Sample records for nanoscale elastic properties

  1. The pH-dependent elastic properties of nanoscale DNA films and the resultant bending signals for microcantilever biosensors.

    PubMed

    Zhou, Mei-Hong; Meng, Wei-Lie; Zhang, Cheng-Yin; Li, Xiao-Bin; Wu, Jun-Zheng; Zhang, Neng-Hui

    2018-04-25

    The diverse mechanical properties of nanoscale DNA films on solid substrates have a close correlation with complex detection signals of micro-/nano-devices. This paper is devoted to formulating several multiscale models to study the effect of pH-dependent ionic inhomogeneity on the graded elastic properties of nanoscale DNA films and the resultant bending deflections of microcantilever biosensors. First, a modified inverse Debye length is introduced to improve the classical Poisson-Boltzmann equation for the electrical potential of DNA films to consider the inhomogeneous effect of hydrogen ions. Second, the graded characteristics of the particle distribution are taken into consideration for an improvement in Parsegian's mesoscopic potential for both attraction-dominated and repulsion-dominated films. Third, by the improved interchain interaction potential and the thought experiment about the compression of a macroscopic continuum DNA bar, we investigate the diversity of the elastic properties of single-stranded DNA (ssDNA) films due to pH variations. The relevant theoretical predictions quantitatively or qualitatively agree well with the relevant DNA experiments on the electrical potential, film thickness, condensation force, elastic modulus, and microcantilever deflections. The competition between attraction and repulsion among the fixed charges and the free ions endows the DNA film with mechanical properties such as a remarkable size effect and a non-monotonic behavior, and a negative elastic modulus is first revealed in the attraction-dominated ssDNA film. There exists a transition between the pH-sensitive parameter interval and the pH-insensitive one for the bending signals of microcantilevers, which is predominated by the initial stress effect in the DNA film.

  2. Nanoscale elasticity mappings of micro-constituents of abalone shell by band excitation-contact resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Li, Tao; Zeng, Kaiyang

    2014-01-01

    The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the elasticity variations of the abalone shell caused by different micro-constituents and crystal orientations are reported, and the elasticity values of the aragonite and calcite nanograins are quantified.The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the

  3. Nanoscale elastic changes in 2D Ti 3C 2T x (MXene) pseudocapacitive electrodes

    DOE PAGES

    Come, Jeremy; Xie, Yu; Naguib, Michael; ...

    2016-02-01

    Designing sustainable electrodes for next generation energy storage devices relies on the understanding of their fundamental properties at the nanoscale, including the comprehension of ions insertion into the electrode and their interactions with the active material. One consequence of ion storage is the change in the electrode volume resulting in mechanical strain and stress that can strongly affect the cycle life. Therefore, it is important to understand the changes of dimensions and mechanical properties occurring during electrochemical reactions. While the characterization of mechanical properties via macroscopic measurements is well documented, in-situ characterization of their evolution has never been achieved atmore » the nanoscale. Two dimensional (2D) carbides, known as MXenes, are promising materials for supercapacitors and various kinds of batteries, and understating the coupling between their mechanical and electrochemical properties is therefore necessary. Here we report on in-situ imaging, combined with density functional theory of the elastic changes, of a 2D titanium carbide (Ti 3C 2T x) electrode in direction normal to the basal plane during cation intercalation. The results show a strong correlation between the Li+ ions content and the elastic modulus, whereas little effects of K+ ions are observed. Moreover, this strategy enables identifying the preferential intercalation pathways within a single particle.« less

  4. Elastic properties of porous low-k dielectric nano-films

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Bailey, S.; Sooryakumar, R.; King, S.; Xu, G.; Mays, E.; Ege, C.; Bielefeld, J.

    2011-08-01

    Low-k dielectrics have predominantly replaced silicon dioxide as the interlayer dielectric for interconnects in state of the art integrated circuits. In order to further reduce interconnect RC delays, additional reductions in k for these low-k materials are being pursued via the introduction of controlled levels of porosity. The main challenge for such dielectrics is the substantial reduction in elastic properties that accompanies the increased pore volume. We report on Brillouin light scattering measurements used to determine the elastic properties of these films at thicknesses well below 200 nm, which are pertinent to their introduction into present ultralarge scale integrated technology. The observation of longitudinal and transverse standing wave acoustic resonances and their transformation into traveling waves with finite in-plane wave vectors provides for a direct non-destructive measure of the principal elastic constants that characterize the elastic properties of these porous nano-scale films. The mode dispersion further confirms that for porosity levels of up to 25%, the reduction in the dielectric constant does not result in severe degradation in the Young's modulus and Poisson's ratio of the films.

  5. Probing the nanoscale interaction forces and elastic properties of organic and inorganic materials using force-distance (F-D) spectroscopy

    NASA Astrophysics Data System (ADS)

    Vincent, Abhilash

    studying the interaction forces as well as the mechanical properties of nanobiomaterials. The research protocol employed in the earlier part of the dissertation is specifically aimed to understand the operation of F-D spectroscopy technique. The elastic properties of thin films of silicon dioxide NPs were investigated using F-D spectroscopy in the high force regime of few 100 nN to 1 microN. Here, sol-gel derived porous nanosilica thin films of varying surface morphology, particle size and porosity were prepared through acid and base catalyzed process. AFM nanoindentation experiments were conducted on these films using the F-D spectroscopy mode and the nanoscale elastic properties of these films were evaluated. The major contribution of this dissertation is a study exploring the interaction forces acting between CNPs and transferrin proteins in picoNewton scale regime using the force-distance spectroscopy technique. This study projects the importance of obtaining appropriate surface charges and surface chemistry so that the NP can exhibit enhanced protein adsorption and NP cellular uptake.

  6. Nanoscale Visualization of Elastic Inhomogeneities at TiN Coatings Using Ultrasonic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Hidalgo, J. A.; Montero-Ocampo, C.; Cuberes, M. T.

    2009-12-01

    Ultrasonic force microscopy has been applied to the characterization of titanium nitride coatings deposited by physical vapor deposition dc magnetron sputtering on stainless steel substrates. The titanium nitride layers exhibit a rich variety of elastic contrast in the ultrasonic force microscopy images. Nanoscale inhomogeneities in stiffness on the titanium nitride films have been attributed to softer substoichiometric titanium nitride species and/or trapped subsurface gas. The results show that increasing the sputtering power at the Ti cathode increases the elastic homogeneity of the titanium nitride layers on the nanometer scale. Ultrasonic force microscopy elastic mapping on titanium nitride layers demonstrates the capability of the technique to provide information of high value for the engineering of improved coatings.

  7. Nanoscale elastic modulus variation in loaded polymeric micelle reactors.

    PubMed

    Solmaz, Alim; Aytun, Taner; Deuschle, Julia K; Ow-Yang, Cleva W

    2012-07-17

    Tapping mode atomic force microscopy (TM-AFM) enables mapping of chemical composition at the nanoscale by taking advantage of the variation in phase angle shift arising from an embedded second phase. We demonstrate that phase contrast can be attributed to the variation in elastic modulus during the imaging of zinc acetate (ZnAc)-loaded reverse polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock co-polymer micelles less than 100 nm in diameter. Three sample configurations were characterized: (i) a 31.6 μm thick polystyrene (PS) support film for eliminating the substrate contribution, (ii) an unfilled PS-b-P2VP micelle supported by the same PS film, and (iii) a ZnAc-loaded PS-b-P2VP micelle supported by the same PS film. Force-indentation (F-I) curves were measured over unloaded micelles on the PS film and over loaded micelles on the PS film, using standard tapping mode probes of three different spring constants, the same cantilevers used for imaging of the samples before and after loading. For calibration of the tip geometry, nanoindentation was performed on the bare PS film. The resulting elastic modulus values extracted by applying the Hertz model were 8.26 ± 3.43 GPa over the loaded micelles and 4.17 ± 1.65 GPa over the unloaded micelles, confirming that phase contrast images of a monolayer of loaded micelles represent maps of the nanoscale chemical and mechanical variation. By calibrating the tip geometry indirectly using a known soft material, we are able to use the same standard tapping mode cantilevers for both imaging and indentation.

  8. Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation

    Treesearch

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2013-01-01

    The elastic modulus of cellulose Iß in the axial and transverse directions was obtained from atomistic simulations using both the standard uniform deformation approach and a complementary approach based on nanoscale indentation. This allowed comparisons between the methods and closer connectivity to experimental measurement techniques. A reactive...

  9. Uncovering New Thermal and Elastic Properties of Nanostructured Materials Using Coherent EUV Light

    NASA Astrophysics Data System (ADS)

    Hernandez Charpak, Jorge Nicolas

    Advances in nanofabrication have pushed the characteristic dimensions of nanosystems well below 100nm, where physical properties are often significantly different from their bulk counterparts, and accurate models are lacking. Critical technologies such as thermoelectrics for energy harvesting, nanoparticle-mediated thermal therapy, nano-enhanced photovoltaics, and efficient thermal management in integrated circuits depend on our increased understanding of the nanoscale. However, traditional microscopic characterization tools face fundamental limits at the nanoscale. Theoretical efforts to build a fundamental picture of nanoscale thermal dynamics lack experimental validation and still struggle to account for newly reported behaviors. Moreover, precise characterization of the elastic behavior of nanostructured systems is needed for understanding the unique physics that become apparent in small-scale systems, such as thickness-dependent or fabrication-dependent elastic properties. In essence, our ability to fabricate nanosystems has outstripped our ability to understand and characterize them. In my PhD thesis, I present the development and refinement of coherent extreme ultraviolet (EUV) nanometrology, a novel tool used to probe material properties at the intrinsic time- and length-scales of nanoscale dynamics. By extending ultrafast photoacoustic and thermal metrology techniques to very short probing wavelengths using tabletop coherent EUV beams from high-harmonic upconversion (HHG) of femtosecond lasers, coherent EUV nanometrology allows for a new window into nanoscale physics, previously unavailable with traditional techniques. Using this technique, I was able to probe both thermal and acoustic dynamics in nanostructured systems with characteristic dimensions below 50nm with high temporal (sub-ps) and spatial (<10pm vertical) resolution, including the smallest heat sources probed (20nm) and thinnest film (10.9nm) fully mechanically characterized to date. By probing

  10. Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, Eliot D; Ma, Jie; Delaire, Olivier A

    2015-01-01

    Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  11. Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the elastic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rassoulinejad-Mousavi, Seyed Moein; Mao, Yijin; Zhang, Yuwen, E-mail: zhangyu@missouri.edu

    Choice of appropriate force field is one of the main concerns of any atomistic simulation that needs to be seriously considered in order to yield reliable results. Since investigations on the mechanical behavior of materials at micro/nanoscale have been becoming much more widespread, it is necessary to determine an adequate potential which accurately models the interaction of the atoms for desired applications. In this framework, reliability of multiple embedded atom method based interatomic potentials for predicting the elastic properties was investigated. Assessments were carried out for different copper, aluminum, and nickel interatomic potentials at room temperature which is considered asmore » the most applicable case. Examined force fields for the three species were taken from online repositories of National Institute of Standards and Technology, as well as the Sandia National Laboratories, the LAMMPS database. Using molecular dynamic simulations, the three independent elastic constants, C{sub 11}, C{sub 12}, and C{sub 44}, were found for Cu, Al, and Ni cubic single crystals. Voigt-Reuss-Hill approximation was then implemented to convert elastic constants of the single crystals into isotropic polycrystalline elastic moduli including bulk modulus, shear modulus, and Young's modulus as well as Poisson's ratio. Simulation results from massive molecular dynamic were compared with available experimental data in the literature to justify the robustness of each potential for each species. Eventually, accurate interatomic potentials have been recommended for finding each of the elastic properties of the pure species. Exactitude of the elastic properties was found to be sensitive to the choice of the force fields. Those potentials that were fitted for a specific compound may not necessarily work accurately for all the existing pure species. Tabulated results in this paper might be used as a benchmark to increase assurance of using the interatomic potential that was

  12. Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the elastic properties

    NASA Astrophysics Data System (ADS)

    Rassoulinejad-Mousavi, Seyed Moein; Mao, Yijin; Zhang, Yuwen

    2016-06-01

    Choice of appropriate force field is one of the main concerns of any atomistic simulation that needs to be seriously considered in order to yield reliable results. Since investigations on the mechanical behavior of materials at micro/nanoscale have been becoming much more widespread, it is necessary to determine an adequate potential which accurately models the interaction of the atoms for desired applications. In this framework, reliability of multiple embedded atom method based interatomic potentials for predicting the elastic properties was investigated. Assessments were carried out for different copper, aluminum, and nickel interatomic potentials at room temperature which is considered as the most applicable case. Examined force fields for the three species were taken from online repositories of National Institute of Standards and Technology, as well as the Sandia National Laboratories, the LAMMPS database. Using molecular dynamic simulations, the three independent elastic constants, C11, C12, and C44, were found for Cu, Al, and Ni cubic single crystals. Voigt-Reuss-Hill approximation was then implemented to convert elastic constants of the single crystals into isotropic polycrystalline elastic moduli including bulk modulus, shear modulus, and Young's modulus as well as Poisson's ratio. Simulation results from massive molecular dynamic were compared with available experimental data in the literature to justify the robustness of each potential for each species. Eventually, accurate interatomic potentials have been recommended for finding each of the elastic properties of the pure species. Exactitude of the elastic properties was found to be sensitive to the choice of the force fields. Those potentials that were fitted for a specific compound may not necessarily work accurately for all the existing pure species. Tabulated results in this paper might be used as a benchmark to increase assurance of using the interatomic potential that was designated for a problem.

  13. Elastic properties of spherically anisotropic piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming

    2010-09-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed.

  14. Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries

    PubMed Central

    Cordero, Francesco

    2015-01-01

    The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB) between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x−T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPBx boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems. PMID:28793707

  15. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves.

    PubMed

    Efremov, Yuri M; Wang, Wen-Horng; Hardy, Shana D; Geahlen, Robert L; Raman, Arvind

    2017-05-08

    Force-displacement (F-Z) curves are the most commonly used Atomic Force Microscopy (AFM) mode to measure the local, nanoscale elastic properties of soft materials like living cells. Yet a theoretical framework has been lacking that allows the post-processing of F-Z data to extract their viscoelastic constitutive parameters. Here, we propose a new method to extract nanoscale viscoelastic properties of soft samples like living cells and hydrogels directly from conventional AFM F-Z experiments, thereby creating a common platform for the analysis of cell elastic and viscoelastic properties with arbitrary linear constitutive relations. The method based on the elastic-viscoelastic correspondence principle was validated using finite element (FE) simulations and by comparison with the existed AFM techniques on living cells and hydrogels. The method also allows a discrimination of which viscoelastic relaxation model, for example, standard linear solid (SLS) or power-law rheology (PLR), best suits the experimental data. The method was used to extract the viscoelastic properties of benign and cancerous cell lines (NIH 3T3 fibroblasts, NMuMG epithelial, MDA-MB-231 and MCF-7 breast cancer cells). Finally, we studied the changes in viscoelastic properties related to tumorigenesis including TGF-β induced epithelial-to-mesenchymal transition on NMuMG cells and Syk expression induced phenotype changes in MDA-MB-231 cells.

  16. Effect of temperature and geometric parameters on elastic properties of tungsten nanowire: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Saha, Sourav; Mojumder, Satyajit; Mahboob, Monon; Islam, M. Zahabul

    2016-07-01

    Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10K ~ 1500K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAM potential is used for molecular dynamic simulation. We applied constant strain rate of 109 s-1 to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.

  17. Nanoscale stiffness of individual dendritic molecules and their aggregates

    NASA Astrophysics Data System (ADS)

    Tsukruk, Vladimir V.; Shulha, Hennady; Zhai, Xiaowen

    2003-02-01

    We demonstrate that carefully designed micromapping of the surface stiffness with nanoscale resolution could reveal quantitative data on the elastic properties of compliant, dendritic organic molecules with nanoparticulate dimensions below 3 nm. Much higher elastic modulus was observed for individual, fourth generation dendritic molecules due to their more shape persistent conformation. Large, reversible, elastic deformation is a distinct characteristic of the nanomechanical response observed for individual dendritic molecules. Such a "rubbery" response could be an indication of spatial constraints imposed on vitrification of dendritic molecules tethered to the functionalized interface. Surprisingly, an increased stiffness was also found for the third generation dendritic molecules within long aggregates.

  18. Divergent effect of electric fields on the mechanical property of water-filled carbon nanotubes with an application as a nanoscale trigger

    NASA Astrophysics Data System (ADS)

    Ye, Hongfei; Zheng, Yonggang; Zhou, Lili; Zhao, Junfei; Zhang, Hongwu; Chen, Zhen

    2018-01-01

    Polar water molecules exhibit extraordinary phenomena under nanoscale confinement. Through the application of an electric field, a water-filled carbon nanotube (CNT) that has been successfully fabricated in the laboratory is expected to have distinct responses to the external electricity. Here, we examine the effect of electric field direction on the mechanical property of water-filled CNTs. It is observed that a longitudinal electric field enhances, but the transverse electric field reduces the elastic modulus and critical buckling stress of water-filled CNTs. The divergent effect of the electric field is attributed to the competition between the axial and circumferential pressures induced by polar water molecules. Furthermore, it is notable that the transverse electric field could result in an internal pressure with elliptical distribution, which is an effective and convenient approach to apply nonuniform pressure on nanochannels. Based on pre-strained water-filled CNTs, we designed a nanoscale trigger with an evident and rapid height change initiated by switching the direction of the electric field. The reported finding provides a foundation for an electricity-controlled property of nanochannels filled with polar molecules and provides an insight into the design of nanoscale functional devices.

  19. Divergent effect of electric fields on the mechanical property of water-filled carbon nanotubes with an application as a nanoscale trigger.

    PubMed

    Ye, Hongfei; Zheng, Yonggang; Zhou, Lili; Zhao, Junfei; Zhang, Hongwu; Chen, Zhen

    2017-12-11

    Polar water molecules exhibit extraordinary phenomena under nanoscale confinement. Through the application of an electric field, a water-filled carbon nanotube (CNT) that has been successfully fabricated in the laboratory is expected to have distinct responses to the external electricity. Here, we examine the effect of electric field direction on the mechanical property of water-filled CNTs. It is observed that a longitudinal electric field enhances, but the transverse electric field reduces the elastic modulus and critical buckling stress of water-filled CNTs. The divergent effect of the electric field is attributed to the competition between the axial and circumferential pressures induced by polar water molecules. Furthermore, it is notable that the transverse electric field could result in an internal pressure with elliptical distribution, which is an effective and convenient approach to apply nonuniform pressure on nanochannels. Based on pre-strained water-filled CNTs, we designed a nanoscale trigger with an evident and rapid height change initiated by switching the direction of the electric field. The reported finding provides a foundation for an electricity-controlled property of nanochannels filled with polar molecules and provides an insight into the design of nanoscale functional devices.

  20. Double-edged effect of electric field on the mechanical property of water-filled carbon nanotubes with an application to nanoscale trigger.

    PubMed

    Ye, Hongfei; Zheng, Yonggang; Zhou, Lili; Zhao, Junfei; Zhang, Hong Wu; Chen, Zhen

    2017-11-08

    Polar water molecules would exhibit extraordinary phenomena under nanoscale confinement. By means of electric field, the water-filled carbon nanotube (CNT) that has been successfully fabricated in laboratory is expected to make distinct responses to the external electricity. Here, we examine the effect of electric field direction on the mechanical property of water-filled CNTs. It is found that the longitudinal electric field enhances but the transversal electric field reduces the elastic modulus and critical buckling stress of water-filled CNTs. The double-edged effect of electric field is attributed to the competition between the axial and circumferential pressures induced by polar water molecules. Furthermore, it is notable that the transversal electric field could result in an internal pressure with elliptical distribution, which is an effective and convenient approach to apply the nonuniform pressure on nanochannels. Based on a pre-strained water-filled CNTs, we design a nanoscale trigger with the evident and rapid height change started through switching the direction of electric field. The reported finding lays a foundation for the electricity-controlled property of nanochannels filled with polar molecules and provides an insight into the design of nanoscale functional devices. © 2017 IOP Publishing Ltd.

  1. On the anisotropic elastic properties of hydroxyapatite.

    NASA Technical Reports Server (NTRS)

    Katz, J. L.; Ukraincik, K.

    1971-01-01

    Experimental measurements of the isotropic elastic moduli on polycrystalline specimens of hydroxyapatite and fluorapatite are compared with elastic constants measured directly from single crystals of fluorapatite in order to derive a set of pseudo single crystal elastic constants for hydroxyapatite. The stiffness coefficients thus derived are given. The anisotropic and isotropic elastic properties are then computed and compared with similar properties derived from experimental observations of the anisotropic behavior of bone.

  2. Elastic Properties of Chimpanzee Craniofacial Cortical Bone

    PubMed Central

    Gharpure, Poorva; Kontogiorgos, Elias D.; Opperman, Lynne A.; Ross, Callum F.; Strait, David S.; Smith, Amanda; Pryor, Leslie C.; Wang, Qian; Dechow, Paul C.

    2017-01-01

    Relatively few assessments of cranial biomechanics formally take into account variation in the material properties of cranial cortical bone. Our aim was to characterize the elastic properties of chimpanzee craniofacial cortical bone and compare these to the elastic properties of dentate human craniofacial cortical bone. From seven cranial regions, 27 cylindrical samples were harvested from each of five chimpanzee crania. Assuming orthotropy, axes of maximum stiffness in the plane of the cortical plate were derived using modified equations of Hooke’s law in a Mathcad program. Consistent orientations among individuals were observed in the zygomatic arch and alveolus. The density of cortical bone showed significant regional variation (P<0.001). The elastic moduli demonstrated significant differences between sites, and a distinct pattern where E3 >E2 > E1. Shear moduli were significantly different among regions (P<0.001). The pattern by which chimpanzee cranial cortical bone varies in elastic properties resembled that seen in humans, perhaps suggesting that the elastic properties of craniofacial bone in fossil hominins can be estimated with at least some degree of confidence. PMID:27870344

  3. Elastic Properties of Chimpanzee Craniofacial Cortical Bone.

    PubMed

    Gharpure, Poorva; Kontogiorgos, Elias D; Opperman, Lynne A; Ross, Callum F; Strait, David S; Smith, Amanda; Pryor, Leslie C; Wang, Qian; Dechow, Paul C

    2016-12-01

    Relatively few assessments of cranial biomechanics formally take into account variation in the material properties of cranial cortical bone. Our aim was to characterize the elastic properties of chimpanzee craniofacial cortical bone and compare these to the elastic properties of dentate human craniofacial cortical bone. From seven cranial regions, 27 cylindrical samples were harvested from each of five chimpanzee crania. Assuming orthotropy, axes of maximum stiffness in the plane of the cortical plate were derived using modified equations of Hooke's law in a Mathcad program. Consistent orientations among individuals were observed in the zygomatic arch and alveolus. The density of cortical bone showed significant regional variation (P < 0.001). The elastic moduli demonstrated significant differences between sites, and a distinct pattern where E 3  > E 2  > E 1 . Shear moduli were significantly different among regions (P < 0.001). The pattern by which chimpanzee cranial cortical bone varies in elastic properties resembled that seen in humans, perhaps suggesting that the elastic properties of craniofacial bone in fossil hominins can be estimated with at least some degree of confidence. Anat Rec, 299:1718-1733, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Effect of temperature and geometric parameters on elastic properties of tungsten nanowire: A molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit; Mahboob, Monon

    2016-07-12

    Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10 K ~ 1500 K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAMmore » potential is used for molecular dynamic simulation. We applied constant strain rate of 10{sup 9} s{sup −1} to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.« less

  5. Nano-Scale Characterization of Al-Mg Nanocrystalline Alloys

    NASA Astrophysics Data System (ADS)

    Harvey, Evan; Ladani, Leila

    Materials with nano-scale microstructure have become increasingly popular due to their benefit of substantially increased strengths. The increase in strength as a result of decreasing grain size is defined by the Hall-Petch equation. With increased interest in miniaturization of components, methods of mechanical characterization of small volumes of material are necessary because traditional means such as tensile testing becomes increasingly difficult with such small test specimens. This study seeks to characterize elastic-plastic properties of nanocrystalline Al-5083 through nanoindentation and related data analysis techniques. By using nanoindentation, accurate predictions of the elastic modulus and hardness of the alloy were attained. Also, the employed data analysis model provided reasonable estimates of the plastic properties (strain-hardening exponent and yield stress) lending credibility to this procedure as an accurate, full mechanical characterization method.

  6. Stability, elastic and electronic properties of a novel BN2 sheet with extended hexagons with N-N bonds

    NASA Astrophysics Data System (ADS)

    Waters, Kevin; Pandey, Ravindra

    2018-04-01

    A new B-N monolayer material (BN2) consisting of a network of extended hexagons is predicted using density functional theory. The distinguishable nature of this 2D material is found to be the presence of the bonded N atoms (N-N) in the lattice. Analysis of the phonon dispersion curves show this phase of BN2 to be stable. The calculated elastic properties exhibit anisotropic mechanical properties that surpass graphene in the armchair direction. The BN2 monolayer is metallic with in-plane p states dominating the Fermi level. Novel applications resulting from a strong anisotropic mechanical strength together with the metallic properties of the BN2 sheet with the extended hexagons with N-N bonds may enable future innovation at the nanoscale.

  7. Photothermoelastic contrast in nanoscale infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Morozovska, Anna N.; Eliseev, Eugene A.; Borodinov, Nikolay; Ovchinnikova, Olga S.; Morozovsky, Nicholas V.; Kalinin, Sergei V.

    2018-01-01

    The contrast formation mechanism in nanoscale Infrared (IR) Spectroscopy is analyzed. The temperature distribution and elastic displacement across the illuminated T-shape boundary between two materials with different IR-radiation absorption coefficients and thermo-physical and elastic properties located on a rigid substrate are calculated self-consistently for different frequencies f ˜ (1 kHz-1 MHz) of IR-radiation modulation (fully coupled problem). Analytical expressions for the temperature and displacement profiles across the "thermo-elastic step" are derived in the decoupling approximation for f = 0 ("static limit"), and conditions for approximation validity at low frequencies of IR-modulation are established. The step height was found to be thickness-independent for thick layers and proportional to the square of the thickness for very thin films. The theoretical results will be of potential interest for applications in the scanning thermo-ionic and thermal infrared microscopies for relatively long sample thermalization times and possibly for photothermal induced resonance microscopy using optomechanical probes.

  8. Elastic Properties of Plasticine, Silly Putty, and Tennis Strings

    ERIC Educational Resources Information Center

    Cross, Rod

    2012-01-01

    How would a physicist describe the elastic properties of an apple or a banana? Physics students and teachers are familiar with the elastic properties of metal springs, but are likely to be less familiar with the elastic properties of other common materials. The behavior of a metal spring is commonly examined in the laboratory by adding masses to…

  9. Earlywood and latewood elastic properties in loblolly pine

    Treesearch

    Steven Cramer; David Kretschmann; Roderic Lakes; Troy Schmidt

    2005-01-01

    The elastic properties of earlywood and latewood and their variability were measured in 388 specimens from six loblolly pine trees in a commercial plantation. Properties measured included longitudinal modulus of elasticity, shear modulus, specific gravity, microfibril angle and presence of compression wood. Novel testing procedures were developed to measure properties...

  10. Atomistic methodologies for material properties of 2D materials at the nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen

    Research on two dimensional (2D) materials, such as graphene and MoS2, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. From an engineering point of view, understanding the material properties of 2D materials under various conditions is crucial for tailoring the electrical and mechanical properties of 2D-material-based devices at the nanoscale. Even at the nanoscale, molecular systems typically consist of a vast number of atoms. Molecular dynamics (MD) simulations enable us to understand the properties of assemblies of molecules in terms of their structure and the microscopic interactions between them. From a continuum approach, mechanical properties and thermal properties, such as strain, stress, and heat capacity, are well defined and experimentally measurable. In MD simulations, material systems are considered to be discrete, and only interatomic potential, interatomic forces, and atom positions are directly obtainable. Besides, most of the fracture mechanics concepts, such as stress intensity factors, are not applicable since there is no singularity in MD simulations. However, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at the nanoscale. Therefore, equivalent definition of a physical quantity both in atomic scale and macroscopic scale is necessary in order to understand molecular and continuum scale phenomena concurrently. This work introduces atomistic simulation methodologies, based on interatomic potential and interatomic forces, as a tool to unveil the mechanical properties, thermal properties and fracture mechanical properties of 2D materials at the nanoscale. Among many 2D materials, graphene and MoS2 have attracted intense interest. Therefore, we applied our

  11. The Properties of Confined Water and Fluid Flow at the Nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwegler, E; Reed, J; Lau, E

    This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membranemore » flow, materials properties in confined media and nanofluidic devices.« less

  12. In-plane elastic properties of auxetic multilattices

    NASA Astrophysics Data System (ADS)

    Berinskii, Igor E.

    2018-07-01

    Numerous studies proposed the possible use of auxetic periodic structures in engineering applications. The regular cellular structures with several nodes in a unit cell of the lattice are referred to as multilattices. In this work, a homogenization procedure was applied to three types of plane multilattices: conventional and re-entrant honeycombs (REH), double arrowheads, and semi REH constructed from elastic ribs. It was shown, that for all considered lattices the components of effective tensors of elasticity can be obtained in an explicit way in the frames of the same approach taking stretching, bending and shear of the ribs into account. As a result, equivalent elastic in-plane properties were found analytically as the functions of geometrical parameters of the lattices and the elastic parameters of the ribs. The estimation of the limits for the elastic properties was also performed. It was investigated how the condition of constant density changes the dependence of the elastic constants on the angles between the nodes. Also, different lattices were investigated at the same reference density taken equal to the density of the honeycomb lattice. The most typical cases from the practical point of view were considered and the corresponding elastic parameters were calculated for them.

  13. Statistical properties of a folded elastic rod

    NASA Astrophysics Data System (ADS)

    Bayart, Elsa; Deboeuf, Stéphanie; Boué, Laurent; Corson, Francis; Boudaoud, Arezki; Adda-Bedia, Mokhtar

    2010-03-01

    A large variety of elastic structures naturally seem to be confined into environments too small to accommodate them; the geometry of folded structures span a wide range of length-scales. The elastic properties of these confined systems are further constrained by self-avoidance as well as by the dimensionality of both structures and container. To mimic crumpled paper, we devised an experimental setup to study the packing of a dimensional elastic object in 2D geometries: an elastic rod is folded at the center of a circular Hele-Shaw cell by a centripetal force. The initial configuration of the rod and the acceleration of the rotating disk allow to span different final folded configurations while the final rotation speed controls the packing intensity. Using image analysis we measure geometrical and mechanical properties of the folded configurations, focusing on length, curvature and energy distributions.

  14. Introduction to physical properties and elasticity models: Chapter 20

    USGS Publications Warehouse

    Dvorkin, Jack; Helgerud, Michael B.; Waite, William F.; Kirby, Stephen H.; Nur, Amos

    2003-01-01

    Estimating the in situ methane hydrate volume from seismic surveys requires knowledge of the rock physics relations between wave speeds and elastic moduli in hydrate/sediment mixtures. The elastic moduli of hydrate/sediment mixtures depend on the elastic properties of the individual sedimentary particles and the manner in which they are arranged. In this chapter, we present some rock physics data currently available from literature. The unreferenced values in Table I were not measured directly, but were derived from other values in Tables I and II using standard relationships between elastic properties for homogeneous, isotropic material. These derivations allow us to extend the list of physical property estimates, but at the expense of introducing uncertainties due to combining property values measured under different physical conditions. This is most apparent in the case of structure II (sII) hydrate for which very few physical properties have been measured under identical conditions.

  15. Biomechanical implications of cortical elastic properties of the macaque mandible.

    PubMed

    Dechow, Paul C; Panagiotopoulou, Olga; Gharpure, Poorva

    2017-10-01

    Knowledge of the variation in the elastic properties of mandibular cortical bone is essential for modeling bone function. Our aim was to characterize the elastic properties of rhesus macaque mandibular cortical bone and compare these to the elastic properties from mandibles of dentate humans and baboons. Thirty cylindrical samples were harvested from each of six adult female rhesus monkey mandibles. Assuming orthotropy, axes of maximum stiffness in the plane of the cortical plate were derived from ultrasound velocity measurements. Further velocity measurements with longitudinal and transverse ultrasonic transducers along with measurements of bone density were used to compute three-dimensional cortical elastic properties using equations based on Hooke's law. Results showed regional variations in the elastic properties of macaque mandibular cortical bone that have both similarities and differences with that of humans and baboons. So far, the biological and structural basis of these differences is poorly understood. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Micromagnetic modeling of the shielding properties of nanoscale ferromagnetic layers

    NASA Astrophysics Data System (ADS)

    Iskandarova, I. M.; Knizhnik, A. A.; Popkov, A. F.; Potapkin, B. V.; Stainer, Q.; Lombard, L.; Mackay, K.

    2016-09-01

    Ferromagnetic shields are widely used to concentrate magnetic fields in a target region of space. Such shields are also used in spintronic nanodevices such as magnetic random access memory and magnetic logic devices. However, the shielding properties of nanostructured shields can differ considerably from those of macroscopic samples. In this work, we investigate the shielding properties of nanostructured NiFe layers around a current line using a finite element micromagnetic model. We find that thin ferromagnetic layers demonstrate saturation of magnetization under an external magnetic field, which reduces the shielding efficiency. Moreover, we show that the shielding properties of nanoscale ferromagnetic layers strongly depend on the uniformity of the layer thickness. Magnetic anisotropy in ultrathin ferromagnetic layers can also influence their shielding efficiency. In addition, we show that domain walls in nanoscale ferromagnetic shields can induce large increases and decreases in the generated magnetic field. Therefore, ferromagnetic shields for spintronic nanodevices require careful design and precise fabrication.

  17. Ultrasound Elasticity Imaging System with Chirp-Coded Excitation for Assessing Biomechanical Properties of Elasticity Phantom

    PubMed Central

    Chun, Guan-Chun; Chiang, Hsing-Jung; Lin, Kuan-Hung; Li, Chien-Ming; Chen, Pei-Jarn; Chen, Tainsong

    2015-01-01

    The biomechanical properties of soft tissues vary with pathological phenomenon. Ultrasound elasticity imaging is a noninvasive method used to analyze the local biomechanical properties of soft tissues in clinical diagnosis. However, the echo signal-to-noise ratio (eSNR) is diminished because of the attenuation of ultrasonic energy by soft tissues. Therefore, to improve the quality of elastography, the eSNR and depth of ultrasound penetration must be increased using chirp-coded excitation. Moreover, the low axial resolution of ultrasound images generated by a chirp-coded pulse must be increased using an appropriate compression filter. The main aim of this study is to develop an ultrasound elasticity imaging system with chirp-coded excitation using a Tukey window for assessing the biomechanical properties of soft tissues. In this study, we propose an ultrasound elasticity imaging system equipped with a 7.5-MHz single-element transducer and polymethylpentene compression plate to measure strains in soft tissues. Soft tissue strains were analyzed using cross correlation (CC) and absolution difference (AD) algorithms. The optimal parameters of CC and AD algorithms used for the ultrasound elasticity imaging system with chirp-coded excitation were determined by measuring the elastographic signal-to-noise ratio (SNRe) of a homogeneous phantom. Moreover, chirp-coded excitation and short pulse excitation were used to measure the elasticity properties of the phantom. The elastographic qualities of the tissue-mimicking phantom were assessed in terms of Young’s modulus and elastographic contrast-to-noise ratio (CNRe). The results show that the developed ultrasound elasticity imaging system with chirp-coded excitation modulated by a Tukey window can acquire accurate, high-quality elastography images. PMID:28793718

  18. AELAS: Automatic ELAStic property derivations via high-throughput first-principles computation

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Zhang, R. F.

    2017-11-01

    The elastic properties are fundamental and important for crystalline materials as they relate to other mechanical properties, various thermodynamic qualities as well as some critical physical properties. However, a complete set of experimentally determined elastic properties is only available for a small subset of known materials, and an automatic scheme for the derivations of elastic properties that is adapted to high-throughput computation is much demanding. In this paper, we present the AELAS code, an automated program for calculating second-order elastic constants of both two-dimensional and three-dimensional single crystal materials with any symmetry, which is designed mainly for high-throughput first-principles computation. Other derivations of general elastic properties such as Young's, bulk and shear moduli as well as Poisson's ratio of polycrystal materials, Pugh ratio, Cauchy pressure, elastic anisotropy and elastic stability criterion, are also implemented in this code. The implementation of the code has been critically validated by a lot of evaluations and tests on a broad class of materials including two-dimensional and three-dimensional materials, providing its efficiency and capability for high-throughput screening of specific materials with targeted mechanical properties. Program Files doi:http://dx.doi.org/10.17632/f8fwg4j9tw.1 Licensing provisions: BSD 3-Clause Programming language: Fortran Nature of problem: To automate the calculations of second-order elastic constants and the derivations of other elastic properties for two-dimensional and three-dimensional materials with any symmetry via high-throughput first-principles computation. Solution method: The space-group number is firstly determined by the SPGLIB code [1] and the structure is then redefined to unit cell with IEEE-format [2]. Secondly, based on the determined space group number, a set of distortion modes is automatically specified and the distorted structure files are generated

  19. Elastic properties of some transition metal arsenides

    NASA Astrophysics Data System (ADS)

    Nayak, Vikas; Verma, U. P.; Bisht, P. S.

    2018-05-01

    The elastic properties of transition metal arsenides (TMAs) have been studied by employing Wien2K package based on density functional theory in the zinc blende (ZB) and rock salt (RS) phase treating valance electron scalar relativistically. Further, we have also treated them non-relativistically to find out the relativistic effect. We have calculated the elastic properties by computing the volume conservative stress tensor for small strains, using the method developed by Charpin. The obtained results are discussed in paper. From the obtained results, it is clear that the values of C11 > C12 and C44 for all the compounds. The values of shear moduli of these compounds are also calculated. The internal parameter for these compounds shows that ZB structures of these compounds have high resistance against bond order. We find that the estimated elastic constants are in good agreement with the available data.

  20. Torsional Elastic Property Measurements of Selected Orthodontic Archwires.

    DTIC Science & Technology

    1987-01-01

    problem because bracket slot sizes of .019" are not used. It would, however, affect the amount of activation needed to engage the orthodontic bracket for...D-AiB5 669 TORSIONAL ELASTIC PROPERTY MEASUREMENTSO SLECE ORTHODONTIC ARCHWlIRES(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH B E LARSON 1987...Elastic Property Measurements of THESIS/D&&W t Selected Orthodontic Archwires 6. PERFORMING O1G. REPORT NUMBER 7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s

  1. Permeability and elastic properties of cracked glass under pressure

    NASA Astrophysics Data System (ADS)

    Ougier-Simonin, A.; GuéGuen, Y.; Fortin, J.; Schubnel, A.; Bouyer, F.

    2011-07-01

    Fluid flow in rocks is allowed through networks of cracks and fractures at all scales. In fact, cracks are of high importance in various applications ranging from rock elastic and transport properties to nuclear waste disposal. The present work aims at investigating thermomechanical cracking effects on elastic wave velocities, mechanical strength, and permeability of cracked glass under pressure. We performed the experiments on a triaxial cell at room temperature which allows for independent controls of the confining pressure, the axial stress, and pore pressure. We produced cracks in original borosilicate glass samples with a reproducible method (thermal treatment with a thermal shock of 300°C). The evolution of the elastic and transport properties have been monitored using elastic wave velocity sensors, strain gage, and flow measurements. The results obtained evidence for (1) a crack family with identified average aspect ratio and crack aperture, (2) a very small permeability which decreases as a power (exponential) function of pressure, and depends on (3) the crack aperture cube. We also show that permeability behavior of a cracked elastic brittle solid is reversible and independent of the fluid nature. Two independent methods (permeability and elastic wave velocity measurements) give these consistent results. This study provides data on the mechanical and transport properties of an almost ideal elastic brittle solid in which a crack population has been introduced. Comparisons with similar data on rocks allow for drawing interesting conclusions. Over the timescale of our experiments, our results do not provide any data on stress corrosion, which should be considered in further study.

