of series, parallel, and mixed combinations which offer potential applications in two-dimensional flexible nanoelectronics, energy storage, and heat-pressure sensing systems.

  9. Nanoscale chirality in metal and semiconductor nanoparticles.

    PubMed

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  10. Nanoscale chirality in metal and semiconductor nanoparticles

    PubMed Central

    Thomas, K. George

    2016-01-01

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided. PMID:27752651

  11. Functionalising surfaces at the nanoscale using plasma technology.

    PubMed

    Moore, R

    2009-01-01

    Plasma technology offers a highly effective toolbox for nanoscale surface engineering of materials. The potential variety of nanoscale features and new properties that can be achieved are reviewed here.

  12. Activity and Stability of Nanoscale Oxygen Reduction Catalysts

    SciTech Connect

    Shao-Horn, Yang

    2015-07-28

    Design of highly active and stable nanoscale catalysts for electro-oxidation of small organic molecules is of great importance to the development of efficient fuel cells. The amount and instability of Pt-based catalysts in the cathode limits the cost, efficiency and lifetime of proton exchange membrane fuel cells. We developed a microscopic understanding of the factors governing activity and stability in Pt and PtM alloys. Experimental efforts were focused on probing the size and shape dependence of ORR activity of Pt-based nanoparticles supported on carbon nanotubes. A microscopic understanding of the activity was achieved by correlating voltammetry and rotating ring disk electrodes to surface atomic and electronic structures, which were elucidated predominantly by high-resolution transmission electron microscopy (HRTEM), Scanning transmission electron microscopy energy dispersive X-ray Spectroscopy (STEM-EDS) and synchrotron X-ray absorption spectroscopy (XAS).

  13. Atomistic Design and Simulations of Nanoscale Machines and Assembly

    NASA Technical Reports Server (NTRS)

    Goddard, William A., III; Cagin, Tahir; Walch, Stephen P.

    2000-01-01

    Over the three years of this project, we made significant progress on critical theoretical and computational issues in nanoscale science and technology, particularly in:(1) Fullerenes and nanotubes, (2) Characterization of surfaces of diamond and silicon for NEMS applications, (3) Nanoscale machine and assemblies, (4) Organic nanostructures and dendrimers, (5) Nanoscale confinement and nanotribology, (6) Dynamic response of nanoscale structures nanowires (metals, tubes, fullerenes), (7) Thermal transport in nanostructures.

  14. 2D Quantum Mechanical Study of Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25, 50 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. Surprisingly, the self-consistent potential profile shows lower injection barrier in the channel in quantum case. These results are qualitatively consistent with ID Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  15. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  16. Preface: Friction at the nanoscale

    NASA Astrophysics Data System (ADS)

    Fusc, Claudio; Smith, Roger; Urbakh, Michael; Vanossi, Andrea

    2008-09-01

    Interfacial friction is one of the oldest problems in physics and chemistry, and certainly one of the most important from a practical point of view. Everyday operations on a broad range of scales, from nanometer and up, depend upon the smooth and satisfactory functioning of countless tribological systems. Friction imposes serious constraints and limitations on the performance and lifetime of micro-machines and, undoubtedly, will impose even more severe constraints on the emerging technology of nano-machines. Standard lubrication techniques used for large objects are expected to be less effective in the nano-world. Novel methods for control and manipulation are therefore needed. What has been missing is a molecular level understanding of processes occurring between and close to interacting surfaces to help understand, and later manipulate friction. Friction is intimately related to both adhesion and wear, and all three require an understanding of highly non-equilibrium processes occurring at the molecular level to determine what happens at the macroscopic level. Due to its practical importance and the relevance to basic scientific questions there has been major increase in activity in the study of interfacial friction on the microscopic level during the last decade. Intriguing structural and dynamical features have been observed experimentally. These observations have motivated theoretical efforts, both numerical and analytical. This special issue focusses primarily on discussion of microscopic mechanisms of friction and adhesion at the nanoscale level. The contributions cover many important aspects of frictional behaviour, including the origin of stick-slip motion, the dependence of measured forces on the material properties, effects of thermal fluctuations, surface roughness and instabilities in boundary lubricants on both static and kinetic friction. An important problem that has been raised in this issue, and which has still to be resolved, concerns the

  17. Dynamic structural disorder in supported nanoscale catalysts

    NASA Astrophysics Data System (ADS)

    Rehr, J. J.; Vila, F. D.

    2014-04-01

    We investigate the origin and physical effects of "dynamic structural disorder" (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  18. Direct temperature mapping of nanoscale plasmonic devices.

    PubMed

    Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2014-02-12

    Side by side with the great advantages of plasmonics in nanoscale light confinement, the inevitable ohmic loss results in significant joule heating in plasmonic devices. Therefore, understanding optical-induced heat generation and heat transport in integrated on-chip plasmonic devices is of major importance. Specifically, there is a need for in situ visualization of electromagnetic induced thermal energy distribution with high spatial resolution. This paper studies the heat distribution in silicon plasmonic nanotips. Light is coupled to the plasmonic nanotips from a silicon nanowaveguide that is integrated with the tip on chip. Heat is generated by light absorption in the metal surrounding the silicon nanotip. The steady-state thermal distribution is studied numerically and measured experimentally using the approach of scanning thermal microscopy. It is shown that following the nanoscale heat generation by a 10 mW light source within a silicon photonic waveguide the temperature in the region of the nanotip is increased by ∼ 15 °C compared with the ambient temperature. Furthermore, we also perform a numerical study of the dynamics of the heat transport. Given the nanoscale dimensions of the structure, significant heating is expected to occur within the time frame of picoseconds. The capability of measuring temperature distribution of plasmonic structures at the nanoscale is shown to be a powerful tool and may be used in future applications related to thermal plasmonic applications such as control heating of liquids, thermal photovoltaic, nanochemistry, medicine, heat-assisted magnetic memories, and nanolithography.

  19. Nanoscale spectroscopy and imaging of hemoglobin.

    PubMed

    Kennedy, Eamonn; Yarrow, Fiona; Rice, James H

    2011-09-01

    Sub diffraction limited infrared absorption imaging of hemoglobin was performed by coupling IR optics with an atomic force microscope. Comparisons between the AFM topography and IR absorption images of micron sized hemoglobin features are presented, along with nanoscale IR spectroscopic analysis of the metalloprotein.

  20. Traceable nanoscale measurement at NML-SIRIM

    SciTech Connect

    Dahlan, Ahmad M.; Abdul Hapip, A. I.

    2012-06-29

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  1. Powdered Hexagonal Boron Nitride Reducing Nanoscale Wear

    NASA Astrophysics Data System (ADS)

    Chkhartishvili, L.; Matcharashvili, T.; Esiava, R.; Tsagareishvili, O.; Gabunia, D.; Margiev, B.; Gachechiladze, A.

    2013-05-01

    A morphology model is suggested for nano-powdered hexagonal boron nitride that can serve as an effective solid additive to liquid lubricants. It allows to estimate the specific surface, that is a hard-to-measure parameter, based on average size of powder particles. The model can be used also to control nanoscale wear processes.

  2. Adsorption Kinetics in Nanoscale Porous Coordination Polymers

    SciTech Connect

    Nune, Satish K.; Thallapally, Praveen K.; McGrail, Benard Peter; Annapureddy, Harsha V. R.; Dang, Liem X.; Mei, Donghai; Karri, Naveen; Alvine, Kyle J.; Olszta, Matthew J.; Arey, Bruce W.; Dohnalkova, Alice

    2015-10-07

    Nanoscale porous coordination polymers were synthesized using simple wet chemical method. The effect of various polymer surfactants on colloidal stability and shape selectivity was investigated. Our results suggest that the nanoparticles exhibited significantly improved adsorption kinetics compared to bulk crystals due to decreased diffusion path lengths and preferred crystal plane interaction.

  3. Fats, Oils, & Colors of a Nanoscale Material

    ERIC Educational Resources Information Center

    Lisensky, George C.; Horoszewski, Dana; Gentry, Kenneth L.; Zenner, Greta M.; Crone, Wendy C .

    2006-01-01

    Phase changes and intermolecular forces are important physical science concepts but are not always easy to present in an active learning format. This article presents several interactive activities in which students plot the melting points of some fatty acids and explore the effect that the nanoscale size and shape of molecules have on the…

  4. Benchtop Nanoscale Patterning Using Soft Lithography

    ERIC Educational Resources Information Center

    Meenakshi, Viswanathan; Babayan, Yelizaveta; Odom, Teri W.