  2. Elastic properties of single-walled carbon nanotube thin film by nanoindentation test.

    PubMed

    Tang, Xingling; El-Hami, Abdelkhalak; El-Hami, Khalil; Eid, Mohamed; Si, Chaorun

    2017-09-12

    This paper carries out a preliminary study for the elastic properties of single walled carbon nanotube (SWCNT) thin film. The SWCNT thin films (~250 nm) are prepared by a simple and cost effective method of spin-coating technology. Nanoindentation test with a Berkovich indenter is used to determine the hardness and elastic modulus of the SWCNT thin film. It is important to note that the elastic properties of SWCNT film are indirectly derived from the information of load and displacement of the indenter under certain assumptions, deviation of the 'test value' is inevitable. In this regard, uncertainty analysis is an effective process in guarantying the validity of the material properties. This paper carries out uncertainty estimation for the tested elastic properties of SWCNT film by nanoindentation. Experimental results and uncertainty analysis indicates that nanoindentation test could be an effective and reliable method in determine the elastic properties of SWCNT thin film. Moreover, the obtained values of hardness and elastic modulus can further benefit the design of SWCNT thin film based components.

  3. The elastic properties of cancerous skin: Poisson's ratio and Young's modulus.

    PubMed

    Tilleman, Tamara Raveh; Tilleman, Michael M; Neumann, Martino H A

    2004-12-01

    The physical properties of cancerous skin tissue have rarely been measured in either fresh or frozen skin specimens. Of interest are the elastic properties associated with the skin's ability to deform, i.e., to stretch and compress. Two constants--Young's modulus and Poisson's ratio--represent the basic elastic behavior pattern of any elastic material, including skin. The former relates the applied stress on a specimen to its deformation via Hooke's law, while the latter is the ratio between the axial and lateral strains. To investigate the elastic properties of cancerous skin tissue. For this purpose 23 consecutive cancerous tissue specimens prepared during Mohs micrographic surgery were analyzed. From these specimens we calculated the change in radial length (defined as the radial strain) and the change in tissue thickness (defined as axial strain). Based on the above two strains we determined a Poisson ratio of 0.43 +/- 0.12 and an average Young modulus of 52 KPa. Defining the elastic properties of cancerous skin may become the first step in turning elasticity into a clinical tool. Correlating these constants with the histopathologic features of a cancerous tissue can contribute an additional non-invasive, in vivo and in vitro diagnostic tool.

  4. Atomic force microscopy studies on cellular elastic and viscoelastic properties.

    PubMed

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2018-01-01

    In this work, a method based on atomic force microscopy (AFM) approach-reside-retract experiments was established to simultaneously quantify the elastic and viscoelastic properties of single cells. First, the elastic and viscoelastic properties of normal breast cells and cancerous breast cells were measured, showing significant differences in Young's modulus and relaxation times between normal and cancerous breast cells. Remarkable differences in cellular topography between normal and cancerous breast cells were also revealed by AFM imaging. Next, the elastic and viscoelasitc properties of three other types of cell lines and primary normal B lymphocytes were measured; results demonstrated the potential of cellular viscoelastic properties in complementing cellular Young's modulus for discerning different states of cells. This research provides a novel way to quantify the mechanical properties of cells by AFM, which allows investigation of the biomechanical behaviors of single cells from multiple aspects.

  5. Probing physical properties at the nanoscale using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ditzler, Lindsay Rachel

    Techniques that measure physical properties at the nanoscale with high sensitivity are significantly limited considering the number of new nanomaterials being developed. The development of atomic force microscopy (AFM) has lead to significant advancements in the ability to characterize physical properties of materials in all areas of science: chemistry, physics, engineering, and biology have made great scientific strides do to the versatility of the AFM. AFM is used for quantification of many physical properties such as morphology, electrical, mechanical, magnetic, electrochemical, binding interactions, and protein folding. This work examines the electrical and mechanical properties of materials applicable to the field of nano-electronics. As electronic devices are miniaturized the demand for materials with unique electrical properties, which can be developed and exploited, has increased. For example, discussed in this work, a derivative of tetrathiafulvalene, which exhibits a unique loss of conductivity upon compression of the self-assembled monolayer could be developed into a molecular switch. This work also compares tunable organic (tetraphenylethylene tetracarboxylic acid and bis(pyridine)s assemblies) and metal-organic (Silver-stilbizole coordination compounds) crystals which show high electrical conductivity. The electrical properties of these materials vary depending on their composition allowing for the development of compositionally tunable functional materials. Additional work was done to investigate the effects of molecular environment on redox active 11-ferroceneyl-1 undecanethiol (Fc) molecules. The redox process of mixed monolayers of Fc and decanethiol was measured using conductive probe atomic force microscopy and force spectroscopy. As the concentration of Fc increased large, variations in the force were observed. Using these variations the number of oxidized molecules in the monolayer was determined. AFM is additionally capable of investigating

  6. Elastic Properties and Internal Friction of Two Magnesium Alloys at Elevated Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freels, M.; Liaw, P. K.; Garlea, E.

    2011-06-01

    The elastic properties and internal friction of two magnesium alloys were studied from 25 C to 450 C using Resonant Ultrasound Spectroscopy (RUS). The Young's moduli decrease with increasing temperature. At 200 C, a change in the temperature dependence of the elastic constants is observed. The internal friction increases significantly with increasing temperature above 200 C. The observed changes in the temperature dependence of the elastic constants and the internal friction are the result of anelastic relaxation by grain boundary sliding at elevated temperatures. Elastic properties govern the behavior of a materials subjected to stress over a region of strainmore » where the material behaves elastically. The elastic properties, including the Young's modulus (E), shear modulus (G), bulk modulus (B), and Poisson's ratio (?), are of significant interest to many design and engineering applications. The choice of the most appropriate material for a particular application at elevated temperatures therefore requires knowledge of its elastic properties as a function of temperature. In addition, mechanical vibration can cause significant damage in the automotive, aerospace, and architectural industries and thus, the ability of a material to dissipate elastic strain energy in materials, known as damping or internal friction, is also important property. Internal friction can be the result of a wide range of physical mechanisms, and depends on the material, temperature, and frequency of the loading. When utilized effectively in engineering applications, the damping capacity of a material can remove undesirable noise and vibration as heat to the surroundings. The elastic properties of materials can be determined by static or dynamic methods. Resonant Ultrasound Spectroscopy (RUS), used in this study, is a unique and sophisticated non-destructive dynamic technique for determining the complete elastic tensor of a solid by measuring the resonant spectrum of mechanical resonance

  7. Charting the complete elastic properties of inorganic crystalline compounds

    PubMed Central

    de Jong, Maarten; Chen, Wei; Angsten, Thomas; Jain, Anubhav; Notestine, Randy; Gamst, Anthony; Sluiter, Marcel; Krishna Ande, Chaitanya; van der Zwaag, Sybrand; Plata, Jose J; Toher, Cormac; Curtarolo, Stefano; Ceder, Gerbrand; Persson, Kristin A.; Asta, Mark

    2015-01-01

    The elastic constant tensor of an inorganic compound provides a complete description of the response of the material to external stresses in the elastic limit. It thus provides fundamental insight into the nature of the bonding in the material, and it is known to correlate with many mechanical properties. Despite the importance of the elastic constant tensor, it has been measured for a very small fraction of all known inorganic compounds, a situation that limits the ability of materials scientists to develop new materials with targeted mechanical responses. To address this deficiency, we present here the largest database of calculated elastic properties for inorganic compounds to date. The database currently contains full elastic information for 1,181 inorganic compounds, and this number is growing steadily. The methods used to develop the database are described, as are results of tests that establish the accuracy of the data. In addition, we document the database format and describe the different ways it can be accessed and analyzed in efforts related to materials discovery and design. PMID:25984348

  8. Elastic and microplastic properties of titanium in different structural states

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Betekhtin, V. I.; Kadomtsev, A. G.; Narykova, M. V.; Kolobov, Yu. R.

    2017-09-01

    The behavior of elastic (Young's modulus) and microplastic properties of titanium depending on the initial structure and subsequent severe plastic deformation that transforms the material (concerning the grain size) into the submicrocrystalline structural state has been studied. It has been shown that, to a great extent, different initial structures of the metal predetermine its elastic properties after deformation.

  9. Multi-scale modelling of elastic moduli of trabecular bone

    PubMed Central

    Hamed, Elham; Jasiuk, Iwona; Yoo, Andrew; Lee, YikHan; Liszka, Tadeusz

    2012-01-01

    We model trabecular bone as a nanocomposite material with hierarchical structure and predict its elastic properties at different structural scales. The analysis involves a bottom-up multi-scale approach, starting with nanoscale (mineralized collagen fibril) and moving up the scales to sub-microscale (single lamella), microscale (single trabecula) and mesoscale (trabecular bone) levels. Continuum micromechanics methods, composite materials laminate theory and finite-element methods are used in the analysis. Good agreement is found between theoretical and experimental results. PMID:22279160

  10. Development of New Elastomers and Elastic Nanocomposites from Plant Oils

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Wool, Richard

    2006-03-01

    Economic and environmental concerns lead to the development of new polymers from renewable resources. In this research, new elastomers were synthesized from plant oil based resins. Acrylated oleic methyl ester (AOME), synthesized from high oleic triglycerides, can readily undergo free radical polymerization and form a linear polymer. To achieve the elastic properties, different strategies have been developed to generate an elastic network and control the crosslink density. The elastomers are reinforced by nanoclays. The intercalated state has a network structure similar to thermoplastic elastomers in which the hard segments aggregate to give ordered crystalline domains. The selected organically modified clay and AOME matrix have similar solubility parameters, therefore intercalation of the monomer/polymer into the clay layers occurs and the nano-scale multilayered structure is stable. In situ intercalation and solution intercalation were used to prepare the elastic nanocomposites. Dramatic improvement in mechanical properties was observed. Changes of tensile strength, strain, Young's modulus and fracture energy were related to the clay concentration. The fracture surface was studied to further understand clay effects on the mechanical properties. Self-Healing of the intercalated nanobeams, thermal stability, biocompatibility and biodegradability of this new elastomer were also explored.

  11. Effects of External Stimuli on Microstructure-Property Relationship at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Wang, Baoming

    The technical contribution of this research is a unique nanofabricated experimental setup that integrates nanoscale specimens with tools for interrogating mechanical (stress-strain, fracture, and fatigue), thermal and electrical (conductivity) properties as function of external stimuli such as strain, temperature, electrical field and radiation. It addresses the shortcomings of the state of the art characterization techniques, which are yet to perform such simultaneous and multi-domain measurements. Our technique has virtually no restriction on specimen material type and thickness, which makes the setup versatile. It is demonstrated with 100 nm thick nickel, aluminum, zirconium; 25 nm thick molybdenum di-sulphide (MoS2), 10 nm hexagonal boron nitride (h-BN) specimens and 100nm carbon nanofiber, all in freestanding thin film form. The technique is compatible with transmission electron microscopy (TEM). In-situ TEM captures microstructural features, (defects, phases, precipitates and interfaces), diffraction patterns and chemical microanalysis in real time. 'Seeing the microstructure while measuring properties' is our unique capability. It helps identifying fundamental mechanisms behind thermo-electro-mechanical coupling and degradation, so that these mechanisms can be used to (i) explain the results obtained for mesoscale specimens of the same materials and experimental conditions and (ii) develop computational models to explain and predict properties at both nano and meso scales. The uniqueness of this contribution is therefore simultaneously quantitative and qualitative probing of length-scale dependent external stimuli effects on microstructures and physical properties of nanoscale materials. The scientific contribution of this research is the experimental validation of the fundamental hypothesis that, if the nanoscale size can cause significant deviation in a certain domain, e.g., mechanical, it can also make that domain more sensitive to external stimuli when

  12. Nanoscale characterization of the biomechanical properties of collagen fibrils in the sclera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papi, M.; Paoletti, P.; Geraghty, B.

    We apply the PeakForce Quantitative Nanomechanical Property Mapping (PFQNM) atomic force microscopy mode for the investigation of regional variations in the nanomechanical properties of porcine sclera. We examine variations in the collagen fibril diameter, adhesion, elastic modulus and dissipation in the posterior, equatorial and anterior regions of the sclera. The mean fibril diameter, elastic modulus and dissipation increased from the posterior to the anterior region. Collagen fibril diameter correlated linearly with elastic modulus. Our data matches the known macroscopic mechanical behavior of the sclera. We propose that PFQNM has significant potential in ocular biomechanics and biophysics research.

  13. Thermophysical properties study of micro/nanoscale materials

    NASA Astrophysics Data System (ADS)

    Feng, Xuhui

    Thermal transport in low-dimensional structure has attracted tremendous attentions because micro/nanoscale materials play crucial roles in advancing micro/nanoelectronics industry. The thermal properties are essential for understanding of the energy conversion and thermal management. To better investigate micro/nanoscale materials and characterize the thermal transport, pulse laser-assisted thermal relaxation 2 (PLTR2) and transient electrothermal (TET) are both employed to determine thermal property of various forms of materials, including thin films and nanowires. As conducting polymer, Poly(3-hexylthiophene) (P3HT) thin film is studied to understand its thermal properties variation with P3HT weight percentage. 4 P3HT solutions of different weight percentages are compounded to fabricate thin films using spin-coating technique. Experimental results indicate that weight percentage exhibits impact on thermophysical properties. When percentage changes from 2% to 7%, thermal conductivity varies from 1.29 to 1.67 W/m·K and thermal diffusivity decreases from 10-6 to 5×10-7 m2/s. Moreover, PLTR2 technique is applied to characterize the three-dimensional anisotropic thermal properties in spin-coated P3HT thin films. Raman spectra verify that the thin films embrace partially orientated P3HT molecular chains, leading to anisotropic thermal transport. Among all three directions, lowest thermal property is observed along out-of-plane direction. For in-plane characterization, anisotropic ratio is around 2 to 3, indicating that the orientation of the molecular chains has strong impact on the thermal transport along different directions. Titanium dioxide (TiO2) thin film is synthesized by electrospinning features porous structure composed by TiO2 nanowires with random orientations. The porous structure caused significant degradation of thermal properties. Effective thermal diffusivity, conductivity, and density of the films are 1.35˜3.52 × 10-6 m2/s, 0.06˜0.36 W/m·K, and

  14. High pressure elasticity and thermal properties of depleted uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, M. K., E-mail: mjacobsen@lanl.gov; Velisavljevic, N., E-mail: nenad@lanl.gov

    2016-04-28

    Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. This work presents the first high pressure studies of the elasticity and thermal properties ofmore » depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.« less

  15. High pressure elasticity and thermal properties of depleted uranium

    DOE PAGES

    Jacobsen, M. K.; Velisavljevic, N.

    2016-04-28

    Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. Lastly, this work presents the first high pressure studies of the elasticity and thermalmore » properties of depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.« less

  16. Ultrasonic characterization of the nonlinear elastic properties of unidirectional graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1987-01-01

    The theoretical treatment of linear and nonlinear elasticity in a unidirectionally fiber reinforced composite as well as measurements for a unidirectional graphite/epoxy composite (T300/5208) are presented. Linear elastic properties were measured by both ultrasonic and strain gage measurements. The nonlinear properties were determined by measuring changes in ultrasonic natural phase velocity with a pulsed phase locked loop interferometer as a function of stress and temperature. These measurements provide the basis for further investigations into the relationship between nonlinear elastic properties and other important properties such as strength and fiber-matrix interfacial stength in graphite/epoxy composites.

  17. Elastic and Mechanical Properties of the MAX Phases

    NASA Astrophysics Data System (ADS)

    Barsoum, Michel W.; Radovic, Miladin

    2011-08-01

    The more than 60 ternary carbides and nitrides, with the general formula Mn+1AXn—where n = 1, 2, or 3; M is an early transition metal; A is an A-group element (a subset of groups 13-16); and X is C and/or N—represent a new class of layered solids, where Mn+1Xn layers are interleaved with pure A-group element layers. The growing interest in the Mn+1AXn phases lies in their unusual, and sometimes unique, set of properties that can be traced back to their layered nature and the fact that basal dislocations multiply and are mobile at room temperature. Because of their chemical and structural similarities, the MAX phases and their corresponding MX phases share many physical and chemical properties. In this paper we review our current understanding of the elastic and mechanical properties of bulk MAX phases where they differ significantly from their MX counterparts. Elastically the MAX phases are in general quite stiff and elastically isotropic. The MAX phases are relatively soft (2-8 GPa), are most readily machinable, and are damage tolerant. Some of them are also lightweight and resistant to thermal shock, oxidation, fatigue, and creep. In addition, they behave as nonlinear elastic solids, dissipating 25% of the mechanical energy during compressive cycling loading of up to 1 GPa at room temperature. At higher temperatures, they undergo a brittle-to-plastic transition, and their mechanical behavior is a strong function of deformation rate.

  18. Effect of geometric configuration on the electrocaloric properties of nanoscale ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Hou, Xu; Li, Huiyu; Shimada, Takahiro; Kitamura, Takayuki; Wang, Jie

    2018-03-01

    The electrocaloric properties of ferroelectrics are highly dependent on the domain structure in the materials. For nanoscale ferroelectric materials, the domain structure is greatly influenced by the geometric configuration of the system. Using a real-space phase field model based on the Ginzburg-Landau theory, we investigate the effect of geometric configurations on the electrocaloric properties of nanoscale ferroelectric materials. The ferroelectric hysteresis loops under different temperatures are simulated for the ferroelectric nano-metamaterials with square, honeycomb, and triangular Archimedean geometric configurations. The adiabatic temperature changes (ATCs) for three ferroelectric nano-metamaterials under different electric fields are calculated from the Maxwell relationship based on the hysteresis loops. It is found that the honeycomb specimen exhibits the largest ATC of Δ T = 4.3 °C under a field of 391.8 kV/cm among three geometric configurations, whereas the square specimen has the smallest ATC of Δ T = 2.7 °C under the same electric field. The different electrocaloric properties for three geometric configurations stem from the different domain structures. There are more free surfaces perpendicular to the electric field in the square specimen than the other two specimens, which restrict more polarizations perpendicular to the electric field, resulting in a small ATC. Due to the absence of free surfaces perpendicular to the electric field in the honeycomb specimen, the change of polarization with temperature in the direction of the electric field is more easy and thus leads to a large ATC. The present work suggests a novel approach to obtain the tunable electrocaloric properties in nanoscale ferroelectric materials by designing their geometric configurations.

  19. Modeling of Stiffness and Strength of Bone at Nanoscale.

    PubMed

    Abueidda, Diab W; Sabet, Fereshteh A; Jasiuk, Iwona M

    2017-05-01

    Two distinct geometrical models of bone at the nanoscale (collagen fibril and mineral platelets) are analyzed computationally. In the first model (model I), minerals are periodically distributed in a staggered manner in a collagen matrix while in the second model (model II), minerals form continuous layers outside the collagen fibril. Elastic modulus and strength of bone at the nanoscale, represented by these two models under longitudinal tensile loading, are studied using a finite element (FE) software abaqus. The analysis employs a traction-separation law (cohesive surface modeling) at various interfaces in the models to account for interfacial delaminations. Plane stress, plane strain, and axisymmetric versions of the two models are considered. Model II is found to have a higher stiffness than model I for all cases. For strength, the two models alternate the superiority of performance depending on the inputs and assumptions used. For model II, the axisymmetric case gives higher results than the plane stress and plane strain cases while an opposite trend is observed for model I. For axisymmetric case, model II shows greater strength and stiffness compared to model I. The collagen-mineral arrangement of bone at nanoscale forms a basic building block of bone. Thus, knowledge of its mechanical properties is of high scientific and clinical interests.

  20. Elastic properties and fracture strength of quasi-isotropic graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1977-01-01

    A research program is described which was devised to determine experimentally the elastic properties in tension and bending of quasi-isotropic laminates made from high-modulus graphite fiber and epoxy. Four laminate configurations were investigated, and determinations were made of the tensile modulus, Poisson's ratio, bending stiffness, fracture strength, and fracture strain. The measured properties are compared with those predicted by laminate theory, reasons for scatter in the experimental data are discussed, and the effect of fiber misalignment on predicted elastic tensile properties is examined. The results strongly suggest that fiber misalignment in combination with variation in fiber volume content is responsible for the scatter in both elastic constants and fracture strength.

  1. Correlation between macro- and nano-scopic measurements of carbon nanostructured paper elastic modulus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omar, Yamila M.; Al Ghaferi, Amal, E-mail: aalghaferi@masdar.ac.ae, E-mail: mchiesa@masdar.ac.ae; Chiesa, Matteo, E-mail: aalghaferi@masdar.ac.ae, E-mail: mchiesa@masdar.ac.ae

    2015-07-20

    Extensive work has been done in order to determine the bulk elastic modulus of isotropic samples from force curves acquired with atomic force microscopy. However, new challenges are encountered given the development of new materials constructed of one-dimensional anisotropic building blocks, such as carbon nanostructured paper. In the present work, we establish a reliable framework to correlate the elastic modulus values obtained by amplitude modulation atomic force microscope force curves, a nanoscopic technique, with that determined by traditional macroscopic tensile testing. In order to do so, several techniques involving image processing, statistical analysis, and simulations are used to find themore » appropriate path to understand how macroscopic properties arise from anisotropic nanoscale components, and ultimately, being able to calculate the value of bulk elastic modulus.« less

  2. Seismic Velocity and Elastic Properties of Plate Boundary Faults

    NASA Astrophysics Data System (ADS)

    Jeppson, Tamara N.

    The elastic properties of fault zone rock at depth play a key role in rupture nucleation, propagation, and the magnitude of fault slip. Materials that lie within major plate boundary fault zones often have very different material properties than standard crustal rock values. In order to understand the mechanics of faulting at plate boundaries, we need to both measure these properties and understand how they govern the behavior of different types of faults. Mature fault zones tend to be identified in large-scale geophysical field studies as zones with low seismic velocity and/or electrical resistivity. These anomalous properties are related to two important mechanisms: (1) mechanical or diagenetic alteration of the rock materials and/or (2) pore fluid pressure and stress effects. However, in remotely-sensed and large-length-scale data it is difficult to determine which of these mechanisms are affecting the measured properties. The objective of this dissertation research is to characterize the seismic velocity and elastic properties of fault zone rocks at a range of scales, with a focus on understanding why the fault zone properties are different from those of the surrounding rock and the potential effects on earthquake rupture and fault slip. To do this I performed ultrasonic velocity experiments under elevated pressure conditions on drill core and outcrops samples from three plate boundary fault zones: the San Andreas Fault, California, USA; the Alpine Fault, South Island, New Zealand; and the Japan Trench megathrust, Japan. Additionally, I compared laboratory measurements to sonic log and large-scale seismic data to examine the scale-dependence of the measured properties. The results of this study provide the most comprehensive characterization of the seismic velocities and elastic properties of fault zone rocks currently available. My work shows that fault zone rocks at mature plate boundary faults tend to be significantly more compliant than surrounding crustal

  3. Computer Simulation of the Elastic Properties of Titanium Alloys for Medical Applications

    NASA Astrophysics Data System (ADS)

    Estevez, Elsa Paz; Burganova, R. M.; Lysogorskii, Yu. V.

    2016-09-01

    Results of a computer simulation of the elastic properties of α+β- and β-titanium alloys, used for medical purposes, within the framework of the molecular-dynamics method are presented. It is shown that β-titanium alloys are best suited for the use as bone implants because of their small moduli of elasticity. The advisability of the use of the molecular-dynamics method for the study of the elastic properties of titanium alloys, serving as bone implants, is demonstrated.

  4. Microstructural and Morphological Factors Affecting Uncertainty in Small Scale Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Maughan, Michael R.

    If materials are to be developed from the ground up, the process will be dependent upon accurate and well-defined models of material behavior. These models can be closed-form solutions developed from first principles, simulations, or empirically derived equations, among others. Material behavior at the mesoscale is in general well understood, having had several centuries of study. However, behavior at the micro or nanoscale still requires characterization. Understanding the collective influence of the microstructure on the bulk material, for example with models like the Hall-Petch relation, has advanced our ability to manipulate the material to our advantage. We now have the ability to study not only the structure of the material, but also the material behavior and properties at the nanoscale. Understanding this behavior is critical to developing a framework for interpreting and utilizing these properties in materials design. This research aims to improve the fundamental understanding of the mechanical performance of materials and the subsequent variation in measured properties. The literature reports widely varying material properties such as hardness, elastic modulus, and yield point when measured at the nanoscale. Proposed variation mechanisms in these properties include surface preparation, error in measurement, heterogeneous dislocation density and distribution, crystal orientation, surface oxide film fracture, and others. Among other things, this work shows that these sources of variation can be determined and quantified, and that this information can be utilized as a characterization and/or predictive tool. The main goals of this work are to 1) continue basic research on sources of variation in the nanoscale properties of materials, specifically hardness and modulus in crystalline and glassy solids, 2) study the abrupt transition from elastic to plastic material behavior known as pop-in and resolve the problem of pseudo-elastic behavior prior to plasticity

  5. Elastic properties of suspended black phosphorus nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jia-Ying; Li, Yang; Zhen, Liang

    2016-01-04

    The mechanical properties of black phosphorus (BP) nanosheets suspended over circular holes were measured by an atomic force microscope nanoindentation method. The continuum mechanic model was introduced to calculate the elastic modulus and pretension of BP nanosheets with thicknesses ranging from 14.3 to 34 nm. Elastic modulus of BP nanosheets declines with thickness, and the maximum value is 276 ± 32.4 GPa. Besides, the effective strain of BP ranges from 8 to 17% with a breaking strength of 25 GPa. Our results show that BP nanosheets serve as a promising candidate for flexible electronic applications.

  6. Elastic properties of rigid fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Chen, J.; Thorpe, M. F.; Davis, L. C.

    1995-05-01

    We study the elastic properties of rigid fiber-reinforced composites with perfect bonding between fibers and matrix, and also with sliding boundary conditions. In the dilute region, there exists an exact analytical solution. Around the rigidity threshold we find the elastic moduli and Poisson's ratio by decomposing the deformation into a compression mode and a rotation mode. For perfect bonding, both modes are important, whereas only the compression mode is operative for sliding boundary conditions. We employ the digital-image-based method and a finite element analysis to perform computer simulations which confirm our analytical predictions.

  7. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    DOEpatents

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  8. Measuring the nonlinear elastic properties of tissue-like phantoms.

    PubMed

    Erkamp, Ramon Q; Skovoroda, Andrei R; Emelianov, Stanislav Y; O'Donnell, Matthew

    2004-04-01

    A direct mechanical system simultaneously measuring external force and deformation of samples over a wide dynamic range is used to obtain force-displacement curves of tissue-like phantoms under plain strain deformation. These measurements, covering a wide deformation range, then are used to characterize the nonlinear elastic properties of the phantom materials. The model assumes incompressible media, in which several strain energy potentials are considered. Finite-element analysis is used to evaluate the performance of this material characterization procedure. The procedures developed allow calibration of nonlinear elastic phantoms for elasticity imaging experiments and finite-element simulations.

  9. Nanoscale piezoelectric vibration energy harvester design

    NASA Astrophysics Data System (ADS)

    Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin

    2017-09-01

    Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  10. Elastic properties and apparent density of human edentulous maxilla and mandible

    PubMed Central

    Seong, Wook-Jin; Kim, Uk-Kyu; Swift, James Q.; Heo, Young-Cheul; Hodges, James S.; Ko, Ching-Chang

    2009-01-01

    The aim of this study aim was to determine whether elastic properties and apparent density of bone differ in different anatomical regions of the maxilla and mandible. Additional analyses assessed how elastic properties and apparent density were related. Four pairs of edentulous maxilla and mandibles were retrieved from fresh human cadavers. Bone samples from four anatomical regions (maxillary anterior, maxillary posterior, mandibular anterior, mandibular posterior) were obtained. Elastic modulus (EM) and hardness (H) were measured using the nano-indentation technique. Bone samples containing cortical and trabecular bone were used to measure composite apparent density (cAD) using Archimedes’ principle. Statistical analyses used repeated measures ANOVA and Pearson correlations. Bone physical properties differed between regions of the maxilla and mandible. Generally, mandible had higher physical property measurements than maxilla. EM and H were higher in posterior than in anterior regions; the reverse was true for cAD. Posterior maxillary cAD was significantly lower than that in the three other regions. PMID:19647417

  11. Elastic properties and apparent density of human edentulous maxilla and mandible.

    PubMed

    Seong, W-J; Kim, U-K; Swift, J Q; Heo, Y-C; Hodges, J S; Ko, C-C

    2009-10-01

    The aim of this study was to determine whether elastic properties and apparent density of bone differ in different anatomical regions of the maxilla and mandible. Additional analyses assessed how elastic properties and apparent density were related. Four pairs of edentulous maxilla and mandibles were retrieved from fresh human cadavers. Bone samples from four anatomical regions (maxillary anterior, maxillary posterior, mandibular anterior, mandibular posterior) were obtained. Elastic modulus (EM) and hardness (H) were measured using the nano-indentation technique. Bone samples containing cortical and trabecular bone were used to measure composite apparent density (cAD) using Archimedes' principle. Statistical analyses used repeated measures ANOVA and Pearson correlations. Bone physical properties differed between regions of the maxilla and mandible. Generally, mandible had higher physical property measurements than maxilla. EM and H were higher in posterior than in anterior regions; the reverse was true for cAD. Posterior maxillary cAD was significantly lower than that in the three other regions.

  12. Elastic properties of uniaxial-fiber reinforced composites - General features

    NASA Astrophysics Data System (ADS)

    Datta, Subhendu; Ledbetter, Hassel; Lei, Ming

    The salient features of the elastic properties of uniaxial-fiber-reinforced composites are examined by considering the complete set of elastic constants of composites comprising isotropic uniaxial fibers in an isotropic matrix. Such materials exhibit transverse-isotropic symmetry and five independent elastic constants in Voigt notation: C(11), C(33), C(44), C(66), and C(13). These C(ij) constants are calculated over the entire fiber-volume-fraction range 0.0-1.0, using a scattered-plane-wave ensemple-average model. Some practical elastic constants such as the principal Young moduli and the principal Poisson ratios are considered, and the behavior of these constants is discussed. Also presented are the results for the four principal sound velocities used to study uniaxial-fiber-reinforced composites: v(11), v(33), v(12), and v(13).

  13. Elastic and Photoelastic Properties of M(NO3)2, MO (M = Mg, Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Zhuravlev, Yu. N.; Korabel'nikov, D. V.

    2017-05-01

    The paper deals with ab initio investigations of elastic and photoelastic properties of oxides and nitrates of alkaline-earth metals. In gradient approximation of the density functional theory (DFT), these properties are studied with the use of the linear combination of the atomic orbital technique. DFT calculations are done with the CRYSTAL 14 software package. The paper introduces the elastic and photoelastic constants, anisotropy parameters for single-crystalline phases and the elastic modules, hardness, Poisson ratio for polycrystalline phases. Such parameters as sonic speed, Debye temperature, thermal conductivity, and Gruneisen parameter are estimated herein. For the fist time, mechanical stability, anisotropy of elastic and photoelastic properties and their dependences are investigated ab initio in this paper. Experimental results on elastic and photoelastic properties of oxides and nitrates are in good agreement with theoretical calculations.

  14. Atomistic calculations of interface elastic properties in noncoherent metallic bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mi Changwen; Jun, Sukky; Kouris, Demitris A.

    2008-02-15

    The paper describes theoretical and computational studies associated with the interface elastic properties of noncoherent metallic bicrystals. Analytical forms of interface energy, interface stresses, and interface elastic constants are derived in terms of interatomic potential functions. Embedded-atom method potentials are then incorporated into the model to compute these excess thermodynamics variables, using energy minimization in a parallel computing environment. The proposed model is validated by calculating surface thermodynamic variables and comparing them with preexisting data. Next, the interface elastic properties of several fcc-fcc bicrystals are computed. The excess energies and stresses of interfaces are smaller than those on free surfacesmore » of the same crystal orientations. In addition, no negative values of interface stresses are observed. Current results can be applied to various heterogeneous materials where interfaces assume a prominent role in the systems' mechanical behavior.« less

  15. Exploring the relationship between nanoscale dynamics and macroscopic rheology in natural polymer gums

    DOE PAGES

    Grein-Iankovski, Aline; Riegel-Vidotti, Izabel C.; Simas-Tosin, Fernanda F.; ...

    2016-11-02

    Here, we report a study connecting the nanoscale and macroscale structure and dynamics of Acacia mearnsii gum as probed by small-angle x-ray scattering (SAXS), x-ray photon correlation spectroscopy (XPCS) and rheology. Acacia gum, in general, is a complex polysaccharide used extensively in industry. Over the analyzed concentration range (15 to 30 wt%) the A. mearnsii gum is found to have a gel-like linear rheology and to exhibit shear thinning flow behavior under steady shear. The gum exhibited a steadily increasing elastic modulus with increasing time after they were prepared and also the emergence of shear thickening events within the shearmore » thinning behavior, characteristic of associative polymers. XPCS measurements using gold nanoparticles as tracers were used to explore the microscopic dynamics within the biopolymer gels and revealed a two-step relaxation process with a partial decay at inaccessibly short times, suggesting caged motion of the nanoparticles, followed by a slow decay at later delay times. Non-diffusive motion evidenced by a compressed exponential line shape and an inverse relationship between relaxation time and wave vector characterizes the slow dynamics of A. mearnsii gum gels. Surprisingly, we have determined that the nanometer-scale mean square displacement of the nanoparticles showed a close relationship to the values predicted from the macroscopic elastic properties of the material, obtained through the rheology experiments. Our results demonstrate the potential applicability of the XPCS technique in the natural polymers field to connect their macroscale properties with their nanoscale structure and dynamics.« less

  16. Exploring the relationship between nanoscale dynamics and macroscopic rheology in natural polymer gums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grein-Iankovski, Aline; Riegel-Vidotti, Izabel C.; Simas-Tosin, Fernanda F.

    Here, we report a study connecting the nanoscale and macroscale structure and dynamics of Acacia mearnsii gum as probed by small-angle x-ray scattering (SAXS), x-ray photon correlation spectroscopy (XPCS) and rheology. Acacia gum, in general, is a complex polysaccharide used extensively in industry. Over the analyzed concentration range (15 to 30 wt%) the A. mearnsii gum is found to have a gel-like linear rheology and to exhibit shear thinning flow behavior under steady shear. The gum exhibited a steadily increasing elastic modulus with increasing time after they were prepared and also the emergence of shear thickening events within the shearmore » thinning behavior, characteristic of associative polymers. XPCS measurements using gold nanoparticles as tracers were used to explore the microscopic dynamics within the biopolymer gels and revealed a two-step relaxation process with a partial decay at inaccessibly short times, suggesting caged motion of the nanoparticles, followed by a slow decay at later delay times. Non-diffusive motion evidenced by a compressed exponential line shape and an inverse relationship between relaxation time and wave vector characterizes the slow dynamics of A. mearnsii gum gels. Surprisingly, we have determined that the nanometer-scale mean square displacement of the nanoparticles showed a close relationship to the values predicted from the macroscopic elastic properties of the material, obtained through the rheology experiments. Our results demonstrate the potential applicability of the XPCS technique in the natural polymers field to connect their macroscale properties with their nanoscale structure and dynamics.« less

  17. A kirigami approach to engineering elasticity in nanocomposites through patterned defects.

    PubMed

    Shyu, Terry C; Damasceno, Pablo F; Dodd, Paul M; Lamoureux, Aaron; Xu, Lizhi; Shlian, Matthew; Shtein, Max; Glotzer, Sharon C; Kotov, Nicholas A

    2015-08-01

    Efforts to impart elasticity and multifunctionality in nanocomposites focus mainly on integrating polymeric and nanoscale components. Yet owing to the stochastic emergence and distribution of strain-concentrating defects and to the stiffening of nanoscale components at high strains, such composites often possess unpredictable strain-property relationships. Here, by taking inspiration from kirigami—the Japanese art of paper cutting—we show that a network of notches made in rigid nanocomposite and other composite sheets by top-down patterning techniques prevents unpredictable local failure and increases the ultimate strain of the sheets from 4 to 370%. We also show that the sheets' tensile behaviour can be accurately predicted through finite-element modelling. Moreover, in marked contrast to other stretchable conductors, the electrical conductance of the stretchable kirigami sheets is maintained over the entire strain regime, and we demonstrate their use to tune plasma-discharge phenomena. The unique properties of kirigami nanocomposites as plasma electrodes open up a wide range of novel technological solutions for stretchable electronics and optoelectronic devices, among other application possibilities.

  18. [Aortic elastic properties and its clinical significance in intracranial aneurysms].

    PubMed

    Pu, Zhao-xia; You, Xiang-dong; Weng, Wen-chao; Wang, Jian-an; Shi, Jian

    2011-09-01

    To investigate the aortic elastic properties and its clinical significance in intracranial aneurysms (IAs). One hundred and seven IAs patients (57 with hypertension) and 108 healthy subjects were recruited. The internal aortic diameters in systole and diastole were measured by the M-mode echocardiography, the aortic elasticity indexes were calculated and compared. The aortic distensibility (DIS) was lower and the aortic stiffness index (SI) was higher in IAs patients than those in controls (both P <0.001). DIS was lower and SI was higher in IAs patients with hypertension (IAs-HP) than those in IAs with no hypertension (P <0.001). Similar results were obtained when the aortic elasticity index were adjusted for body surface area and body mass index. Abnormal aortic elasticity is a common finding in IAs patients and hypertension is closely related to the severity of aortic elasticity.

  19. Nanoscale Morphology, Dimensional Control and Electrical Properties of Oligoanilines

    PubMed Central

    Wang, Yue; Tran, Henry D.; Liao, Lei; Duan, Xiangfeng; Kaner, Richard B.

    2010-01-01

    While nanostructures of organic conductors have generated great interest in recent years, their nanoscale size and shape control remains a significant challenge. Here we report a general method for producing a variety of oligoaniline nanostructures with well-defined morphologies and dimensionalities. 1-D nanowires, 2-D nanoribbons, and 3-D rectangular nanoplates and nanoflowers of tetraaniline are produced by a solvent exchange process in which the dopant acid can be used to tune the oligomer morphology. The process appears to be a general route for producing nanostructures for a variety of other aniline oligomers such as the phenyl-capped tetramer. X-ray diffraction of the tetraniline nanostructures reveals that they possess different packing arrangements, which results in different nanoscale morphologies with different electrical properties for the structures. The conductivity of a single tetraaniline nanostructure is up to two orders of magnitude higher than the highest previously reported value and rivals that of pressed pellets of conventional polyaniline doped with acid. Furthermore, these oligomer nanostructures can be easily processed by a number of methods in order to create thin films composed of aligned nanostructures over a macroscopic area. PMID:20662516

  20. Linear elastic properties derivation from microstructures representative of transport parameters.

    PubMed

    Hoang, Minh Tan; Bonnet, Guy; Tuan Luu, Hoang; Perrot, Camille

    2014-06-01

    It is shown that three-dimensional periodic unit cells (3D PUC) representative of transport parameters involved in the description of long wavelength acoustic wave propagation and dissipation through real foam samples may also be used as a standpoint to estimate their macroscopic linear elastic properties. Application of the model yields quantitative agreement between numerical homogenization results, available literature data, and experiments. Key contributions of this work include recognizing the importance of membranes and properties of the base material for the physics of elasticity. The results of this paper demonstrate that a 3D PUC may be used to understand and predict not only the sound absorbing properties of porous materials but also their transmission loss, which is critical for sound insulation problems.

  1. Extracting elastic properties of an atomically thin interfacial layer by time-domain analysis of femtosecond acoustics

    NASA Astrophysics Data System (ADS)

    Chen, H.-Y.; Huang, Y.-R.; Shih, H.-Y.; Chen, M.-J.; Sheu, J.-K.; Sun, C.-K.

    2017-11-01

    Modern devices adopting denser designs and complex 3D structures have created much more interfaces than before, where atomically thin interfacial layers could form. However, fundamental information such as the elastic property of the interfacial layers is hard to measure. The elastic property of the interfacial layer is of great importance in both thermal management and nano-engineering of modern devices. Appropriate techniques to probe the elastic properties of interfacial layers as thin as only several atoms are thus critically needed. In this work, we demonstrated the feasibility of utilizing the time-resolved femtosecond acoustics technique to extract the elastic properties and mass density of a 1.85-nm-thick interfacial layer, with the aid of transmission electron microscopy. We believe that this femtosecond acoustics approach will provide a strategy to measure the absolute elastic properties of atomically thin interfacial layers.