    2007-01-01

    This paper outlines several benchtop nanoscale patterning experiments that can be incorporated into undergraduate laboratories or advanced high school chemistry curricula. The experiments, supplemented by an online video lab manual, are based on soft lithographic techniques such as replica molding, micro-molding in capillaries, and micro-contact…

  5. Dynamic structural disorder in supported nanoscale catalysts

    SciTech Connect

    Rehr, J. J.; Vila, F. D.

    2014-04-07

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  6. The impact of defect scattering on the quasi-ballistic transport of nanoscale conductors

    SciTech Connect

    Esqueda, I. S. Fritze, M.; Cress, C. D.; Cao, Y.; Che, Y.; Zhou, C.

    2015-02-28

    Using the Landauer approach for carrier transport, we analyze the impact of defects induced by ion irradiation on the transport properties of nanoscale conductors that operate in the quasi-ballistic regime. Degradation of conductance results from a reduction of carrier mean free path due to the introduction of defects in the conducting channel. We incorporate scattering mechanisms from radiation-induced defects into calculations of the transmission coefficient and present a technique for extracting modeling parameters from near-equilibrium transport measurements. These parameters are used to describe degradation in the transport properties of nanoscale devices using a formalism that is valid under quasi-ballistic operation. The analysis includes the effects of bandstructure and dimensionality on the impact of defect scattering and discusses transport properties of nanoscale devices from the diffusive to the ballistic limit. We compare calculations with recently published measurements of irradiated nanoscale devices such as single-walled carbon nanotubes, graphene, and deep-submicron Si metal-oxide-semiconductor field-effect transistors.

  7. Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device.

    PubMed

    Park, Sangsu; Noh, Jinwoo; Choo, Myung-Lae; Sheri, Ahmad Muqeem; Chang, Man; Kim, Young-Bae; Kim, Chang Jung; Jeon, Moongu; Lee, Byung-Geun; Lee, Byoung Hun; Hwang, Hyunsang

    2013-09-27

    Efforts to develop scalable learning algorithms for implementation of networks of spiking neurons in silicon have been hindered by the considerable footprints of learning circuits, which grow as the number of synapses increases. Recent developments in nanotechnologies provide an extremely compact device with low-power consumption.In particular, nanoscale resistive switching devices (resistive random-access memory (RRAM)) are regarded as a promising solution for implementation of biological synapses due to their nanoscale dimensions, capacity to store multiple bits and the low energy required to operate distinct states. In this paper, we report the fabrication, modeling and implementation of nanoscale RRAM with multi-level storage capability for an electronic synapse device. In addition, we first experimentally demonstrate the learning capabilities and predictable performance by a neuromorphic circuit composed of a nanoscale 1 kbit RRAM cross-point array of synapses and complementary metal-oxide-semiconductor neuron circuits. These developments open up possibilities for the development of ubiquitous ultra-dense, ultra-low-power cognitive computers.

  8. Efficient wire-grid duplexer-polarized for CO2 lasers

    NASA Technical Reports Server (NTRS)

    Cheo, P. K.; Bass, C. D.

    1972-01-01

    Chromium wire grid duplexer-polarizer for 10 micrometer carbon dioxide laser communication system is produced by depositing photo-resist film onto silicon substrate, grating by two collimated cadmium helium laser beams, covering of surface with thin chromium layer, and subsequent stripping of uncoated portion to expose etched wires.

  9. Transceiver Design to Maximize the Weighted Sum Secrecy Rate in Full-Duplex SWIPT Systems

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sun, Ruijin; Wang, Xinshui

    2016-06-01

    This letter considers secrecy simultaneous wireless information and power transfer (SWIPT) in full duplex systems. In such a system, full duplex capable base station (FD-BS) is designed to transmit data to one downlink user and concurrently receive data from one uplink user, while one idle user harvests the radio-frequency (RF) signals energy to extend its lifetime. Moreover, to prevent eavesdropping, artificial noise (AN) is exploited by FD-BS to degrade the channel of the idle user, as well as to provide energy supply to the idle user. To maximize the sum of downlink secrecy rate and uplink secrecy rate, we jointly optimize the information covariance matrix, AN covariance matrix and receiver vector, under the constraints of the sum transmission power of FD-BS and the minimum harvested energy of the idle user. Since the problem is non-convex, the log-exponential reformulation and sequential parametric convex approximation (SPCA) method are used. Extensive simulation results are provided and demonstrate that our proposed full duplex scheme extremely outperforms the half duplex scheme.

  10. Congenital duplex gallbladder and biliary mucocele associated with partial hepatic cholestasis and cholelithiasis in a cat

    PubMed Central

    Woods, Katharine S.; Brisson, Brigitte A.; Defarges, Alice M.N.; Oblak, Michelle L.

    2012-01-01

    A 6-year-old neutered male domestic shorthair cat was presented for acute onset of vomiting. Exploratory laparotomy identified a duplex gallbladder and left cholecystectomy was performed. Histopathology confirmed biliary mucocele and hepatic cholestasis. While rare, biliary mucoceles should be considered as a differential diagnosis for feline extrahepatic bile duct obstruction. PMID:22942442

  11. Influence of Duplex Treatment on Structural and Tribological Properties of Commercially Pure Titanium

    NASA Astrophysics Data System (ADS)

    Çelik, Ilhan

    2017-01-01

    Titanium and its alloys are widely used in many fields, including aerospace and the chemical and biomedical industries. This is due to their mechanical properties, excellent corrosion resistance, and biocompatibility although they do have poor wear resistance. In this study, a duplex layer was successfully formed on the commercially pure titanium surface by duplex treatments (plasma nitriding and physical vapor deposition (PVD)). In the initial treatment, plasma nitriding was performed on the pure titanium samples and in the second treatment, the nitrided samples were coated with CrN by PVD. The friction and wear properties of the duplex-treated samples were investigated for tribological applications. Surface morphology and microstructure of the duplex-treated samples were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). In addition, the tribological properties were investigated using pin-on-disc tribometer. A compound layer composed of ɛ-Ti2N and δ-TiN phases and a diffusion layer formed under the compound layer were obtained on the surface of pure titanium after the nitriding treatments. CrN coated on the nitrided surface provided an increase in the surface hardness and in the wear resistance.

  12. Sigma phase morphologies in cast and aged super duplex stainless steel

    SciTech Connect

    Martins, Marcelo; Casteletti, Luiz Carlos

    2009-08-15

    Solution annealed and water quenched duplex and super duplex stainless steels are thermodynamically metastable systems at room temperature. These systems do not migrate spontaneously to a thermodynamically stable condition because an energy barrier separates the metastable and stable states. However, any heat input they receive, for example through isothermal treatment or through prolonged exposure to a voltaic arc in the welding process, cause them to reach a condition of stable equilibrium which, for super duplex stainless steels, means precipitation of intermetallic and carbide phases. These phases include the sigma phase, which is easily identified from its morphology, and its influence on the material's impact strength. The purpose of this work was to ascertain how 2-hour isothermal heat treatments at 920 deg. C and 980 deg. C affect the microstructure of ASTM A890/A890M GR 6A super duplex stainless steel. The sigma phase morphologies were found to be influenced by these two aging temperatures, with the material showing a predominantly lacy microstructure when heat treated at 920 deg. C and block-shaped when heat treated at 980 deg. C.

  13. DNA CTG triplet repeats involved in dynamic mutations of neurologically related gene sequences form stable duplexes

    NASA Technical Reports Server (NTRS)

    Smith, G. K.; Jie, J.; Fox, G. E.; Gao, X.

    1995-01-01

    DNA triplet repeats, 5'-d(CTG)n and 5'-d(CAG)n, are present in genes which have been implicated in several neurodegenerative disorders. To investigate possible stable structures formed by these repeating sequences, we have examined d(CTG)n, d(CAG)n and d(CTG).d(CAG)n (n = 2 and 3) using NMR and UV optical spectroscopy. These studies reveal that single stranded (CTG)n (n > 2) forms stable, antiparallel helical duplexes, while the single stranded (CAG)n requires at least three repeating units to form a duplex. NMR and UV melting experiments show that the Tm increases in the order of [(CAG)3]2 < [(CTG)3]2 << (CAG)3.(CTG)3. The (CTG)3 duplex is stable and exhibits similar NMR spectra in solutions containing 0.1-4 M NaCl and at a pH range from 4.6 to 8.8. The (CTG)3 duplex, which contains multiple-T.T mismatches, displays many NMR spectral characteristics similar to those of B-form DNA. However, unique NOE and 1H-31P coupling patterns associated with the repetitive T.T mismatches in the CTG repeats are discerned. These results, in conjunction with recent in vitro studies suggest that longer CTG repeats may form hairpin structures, which can potentially cause interruption in replication, leading to dynamic expansion or deletion of triplet repeats.

  14. DNA CTG triplet repeats involved in dynamic mutations of neurologically related gene sequences form stable duplexes.

    PubMed Central

    Smith, G K; Jie, J; Fox, G E; Gao, X

    1995-01-01

    DNA triplet repeats, 5'-d(CTG)n and 5'-d(CAG)n, are present in genes which have been implicated in several neurodegenerative disorders. To investigate possible stable structures formed by these repeating sequences, we have examined d(CTG)n, d(CAG)n and d(CTG).d(CAG)n (n = 2 and 3) using NMR and UV optical spectroscopy. These studies reveal that single stranded (CTG)n (n > 2) forms stable, antiparallel helical duplexes, while the single stranded (CAG)n requires at least three repeating units to form a duplex. NMR and UV melting experiments show that the Tm increases in the order of [(CAG)3]2 < [(CTG)3]2 << (CAG)3.(CTG)3. The (CTG)3 duplex is stable and exhibits similar NMR spectra in solutions containing 0.1-4 M NaCl and at a pH range from 4.6 to 8.8. The (CTG)3 duplex, which contains multiple-T.T mismatches, displays many NMR spectral characteristics similar to those of B-form DNA. However, unique NOE and 1H-31P coupling patterns associated with the repetitive T.T mismatches in the CTG repeats are discerned. These results, in conjunction with recent in vitro studies suggest that longer CTG repeats may form hairpin structures, which can potentially cause interruption in replication, leading to dynamic expansion or deletion of triplet repeats. PMID:7501450

  15. Real-time duplex PCR for simultaneous HPV 16 and HPV 18 DNA quantitation.

    PubMed

    Jacquin, Elise; Saunier, Maëlle; Mauny, Frédéric; Schwarz, Elisabeth; Mougin, Christiane; Prétet, Jean-Luc

    2013-11-01

    HPV 16 and HPV 18 are responsible for more than 75% of cervical cancers and high HPV 16 loads are associated with both prevalent and incident lesions. The objective of the present study was to develop a method allowing the detection and quantitation of HPV 16 and 18 DNA to improve future strategies for cervical cancer screening. A duplex real-time PCR allowing the simultaneous quantitation of both HPV 16 and HPV 18 was carried out. Mixes of HPV 16 and HPV 18 whole genome plasmids were prepared to test a wide range of viral DNA concentrations. The values obtained for each mix of plasmids with the simplex and the duplex PCR were very close to the theoretical values except when a HPV type represented only 1:1000 genome equivalent or lower than the concurrent type. Cervical samples harboring HPV 16, HPV 18 or both types were tested by comparing the results with simplex and duplex real-time PCR assays. HPV 16 and HPV 18 genome titers were similar with the two assays. In conclusion, the real-time duplex PCR proved to be robust for HPV 16 and HPV 18 DNA quantitation.

  16. Duplex (or quadruplet) CH domain containing human multidomain proteins: an inventory.

    PubMed

    Friedberg, Felix

    2010-04-01

    In this paper, the inventory presented for singlet CH (calponin homology/actin binding) domain containing human multidomain proteins is extended to several duplex and one quadruplet CH containing forms. Invariably, the duplexes are located at the begin of the molecules. The regions connecting the two CH units suggest amino acid conservations which allows the placing of 18 duplex containing molecules into six groups wherein the gene for one member in each group created the others more recently by gene duplication. The ancient multidomain proteins, possibly, were primarily the result of an exon shuffling (transposition) mechanism that also guided the placing of the CH singlet or duplex domain at the amino end of the newly created proteins. A mechanism that creates pseudogenes could conceivably produce genes that encode multi-domain proteins. Intragenomic duplications (slippage) might have facilitated the occurrence of encoding repeats, thus allowing for the creation of multiple identical domains within one molecule. Gene duplication with subsequent modification and small domain gene recombination which formed multidomain proteins are important forces driving evolution.

  17. Development of duplex PCR assay for detection and differentiation of typical and atypical Melissococcus plutonius strains.

    PubMed

    Arai, Rie; Miyoshi-Akiyama, Tohru; Okumura, Kayo; Morinaga, Yuiko; Wu, Meihua; Sugimura, Yuya; Yoshiyama, Mikio; Okura, Masatoshi; Kirikae, Teruo; Takamatsu, Daisuke

    2014-04-01

    Melissococcus plutonius is the causative agent of an important honeybee disease, European foulbrood (EFB). In addition to M. plutonius strains with typical characteristics (typical M. plutonius), we recently reported the presence of atypical M. plutonius, which are phenotypically and genetically distinguished from typical M. plutonius. Because typical and atypical M. plutonius may have different pathogenic mechanisms, differentiation of these two types is very important for diagnosis and more effective control of EFB. In this study, therefore, a duplex PCR assay was developed to detect and differentiate typical and atypical M. plutonius rapidly and easily. On the basis of the results of comparative genomic analyses, we selected Na(+)/H(+) antiporter gene and Fur family transcriptional regulator gene as targets for detection of typical and atypical strains, respectively, by PCR. Under optimized conditions, the duplex PCR system using the designed primers successfully detected and differentiated all typical and atypical M. plutonius strain/isolates tested, while no product was generated from any other bacterial strains/isolates used in this study, including those isolated from healthy honeybee larval guts. Detection limits of the PCR were 50 copies of chromosome/reaction for both types, and it could detect typical and atypical M. plutonius directly from diseased honeybee larvae. Moreover, the duplex PCR diagnosed mixed infections with both M. plutonius types more precisely than standard culture methods. These results indicate that the duplex PCR assay developed in this study is extremely useful for precise diagnosis and epidemiological study of EFB.

  18. Development of Duplex PCR Assay for Detection and Differentiation of Typical and Atypical Melissococcus plutonius strains

    PubMed Central

    ARAI, Rie; MIYOSHI-AKIYAMA, Tohru; OKUMURA, Kayo; MORINAGA, Yuiko; WU, Meihua; SUGIMURA, Yuya; YOSHIYAMA, Mikio; OKURA, Masatoshi; KIRIKAE, Teruo; TAKAMATSU, Daisuke

    2013-01-01

    ABSTRACT Melissococcus plutonius is the causative agent of an important honeybee disease, European foulbrood (EFB). In addition to M. plutonius strains with typical characteristics (typical M. plutonius), we recently reported the presence of atypical M. plutonius, which are phenotypically and genetically distinguished from typical M. plutonius. Because typical and atypical M. plutonius may have different pathogenic mechanisms, differentiation of these two types is very important for diagnosis and more effective control of EFB. In this study, therefore, a duplex PCR assay was developed to detect and differentiate typical and atypical M. plutonius rapidly and easily. On the basis of the results of comparative genomic analyses, we selected Na+/H+ antiporter gene and Fur family transcriptional regulator gene as targets for detection of typical and atypical strains, respectively, by PCR. Under optimized conditions, the duplex PCR system using the designed primers successfully detected and differentiated all typical and atypical M. plutonius strain/isolates tested, while no product was generated from any other bacterial strains/isolates used in this study, including those isolated from healthy honeybee larval guts. Detection limits of the PCR were 50 copies of chromosome/reaction for both types, and it could detect typical and atypical M. plutonius directly from diseased honeybee larvae. Moreover, the duplex PCR diagnosed mixed infections with both M. plutonius types more precisely than standard culture methods. These results indicate that the duplex PCR assay developed in this study is extremely useful for precise diagnosis and epidemiological study of EFB. PMID:24334815

  19. Duplex PCR for detection of Salmonella and Shigella spp in cockle samples.

    PubMed

    Senachai, Pachara; Chomvarin, Chariya; Wongboot, Warawan; Boonyanugomol, Wongwarut; Tangkanakul, Waraluk

    2013-09-01

    Salmonella and Shigella spp are important causative agents of foodborne diseases. A sensitive, specific and rapid method is essential for detection of these pathogens. In this study, a duplex PCR method was developed for simultaneous detection of Salmonella and Shigella spp in cockle samples and compared with the traditional culture method. Enrichment broths for Salmonella spp recovery were also compared. Sensitivity of the duplex PCR for simultaneous detection of Salmonella and Shigella spp from pure culture was 10(3) CFU/ml (40 CFU/PCR reaction), and that of sterile cockle samples spiked with these two pathogens was 1 CFU/10 g of cockle tissue after 9 hours enrichment [3 hours in buffered peptone water (BPW), followed by 6 hours in Rappaport Vasiliadis (RV) broth or tetrathionate (TT) broth for Salmonella spp and 6 hours enrichment in Shigella broth (SB) for Shigella spp]. There was no significant difference in detection sensitivity between enrichment in RV and TT broths. Salmonella spp detected in cockles in Khon Kaen, Thailand by duplex PCR and culture method was 17% and 13%, respectively but Shigella spp was not detected. The duplex PCR technique developed for simultaneous detection of Salmonella and Shigella spp in cockle samples was highly sensitive, specific and rapid and could serve as a suitable method for food safety assessment.