  2. Property Control of (Perfluorinated Ionomer)/(Inorganic Oxide) Composites by Tailoring the Nanoscale Morphology

    DTIC Science & Technology

    1994-06-10

    RPeport PROPERTY CONTROL OF ( PERFLUORINATED IONOMER)/(INORGANIC OXIDE) COMPOSITES BY TAILORING THE NANOSCALE MORPHOLOGY Kenneth A. Mauritz and Robert...Concept ......................................... 45 B. [Si0 2 -TiO2 (mixed)]/Nafion Nanocomposites: Sorption of Pre-Mixed Alkoxides...Nanocomposites: Sorption of Pre- Mixed Alkoxides ......................................... 49 A. Experimental Procedure ............................. 49 B

  3. Synthesis, Microstructure and Properties of Metallic Materials with Nanoscale Growth Twins

    DTIC Science & Technology

    2006-11-01

    2004: Wu et al, 2005) and austenitic stainless steels (Zhang et al, 2004a; Zhang et al, 2005). However, processing routes to produce nanoscale...mechanical properties (hardness, yield strength, tensile strength) of bulk austenitic stainless steel (304, 310, 316 and 330) are quite similar and...model developed for the formation of growth twins in sputter- deposited austenitic stainless steel thin films (Zhang et al, 2004b). The model predicts

  4. Structural stability, elastic and thermodynamic properties of Au-Cu alloys from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kong, Ge-Xing; Ma, Xiao-Juan; Liu, Qi-Jun; Li, Yong; Liu, Zheng-Tang

    2018-03-01

    Using first-principles calculations method based on density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) implementation of the generalized gradient approximation (GGA), we investigate the structural, elastic and thermodynamic properties of gold-copper intermetallic compounds (Au-Cu ICs). The calculated lattice parameters are in excellent agreement with experimental data. The elastic constants show that all the investigated Au-Cu alloys are mechanically stable. Elastic properties, including the shear modulus, Young's modulus, Poisson's ratio and Pugh's indicator, of the intermetallic compounds are evaluated and discussed, with special attention to the remarkable anisotropy displayed by Au-Cu ICs. Thermodynamic and transport properties including the Debye temperature, thermal conductivity and melting point are predicted from the averaged sound velocity and elastic moduli, using semi-empirical formulas.

  5. Hardrock Elastic Physical Properties: Birch's Seismic Parameter Revisited

    NASA Astrophysics Data System (ADS)

    Wu, M.; Milkereit, B.

    2014-12-01

    Identifying rock composition and properties is imperative in a variety of fields including geotechnical engineering, mining, and petroleum exploration, in order to accurately make any petrophysical calculations. Density is, in particular, an important parameter that allows us to differentiate between lithologies and estimate or calculate other petrophysical properties. It is well established that compressional and shear wave velocities of common crystalline rocks increase with increasing densities (i.e. the Birch and Nafe-Drake relationships). Conventional empirical relations do not take into account S-wave velocity. Physical properties of Fe-oxides and massive sulfides, however, differ significantly from the empirical velocity-density relationships. Currently, acquiring in-situ density data is challenging and problematic, and therefore, developing an approximation for density based on seismic wave velocity and elastic moduli would be beneficial. With the goal of finding other possible or better relationships between density and the elastic moduli, a database of density, P-wave velocity, S-wave velocity, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio was compiled based on a multitude of lab samples. The database is comprised of isotropic, non-porous metamorphic rock. Multi-parameter cross plots of the various elastic parameters have been analyzed in order to find a suitable parameter combination that reduces high density outliers. As expected, the P-wave velocity to S-wave velocity ratios show no correlation with density. However, Birch's seismic parameter, along with the bulk modulus, shows promise in providing a link between observed compressional and shear wave velocities and rock densities, including massive sulfides and Fe-oxides.

  6. Prognostic evaluation of the elastic properties of the ascending aorta in dilated cardiomyopathy.

    PubMed

    Sciatti, Edoardo; Vizzardi, Enrico; Bonadei, Ivano; Fabbricatore, Davide; Prati, Francesco; Pagnoni, Mattia; Metra, Marco

    2018-05-13

    Nowadays there is an increased interest in the role of aortic stiffness in the pathophysiology of heart failure (HF), since it is a major determinant of left ventricular (LV) performance. We aimed at assessing the predictive value of the aortic stiffness parameters, measured by echocardiography, in patients affected by non-ischemic dilated cardiomyopathy (DCM) regarding three end-points: death, HF rehospitalization, combined death or HF rehospitalization in a long-term follow-up. 202 patients affected by non-ischemic DCM underwent an outpatient examination by echocardiography and blood pressure check at the brachial artery, in order to calculate aortic elastic properties (i.e., compliance, distensibility, stiffness index, Peterson's elastic modulus, M-mode strain). ROC curves, Kaplan-Meier curves and multivariable Cox regressions (correcting for age, LV ejection fraction (LVEF), atrial fibrillation, cardiac resynchronization therapy (CRT)) were run to assess the predictive ability of aortic elastic properties against the three endpoints. Mean follow-up was 9.83±2.80 years. 24.8% of patients died, while 34.7% were rehospitalized for HF cause and 44.6% experienced the combined endpoint. LVEF did not correlate with aortic elastic properties. ROC curves and Kaplan-Meier curves were elaborated. Aortic stiffness did not predict death in our cohort. Otherwise, all aortic elastic properties predicted HF rehospitalization and combined death or HF rehospitalization, after correcting for age, LVEF, atrial fibrillation, CRT. Elastic properties of the ascending aorta measured by echocardiography in patients with non-ischemic DCM predict long-term HF rehospitalization and combined death or HF rehospitalization, also after correcting for the confounding factors. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe

    NASA Astrophysics Data System (ADS)

    Saha, S. K.; Dutta, G.

    2016-09-01

    We determine the elastic properties of the layered thermoelectrics BiOCuSe and LaOCuSe using first-principles density functional theory calculations. To predict their stability, we calculate six distinct elastic constants, where all of them are positive, and suggest mechanically stable tetragonal crystals. As elastic properties relate to the nature and the strength of the chemical bond, the latter is analyzed by means of real-space descriptors, such as the electron localization function (ELF) and Bader charge. From elastic constants, a set of related properties, namely, bulk modulus, shear modulus, Young's modulus, sound velocity, Debye temperature, Grüneisen parameter, and thermal conductivity, are evaluated. Both materials are found to be ductile in nature and not brittle. We find BiOCuSe to have a smaller sound velocity and, hence, within the accuracy of the used Slack's model, a smaller thermal conductivity than LaOCuSe. Our calculations also reveal that the elastic properties and the related lattice thermal transport of both materials exhibit a much larger anisotropy than their electronic band properties that are known to be moderately anisotropic because of a moderate effective-electron-mass anisotropy. Finally, we determine the lattice dynamical properties, such as phonon dispersion, atomic displacement, and mode Grüneisen parameters, in order to correlate the elastic response, chemical bonding, and lattice dynamics.

  8. New Frontier in Probing Fluid Transport in Low-Permeability Geomedia: Applications of Elastic and Inelastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hjelm, R.; Sussman, A. J.

    2016-12-01

    Low-permeability geomedia are prevalent in subsurface environments. They have become increasingly important in a wide range of applications such as CO2-sequestration, hydrocarbon recovery, enhanced geothermal systems, legacy waste stewardship, high-level radioactive waste disposal, and global security. The flow and transport characteristics of low-permeability geomedia are dictated by their exceedingly low permeability values ranging from 10-6 to 10-12 darcy with porosities dominated by nanoscale pores. Developing new characterization methods and robust computational models that allow estimation of transport properties of low-permeability geomedia has been identified as a critical basic research and technology development need for controlling subsurface and fluids flow. Due to its sensibility to hydrogen and flexible sample environment, neutron based elastic and inelastic scattering can, through various techniques, interrogate all the nanoscale pores in the sample whether they are fluid accessible or not, and readily characterize interfacial waters. In this presentation, we will present two studies revealing the effects of nanoscale pore confinement on fluid dynamics in geomedia. In one study, we use combined (ultra-small)/small-angle elastic neutron scatterings to probe nanoporous features responses in geological materials to transport processes. In the other study, incoherent inelastic neutron scattering was used to distingwish between intergranular pore water and fluid inclusion moisture in bedded rock salt, and to explore their thermal stablibility. Our work demonstrates that neutron based elastic and inelastic scatterings are techniques of choice for in situ probing hydrocarbon and water behavior in nanoporous materials, providing new insights into water-rock interaction and fluids transport in low-permeability geomaterials.

  9. Acoustic Detection of Phase Transitions at the Nanoscale

    DOE PAGES

    Vasudevan, Rama K.; Khassaf, Hamidreza; Cao, Ye; ...

    2016-01-25

    On page 478, N. Bassiri-Gharb and co-workers demonstrate acoustic detection in nanoscale volumes by use of an atomic force microscope tip technique. Elastic changes in volume are measured by detecting changes in resonance of the cantilever. Also, the electric field in this case causes a phase transition, which is modeled by Landau theory.

  10. First-principles calculations for elastic properties of OsB 2 under pressure

    NASA Astrophysics Data System (ADS)

    Yang, Jun-Wei; Chen, Xiang-Rong; Luo, Fen; Ji, Guang-Fu

    2009-11-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.

  11. The asymptotic homogenization elasticity tensor properties for composites with material discontinuities

    NASA Astrophysics Data System (ADS)

    Penta, Raimondo; Gerisch, Alf

    2017-01-01

    The classical asymptotic homogenization approach for linear elastic composites with discontinuous material properties is considered as a starting point. The sharp length scale separation between the fine periodic structure and the whole material formally leads to anisotropic elastic-type balance equations on the coarse scale, where the arising fourth rank operator is to be computed solving single periodic cell problems on the fine scale. After revisiting the derivation of the problem, which here explicitly points out how the discontinuity in the individual constituents' elastic coefficients translates into stress jump interface conditions for the cell problems, we prove that the gradient of the cell problem solution is minor symmetric and that its cell average is zero. This property holds for perfect interfaces only (i.e., when the elastic displacement is continuous across the composite's interface) and can be used to assess the accuracy of the computed numerical solutions. These facts are further exploited, together with the individual constituents' elastic coefficients and the specific form of the cell problems, to prove a theorem that characterizes the fourth rank operator appearing in the coarse-scale elastic-type balance equations as a composite material effective elasticity tensor. We both recover known facts, such as minor and major symmetries and positive definiteness, and establish new facts concerning the Voigt and Reuss bounds. The latter are shown for the first time without assuming any equivalence between coarse and fine-scale energies ( Hill's condition), which, in contrast to the case of representative volume elements, does not identically hold in the context of asymptotic homogenization. We conclude with instructive three-dimensional numerical simulations of a soft elastic matrix with an embedded cubic stiffer inclusion to show the profile of the physically relevant elastic moduli (Young's and shear moduli) and Poisson's ratio at increasing (up to

  12. Nanoscale phase change memory materials.

    PubMed

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  13. Nanoscale thermal transport: Theoretical method and application

    NASA Astrophysics Data System (ADS)

    Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2018-03-01

    With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).

  14. Nanoscale Strontium Titanate Sheets and Crystals

    NASA Astrophysics Data System (ADS)

    Tilka, Jack Andrew

    The physical properties of materials are dominated by their structure and composition. Insight into the structure of complex oxide materials has the potential to improve our understanding and eventually control of their physical properties. This PhD thesis reports the development of characterization and fabrication techniques relevant to improving the scientific understanding of complex oxide materials. The work presented here has two components. I report a way to use ideas that were originally developed in semiconductor processing to control the elastic strain state and crystallization process of the model complex oxide SrTiO3. An additional component is an important series of advances in the analysis of diffraction patterns acquired with focused x-ray nanobeams. The fabrication and characterization of nanoscale SrTiO3 has been experimentally shown to allow the introduction of elastic strain into SrTiO3. The creation of thin SrTiO3 crystals from (001)-oriented SrTiO3 bulk single crystals using focused ion beam milling techniques yields sheets with submicron thickness and arbitrary orientation within the (001) plane. Synchrotron x-ray nanodiffraction experiments show that the SrTiO 3 sheets have rocking curves with angular widths less than 0.02°. These widths are less than a factor of two larger than bulk SrTiO3, which shows that the sheets are suitable substrates for epitaxial thin film growth. A precisely selected elastic strain can be introduced into the SrTiO 3 sheets using a silicon nitride stressor layer. Synchrotron x-ray nanodiffraction studies show that the strain introduced in the SrTiO3 sheets is on the order of 10-4, matching the predictions of an elastic model. This approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect not achievable in heteroepitaxy on rigid substrates. An additional fabrication technique is also evaluated here based on the crystallization of Sr

  15. Effects of temperature distribution and elastic properties of materials on gas-turbine-disk stresses

    NASA Technical Reports Server (NTRS)

    Holms, Arthur G; Faldetta, Richard D

    1947-01-01

    Calculations were made to determine the influence of changes in temperature distribution and in elastic material properties on calculated elastic stresses for a typical gas-turbine disk. Severe temperature gradients caused thermal stresses of sufficient magnitude to reduce the operating safety of the disk. Small temperature gradients were found to be desirable because they produced thermal stresses that subtracted from the centrifugal stresses in the region of the rim. The thermal gradients produced a tendency for a severe stress condition to exist near the rim but this stress condition could be shifted away from the region of blade attachment by altering the temperature distribution. The investigation of elastic material properties showed that centrifugal stresses are slightly affected by changes in modulus of elasticity, but that thermal stresses are approximately proportional to modulus of elasticity and to coefficient of thermal expansion.

  16. Hardness, elastic, and electronic properties of chromium monoboride

    DOE PAGES

    Han, Lei; Wang, Shanmin; Zhu, Jinlong; ...

    2015-06-03

    Here, we report high-pressure synthesis of chromium monoboride (CrB) at 6 GPa and 1400 K. The elastic and plastic behaviors have been investigated by hydrostatic compression experiment and micro-indentation measurement. CrB is elastically incompressible with a high bulk modulus of 269.0 (5.9) GPa and exhibits a high Vickers hardness of 19.6 (0.7) GPa under the load of 1 kg force. Based on first principles calculations, the observed mechanical properties are attributed to the polar covalent Cr-B bonds interconnected with strong zigzag B-B covalent bonding network. The presence of metallic Cr bilayers is presumably responsible for the weakest paths in shearmore » deformation.« less

  17. Elastic properties of external cortical bone in the craniofacial skeleton of the rhesus monkey.

    PubMed

    Wang, Qian; Dechow, Paul C

    2006-11-01

    Knowledge of elastic properties and of their variation in the cortical bone of the craniofacial skeleton is indispensable for creating accurate finite-element models to explore the biomechanics and adaptation of the skull in primates. In this study, we measured elastic properties of the external cortex of the rhesus monkey craniofacial skeleton, using an ultrasonic technique. Twenty-eight cylindrical cortical specimens were removed from each of six craniofacial skeletons of adult Macaca mulatta. Thickness, density, and a set of longitudinal and transverse ultrasonic velocities were measured on each specimen to allow calculation of the elastic properties in three dimensions, according to equations derived from Newton's second law and Hooke's law. The axes of maximum stiffness were determined by fitting longitudinal velocities measured along the perimeter of each cortical specimen to a sinusoidal function. Results showed significant differences in elastic properties between different functional areas of the rhesus cranium, and that many sites have a consistent orientation of maximum stiffness among specimens. Overall, the cortical bones of the rhesus monkey skull can be modeled as orthotropic in many regions, and as transversely isotropic in some regions, e.g., the supraorbital region. There are differences from human crania, suggesting that structural differences in skeletal form relate to differences in cortical material properties across species. These differences also suggest that we require more comparative data on elastic properties in primate craniofacial skeletons to explore effectively the functional significance of these differences, especially when these differences are elucidated through modeling approaches, such as finite-element modeling. (c) 2006 Wiley-Liss, Inc.

  18. Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure.

    PubMed

    Ghanbari, J; Naghdabadi, R

    2009-07-22

    We have used a hierarchical multiscale modeling scheme for the analysis of cortical bone considering it as a nanocomposite. This scheme consists of definition of two boundary value problems, one for macroscale, and another for microscale. The coupling between these scales is done by using the homogenization technique. At every material point in which the constitutive model is needed, a microscale boundary value problem is defined using a macroscopic kinematical quantity and solved. Using the described scheme, we have studied elastic properties of cortical bone considering its nanoscale microstructural constituents with various mineral volume fractions. Since the microstructure of bone consists of mineral platelet with nanometer size embedded in a protein matrix, it is similar to the microstructure of soft matrix nanocomposites reinforced with hard nanostructures. Considering a representative volume element (RVE) of the microstructure of bone as the microscale problem in our hierarchical multiscale modeling scheme, the global behavior of bone is obtained under various macroscopic loading conditions. This scheme may be suitable for modeling arbitrary bone geometries subjected to a variety of loading conditions. Using the presented method, mechanical properties of cortical bone including elastic moduli and Poisson's ratios in two major directions and shear modulus is obtained for different mineral volume fractions.

  19. Nanoscale roughness contact in a slider-disk interface.

    PubMed

    Hua, Wei; Liu, Bo; Yu, Shengkai; Zhou, Weidong

    2009-07-15

    The nanoscale roughness contact between molecularly smooth surfaces of a slider-disk interface in a hard disk drive is analyzed, and the lubricant behavior at very high shear rate is presented. A new contact model is developed to study the nanoscale roughness contact behavior by classifying various forms of contact into slider-lubricant contact, slider-disk elastic contact and plastic contact. The contact pressure and the contact probabilities of the three types of contact are investigated. The new contact model is employed to explain and provide insight to an interesting experimental result found in a thermal protrusion slider. The protrusion budget for head surfing in the lubricant, which is the ideal state for contact recording, is also discussed.

  20. Ultrasonic Characterization of the Linear Elastic Properties of Myocardium and Other Anisotropic Soft Tissues

    NASA Astrophysics Data System (ADS)

    Hoffmeister, Brentley Keith

    1995-01-01

    This thesis seeks to contribute to a better understanding of the physics of interaction of ultrasonic waves with inhomogeneous and anisotropic media, one example of which is the human heart. The clinical success of echocardiography has generated a considerable interest in the development of ultrasonic techniques to measure the elastic properties of heart tissue. It is hypothesized that the elastic properties of myocardium are influenced by the interstitial content and organization of collagen. Collagen, which is the main component of tendon, interconnects the muscle cells of the heart to form locally unidirectional myofibers. This thesis therefore employs ultrasonic techniques to characterize the linear elastic properties of both heart and tendon. The linear elastic properties of tissues possessing a unidirectional arrangement of fibers may be described in terms of five independent elastic stiffness coefficients. Three of these coefficients were determined for formalin fixed specimens of bovine Achilles tendon and human myocardium by measuring the velocity of longitudinal mode ultrasonic pulses as a function of angle of propagation relative to the fiber axis of the tissue. The remaining two coefficients were determined by measuring the velocity of transverse mode ultrasonic waves through these tissues. To overcome technical difficulties associated with the extremely high attenuation of transverse mode waves at low megahertz frequencies, a novel measurement system was developed based on the sampled continuous wave technique. Results of these measurements were used to assess the influence of interstitial collagen, and to model the mechanical properties of heart wall.

  1. Elastic properties of Sr- and Mg-doped lanthanum gallate at elevated temperature

    NASA Astrophysics Data System (ADS)

    Okamura, T.; Shimizu, S.; Mogi, M.; Tanimura, M.; Furuya, K.; Munakata, F.

    The elastic moduli, i.e., Young's modulus, shear modulus and Poisson's ratio, of a sintered La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ bulk have been experimentally determined in the temperature range from room temperature to 1373 K using a resonance technique. Anomalous elastic properties were observed over a wide temperature range from 473 to 1173 K. In the results for internal friction and in X-ray diffraction measurements at elevated temperature, two varieties of structural changes were seen in La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ in the examined temperature range. The results agreed with the findings of a previous crystallographic study of the same composition system by Slater et al. In addition, the temperature range in which a successive structural change occurred in La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ was the same as that exhibiting the anomalous elastic properties. Taking all the results together, it can be inferred that the successive structural change in the significant temperature range is responsible for the elastic property anomaly of La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ.

  2. Bulk microstructure and local elastic properties of carbon nanocomposites studied by impulse acoustic microscopy technique

    NASA Astrophysics Data System (ADS)

    Levin, V.; Petronyuk, Yu.; Morokov, E.; Chernozatonskii, L.; Kuzhir, P.; Fierro, V.; Celzard, A.; Bellucci, S.; Bistarelli, S.; Mastrucci, M.; Tabacchioni, I.

    2016-05-01

    Bulk microstructure and elastic properties of epoxy-nanocarbon nanocomposites for diverse types and different content of carbon nanofiller has been studied by using impulse acoustic microscopy technique. It has been shown occurrence of various types of mesoscopic structure formed by nanoparticles inside the bulk of nanocomposite materials, including nanoparticle conglomerates and nanoparticle aerogel systems. In spite of the bulk microstructure, nanocarbon composites demonstrate elastic uniformity and negligible influence of nanofiller on elastic properties of carbon nanocomposite materials.

  3. Determining the elastic properties of aptamer-ricin single molecule multiple pathway interactions

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Park, Bosoon; Kwon, Yongkuk; Xu, Bingqian

    2014-05-01

    We report on the elastic properties of ricin and anti-ricin aptamer interactions, which showed three stable binding conformations, each of which has its special elastic properties. These different unbinding pathways were investigated by the dynamic force spectroscopy. A series-spring model combining the worm-like-chain model and Hook's law was used to estimate the apparent spring constants of the aptamer and linker molecule polyethylene glycol. The aptamer in its three different unbinding pathways showed different apparent spring constants. The two reaction barriers in the unbinding pathways also influence the apparent spring constant of the aptamer. This special elastic behavior of aptamer was used to distinguish its three unbinding pathways under different loading rates. This method also offered a way to distinguish and discard the non-specific interactions in single molecule experiments.

  4. Investigation of Specificity of Mechanical Properties of Hard Materials on Nanoscale with Use of SPM- Nanohardness Tester

    NASA Astrophysics Data System (ADS)

    Lvova, N. A.; Blank, V. D.; Gogolinskiy, K. V.; Kulibaba, V. F.

    2007-04-01

    Specifisities of deformation on nanoscale of hard brittle materials with the hardness exceeding 10 GP by means of scanning probe microscope - nanohardness tester "NanoScan" are investigated. It is found, that pile-up is forming at scratching of sample surface with use of diamond indenter. Heigh of this pile-up depends on hardness and elastic modulus of the material. Definition of the contact area without taking into account height of pile-up leads to an overestimation of hardness values. At scratching of silicon carbide surface a transition from plastic flow to fracture is found out. The results received allowed to estimate fracture toughness KIC for silicon carbide.

  5. Probing and manipulating magnetization at the nanoscale

    NASA Astrophysics Data System (ADS)

    Samarth, Nitin

    2012-02-01

    Combining semiconductors with magnetism in hetero- and nano-structured geometries provides a powerful means of exploring the interplay between spin-dependent transport and nanoscale magnetism. We describe two recent studies in this context. First, we use spin-dependent transport in ferromagnetic semiconductor thin films to provide a new window into nanoscale magnetism [1]: here, we exploit the large anomalous Hall effect in a ferromagnetic semiconductor as a nanoscale probe of the reversible elastic behavior of magnetic domain walls and gain insight into regimes of domain wall behavior inaccessible to more conventional optical techniques. Next, we describe novel ways to create self-assembled hybrid semiconductor/ferromagnet core-shell nanowires [2] and show how magnetoresistance measurements in single nanowires, coupled with micromagnetic simulations, can provide detailed insights into the magnetization reversal process in nanoscale ferromagnets [3]. The work described here was carried out in collaboration with Andrew Balk, Jing Liang, Nicholas Dellas, Mark Nowakowski, David Rench, Mark Wilson, Roman Engel-Herbert, Suzanne Mohney, Peter Schiffer and David Awschalom. This work is supported by ONR, NSF and the NSF-MRSEC program.[4pt] [1] A. L. Balk et al., Phys. Rev.Lett. 107, 077205 (2011).[0pt] [2] N. J. Dellas et al., Appl. Phys. Lett. 97, 072505 (2010).[0pt] [3] J. Liang et al., in preparation.

  6. Nanoscale defect architectures and their influence on material properties

    NASA Astrophysics Data System (ADS)

    Campbell, Branton

    2006-10-01

    Diffraction studies of long-range order often permit one to unambiguously determine the atomic structure of a crystalline material. Many interesting material properties, however, are dominated by nanoscale crystal defects that can't be characterized in this way. Fortunately, advances in x-ray detector technology, synchrotron x-ray source brightness, and computational power make it possible to apply new methods to old problems. Our research group uses multi-megapixel x-ray cameras to map out large contiguous volumes of reciprocal space, which can then be visually explored using graphics engines originally developed by the video-game industry. Here, I will highlight a few recent examples that include high-temperature superconductors, colossal magnetoresistors and piezoelectric materials.

  7. Elastic properties of a porous titanium-bone tissue composite.

    PubMed

    Rubshtein, A P; Makarova, E B; Rinkevich, A B; Medvedeva, D S; Yakovenkova, L I; Vladimirov, A B

    2015-01-01

    The porous titanium implants were introduced into the condyles of tibias and femurs of sheep. New bone tissue fills the pore, and the porous titanium-new bone tissue composite is formed. The duration of composite formation was 4, 8, 24 and 52 weeks. The formed composites were extracted from the bone and subjected to a compression test. The Young's modulus was calculated using the measured stress-strain curve. The time dependence of the Young's modulus of the composite was obtained. After 4 weeks the new bone tissue that filled the pores does not affect the elastic properties of implants. After 24 and 52 weeks the Young's modulus increases by 21-34% and 62-136%, respectively. The numerical calculations of the elasticity of porous titanium-new bone tissue composite were conducted using a simple polydisperse model that is based on the consideration of heterogeneous structure as a continuous medium with spherical inclusions of different sizes. The kinetics of the change in the elasticity of the new bone tissue is presented via the intermediate characteristics, namely the relative ultimate tensile strength or proportion of mature bone tissue in the bone tissue. The calculated and experimentally measured values of the Young's modulus of the composite are in good agreement after 8 weeks of composite formation. The properties of the porous titanium-new bone tissue composites can only be predicted when data on the properties of new bone tissue are available after 8 weeks of contact between the implant and the native bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Determining the elastic properties of aptamer-ricin single molecule multiple pathways

    USDA-ARS?s Scientific Manuscript database

    Ricin and an anti-ricin aptamer showed three stable binding conformations with their special chemomechanical properties. The elastic properties of the ricin-aptamer single-molecule interactions were investigated by the dynamic force spectroscopy (DFS). The worm-like-chain model and Hook’s law were ...

  9. Elastic properties of gas hydrate-bearing sediments

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2001-01-01

    Downhole-measured compressional- and shear-wave velocities acquired in the Mallik 2L-38 gas hydrate research well, northwestern Canada, reveal that the dominant effect of gas hydrate on the elastic properties of gas hydrate-bearing sediments is as a pore-filling constituent. As opposed to high elastic velocities predicted from a cementation theory, whereby a small amount of gas hydrate in the pore space significantly increases the elastic velocities, the velocity increase from gas hydrate saturation in the sediment pore space is small. Both the effective medium theory and a weighted equation predict a slight increase of velocities from gas hydrate concentration, similar to the field-observed velocities; however, the weighted equation more accurately describes the compressional- and shear-wave velocities of gas hydrate-bearing sediments. A decrease of Poisson's ratio with an increase in the gas hydrate concentration is similar to a decrease of Poisson's ratio with a decrease in the sediment porosity. Poisson's ratios greater than 0.33 for gas hydrate-bearing sediments imply the unconsolidated nature of gas hydrate-bearing sediments at this well site. The seismic characteristics of gas hydrate-bearing sediments at this site can be used to compare and evaluate other gas hydrate-bearing sediments in the Arctic.

  10. The integration of elastic wave properties and machine learning for the distribution of petrophysical properties in reservoir modeling

    NASA Astrophysics Data System (ADS)

    Ratnam, T. C.; Ghosh, D. P.; Negash, B. M.

    2018-05-01

    Conventional reservoir modeling employs variograms to predict the spatial distribution of petrophysical properties. This study aims to improve property distribution by incorporating elastic wave properties. In this study, elastic wave properties obtained from seismic inversion are used as input for an artificial neural network to predict neutron porosity in between well locations. The method employed in this study is supervised learning based on available well logs. This method converts every seismic trace into a pseudo-well log, hence reducing the uncertainty between well locations. By incorporating the seismic response, the reliance on geostatistical methods such as variograms for the distribution of petrophysical properties is reduced drastically. The results of the artificial neural network show good correlation with the neutron porosity log which gives confidence for spatial prediction in areas where well logs are not available.

  11. Nanoscale Mechanical Properties of Nanoindented Ni48.8Mn27.2Ga24 Ferromagnetic Shape Memory Thin Film

    PubMed Central

    Fu, Xiaofei; Li, Xianli; Lv, Jingwei; Wang, Famei; Wang, Liying

    2017-01-01

    The structure and nanoscale mechanical properties of Ni48.8Mn27.2Ga24 thin film fabricated by DC magnetron sputtering are investigated systematically. The thin film has the austenite state at room temperature with the L21 Hesuler structure. During nanoindentation, stress-induced martensitic transformation occurs on the nanoscale for the film annealed at 823 K for 1 hour and the shape recovery ratio is up to 85.3%. The associated mechanism is discussed. PMID:29109812

  12. A new model to simulate the elastic properties of mineralized collagen fibril.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, F.; Stock, S.R.; Haeffner, D.R.

    Bone, because of its hierarchical composite structure, exhibits an excellent combination of stiffness and toughness, which is due substantially to the structural order and deformation at the smaller length scales. Here, we focus on the mineralized collagen fibril, consisting of hydroxyapatite plates with nanometric dimensions aligned within a protein matrix, and emphasize the relationship between the structure and elastic properties of a mineralized collagen fibril. We create two- and three-dimensional representative volume elements to represent the structure of the fibril and evaluate the importance of the parameters defining its structure and properties of the constituent mineral and collagen phase. Elasticmore » stiffnesses are calculated by the finite element method and compared with experimental data obtained by synchrotron X-ray diffraction. The computational results match the experimental data well, and provide insight into the role of the phases and morphology on the elastic deformation characteristics. Also, the effects of water, imperfections in the mineral phase and mineral content outside the mineralized collagen fibril upon its elastic properties are discussed.« less

  13. A new model to simulate the elastic properties of mineralized collagen fibril

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, F.; Stock, S.R.; Haeffner, D.R.

    Bone, because of its hierarchical composite structure, exhibits an excellent combination of stiffness and toughness, which is due substantially to the structural order and deformation at the smaller length scales. Here, we focus on the mineralized collagen fibril, consisting of hydroxyapatite plates with nanometric dimensions aligned within a protein matrix, and emphasize the relationship between the structure and elastic properties of a mineralized collagen fibril. We create two- and three-dimensional representative volume elements to represent the structure of the fibril and evaluate the importance of the parameters defining its structure and properties of the constituent mineral and collagen phase. Elasticmore » stiffnesses are calculated by the finite element method and compared with experimental data obtained by synchrotron X-ray diffraction. The computational results match the experimental data well, and provide insight into the role of the phases and morphology on the elastic deformation characteristics. Also, the effects of water, imperfections in the mineral phase and mineral content outside the mineralized collagen fibril upon its elastic properties are discussed.« less

  14. Low-temperature elastic properties of YbSbPt probed by ultrasound measurements

    NASA Astrophysics Data System (ADS)

    Nakanishi, Y.; Takahashi, S.; Ohyama, R.; Hasegawa, J.; Nakamura, M.; Suzuki, H.; Yoshizawa, M.

    2018-03-01

    The elastic properties of a single crystal of the half-Heusler compound YbSbPt have been investigated by means of the ultrasonic measurement. In particular, careful measurements of the temperature (T) dependent elastic constant C 11(T) was performed in the vicinity of its phase transition point near T N of 0.5 K. A clear step-like anomaly accompanied by spin-density-wave type antiferromagnetic (AFM) phase transition was found in the C 11(T) curve. The low-temperature magnetic phase diagram is proposed on the basis of the results. The phase diagram consists of, at least two main distinct phases: a low-field and high-field regime with a transition field of approximately 0.6 T at zero field. We discuss the low-temperature elastic property based on analysis of Landau-type free energy.

  15. Theoretical investigations on structural, elastic and electronic properties of thallium halides

    NASA Astrophysics Data System (ADS)

    Singh, Rishi Pal; Singh, Rajendra Kumar; Rajagopalan, Mathrubutham

    2011-04-01

    Theoretical investigations on structural, elastic and electronic properties, viz. ground state lattice parameter, elastic moduli and density of states, of thallium halides (viz. TlCl and TlBr) have been made using the full potential linearized augmented plane wave method within the generalized gradient approximation (GGA). The ground state lattice parameter and bulk modulus and its pressure derivative have been obtained using optimization method. Young's modulus, shear modulus, Poisson ratio, sound velocities for longitudinal and shear waves, Debye average velocity, Debye temperature and Grüneisen parameter have also been calculated for these compounds. Calculated structural, elastic and other parameters are in good agreement with the available data.

  16. Micro-CT based finite element models for elastic properties of glass-ceramic scaffolds.

    PubMed

    Tagliabue, Stefano; Rossi, Erica; Baino, Francesco; Vitale-Brovarone, Chiara; Gastaldi, Dario; Vena, Pasquale

    2017-01-01

    In this study, the mechanical properties of porous glass-ceramic scaffolds are investigated by means of three-dimensional finite element models based on micro-computed tomography (micro-CT) scan data. In particular, the quantitative relationship between the morpho-architectural features of the obtained scaffolds, such as macroscopic porosity and strut thickness, and elastic properties, is sought. The macroscopic elastic properties of the scaffolds have been obtained through numerical homogenization approaches using the mechanical characteristics of the solid walls of the scaffolds (assessed through nanoindentation) as input parameters for the numerical simulations. Anisotropic mechanical properties of the produced scaffolds have also been investigated by defining a suitable anisotropy index. A comparison with morphological data obtained through the micro-CT scans is also presented. The proposed study shows that the produced glass-ceramic scaffolds exhibited a macroscopic porosity ranging between 29% and 97% which corresponds to an average stiffness ranging between 42.4GPa and 36MPa. A quantitative estimation of the isotropy of the macroscopic elastic properties has been performed showing that the samples with higher solid fractions were those closest to an isotropic material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Acoustic and elastic properties of Sn(2)P(2)S(6) crystals.

    PubMed

    Mys, O; Martynyuk-Lototska, I; Grabar, A; Vlokh, R

    2009-07-01

    We present the results concerned with acoustic and elastic properties of Sn(2)P(2)S(6) crystals. The complete matrices of elastic stiffness and compliance coefficients are determined in both the crystallographic coordinate system and the system associated with eigenvectors of the elastic stiffness tensor. The acoustic slowness surfaces are constructed and the propagation and polarization directions of the slowest acoustic waves promising for acousto-optic interactions are determined on this basis. The acoustic obliquity angle and the deviation of polarization of the acoustic waves from purely transverse or longitudinal states are quantitatively analysed.

  18. Elastic, mechanical, and thermodynamic properties of Bi-Sb binaries: Effect of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Singh, Sobhit; Valencia-Jaime, Irais; Pavlic, Olivia; Romero, Aldo H.

    2018-02-01

    Using first-principles calculations, we systematically study the elastic stiffness constants, mechanical properties, elastic wave velocities, Debye temperature, melting temperature, and specific heat of several thermodynamically stable crystal structures of BixSb1 -x (0 properties, such as thermoelectricity, thermomagnetic cooling, strong spin-orbit coupling (SOC) effects, and topological features in the electronic band structure. We analyze the bulk modulus (B ), Young's modulus (E ), shear modulus (G ), B /G ratio, and Poisson's ratio (ν ) as a function of the Bi concentration in BixSb1 -x . The effect of SOC on the above-mentioned properties is further investigated. In general, we observe that the SOC effects cause elastic softening in most of the studied structures. Three monoclinic structures of Bi-Sb binaries are found to exhibit significantly large auxetic behavior due to the hingelike geometric structure of bonds. The Debye temperature and the magnitude of the elastic wave velocities monotonically increase with increasing Sb concentration. However, anomalies were observed at very low Sb concentration. We also discuss the specific-heat capacity versus temperature data for all studied binaries. Our theoretical results are in excellent agreement with the existing experimental and theoretical data. The comprehensive understanding of the material properties such as hardness, mechanical strength, melting temperature, propagation of the elastic waves, auxeticity, and heat capacity is vital for practical applications of the studied binaries.

  19. Nanoscale effects of silica particle supports on the formation and properties of TiO2 nanocatalysts

    NASA Astrophysics Data System (ADS)

    Li, Aize; Jin, Yuhui; Muggli, Darrin; Pierce, David T.; Aranwela, Hemantha; Marasinghe, Gaya K.; Knutson, Theodore; Brockman, Greg; Zhao, Julia Xiaojun

    2013-06-01

    Small TiO2 crystals in the anatase phase are in high demand as photocatalysts. Stable TiO2 crystals in the anatase phase were obtained using a silica nanoparticle as a support. The focus of this study was to investigate the nanoscale effect of the silica support on the formation and properties of small anatase crystals. The experiments were carried out using powder X-ray diffraction, differential thermal analysis, transmission electron microscopy, and energy dispersion spectroscopy. The results showed that the size of the silica support played a crucial role in crystallization of TiO2 and regulation of TiO2 properties, including phase transition, crystal size, thermodynamic property and catalytic activity. A nanoscale curvature model of the spherical silica support was proposed to explain these size effects. Finally, the developed TiO2 catalysts were applied to the oxidation of methanol using a high-throughput photochemical reactor. The size effect of the silica supports on the TiO2 catalytic efficiency was demonstrated using this system.

  20. Dehomogenized Elastic Properties of Heterogeneous Layered Materials in AFM Indentation Experiments.

    PubMed

    Lee, Jia-Jye; Rao, Satish; Kaushik, Gaurav; Azeloglu, Evren U; Costa, Kevin D

    2018-06-05

    Atomic force microscopy (AFM) is used to study mechanical properties of biological materials at submicron length scales. However, such samples are often structurally heterogeneous even at the local level, with different regions having distinct mechanical properties. Physical or chemical disruption can isolate individual structural elements but may alter the properties being measured. Therefore, to determine the micromechanical properties of intact heterogeneous multilayered samples indented by AFM, we propose the Hybrid Eshelby Decomposition (HED) analysis, which combines a modified homogenization theory and finite element modeling to extract layer-specific elastic moduli of composite structures from single indentations, utilizing knowledge of the component distribution to achieve solution uniqueness. Using finite element model-simulated indentation of layered samples with micron-scale thickness dimensions, biologically relevant elastic properties for incompressible soft tissues, and layer-specific heterogeneity of an order of magnitude or less, HED analysis recovered the prescribed modulus values typically within 10% error. Experimental validation using bilayer spin-coated polydimethylsiloxane samples also yielded self-consistent layer-specific modulus values whether arranged as stiff layer on soft substrate or soft layer on stiff substrate. We further examined a biophysical application by characterizing layer-specific microelastic properties of full-thickness mouse aortic wall tissue, demonstrating that the HED-extracted modulus of the tunica media was more than fivefold stiffer than the intima and not significantly different from direct indentation of exposed media tissue. Our results show that the elastic properties of surface and subsurface layers of microscale synthetic and biological samples can be simultaneously extracted from the composite material response to AFM indentation. HED analysis offers a robust approach to studying regional micromechanics of

  1. Surface elastic properties in silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Melis, Claudio; Giordano, Stefano; Colombo, Luciano

    2017-09-01

    The elastic behavior of the external surface of a solid body plays a key role in nanomechanical phenomena. While bulk elasticity enjoys the benefits of a robust theoretical understanding, many surface elasticity features remain unexplored: some of them are here addressed by blending together continuum elasticity and atomistic simulations. A suitable readdressing of the surface elasticity theory allows to write the balance equations in arbitrary curvilinear coordinates and to investigate the dependence of the surface elastic parameters on the mean and Gaussian curvatures of the surface. In particular, we predict the radial strain induced by surface effects in spherical and cylindrical silicon nanoparticles and provide evidence that the surface parameters are nearly independent of curvatures and, therefore, of the surface conformation.