  20. New insights into Hoogsteen base pairs in DNA duplexes from a structure-based survey

    PubMed Central

    Zhou, Huiqing; Hintze, Bradley J.; Kimsey, Isaac J.; Sathyamoorthy, Bharathwaj; Yang, Shan; Richardson, Jane S.; Al-Hashimi, Hashim M.

    2015-01-01

    Hoogsteen (HG) base pairs (bps) provide an alternative pairing geometry to Watson–Crick (WC) bps and can play unique functional roles in duplex DNA. Here, we use structural features unique to HG bps (syn purine base, HG hydrogen bonds and constricted C1′–C1′ distance across the bp) to search for HG bps in X-ray structures of DNA duplexes in the Protein Data Bank. The survey identifies 106 A•T and 34 G•C HG bps in DNA duplexes, many of which are undocumented in the literature. It also uncovers HG-like bps with syn purines lacking HG hydrogen bonds or constricted C1′–C1′ distances that are analogous to conformations that have been proposed to populate the WC-to-HG transition pathway. The survey reveals HG preferences similar to those observed for transient HG bps in solution by nuclear magnetic resonance, including stronger preferences for A•T versus G•C bps, TA versus GG steps, and also suggests enrichment at terminal ends with a preference for 5′-purine. HG bps induce small local perturbations in neighboring bps and, surprisingly, a small but significant degree of DNA bending (∼14°) directed toward the major groove. The survey provides insights into the preferences and structural consequences of HG bps in duplex DNA. PMID:25813047

  1. Dislocation of the third ventricle due to space-occupying stroke evaluated by transcranial duplex sonography.

    PubMed

    Seidel, G; Gerriets, T; Kaps, M; Missler, U

    1996-10-01

    Transcranial color-coded duplex sonography is a recently introduced method for visualizing (1) the blood flow velocity of the basal cerebral arteries and (2) the brain parenchyma as an acoustic impedance image. Dislocation of the third ventricle due to space-occupying stroke is an important clinical marker. This study evaluated the dislocation of the third ventricle from the brain midline by transcranial duplex sonography in 10 healthy volunteers. The mean dislocation was 0.2 +/- 0.3 mm. Eighteen stroke patients were investigated within 12 hours by both duplex sonography and computed tomography (CT) and the dislocation of the third ventricle was measured. Correlation between the two methods was high (r = 0.87, N = 27). Twelve stroke patients divided into three subgroups according to the extent of the space-occupying effects of the lesion were followed for 3 weeks. The increase and decrease of the dislocation of the third ventricle over the time were monitored. In conclusion, transcranial duplex sonography is a reliable tool to monitor dislocation of the third ventricle due to space-occupying stroke.

  2. Bilayer Protograph Codes for Half-Duplex Relay Channels

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; VanNguyen, Thuy; Nosratinia, Aria

    2013-01-01

    re-optimization. The main problem of half-duplex relay coding can be reduced to the simultaneous design of two codes at two rates and two SNRs (signal-to-noise ratios), such that one is a subset of the other. This problem can be addressed by forceful optimization, but a clever method of addressing this problem is via the bilayer lengthened (BL) LDPC structure. This method uses a bilayer Tanner graph to make the two codes while using a concept of "parity forwarding" with subsequent successive decoding that removes the need to directly address the issue of uneven SNRs among the symbols of a given codeword. This method is attractive in that it addresses some of the main issues in the design of relay codes, but it does not by itself give rise to highly structured codes with simple encoding, nor does it give rate-compatible codes. The main contribution of this work is to construct a class of codes that simultaneously possess a bilayer parity- forwarding mechanism, while also benefiting from the properties of protograph codes having an easy encoding, a modular design, and being a rate-compatible code.

  3. Nanoscale precipitation in hot rolled sheet steel

    NASA Astrophysics Data System (ADS)

    Sun, Jun

    Some newer hot rolled high strength low alloy (HSLA) steels with a single phase ferrite matrix have obtained substantial strengthening from nanoscale precipitation. These HSLA are reported to have a good combination of strength, ductility and hole-expansion ability. In the current work, Gleeble ® 3500 torsion testing was employed to simulate the hot rolling process with varying run-out table cooling rates and coiling temperatures on five microalloyed steels with additions of Ti, Nb, Mo, Cr and V, to investigate the effects of microalloy additions and processing conditions on microstructures as well as mechanical properties. Subsized tensile specimens obtained from as-twisted torsion samples were used to evaluate mechanical properties. The precipitation states of the five steels with different processing conditions were characterized using extraction replica TEM. Comparison of microstructures and mechanical properties was discussed. Characterization of the microstructure via light optical microscopy showed the matrix microstructure was mainly influenced by coiling temperature, which indicates that the transformation from austenite to ferrite occurred during the coiling period. A higher Ti content was shown to reduce the second constituent fractions. Investigation of carbon extraction replica specimens via TEM revealed the presence of nanoscale precipitation. Extensive nanoscale precipitation was observed in most of the specimens having a polygonal ferrite matrix, while in the granular bainite/ferrite microstructure at lower temperatures, fewer microalloy carbides were present. The specimens with polygonal ferrite had similar or higher yield strength than the specimens with granular bainite microstructure, which suggests the effectiveness of precipitation strengthening from extensive nanoscale precipitates. In the Nb-Mo steel, more significant strengthening due to grain refinement was evident. Yield strength values were less than reported for JFE's "NANOHITEN

  4. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    SciTech Connect

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  5. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    SciTech Connect

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  6. In situ characterization of nanoscale catalysts during anodic redox processes

    SciTech Connect

    Sharma, Renu; Crozier, Peter; Adams, James

    2013-09-19

    Controlling the structure and composition of the anode is critical to achieving high efficiency and good long-term performance. In addition to being a mixed electronic and ionic conductor, the ideal anode material should act as an efficient catalyst for oxidizing hydrogen, carbon monoxide and dry hydrocarbons without de-activating through either sintering or coking. It is also important to develop novel anode materials that can operate at lower temperatures to reduce costs and minimized materials failure associated with high temperature cycling. We proposed to synthesize and characterize novel anode cermets materials based on ceria doped with Pr and/or Gd together with either a Ni or Cu metallic components. Ceria is a good oxidation catalyst and is an ionic conductor at room temperature. Doping it with trivalent rare earths such as Pr or Gd retards sintering and makes it a mixed ion conductor (ionic and electronic). We have developed a fundamental scientific understanding of the behavior of the cermet material under reaction conditions by following the catalytic oxidation process at the atomic scale using a powerful Environmental Scanning Transmission Electron Microscope (ESTEM). The ESTEM allowed in situ monitoring of structural, chemical and morphological changes occurring at the cermet under conditions approximating that of typical fuel-cell operation. Density functional calculations were employed to determine the underlying mechanisms and reaction pathways during anode oxidation reactions. The dynamic behavior of nanoscale catalytic oxidation of hydrogen and methane were used to determine: ? Fundamental processes during anodic reactions in hydrogen and carbonaceous atmospheres ? Interfacial effects between metal particles and doped ceria ? Kinetics of redox reaction in the anode material

  7. Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressureless sintering

    SciTech Connect

    R, Shashanka Chaira, D.

    2015-01-15

    Nano-structured duplex and ferritic stainless steel powders are prepared by planetary milling of elemental Fe, Cr and Ni powder for 40 h and then consolidated by conventional pressureless sintering. The progress of milling and the continuous refinement of stainless steel powders have been confirmed by means of X-ray diffraction and scanning electron microscopy. Activation energy for the formation of duplex and ferritic stainless steels is calculated by Kissinger method using differential scanning calorimetry and is found to be 159.24 and 90.17 KJ/mol respectively. Both duplex and ferritic stainless steel powders are consolidated at 1000, 1200 and 1400 °C in argon atmosphere to study microstructure, density and hardness. Maximum sintered density of 90% and Vickers microhardness of 550 HV are achieved for duplex stainless steel sintered at 1400 °C for 1 h. Similarly, 92% sintered density and 263 HV microhardness are achieved for ferritic stainless steel sintered at 1400 °C. - Highlights: • Synthesized duplex and ferritic stainless steels by pulverisette planetary milling • Calculated activation energy for the formation of duplex and ferritic stainless steels • Studied the effect of sintering temperature on density, hardness and microstructure • Duplex stainless steel exhibits 90% sintered density and microhardness of 550 HV. • Ferritic stainless steel shows 92% sintered density and 263 HV microhardness.

  8. Conformational influence of the ribose 2'-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes

    NASA Technical Reports Server (NTRS)

    Egli, M.; Usman, N.; Rich, A.

    1993-01-01

    We have crystallized three double-helical DNA-RNA chimeric duplexes and determined their structures by X-ray crystallography at resolutions between 2 and 2.25 A. The two self-complementary duplexes [r(G)d(CGTATACGC)]2 and [d(GCGT)r(A)d(TACGC)]2, as well as the Okazaki fragment d(GGGTATACGC).r(GCG)d(TATACCC), were found to adopt A-type conformations. The crystal structures are non-isomorphous, and the crystallographic environments for the three chimeras are different. A number of intramolecular interactions of the ribose 2'-hydroxyl groups contribute to the stabilization of the A-conformation. Hydrogen bonds between 2'-hydroxyls and 5'-oxygens or phosphate oxygens, in addition to the previously observed hydrogen bonds to 1'-oxygens of adjacent riboses and deoxyriboses, are observed in the DNA-RNA chimeric duplexes. The crystalline chimeric duplexes do not show a transition between the DNA A- and B-conformations. CD spectra suggest that the Okazaki fragment assumes an A-conformation in solution as well. In this molecule the three RNA residues may therefore lock the complete decamer in the A-conformation. Crystals of an all-DNA strand with the same sequence as the self-complementary chimeras show a morphology which is different from those of the chimera crystals. Moreover, the oligonucleotide does not match any of the sequence characteristics of DNAs usually adopting the A-conformation in the crystalline state (e.g., octamers with short alternating stretches of purines and pyrimidines). In DNA-RNA chimeric duplexes, it is therefore possible that a single RNA residue can drive the conformational equilibrium toward the A-conformation.

  9. Multistory duplexes with forward dipping roofs, north central Brooks Range, Alaska

    USGS Publications Warehouse

    Wallace, W.K.; Moore, T.E.; Plafker, G.

    1997-01-01

    The Endicott Mountains allochthon has been thrust far northward over the North Slope parautochthon in the northern Brooks Range. Progressively younger units are exposed northward within the allochthon. To the south, the incompetent Hunt Fork Shale has thickened internally by asymmetric folds and thrust faults. Northward, the competent Kanayut Conglomerate forms a duplex between a floor thrust in Hunt Fork and a roof thrust in the Kayak Shale. To the north, the competent Lisburne Group forms a duplex between a floor thrust in Kayak and a roof thrust in the Siksikpuk Formation. Both duplexes formed from north vergent detachment folds whose steep limbs were later truncated by south dipping thrust faults that only locally breach immediately overlying roof thrusts. Within the parautochthon, the Kayak, Lisburne, and Siksikpuk-equivalent Echooka Formation form a duplex identical to that in the allochthon. This duplex is succeeded abruptly northward by detachment folds in Lisburne. These folds are parasitic to an anticlinorium interpreted to reflect a fault-bend folded horse in North Slope "basement," with a roof thrust in Kayak and a floor thrust at depth. These structures constitute two northward tapered, internally deformed wedges that are juxtaposed at the base of the allochthon. Within each wedge, competent units have been shortened independently between detachments, located mainly in incompetent units. The basal detachment of each wedge cuts upsection forward (northward) to define a wedge geometry within which units dip regionally forward. These dips reflect forward decrease in internal structural thickening by forward vergent folds and hindward dipping thrust faults. Copyright 1997 by the American Geophysical Union.

  10. Multistory duplexes with forward dipping roofs, north central Brooks Range, Alaska

    NASA Astrophysics Data System (ADS)

    Wallace, Wesley K.; Moore, Thomas E.; Plafker, George

    1997-01-01

    The Endicott Mountains allochthon has been thrust far northward over the North Slope parautochthon in the northern Brooks Range. Progressively younger units are exposed northward within the allochthon. To the south, the incompetent Hunt Fork Shale has thickened internally by asymmetric folds and thrust faults. Northward, the competent Kanayut Conglomerate forms a duplex between a floor thrust in Hunt Fork and a roof thrust in the Kayak Shale. To the north, the competent Lisburne Group forms a duplex between a floor thrust in Kayak and a roof thrust in the Siksikpuk Formation. Both duplexes formed from north vergent detachment folds whose steep limbs were later truncated by south dipping thrust faults that only locally breach immediately overlying roof thrusts. Within the parautochthon, the Kayak, Lisburne, and Siksikpuk-equivalent Echooka Formation form a duplex identical to that in the allochthon. This duplex is succeeded abruptly northward by detachment folds in Lisburne. These folds are parasitic to an anticlinorium interpreted to reflect a fault-bend folded horse in North Slope "basement," with a roof thrust in Kayak and a floor thrust at depth/These structures constitute two northward tapered, internally deformed wedges that are juxtaposed at the base of the allochthon. Within each wedge, competent units have been shortened independently between detachments, located mainly in incompetent units. The basal detachment of each wedge cuts upsection forward (northward) to define a wedge geometry within which units dip regionally forward. These dips reflect forward decrease in internal structural thickening by forward vergent folds and hindward dipping thrust faults.

  11. Architecture Studies Done for High-Rate Duplex Direct Data Distribution (D4) Services

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A study was sponsored to investigate a set of end-to-end system concepts for implementing a high-rate duplex direct data distribution (D4) space-to-ground communications link. The NASA Glenn Research Center is investigating these systems (both commercial and Government) as a possible method of providing a D4 communications service between NASA spacecraft in low Earth orbit and the respective principal investigators using or monitoring instruments aboard these spacecraft. Candidate commercial services were assessed regarding their near-term potential to provide a D4 type of service. The candidates included K-band and V-band geostationary orbit and nongeostationary orbit satellite relay services and direct downlink (D3) services. Internet protocol (IP) networking technologies were evaluated to enable the user-directed distribution and delivery of science data. Four realistic, near-future concepts were analyzed: 1) A duplex direct link (uplink plus downlink communication paths) between a low-Earth-orbit spacecraft and a principal-investigator-based autonomous Earth station; 2) A space-based relay using a future K-band nongeosynchronous-orbit system to handle both the uplink and downlink communication paths; 3) A hybrid link using both direct and relay services to achieve full duplex capability; 4) A dual-mode concept consisting of both a duplex direct link and a space relay duplex link operating independently. The concepts were analyzed in terms of contact time between the NASA spacecraft and the communications service and the achievable data throughput. Throughput estimates for the D4 systems were based on the infusion of advanced communications technology products (single and multibeam K-band phased-arrays and digital modems) being developed by Glenn. Cost estimates were also performed using extrapolated information from both terrestrial and current satellite communications providers. The throughput and cost estimates were used to compare the concepts.