  2. Mesocrystalline calcium silicate hydrate: A bioinspired route toward elastic concrete materials

    PubMed Central

    Picker, Andreas; Nicoleau, Luc; Burghard, Zaklina; Bill, Joachim; Zlotnikov, Igor; Labbez, Christophe; Nonat, André; Cölfen, Helmut

    2017-01-01

    Calcium silicate hydrate (C-S-H) is the binder in concrete, the most used synthetic material in the world. The main weakness of concrete is the lack of elasticity and poor flexural strength considerably limiting its potential, making reinforcing steel constructions necessary. Although the properties of C-S-H could be significantly improved in organic hybrids, the full potential of this approach could not be reached because of the random C-S-H nanoplatelet structure. Taking inspiration from a sea urchin spine with highly ordered nanoparticles in the biomineral mesocrystal, we report a bioinspired route toward a C-S-H mesocrystal with highly aligned C-S-H nanoplatelets interspaced with a polymeric binder. A material with a bending strength similar to nacre is obtained, outperforming all C-S-H–based materials known to date. This strategy could greatly benefit future construction processes because fracture toughness and elasticity of brittle cementitious materials can be largely enhanced on the nanoscale. PMID:29209660

  3. Nanoscale investigation of the piezoelectric properties of perovskite ferroelectrics and III-nitrides

    NASA Astrophysics Data System (ADS)

    Rodriguez, Brian Joseph

    Nanoscale characterization of the piezoelectric and polarization related properties of III-Nitrides by piezoresponse force microscopy (PFM), electrostatic force microscopy (EFM) and scanning Kelvin probe microscopy (SKPM) resulted in the measurement of piezoelectric constants, surface charge and surface potential. Photo-electron emission microscopy (PEEM) was used to determine the local electronic band structure of a GaN-based lateral polarity heterostructure (GaN-LPH). Nanoscale characterization of the imprint and switching behavior of ferroelectric thin films by PFM resulted in the observation of domain pinning, while nanoscale characterization of the spatial variations in the imprint and switching behavior of integrated (111)-oriented PZT-based ferroelectric random access memory (FRAM) capacitors by PFM have revealed a significant difference in imprint and switching behavior between the inner and outer parts of capacitors. The inner regions of the capacitors are typically negatively imprinted and consequently tend to switch back after being poled by a positive bias, while regions at the edge of the capacitors tend to exhibit more symmetric hysteresis behavior. Evidence was obtained indicating that mechanical stress conditions in the central regions of the capacitors can lead to incomplete switching. A combination of vertical and lateral piezoresponse force microscopy (VPFM and LPFM, respectively) has been used to map the out-of-plane and in-plane polarization distribution, respectively, of integrated (111)-oriented PZT-based capacitors, which revealed poled capacitors are in a polydomain state.

  4. Numerical Analysis of the Elastic Properties of 3D Needled Carbon/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Yan, Y.; Li, X.; Guo, F.

    2017-09-01

    Based on the observation of microstructures of 3D needled carbon/carbon (C/C) composites, a model of their representative volume element (RVE) considering the true distribution of fibers is established. Using the theories of mesoscopic mechanics and introducing periodic boundary conditions for displacements, their elastic properties, with account of porosity, are determined by finite-element methods. Quasi-static tensile tests were carried out, and the numerical predictions were found to be in good agreement with test results. This means that the RVE model of 3D needled C/C composites can predict their elastic properties efficiently. The effects of needling density, radius of needled fibers, and thickness ratio of a short-cut fiber web and a weftless ply on the elastic constants of the composites are analyzed.

  5. Temperature dependent elastic properties of γ-phase U – 8 wt% Mo

    DOE PAGES

    Steiner, M. A.; Garlea, E.; Creasy, J.; ...

    2017-12-28

    Polycrystalline elastic moduli and stiffness tensor components of γ-phase U – 8 wt% Mo have been determined by resonant ultrasound spectroscopy in the temperature range of 25-650°C. The ambient temperature elastic properties are compared to results measured via other experimental methods and show reasonable agreement, though there is considerable variation of these properties within the literature at both the U – 8 wt% Mo composition and as a function of Mo concentration. The Young’s modulus of U – 8 wt% Mo measured in this study decreases steadily with temperature at a rate that is slower than trends previously observed atmore » similar Mo concentrations, though the difference is not statistically significant. This first measurement of the temperature dependent elastic stiffness tensor of a polycrystalline U-Mo alloy clarifies that the behavior of the Young’s modulus is due to a strongly weakening C 11 polycrystalline stiffness tensor component, along with milder decreases in C 12 and C 44. The unique partially auxetic properties recently predicted for singlecrystalline U-Mo are discussed in regard to their possible impact on the polycrystalline behavior of the alloy.« less

  6. Temperature dependent elastic properties of γ-phase U – 8 wt% Mo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, M. A.; Garlea, E.; Creasy, J.

    Polycrystalline elastic moduli and stiffness tensor components of γ-phase U – 8 wt% Mo have been determined by resonant ultrasound spectroscopy in the temperature range of 25-650°C. The ambient temperature elastic properties are compared to results measured via other experimental methods and show reasonable agreement, though there is considerable variation of these properties within the literature at both the U – 8 wt% Mo composition and as a function of Mo concentration. The Young’s modulus of U – 8 wt% Mo measured in this study decreases steadily with temperature at a rate that is slower than trends previously observed atmore » similar Mo concentrations, though the difference is not statistically significant. This first measurement of the temperature dependent elastic stiffness tensor of a polycrystalline U-Mo alloy clarifies that the behavior of the Young’s modulus is due to a strongly weakening C 11 polycrystalline stiffness tensor component, along with milder decreases in C 12 and C 44. The unique partially auxetic properties recently predicted for singlecrystalline U-Mo are discussed in regard to their possible impact on the polycrystalline behavior of the alloy.« less

  7. Manufacturing at the Nanoscale. Report of the National Nanotechnology Initiative Workshops, 2002-2004

    DTIC Science & Technology

    2007-01-01

    positioning and assembling? • Do nanoscale properties remain once the nanostructures are integrated up to the microscale? • How do we measure...viii Manufacturing at the Nanoscale 1 1. VISION Employing the novel properties and processes that are associated with the nanoscale—in the...Theory, modeling, and simulation software are being developed to investigate nanoscale material properties and synthesis of macromolecular systems with

  8. Delineation of First-Order Elastic Property Closures for Hexagonal Metals Using Fast Fourier Transforms

    PubMed Central

    Landry, Nicholas W.; Knezevic, Marko

    2015-01-01

    Property closures are envelopes representing the complete set of theoretically feasible macroscopic property combinations for a given material system. In this paper, we present a computational procedure based on fast Fourier transforms (FFTs) for delineation of elastic property closures for hexagonal close packed (HCP) metals. The procedure consists of building a database of non-zero Fourier transforms for each component of the elastic stiffness tensor, calculating the Fourier transforms of orientation distribution functions (ODFs), and calculating the ODF-to-elastic property bounds in the Fourier space. In earlier studies, HCP closures were computed using the generalized spherical harmonics (GSH) representation and an assumption of orthotropic sample symmetry; here, the FFT approach allowed us to successfully calculate the closures for a range of HCP metals without invoking any sample symmetry assumption. The methodology presented here facilitates for the first time computation of property closures involving normal-shear coupling stiffness coefficients. We found that the representation of these property linkages using FFTs need more terms compared to GSH representations. However, the use of FFT representations reduces the computational time involved in producing the property closures due to the use of fast FFT algorithms. Moreover, FFT algorithms are readily available as opposed to GSH codes. PMID:28793566

  9. Nanoindentation study of electrodeposited Ag thin coating: An inverse calculation of anisotropic elastic-plastic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Guang; Sun, Xin; Wang, Yuxin

    A new inverse method was proposed to calculate the anisotropic elastic-plastic properties (flow stress) of thin electrodeposited Ag coating utilizing nanoindentation tests, previously reported inverse method for isotropic materials and three-dimensional (3-D) finite element analyses (FEA). Indentation depth was ~4% of coating thickness (~10 μm) to avoid substrate effect and different indentation responses were observed in the longitudinal (L) and the transverse (T) directions. The estimated elastic-plastic properties were obtained in the newly developed inverse method by matching the predicted indentation responses in the L and T directions with experimental measurements considering indentation size effect (ISE). The results were validatedmore » with tensile flow curves measured from free-standing (FS) Ag film. The current method can be utilized to characterize the anisotropic elastic-plastic properties of coatings and to provide the constitutive properties for coating performance evaluations.« less

  10. Structural, electronic and elastic properties of heavy fermion YbRh2 Laves phase compound

    NASA Astrophysics Data System (ADS)

    Pawar, Harsha; Shugani, Mani; Aynyas, Mahendra; Sanyal, Sankar P.

    2018-05-01

    The structural, electronic and elastic properties of YbRh2 Laves phase intermetallic compound which crystallize in cubic (MgCu2-type) structure have been investigated using ab-initio full potential linearized augmented plane wave (FP- LAPW) method with LDA and LDA+U approximation. The calculated ground state properties such as lattice parameter (a0), bulk modulus (B) and its pressure derivative (B') are in good agreement with available experimental and theoretical data. The electronic properties are analyzed from band structures and density of states. Elastic constants are predicted first time for this compound which obeys the stability criteria for cubic system.

  11. Optimised robot-based system for the exploration of elastic joint properties.

    PubMed

    Frey, M; Burgkart, R; Regenfelder, F; Riener, R

    2004-09-01

    Numerous publications provide measured biomechanical data relating to synovial joints. However, in general, they do not reflect the non-linear elastic joint properties in detail or do not consider all degrees of freedom (DOF), or the quantity of data is sparse. To perform more comprehensive, extended measurements of elastic joint properties, an optimised robot-based approach was developed. The basis was an industrial, high-precision robot that was capable of applying loads to the joint and measuring the joint displacement in 6 DOF. The system was equipped with novel, custom-made control hardware. In contrast to the commonly used sampling rates that are below 100 Hz, a rate of 4 kHz was realised for each DOF. This made it possible to implement advanced, highly dynamic, quasi-continuous closed-loop controllers. Thus oscillations of the robot were avoided, and measurements were speeded up. The stiffness of the entire system was greater than 44 kNm(-1) and 22 Nm deg(-1), and the maximum difference between two successive measurements was less than 0.5 deg. A sophisticated CT-based referencing routine facilitated the matching of kinematic data with the individual anatomy of the tested joint. The detailed detection of the elastic varus-valgus properties of a human knee joint is described, and the need for high spatial resolution is demonstrated.

  12. Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide

    DOE PAGES

    Bao, Wei; Borys, Nicholas J.; Ko, Changhyun; ...

    2015-08-13

    The ideal building blocks for atomically thin, flexible optoelectronic and catalytic devices are two-dimensional monolayer transition metal dichalcogenide semiconductors. Although challenging for two-dimensional systems, sub-diffraction optical microscopy provides a nanoscale material understanding that is vital for optimizing their optoelectronic properties. We use the ‘Campanile’ nano-optical probe to spectroscopically image exciton recombination within monolayer MoS2 with sub-wavelength resolution (60 nm), at the length scale relevant to many critical optoelectronic processes. Moreover, synthetic monolayer MoS2 is found to be composed of two distinct optoelectronic regions: an interior, locally ordered but mesoscopically heterogeneous two-dimensional quantum well and an unexpected ~300-nm wide, energetically disorderedmore » edge region. Further, grain boundaries are imaged with sufficient resolution to quantify local exciton-quenching phenomena, and complimentary nano-Auger microscopy reveals that the optically defective grain boundary and edge regions are sulfur deficient. In conclusion, the nanoscale structure–property relationships established here are critical for the interpretation of edge- and boundary-related phenomena and the development of next-generation two-dimensional optoelectronic devices.« less

  13. Design and Control of a Micro/Nano Load Stage for In-Situ AFM Observation and Nanoscale Structural and Mechanical Characterization of MWCNT-Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Leininger, Wyatt Christopher

    Nanomaterial composites hold improvement potential for many materials. Improvements arise through known material behaviors and unique nanoscale effects to improve performance in areas including elastic modulus and damping as well as various processes, and products. Review of research spurred development of a load-stage. The load stage could be used independently, or in conjunction with an AFM to investigate bulk and nanoscale material mechanics. The effect of MWCNT content on structural damping, elastic modulus, toughness, loss modulus, and glass transition temperature was investigated using the load stage, AMF, and DMA. Initial investigation showed elastic modulus increased 23% with 1wt.% MWCNT versus pure epoxy and in-situ imaging observed micro/nanoscale deformation. Dynamic capabilities of the load stage were investigated as a method to achieve higher stress than available through DMA. The system showed energy dissipation across all reinforce levels, with 480% peak for the 1wt.% MWCNT material vs. the neat epoxy at 1Hz.

  14. Effects of Loading Frequency and Film Thickness on the Mechanical Behavior of Nanoscale TiN Film

    NASA Astrophysics Data System (ADS)

    Liu, Jin-na; Xu, Bin-shi; Wang, Hai-dou; Cui, Xiu-fang; Jin, Guo; Xing, Zhi-guo

    2017-09-01

    The mechanical properties of a nanoscale-thickness film material determine its reliability and service life. To achieve quantitative detection of film material mechanical performance based on nanoscale mechanical testing methods and to explore the influence of loading frequency of the cycle load on the fatigue test, a TiN film was prepared on monocrystalline silicon by magnetron sputtering. The microstructure of the nanoscale-thickness film material was characterized by using scanning electron microscopy and high-resolution transmission electron microscopy. The residual stress distribution of the thin film was obtained by using an electronic film stress tester. The hardness values and the fatigue behavior were measured by using a nanomechanical tester. Combined with finite element simulation, the paper analyzed the influence of the film thickness and loading frequency on the deformation, as well as the equivalent stress and strain. The results showed that the TiN film was a typical face-centered cubic structure with a large amount of amorphous. The residual compressive stress decreased gradually with increasing thin film thickness, and the influence of the substrate on the elastic modulus and hardness was also reduced. A greater load frequency would accelerate the dynamic fatigue damage that occurs in TiN films.

  15. Comparison of formation of visco-elastic masses and their properties between zeins and kafirins.

    PubMed

    Taylor, Janet; Anyango, Joseph O; Muhiwa, Peter J; Oguntoyinbo, Segun I; Taylor, John R N

    2018-04-15

    Zeins of differing sub-class composition much more readily formed visco-elastic masses in water or acetic acid solutions than equivalent kafirin preparations. Visco-elastic masses could be formed from both zein and kafirin preparations by coacervation from glacial acetic acid. Dissolving the prolamins in glacial acetic acid apparently enabled protonation and complete solvation. Stress-relaxation analysis of coacervated zein and kafirin visco-elastic masses showed they were initially soft. With storage, they became much firmer. Zein masses exhibited predominantly viscous flow properties, whereas kafirin masses were more elastic. The γ-sub-class is apparently necessary for the retention of visco-elastic mass softness with kafirin and zein, and for elastic recovery of kafirin. Generally, regardless of water or acetic acid treatment, all the zein preparations had similar FTIR spectra, with greater α-helical conformation, than the kafirin preparations which were also similar to each other. Kafirin visco-elastic masses have a much higher elastic character than zein masses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Elastic properties of sulphur and selenium doped ternary PbTe alloys by first principles

    NASA Astrophysics Data System (ADS)

    Bali, Ashoka; Chetty, Raju; Mallik, Ramesh Chandra

    2014-04-01

    Lead telluride (PbTe) is an established thermoelectric material which can be alloyed with sulphur and selenium to further enhance the thermoelectric properties. Here, a first principles study of ternary alloys PbSxTe(1-x) and PbSexTe(1-x) (0≤x≤1) based on the Virtual Crystal Approximation (VCA) is presented for different ratios of the isoelectronic atoms in each series. Equilibrium lattice parameters and elastic constants have been calculated and compared with the reported data. Anisotropy parameter calculated from the stiffness constants showed a slight improvement in anisotropy of elastic properties of the alloys over undoped PbTe. Furthermore, the alloys satisfied the predicted stability criteria from the elastic constants, showing stable structures, which agreed with the previously reported experimental results.

  17. Revisit of the relationship between the elastic properties and sound velocities at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenju; Yan, Xiaozhen; Institute of Atomic and Molecular Sciences, Sichuan University, Chengdu 610065

    2014-09-14

    The second-order elastic constants and stress-strain coefficients are defined, respectively, as the second derivatives of the total energy and the first derivative of the stress with respect to strain. Since the Lagrangian and infinitesimal strain are commonly used in the two definitions above, the second-order elastic constants and stress-strain coefficients are separated into two categories, respectively. In general, any of the four physical quantities is employed to characterize the elastic properties of materials without differentiation. Nevertheless, differences may exist among them at non-zero pressures, especially high pressures. Having explored the confusing issue systemically in the present work, we find thatmore » the four quantities are indeed different from each other at high pressures and these differences depend on the initial stress applied on materials. Moreover, the various relations between the four quantities depicting elastic properties of materials and high-pressure sound velocities are also derived from the elastic wave equations. As examples, we calculated the high-pressure sound velocities of cubic tantalum and hexagonal rhenium using these nexus. The excellent agreement of our results with available experimental data suggests the general applicability of the relations.« less

  18. Elasticity of Calcium-Alkaline Amphiboles: Revised Properties for Crustal Seismic Models

    NASA Astrophysics Data System (ADS)

    Straughan, K. B.; Castle, N. R.; Brown, J.

    2009-12-01

    Amphiboles are dominant mineral constituents of both the oceanic and continental crust. Efforts to model crustal seismic structure and anisotropy have been limited by sparse and uncertain data for the elasticity of common rock-forming amphiboles. A single paper from 1961 reports properties of two “hornblendes” of unreported composition. We have undertaken a study of the calcium-alkaline amphiboles (minerals in this range include hornblende, tremolite, edenite, pargasite, tschermaktite and others) to explore elastic properties as a function of composition. Velocities as a function of propagation direction were measured using Impulsively Stimulated Light Scattering. All thirteen monoclinic elastic constants were determined for nine amphiboles spanning this common rock-forming compositional space. Amphiboles exhibit a wide range of elemental compositions and site occupancies. Measured trends of elastic constants with composition cannot be reduced to a single variable. Broad correlations are apparent in both (Mg+Fe) and Al concentrations. Among these samples, the isotropic average bulk modulus ranges from 85 to 98 GPa and the shear modulus ranges from 51 to 62. Poisson’s ratio varies from .23 to .27. The compressional velocity anisotropy (fast direction along the c axis and slow direction along the a-axis) varies with composition from 23% to 33%. Velocities along the c-axis are as fast as 9.0 km/s and along the a-axis are as slow as 5.8 km/s. These results exhibit far greater anisotropy and higher velocities than previously assumed based on the earlier data.

  19. Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals.

    PubMed

    Zhu, L-F; Friák, M; Lymperakis, L; Titrian, H; Aydin, U; Janus, A M; Fabritius, H-O; Ziegler, A; Nikolov, S; Hemzalová, P; Raabe, D; Neugebauer, J

    2013-04-01

    We employ ab initio calculations and investigate the single-crystalline elastic properties of (Ca,Mg)CO3 crystals covering the whole range of concentrations from pure calcite CaCO3 to pure magnesite MgCO3. Studying different distributions of Ca and Mg atoms within 30-atom supercells, our theoretical results show that the energetically most favorable configurations are characterized by elastic constants that nearly monotonously increase with the Mg content. Based on the first principles-derived single-crystalline elastic anisotropy, the integral elastic response of (Ca,Mg)CO3 polycrystals is determined employing a mean-field self-consistent homogenization method. As in case of single-crystalline elastic properties, the computed polycrystalline elastic parameters sensitively depend on the chemical composition and show a significant stiffening impact of Mg atoms on calcite crystals in agreement with the experimental findings. Our analysis also shows that it is not advantageous to use a higher-scale two-phase mix of stoichiometric calcite and magnesite instead of substituting Ca atoms by Mg ones on the atomic scale. Such two-phase composites are not significantly thermodynamically favorable and do not provide any strong additional stiffening effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. First-principles investigations on structural, elastic and mechanical properties of BNxAs1‑x ternary alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Junqin; Ma, Huihui; Zhao, Bin; Wei, Qun; Yang, Yintang

    2018-05-01

    A systematic investigation of the structural optimization, elastic and mechanical properties of the BNxAs1‑x ternary alloys are reported in the present work using the density-functional theory with the generalized gradient approximation (GGA) of the exchange-correlation functional. Some of the constants which are used to analyze the properties including elastic constants and modulus, and some parameters describing the elastic anisotropy and Debye temperature are also calculated. Our calculations were performed to evaluate the equilibrium lattice constant and band structure compared with the available theoretical works. On the one hand, our results might be expected to provide a theoretical basis for future study of BNxAs1‑x alloys towards elastic or mechanical properties. On the other hand, we draw a conclusion that BNxAs1‑x alloys show direct bandgap when x equals 0.25, 0.5 or 0.75. We obtained the elastic modulus, Poisson’s ratio and universal anisotropic index which are used to demonstrate the elastic anisotropy of these alloys which is proved according to our calculations. Also, we calculated the Debye temperature to illustrate covalent interactions and obtained the lower limit of the thermal conductivity for further research.

  1. Traceable measurements of small forces and local mechanical properties

    NASA Astrophysics Data System (ADS)

    Campbellová, Anna; Valtr, Miroslav; Zůda, Jaroslav; Klapetek, Petr

    2011-09-01

    Measurement of local mechanical properties is an important topic in the fields of nanoscale device fabrication, thin film deposition and composite material development. Nanoindentation instruments are commonly used to study hardness and related mechanical properties at the nanoscale. However, traceability and uncertainty aspects of the measurement process often remain left aside. In this contribution, the use of a commercial nanoindentation instrument for metrology purposes will be discussed. Full instrument traceability, provided using atomic force microscope cantilevers and a mass comparator (normal force), interferometer (depth) and atomic force microscope (area function) is described. The uncertainty of the loading/unloading curve measurements will be analyzed and the resulting uncertainties for quantities, that are computed from loading curves such as hardness or elastic modulus, are studied. For this calculation a combination of uncertainty propagation law and Monte Carlo uncertainty evaluations are used.

  2. Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy

    NASA Astrophysics Data System (ADS)

    Dinelli, F.; Biswas, S. K.; Briggs, G. A. D.; Kolosov, O. V.

    2000-05-01

    Ultrasonic force microscopy (UFM) was introduced to probe nanoscale mechanical properties of stiff materials. This was achieved by vibrating the sample far above the first resonance of the probing atomic force microscope cantilever where the cantilever becomes dynamically rigid. By operating UFM at different set force values, it is possible to directly measure the absolute values of the tip-surface contact stiffness. From this an evaluation of surface elastic properties can be carried out assuming a suitable solid-solid contact model. In this paper we present curves of stiffness as a function of the normal load in the range of 0-300 nN. The dependence of stiffness on the relative humidity has also been investigated. Materials with different elastic constants (such as sapphire lithium fluoride, and silicon) have been successfully differentiated. Continuum mechanics models cannot however explain the dependence of stiffness on the normal force and on the relative humidity. In this high-frequency regime, it is likely that viscous forces might play an important role modifying the tip-surface interaction. Plastic deformation might also occur due to the high strain rates applied when ultrasonically vibrating the sample. Another possible cause of these discrepancies might be the presence of water in between the two bodies in contact organizing in a solidlike way and partially sustaining the load.

  3. Size Effects in Nanoscale Structural Phenomena

    NASA Astrophysics Data System (ADS)

    McElhinny, Kyle Matthew

    The creation of nanostructures offers the opportunity to modify and tune properties in ways inaccessible in bulk materials. A key component in this development is the introduction of size effects which reduce the physical size, dimensionality, and increase the contribution of surface effects. The size effects strongly modify the structural dynamics in nanoscale systems and leads to changes in the vibrational, electrical, and optical properties. An increased level of understanding and control of nanoscale structural dynamics will enable more precise control over nanomaterial transport properties. My work has shown that 1D spatial confinement through the creation of semiconducting nanomembranes modifies the phonon population and dispersion. X ray thermal diffuse scattering distributions show an excess in intensity for nanomembranes less than 100 nm in thickness, for phonon modes with wavevectors spanning the entire Brillouin zone. This excess intensity indicates the development of new low energy phonon modes or the softening of elastic constants. Furthermore, an additional anisotropy in the phonon dispersion is observed with a symmetry matching the direction of spatial confinement. This work has also extended x ray thermal diffuse scattering for use in studying nanomaterials. In electro- and photoactive monolayers a structural reconfiguration can be produced by external optical stimuli. I have developed an electro and photoactive molecular monolayers on oxide surfaces. Using x ray reflectivity, I have evaluated the organization and reconfiguration of molecular monolayers deposited by Langmuir Blodgett technique. I have designed and probed the reconfiguration of optically reconfigurable monolayers of azobenzene donor molecules on semiconducting surfaces. These monolayers reconfigure through a cooperative switching process leading to the development of large isomeric domains. This work represents an advancement in the interpretation of x ray reflectivity from molecular

  4. Theoretical calculations of structural, electronic, and elastic properties of CdSe1-x Te x : A first principles study

    NASA Astrophysics Data System (ADS)

    M, Shakil; Muhammad, Zafar; Shabbir, Ahmed; Muhammad Raza-ur-rehman, Hashmi; M, A. Choudhary; T, Iqbal

    2016-07-01

    The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of CdSe1-x Te x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA+U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure CdSe and CdTe binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.

  5. Attenuation and Dispersion Analysis in Laboratory Measured Elastic Properties in the Middle East Carbonate Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Sharma, R.

    2016-12-01

    Carbonate rocks are sensitive to circulation of fluid types that leads to diagenetic alterations and therefore to heterogeneity in distribution of porosity and permeability. These heterogeneities in turn, lead to heterogeneity in saturations varying from partial to patchy to uniform. Depending on the interaction between fluids and rock matrix, a weakening or strengthening in shear modulus of carbonate rocks can also develop (Eberli et al., 2003; Adam et al., 2006; Sharma et al., 2009; Sharma et al., 2013). Thus the elastic response over the production life of the carbonate reservoirs can change considerably. Efforts to couple fluid flow with varying seismic properties of these reservoirs are limited in success due to the differences between static elastic properties derived from reservoir simulation and dynamic elastic properties derived from inverted seismic. An additional limitation arises from the assumption that shear modulus does not change with fluid type and saturations. To overcome these limitations, we need to understand the relationships between the static and the dynamic elastic properties using laboratory measurements made at varying pressures, frequencies and with varying saturants. I will present the following results: 1) errors associated with using dynamic (2 - 2000 Hz and 1 MHz) elastic properties data for static ( 0 Hz) reservoir properties, 2) shear modulus variation in carbonates upon saturation with varying saturants The results will enable us to estimate, 1) distribution of stress-strain relations in reservoir rocks and 2) modulus dispersion to correct seismic-derived moduli as inputs for reservoir simulators. The results are critical to estimate, 1) modulus dispersion correction and 2) occurrence and amount of shear modulus variation with fluid change vital for rock stability analysis

  6. Stress-dependent elastic properties of shales—laboratory experiments at seismic and ultrasonic frequencies

    NASA Astrophysics Data System (ADS)

    Szewczyk, Dawid; Bauer, Andreas; Holt, Rune M.

    2018-01-01

    Knowledge about the stress sensitivity of elastic properties and velocities of shales is important for the interpretation of seismic time-lapse data taken as part of reservoir and caprock surveillance of both unconventional and conventional oil and gas fields (e.g. during 4-D monitoring of CO2 storage). Rock physics models are often developed based on laboratory measurements at ultrasonic frequencies. However, as shown previously, shales exhibit large seismic dispersion, and it is possible that stress sensitivities of velocities are also frequency dependent. In this work, we report on a series of seismic and ultrasonic laboratory tests in which the stress sensitivity of elastic properties of Mancos shale and Pierre shale I were investigated. The shales were tested at different water saturations. Dynamic rock engineering parameters and elastic wave velocities were examined on core plugs exposed to isotropic loading. Experiments were carried out in an apparatus allowing for static-compaction and dynamic measurements at seismic and ultrasonic frequencies within single test. For both shale types, we present and discuss experimental results that demonstrate dispersion and stress sensitivity of the rock stiffness, as well as P- and S-wave velocities, and stiffness anisotropy. Our experimental results show that the stress-sensitivity of shales is different at seismic and ultrasonic frequencies, which can be linked with simultaneously occurring changes in the dispersion with applied stress. Measured stress sensitivity of elastic properties for relatively dry samples was higher at seismic frequencies however, the increasing saturation of shales decreases the difference between seismic and ultrasonic stress-sensitivities, and for moist samples stress-sensitivity is higher at ultrasonic frequencies. Simultaneously, the increased saturation highly increases the dispersion in shales. We have also found that the stress-sensitivity is highly anisotropic in both shales and that in

  7. New directions for nanoscale thermoelectric materials research

    NASA Technical Reports Server (NTRS)

    Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, F.; Fleurial, J. P.; Gogna, P.

    2005-01-01

    Many of the recent advances in enhancing the thermoelectric figure of merit are linked to nanoscale phenomena with both bulk samples containing nanoscale constituents and nanoscale materials exhibiting enhanced thermoelectric performance in their own right. Prior theoretical and experimental proof of principle studies on isolated quantum well and quantum wire samples have now evolved into studies on bulk samples containing nanostructured constituents. In this review, nanostructural composites are shown to exhibit nanostructures and properties that show promise for thermoelectric applications. A review of some of the results obtained to date are presented.

  8. Prediction study of structural, elastic and electronic properties of FeMP (M = Ti, Zr, Hf) compounds

    NASA Astrophysics Data System (ADS)

    Tanto, A.; Chihi, T.; Ghebouli, M. A.; Reffas, M.; Fatmi, M.; Ghebouli, B.

    2018-06-01

    First principles calculations are applied in the study of FeMP (M = Ti, Zr, Hf) compounds. We investigate the structural, elastic, mechanical and electronic properties by combining first-principles calculations with the CASTEP approach. For ideal polycrystalline FeMP (M = Ti, Zr, Hf) the shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy indexes, Pugh's criterion, elastic wave velocities and Debye temperature are also calculated from the single crystal elastic constants. The shear anisotropic factors and anisotropy are obtained from the single crystal elastic constants. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal.

  9. Treadmill Exercise Improves Fracture Toughness and Indentation Modulus without Altering the Nanoscale Morphology of Collagen in Mice.

    PubMed

    Hammond, Max A; Laine, Tyler J; Berman, Alycia G; Wallace, Joseph M

    The specifics of how the nanoscale properties of collagen (e.g., the crosslinking profile) affect the mechanical integrity of bone at larger length scales is poorly understood despite growing evidence that collagen's nanoscale properties are altered with disease. Additionally, mass independent increases in postyield displacement due to exercise suggest loading-induced improvements in bone quality associated with collagen. To test whether disease-induced reductions in bone quality driven by alterations in collagen can be rescued or prevented via exercise-mediated changes to collagen's nanoscale morphology and mechanical properties, the effects of treadmill exercise and β-aminopropionitrile treatment were investigated. Eight week old female C57BL/6 mice were given a daily subcutaneous injection of either 164 mg/kg β-aminopropionitrile or phosphate buffered saline while experiencing either normal cage activity or 30 min of treadmill exercise for 21 consecutive days. Despite differences in D-spacing distribution (P = 0.003) and increased cortical area (tibial: P = 0.005 and femoral: P = 0.015) due to β-aminopropionitrile treatment, an overt mechanical disease state was not achieved as there were no differences in fracture toughness or 4 point bending due to β-aminopropionitrile treatment. While exercise did not alter (P = 0.058) the D-spacing distribution of collagen or prevent (P < 0.001) the β-aminopropionitrile-induced changes present in the unexercised animals, there were differential effects in the distribution of the reduced elastic modulus due to exercise between control and β-aminopropionitrile-treated animals (P < 0.001). Fracture toughness was increased (P = 0.043) as a main effect of exercise, but no significant differences due to exercise were observed using 4 point bending. Future studies should examine the potential for sex specific differences in the dose of β-aminopropionitrile required to induce mechanical effects in mice and the contributions

  10. First-principles study of elastic and thermodynamic properties of orthorhombic OsB4 under high pressure

    NASA Astrophysics Data System (ADS)

    Yan, Hai-Yan; Zhang, Mei-Guang; Huang, Duo-Hui; Wei, Qun

    2013-04-01

    The first-principles study on the elastic properties, elastic anisotropy and thermodynamic properties of the orthorhombic OsB4 is reported using density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation. The calculated equilibrium parameters are in good agreement with the available theoretical data. A complete elastic tensor and crystal anisotropies of the ultra-incompressible OsB4 are determined in the pressure range of 0-50 GPa. By the elastic stability criteria, it is predicted that the orthorhombic OsB4 is stable below 50 GPa. By using the quasi-harmonic Debye model, the heat capacity, the coefficient of thermal expansion, and the Grüneisen parameter of OsB4 are also successfully obtained in the present work.

  11. Structural, transport and elastic properties of LaTiO3

    NASA Astrophysics Data System (ADS)

    Choithrani, Renu; Bhat, Masroor Ahmad; Gaur, N. K.

    2013-02-01

    The thermophysical properties such as structural, transport and elastic properties of the orthorhombic perovskite-type titanate system, LaTiO3 have been explored in detail for the first time by applying extended rigid ion model (ERIM). LaTiO3 has been subject of recent interest because of the variety of attractive behaviors, including a metal-insulator transition, spin-charge-orbital ordering and high-temperature superconductivity. LaTiO3 has been suggested to have promising scientific and technological applications. The theoretically computed thermophysical properties of LaTiO3 compound are in good agreement with the available results.

  12. Theoretical study of phonon dispersion, elastic, mechanical and thermodynamic properties of barium chalcogenides

    NASA Astrophysics Data System (ADS)

    Musari, A. A.; Orukombo, S. A.

    2018-03-01

    Barium chalcogenides are known for their high-technological importance and great scientific interest. Detailed studies of their elastic, mechanical, dynamical and thermodynamic properties were carried out using density functional theory and plane-wave pseudo potential method within the generalized gradient approximation. The optimized lattice constants were in good agreement when compared with experimental data. The independent elastic constants, calculated from a linear fit of the computed stress-strain function, were used to determine the Young’s modulus (E), bulk modulus (B), shear modulus (G), Poisson’s ratio (σ) and Zener’s anisotropy factor (A). Also, the Debye temperature and sound velocities for barium chalcogenides were estimated from the three independent elastic constants. The calculations of phonon dispersion showed that there are no negative frequencies throughout the Brillouin zone. Hence barium chalcogenides have dynamically stable NaCl-type crystal structure. Finally, their thermodynamic properties were calculated in the temperature range of 0-1000 K and their constant-volume specific heat capacities at room-temperature were reported.

  13. Temperature and pressure effects on elastic properties of relaxor ferroelectrics and thermoelectrics: A resonant ultrasound spectroscopy study

    NASA Astrophysics Data System (ADS)

    Tennakoon, Sumudu P.

    Relaxor ferroelectric lead magnesium niobate-lead titanate (PMN-PT) material exhibits exceptional electromechanical properties. The material undergoes a series of structural phase transitions with changes in temperature and the chemical composition. The work covered in this dissertation seek to gain insight into the phase diagram of PMN-PT using temperature and pressure dependence of the elastic properties. Single crystal PMN-PT with a composition near morphotropic phase boundary (MPB) was investigated using a resonant ultrasound spectroscopy (RUS) methodologies in the temperature range of 293 K - 800 K and the pressure range from near vacuum to 3.4 MPa. At atmospheric pressure, significantly high acoustic attenuation of PMN-PT is observed at temperatures below 400 K. A strong stiffening is observed in the temperature range of 400 K - 673 K, followed by a gradual softening at higher temperatures. With varying pressure, an increased pressure sensitivity of the elastic properties of PMN-PT is observed at the temperatures in the stiffening phase. Elastic behavior at elevated temperatures and pressures were studied for correlations with the ferroelectric domains at temperatures below the Curie temperature (TC), the locally polarized nano-regions, and an existence of pseudo-cubic crystalline at higher temperatures between (TC and TB). Thermoelectric lanthanum tellurides and skutterudites are being investigated by NASA's Jet Propulsion Laboratory for advanced thermoelectric generates (TEGs). Effects of nickel (Ni) doping on elastic properties of lanthanum tellurides at elevated temperatures were investigated in the temperature range of 293 K - 800 K. A linear stiffening was observed with increasing the Ni content in the material. Elastic properties of p-type and n-type bismuth-based skutterudites were investigated in the temperature range of 293 K - 723 K. Elastic properties of rare-earth doped strontium titanate were also investigated in the temperature range of 293 K

  14. Ab-initio study of electronic structure and elastic properties of ZrC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mund, H. S., E-mail: hmoond@gmail.com; Ahuja, B. L.

    2016-05-23

    The electronic and elastic properties of ZrC have been investigated using the linear combination of atomic orbitals method within the framework of density functional theory. Different exchange-correlation functionals are taken into account within generalized gradient approximation. We have computed energy bands, density of states, elastic constants, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, lattice parameters and pressure derivative of the bulk modulus by calculating ground state energy of the rock salt structure type ZrC.

  15. Elastic properties and mechanical stability of chiral and filled viral capsids

    NASA Astrophysics Data System (ADS)

    Buenemann, Mathias; Lenz, Peter

    2008-11-01

    The elasticity and mechanical stability of empty and filled viral capsids under external force loading are studied in a combined analytical and numerical approach. We analyze the influence of capsid structure and chirality on the mechanical properties. We find that generally skew shells have lower stretching energy. For large Föppl-von Kármán numbers γ (γ≈105) , skew structures are stiffer in their elastic response than nonchiral ones. The discrete structure of the capsules not only leads to buckling for large γ but also influences the breakage behavior of capsules below the buckling threshold: the rupture force shows a γ1/4 scaling rather than a γ1/2 scaling as expected from our analytical results for continuous shells. Filled viral capsids are exposed to internal anisotropic pressure distributions arising from regularly packaged DNA coils. We analyze their influence on the elastic properties and rupture behavior and we discuss possible experimental consequences. Finally, we numerically investigate specific sets of parameters corresponding to specific phages such as ϕ29 and cowpea chlorotic mottle virus (CCMV). From the experimentally measured spring constants we make predictions about specific material parameters (such as bending rigidity and Young’s modulus) for both empty and filled capsids.

  16. Elastic properties of sulphur and selenium doped ternary PbTe alloys by first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bali, Ashoka, E-mail: rcmallik@physics.iisc.ernet.in; Chetty, Raju, E-mail: rcmallik@physics.iisc.ernet.in; Mallik, Ramesh Chandra, E-mail: rcmallik@physics.iisc.ernet.in

    2014-04-24

    Lead telluride (PbTe) is an established thermoelectric material which can be alloyed with sulphur and selenium to further enhance the thermoelectric properties. Here, a first principles study of ternary alloys PbS{sub x}Te{sub (1−x)} and PbSe{sub x}Te{sub (1−x)} (0≤x≤1) based on the Virtual Crystal Approximation (VCA) is presented for different ratios of the isoelectronic atoms in each series. Equilibrium lattice parameters and elastic constants have been calculated and compared with the reported data. Anisotropy parameter calculated from the stiffness constants showed a slight improvement in anisotropy of elastic properties of the alloys over undoped PbTe. Furthermore, the alloys satisfied the predictedmore » stability criteria from the elastic constants, showing stable structures, which agreed with the previously reported experimental results.« less

  17. Strain field determination in III-V heteroepitaxy coupling finite elements with experimental and theoretical techniques at the nanoscale

    NASA Astrophysics Data System (ADS)

    Florini, Nikoletta; Dimitrakopulos, George P.; Kioseoglou, Joseph; Pelekanos, Nikos T.; Kehagias, Thomas

    2017-04-01

    We are briefly reviewing the current status of elastic strain field determination in III-V heteroepitaxial nanostructures, linking finite elements (FE) calculations with quantitative nanoscale imaging and atomistic calculation techniques. III-V semiconductor nanostructure systems of various dimensions are evaluated in terms of their importance in photonic and microelectronic devices. As elastic strain distribution inside nano-heterostructures has a significant impact on the alloy composition, and thus their electronic properties, it is important to accurately map its components both at the interface plane and along the growth direction. Therefore, we focus on the determination of the stress-strain fields in III-V heteroepitaxial nanostructures by experimental and theoretical methods with emphasis on the numerical FE method by means of anisotropic continuum elasticity (CE) approximation. Subsequently, we present our contribution to the field by coupling FE simulations on InAs quantum dots (QDs) grown on (211)B GaAs substrate, either uncapped or buried, and GaAs/AlGaAs core-shell nanowires (NWs) grown on (111) Si, with quantitative high-resolution transmission electron microscopy (HRTEM) methods and atomistic molecular dynamics (MD) calculations. Full determination of the elastic strain distribution can be exploited for band gap tailoring of the heterostructures by controlling the content of the active elements, and thus influence the emitted radiation.