  12. Nanoscale assembly of amine-functionalized colloidal iron oxide

    NASA Astrophysics Data System (ADS)

    Barick, K. C.; Aslam, M.; Prasad, Pottumarthi V.; Dravid, Vinayak P.; Bahadur, Dhirendra

    2009-05-01

    We demonstrate a single-step facile approach for highly water-stable assembly of amine-functionalized Fe 3O 4 nanoparticles using thermal decomposition of Fe-chloride precursors in ethylene glycol medium in the presence of ethylenediamine. The average size of nanoassemblies is 40±1 nm, wherein the individual nanoparticles are about 6 nm. Amine-functionalized properties are evident from Fourier transform infrared spectrometer (FTIR), thermal and elemental analyses. The saturation magnetization and spin-echo r2 of the nanoassemblies were measured to be 64.3 emu/g and 314.6 mM -1 s -1, respectively. The higher value of relaxivity ratio ( r2/ r1=143) indicates that nanoassemblies are a promising high-efficiency T2 contrast agent platform.

  13. Development of a duplex PCR for rapid detection and differentiation of Erysipelothrix rhusiopathiae vaccine strains and wild type strains.

    PubMed

    Zhu, Weifeng; Wu, Chao; Kang, Chao; Cai, Chengzhi; Jin, Meilin

    2017-02-01

    The differentiation of vaccine strains from wild type strains is important for disease control. A duplex PCR for rapid detection and differentiation of Erysipelothrix rhusiopathiae vaccine strains and wild type strains was developed based on the DNA polymerase IV gene. This duplex PCR was sensitive and specific. The detection results were coincident with that of a single nucleotide polymorphisms based PCR but the detection process was more rapid. In conclusion, this duplex PCR was a useful tool for Erysipelothrix rhusiopathiae infections' differential diagnosis in China.

  14. Probing physical properties at the nanoscale using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ditzler, Lindsay Rachel

    Techniques that measure physical properties at the nanoscale with high sensitivity are significantly limited considering the number of new nanomaterials being developed. The development of atomic force microscopy (AFM) has lead to significant advancements in the ability to characterize physical properties of materials in all areas of science: chemistry, physics, engineering, and biology have made great scientific strides do to the versatility of the AFM. AFM is used for quantification of many physical properties such as morphology, electrical, mechanical, magnetic, electrochemical, binding interactions, and protein folding. This work examines the electrical and mechanical properties of materials applicable to the field of nano-electronics. As electronic devices are miniaturized the demand for materials with unique electrical properties, which can be developed and exploited, has increased. For example, discussed in this work, a derivative of tetrathiafulvalene, which exhibits a unique loss of conductivity upon compression of the self-assembled monolayer could be developed into a molecular switch. This work also compares tunable organic (tetraphenylethylene tetracarboxylic acid and bis(pyridine)s assemblies) and metal-organic (Silver-stilbizole coordination compounds) crystals which show high electrical conductivity. The electrical properties of these materials vary depending on their composition allowing for the development of compositionally tunable functional materials. Additional work was done to investigate the effects of molecular environment on redox active 11-ferroceneyl-1 undecanethiol (Fc) molecules. The redox process of mixed monolayers of Fc and decanethiol was measured using conductive probe atomic force microscopy and force spectroscopy. As the concentration of Fc increased large, variations in the force were observed. Using these variations the number of oxidized molecules in the monolayer was determined. AFM is additionally capable of investigating

  15. Nanoscale heat transfer and thermoelectrics for alternative energy

    NASA Astrophysics Data System (ADS)

    Robinson, Richard

    2011-03-01

    In the area of alternative energy, thermoelectrics have experienced an unprecedented growth in popularity because of their ability to convert waste heat into electricity. Wired in reverse, thermoelectrics can act as refrigeration devices, where they are promising because they are small in size and lightweight, have no moving parts, and have rapid on/off cycles. However, due to their low efficiencies bulk thermoelectrics have historically been a niche market. Only in the last decade has thermoelectric efficiency exceeded ~ 20 % due to fabrication of nanostructured materials. Nanoscale materials have this advantage because electronic and acoustic confinement effects can greatly increase thermoelectric efficiency beyond bulk values. In this talk, I will introduce our work in the area of nanoscale heat transfer with the goal of more efficient thermoelectrics. I will discuss our experiments and methods to study acoustic confinement in nanostructures and present some of our new nanostructured thermoelectric materials. To study acoustic confinement we are building a nanoscale phonon spectrometer. The instrument can excite phonon modes in nanostructures in the ~ 100 s of GHz. Ballistic phonons from the generator are used to probe acoustic confinement and surface scattering effects. Transmission studies using this device will help optimize materials and morphologies for more efficient nanomaterial-based thermoelectrics. For materials, our group has synthesized nano-layer superlattices of Na x Co O2 . Sodium cobaltate was recently discovered to have a high Seebeck coeficent and is being studied as an oxide thermoelectric material. The thickness of our nano-layers ranges from 5 nm to 300 nm while the lengths can be varied between 10 μ m and 4 mm. Typical aspect ratios are 40 nm: 4 mm, or 1:100,000. Thermoelectric characterization of samples with tilted multiple-grains along the measurement axis indicate a thermoelectric efficiency on par with current polycrystalline samples

  16. Enhancing the osteoblastic differentiation through nanoscale surface modifications.

    PubMed

    Silva-Bermudez, Phaedra; Almaguer-Flores, Argelia; Garcia, Victor I; Olivares-Navarrete, Rene; Rodil, Sandra E

    2017-02-01

    Human mesenchymal stem cells (MSCs) showed larger differentiation into osteoblasts on nanoscale amorphous titanium oxide (TiO2 ) coatings in comparison to polycrystalline TiO2 coatings or native oxide layers. In this article, we showed that the subtle alterations in the surface properties due to a different atomic ordering of titanium oxide layers could substantially modify the osteoblastic differentiation of MSCs. Amorphous (a) and polycrystalline (c) TiO2 coatings were deposited on smooth (PT) and microstructured sandblasted/acid-etched (SLA) Ti substrates using a magnetron sputtering system. The surface roughness, water contact angle, structure, and composition were measured using confocal microscopy, drop sessile drop, X-ray diffraction, and X-ray photoelectron spectroscopy, respectively. The ∼70-nm-thick coatings presented a well-passivated and uniform TiO2 (Ti(4+) ) surface composition, while the substrates (native oxide layer) showed the presence of Ti atoms in lower valence states. The polycrystalline TiO2 -coated surfaces (cPT and cSLA) showed the same cell attachment as the uncoated metallic surfaces (PT and SLA), and in both cases, it was lower on the rough than on the smooth surfaces. However, attachment and differentiation were significantly increased on the amorphous TiO2 -coated surfaces (aPT and aSLA). The amorphous coated Ti surfaces presented the highest expression of integrins and production of osteogenic proteins in comparison to the uncoated and crystalline-coated Ti surfaces. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 498-509, 2017.

  17. Nanoscale segregation at a metal surface

    NASA Astrophysics Data System (ADS)

    Igata, N.

    1996-03-01

    The properties of a surface are fundamentally controlled by the chemical composition of the nanoscale surface layer. Therefore nanoscale segregation at the surface is one of the most important problems in surface science and technology. The chemical analysis of the surface layer and the study of segregation have been developed by various methods, but mainly by AES and TOFAP since 0957-4484/7/1/003/img1. Surface segregation under irradiation is also an urgent problem to be solved and the same methods have been applied. In this paper, the results from TOFAP for segregation both under thermal equilibrium and under irradiation are introduced. As for theoretical aspects, both thermal segregation and segregation under irradiation are interpreted by atomistic theory.

  18. Trapping atoms using nanoscale quantum vacuum forces.

    PubMed

    Chang, D E; Sinha, K; Taylor, J M; Kimble, H J

    2014-07-10

    Quantum vacuum forces dictate the interaction between individual atoms and dielectric surfaces at nanoscale distances. For example, their large strengths typically overwhelm externally applied forces, which makes it challenging to controllably interface cold atoms with nearby nanophotonic systems. Here we theoretically show that it is possible to tailor the vacuum forces themselves to provide strong trapping potentials. Our proposed trapping scheme takes advantage of the attractive ground-state potential and adiabatic dressing with an excited state whose potential is engineered to be resonantly enhanced and repulsive. This procedure yields a strong metastable trap, with the fraction of excited-state population scaling inversely with the quality factor of the resonance of the dielectric structure. We analyse realistic limitations to the trap lifetime and discuss possible applications that might emerge from the large trap depths and nanoscale confinement.

  19. Programmed assembly of nanoscale structures using peptoids.

    SciTech Connect

    Ren, Jianhua; Russell, Scott; Morishetti, Kiran; Robinson, David B.; Zuckermann, Ronald N.; Buffleben, George M.; Hjelm, Rex P.; Kent, Michael Stuart

    2011-02-01

    Sequence-specific polymers are the basis of the most promising approaches to bottom-up programmed assembly of nanoscale materials. Examples include artificial peptides and nucleic acids. Another class is oligo(N-functional glycine)s, also known as peptoids, which permit greater sidegroup diversity and conformational control, and can be easier to synthesize and purify. We have developed a set of peptoids that can be used to make inorganic nanoparticles more compatible with biological sequence-specific polymers so that they can be incorporated into nucleic acid or other biologically based nanostructures. Peptoids offer degrees of modularity, versatility, and predictability that equal or exceed other sequence-specific polymers, allowing for rational design of oligomers for a specific purpose. This degree of control will be essential to the development of arbitrarily designed nanoscale structures.

  20. Light-driven nanoscale plasmonic motors

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Zentgraf, Thomas; Liu, Yongmin; Bartal, Guy; Zhang, Xiang

    2010-08-01

    When Sir William Crookes developed a four-vaned radiometer, also known as the light-mill, in 1873, it was believed that this device confirmed the existence of linear momentum carried by photons, as predicted by Maxwell's equations. Although Reynolds later proved that the torque on the radiometer was caused by thermal transpiration, researchers continued to search for ways to take advantage of the momentum of photons and to use it for generating rotational forces. The ability to provide rotational force at the nanoscale could open up a range of applications in physics, biology and chemistry, including DNA unfolding and sequencing and nanoelectromechanical systems. Here, we demonstrate a nanoscale plasmonic structure that can, when illuminated with linearly polarized light, generate a rotational force that is capable of rotating a silica microdisk that is 4,000 times larger in volume. Furthermore, we can control the rotation velocity and direction by varying the wavelength of the incident light to excite different plasmonic modes.

  1. Nanoscale Surface Modification of Layered Materials

    NASA Astrophysics Data System (ADS)

    O'Shea, Aaron

    2011-11-01

    A scanning electron microscope can magnify a sample many times greater than a standard microscope, down to nanoscale dimensions. It can also be used to form patterns on the surfaces of certain materials, a technique used to create microchips. We have developed a technique that simplifies and expedites this process using an unmodified scanning electron microscope. Using this technique, we are able to alter the surface chemistry in a controlled pattern on a special class of materials called transition metal dichalcogenides. These materials have many useful applications: industrial lubricants; high strength nanocomposites; advanced solar cells; and next generation electronics. Altering the surface chemistry of these materials at the nanoscale results in unusual quantum behavior, which is useful in nanotechnology.

  2. Controlling carrier dynamics at the nanoscale

    NASA Astrophysics Data System (ADS)

    Cánovas, Enrique; Bonn, Mischa

    2016-10-01

    This Special issue is motivated by the occasion of the International Conference on Charge Carrier Dynamics at the Nanoscale (CCDNano), held in Santiago de Compostela (Spain) in September 2015. As chairs for the CCDNano meeting, we aimed at bringing together experts from different scientific fields in order to trigger interdisciplinary discussions and collaborations; the ultimate goal of the conference was to serve as a platform to advance and help unifying methodologies and theories from different research sub-fields. We also aimed at a deeper understanding of charge dynamics to contribute to the development of improved or novel nanostructured devices. This special issue keeps that spirit, and intends to provide an overview of ongoing research efforts regarding charge carrier dynamics at the nanoscale.

  3. Anomalous electrical conductivity of nanoscale colloidal suspensions.

    PubMed

    Chakraborty, Suman; Padhy, Sourav

    2008-10-28

    The electrical conductivity of colloidal suspensions containing nanoscale conducting particles is nontrivially related to the particle volume fraction and the electrical double layer thickness. Classical electrochemical models, however, tend to grossly overpredict the pertinent effective electrical conductivity values, as compared to those obtained under experimental conditions. We attempt to address this discrepancy by appealing to the complex interconnection between the aggregation kinetics of the nanoscale particles and the electrodynamics within the double layer. In particular, we model the consequent alterations in the effective electrophoretic mobility values of the suspension by addressing the fundamentals of agglomeration-deagglomeration mechanisms through the pertinent variations in the effective particulate dimensions, solid fractions, as well as the equivalent suspension viscosity. The consequent alterations in the electrical conductivity values provide a substantially improved prediction of the corresponding experimental findings and explain the apparent anomalous behavior predicted by the classical theoretical postulates.

  4. Nanoscale Deformation and Toughening Mechanisms of Nacre

    DTIC Science & Technology

    2011-03-31

    graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale ): Number of graduating undergraduates funded by a DoD funded Center of Excellence grant...design principle down to atomic scale with a purpose to fight against foreign attacks, which has opened up a new opportunity to unravel the...deformation mechanism of unique mechanical performance at the atomic scale . Technology Transfer 1 Nanoscale Deformation and Toughening Mechanisms of Nacre

  5. A new relaxation mechanism in nanoscale films

    NASA Astrophysics Data System (ADS)

    Ovid'ko, I. A.; Sheinerman, A. G.

    2007-02-01

    A new mechanism of stress relaxation in heteroepitaxial films of nanoscale thickness is suggested and theoretically described. The mechanism represents nucleation of a 'non-crystallographic' partial dislocation (at the film-substrate interface) whose Burgers vector magnitude continuously grows during the nucleation process. It is shown that the new mechanism effectively competes with the standard nucleation of a perfect misfit dislocation at the free surface of the film and its further glide towards the film-substrate interface.

  6. Nanoscale Science, Engineering and Technology Research Directions

    SciTech Connect

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  7. DOE - BES Nanoscale Science Research Centers (NSRCs)

    SciTech Connect

    Beecher, Cathy Jo

    2016-11-14

    These are slides from a powerpoint shown to guests during tours of Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory. It shows the five DOE-BES nanoscale science research centers (NSRCs), which are located at different national laboratories throughout the country. Then it goes into detail specifically about the Center for Integrated Nanotechnologies at LANL, including statistics on its user community and CINT's New Mexico industrial users.

  8. Nanoscale molecularly imprinted polymers and method thereof

    DOEpatents

    Hart, Bradley R.; Talley, Chad E.

    2008-06-10

    Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.

  9. Nanoscale thermal transport. II. 2003–2012

    SciTech Connect

    Cahill, David G. Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-03-15

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ∼1 nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and

  10. Nanoscale thermal transport. II. 2003-2012

    NASA Astrophysics Data System (ADS)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-03-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ˜ 1 nm , the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal

  11. Mesoscale metallic pyramids with nanoscale tips.

    PubMed

    Henzie, Joel; Kwak, Eun-Soo; Odom, Teri W

    2005-07-01

    We report a simple procedure that can generate free-standing mesoscale metallic pyramids composed of one or more materials and having nanoscale tips (radii of curvature of less than 2 nm). Mesoscale holes (100-300 nm) in a chromium film are used as an etch mask to fabricate pyramidal pits and then as a deposition mask to form the metallic pyramids. We have fabricated two- and three-layered pyramids with control over their materials and chemical functionality.

  12. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.

    2001-01-01

    We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on an equal footing. Electron bandstructure is treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are consistent with 1D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller leakage current than the longer gate length device without a significant trade-off in on-current.

  13. Development of self-similar duplex systems. Atacama Fault System, Chile

    NASA Astrophysics Data System (ADS)

    Jensen, E.; Cembrano, J. M.; Veloso, E. E.