  18. Linear analysis using secants for materials with temperature dependent nonlinear elastic modulus and thermal expansion properties

    NASA Astrophysics Data System (ADS)

    Pepi, John W.

    2017-08-01

    Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.

  19. FP-LAPW calculations of equation of state and elastic properties of α and β phases of tungsten carbide at high pressure

    NASA Astrophysics Data System (ADS)

    Mishra, Vinayak; Chaturvedi, Shashank

    2013-03-01

    Tungsten carbide is used in high pressure devices therefore knowledge of its elastic properties and their pressure dependence is of utmost practical importance. In this paper we present first principles results of equation of state and elastic properties of α and β phases of tungsten carbide and compare our results with the available reported experimental results. These calculations have been performed using the FPLAPW method within the framework of density functional theory. Enthalpies of α and β phases of WC have been compared up to 350 GPa to investigate possibility of structural transformation. Density-dependent Grüneisen parameter has been deduced from P-V isotherm using the well-known Slater's formula. High pressure elastic constants of α and β phases of WC have been calculated by applying various distortions to the original crystal structure. The elastic properties such as bulk, shear and Young's moduli have been derived from the calculated elastic constants. Pressure-dependent longitudinal velocity, shear velocity, Debye temperature and melting temperature have been deduced from the elastic properties. These calculated properties are in good agreement with the available experimental results.

  20. Elastic Properties in Tension and Shear of High Strength Nonferrous Metals and Stainless Steel - Effect of Previous Deformation and Heat Treatment

    DTIC Science & Technology

    1947-03-01

    FOR AERONAUTICS TECHNICAL NOTE No. 1100 ELASTIC PROPERTIES IN TENSION AND SHEAR OF HIGH STRENGTH NONFERROUS METALS AND STAINLESS STEEL - EFFECT...1100 ELASTIC PROPERTIES IN TENSION AND SHEAR OF HIGH STRENGTH NONFERROUS METALS AND STAINLESS STEEL -- EFFECT OF PREVIOUS DEFORMATION AND HEAT...temperature on the tensile and shear elastic properties of high strength nonferrous metals and stainless steels in the form of rods and tubes. The

  1. Determination of prestress and elastic properties of virus capsids

    NASA Astrophysics Data System (ADS)

    Aggarwal, Ankush

    2018-03-01

    Virus capsids are protein shells that protect the virus genome, and determination of their mechanical properties has been a topic of interest because of their potential use in nanotechnology and therapeutics. It has been demonstrated that stresses exist in virus capsids, even in their equilibrium state, due to their construction. These stresses, termed "prestresses" in this study, closely affect the capsid's mechanical behavior. Three methods—shape-based metric, atomic force microscope indentation, and molecular dynamics—have been proposed to determine the capsid elastic properties without fully accounting for prestresses. In this paper, we theoretically analyze the three methods used for mechanical characterization of virus capsids and numerically investigate how prestresses affect the capsid's mechanical properties. We consolidate all the results and propose that by using these techniques collectively, it is possible to accurately determine both the mechanical properties and prestresses in capsids.

  2. Optical properties of tetragonal and nanoscale BiFeO3

    NASA Astrophysics Data System (ADS)

    Chen, P.; Xu, X. S.; Musfeldt, J. L.; Santulli, A. C.; Koenigsmann, C.; Wong, S. S.; Podraza, N. J.; Melville, A.; Vlahos, E.; Gopalan, V.; Schlom, D. G.; Ramesh, R.

    2010-03-01

    We measured the optical properties of tetragonal thin film and nanoscale rhombohedral BiFeO3 in the range from near infrared to the near ultraviolet. The absorption spectrum in the tetragonal film is overall blue-shifted compared with that of the rhombohedral BiFeO3 film. It shows an absorption onset near 2.25 eV, a direct 3.1 eV band gap, and charge transfer excitations that are ˜0.4 eV higher than those of the rhombohedral counterpart. In the nanoparticles, the band gap decreases from 2.7 eV to ˜2.3 eV, and the well-known 3.2 and 4.5 eV charge transfer excitations split into multiplets. We discuss these results in terms of structural strain, surface strain, and local symmetry breaking.

  3. Nanoscale adhesion interactions in carbon nanotube based systems and experimental study of the mechanical properties of carbon and boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Zheng, Meng

    Part I: Carbon nanotubes (CNTs) are a type of 1D nanostructures, which possess extraordinary mechanical, electrical, thermal, and chemical properties and are promising for a number of applications. For many of their applications, CNTs will be assembled into micro or macro-scale structures (e.g. thin-films and yarns), or integrated with other bulk materials to form heterogeneous material systems and devices (e.g. nanocomposites and solid-state electronics). The interfaces formed among CNTs themselves and between the CNT and other material surfaces play crucial roles in the functioning and performance of CNT-based material systems and devices. Therefore, characterization of the interfacial interaction in CNT-based systems is a critical step to understand the nanoscale interface and tune the system and device design and manufacturing for optimal functioning and performance. In this part of dissertation, a combination of both mechanical and theoretical methods was employed to study the adhesion interactions in CNT-based systems. Part II: Both CNTs and boron nitride nanotubes (BNNTs) possess superb mechanical properties and are promising for a great many applications. They can be used in similar applications, such as reinforcing fibers in polymer composites based on their similar mechanical and thermal properties. CNTs are promising for electronics and sensors while BNNTs can be used as electrical insulators due to the tremendous differences of the electrical property. Furthermore, BNNTs can survive in high temperature and hazardous environments because of their resistant to oxidation and harsh chemicals. In order to optimize their applications, their mechanical properties should be fully understood. In this part of the dissertation research, first, the radial elasticity of single-walled CNTs and BNNTs was investigated by means of atomic force microscopy (AFM); secondly, the engineering radial deformations in single walled CNTs and BNNTs covered by monolayer grapheme

  4. Temperature-dependent elastic properties of brain tissues measured with the shear wave elastography method.

    PubMed

    Liu, Yan-Lin; Li, Guo-Yang; He, Ping; Mao, Ze-Qi; Cao, Yanping

    2017-01-01

    Determining the mechanical properties of brain tissues is essential in such cases as the surgery planning and surgical training using virtual reality based simulators, trauma research and the diagnosis of some diseases that alter the elastic properties of brain tissues. Here, we suggest a protocol to measure the temperature-dependent elastic properties of brain tissues in physiological saline using the shear wave elastography method. Experiments have been conducted on six porcine brains. Our results show that the shear moduli of brain tissues decrease approximately linearly with a slope of -0.041±0.006kPa/°C when the temperature T increases from room temperature (~23°C) to body temperature (~37°C). A case study has been further conducted which shows that the shear moduli are insensitive to the temperature variation when T is in the range of 37 to 43°C and will increase when T is higher than 43°C. With the present experimental setup, temperature-dependent elastic properties of brain tissues can be measured in a simulated physiological environment and a non-destructive manner. Thus the method suggested here offers a unique tool for the mechanical characterization of brain tissues with potential applications in brain biomechanics research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Control of Nanoscale Materials under the Toxic Substances Control Act

    EPA Pesticide Factsheets

    Many nanoscale materials are regarded as chemical substances, but they may have different properties than their larger counterparts. EPA is working to ensure that nanoscale materials are manufactured and used in ways that prevent risk to health.

  6. Pore cross-section area on predicting elastic properties of trabecular bovine bone for human implants.

    PubMed

    Maciel, Alfredo; Presbítero, Gerardo; Piña, Cristina; del Pilar Gutiérrez, María; Guzmán, José; Munguía, Nadia

    2015-01-01

    A clear understanding of the dependence of mechanical properties of bone remains a task not fully achieved. In order to estimate the mechanical properties in bones for implants, pore cross-section area, calcium content, and apparent density were measured in trabecular bone samples for human implants. Samples of fresh and defatted bone tissue, extracted from one year old bovines, were cut in longitudinal and transversal orientation of the trabeculae. Pore cross-section area was measured with an image analyzer. Compression tests were conducted into rectangular prisms. Elastic modulus presents a linear tendency as a function of pore cross-section area, calcium content and apparent density regardless of the trabecular orientation. The best variable to estimate elastic modulus of trabecular bone for implants was pore cross-section area, and affirmations to consider Nukbone process appropriated for marrow extraction in trabecular bone for implantation purposes are proposed, according to bone mechanical properties. Considering stress-strain curves, defatted bone is stiffer than fresh bone. Number of pores against pore cross-section area present an exponential decay, consistent for all the samples. These graphs also are useful to predict elastic properties of trabecular samples of young bovines for implants.

  7. Generalized self-consistent method for predicting the effective elastic properties of composites with random hybrid structures

    NASA Astrophysics Data System (ADS)

    Pan'kov, A. A.

    1997-05-01

    The feasibility of using a generalized self-consistent method for predicting the effective elastic properties of composites with random hybrid structures has been examined. Using this method, the problem is reduced to solution of simpler special averaged problems for composites with single inclusions and corresponding transition layers in the medium examined. The dimensions of the transition layers are defined by correlation radii of the composite random structure of the composite, while the heterogeneous elastic properties of the transition layers take account of the probabilities for variation of the size and configuration of the inclusions using averaged special indicator functions. Results are given for a numerical calculation of the averaged indicator functions and analysis of the effect of the micropores in the matrix-fiber interface region on the effective elastic properties of unidirectional fiberglass—epoxy using the generalized self-consistent method and compared with experimental data and reported solutions.

  8. Characterization and imaging of nanostructured materials using tabletop extreme ultraviolet light sources

    NASA Astrophysics Data System (ADS)

    Karl, Robert; Knobloch, Joshua; Frazer, Travis; Tanksalvala, Michael; Porter, Christina; Bevis, Charles; Chao, Weilun; Abad Mayor, Begoña.; Adams, Daniel; Mancini, Giulia F.; Hernandez-Charpak, Jorge N.; Kapteyn, Henry; Murnane, Margaret

    2018-03-01

    Using a tabletop coherent extreme ultraviolet source, we extend current nanoscale metrology capabilities with applications spanning from new models of nanoscale transport and materials, to nanoscale device fabrication. We measure the ultrafast dynamics of acoustic waves in materials; by analyzing the material's response, we can extract elastic properties of films as thin as 11nm. We extend this capability to a spatially resolved imaging modality by using coherent diffractive imaging to image the acoustic waves in nanostructures as they propagate. This will allow for spatially resolved characterization of the elastic properties of non-isotropic materials.

  9. Orientation dependence of elastic and piezomagnetic properties in NiFe2O4

    NASA Astrophysics Data System (ADS)

    Jian, Gang; Xue, Fei; Zhang, Chen; Yan, Chao; Zhao, Ning; Wong, C. P.

    2017-11-01

    In this paper, the crystal orientation dependence of the elastic and piezomagnetic properties have been calculated for nickel ferrite (NiFe2O4) in three-dimensional space by means of coordinate transformations. The maximum elastic compliances s11‧, s12‧ and piezomagnetic constants q31‧, q33‧ along specific orientations have been determined based on experimental data of NiFe2O4 and original matrices for m3m point group. The piezomagnetic constants q31‧ and q33‧ show highly dependence on crystal orientation compared with elastic compliances s11‧, s12‧, meanwhile permittivity μ33‧ is a constant. The max s11‧ and s12‧ can be obtained along directions [n k l] (n·k = 0, l ≠ 0) and [n k l] (n·k·l = 0), respectively. The max q31‧ and max q33‧ lie along [0 0 1] and [1 1 1] axes, respectively, NiFe2O4||[1 1 1] axis can produce large q31‧ and q33‧ at the same time. The result suggests that by adopting the optimal directions, the elastic and piezomagnetic properties of the devices made from NiFe2O4 can be precisely modulated.

  10. Effect of short-term water storage on the elastic properties of some dental restorative materials--A resonant ultrasound spectroscopy study.

    PubMed

    Pastila, Pirjo; Lassila, Lippo V J; Jokinen, Mikko; Vuorinen, Jyrki; Vallittu, Pekka K; Mäntylä, Tapio

    2007-07-01

    This study was aimed to determine if short-term water storage would change elastic properties of dental composite materials. Particulate filler composite resin and continuous unidirectional E-glass FRC materials were photopolymerized and additionally post-polymerized by heat for testing elastic properties with the Resonance Ultrasound Spectroscopy method as a function of time in water storage. The test specimens were stored in 37 degrees C water for up to 30 days. About 1% weight increase due to water sorption was observed in both materials with both polymerization methods. Water sorption did not change the resonance frequencies towards lower values, indicating no significant decrease in elastic properties in these materials. Because of high damping of the polymer composite materials leading to wide resonance peaks and low number of the recorded peaks, accurate determination of the elastic properties was not possible. Results suggest that the most likely explanation for the previously observed decrease in bending stiffness of FRC materials is the decreased yield limit of the hydrated polymer matrix. It is important to recognize that water sorption has the effect on mechanical properties of dental composite materials by changing the yield limit of the matrix rather than by changing the elastic properties of the material.

  11. Optimizing Thermal-Elastic Properties of C/C–SiC Composites Using a Hybrid Approach and PSO Algorithm

    PubMed Central

    Xu, Yingjie; Gao, Tian

    2016-01-01

    Carbon fiber-reinforced multi-layered pyrocarbon–silicon carbide matrix (C/C–SiC) composites are widely used in aerospace structures. The complicated spatial architecture and material heterogeneity of C/C–SiC composites constitute the challenge for tailoring their properties. Thus, discovering the intrinsic relations between the properties and the microstructures and sequentially optimizing the microstructures to obtain composites with the best performances becomes the key for practical applications. The objective of this work is to optimize the thermal-elastic properties of unidirectional C/C–SiC composites by controlling the multi-layered matrix thicknesses. A hybrid approach based on micromechanical modeling and back propagation (BP) neural network is proposed to predict the thermal-elastic properties of composites. Then, a particle swarm optimization (PSO) algorithm is interfaced with this hybrid model to achieve the optimal design for minimizing the coefficient of thermal expansion (CTE) of composites with the constraint of elastic modulus. Numerical examples demonstrate the effectiveness of the proposed hybrid model and optimization method. PMID:28773343

  12. The effect of long-range order on the elastic properties of Cu3Au

    NASA Astrophysics Data System (ADS)

    Wang, Gui-Sheng; Krisztina Delczeg-Czirjak, Erna; Hu, Qing-Miao; Kokko, Kalevi; Johansson, Börje; Vitos, Levente

    2013-02-01

    Ab initio calculations, based on the exact muffin-tin orbitals method are used to determine the elastic properties of Cu-Au alloys with Au/Cu ratio 1/3. The compositional disorder is treated within the coherent potential approximation. The lattice parameters and single-crystal elastic constants are calculated for different partially ordered structures ranging from the fully ordered L12 to the random face centered cubic lattice. It is shown that the theoretical elastic constants follow a clear trend with the degree of chemical order: namely, C11 and C12 decrease, whereas C44 remains nearly constant with increasing disorder. The present results are in line with the experimental findings that the impact of the chemical ordering on the fundamental elastic parameters is close to the resolution of the available experimental and theoretical tools.

  13. The first principles study of elastic and thermodynamic properties of ZnSe

    NASA Astrophysics Data System (ADS)

    Khatta, Swati; Kaur, Veerpal; Tripathi, S. K.; Prakash, Satya

    2018-05-01

    The elastic and thermodynamic properties of ZnSe are investigated using thermo_pw package implemented in Quantum espresso code within the framework of density functional theory. The pseudopotential method within the local density approximation is used for the exchange-correlation potential. The physical parameters of ZnSe bulk modulus and shear modulus, anisotropy factor, Young's modulus, Poisson's ratio, Pugh's ratio and Frantsevich's ratio are calculated. The sound velocity and Debye temperature are obtained from elastic constant calculations. The Helmholtz free energy and internal energy of ZnSe are also calculated. The results are compared with available theoretical calculations and experimental data.

  14. Capillary origami: spontaneous wrapping of a droplet with an elastic sheet.

    PubMed

    Py, Charlotte; Reverdy, Paul; Doppler, Lionel; Bico, José; Roman, Benoît; Baroud, Charles N

    2007-04-13

    The interaction between elasticity and capillarity is used to produce three-dimensional structures through the wrapping of a liquid droplet by a planar sheet. The final encapsulated 3D shape is controlled by tailoring the initial geometry of the flat membrane. Balancing interfacial energy with elastic bending energy provides a critical length scale below which encapsulation cannot occur, which is verified experimentally. This length is found to depend on the thickness as h3/2, a scaling favorable to miniaturization which suggests a new way of mass production of 3D micro- or nanoscale objects.

  15. Tuning compliance of nanoscale polyelectrolyte multilayers to modulate cell adhesion.

    PubMed

    Thompson, Michael T; Berg, Michael C; Tobias, Irene S; Rubner, Michael F; Van Vliet, Krystyn J

    2005-12-01

    It is well known that mechanical stimuli induce cellular responses ranging from morphological reorganization to mineral secretion, and that mechanical stimulation through modulation of the mechanical properties of cell substrata affects cell function in vitro and in vivo. However, there are few approaches by which the mechanical compliance of the substrata to which cells adhere and grow can be determined quantitatively and varied independent of substrata chemical composition. General methods by which mechanical state can be quantified and modulated at the cell population level are critical to understanding and engineering materials that promote and maintain cell phenotype for applications such as vascular tissue constructs. Here, we apply contact mechanics of nanoindentation to measure the mechanical compliance of weak polyelectrolyte multilayers (PEMs) of nanoscale thickness, and explore the effects of this tunable compliance for cell substrata applications. We show that the nominal elastic moduli E(s) of these substrata depend directly on the pH at which the PEMs are assembled, and can be varied over several orders of magnitude for given polycation/polyanion pairs. Further, we demonstrate that the attachment and proliferation of human microvascular endothelial cells (MVECs) can be regulated through independent changes in the compliance and terminal polyion layer of these PEM substrata. These data indicate that substrate mechanical compliance is a strong determinant of cell fate, and that PEMs of nanoscale thickness provide a valuable tool to vary the external mechanical environment of cells independently of chemical stimuli.

  16. Structural and elastic properties of AIBIIIC 2 VI semiconductors

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Singh, Bhanu P.

    2018-01-01

    The plane wave pseudo-potential method within density functional theory has been used to calculate the structural and elastic properties of AIBIIIC 2 VI semiconductors. The electronic band structure, density of states, lattice constants (a and c), internal parameter (u), tetragonal distortion (η), energy gap (Eg), and bond lengths of the A-C (dAC) and B-C (dBC) bonds in AIBIIIC 2 VI semiconductors have been calculated. The values of elastic constants (Cij), bulk modulus (B), shear modulus (G), Young's modulus (Y), Poisson's ratio (υ), Zener anisotropy factor (A), Debye temperature (ϴD) and G/B ratio have also been calculated. The values of all 15 parameters of CuTlS2 and CuTlSe2 compounds, and 8 parameters of 20 compounds of AIBIIIC 2 VI family, except AgInS2 and AgInSe2, have been calculated for the first time. Reasonably good agreement has been obtained between the calculated, reported and available experimental values.

  17. Structural and elastic properties of La{sub 2}Mg{sub 17} from first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Tao-Peng; Ma, Li; Pan, Rong-Kai

    2013-10-15

    Structural and elastic properties of La{sub 2}Mg{sub 17} with layer structure have been investigated within framework of the density functional theory. Different from the general layer-structured materials, the obtained c/a is less than unity. The calculated elastic constants C{sub 33} is larger than C{sub 11}, being novel in comparison with other alloys with layer structure. The calculated bulk, shear and Young’s modulus of La{sub 2}Mg{sub 17} are higher than other Mg–La alloys with higher La content, implying the stronger covalent bonding. Moreover, the elastic isotropies of La{sub 2}Mg{sub 17} are more excellent. The electronic structure within basal plane is highlymore » symmetric, and the electronic interaction within basal plane is slightly weaker than one between basal planes, which reveal the underlying mechanism for the structural and elastic properties of La{sub 2}Mg{sub 17}. - Graphical abstract: The crystal structure (a) and the atomic positions for (b) (0 0 0 2), (c) (0 0 0 4) and (d) (1 2{sup ¯} 1 0) plane of La{sub 2}Mg{sub 17}. Display Omitted - Highlights: • The c/a of La{sub 2}Mg{sub 17} is anomalously less than unity. • It is novel that for La{sub 2}Mg{sub 17} the elastic constants C{sub 33} is larger than C{sub 11}. • The elastic modulus of La{sub 2}Mg{sub 17} is higher than other Mg–La alloys. • The elastic isotropy of La{sub 2}Mg{sub 17} is excellent. • The electronic structure within basal plane is highly symmetric.« less

  18. Ab initio predictions of structural and elastic properties of struvite: contribution to urinary stone research.

    PubMed

    Piechota, Jacek; Prywer, Jolanta; Torzewska, Agnieszka

    2012-01-01

    In the present work, we carried out density functional calculations of struvite--the main component of the so-called infectious urinary stones--to study its structural and elastic properties. Using a local density approximation and a generalised gradient approximation, we calculated the equilibrium structural parameters and elastic constants C(ijkl). At present, there is no experimental data for these elastic constants C (ijkl) for comparison. Besides the elastic constants, we also present the calculated macroscopic mechanical parameters, namely the bulk modulus (K), the shear modulus (G) and Young's modulus (E). The values of these moduli are found to be in good agreement with available experimental data. Our results imply that the mechanical stability of struvite is limited by the shear modulus, G. The study also explores the energy-band structure to understand the obtained values of the elastic constants.

  19. On the relationships between hardness and the elastic and plastic properties of isotropic power-law hardening materials

    NASA Astrophysics Data System (ADS)

    Lan, Hongzhi; Venkatesh, T. A.

    2014-01-01

    A comprehensive understanding of the relationship between the hardness and the elastic and plastic properties for a wide range of materials is obtained by analysing the hardness characteristics (that are predicted by experimentally verified indentation analyses) of over 9000 distinct combinations of material properties that represent isotropic, homogeneous, power-law hardening metallic materials. Finite element analysis has been used to develop the indentation algorithms that provide the relationships between the elastic and plastic properties of the indented material and its indentation hardness. Based on computational analysis and virtual testing, the following observations are made. The hardness (H) of a material tends to increase with an increase in the elastic modulus (E), yield strength (σy) and the strain-hardening exponent (n). Several materials with different combinations of elastic and plastic properties can exhibit identical true hardness (for a particular indenter geometry/apex angle). In general, combinations of materials that exhibit relatively low elastic modulus and high yield strength or strain-hardening exponents and those that exhibit relatively high elastic modulus and low yield strength or strain-hardening exponents exhibit similar hardness properties. Depending on the strain-hardening characteristics of the indented material, (i.e. n = 0 or ?), the ratio H/σy ranges, respectively, from 2.2 to 2.6 or 2 to 20 (for indentations with a cone angle of 70.3°). The materials that have lower σy/E and higher n exhibit higher H/σy ratios. The commonly invoked relationship between hardness and the yield strength, i.e. H ≈ 3σy, is not generally valid or applicable for all power-law hardening materials. The indentation hardness of a power law hardening material can be taken as following the relationship H ≈ (2.1-2.8)σr where σr is the representative stress based on Tabor's representative strain for a wide range of materials.

  20. First-principles study of the elastic and thermodynamic properties of CaSiO(3) perovskite.

    PubMed

    Liu, Z J; Sun, X W; Chen, Q F; Cai, L C; Wu, H Y; Ge, S H

    2007-06-20

    The thermodynamic and elastic properties of CaSiO(3) perovskite are investigated at high pressures and temperatures using the plane wave pseudopotential method within the local density approximation. The athermal elastic moduli of CaSiO(3) perovskite are calculated as a function of pressure up to 200 GPa. The calculated results are in excellent agreement with available experimental data at high pressure, and compare favourably with other pseudopotential predictions over the pressure regime studied. It is also found that the elastic anisotropy drops rapidly with the increase of pressure initially, and then decreases more slowly at higher pressures. The thermodynamic properties of CaSiO(3) perovskite are predicted using the quasi-harmonic Debye model for the first time; the heat capacity and the thermal expansion coefficient agree with the observed values at ambient conditions and the other calculations at high pressures and temperatures.

  1. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteseguro, V.; Rodríguez-Hernández, P.; Muñoz, A., E-mail: amunoz@ull.es

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet ismore » mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.« less

  2. Simulations of surface stress effects in nanoscale single crystals

    NASA Astrophysics Data System (ADS)

    Zadin, V.; Veske, M.; Vigonski, S.; Jansson, V.; Muszinsky, J.; Parviainen, S.; Aabloo, A.; Djurabekova, F.

    2018-04-01

    Onset of vacuum arcing near a metal surface is often associated with nanoscale asperities, which may dynamically appear due to different processes ongoing in the surface and subsurface layers in the presence of high electric fields. Thermally activated processes, as well as plastic deformation caused by tensile stress due to an applied electric field, are usually not accessible by atomistic simulations because of the long time needed for these processes to occur. On the other hand, finite element methods, able to describe the process of plastic deformations in materials at realistic stresses, do not include surface properties. The latter are particularly important for the problems where the surface plays crucial role in the studied process, as for instance, in the case of plastic deformations at a nanovoid. In the current study by means of molecular dynamics (MD) and finite element simulations we analyse the stress distribution in single crystal copper containing a nanovoid buried deep under the surface. We have developed a methodology to incorporate the surface effects into the solid mechanics framework by utilizing elastic properties of crystals, pre-calculated using MD simulations. The method leads to computationally efficient stress calculations and can be easily implemented in commercially available finite element software, making it an attractive analysis tool.

  3. Single molecules and single nanoparticles as windows to the nanoscale

    NASA Astrophysics Data System (ADS)

    Caldarola, Martín; Orrit, Michel

    2018-05-01

    Since the first optical detection of single molecules, they have been used as nanometersized optical sensors to explore the physical properties of materials and light-matter interaction at the nanoscale. Understanding nanoscale properties of materials is fundamental for the development of new technology that requires precise control of atoms and molecules when the quantum nature of matter cannot be ignored. In the following lines, we illustrate this journey into nanoscience with some experiments from our group.

  4. Optical, electrical and elastic properties of ferroelectric domain walls in lithium niobate and lithium titanate

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon

    Ferroelectric LiNbO3 and LiTaO3 crystals have developed, over the last 50 years as key materials for integrated and nonlinear optics due to their large electro-optic and nonlinear optical coefficients and a broad transparency range from 0.4 mum-4.5 mum wavelengths. Applications include high speed optical modulation and switching in 40GHz range, second harmonic generation, optical parametric amplification, pulse compression and so on. Ferroelectric domain microengineering has led to electro-optic scanners, dynamic focusing lenses, total internal reflection switches, and quasi-phase matched (QPM) frequency doublers. Most of these applications have so far been on non-stoichiometric compositions of these crystals. Recent breakthroughs in crystal growth have however opened up an entirely new window of opportunity from both scientific and technological viewpoint. The growth of stoichiometric composition crystals has led to the discovery of many fascinating effects arising from the presence or absence of atomic defects, such as an order of magnitude changes in coercive fields, internal fields, domain backswitching and stabilization phenomenon. On the nanoscale, unexpected features such as the presence of wide regions of optical contrast and strain have been discovered at 180° domain walls. Such strong influence of small amounts of nonstoichiometric defects on material properties has led to new device applications, particularly those involving domain patterning and shaping such as QPM devices in thick bulk crystals and improved photorefractive damage compositions. The central focus of this dissertation is to explore the role of nonstoichiometry and its precise influence on macroscale and nanoscale properties in lithium niobate and tantalate. Macroscale properties are studied using a combination of in-situ and high-speed electro-optic imaging microscopy and electrical switching experiments. Local static and dynamic strain properties at individual domain walls is studied

  5. Postbuckling of magneto-electro-elastic CNT-MT composite nanotubes resting on a nonlinear elastic medium in a non-uniform thermal environment

    NASA Astrophysics Data System (ADS)

    Kamali, M.; Shamsi, M.; Saidi, A. R.

    2018-03-01

    As a first endeavor, the effect of nonlinear elastic foundation on the postbuckling behavior of smart magneto-electro-elastic (MEE) composite nanotubes is investigated. The composite nanotube is affected by a non-uniform thermal environment. A typical MEE composite nanotube consists of microtubules (MTs) and carbon nanotubes (CNTs) with a MEE cylindrical nanoshell for smart control. It is assumed that the nanoscale layers of the system are coupled by a polymer matrix or filament network depending on the application. In addition to thermal loads, magneto-electro-mechanical loads are applied to the composite nanostructure. Length scale effects are taken into account using the nonlocal elasticity theory. The principle of virtual work and von Karman's relations are used to derive the nonlinear governing differential equations of MEE CNT-MT nanotubes. Using Galerkin's method, nonlinear critical buckling loads are determined. Various types of non-uniform temperature distribution in the radial direction are considered. Finally, the effects of various parameters such as the nonlinear constant of elastic medium, thermal loading factor and small scale coefficient on the postbuckling of MEE CNT-MT nanotubes are studied.

  6. High pressure and temperature induced structural and elastic properties of lutetium chalcogenides

    NASA Astrophysics Data System (ADS)

    Shriya, S.; Kinge, R.; Khenata, R.; Varshney, Dinesh

    2018-04-01

    The high-pressure structural phase transition and pressure as well temperature induced elastic properties of rock salt to CsCl structures in semiconducting LuX (X = S, Se, and Te) chalcogenides compound have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from ZnS to NaCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, melting temperature TM, Hardness (HV), and young modulus (E) the LuX lattice infers mechanical stiffening, and thermal softening.

  7. Structural, Thermodynamic, Elastic, and Electronic Properties of α-SnS at High Pressure from First-Principles Investigations

    NASA Astrophysics Data System (ADS)

    Liu, Chun Mei; Xu, Chao; Duan, Man Yi

    2015-10-01

    SnS has potential technical applications, but many of its properties are still not well studied. In this work, the structural, thermodynamic, elastic, and electronic properties of α-SnS have been investigated by the plane wave pseudo-potential density functional theory with the framework of generalised gradient approximation. The calculated pressure-dependent lattice parameters agree well with the available experimental data. Our thermodynamic properties of α-SnS, including heat capacity CP , entropy S, and Gibbs free energy relation of -(GT -H0) curves, show similar growth trends as the experimental data. At T=298.15 K, our CP =52.31 J/mol·K, S=78.93 J/mol·K, and -(GT -H0)=12.03 J/mol all agree very well with experimental data CP =48.77 J/mol·K and 49.25 J/mol·K, S=76.78 J/mol·K, and -(GT -H0)=12.38 J/mol. The elastic constants, together with other elastic properties, are also computed. The anisotropy analyses indicate obvious elastic anisotropy for α-SnS along different symmetry planes and axes. Moreover, calculations demonstrate that α-SnS is an indirect gap semiconductor, and it transforms to semimetal with pressure increasing up to 10.2 GPa. Combined with the density of states, the characters of the band structure have been analysed in detail.

  8. Intracellular delivery of polymeric nanocarriers: a matter of size, shape, charge, elasticity and surface composition.

    PubMed

    Agarwal, Rachit; Roy, Krishnendu

    2013-06-01

    Recent progress in drug discovery has enabled the targeting of specific intracellular molecules to achieve therapeutic effects. These next-generation therapeutics are often biologics that cannot enter cells by mere diffusion. Therefore, it is imperative that drug carriers are efficiently internalized by cells and reach specific target organelles before releasing their cargo. Nanoscale polymeric carriers are particularly suitable for such intracellular delivery. Although size and surface charge have been the most studied parameters for nanocarriers, it is now well appreciated that other properties, for example, particle shape, elasticity and surface composition, also play a critical role in their transport across physiological barriers. It is proposed that a multivariate design space that considers the interdependence of particle geometry with its mechanical and surface properties must be optimized to formulate drug nanocarriers for effective accumulation at target sites and efficient intracellular delivery.

  9. Ab-initio thermodynamic and elastic properties of AlNi and AlNi3 intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Yalameha, Shahram; Vaez, Aminollah

    2018-04-01

    In this paper, thermodynamic and elastic properties of the AlNi and AlNi3 were investigated using density functional theory (DFT). The full-potential linearized augmented plane-wave (APW) in the framework of the generalized gradient approximation as used as implemented in the Wien2k package. The temperature dependence of thermal expansion coefficient, bulk modulus and heat capacity in a wide range of temperature (0-1600 K) were investigated. The calculated elastic properties of the compounds show that both intermetallic compounds of AlNi and AlNi3 have surprisingly negative Poisson’s ratio (NPR). The results were compared with other experimental and computational data.

  10. EDITORIAL: Physical behaviour at the nanoscale: a model for fertile research Physical behaviour at the nanoscale: a model for fertile research

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-06-01

    that allow new ideas and a deepening understanding to take root. Over the last few decades nanoscale research has matured into a science with generally well understood principles, allowing technology companies to develop next-generation devices with functions that dwarf some of the most creative fancies of science fiction. Yet some of the greatest leaps of inspiration have come where observations tax the limits of what current theory can explain, forcing researchers to question and examine historic reasoning. As Di Ventra and Pershin demonstrate in this issue, current memristor research is proving very fertile ground for such questioning and examining, ultimately leading to a deepening understanding of the physical properties of these nanoscale systems. References [1] Di Ventra M and Pershin Y V 2013 On the physical properties of memristive, memcapacitive, and meminductive systems Nanotechnology 24 255201 [2] Miller R E and Shenoy V B 2000 Size-dependent elastic properties of nanosized structural elements Nanotechnology 11 139-47 [3] Buehler M J 2006 Nature designs tough collagen: explaining the nanostructure of collagen fibrils Proc. Natl Acad. Sci. USA 103 12285-90 [4] Keten S, Xu Z, Ihle B and Buehler M J 2010 Nanoconfinement controls stiffness, strength and mechanical toughness of B-sheet crystals in silk Nature Mater. 9 359-67 [5] Misewich J A, Martel R, Avouris Ph, Tsang J C, Heinze S and Tersoff J 2003 Electrically induced optical emission from a carbon nanotube FET Science 300 783-6 [6]Jiang H, Hu J, Gu F and Li C 2009 Stable field emission performance from urchin-like ZnO nanostructures Nanotechnology 20 055706 [7] Forbes R G 2012 Extraction of emission parameters for large-area field emitters, using a technically complete Fowler-Nordheim-type equation Nanotechnology 23 095706 [8] Chua L O 1971 Memristor—the missing circuit element IEEE Trans. Circuit Theory 18 507-19 [9]Strukov D B, Snider G S, Stewart D R and Williams R S 2008 The missing memristor found

  11. Numerical Estimation of the Elastic Properties of Thin-Walled Structures Manufactured from Short-Fiber-Reinforced Thermoplastics

    NASA Astrophysics Data System (ADS)

    Altenbach, H.; Naumenko, K.; L'vov, G. I.; Pilipenko, S. N.

    2003-05-01

    A model which allows us to estimate the elastic properties of thin-walled structures manufactured by injection molding is presented. The starting step is the numerical prediction of the microstructure of a short-fiber-reinforced composite developed during the filling stage of the manufacturing process. For this purpose, the Moldflow Plastic Insight® commercial program is used. As a result of simulating the filling process, a second-rank orientation tensor characterizing the microstructure of the material is obtained. The elastic properties of the prepared material locally depend on the orientational distribution of fibers. The constitutive equation is formulated by means of orientational averaging for a given orientation tensor. The tensor of elastic material properties is computed and translated into the format for a stress-strain analysis based on the ANSYSÒ finite-element code. The numerical procedure and the convergence of results are discussed for a thin strip, a rectangular plate, and a shell of revolution. The influence of manufacturing conditions on the stress-strain state of statically loaded thin-walled elements is illustrated.

  12. Elastic properties of graphene: A pseudo-beam model with modified internal bending moment and its application

    NASA Astrophysics Data System (ADS)

    Xia, Z. M.; Wang, C. G.; Tan, H. F.

    2018-04-01

    A pseudo-beam model with modified internal bending moment is presented to predict elastic properties of graphene, including the Young's modulus and Poisson's ratio. In order to overcome a drawback in existing molecular structural mechanics models, which only account for pure bending (constant bending moment), the presented model accounts for linear bending moments deduced from the balance equations. Based on this pseudo-beam model, an analytical prediction is accomplished to predict the Young's modulus and Poisson's ratio of graphene based on the equation of the strain energies by using Castigliano second theorem. Then, the elastic properties of graphene are calculated compared with results available in literature, which verifies the feasibility of the pseudo-beam model. Finally, the pseudo-beam model is utilized to study the twisting wrinkling characteristics of annular graphene. Due to modifications of the internal bending moment, the wrinkling behaviors of graphene sheet are predicted accurately. The obtained results show that the pseudo-beam model has a good ability to predict the elastic properties of graphene accurately, especially the out-of-plane deformation behavior.

  13. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors

    NASA Astrophysics Data System (ADS)

    Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong

    2015-05-01

    Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and

  14. Modelling nanoscale objects in order to conduct an empirical research into their properties as part of an engineering system designed

    NASA Astrophysics Data System (ADS)

    Makarov, M.; Shchanikov, S.; Trantina, N.

    2017-01-01

    We have conducted a research into the major, in terms of their future application, properties of nanoscale objects, based on modelling these objects as free-standing physical elements beyond the structure of an engineering system designed for their integration as well as a part of a system that operates under the influence of the external environment. For the empirical research suggested within the scope of this work, we have chosen a nanoscale electronic element intended to be used while designing information processing systems with the parallel architecture - a memristor. The target function of the research was to provide the maximum fault-tolerance index of a memristor-based system when affected by all possible impacts of the internal destabilizing factors and external environment. The research results have enabled us to receive and classify all the factors predetermining the fault-tolerance index of the hardware implementation of a computing system based on the nanoscale electronic element base.

  15. Effect of AlF3 on the Density and Elastic Properties of Zinc Tellurite Glass Systems

    PubMed Central

    Sidek, Haji Abdul Aziz; Rosmawati, Shaharuddin; Halimah, Mohamed Kamari; Matori, Khamirul Amin; Talib, Zainal Abidin

    2012-01-01

    This paper presents the results of the physical and elastic properties of the ternary zinc oxyfluoro tellurite glass system. Systematic series of glasses (AlF3)x(ZnO)y(TeO2)z with x = 0–19, y = 0–20 and z = 80, 85, 90 mol% were synthesized by the conventional rapid melt quenching technique. The composition dependence of the physical, mainly density and molar volume, and elastic properties is discussed in term of the AlF3 modifiers addition that are expected to produce quite substantial changes in their physical properties. The absence of any crystalline peaks in the X-ray diffraction (XRD) patterns of the present glass samples indicates the amorphous nature. The addition of AlF3 lowered the values of the densities in ternary oxyfluorotellurite glass systems. The longitudinal and transverse ultrasonic waves propagated in each glass sample were measured using a MBS8020 ultrasonic data acquisition system. All the velocity data were taken at 5 MHz frequency and room temperature. The longitudinal modulus (L), shear modulus (G), Young’s modulus (E), bulk modulus (K) and Poisson’s ratio (σ) are obtained from both velocities data and their respective density. Experimental data shows the density and elastic moduli of each AlF3-ZnO-TeO2 series are found strongly depend upon the glass composition. The addition of AlF3 modifiers into the zinc tellurite causes substantial changes in their density, molar volume as well as their elastic properties.

  16. Computer program for investigating effects of nonlinear suspension-system elastic properties on parachute inflation loads and motions

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1972-01-01

    A computer program is presented by which the effects of nonlinear suspension-system elastic characteristics on parachute inflation loads and motions can be investigated. A mathematical elastic model of suspension-system geometry is coupled to the planar equations of motion of a general vehicle and canopy. Canopy geometry and aerodynamic drag characteristics and suspension-system elastic properties are tabular inputs. The equations of motion are numerically integrated by use of an equivalent fifth-order Runge-Kutta technique.

  17. Elastic Properties of 3D-Printed Rock Models: Dry and Saturated Cracks

    NASA Astrophysics Data System (ADS)

    Huang, L.; Stewart, R.; Dyaur, N.