    2009-12-01

    Fault development models are very important to predict geometry and distribution of fractures at all scales. However, models based on structures from microns to km are relatively scarce due to the lack of well-exposed structures. We present structures related to the development of the Bolfín fault in the Atacama Fault System (AFS), covering a scale range of 9 orders of magnitude. The AFS is a 1000 km-long trench-parallel fault system located in the Andean Forearc. The Bolfín fault is a first-order fault of the Caleta Coloso Duplex; it has a trend ~170° and a length >45 km (Fig 1A). It cuts meta-diorites and exhibits a 100-200m wide core of subvertical bands of altered fractured host rock and of foliated cataclasites. Foliation is made of trend-parallel cm-wide shear bands composed of plagioclase fragments (>0,1mm) surrounded by epidote. Around the bands there are many micro fractures oriented within the P-diedra. In the compressive quadrant around a tip point of Bolfín fault, the lower strain faults exhibit an unusual internal structure consisting of fractures arranged in a multi-duplex pattern. This pattern can be seen from metric- (Parulo fault, fig 1C) to mm-scale (Palmera fault fig 1B). Fractures in the pattern can be separated in 2 types: Main Faults: Trend-parallel, longer and with larger offsets. Secondary Fractures: sigmoid-shape fractures distributed in the regions between main faults, all oriented between 15° and 75° with respect to the main faults, meassured in the shear-sense (i.e. in P-diedra). On the basis of the distribution of the 2 types of fractures, the generation sequence can be inferred. The main faults are more widely distributed, and were propagated earlier. The secondary fractures are distributed in smaller areas between larger displacement main faults, and propagated later as linking fractures. The duplex pattern is thus self-similar: faults with multiple-duplex internal structure (Parulo and Palmera fault)are in turn secondary faults

  14. Detection of 12 respiratory viruses by duplex real time PCR assays in respiratory samples.

    PubMed

    Arvia, Rosaria; Corcioli, Fabiana; Ciccone, Nunziata; Della Malva, Nunzia; Azzi, Alberta

    2015-12-01

    Different viruses can be responsible for similar clinical manifestations of respiratory infections. Thus, the etiological diagnosis of respiratory viral diseases requires the detection of a large number of viruses. In this study, 6 duplex real-time PCR assays, using EvaGreen intercalating dye, were developed to detect 12 major viruses responsible for respiratory diseases: influenza A and B viruses, enteroviruses (including enterovirus spp, and rhinovirus spp), respiratory syncytial virus, human metapneumovirus, coronaviruses group I (of which CoV 229E and CoV NL63 are part) and II (including CoV OC43 and CoV HKU1), parainfluenza viruses type 1, 2, 3 and 4, human adenoviruses and human bocaviruses. The 2 target viruses of each duplex reaction were distinguishable by the melting temperatures of their amplicons. The 6 duplex real time PCR assays were applied for diagnostic purpose on 202 respiratory samples from 157 patients. One hundred fifty-seven samples were throat swabs and 45 were bronchoalveolar lavages. The results of the duplex PCR assays were confirmed by comparison with a commercial, validated, assay; in addition, the positive results were confirmed by sequencing. The analytical sensitivity of the duplex PCR assays varied from 10(3) copies/ml to 10(4) copies/ml. For parainfluenza virus 2 only it was 10(5) copies/ml. Seventy clinical samples (35%) from 55 patients (30 children and 25 adults) were positive for 1 or more viruses. In adult patients, influenza A virus was the most frequently detected respiratory virus followed by rhinoviruses. In contrast, respiratory syncytial virus was the most common virus in children, followed by enteroviruses, influenza A virus and coronavirus NL63. The small number of samples/patients does not allow us to draw any epidemiological conclusion. Altogether, the results of this study indicate that the 6 duplex PCR assays described in this study are sensitive, specific and cost-effective. Thus, this assay could be

  15. Mapping photovoltaic performance with nanoscale resolution

    SciTech Connect

    Kutes, Yasemin; Aguirre, Brandon A.; Bosse, James L.; Cruz-Campa, Jose L.; Zubia, David; Huey, Bryan D.

    2015-10-16

    Photo-conductive AFM spectroscopy (‘pcAFMs’) is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit current, open circuit voltage, maximum power, or fill factor. The method is demonstrated with a stack of 21 images acquired during in situ illumination of micropatterned polycrystalline CdTe/CdS, providing more than 42,000 I/V curves spatially separated by ~5 nm. For these CdTe/CdS microcells, the calculated photoconduction ranges from 0 to 700 picoSiemens (pS) upon illumination with ~1.6 suns, depending on location and biasing conditions. Mean short circuit currents of 2 pA, maximum powers of 0.5 pW, and fill factors of 30% are determined. The mean voltage at which the detected photocurrent is zero is determined to be 0.7 V. Significantly, enhancements and reductions in these more commonly macroscopic PV performance metrics are observed to correlate with certain grains and grain boundaries, and are confirmed to be independent of topography. Furthermore, these results demonstrate the benefits of nanoscale resolved PV functional measurements, reiterate the importance of microstructural control down to the nanoscale for 'PV devices, and provide a widely applicable new approach for directly investigating PV materials.

  16. Mapping photovoltaic performance with nanoscale resolution

    DOE PAGES

    Kutes, Yasemin; Aguirre, Brandon A.; Bosse, James L.; ...

    2015-10-16

    Photo-conductive AFM spectroscopy (‘pcAFMs’) is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit current, open circuit voltage, maximum power, or fill factor. The method is demonstrated with a stack of 21 images acquired during in situ illumination of micropatterned polycrystalline CdTe/CdS, providing more than 42,000 I/V curves spatially separated by ~5 nm. For these CdTe/CdS microcells, the calculated photoconduction ranges from 0 to 700 picoSiemens (pS) upon illumination with ~1.6 suns, depending on location and biasing conditions. Mean short circuit currents of 2 pA, maximummore » powers of 0.5 pW, and fill factors of 30% are determined. The mean voltage at which the detected photocurrent is zero is determined to be 0.7 V. Significantly, enhancements and reductions in these more commonly macroscopic PV performance metrics are observed to correlate with certain grains and grain boundaries, and are confirmed to be independent of topography. Furthermore, these results demonstrate the benefits of nanoscale resolved PV functional measurements, reiterate the importance of microstructural control down to the nanoscale for 'PV devices, and provide a widely applicable new approach for directly investigating PV materials.« less

  17. Static electric field enhancement in nanoscale structures

    NASA Astrophysics Data System (ADS)

    Lepetit, Bruno; Lemoine, Didier; Márquez-Mijares, Maykel

    2016-08-01

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  18. Sub-nanoscale nanoimprint fabrication of atomically stepped glassy substrates of silicate glass and acryl polymer

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Mamoru

    2015-11-01

    In the nanoimprint process, the resolution limit of patterning has attracted much attention from both scientific and industrial aspects. In this article, we briefly review the main achievements of our research group on sub-nanoscale nanoimprint fabrication of atomically patterned glassy substrates of oxide glass and polymer. By applying the sapphire (α-Al2O3 single crystal) wafers with self-organized nanopatterns of atomic steps as thermal nanoimprinting molds, we successfully transferred their nanoscale patterns onto the surfaces of glassy substrates such as soda-lime silicate glasses and poly(methyl methacrylate) polymers. The surfaces of nanoimprinted glassy materials exhibited regularly arrayed atomic stairs with 0.2-0.3 nm step height, which were in good agreement with the sub-nanopatterns of sapphire molds. These atomically stepped morphologies on the glassy substrates were found to be stable for about 1 year.

  19. Fabrication of nano-scale Cu bond pads with seal design in 3D integration applications.

    PubMed

    Chen, K N; Tsang, C K; Wu, W W; Lee, S H; Lu, J Q

    2011-04-01

    A method to fabricate nano-scale Cu bond pads for improving bonding quality in 3D integration applications is reported. The effect of Cu bonding quality on inter-level via structural reliability for 3D integration applications is investigated. We developed a Cu nano-scale-height bond pad structure and fabrication process for improved bonding quality by recessing oxides using a combination of SiO2 CMP process and dilute HF wet etching. In addition, in order to achieve improved wafer-level bonding, we introduced a seal design concept that prevents corrosion and provides extra mechanical support. Demonstrations of these concepts and processes provide the feasibility of reliable nano-scale 3D integration applications.

  20. Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber

    NASA Astrophysics Data System (ADS)

    Chen, Shi; Liu, Jun; Zhao, Yifan; Zhu, Long; Wang, Andong; Li, Shuhui; Du, Jing; Du, Cheng; Mo, Qi; Wang, Jian

    2016-11-01

    We present a full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum (OAM) fiber. OAM+1 and OAM-1 modes carrying 20-Gbit/s quadrature phase-shift keying (QPSK) signals are employed in the downlink and uplink transmission experiments. The observed mode crosstalks are less than -15.2 dB, and the full-duplex crosstalks are less than -12.7 dB. The measured full-duplex optical signal-to-noise ratio (OSNR) penalties at a bit-error rate (BER) of 2 × 10-3 are ~2.4 dB in the downlink transmission and ~2.3 dB in the uplink transmission. The obtained results show favorable full-duplex twisted lights multiplexing data transmission performance in a km-scale OAM fiber link.