    2014-12-01

    Many regions of subsurface interest are, or will be, fractured. In addition, these zones many be subject to varying saturations and stresses. New 3D printing techniques using different materials and structures, provide opportunities to understand porous or fractured materials and fluid effects on their elastic properties. We use a 3D printer (Stratasys Dimension SST 768) to print two rock models: a solid octahedral prism and a porous cube with thousands of penny-shaped cracks. The printing material is ABS thermal plastic with a density of 1.04 g/cm3. After printing, we measure the elastic properties of the models, both dry and 100% saturated with water. Both models exhibit VTI (Vertical Transverse Isotropic) symmetry due to laying (about 0.25 mm thick) of the printing process. The prism has a density of 0.96 g/cm3 before saturation and 1.00 g/cm3 after saturation. Its effective porosity is calculated to be 4 %. We use ultrasonic transducers (500 kHz) to measure both P- and shear-wave velocities, and the raw material has a P-wave velocity of 1.89 km/s and a shear-wave velocity of 0.91 km/s. P-wave velocity in the un-saturated prism increases from 1.81 km/s to 1.84 km/s after saturation in the direction parallel to layering and from 1.73 km/s to 1.81 km/s in the direction perpendicular to layering. The fast shear-wave velocity decreases from 0.88 km/s to 0.87 km/s and the slow shear-wave velocity decreases from 0.82 km/s to 0.81 km/s. The cube, printed with penny-shaped cracks, gives a density of 0.79 g/cm3 and a porosity of 24 %. We measure its P-wave velocity as 1.78 km/s and 1.68 km/s in the direction parallel and perpendicular to the layering, respectively. Its fast shear-wave velocity is 0.88 km/s and slow shear-wave velocity is 0.70 km/s. The penny-shaped cracks have significant influence on the elastic properties of the 3D-printed rock models. To better understand and explain the fluid effects on the elastic properties of the models, we apply the extended

  18. Temperature and Pressure Dependences of the Elastic Properties of Tantalum Single Crystals Under <100> Tensile Loading: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Li, Wei-bing; Li, Kang; Fan, Kan-qi; Zhang, Da-xing; Wang, Wei-dong

    2018-04-01

    Atomistic simulations are capable of providing insights into physical mechanisms responsible for mechanical properties of the transition metal of Tantalum (Ta). By using molecular dynamics (MD) method, temperature and pressure dependences of the elastic properties of Ta single crystals are investigated through <100> tensile loading. First of all, a comparative study between two types of embedded-atom method (EAM) potentials is made in term of the elastic properties of Ta single crystals. The results show that Ravelo-EAM (Physical Review B, 2013, 88: 134101) potential behaves well at different hydrostatic pressures. Then, the MD simulation results based on the Ravelo-EAM potential show that Ta will experience a body-centered-cubic (BCC) to face-centered-cubic (FCC) phase transition before fracture under <100> tensile loading at 1 K temperature, and model size and strain rate have no obvious effects on tensile behaviors of Ta. Next, from the simulation results at the system temperature from 1 to 1500 K, it can be derived that the elastic modulus of E 100 linearly decrease with the increasing temperature, while the yielding stress decrease with conforming a quadratic polynomial formula. Finally, the pressure dependence of the elastic properties is performed from 0 to 140 GPa and the observations show that the elastic modulus increases with the increasing pressure overall.

  19. The effect of carbon concentration and plastic deformation on ultrasonic higher order elastic properties of steel

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Allison, S. G.; Salama, K.

    1985-01-01

    The behavior of higher order elastic properties, which are much more sensitive to material state than are second order properties, has been studied for steel alloys AISI 1016, 1045, 1095, and 8620 by measuring the stress derivative of the acoustic natural velocity to determine the stress acoustic constants (SAC's). Results of these tests show a 20 percent linear variation of SAC's with carbon content as well as even larger variations with prestrain (plastic deformation). The use of higher order elastic characterization permits quantitative evaluation of solids and may prove useful in studies of fatigue and fracture.

  20. First-principles calculations of the electronic, vibrational, and elastic properties of the magnetic laminate Mn₂GaC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thore, A., E-mail: andth@ifm.liu.se; Dahlqvist, M., E-mail: madah@ifm.liu.se, E-mail: bjoal@ifm.liu.se, E-mail: johro@ifm.liu.se; Alling, B., E-mail: madah@ifm.liu.se, E-mail: bjoal@ifm.liu.se, E-mail: johro@ifm.liu.se

    2014-09-14

    In this paper, we report the by first-principles predicted properties of the recently discovered magnetic MAX phase Mn₂GaC. The electronic band structure and vibrational dispersion relation, as well as the electronic and vibrational density of states, have been calculated. The band structure close to the Fermi level indicates anisotropy with respect to electrical conductivity, while the distribution of the electronic and vibrational states for both Mn and Ga depend on the chosen relative orientation of the Mn spins across the Ga sheets in the Mn–Ga–Mn trilayers. In addition, the elastic properties have been calculated, and from the five elastic constants,more » the Voigt bulk modulus is determined to be 157 GPa, the Voigt shear modulus 93 GPa, and the Young's modulus 233 GPa. Furthermore, Mn₂GaC is found relatively elastically isotropic, with a compression anisotropy factor of 0.97, and shear anisotropy factors of 0.9 and 1, respectively. The Poisson's ratio is 0.25. Evaluated elastic properties are compared to theoretical and experimental results for M₂AC phases where M = Ti, V, Cr, Zr, Nb, Ta, and A = Al, S, Ge, In, Sn.« less

  1. Ab Initio Study of Electronic Structure, Elastic and Transport Properties of Fluoroperovskite LiBeF3

    NASA Astrophysics Data System (ADS)

    Benmhidi, H.; Rached, H.; Rached, D.; Benkabou, M.

    2017-04-01

    The aim of this work is to investigate the electronic, mechanical, and transport properties of the fluoroperovskite compound LiBeF3 by first-principles calculations using the full-potential linear muffin-tin orbital method based on density functional theory within the local density approximation. The independent elastic constants and related mechanical properties including the bulk modulus ( B), shear modulus ( G), Young's modulus ( E), and Poisson's ratio ( ν) have been studied, yielding the elastic moduli, shear wave velocities, and Debye temperature. According to the electronic properties, this compound is an indirect-bandgap material, in good agreement with available theoretical data. The electron effective mass, hole effective mass, and energy bandgaps with their volume and pressure dependence are investigated for the first time.

  2. The impact of defect scattering on the quasi-ballistic transport of nanoscale conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esqueda, I. S., E-mail: isanchez@isi.edu; Fritze, M.; Cress, C. D.

    2015-02-28

    Using the Landauer approach for carrier transport, we analyze the impact of defects induced by ion irradiation on the transport properties of nanoscale conductors that operate in the quasi-ballistic regime. Degradation of conductance results from a reduction of carrier mean free path due to the introduction of defects in the conducting channel. We incorporate scattering mechanisms from radiation-induced defects into calculations of the transmission coefficient and present a technique for extracting modeling parameters from near-equilibrium transport measurements. These parameters are used to describe degradation in the transport properties of nanoscale devices using a formalism that is valid under quasi-ballistic operation.more » The analysis includes the effects of bandstructure and dimensionality on the impact of defect scattering and discusses transport properties of nanoscale devices from the diffusive to the ballistic limit. We compare calculations with recently published measurements of irradiated nanoscale devices such as single-walled carbon nanotubes, graphene, and deep-submicron Si metal-oxide-semiconductor field-effect transistors.« less

  3. Numerical homogenization of elastic and thermal material properties for metal matrix composites (MMC)

    NASA Astrophysics Data System (ADS)

    Schindler, Stefan; Mergheim, Julia; Zimmermann, Marco; Aurich, Jan C.; Steinmann, Paul

    2017-01-01

    A two-scale material modeling approach is adopted in order to determine macroscopic thermal and elastic constitutive laws and the respective parameters for metal matrix composite (MMC). Since the common homogenization framework violates the thermodynamical consistency for non-constant temperature fields, i.e., the dissipation is not conserved through the scale transition, the respective error is calculated numerically in order to prove the applicability of the homogenization method. The thermomechanical homogenization is applied to compute the macroscopic mass density, thermal expansion, elasticity, heat capacity and thermal conductivity for two specific MMCs, i.e., aluminum alloy Al2024 reinforced with 17 or 30 % silicon carbide particles. The temperature dependency of the material properties has been considered in the range from 0 to 500°C, the melting temperature of the alloy. The numerically determined material properties are validated with experimental data from the literature as far as possible.

  4. Phototoxicity and Dosimetry of Nano-scale Titanium Dioxide in Aquatic Organisms

    EPA Science Inventory

    We have been testing nanoscale TiO2 (primarily Evonik P25) in acute exposures to identify and quantify its phototoxicity under solar simulated radiation (SSR), and to develop dose metrics reflective of both nano-scale properties and the photon component of its potency. Several e...

  5. Coherence properties of blackbody radiation and application to energy harvesting and imaging with nanoscale rectennas

    NASA Astrophysics Data System (ADS)

    Lerner, Peter B.; Cutler, Paul H.; Miskovsky, Nicholas M.

    2015-01-01

    Modern technology allows the fabrication of antennas with a characteristic size comparable to the electromagnetic wavelength in the optical region. This has led to the development of new technologies using nanoscale rectifying antennas (rectennas) for solar energy conversion and sensing of terahertz, infrared, and visible radiation. For example, a rectenna array can collect incident radiation from an emitting source and the resulting conversion efficiency and operating characteristics of the device will depend on the spatial and temporal coherence properties of the absorbed radiation. For solar radiation, the intercepted radiation by a micro- or nanoscale array of devices has a relatively narrow spatial and angular distribution. Using the Van Cittert-Zernike theorem, we show that the coherence length (or radius) of solar radiation on an antenna array is, or can be, tens of times larger than the characteristic wavelength of the solar spectrum, i.e., the thermal wavelength, λT=2πℏc/(kBT), which for T=5000 K is about 3 μm. Such an effect is advantageous, making possible the rectification of solar radiation with nanoscale rectenna arrays, whose size is commensurate with the coherence length. Furthermore, we examine the blackbody radiation emitted from an array of antennas at temperature T, which can be quasicoherent and lead to a modified self-image, analogous to the Talbot-Lau self-imaging process but with thermal rather than monochromatic radiation. The self-emitted thermal radiation may be important as a nondestructive means for quality control of the array.

  6. Comparison of four different techniques to evaluate the elastic properties of phantom in elastography: is there a gold standard?

    PubMed

    Oudry, Jennifer; Lynch, Ted; Vappou, Jonathan; Sandrin, Laurent; Miette, Véronique

    2014-10-07

    Elastographic techniques used in addition to imaging techniques (ultrasound, resonance magnetic or optical) provide new clinical information on the pathological state of soft tissues. However, system-dependent variation in elastographic measurements may limit the clinical utility of these measurements by introducing uncertainty into the measurement. This work is aimed at showing differences in the evaluation of the elastic properties of phantoms performed by four different techniques: quasi-static compression, dynamic mechanical analysis, vibration-controlled transient elastography and hyper-frequency viscoelastic spectroscopy. Four Zerdine® gel materials were tested and formulated to yield a Young's modulus over the range of normal and cirrhotic liver stiffnesses. The Young's modulus and the shear wave speed obtained with each technique were compared. Results suggest a bias in elastic property measurement which varies with systems and highlight the difficulty in finding a reference method to determine and assess the elastic properties of tissue-mimicking materials. Additional studies are needed to determine the source of this variation, and control for them so that accurate, reproducible reference standards can be made for the absolute measurement of soft tissue elasticity.

  7. Synthesis and re-investigation of the elastic properties of single-crystal magnesium silicate perovskite

    NASA Astrophysics Data System (ADS)

    Yeganeh-Haeri, Amir

    1994-12-01

    Single crystals of MgSiO3 in the perovskite structure have been grown at a peak pressure of 26 GPa and temperature of approximately 1600 K using a 2000 ton uniaxial split-sphere high-pressure apparatus (USSA-2000). The specimens were subsequently utilized to re-investigate the single-crystal elastic properties of this phase at ambient conditions using laser Brillouin spectroscopy. The nine adiabatic single-crystal elastic stiffness coefficients, in units of GPa, are: C11 = 482, C22 = 537, C33 = 485, C44 = 204, C55 = 186, C66 = 147, C12 = 144, C13 = 147, C23 = 146. The resulting estimated Voigt-Reuss-Hill (VRH) aggregate isotropic elastic moduli are: K=264.0 and mu = 177.3 GPa, respectively. The single-crystal elastic moduli of MgSiO3 perovskite display a pattern that is elastically somewhat anisotropic. The maximum shear and compressional velocities are 18% and 7% greater than the minimum. The (010) crystallographic direction contains both the fastest and the slowest shear wave velocities. If, under lower mantle conditions, magnesium silicate perovskite grains were to become preferentially oriented, a shear wave propagating in the Earth's lower mantle could become polarized with two distinct velocities. The observed density and seismic parameter of the lower mantle over the depth range of 1000-2700 km are compared with the calculated profiles for a model mantle consisting of pure perovskite (Mg(0.89)Fe(0.11))SiO3 and for a mixture composed of silicate perovskite and magnesiowuestite using our new elasticity results. At present, literature values of thermoelastic properties for silicate perovskite, in particular, the coefficient of thermal expansion and the temperature derivative of the isothermal bulk modulus, vary widely. Because of this disparity, we find that mantle models ranging from pure perovskite to 'pyrolitic'-type compositions provide acceptable fits to the seismically observed density and velocity profiles of the Earth's lower mantle.

  8. Box 6: Nanoscale Defects

    NASA Astrophysics Data System (ADS)

    Alves, Eduardo; Breese, Mark

    Defects affect virtually all properties of crystalline materials, and their role is magnified in nanoscale structures. In this box we describe the different type of defects with particular emphasis on point and linear defects. Above zero Kelvin all real materials have a defect population within their structure, which affects either their crystalline, electronic or optical properties. It is common to attribute a negative connotation to the presence of defects. However, a perfect silicon crystal or any other defect-free semiconductor would have a limited functionality and might even be useless.

  9. Elastic properties of paramagnetic austenitic steel at finite temperature: Longitudinal spin fluctuations in multicomponent alloys

    NASA Astrophysics Data System (ADS)

    Dong, Zhihua; Schönecker, Stephan; Chen, Dengfu; Li, Wei; Long, Mujun; Vitos, Levente

    2017-11-01

    We propose a first-principles framework for longitudinal spin fluctuations (LSFs) in disordered paramagnetic (PM) multicomponent alloy systems and apply it to investigate the influence of LSFs on the temperature dependence of two elastic constants of PM austenitic stainless steel Fe15Cr15Ni. The magnetic model considers individual fluctuating moments in a static PM medium with first-principles-derived LSF energetics in conjunction with describing chemical disorder and randomness of the transverse magnetic component in the single-site alloy formalism and disordered local moment (DLM) picture. A temperature-sensitive mean magnetic moment is adopted to accurately represent the LSF state in the elastic-constant calculations. We make evident that magnetic interactions between an LSF impurity and the PM medium are weak in the present steel alloy. This allows gaining accurate LSF energetics and mean magnetic moments already through a perturbation from the static DLM moments instead of a tedious self-consistent procedure. We find that LSFs systematically lower the cubic shear elastic constants c' and c44 by ˜6 GPa in the temperature interval 300-1600 K, whereas the predominant mechanism for the softening of both elastic constants with temperature is the magneto-volume coupling due to thermal lattice expansion. We find that non-negligible local magnetic moments of Cr and Ni are thermally induced by LSFs, but they exert only a small influence on the elastic properties. The proposed framework exhibits high flexibility in accurately accounting for finite-temperature magnetism and its impact on the mechanical properties of PM multicomponent alloys.

  10. Ab initio simulation of elastic and mechanical properties of Zn- and Mg-doped hydroxyapatite (HAP).

    PubMed

    Aryal, Sitaram; Matsunaga, Katsuyuki; Ching, Wai-Yim

    2015-07-01

    Hydroxyapatite (HAP) is an important bioceramic which constitutes the mineral components of bones and hard tissues in mammals. It is bioactive and used as bioceramic coatings for metallic implants and bone fillers. HAP readily absorbs a large amount of impurities. Knowledge on the elastic and mechanical properties of impurity-doped HAP is a subject of great importance to its potential for biomedical applications. Zn and Mg are the most common divalent cations HAP absorbs. Using density function theory based ab initio methods, we have carried out a large number of ab initio calculations to obtain the bulk elastic and mechanical properties of HAP with Zn or Mg doped in different concentration at the Ca1 and Ca2 sites using large 352-atom supercells. Detailed information on their dependece on the concetraion of the substitued impurity is obtained. Our results show that Mg enhances overall elastic and bulk mechanical properties whereas Zn tends to degrade except at low concentrations. At a higher concentration, the mechanical properties of Zn and Mg doped HAP also depend significantly on impurity distribution between the Ca1 and Ca2 sites. There is a strong evidence that Zn prefers Ca2 site for substituion whereas Mg has no such preference. These results imply that proper control of dopant concentration and their site preference must carefully considered in using doped HAP for specific biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Temperature and Pressure Dependences of the Elastic Properties of Tantalum Single Crystals Under <100> Tensile Loading: A Molecular Dynamics Study.

    PubMed

    Li, Wei-Bing; Li, Kang; Fan, Kang-Qi; Zhang, Da-Xing; Wang, Wei-Dong

    2018-04-24

    Atomistic simulations are capable of providing insights into physical mechanisms responsible for mechanical properties of the transition metal of Tantalum (Ta). By using molecular dynamics (MD) method, temperature and pressure dependences of the elastic properties of Ta single crystals are investigated through <100> tensile loading. First of all, a comparative study between two types of embedded-atom method (EAM) potentials is made in term of the elastic properties of Ta single crystals. The results show that Ravelo-EAM (Physical Review B, 2013, 88: 134101) potential behaves well at different hydrostatic pressures. Then, the MD simulation results based on the Ravelo-EAM potential show that Ta will experience a body-centered-cubic (BCC) to face-centered-cubic (FCC) phase transition before fracture under <100> tensile loading at 1 K temperature, and model size and strain rate have no obvious effects on tensile behaviors of Ta. Next, from the simulation results at the system temperature from 1 to 1500 K, it can be derived that the elastic modulus of E 100 linearly decrease with the increasing temperature, while the yielding stress decrease with conforming a quadratic polynomial formula. Finally, the pressure dependence of the elastic properties is performed from 0 to 140 GPa and the observations show that the elastic modulus increases with the increasing pressure overall.

  12. Nanoscale integration is the next frontier for nanotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picraux, Samuel T

    2009-01-01

    Nanoscale integration of materials and structures is the next critical step to exploit the promise of nanomaterials. Many novel and fascinating properties have been revealed for nanostructured materials. But if nanotechnology is to live up to its promise we must incorporate these nanoscale building blocks into functional systems that connect to the micro- and macroscale world. To do this we will inevitably need to understand and exploit the resulting combined unique properties of these integrated nanosystems. Much science waits to be discovered in the process. Nanoscale integration extends from the synthesis and fabrication of individual nanoscale building blocks, to themore » assembly of these building blocks into composite structures, and finally to the formation of complex functional systems. As illustrated in Figure 1, the building blocks may be homogeneous or heterogeneous, the composite materials may be nanocomposite or patterned structures, and the functional systems will involve additional combinations of materials. Nanoscale integration involves assembling diverse nanoscale materials across length scales to design and achieve new properties and functionality. At each stage size-dependent properties, the influence of surfaces in close proximity, and a multitude of interfaces all come into play. Whether the final system involves coherent electrons in a quantum computing approach, the combined flow of phonons and electrons for a high efficiency thermoelectric micro-generator, or a molecular recognition structure for bio-sensing, the combined effects of size, surface, and interface will be critical. In essence, one wants to combine the novel functions available through nanoscale science to achieve unique multi-functionalities not available in bulk materials. Perhaps the best-known example of integration is that of combining electronic components together into very large scale integrated circuits (VLSI). The integrated circuit has revolutionized electronics

  13. Effects of Solid Solution Treatments on the Microstructure and Mechanical Properties of a Nanoscale Precipitate-Strengthened Ferritic Steel

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Guo, H.; Xu, S. S.; Mao, M. J.; Chen, L.; Gokhman, O.; Zhang, Z. W.

    2018-05-01

    Solid solution treatment (SST) and age hardening are the two main treatments used to produce nanoscale precipitation-strengthened steels. In this work, solution treatment and aging are employed to develop a nanoscale precipitation-strengthened steel displaying high degrees of strength, ductility, and toughness. The effects of SST on the microstructure and mechanical properties of the produced steel are investigated. The results show that the solution temperature strongly influences the matrix microstructure. Partial austenitization between A_{{{c}1}} and A_{{{c}3}} favors the formation of granular ferrite, while complete austenitization above A_{{{c}3}} leads to the formation of polygonal ferrite. Refined granular ferrite with a low dislocation density can effectively improve the plasticity and low-temperature toughness of steel. Precipitation strengthening is mainly related to the nature of the nano-precipitates, specifically their size and number density, independently of the matrix microstructure.

  14. The relationship between dermal papillary structure and skin surface properties, color, and elasticity.

    PubMed

    Mizukoshi, K; Nakamura, T; Oba, A

    2016-08-01

    The skin contains an undulating structure called the dermal papillary structure between the border of the epidermis and dermis. The physiological importance of the dermal papillary structures has been discussed, however, the dermal papillary structures have never been evaluated for their contribution to skin appearance. In this study, we investigated the correlation between the dermal papillary structure and skin color and elasticity. In addition, the relationship was validated with skin model experiments. The dermal papillary structures in the skin of the female cheek were quantitatively measured by in vivo confocal laser scanning microscopy images. In addition, the skin color and elasticity were measured at the same site. A skin model with dermal papilla-like structures was created by referring to the optical and shape properties of the skin using agar gel and a scattering sheet. Correlations were found between the dermal papillary structures and skin color irregularity and skin elasticity. These relationships were verified by the experiments employing a skin model. The results of this study indicated that the dermal papillary structure is also an important factor for skin appearance such as color and elasticity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Structural, electronic, elastic, and thermal properties of CaNiH3 perovskite obtained from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Benlamari, S.; Bendjeddou, H.; Boulechfar, R.; Amara Korba, S.; Meradji, H.; Ahmed, R.; Ghemid, S.; Khenata, R.; Omran, S. Bin

    2018-03-01

    A theoretical study of the structural, elastic, electronic, mechanical, and thermal properties of the perovskite-type hydride CaNiH3 is presented. This study is carried out via first-principles full potential (FP) linearized augmented plane wave plus local orbital (LAPW+lo) method designed within the density functional theory (DFT). To treat the exchange–correlation energy/potential for the total energy calculations, the local density approximation (LDA) of Perdew–Wang (PW) and the generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) are used. The three independent elastic constants (C 11, C 12, and C 44) are calculated from the direct computation of the stresses generated by small strains. Besides, we report the variation of the elastic constants as a function of pressure as well. From the calculated elastic constants, the mechanical character of CaNiH3 is predicted. Pertaining to the thermal properties, the Debye temperature is estimated from the average sound velocity. To further comprehend this compound, the quasi-harmonic Debye model is used to analyze the thermal properties. From the calculations, we find that the obtained results of the lattice constant (a 0), bulk modulus (B 0), and its pressure derivative ({B}0^{\\prime }) are in good agreement with the available theoretical as well as experimental results. Similarly, the obtained electronic band structure demonstrates the metallic character of this perovskite-type hydride.

  16. Room temperature elastic properties of Rh-based alloys studied by surface Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Sumanya, C.; Mathe, B. A.; Comins, J. D.; Every, A. G.; Osawa, M.; Harada, H.

    2014-10-01

    Platinum metal group alloys are promising materials for use in a new generation of gas turbine engines owing to their excellent high-temperature properties. In the present work, room temperature elastic properties of single crystals of Rh3Nb and Rh3Zr are investigated. Surface Brillouin scattering spectra for a range of wave vector directions on the (001) surface have been acquired in order to determine the angular variation of the velocities of the Rayleigh and pseudo-surface acoustic waves and that of the longitudinal lateral wave (LLW) threshold within the Lamb shoulder. The elastic stiffness constants C11, C12, and C44 of these cubic crystal specimens have been derived using two approaches: the first involving the least-squares fit of the combined measured wave velocity data to calculated values and the second an analytical approach using the Rayleigh velocities in the [100] and [110] directions and LLW velocity in the [100] direction, and extracting the elastic stiffness constants from the secular equations for these velocities. Results from the two methods are in good agreement and are for Rh3Nb, C11 = 368 ± 3, C12 = 186 ± 5, and C44 = 161 ± 3 in GPa; and for Rh3Zr, C11 = 329 ± 4, C12 = 185 ± 6, and C44 = 145 ± 4 in GPa.

  17. Elastic and transport properties of topological semimetal ZrTe

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong; Wang, Yue-Hua; Lu, Wan-Li

    2017-11-01

    Topological semimetals may have substantial applications in electronics, spintronics, and quantum computation. Recently, ZrTe was predicted as a new type of topological semimetal due to the coexistence of Weyl fermions and massless triply degenerate nodal points. In this work, the elastic and transport properties of ZrTe are investigated by combining the first-principles calculations and semiclassical Boltzmann transport theory. Calculated elastic constants prove the mechanical stability of ZrTe, and the bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio also are calculated. It is found that spin-orbit coupling (SOC) has slightly enhanced effects on the Seebeck coefficient, which along the a(b) and c directions for pristine ZrTe at 300 K is 46.26 μVK-1 and 80.20 μVK-1, respectively. By comparing the experimental electrical conductivity of ZrTe (300 K) with the calculated value, the scattering time is determined as 1.59 × 10-14 s. The predicted room-temperature electronic thermal conductivity along the a(b) and c directions is 2.37 {{Wm}}-1{{{K}}}-1 and 2.90 {{Wm}}-1{{{K}}}-1, respectively. The room-temperature lattice thermal conductivity is predicted as 17.56 {{Wm}}-1{{{K}}}-1 and 43.08 {{Wm}}-1{{{K}}}-1 along the a(b) and c directions, showing very strong anisotropy. Calculated results show that isotope scattering produces an observable effect on lattice thermal conductivity. To observably reduce lattice thermal conductivity by nanostructures, the characteristic length should be smaller than 70 nm, based on cumulative lattice thermal conductivity with respect to the phonon mean free path (MFP) at 300 K. It is noted that the average room-temperature lattice thermal conductivity of ZrTe is slightly higher than that of isostructural MoP, which is due to larger phonon lifetimes and smaller Grüneisen parameters. Finally, the total thermal conductivity as a function of temperature is predicted for pristine ZrTe. Our works provide valuable

  18. Effect of deposition temperature on morphological, magnetic and elastic properties of ultrathin Co49Pt51 films

    NASA Astrophysics Data System (ADS)

    Si Abdallah, F.; Chérif, S. M.; Bouamama, Kh.; Roussigné, Y.; Hsu, J.-H.

    2018-03-01

    Morphological, magnetic and elastic properties of 5 nm-thick Co49Pt51 films, sputtered on glass substrates, with 20 nm-thick Ta (seed) and Pt (buffer) layers were studied as function of the deposition temperature Td ranging between room temperature and 350° C. Atomic and magnetic force microscopy, vibrating sample magnetometer and Brillouin light scattering techniques were used to investigate the root mean square (RMS) roughness, the magnetic domain configuration, the coercive field (Hc), the perpendicular magnetic anisotropy (PMA), and the dynamic magnetic and elastic properties of the films with Td. The results show that surface uniformity was enhanced since the RMS roughness decreases with Td while magnetic domains typical of films with high PMA are observed. Hc and PMA are found to sensibly increase with Td. The dynamic magnetization behavior is characterized by magnetic modes related with the co-existence of hard and soft magnetic areas within the samples. The elastic properties of the stack were first analyzed by means of a model describing the main variation of the elastic wave frequencies within the frame of weighted average thickness, density, Young's modulus and Poisson coefficient of all the layers constituting the stacks. However, while Hc and PMA keep increasing with Td, a more precise experimental analysis of the mechanical behavior shows that the group velocity starts increasing and finally decreases with Td, suggesting that knowledge of the influence of Td on the mechanical properties of each individual layer composing the stack is required to obtain a more accurate analysis.

  19. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur.

    PubMed

    Malo, M K H; Rohrbach, D; Isaksson, H; Töyräs, J; Jurvelin, J S; Tamminen, I S; Kröger, H; Raum, K

    2013-04-01

    Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Trc33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, p<0.05). Regional variations in porosity were found in the neck (superior 13.1%; inferior 6.1%; anterior 10.1%; posterior 8.6%) and in the shaft (medial 9.5%; lateral 7.7%; anterior 8.6%; posterior 12.0%). In conclusion, significant variations in

  20. Unravelling the biodiversity of nanoscale signatures of spider silk fibres

    NASA Astrophysics Data System (ADS)

    Silva, Luciano P.; Rech, Elibio L.

    2013-12-01

    Living organisms are masters at designing outstanding self-assembled nanostructures through a hierarchical organization of modular proteins. Protein-based biopolymers improved and selected by the driving forces of molecular evolution are among the most impressive archetypes of nanomaterials. One of these biomacromolecules is the myriad of compound fibroins of spider silks, which combine surprisingly high tensile strength with great elasticity. However, no consensus on the nano-organization of spider silk fibres has been reached. Here we explore the biodiversity of spider silk fibres, focusing on nanoscale characterization with high-resolution atomic force microscopy. Our results reveal an evolution of the nanoroughness, nanostiffness, nanoviscoelastic, nanotribological and nanoelectric organization of microfibres, even when they share similar sizes and shapes. These features are related to unique aspects of their molecular structures. The results show that combined nanoscale analyses of spider silks may enable the screening of appropriate motifs for bioengineering synthetic fibres from recombinant proteins.

  1. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors.

    PubMed

    Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong

    2015-01-01

    Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.

  2. Structural, Electronic and Elastic Properties of Heavy Fermion YbTM2 (TM= Ir and Pt) Laves Phase Compounds

    NASA Astrophysics Data System (ADS)

    Pawar, H.; Shugani, M.; Aynyas, M.; Sanyal, S. P.

    2018-02-01

    The structural, electronic and elastic properties of YbTM2 (TM = Ir and Pt) Laves phase intermetallic compounds which crystallize in cubic (MgCu2-type) structure, have been investigated using ab-initio full potential linearized augmented plane wave (FP-LAPW) method with LDA and LDA+U approximation. The calculated ground state properties such as lattice parameter (a0), bulk modulus (B) and its pressure derivative (B‧) are in good agreement with available experimental and theoretical data. The electronic properties are analyzed from band structures and density of states. Elastic constants are predicted first time for these compounds which obey the stability criteria for cubic system.

  3. Ultrasonic and elastic properties of Tl- and Hg-Based cuprate superconductors: a review

    NASA Astrophysics Data System (ADS)

    Abd-Shukor, R.

    2018-01-01

    This review is regarding the ultrasonic and elastic properties of Tl- and Hg-based cuprate superconductors. The objectives of this paper were to review the ultrasonic attenuation above the transition temperature ?, and sound velocity and elastic anomalies at ? in the Tl- and Hg-based cuprate superconductors. A discontinuity in the sound velocity and elastic moduli is observed near ? for the Hg-based and other cuprate high temperature superconductor but not the Tl-based superconductor. Ultrasonic attenuation peaks are observed between 200 and 250 K in almost all Tl- and Hg-based cuprate superconductors reported. These peaks were attributed to lattice stepping and oxygen ordering in the Tl-O and Hg-O layers. Some Tl- and Hg-based superconductors show attenuation peak near ?. However, this is not a common feature for the cuprate superconductors. The ultrasonic attenuation decrease rate below ? is slower than that expected from a Bardeen-Cooper-Schrieffer (BCS) and pseudo-gapped superconductor.

  4. Multi-phase-field method for surface tension induced elasticity

    NASA Astrophysics Data System (ADS)

    Schiedung, Raphael; Steinbach, Ingo; Varnik, Fathollah

    2018-01-01

    A method, based on the multi-phase-field framework, is proposed that adequately accounts for the effects of a coupling between surface free energy and elastic deformation in solids. The method is validated via a number of analytically solvable problems. In addition to stress states at mechanical equilibrium in complex geometries, the underlying multi-phase-field framework naturally allows us to account for the influence of surface energy induced stresses on phase transformation kinetics. This issue, which is of fundamental importance on the nanoscale, is demonstrated in the limit of fast diffusion for a solid sphere, which melts due to the well-known Gibbs-Thompson effect. This melting process is slowed down when coupled to surface energy induced elastic deformation.

  5. Order-disorder effects on the elastic properties of CuMPt6 (M=Cr and Co) compounds

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Li, Rui-Zi; Qi, San-Tao; Chen, Bao; Shen, Jiang

    2014-04-01

    The elastic properties of CuMPt6 (M=Cr and Co) in disordered face-centered cubic (fcc) structure and ordered Cu3Au-type structure are studied with lattice inversion embedded-atom method. The calculated lattice constant and Debye temperature agree quite well with the comparable experimental data. The obtained formation enthalpy demonstrates that the Cu3Au-type structure is energetically more favorable. Numerical estimates of the elastic constants, bulk/shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy, and Debye temperature for both compounds are performed, and the results suggest that the disordered fcc structure is much softer than the ordered Cu3Au-type structure.

  6. Comparison of four different techniques to evaluate the elastic properties of phantom in elastography: is there a gold standard?

    NASA Astrophysics Data System (ADS)

    Oudry, Jennifer; Lynch, Ted; Vappou, Jonathan; Sandrin, Laurent; Miette, Véronique

    2014-10-01

    Elastographic techniques used in addition to imaging techniques (ultrasound, resonance magnetic or optical) provide new clinical information on the pathological state of soft tissues. However, system-dependent variation in elastographic measurements may limit the clinical utility of these measurements by introducing uncertainty into the measurement. This work is aimed at showing differences in the evaluation of the elastic properties of phantoms performed by four different techniques: quasi-static compression, dynamic mechanical analysis, vibration-controlled transient elastography and hyper-frequency viscoelastic spectroscopy. Four Zerdine® gel materials were tested and formulated to yield a Young’s modulus over the range of normal and cirrhotic liver stiffnesses. The Young’s modulus and the shear wave speed obtained with each technique were compared. Results suggest a bias in elastic property measurement which varies with systems and highlight the difficulty in finding a reference method to determine and assess the elastic properties of tissue-mimicking materials. Additional studies are needed to determine the source of this variation, and control for them so that accurate, reproducible reference standards can be made for the absolute measurement of soft tissue elasticity.

  7. First-principles study of structural stability, electronic, optical and elastic properties of binary intermetallic: PtZr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in; Jain, Ekta, E-mail: jainekta05@gmail.com; Sanyal, S. P., E-mail: sps.physicsbu@gmail.com

    2016-05-06

    Structural, electronic, optical and elastic properties of PtZr have been studied using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). The energy against volume and enthalpy vs. pressure variation in three different structures i.e. B{sub 1}, B{sub 2} and B{sub 3} for PtZr has been presented. The equilibrium lattice parameter, bulk modulus and its pressure derivative have been obtained using optimization method for all the three phases. Furthermore, electronic structure was discussed to reveal the metallic character of the present compound. The linear optical properties are also studied under zero pressure for the first time.more » Results on elastic properties are obtained using generalized gradient approximation (GGA) for exchange correlation potentials. Ductile nature of PtZr compound is predicted in accordance with Pugh’s criteria.« less

  8. Nanoscale friction properties of graphene and graphene oxide

    DOE PAGES

    Berman, Diana; Erdemir, Ali; Zinovev, Alexander V.; ...

    2015-04-03

    Achieving superlow friction and wear at the micro/nano-scales through the uses of solid and liquid lubricants may allow superior performance and long-lasting operations in a range of micromechanical system including micro-electro mechanical systems (MEMS). Previous studies have indicated that conventional solid lubricants such as highly ordered pyrolitic graphite (HOPG) can only afford low friction in humid environments at micro/macro scales; but, HOPG is not suitable for practical micro-scale applications. Here, we explored the nano-scale frictional properties of multi-layered graphene films as a potential solid lubricant for such applications. Atomic force microscopy (AFM) measurements have revealed that for high-purity multilayered graphenemore » (7–9 layers), the friction force is significantly lower than what can be achieved by the use of HOPG, regardless of the counterpart AFM tip material. We have demonstrated that the quality and purity of multilayered graphene plays an important role in reducing lateral forces, while oxidation of graphene results in dramatically increased friction values. Furthermore, for the first time, we demonstrated the possibility of achieving ultralow friction for CVD grown single layer graphene on silicon dioxide. This confirms that the deposition process insures a stronger adhesion to substrate and hence enables superior tribological performance than the previously reported mechanical exfoliation processes.« less

  9. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    DOE PAGES

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; ...

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less

  10. Elastic properties and short-range structural order in mixed network former glasses.

    PubMed

    Wang, Weimin; Christensen, Randilynn; Curtis, Brittany; Hynek, David; Keizer, Sydney; Wang, James; Feller, Steve; Martin, Steve W; Kieffer, John

    2017-06-21

    Elastic properties of alkali containing glasses are of great interest not only because they provide information about overall structural integrity but also they are related to other properties such as thermal conductivity and ion mobility. In this study, we investigate two mixed-network former glass systems, sodium borosilicate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)SiO 2 ] and sodium borogermanate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)GeO 2 ] glasses. By mixing network formers, the network topology can be changed while keeping the network modifier concentration constant, which allows for the effect of network structure on elastic properties to be analyzed over a wide parametric range. In addition to non-linear, non-additive mixed-glass former effects, maxima are observed in longitudinal, shear and Young's moduli with increasing atomic number density. By combining results from NMR spectroscopy and Brillouin light scattering with a newly developed statistical thermodynamic reaction equilibrium model, it is possible to determine the relative proportions of all network structural units. This new analysis reveals that the structural characteristic predominantly responsible for effective mechanical load transmission in these glasses is a high density of network cations coordinated by four or more bridging oxygens, as it provides for establishing a network of covalent bonds among these cations with connectivity in three dimensions.

  11. Elastic Properties of Novel Co- and CoNi-Based Superalloys Determined through Bayesian Inference and Resonant Ultrasound Spectroscopy

    NASA Astrophysics Data System (ADS)

    Goodlet, Brent R.; Mills, Leah; Bales, Ben; Charpagne, Marie-Agathe; Murray, Sean P.; Lenthe, William C.; Petzold, Linda; Pollock, Tresa M.

    2018-06-01

    Bayesian inference is employed to precisely evaluate single crystal elastic properties of novel γ -γ ' Co- and CoNi-based superalloys from simple and non-destructive resonant ultrasound spectroscopy (RUS) measurements. Nine alloys from three Co-, CoNi-, and Ni-based alloy classes were evaluated in the fully aged condition, with one alloy per class also evaluated in the solution heat-treated condition. Comparisons are made between the elastic properties of the three alloy classes and among the alloys of a single class, with the following trends observed. A monotonic rise in the c_{44} (shear) elastic constant by a total of 12 pct is observed between the three alloy classes as Co is substituted for Ni. Elastic anisotropy ( A) is also increased, with a large majority of the nearly 13 pct increase occurring after Co becomes the dominant constituent. Together the five CoNi alloys, with Co:Ni ratios from 1:1 to 1.5:1, exhibited remarkably similar properties with an average A 1.8 pct greater than the Ni-based alloy CMSX-4. Custom code demonstrating a substantial advance over previously reported methods for RUS inversion is also reported here for the first time. CmdStan-RUS is built upon the open-source probabilistic programing language of Stan and formulates the inverse problem using Bayesian methods. Bayesian posterior distributions are efficiently computed with Hamiltonian Monte Carlo (HMC), while initial parameterization is randomly generated from weakly informative prior distributions. Remarkably robust convergence behavior is demonstrated across multiple independent HMC chains in spite of initial parameterization often very far from actual parameter values. Experimental procedures are substantially simplified by allowing any arbitrary misorientation between the specimen and crystal axes, as elastic properties and misorientation are estimated simultaneously.

  12. Fe-Mg substitution in aluminate spinels: effects on elastic properties investigated by Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Bruschini, Enrico; Speziale, Sergio; Bosi, Ferdinando; Andreozzi, Giovanni B.

    2018-03-01

    We investigated by a multi-analytical approach (Brillouin scattering, X-ray diffraction and electron microprobe) the dependence of the elastic properties on the chemical composition of six spinels in the series (Mg1-x ,Fe x )Al2O4 (0 ≤ x ≤ 0.5). With the exception of C 12, all the elastic moduli (C 11, C 44, K S0 and G) are insensitive to chemical composition for low iron concentration, while they decrease linearly for higher Fe2+ content. Only C 12 shows a continuous linear increase with increasing Fe2+ across the whole compositional range under investigation. The high cation disorder showed by the sample with x = 0.202 has little or no influence on the elastic parameters. The range 0.202 < x < 0.388 bounds the percolation threshold (p c) for nearest neighbor interaction of Fe in the cation sublattices of the spinel structure. Below x = 0.202, the iron atoms are diluted in the system and far from each other, and the elastic moduli are nearly constant. Above x = 0.388, Fe atoms form extended interconnected clusters and show a cooperative behavior thus affecting the single-crystal elastic moduli. The elastic anisotropy largely increases with the introduction of Fe2+ in substitution of magnesium in spinel. This behavior is different with respect to other spinels containing transition metals such as Mn2+ and Co2+.

  13. A Look Inside Argonne's Center for Nanoscale Materials

    ScienceCinema

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla

    2018-05-23

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  14. Nanoscale electrical property studies of individual GeSi quantum rings by conductive scanning probe microscopy.

    PubMed

    Lv, Yi; Cui, Jian; Jiang, Zuimin M; Yang, Xinju

    2012-11-29

    The nanoscale electrical properties of individual self-assembled GeSi quantum rings (QRs) were studied by scanning probe microscopy-based techniques. The surface potential distributions of individual GeSi QRs are obtained by scanning Kelvin microscopy (SKM). Ring-shaped work function distributions are observed, presenting that the QRs' rim has a larger work function than the QRs' central hole. By combining the SKM results with those obtained by conductive atomic force microscopy and scanning capacitance microscopy, the correlations between the surface potential, conductance, and carrier density distributions are revealed, and a possible interpretation for the QRs' conductance distributions is suggested.

  15. Investigation of structural, electronic, elastic and optical properties of Cd1-x-yZnxHgyTe alloys

    NASA Astrophysics Data System (ADS)

    Tamer, M.

    2016-06-01

    Structural, optical and electronic properties and elastic constants of Cd1-x-yZnx HgyTe alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers-Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard's law. It is seen that results obtained from theory and experiments are all in agreement.

  16. Theoretical investigation of thermoelectric and elastic properties of intermetallic compounds ScTM (TM = Cu, Ag, Au and Pd)

    NASA Astrophysics Data System (ADS)

    Iqbal, R.; Bilal, M.; Jalali-Asadabadi, S.; Rahnamaye Aliabad, H. A.; Ahmad, Iftikhar

    2018-01-01

    In this paper, we explore the structural, electronic, thermoelectric and elastic properties of intermetallic compounds ScTM (TM = Cu, Ag, Au and Pd) using density functional theory. The produced results show high values of Seebeck coefficients and electrical conductivity for these materials. High power factor for these materials at room-temperature shows that these materials may be beneficial for low-temperature thermoelectric devices and alternative energy sources. Furthermore, elastic properties of these compounds are also calculated, which are used to evaluate their mechanical properties. The Cauchy’s pressure and B/G ratio figure out that these compounds are ductile in nature. The calculated results also predict that these compounds are stable against deforming force.

  17. Structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Benahmed, A.; Bouhemadou, A.; Alqarni, B.; Guechi, N.; Al-Douri, Y.; Khenata, R.; Bin-Omran, S.

    2018-05-01

    First-principles calculations were performed to investigate the structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) using two complementary approaches based on density functional theory. The pseudopotential plane-wave method was used to explore the structural and elastic properties whereas the full-potential linearised augmented plane wave approach was used to study the structural, electronic, optical and thermoelectric properties. The calculated structural parameters are in good consistency with the corresponding measured ones. The single-crystal and polycrystalline elastic constants and related properties were examined in details. The electronic properties, including energy band dispersions, density of states and charge-carrier effective masses, were computed using Tran-Blaha modified Becke-Johnson functional for the exchange-correlation potential. It is found that both studied compounds are direct band gap semiconductors. Frequency-dependence of the linear optical functions were predicted for a wide photon energy range up to 15 eV. Charge carrier concentration and temperature dependences of the basic parameters of the thermoelectric properties were explored using the semi-classical Boltzmann transport model. Our calculations unveil that the studied compounds are characterised by a high thermopower for both carriers, especially the p-type conduction is more favourable.

  18. Laser-Ultrasonic Measurement of Elastic Properties of Anodized Aluminum Coatings

    NASA Astrophysics Data System (ADS)

    Singer, F.

    Anodized aluminum oxide plays a great role in many industrial applications, e.g. in order to achieve greater wear resistance. Since the hardness of the anodized films strongly depends on its processing parameters, it is important to characterize the influence of the processing parameters on the film properties. In this work the elastic material parameters of anodized aluminum were investigated using a laser-based ultrasound system. The anodized films were characterized analyzing the dispersion of Rayleigh waves with a one-layer model. It was shown that anodizing time and temperature strongly influence Rayleigh wave propagation.

  19. A first-principles study of elastic and diffusion properties of magnesium based alloys

    NASA Astrophysics Data System (ADS)

    Ganeshan, Swetha

    2011-12-01

    In this thesis, the influence of alloying elements on the elastic and diffusion properties of Magnesium (Mg) has been studied based on first-principles density functional theory. The stress-strain method has been used to predict the elastic constants of the Mg based alloys studied herein. This method involves calculating the resultant change in stress due to application of strain. The validity of this method has been successfully tested for both 0K as well as at finite temperatures. The elastic constants predicted in this work have been correlated to ductility, fracture toughness, stiffness, elastic anisotropy and bond directionality, thus providing a better understanding of the influence of alloying elements on the mechanical and physical properties of Mg. Elastic constants, as a function of temperature have been predicted using first-principles quasi-static approximation. In this approach elastic stiffness coefficients calculated with respect to volume (cij( V)) have been correlated to the equilibrium volume as a function of temperature V(T) from phonon calculations to obtain temperature dependence of elastic stiffness coefficients cij(T). To compare our calculated temperature dependent elastic constants with that of experiments an isentropic correction term has been introduced. It is seen that the influence of this isentropic correction term on the elastic constants becomes significant at high temperatures. The quasi-static approximation has been primarily applied to calculate temperature dependent elastic constants of Mg2Ge, Mg2Si, Mg 2Sn and Mg2Pb. In the case of dilute Mg alloys, a 36 atom supercell with 35 atoms of Mg and one atom of the alloying impurity has been used for calculating the corresponding elastic constants. It is seen that there is a direct correspondence between the trends in the elastic constants and the lattice parameters of all the Mg based alloys studied herein. Elements that cause a decrease (increase) in the lattice constants result in

  20. Thermal and elastic properties of solid neon

    NASA Astrophysics Data System (ADS)

    Acocella, Dominic; Horton, George K.; Cowley, E. Roger

    2000-04-01

    We apply the improved effective potential Monte Carlo (IEP) and the improved self-consistent (ISC) theories to study the thermal and elastic properties of natural solid Ne. As a first orientation, we use the (12-6) Lennard-Jones (LJ) potential for first-neighbor forces only. The two parameters in the potential are determined from the 0 K lattice spacing and the sublimation energy of the crystal. We also create a realistic interatomic potential for the Ne dimer based on our study of the existing literature. When supplemented by many-body contributions, this potential is also used with ISC and IEP. The results are then compared with the experimental data in the literature. We conclude that our realistic potential which we regard as the best currently available is not significantly superior in accounting for the experimental data to the LJ potential, though both give a decent account of the experimental data.

  1. High Temperature Elastic Properties of Reduced Activation Ferritic-Martensitic (RAFM) Steel Using Impulse Excitation Technique

    NASA Astrophysics Data System (ADS)

    Tripathy, Haraprasanna; Raju, Subramanian; Hajra, Raj Narayan; Saibaba, Saroja

    2018-03-01

    The polycrystalline elastic constants of an indigenous variant of 9Cr-1W-based reduced activation ferritic-martensitic (RAFM) steel have been determined as a function of temperature from 298 K to 1323 K (25 °C to 1000 °C), using impulse excitation technique (IET). The three elastic constants namely, Young's modulus E, shear modulus G, and bulk modulus B, exhibited significant softening with increasing temperature, in a pronounced non-linear fashion. In addition, clearly marked discontinuities in their temperature variations are noticed in the region, where ferrite + carbides → austenite phase transformation occurred upon heating. Further, the incidence of austenite → martensite transformation upon cooling has also been marked by a step-like jump in both elastic E and shear moduli G. The martensite start M s and M f finish temperatures estimated from this study are, M s = 652 K (379 °C) and M f =580 K (307 °C). Similarly, the measured ferrite + carbide → austenite transformation onset ( Ac 1) and completion ( Ac 3) temperatures are found to be 1126 K and 1143 K (853 °C and 870 °C), respectively. The Poisson ratio μ exhibited distinct discontinuities at phase transformation temperatures; but however, is found to vary in the range 0.27 to 0.29. The room temperature estimates of E, G, and μ for normalized and tempered microstructure are found to be 219 GPa, 86.65 GPa, and 0.27, respectively. For the metastable austenite phase, the corresponding values are: 197 GPa, 76.5 GPa, and 0.29, respectively. The measured elastic properties as well as their temperature dependencies are found to be in good accord with reported estimates for other 9Cr-based ferritic-martensitic steel grades. Estimates of θ D el , the elastic Debye temperature and γ G, the thermal Grüneisen parameter obtained from measured bulk elastic properties are found to be θ D el = 465 K (192 °C) and γ G = 1.57.

  2. Field characterization of elastic properties across a fault zone reactivated by fluid injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny

    In this paper, we studied the elastic properties of a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). Four controlled water injection experiments were performed in borehole straddle intervals set at successive locations across the fault zone. A three-component displacement sensor, which allowed capturing the borehole wall movements during injection, was used to estimate the elastic properties of representative locations across the fault zone, from the host rock to the damage zone to the fault core. Young's moduli were estimated by both an analytical approach and numerical finite differencemore » modeling. Results show a decrease in Young's modulus from the host rock to the damage zone by a factor of 5 and from the damage zone to the fault core by a factor of 2. In the host rock, our results are in reasonable agreement with laboratory data showing a strong elastic anisotropy characterized by the direction of the plane of isotropy parallel to the laminar structure of the shale formation. In the fault zone, strong rotations of the direction of anisotropy can be observed. Finally, the plane of isotropy can be oriented either parallel to bedding (when few discontinuities are present), parallel to the direction of the main fracture family intersecting the zone, and possibly oriented parallel or perpendicular to the fractures critically oriented for shear reactivation (when repeated past rupture along this plane has created a zone).« less

  3. Field characterization of elastic properties across a fault zone reactivated by fluid injection

    DOE PAGES

    Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny; ...

    2017-08-12

    In this paper, we studied the elastic properties of a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). Four controlled water injection experiments were performed in borehole straddle intervals set at successive locations across the fault zone. A three-component displacement sensor, which allowed capturing the borehole wall movements during injection, was used to estimate the elastic properties of representative locations across the fault zone, from the host rock to the damage zone to the fault core. Young's moduli were estimated by both an analytical approach and numerical finite differencemore » modeling. Results show a decrease in Young's modulus from the host rock to the damage zone by a factor of 5 and from the damage zone to the fault core by a factor of 2. In the host rock, our results are in reasonable agreement with laboratory data showing a strong elastic anisotropy characterized by the direction of the plane of isotropy parallel to the laminar structure of the shale formation. In the fault zone, strong rotations of the direction of anisotropy can be observed. Finally, the plane of isotropy can be oriented either parallel to bedding (when few discontinuities are present), parallel to the direction of the main fracture family intersecting the zone, and possibly oriented parallel or perpendicular to the fractures critically oriented for shear reactivation (when repeated past rupture along this plane has created a zone).« less

  4. Elastic properties of iron-based superconductor SrFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Horikoshi, Keita; Imai, Jo; Nakanishi, Yoshiki; Nakamura, Mitsuteru; Kobayashi, Tatsuya; Adachi, Toru; Miyasaka, Shigeki; Tajima, Setsuko; Yoshizawa, Masahito

    2018-05-01

    We have measured the transverse elastic constants C44 and C66 of iron-based superconductor SrFe2(As1-xPx)2 (Sr122) single crystals as a function of temperature. Under-doped samples show elastic anomalies towards the structural/magnetic transition temperature. Optimal sample shows an upturn at the superconducting transition temperature in both C44 and C66. These behavior is similar to Ba122, while only C66 shows anomaly for Ba122. The elastic anomalies were analyzed by Jahn-Teller formula, and it was found that the Jahn-Teller energy of C44 is much larger than that of C66. This indicates that monoclinic structural fluctuations exist inherently in Sr122 in addition to the known tetragonal fluctuations. Co-existence of these diverse fluctuations and their cooperation are a key to investigate the mechanism and properties of superconductivity in iron based superconductors.

  5. Temperature dependence of elastic and strength properties of T300/5208 graphite-epoxy

    NASA Technical Reports Server (NTRS)

    Milkovich, S. M.; Herakovich, C. T.

    1984-01-01

    Experimental results are presented for the elastic and strength properties of T300/5208 graphite-epoxy at room temperature, 116K (-250 F), and 394K (+250 F). Results are presented for unidirectional 0, 90, and 45 degree laminates, and + or - 30, + or - 45, and + or - 60 degree angle-ply laminates. The stress-strain behavior of the 0 and 90 degree laminates is essentially linear for all three temperatures and that the stress-strain behavior of all other laminates is linear at 116K. A second-order curve provides the best fit for the temperature is linear at 116K. A second-order curve provides the best fit for the temperature dependence of the elastic modulus of all laminates and for the principal shear modulus. Poisson's ratio appears to vary linearly with temperature. all moduli decrease with increasing temperature except for E (sub 1) which exhibits a small increase. The strength temperature dependence is also quadratic for all laminates except the 0 degree - laminate which exhibits linear temperature dependence. In many cases the temperature dependence of properties is nearly linear.

  6. Pressure induced phase transition and elastic properties of cerium mono-nitride (CeN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaduvanshi, Namrata, E-mail: namrata-yaduvanshi@yahoo.com; Singh, Sadhna

    2016-05-23

    In the present paper, we have investigated the high-pressure structural phase transition and elastic properties of cerium mono-nitride. We studied theoretically the structural properties of this compound (CeN) by using the improved interaction potential model (IIPM) approach. This compound exhibits first order crystallographic phase transition from NaCl (B{sub 1}) to tetragonal (BCT) phase at 37 GPa. The phase transition pressures and associated volume collapse obtained from present potential model (IIPM) show a good agreement with available theoretical data.

  7. Nanoscale hotspots due to nonequilibrium thermal transport.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Sanjiv; Goodson, Kenneth E.

    2004-01-01

    Recent experimental and modeling efforts have been directed towards the issue of temperature localization and hotspot formation in the vicinity of nanoscale heat generating devices. The nonequilibrium transport conditions which develop around these nanoscale devices results in elevated temperatures near the heat source which can not be predicted by continuum diffusion theory. Efforts to determine the severity of this temperature localization phenomena in silicon devices near and above room temperature are of technological importance to the development of microelectronics and other nanotechnologies. In this work, we have developed a new modeling tool in order to explore the magnitude of themore » additional thermal resistance which forms around nanoscale hotspots from temperatures of 100-1000K. The models are based on a two fluid approximation in which thermal energy is transferred between ''stationary'' optical phonons and fast propagating acoustic phonon modes. The results of the model have shown excellent agreement with experimental results of localized hotspots in silicon at lower temperatures. The model predicts that the effect of added thermal resistance due to the nonequilibrium phonon distribution is greatest at lower temperatures, but is maintained out to temperatures of 1000K. The resistance predicted by the numerical code can be easily integrated with continuum models in order to predict the temperature distribution around nanoscale heat sources with improved accuracy. Additional research efforts also focused on the measurements of the thermal resistance of silicon thin films at higher temperatures, with a focus on polycrystalline silicon. This work was intended to provide much needed experimental data on the thermal transport properties for micro and nanoscale devices built with this material. Initial experiments have shown that the exposure of polycrystalline silicon to high temperatures may induce recrystallization and radically increase the thermal

  8. Tip-Enhanced Raman Scattering Microscopy: A Step toward Nanoscale Control of Intrinsic Molecular Properties

    NASA Astrophysics Data System (ADS)

    Yano, Taka-aki; Hara, Masahiko

    2018-06-01

    Tip-enhanced Raman scattering microscopy, a family of scanning probe microscopy techniques, has been recognized as a powerful surface analytical technique with both single-molecule sensitivity and angstrom-scale spatial resolution. This review covers the current status of tip-enhanced Raman scattering microscopy in surface and material nanosciences, including a brief history, the basic principles, and applications for the nanoscale characterization of a variety of nanomaterials. The focus is on the recent trend of combining tip-enhanced Raman scattering microscopy with various external stimuli such as pressure, voltage, light, and temperature, which enables the local control of the molecular properties and functions and also enables chemical reactions to be induced on a nanometer scale.

  9. Nanoscale monitoring of drug actions on cell membrane using atomic force microscopy

    PubMed Central

    Li, Mi; Liu, Lian-qing; Xi, Ning; Wang, Yue-chao

    2015-01-01

    Knowledge of the nanoscale changes that take place in individual cells in response to a drug is useful for understanding the drug action. However, due to the lack of adequate techniques, such knowledge was scarce until the advent of atomic force microscopy (AFM), which is a multifunctional tool for investigating cellular behavior with nanometer resolution under near-physiological conditions. In the past decade, researchers have applied AFM to monitor the morphological and mechanical dynamics of individual cells following drug stimulation, yielding considerable novel insight into how the drug molecules affect an individual cell at the nanoscale. In this article we summarize the representative applications of AFM in characterization of drug actions on cell membrane, including topographic imaging, elasticity measurements, molecular interaction quantification, native membrane protein imaging and manipulation, etc. The challenges that are hampering the further development of AFM for studies of cellular activities are aslo discussed. PMID:26027658

  10. Synergistic effect of alloying elements doping and external pressure on the elastic property of Ni{sub 3}Al: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C., E-mail: lichun@nwpu.edu.cn; Shang, J.; Yue, Z.

    2015-07-15

    In this paper, the basic electronic structures and elastic properties of Ni{sub 3}Al doping with alloying elements (Re, Cr, and Mo) under different pressures have been investigated using first-principles calculations based on density functional theory. It is shown that both alloying elements and external applied pressure contribute positively to the elastic properties of Ni{sub 3}Al, and the configurations of the compounds remain almost unchanged. The calculated elastic constants and moduli increase linearly with the pressure increasing from 0 and 40 GPa. Among the alloying elements studied in the present work, Re exhibits the most significant effect compared with the othermore » elements, showing its practical importance. Especially, if both alloying elements doping and pressure effects are considered simultaneously, which has not been considered previously, the studied compounds exhibit an even better elastic property than the simple superposition of the two influences. Such synergistic effect demonstrates promising applications of Ni-based single crystal superalloys in possible extreme mechanical environments.« less

  11. Nanoscale Particle Motion in Attractive Polymer Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senses, Erkan; Narayanan, Suresh; Mao, Yimin

    Using x-ray photon correlation spectroscopy, we examined slow nanoscale motion of silica nanoparticles individually dispersed in entangled poly (ethylene oxide) melt at particle volume fractions up to 42 %. The nanoparticles, therefore, serve as both fillers for the resulting attractive polymer nanocomposites and probes for the network dynamics therein. The results show that the particle relaxation closely follows the mechanical reinforcement in the nanocomposites only at the intermediate concentrations below the critical value for the chain confinement. Quite unexpectedly, the relaxation time of the particles does not further slowdown at higher volume fractions- when all chains are practically on themore » nanoparticle interface- and decouples from the elastic modulus of the nanocomposites that further increases orders of magnitude.« less

  12. Nanoscale Particle Motion in Attractive Polymer Nanocomposites

    DOE PAGES

    Senses, Erkan; Narayanan, Suresh; Mao, Yimin; ...

    2017-12-06

    Using x-ray photon correlation spectroscopy, we examined slow nanoscale motion of silica nanoparticles individually dispersed in entangled poly (ethylene oxide) melt at particle volume fractions up to 42 %. The nanoparticles, therefore, serve as both fillers for the resulting attractive polymer nanocomposites and probes for the network dynamics therein. The results show that the particle relaxation closely follows the mechanical reinforcement in the nanocomposites only at the intermediate concentrations below the critical value for the chain confinement. Quite unexpectedly, the relaxation time of the particles does not further slowdown at higher volume fractions- when all chains are practically on themore » nanoparticle interface- and decouples from the elastic modulus of the nanocomposites that further increases orders of magnitude.« less

  13. Analyses of microstructural and elastic properties of porous SOFC cathodes based on focused ion beam tomography

    NASA Astrophysics Data System (ADS)

    Chen, Zhangwei; Wang, Xin; Giuliani, Finn; Atkinson, Alan

    2015-01-01

    Mechanical properties of porous SOFC electrodes are largely determined by their microstructures. Measurements of the elastic properties and microstructural parameters can be achieved by modelling of the digitally reconstructed 3D volumes based on the real electrode microstructures. However, the reliability of such measurements is greatly dependent on the processing of raw images acquired for reconstruction. In this work, the actual microstructures of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathodes sintered at an elevated temperature were reconstructed based on dual-beam FIB/SEM tomography. Key microstructural and elastic parameters were estimated and correlated. Analyses of their sensitivity to the grayscale threshold value applied in the image segmentation were performed. The important microstructural parameters included porosity, tortuosity, specific surface area, particle and pore size distributions, and inter-particle neck size distribution, which may have varying extent of effect on the elastic properties simulated from the microstructures using FEM. Results showed that different threshold value range would result in different degree of sensitivity for a specific parameter. The estimated porosity and tortuosity were more sensitive than surface area to volume ratio. Pore and neck size were found to be less sensitive than particle size. Results also showed that the modulus was essentially sensitive to the porosity which was largely controlled by the threshold value.

  14. Nanoscale octahedral molecular sieves: Syntheses, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Liu, Jia

    The major part of this research consists of studies on novel synthesis methods, characterization, and catalytic applications of nanoscale manganese oxide octahedral molecular sieves. The second part involves studies of new applications of bulk porous molecular sieve and layered materials (MSLM), zeolites, and inorganic powder materials for diminishing wound bleeding. Manganese oxide octahedral molecular sieves (OMS) are very important microporous materials. They have been used widely as bulk materials in catalysis, separations, chemical sensors, and batteries, due to their unique tunnel structures and useful properties. Novel methods have been developed to synthesize novel nanoscale octahedral molecular sieve manganese oxides (OMS) and metal-substituted OMS materials in order to modify their physical and chemical properties and to improve their catalytic applications. Different synthetic routes were investigated to find better, faster, and cheaper pathways to produce nanoscale or metal-substituted OMS materials. In the synthetic study of nanosize OMS materials, a combination of sol-gel synthesis and hydrothermal reaction was used to prepare pure crystalline nanofibrous todorokite-type (OMS-1) and cryptomelane-typed (OMS-2) manganese oxides using four alkali cations (Li+, K+, Na +, Rb+) and NH4+ cations. In the synthesis study of nanoscale and metal-substituted OMS materials, a combination of sol-gel synthesis and solid-state reaction was used to prepare transition metal-substituted OMS-2 nanorods, nanoneedles, and nanowires. Preparative parameters of syntheses, such as cation templates, heating temperature and time, were investigated in these syntheses of OMS-1 and OMS-2 materials. The catalytic activities of the novel synthetic nanoscale OMS materials has been evaluated on green oxidation of alcohols and toluene and were found to be much higher than their correspondent bulk materials. New applications of bulk manganese oxide molecular sieve and layered materials

  15. First-principles calculations of the structural, elastic and thermodynamic properties of mackinawite (FeS) and pyrite (FeS2)

    NASA Astrophysics Data System (ADS)

    Wen, Xiangli; Liang, Yuxuan; Bai, Pengpeng; Luo, Bingwei; Fang, Teng; Yue, Luo; An, Teng; Song, Weiyu; Zheng, Shuqi

    2017-11-01

    The thermodynamic properties of Fe-S compounds with different crystal structure are very different. In this study, the structural, elastic and thermodynamic properties of mackinawite (FeS) and pyrite (FeS2) were investigated by first-principles calculations. Examination of the electronic density of states shows that mackinawite (FeS) is metallic and that pyrite (FeS2) is a semiconductor with a band gap of Eg = 1.02 eV. Using the stress-strain method, the elastic properties including the bulk modulus and shear modulus were derived from the elastic Cij data. Density functional perturbation theory (DFPT) calculations within the quasi-harmonic approximation (QHA) were used to calculate the thermodynamic properties, and the two Fe-S compounds are found to be dynamically stable. The isothermal bulk modulus, thermal expansion coefficient, heat capacities, Gibbs free energy and entropy of the Fe-S compounds are obtained by first-principles phonon calculations. Furthermore, the temperature of the mackinawite (FeS) ⟶ pyrite (FeS2) phase transition at 0 GPa was predicted. Based on the calculation results, the model for prediction of Fe-S compounds in the Fe-H2S-H2O system was improved.

  16. Elastic mismatch induced reduction of the thermal conductivity of silicon with aluminum nano-inclusions

    NASA Astrophysics Data System (ADS)

    Donovan, Brian F.; Jensen, Wade A.; Chen, Long; Giri, Ashutosh; Poon, S. Joseph; Floro, Jerrold A.; Hopkins, Patrick E.

    2018-05-01

    We use aluminum nano-inclusions in silicon to demonstrate the dominance of elastic modulus mismatch induced scattering in phonon transport. We use time domain thermoreflectance to measure the thermal conductivity of thin films of silicon co-deposited with aluminum via molecular beam epitaxy resulting in a Si film with 10% clustered Al inclusions with nanoscale dimensions and a reduction in thermal conductivity of over an order of magnitude. We compare these results with well-known models in order to demonstrate that the reduction in the thermal transport is driven by elastic mismatch effects induced by aluminum in the system.

  17. Elastic constants and pressure derivative of elastic constants of Si1-xGex solid solution

    NASA Astrophysics Data System (ADS)

    Jivani, A. R.; Baria, J. K.; Vyas, P. S.; Jani, A. R.

    2013-02-01

    Elastic properties of Si1-xGex solid solution with arbitrary (atomic) concentration (x) are studied using the pseudo-alloy atom model based on the pseudopotential theory and on the higher-order perturbation scheme with the application of our own proposed model potential. We have used local-field correction function proposed by Sarkar et al to study Si-Ge system. The Elastic constants and pressure derivatives of elastic constants of the solid solution is investigated with different concentration x of Ge. It is found in the present study that the calculated numerical values of the aforesaid physical properties of Si-Ge system are function of x. The elastic constants (C11, C12 and C44) decrease linearly with increase in concentration x and pressure derivative of elastic constants (C11, C12 and C44) increase with the concentration x of Ge. This study provides better set of theoretical results for such solid solution for further comparison either with theoretical or experimental results.

  18. The elastic properties of woven polymeric fabric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, W.E.

    1989-01-01

    The in-plane linear elastic constants of woven fabric are determined in terms of the specific fabric microstructure. The fabric is assumed to be a spatially periodic interlaced network of orthogonal yarns and the individual yarns are modeled as extensible elastica. These results indicate that a significant coupling of bending and stretching effects occurs during deformation. Results of this theoretical analysis compare favorable with measured in-plane elastic constants for Vincel yarn fabrics. 17 refs., 2 figs., 1 tab.

  19. Biosafe Nanoscale Pharmaceutical Adjuvant Materials

    PubMed Central

    Jin, Shubin; Li, Shengliang; Wang, Chongxi; Liu, Juan; Yang, Xiaolong; Wang, Paul C.; Zhang, Xin; Liang, Xing-Jie

    2014-01-01

    Thanks to developments in the field of nanotechnology over the past decades, more and more biosafe nanoscale materials have become available for use as pharmaceutical adjuvants in medical research. Nanomaterials possess unique properties which could be employed to develop drug carriers with longer circulation time, higher loading capacity, better stability in physiological conditions, controlled drug release, and targeted drug delivery. In this review article, we will review recent progress in the application of representative organic, inorganic and hybrid biosafe nanoscale materials in pharmaceutical research, especially focusing on nanomaterial-based novel drug delivery systems. In addition, we briefly discuss the advantages and notable functions that make these nanomaterials suitable for the design of new medicines; the biosafety of each material discussed in this article is also highlighted to provide a comprehensive understanding of their adjuvant attributes. PMID:25429253

  20. Macroscopic elastic properties of textured ZrN-AlN polycrystalline aggregates: From ab initio calculations to grain-scale interactions

    NASA Astrophysics Data System (ADS)

    Holec, D.; Tasnádi, F.; Wagner, P.; Friák, M.; Neugebauer, J.; Mayrhofer, P. H.; Keckes, J.

    2014-11-01

    Despite the fast development of computational material modeling, the theoretical description of macroscopic elastic properties of textured polycrystalline aggregates starting from basic principles remains a challenging task. In this study we use a supercell-based approach to obtain the elastic properties of a random solid solution cubic Zr1 -xAlxN system as a function of the metallic sublattice composition and texture descriptors. The employed special quasirandom structures are optimized not only with respect to short-range-order parameters, but also to make the three cubic directions [1 0 0 ] , [0 1 0 ] , and [0 0 1 ] as similar as possible. In this way, only a small spread of elastic constant tensor components is achieved and an optimum trade-off between modeling of chemical disorder and computational limits regarding the supercell size and calculational time is proposed. The single-crystal elastic constants are shown to vary smoothly with composition, yielding x ≈0.5 an alloy constitution with an almost isotropic response. Consequently, polycrystals with this composition are suggested to have Young's modulus independent of the actual microstructure. This is indeed confirmed by explicit calculations of polycrystal elastic properties, both within the isotropic aggregate limit and with fiber textures with various orientations and sharpness. It turns out that for low AlN mole fractions, the spread of the possible Young's modulus data caused by the texture variation can be larger than 100 GPa. Consequently, our discussion of Young's modulus data of cubic Zr1 -xAlxN contains also the evaluation of the texture typical for thin films.

  1. Microstructure and micromechanical elastic properties of weak layers

    NASA Astrophysics Data System (ADS)

    Köchle, Berna; Matzl, Margret; Proksch, Martin; Schneebeli, Martin

    2014-05-01

    Weak layers are the mechanically most important stratigraphic layer for avalanches. Yet, there is little known about their exact geometry and their micromechanical properties. To distinguish weak layers or interfaces is essential to assess stability. However, except by destructive mechanical tests, they cannot be easily identified and characterized in the field. We casted natural weak layers and their adjacent layers in the field during two winter seasons and scanned them non-destructively with X-ray computer tomography with a resolution between 10 - 20 µm. Reconstructed three-dimensional models of centimeter-sized layered samples allow for calculating the change of structural properties. We found that structural transitions cannot always by expressed by geometry like density or grain size. In addition, we calculated the Young's modulus and Poisson's ratio of the individual layers with voxel-based finite element simulations. As any material has its characteristic elastic parameters, they may potentially differentiate individual layers, and therefore different microstructures. Our results show that Young's modulus correlates well with density but do not indicate snow's microstructure, in contrast to Poisson's ratio which tends to be lower for strongly anisotropic forms like cup crystals and facets.

  2. Ab Initio Study of the Electronic Structure, Elastic Properties, Magnetic Feature and Thermodynamic Properties of the Ba2NiMoO6 Material

    NASA Astrophysics Data System (ADS)

    Deluque Toro, C. E.; Mosquera Polo, A. S.; Gil Rebaza, A. V.; Landínez Téllez, D. A.; Roa-Rojas, J.

    2018-04-01

    We report first-principles calculations of the elastic properties, electronic structure and magnetic behavior performed over the Ba2NiMoO6 double perovskite. Calculations are carried out through the full-potential linear augmented plane-wave method within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient and Local Density Approximations, including spin polarization. The elastic properties calculated are bulk modulus (B), the elastic constants (C 11, C 12 and C 44), the Zener anisotropy factor (A), the isotropic shear modulus (G), the Young modulus (Y) and the Poisson ratio (υ). Structural parameters, total energies and cohesive properties of the perovskite are studied by means of minimization of internal parameters with the Murnaghan equation, where the structural parameters are in good agreement with experimental data. Furthermore, we have explored different antiferromagnetic configurations in order to describe the magnetic ground state of this compound. The pressure and temperature dependence of specific heat, thermal expansion coefficient, Debye temperature and Grüneisen parameter were calculated by DFT from the state equation using the quasi-harmonic model of Debye. A specific heat behavior C V ≈ C P was found at temperatures below T = 400 K, with Dulong-Petit limit values, which is higher than those, reported for simple perovskites.

  3. Dynamic structural disorder in supported nanoscale catalysts

    NASA Astrophysics Data System (ADS)

    Rehr, J. J.; Vila, F. D.

    2014-04-01

    We investigate the origin and physical effects of "dynamic structural disorder" (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  4. Generation and performance of special quasirandom structures for studying the elastic properties of random alloys: Application to Al-Ti

    NASA Astrophysics Data System (ADS)

    von Pezold, Johann; Dick, Alexey; Friák, Martin; Neugebauer, Jörg

    2010-03-01

    The performance of special-quasirandom structures (SQSs) for the description of elastic properties of random alloys was evaluated. A set of system-independent 32-atom-fcc SQS spanning the entire concentration range was generated and used to determine C11 , C12 , and C44 of binary random substitutional AlTi alloys. The elastic properties of these alloys could be described using the set of SQS with an accuracy comparable to the accuracy achievable by statistical sampling of the configurational space of 3×3×3 (108 atom, C44 ) and 4×4×4 (256 atom, C11 and C12 ) fcc supercells, irrespective of the impurity concentration. The smaller system size makes the proposed SQS ideal candidates for the ab initio determination of the elastic constants of random substitutional alloys. The set of optimized SQS is provided.

  5. Nanoscale structural and functional mapping of nacre by scanning probe microscopy techniques

    NASA Astrophysics Data System (ADS)

    Zhou, Xilong; Miao, Hongchen; Li, Faxin

    2013-11-01

    Nacre has received great attention due to its nanoscale hierarchical structure and extraordinary mechanical properties. Meanwhile, the nanoscale piezoelectric properties of nacre have also been investigated but the structure-function relationship has never been addressed. In this work, firstly we realized quantitative nanomechanical mapping of nacre of a green abalone using atomic force acoustic microscopy (AFAM). The modulus of the mineral tablets is determined to be ~80 GPa and that of the organic biopolymer no more than 23 GPa, and the organic-inorganic interface width is determined to be about 34 +/- 9 nm. Then, we conducted both AFAM and piezoresponse force microscopy (PFM) mapping in the same scanning area to explore the correlations between the nanomechanical and piezoelectric properties. The PFM testing shows that the organic biopolymer exhibits a significantly stronger piezoresponse than the mineral tablets, and they permeate each other, which is very difficult to reproduce in artificial materials. Finally, the phase hysteresis loops and amplitude butterfly loops were also observed using switching spectroscopy PFM, implying that nacre may also be a bio-ferroelectric material. The obtained nanoscale structural and functional properties of nacre could be very helpful in understanding its deformation mechanism and designing biomimetic materials of extraordinary properties.

  6. Effect of Substrate Compliance on Measuring Delamination Properties of Elastic Thin Foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.

    Through the analysis of a model problem, a thin elastic plate bonded to an elastic foundation, we address several issues related to the miniature bulge test for measuring the energy-release rate associated with the interfacial fracture of a bimaterial system, where one of the constituents is a thin foil. These issues include the effect of the substrate compliance on the interpretation of the energy release rate, interfacial strength, and the identification of the boundary of the deforming bulge or the location of the interfacial crack front. The analysis done also suggests a way for measuring the so-called foundation modulus, whichmore » characterizes the property of the substrate. An experimental example, a stainless steel thin foil bonded to an aluminum substrate through hot-isostatic-pressing (HIP), is used to illustrate and highlight some of the conclusions of the model analysis.« less

  7. Effect of Substrate Compliance on Measuring Delamination Properties of Elastic Thin Foil

    DOE PAGES

    Liu, C.

    2018-03-20

    Through the analysis of a model problem, a thin elastic plate bonded to an elastic foundation, we address several issues related to the miniature bulge test for measuring the energy-release rate associated with the interfacial fracture of a bimaterial system, where one of the constituents is a thin foil. These issues include the effect of the substrate compliance on the interpretation of the energy release rate, interfacial strength, and the identification of the boundary of the deforming bulge or the location of the interfacial crack front. The analysis done also suggests a way for measuring the so-called foundation modulus, whichmore » characterizes the property of the substrate. An experimental example, a stainless steel thin foil bonded to an aluminum substrate through hot-isostatic-pressing (HIP), is used to illustrate and highlight some of the conclusions of the model analysis.« less

  8. Construction of Hydrophobic Wood Surface and Mechanical Property of Wood Cell Wall on Nanoscale Modified by Dimethyldichlorosilane

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Wang, Siqun; Zhou, Dingguo; Zhang, Jie; Lan, Ping; Jia, Chong

    2018-01-01

    Dimethyldichlorosilane was used to improve the hydrophobicity of wood surface. The water contact angle of the treated wood surface increased from 85° to 143°, which indicated increased hydrophobicity. The nanomechanical properties of the wood cell wall were evaluated using a nanoindentation test to analyse the hydrophobic mechanism on the nano scale. The elastic modulus of the cell wall was significantly affected by the concentration but the influence of treatment time is insignificant. The hardness of the cell wall for treated samples was significantly affected by both treatment time and concentration. The interaction between treatment time and concentration was extremely significant for the elastic modulus of the wood cell wall.

  9. Correlating the nanoscale mechanical and chemical properties of knockout mice bones

    NASA Astrophysics Data System (ADS)

    Kavukcuoglu, Nadire Beril

    Bone is a mineral-organic composite where the organic matrix is mainly type I collagen plus small amounts of non-collagenous proteins including osteopontin (OPN), osteocalcin (OC) and fibrillin 2 (Fbn2). Mature bone undergoes remodeling continually so new bone is formed and old bone resorbed. Uncoupling between the bone resorption and bone formation causes an overall loss of bone mass and leads to diseases like osteoporosis and osteopenia. These are characterized by structural deterioration of the bone tissue and an increased risk of fracture. The non-collagenous bone proteins are known to have a role in regulating bone turnover and to affect the structural integrity of bone. OPN and OC play a key role in bone resorption and formation, while absence of Fbn-2 causes a connective tissue disorder (congenital contractural arachnodactyly) and has been associated with decreased bone mass. In this thesis nanoindentation and Raman-microspectroscopy techniques were used to investigate and correlate the mechanical and chemical properties of cortical femoral bones from OPN deficient (OPN-/-), OC deficient (OC-/-) and Fbn-2 deficient (Fbn2-/-) mice and their age, sex and background matched wild-type controls (OPN+/+, OC+/+ and Fbn2+/+). For OPN the hardness (H) and elastic modulus (E) of under 12 week OPN-/- bones were significantly lower than for OPN+/+ bones, but Raman showed no significant difference. Mechanical properties of bones from mice older than 12 weeks were not significantly different with genotype. However, mineralization and crystallinity from >50 week OPN-/- bones were significantly higher than for OPN+/+ bones. Mechanical properties of OPN-/- bones showed no variation with age, but mineralization, crystallinity and type-B carbonate substitution increased for both genotypes. For OC-/- intra-bone analyses showed that the hardness and crystallinity of the bones were significantly higher, especially in the mid-cortical sections, compared to OC+/+ bones. Fbn2

  10. High-temperature elastic properties of a nickel-based superalloy studied by surface Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Stoddart, P. R.; Comins, J. D.; Every, A. G.

    2001-03-01

    Surface Brillouin scattering (SBS) has been used to study the thermally induced surface vibrations (phonons) and thereby obtain the elastic properties of the nickel-based superalloy CMSX-4. SBS spectra have been acquired for a range of wavevector directions in the (001) surface in the single-crystal specimen to determine the angular variation of SAW velocities and the nature of the various excitations. Rayleigh and pseudo-surface acoustic waves as well as the details of the Lamb shoulder are studied, and the elastic constants and engineering moduli are determined using different, but self-consistent, methods at ambient and high temperatures. Calculations of the SBS spectra using surface Green function methods are in good agreement with the experimental results.

  11. Nanoscale characterization of the electrical properties of oxide electrodes at the organic semiconductor-oxide electrode interface in organic solar cells

    NASA Astrophysics Data System (ADS)

    MacDonald, Gordon Alex

    This dissertation focuses on characterizing the nanoscale and surface averaged electrical properties of transparent conducting oxide electrodes such as indium tin oxide (ITO) and transparent metal-oxide (MO) electron selective interlayers (ESLs), such as zinc oxide (ZnO), the ability of these materials to rapidly extract photogenerated charges from organic semiconductors (OSCs) used in organic photovoltaic (OPV) cells, and evaluating their impact on the power conversion efficiency (PCE) of OPV devices. In Chapter 1, we will introduce the fundamental principles, benefits, and the key innovations that have advanced this technology. In Chapter 2 of this dissertation, we demonstrate an innovative application of conductive probe atomic force microscopy (CAFM) to map the nanoscale electrical heterogeneity at the interface between ITO, and a well-studied OSC, copper phthalocyanine (CuPc).(MacDonald et al. (2012) ACS Nano, 6, p. 9623) In this work we collected arrays of current-voltage (J-V) curves, using a CAFM probe as the top contact of CuPc/ITO systems, to map the local J-V responses. By comparing J-V responses to known models for charge transport, we were able to determine if the local rate-limiting-step for charge transport is through the OSC (ohmic) or the CuPc/ITO interface (non-ohmic). Chapter 3 focus on the electrical property characterization of RF-magnetron sputtered ZnO (sp-ZnO) ESL films on ITO substrates. We have shown that the energetic alignment of ESLs and the OSC active materials plays a critical role in determining the PCE of OPV devices and UV light soaking sensitivity. We have used a combination of device testing, modeling, and impedance spectroscopy to characterize the effects that energetic alignment has on the charge carrier transport and distribution within the OPV device. In Chapter 4 we demonstrate that the local properties of sp-ZnO films varies as a function of the underlying ITO crystal face. We show that the local ITO crystal face determines

  12. Elastic properties of overpressured and unconsolidated sediments

    USGS Publications Warehouse

    Lee, Myung W.

    2003-01-01

    Differential pressure affects elastic velocities and Poisson?s ratio of sediments in such a way that velocities increase as differential pressure increases. Overpressured zones in sediments can be detected by observing an increase in Poisson?s ratio with a corresponding drop in elastic velocities. In highly overpressured sands, such as shallow water flow sands, the P-to S-wave velocity ratio (Vp/Vs) is very high, on the order of 10 or higher, due to the unconsolidated and uncemented nature of sediments. In order to predict elastic characteristics of highly overpressured sands, Biot-Gassmann theory by Lee (BGTL) is used with a variable exponent n that depends on differential pressure and the degree of consolidation/compaction. The exponent n decreases as differential pressure and the degree of consolidation increases, and, as n decreases, velocity increases and Vp/Vs decreases. The predicted velocity ratio by BGTL agrees well with the measured velocity ratio at low differential pressure for unconsolidated sediments.

  13. Inverse estimation of the elastic and anelastic properties of the porous frame of anisotropic open-cell foams.

    PubMed

    Cuenca, Jacques; Göransson, Peter

    2012-08-01

    This paper presents a method for simultaneously identifying both the elastic and anelastic properties of the porous frame of anisotropic open-cell foams. The approach is based on an inverse estimation procedure of the complex stiffness matrix of the frame by performing a model fit of a set of transfer functions of a sample of material subjected to compression excitation in vacuo. The material elastic properties are assumed to have orthotropic symmetry and the anelastic properties are described using a fractional-derivative model within the framework of an augmented Hooke's law. The inverse estimation problem is formulated as a numerical optimization procedure and solved using the globally convergent method of moving asymptotes. To show the feasibility of the approach a numerically generated target material is used here as a benchmark. It is shown that the method provides the full frequency-dependent orthotropic complex stiffness matrix within a reasonable degree of accuracy.

  14. Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.

    2016-02-01

    This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.

  15. Nanoscale β-nuclear magnetic resonance depth imaging of topological insulators

    PubMed Central

    Koumoulis, Dimitrios; Morris, Gerald D.; He, Liang; Kou, Xufeng; King, Danny; Wang, Dong; Hossain, Masrur D.; Wang, Kang L.; Fiete, Gregory A.; Kanatzidis, Mercouri G.; Bouchard, Louis-S.

    2015-01-01

    Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein, we present a noninvasive depth-profiling technique based on β-detected NMR (β-NMR) spectroscopy of radioactive 8Li+ ions that can provide “one-dimensional imaging” in films of fixed thickness and generates nanoscale views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the 8Li nuclear resonance near the surface and 10-nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological nontrivial characteristics that affect the electron–nuclear hyperfine field, the metallic shift, and magnetic order. These nanoscale variations in β-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials. PMID:26124141

  16. Rheological properties of polymer melts with high elasticity

    NASA Astrophysics Data System (ADS)

    Feranc, Jozef; Matvejová, Martina; Alexy, Pavol; Pret'o, Jozef; Hronkovič, Ján

    2017-05-01

    In the recent years efforts to complex description of the rheological characteristic increase even in the case of polymeric blends with high part of elastic deformation. However, unlike the most thermoplastic these blends have a certain specific features. Besides the already mentioned the higher part of elastic deformation it is especially higher viscosity, which are shown mainly for the measurement in the range of high shear rates. For this reason, the presented work is focused on the description of measurement methodology for blends with high part of elastic deformation using capillary rheometer. The measurements were carried out on a commercial polymer blend with trade name A517 based on rubbery polymer. Capillary rheometer Gottfert RG 75 was used, with diameter of chamber 15 mm. Measurements were performed using capillaries with different ratio of length/diameter at temperature 100°C. Because of existence elastic part of deformation, it is not possible to achieve a steady state pressure using measurements at constant volumetric flow at high shear rates. Therefore we decided to measure the flow characteristic using isobaric mode.

  17. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation

    PubMed Central

    Mozhi, Anbu; Zhang, Xu; Zhao, Yuanyuan; Xue, Xiangdong; Hao, Yanli; Zhang, Xiaoning; Wang, Paul C.; Liang, Xing-Jie

    2014-01-01

    The advent of nanotechnology has reignited interest in the field of pharmaceutical science for the development of nanomedicine. Nanomedicinal formulations are nanometer-sized carrier materials designed for increasing the drug tissue bioavailability, thereby improving the treatment of systemically applied chemotherapeutic drugs. Nanomedicine is a new approach to deliver the pharmaceuticals through different routes of administration with safer and more effective therapies compared to conventional methods. To date, various kinds of nanomaterials have been developed over the years to make delivery systems more effective for the treatment of various diseases. Even though nanomaterials have significant advantages due to their unique nanoscale properties, there are still significant challenges in the improvement and development of nanoformulations with composites and other materials. Here in this review, we highlight the nanomedicinal formulations aiming to improve the balance between the efficacy and the toxicity of therapeutic interventions through different routes of administration and how to design nanomedicine for safer and more effective ways to improve the treatment quality. We also emphasize the environmental and health prospects of nanomaterials for human health care. PMID:23860639

  18. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Chen, Fei; Mozhi, Anbu; Zhang, Xu; Zhao, Yuanyuan; Xue, Xiangdong; Hao, Yanli; Zhang, Xiaoning; Wang, Paul C.; Liang, Xing-Jie

    2013-08-01

    The advent of nanotechnology has reignited interest in the field of pharmaceutical science for the development of nanomedicine. Nanomedicinal formulations are nanometer-sized carrier materials designed for increasing the drug tissue bioavailability, thereby improving the treatment of systemically applied chemotherapeutic drugs. Nanomedicine is a new approach to deliver the pharmaceuticals through different routes of administration with safer and more effective therapies compared to conventional methods. To date, various kinds of nanomaterials have been developed over the years to make delivery systems more effective for the treatment of various diseases. Even though nanomaterials have significant advantages due to their unique nanoscale properties, there are still significant challenges in the improvement and development of nanoformulations with composites and other materials. Here in this review, we highlight the nanomedicinal formulations aiming to improve the balance between the efficacy and the toxicity of therapeutic interventions through different routes of administration and how to design nanomedicine for safer and more effective ways to improve the treatment quality. We also emphasize the environmental and health prospects of nanomaterials for human health care.

  19. Plasmonic Nanostructures for Nano-Scale Bio-Sensing

    PubMed Central

    Chung, Taerin; Lee, Seung-Yeol; Song, Eui Young; Chun, Honggu; Lee, Byoungho

    2011-01-01

    The optical properties of various nanostructures have been widely adopted for biological detection, from DNA sequencing to nano-scale single molecule biological function measurements. In particular, by employing localized surface plasmon resonance (LSPR), we can expect distinguished sensing performance with high sensitivity and resolution. This indicates that nano-scale detections can be realized by using the shift of resonance wavelength of LSPR in response to the refractive index change. In this paper, we overview various plasmonic nanostructures as potential sensing components. The qualitative descriptions of plasmonic nanostructures are supported by the physical phenomena such as plasmonic hybridization and Fano resonance. We present guidelines for designing specific nanostructures with regard to wavelength range and target sensing materials. PMID:22346679

  20. Spatial distribution of filament elasticity determines the migratory behaviors of a cell

    PubMed Central

    Harn, Hans I-Chen; Hsu, Chao-Kai; Wang, Yang-Kao; Huang, Yi-Wei; Chiu, Wen-Tai; Lin, Hsi-Hui; Cheng, Chao-Min; Tang, Ming-Jer

    2016-01-01

    ABSTRACT Any cellular response leading to morphological changes is highly tuned to balance the force generated from structural reorganization, provided by actin cytoskeleton. Actin filaments serve as the backbone of intracellular force, and transduce external mechanical signal via focal adhesion complex into the cell. During migration, cells not only undergo molecular changes but also rapid mechanical modulation. Here we focus on determining, the role of spatial distribution of mechanical changes of actin filaments in epithelial, mesenchymal, fibrotic and cancer cells with non-migration, directional migration, and non-directional migration behaviors using the atomic force microscopy. We found 1) non-migratory cells only generated one type of filament elasticity, 2) cells generating spatially distributed two types of filament elasticity showed directional migration, and 3) pathologic cells that autonomously generated two types of filament elasticity without spatial distribution were actively migrating non-directionally. The demonstration of spatial regulation of filament elasticity of different cell types at the nano-scale highlights the coupling of cytoskeletal function with physical characters at the sub-cellular level, and provides new research directions for migration related disease. PMID:26919488

  1. Nanoscale analysis of degradation processes of cellulose fibers.

    PubMed

    Teodonio, Lorenzo; Missori, Mauro; Pawcenis, Dominika; Łojewska, Joanna; Valle, Francesco

    2016-12-01

    Mapping the morphological and nano-mechanical properties of cellulose fibers within paper sheets or textile products at the nano-scale level by using atomic force microscopy is a challenging task due to the huge surface level variation of these materials. However this task is fundamental for applications in forensic or cultural heritage sciences and for the industrial characterization of materials. In order to correlate between nano-mechanical properties and local nanometer scale morphology of different layers of cellulose fibers, a new strategy to prepare samples of isolated cellulose fibers was designed. This approach is based on immobilizing isolated fibers onto glass slides chemically pretreated so as to promote cellulose adhesion. The experiments presented here aim at the nano-scale characterization of fibers in paper samples aged under different external agents (relative humidity, temperature) in such a way as to promote hydrolysis and oxidation of polymers. The observed variability of local mechanical properties of paper fibers was related to varying degrees of cellulose polymerization induced by artificial aging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Structural, elastic, electronic and dynamical properties of OsB and ReB: Density functional calculations

    NASA Astrophysics Data System (ADS)

    Li, Yanling; Zeng, Zhi; Lin, Haiqing

    2010-06-01

    The structural, elastic, electronic and dynamical properties of ReB and OsB are investigated by first-principles calculations based on density functional theory. It turns out that ReB and OsB are metallic ultra-incompressible solids with small elastic anisotropy and high hardness. The change of c/ a ratio in OsB indicates that there is a structural phase transition at about 31 GPa. Phonon spectra calculations show that both OsB and ReB are stable dynamically and there are abnormal phonon dispersions along special directions in Brillouin zone. OsB and ReB do not show superconductivity due to very weak electron-phonon interactions in them.

  3. First-principles calculation on the thermodynamic and elastic properties of precipitations in Al-Cu alloys

    NASA Astrophysics Data System (ADS)

    Sun, Dongqiang; Wang, Yongxin; Zhang, Xinyi; Zhang, Minyu; Niu, Yanfei

    2016-12-01

    First-principles calculations based on density functional theory was used to investigate the structural, thermodynamic and elastic properties of precipitations, θ″, θ‧ and θ, in Al-Cu alloys. The values of lattice constants accord with experimental results well. The structural stability of θ is the best, followed by θ‧ and θ″. In addition, due to the highest bulk modulus, shear modulus and Young's modulus, θ possesses the best reinforcement effect in precipitation hardening process considered only from mechanical properties of perfect crystal. According to the values of B/G, Poisson's ratio and C11-C12, θ‧ has the worst ductility, while θ″ has the best ductility, the ductility of θ is in the middle. The ideal tensile strength of θ″, θ‧ and θ calculated along [100] and [001] directions are 20.87 GPa, 23.11 GPa and 24.70 GPa respectively. The analysis of electronic structure suggests that three precipitations all exhibit metallic character, and number of bonding electrons and bonding strength are the nature of different thermodynamic and elastic properties for θ″, θ‧ and θ.

  4. Fabrication of nanoscale to macroscale nickel-multiwall carbon nanotube hybrid materials with tunable material properties

    NASA Astrophysics Data System (ADS)

    Abdalla, Ahmed M.; Majdi, Tahereh; Ghosh, Suvojit; Puri, Ishwar K.

    2016-12-01

    To utilize their superior properties, multiwall carbon nanotubes (MWNTs) must be manipulated and aligned end-to-end. We describe a nondestructive method to magnetize MWNTs and provide a means to remotely manipulate them through the electroless deposition of magnetic nickel nanoparticles on their surfaces. The noncovalent bonds between Ni nanoparticles and MWNTs produce a Ni-MWNT hybrid material (NiCH) that is electrically conductive and has an enhanced magnetic susceptibility and elastic modulus. Our experiments show that MWNTs can be plated with Ni for Ni:MWNT weight ratios of γ = 1, 7, 14 and 30, to control the material properties. The phase, atom-level, and morphological information from x-ray diffraction, energy dispersive x-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, dark field STEM, and atomic force microscopy clarify the plating process and reveal the mechanical properties of the synthesized material. Ni metalizes at the surface of the Pd catalyst, forming a continuous wavy layer that encapsulates the MWNT surfaces. Subsequently, Ni acts as an autocatalyst, allowing the plating to continue even after the original Pd catalyst has been completely covered. Raising γ increases the coating layer thickness from 10 to 150 nm, which influences the NiCH magnetic properties and tunes its elastic modulus from 12.5 to 58.7 GPa. The NiCH was used to fabricate Ni-MWNT macrostructures and tune their morphologies by changing the direction of an applied magnetic field. Leveraging the hydrophilic Ni-MWNT outer surface, a water-based conductive ink was created and used to print a conductive path that had an electrical resistivity of 5.9 Ω m, illustrating the potential of this material for printing electronic circuits.

  5. Inverse finite element methods for extracting elastic-poroviscoelastic properties of cartilage and other soft tissues from indentation

    NASA Astrophysics Data System (ADS)

    Namani, Ravi

    Mechanical properties are essential for understanding diseases that afflict various soft tissues, such as osteoarthritic cartilage and hypertension which alters cardiovascular arteries. Although the linear elastic modulus is routinely measured for hard materials, standard methods are not available for extracting the nonlinear elastic, linear elastic and time-dependent properties of soft tissues. Consequently, the focus of this work is to develop indentation methods for soft biological tissues; since analytical solutions are not available for the general context, finite element simulations are used. First, parametric studies of finite indentation of hyperelastic layers are performed to examine if indentation has the potential to identify nonlinear elastic behavior. To answer this, spherical, flat-ended conical and cylindrical tips are examined and the influence of thickness is exploited. Also the influence of the specimen/substrate boundary condition (slip or non-slip) is clarified. Second, a new inverse method---the hyperelastic extraction algorithm (HPE)---was developed to extract two nonlinear elastic parameters from the indentation force-depth data, which is the basic measurement in an indentation test. The accuracy of the extracted parameters and the influence of noise in measurements on this accuracy were obtained. This showed that the standard Berkovitch tip could only extract one parameter with sufficient accuracy, since the indentation force-depth curve has limited sensitivity to both nonlinear elastic parameters. Third, indentation methods for testing tissues from small animals were explored. New methods for flat-ended conical tips are derived. These account for practical test issues like the difficulty in locating the surface or soft specimens. Also, finite element simulations are explored to elucidate the influence of specimen curvature on the indentation force-depth curve. Fourth, the influence of inhomogeneity and material anisotropy on the extracted

  6. The effect of antiphase boundaries on the elastic properties of Ni-Mn-Ga austenite and premartensite

    NASA Astrophysics Data System (ADS)

    Seiner, Hanuš; Sedlák, Petr; Bodnárová, Lucie; Drahokoupil, Jan; Kopecký, Vít; Kopeček, Jaromír; Landa, Michal; Heczko, Oleg

    2013-10-01

    The evolution of elastic properties with temperature and magnetic field was studied in two differently heat-treated single crystals of the Ni-Mn-Ga magnetic shape memory alloy using resonant ultrasound spectroscopy. Quenching and slow furnace cooling were used to obtain different densities of antiphase boundaries. We found that the crystals exhibited pronounced differences in the c‧ elastic coefficient and related shear damping in high-temperature ferromagnetic phases (austenite and premartensite). The difference can be ascribed to the formation of fine magnetic domain patterns and pinning of the magnetic domain walls on antiphase boundaries in the material with a high density of antiphase boundaries due to quenching. The fine domain pattern arising from mutual interactions between antiphase boundaries and ferromagnetic domain walls effectively reduces the magnetocrystalline anisotropy and amplifies the contribution of magnetostriction to the elastic response of the material. As a result, the anomalous elastic softening prior to martensite transformation is significantly enhanced in the quenched sample. Thus, for any comparison of experimental data and theoretical calculations the microstructural changes induced by specific heat treatment must be taken into account.

  7. The effect of antiphase boundaries on the elastic properties of Ni-Mn-Ga austenite and premartensite.

    PubMed

    Seiner, Hanuš; Sedlák, Petr; Bodnárová, Lucie; Drahokoupil, Jan; Kopecký, Vít; Kopeček, Jaromír; Landa, Michal; Heczko, Oleg

    2013-10-23

    The evolution of elastic properties with temperature and magnetic field was studied in two differently heat-treated single crystals of the Ni-Mn-Ga magnetic shape memory alloy using resonant ultrasound spectroscopy. Quenching and slow furnace cooling were used to obtain different densities of antiphase boundaries. We found that the crystals exhibited pronounced differences in the c' elastic coefficient and related shear damping in high-temperature ferromagnetic phases (austenite and premartensite). The difference can be ascribed to the formation of fine magnetic domain patterns and pinning of the magnetic domain walls on antiphase boundaries in the material with a high density of antiphase boundaries due to quenching. The fine domain pattern arising from mutual interactions between antiphase boundaries and ferromagnetic domain walls effectively reduces the magnetocrystalline anisotropy and amplifies the contribution of magnetostriction to the elastic response of the material. As a result, the anomalous elastic softening prior to martensite transformation is significantly enhanced in the quenched sample. Thus, for any comparison of experimental data and theoretical calculations the microstructural changes induced by specific heat treatment must be taken into account.

  8. Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Hao, Chun-Mei; Huang, Hong-Mei; Li, Yan-Ling

    2018-04-01

    The elastic, dynamical, and electronic properties of cubic LiHg and Li3Hg were investigated based on first-principles methods. The elastic constants and phonon spectral calculations confirmed the mechanical and dynamical stability of the materials at ambient conditions. The obtained elastic moduli of LiHg are slightly larger than those of Li3Hg. Both LiHg and Li3Hg are ductile materials with strong shear anisotropy as metals with mixed ionic, covalent, and metallic interactions. The calculated Debye temperatures are 223.5 K and 230.6 K for LiHg and Li3Hg, respectively. The calculated phonon frequency of the T2 g mode in Li3Hg is 326.8 cm-1. The p states from the Hg and Li atoms dominate the electronic structure near the Fermi level. These findings may inspire further experimental and theoretical study on the potential technical and engineering applications of similar alkali metal-based intermetallic compounds.

  9. Synthesis, dynamics and photophysics of nanoscale systems

    NASA Astrophysics Data System (ADS)

    Mirkovic, Tihana

    The emerging field of nanotechnology, which spans diverse areas such as nanoelectronics, medicine, chemical and pharmaceutical industries, biotechnology and computation, focuses on the development of devices whose improved performance is based on the utilization of self-assembled nanoscale components exhibiting unique properties owing to their miniaturized dimensions. The first phase in the conception of such multifunctional devices based on integrated technologies requires the study of basic principles behind the functional mechanism of nanoscale components, which could originate from individual nanoobjects or result as a collective behaviour of miniaturized unit structures. The comprehensive studies presented in this thesis encompass the mechanical, dynamical and photophysical aspects of three nanoscale systems. A newly developed europium sulfide nanocrystalline material is introduced. Advances in synthetic methods allowed for shape control of surface-functionalized EuS nanocrystals and the fabrication of multifunctional EuS-CdSe hybrid particles, whose unique structural and optical properties hold promise as useful attributes of integrated materials in developing technologies. A comprehensive study based on a new class of multifunctional nanomaterials, derived from the basic unit of barcoded metal nanorods is presented. Their chemical composition affords them the ability to undergo autonomous motion in the presence of a suitable fuel. The nature of their chemically powered self-propulsion locomotion was investigated, and plausible mechanisms for various motility modes were presented. Furthermore functionalization of striped metallic nanorods has been realized through the incorporation of chemically controlled flexible hinges displaying bendable properties. The structural aspect of the light harvesting machinery of a photosynthetic cryptophyte alga, Rhodomonas CS24, and the mobility of the antenna protein, PE545, in vivo were investigated. Information obtained

  10. Elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation.

    PubMed

    Li, Yan; Deng, Jianxin; Zhou, Jun; Li, Xueen

    2016-11-01

    Corresponding to pre-puncture and post-puncture insertion, elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation are investigated, respectively. Elastic mechanical properties in pre-puncture are investigated through pre-puncture needle insertion experiments using whole porcine brains. A linear polynomial and a second order polynomial are fitted to the average insertion force in pre-puncture. The Young's modulus in pre-puncture is calculated from the slope of the two fittings. Viscoelastic mechanical properties of brain tissues in post-puncture insertion are investigated through indentation stress relaxation tests for six interested regions along a planned trajectory. A linear viscoelastic model with a Prony series approximation is fitted to the average load trace of each region using Boltzmann hereditary integral. Shear relaxation moduli of each region are calculated using the parameters of the Prony series approximation. The results show that, in pre-puncture insertion, needle force almost increases linearly with needle displacement. Both fitting lines can perfectly fit the average insertion force. The Young's moduli calculated from the slope of the two fittings are worthy of trust to model linearly or nonlinearly instantaneous elastic responses of brain tissues, respectively. In post-puncture insertion, both region and time significantly affect the viscoelastic behaviors. Six tested regions can be classified into three categories in stiffness. Shear relaxation moduli decay dramatically in short time scales but equilibrium is never truly achieved. The regional and temporal viscoelastic mechanical properties in post-puncture insertion are valuable for guiding probe insertion into each region on the implanting trajectory.

  11. Pressure effect on the structural, phonon, elastic and thermodynamic properties of L12 phase RH3TA: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Wang, Leini; Jian, Zhang; Ning, Wei

    2018-06-01

    The phonon, elastic and thermodynamic properties of L12 phase Rh3Ta have been investigated by the density functional theory (DFT) approach combined with the quasi-harmonic approximation model. The results of the phonon band structure show that L12 phase Rh3Ta possesses dynamical stability in the pressure range from 0-80 GPa due to the absence of imaginary frequencies. The pressure dependences with the elastic constants Cij, shear modulus G, bulk modulus B, Young’s modulus Y, Poisson’s ratio and B/G ratio have been analyzed. The results of the elastic properties studies show that L12 phase Rh3Ta compound is mechanically stable and possesses a higher hardness, improved ductility and plasticity under higher pressures. The pressure and temperature relationship of the thermodynamic properties, such as the Debye temperature ΘD, heat capacity Cp, thermal expansion coefficient α and the Grüneisen parameter γ are predicted by the quasi-harmonic Debye model in a wide pressure (0-80 GPa) and temperature (0-750 K) ranges.

  12. High-temperature elastic-plastic and creep properties for SA533 Grade B Class I and SA508 materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, G.B.; Ayres, D.J.

    1982-12-01

    High temperature elastic-plastic and creep properties are presented for SA533 Grade B Class I and SA508 Class II materials. These properties are derived from tests conducted at Combustion Engineering Material and Metallurgical Laboratories and cover the temperature range of 70/sup 0/F to 1200/sup 0/F.

  13. Elastic Properties of Lithium Disilicate Versus Feldspathic Inlays: Effect on the Bonding by 3D Finite Element Analysis.

    PubMed

    Trindade, Flávia Zardo; Valandro, Luiz Felipe; de Jager, Niek; Bottino, Marco Antônio; Kleverlaan, Cornelis Johannes

    2016-10-03

    To determine the elastic properties of five ceramic systems with different compositions (lithium disilicate vs. feldspathic ceramics) and processing methods and compare the stress distribution in premolars in the interface with inlays made with these systems loaded with the maximum normal bite force (665 N) using 3D finite element analysis (FEA). The elastic properties of five ceramic restoration materials (IPS e.max Press, IPS e.max CAD, Vita PM9, Vita Mark II, Vita VM7) were obtained using the ultrasonic pulse-echo method. Three-dimensional FEA simplified models of maxillary premolars restored with these ceramic materials were created. The models were loaded with a load at the two nodes on the occlusal surface in the middle of the tooth, 2 mm from the outside of the tooth, simulating a loading ball with a radius of 6 mm. The means values of density (g/cm³), Young's modulus (GPa), and Poison's ratio was 2.6 ± 0.3, 82.3 ± 18.3, and 0.22 ± 0.01 for IPS e.max Press; 2.3 ± 0.1, 83.5 ± 15.0, and 0.21 ± 0.01 for IPS e.max CAD; 2.5 ± 0.1, 44.4 ± 11.5, and 0.26 ± 0.08 for PM9; 2.4 ± 0.1, 70.6 ± 4.9, and 0.22 ± 0.01 for Vitamark II; 2.4 ± 0.1, 63.3 ± 3.9, and 0.23 ± 0.01 for VM7, respectively. The 3D FEA showed the tensile stress at the interface between the tooth and the inlay was dependent on the elastic properties of the materials, since the Vita PM9 and IPS e.max CAD ceramics presented the lowest and the highest stress concentration in the interface, respectively. The elastic properties of ceramic materials were influenced by composition and processing methods, and these differences influenced the stress concentration at the bonding interface between tooth and restoration. The lower the elastic modulus of inlays, the lower is the stress concentration at the bonding interfaces. © 2016 by the American College of Prosthodontists.

  14. Defects in Ceramic Matrix Composites and Their Impact on Elastic Properties (Postprint)

    DTIC Science & Technology

    2013-07-01

    numerically modeled. The composite under investigation was a 10 layer T300 carbon/ SiC composite in which carbon fabric was impregnated using a polymer ...fraction. (3) Melt Infiltrated in situ BN SiC / SiC composite comprising a stochiometric SiC (Sylramic™) fiber, with an in situ boron nitride treatment...SiNC composite is listed in Table 4. Polymer derived SiC and SiNC matrix material do not ex- hibit a major change in their elastic properties at

  15. The electronic structure, elastic and optical properties of Cu2ZnGe(SexS1 - x)4 alloys: density functional calculations

    NASA Astrophysics Data System (ADS)

    Shen, Kesheng; Jia, Guangrui; Zhang, Xianzhou; Jiao, Zhaoyong

    2016-10-01

    The electronic structure, elastic and optical properties of Cu2ZnGe(SexS1 - x)4 alloys are systematically analysed using first-principles calculations. The lattice parameters agree well with the theoretical and experimental values which are searched as complete as possible indicating our calculations are reliable. The elastic properties are investigated first and are compared with the similar compounds CZTS and CZTSe due to the unavailable experimental data currently. The variation of the optical properties caused by the increase of Se/S ratio is discussed. The static optical constants are calculated and the corrected values are also predicted according to the available experimental data.

  16. Temperature Dependences of Dielectric, Elastic and Piezoelectric Properties of KIO 3 Single Crystals Associated with the Successive Phase Transitions

    NASA Astrophysics Data System (ADS)

    Maeda, Masaki; Takagi, Masayoshi; Suzuki, Ikuo

    2000-01-01

    Pottasium iodate, KIO3, belongs to the perovskite structure and undergoes successive phase transitions at T1= 212°C, T2= 72.5°C, T3=-15°C, T4=-160°C and T5=-240°C, respectively. The temperature dependences of the dielectric, elastic and piezoelectic properties have been measured in the temperature range from -263°C to 330°C.The superionic conductivity was found in the temperature range above T2. Pronounced dielectric dispersions in the frequency range below 10 kHz were observed around -160°C and -240°C and the data were analyzed by fitting to the Davidson-Cole and Havriliak-Negami dispersion formulas, respectively. Both dielectric anomalies are ascribed to the orientaional glass-transitions. The piezoelectric and elastic properties have been investigsated by the resonance-antiresonance method. The piezoelectric and elastic anomalies were observed at T2 and T3.

  17. Alterations in the Elasticity, Pliability, and Viscoelastic Properties of Facial Skin After Injection of Onabotulinum Toxin A.

    PubMed

    Bonaparte, James P; Ellis, David

    2015-01-01

    This prospective cohort study provides evidence and information on the mechanism of action of onabotulinum toxin A on the reduction of skin elasticity and pliability. Understanding the natural course that onabotulinum toxin A has on the elasticity of skin may help physicians understand why there appears to be a progressive reduction in wrinkle levels with repeated treatments. To determine whether onabotulinum toxin A increases skin pliability and elasticity with a corresponding decrease in the contribution of the viscoelastic component of skin resistance. From October 1, 2012, through June 31, 2013, this prospective cohort study enrolled 48 onabotulinum toxin A-naive women (mean [SD] age, 55.2 [11.3] years) with a minimum of mild wrinkle levels at the glabella and lateral orbit (43 completed the study). Patients were treated at a private cosmetic surgery clinic with onabotulinum toxin A and assessed at baseline and 2 weeks, 2 months, 3 months, and 4 months after injection. Standardized onabotulinum toxin A was administered to patients' glabella, supraorbit, and lateral orbit. Skin pliability, elastic recoil, and the ratio of viscoelastic resistance (Uv) to elastic resistance (Ue). For the supraorbit, there was a significant effect of time on pliability (F = 20.5), elastic recoil (F = 6.92), and Uv/Ue ratio (F = 5.6) (P < .001 for all). For the glabella, there was a significant effect of time on pliability (F = 32.23), elastic recoil (F = 31.66), and Uv/Ue ratio (F = 10.11) (P < .001 for all). For the lateral orbit, there was a significant effect of time on pliability (F = 15.83, P < .001), elastic recoil (F = 11.43, P < .001), and Uv/Ue ratio (F = 10.60, P = .009). This study provides further evidence that there is an alteration in biomechanical properties of the skin after injection with onabotulinum toxin A. This effect appears to last up to 4 months in the glabella and up to 3 months at other sites. The

  18. Evaluation of elastic properties and study on water absorption behavior of alumina filled jute-epoxy composites

    NASA Astrophysics Data System (ADS)

    Santosh, D. N.; Ravikumar, B. N.; Mahesh, B.; Vijayalaxmi, S. P.; Srinivas, Y. V.

    2018-04-01

    In this paper, the effect of filler content is studied on elastic properties and water absorption behavior for jute epoxy composite. For reinforcement the plain woven jute fabric is used. The bonding system consists of resin-epoxy and Hardener in the ratio 10:1 by weight. Alumina (average grain size of 30 µm) is used as filler. The effect of filler content on elastic properties and water absorption behavior studied by varying the filler content from 5%, 10%, 15% with respect to weight of epoxy. The open mould method used to fabricate the alumina filled jute-epoxy composite laminates. Tests were conducted according to ASTM standards. The evaluation assesment of elastic properties of alumina filled jute-epoxy composite materials have been analyzed by theoretically and experimentally. The speculated values are analyzed with those obtained from experimental to validate the calculated theoretically with rule of mixture procedure. Young's modulus and shear modulus were found to increase with the increase in the filler content upto 10 wt%, beyond which the modulii showed decreasing trend. Poisson's ratio was found to be continuously decreasing with the increase in the alumina filler content of jute-eposy composite. It was clearly observed that unfilled specimen has the highest saturated moisture content and 15% filled specimen has lowest value. As alumina filler content increases resistance to moisture absorption also increases. The water diffusion coefficient of composite was calculated using the diffusion coefficient equation. As filler content increases diffusion co-efficient decreases for alumina filled jute-epoxy composite.

  19. Elastic and piezoelectric fields around a quantum wire of zincblende heterostructures with interface elasticity effect

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Liu, Yifei

    2018-04-01

    This work formulates the solutions to the elastic and piezoelectric fields around a quantum wire (QWR) with interface elasticity effect. Closed-form solutions to the piezoelectric potential field of zincblende QWR/matrix heterostructures grown along [111] crystallographic orientation are found and numerical results of InAs/InP heterostructures are provided as an example. The piezoelectric potential in the matrix depends on the interface elasticity, the radius and stiffness of the QWR. Our results indicate that interface elasticity can significantly alter the elastic and piezoelectric fields near the interface. Additionally, when the elastic property of the QWR is considered to be anisotropic in contrary to the common isotropic assumption, piezoelectric potentials are found to be distinct near the interface, but the deviations are negligible at positions far away from the interface.

  20. Elastic properties and atomic bonding character in metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouxel, T., E-mail: tanguy.rouxel@univ-rennes1.fr; Yokoyama, Y.

    2015-07-28

    The elastic properties of glasses from different metallic systems were studied in the light of the atomic packing density and bonding character. We found that the electronegativity mismatch (Δe{sup −}) between the host- and the major solute-elements provides a plausible explanation to the large variation observed for Poisson's ratio (ν) among metallic glasses (MGs) (from 0.28 for Fe-based to 0.43 for Pd-based MGs), notwithstanding a similar atomic packing efficiency (C{sub g}). Besides, it is found that ductile MGs correspond to Δe{sup −} smaller than 0.5 and to a relatively steep atomic potential well. Ductility is, thus, favored in MGs exhibitingmore » a weak bond directionality on average and opposing a strong resistance to volume change.« less

  1. Polymer concentration and properties of elastic turbulence in a von Karman swirling flow

    NASA Astrophysics Data System (ADS)

    Jun, Yonggun; Steinberg, Victor

    2017-10-01

    We report detailed experimental studies of statistical, scaling, and spectral properties of elastic turbulence (ET) in a von Karman swirling flow between rotating and stationary disks of polymer solutions in a wide, from dilute to semidilute entangled, range of polymer concentrations ϕ . The main message of the investigation is that the variation of ϕ just weakly modifies statistical, scaling, and spectral properties of ET in a swirling flow. The qualitative difference between dilute and semidilute unentangled versus semidilute entangled polymer solutions is found in the dependence of the critical Weissenberg number Wic of the elastic instability threshold on ϕ . The control parameter of the problem, the Weissenberg number Wi, is defined as the ratio of the nonlinear elastic stress to dissipation via linear stress relaxation and quantifies the degree of polymer stretching. The power-law scaling of the friction coefficient on Wi/Wic characterizes the ET regime with the exponent independent of ϕ . The torque Γ and pressure p power spectra show power-law decays with well-defined exponents, which has values independent of Wi and ϕ separately at 100 ≤ϕ ≤900 ppm and 1600 ≤ϕ ≤2300 ppm ranges. Another unexpected observation is the presence of two types of the boundary layers, horizontal and vertical, distinguished by their role in the energy pumping and dissipation, which has width dependence on Wi and ϕ differs drastically. In the case of the vertical boundary layer near the driving disk, wvv is independent of Wi/Wic and linearly decreases with ϕ /ϕ * , while in the case of the horizontal boundary layer wvh its width is independent of ϕ /ϕ * , linearly decreases with Wi/Wic , and is about five times smaller than wvv. Moreover, these Wi and ϕ dependencies of the vertical and horizontal boundary layer widths are found in accordance with the inverse turbulent intensity calculated inside the boundary layers Vθh/Vθh rms and Vθv/Vθv rms , respectively

  2. Calculating Effective Elastic Properties of Berea Sandstone Using Segmentation-less Method without Targets

    NASA Astrophysics Data System (ADS)

    Ikeda, K.; Goldfarb, E. J.; Tisato, N.

    2017-12-01

    Digital rock physics (DRP) allows performing common laboratory experiments on numerical models to estimate, for example, rock hydraulic permeability. The standard procedure of DRP involves turning a rock sample into a numerical array using X-ray micro computed tomography (micro-CT). Each element of the array bears a value proportional to the X-ray attenuation of the rock at the element (voxel). However, the traditional DRP methodology, which includes segmentation, over-predicts rock moduli by significant amounts (e.g., 100%). Recently, a new methodology - the segmentation-less approach - has been proposed leading to more accurate DRP estimate of elastic moduli. This new method is based on homogenization theory. Typically, segmentation-less approach requires calibration points from known density objects, known as targets. Not all micro-CT datasets have these reference points. Here, we describe how we perform segmentation- and target-less DRP to estimate elastic properties of rocks (i.e., elastic moduli), which are crucial parameters to perform subsurface modeling. We calculate the elastic properties of a Berea sandstone sample that was scanned at a resolution of 40 microns per voxel. We transformed the CT images into density matrices using polynomial fitting curve with four calibration points: the whole rock, the center of quartz grains, the center of iron oxide grains, and the center of air-filled volumes. The first calibration point is obtained by assigning the density of the whole rock to the average of all CT-numbers in the dataset. Then, we locate the center of each phase by finding local extrema point in the dataset. The average CT-numbers of these center points are assigned the density equal to either pristine minerals (quartz and iron oxide) or air. Next, density matrices are transformed to porosity and moduli matrices by means of an effective medium theory. Finally, effective static bulk and shear modulus are numerically calculated by using a Matlab code

  3. The orthotropic elastic properties of fibrolamellar bone tissue in juvenile white-tailed deer femora

    PubMed Central

    Barrera, John W.; Le Cabec, Adeline; Barak, Meir M.

    2017-01-01

    Fibrolamellar bone is a transient primary bone tissue found in fast growing juvenile mammals, several species of birds and large dinosaurs. Despite the fact that this bone tissue is prevalent in many species, the vast majority of bone structural and mechanical studies are focused on humans osteonal bone tissue. Previous research revealed the orthotropic structure of fibrolamellar bone, but only a handful of experiments investigated its elastic properties, mostly in the axial direction. Here we have performed for the first time an extensive biomechanical study to determine the elastic properties of fibrolamellar bone in all three orthogonal directions. We have tested 30 fibrolamellar bone cubes (2×2×2mm) from the femora of five juvenile white-tailed deer (Odocoileus virginianus) in compression. Each bone cube was compressed iteratively, within its elastic region, in the axial, transverse and radial directions and bone stiffness (Young’s modulus) was recorded. Next, the cubes were kept for seven days at 4°C and then compressed again to test whether bone stiffness had significantly deteriorated. Our results demonstrated that bone tissue in the deer femora has orthotropic elastic behavior where the highest stiffness was in the axial direction followed by the transverse and the radial directions respectively (21.6±3.3 GPa, 17.6±3.0 GPa and 14.9±1.9 GPa respectively). Our results also revealed a slight non-significant decrease in bone stiffness after seven days. Finally, our sample size allowed us to establish that population variance was much bigger in the axial direction compared to the radial direction which potentially reflects bone adaptation to the large diversity in loading activity between individuals in the loading direction (axial) compared to the normal (radial) direction. This study confirms that the well mechanically-studied human transverse-isotropic osteonal bone is just one possible functional adaptation of bone tissue and that other vertebrate

  4. Studying the influence of nanodiamonds over the elasticity of polymer/nanodiamond composites for biomedical application

    NASA Astrophysics Data System (ADS)

    Hikov, T.; Mitev, D.; Radeva, E.; Iglic, A.; Presker, R.; Daniel, M.; Sepitka, J.; Krasteva, N.; Keremidarska, M.; Cvetanov, I.; Pramatarova, L.

    2014-12-01

    The combined unique properties offered by organic and inorganic constituents within a single material on a nanoscale level make nanocomposites attractive for the next generation of biocompatible materials. The composite materials of the detonation nanodiamond/polymer type possess spatial organization of components with new structural features and physical properties, as well as complex functions due to the strong synergistic effects between the nanoparticles and the polymer [1]. The plasma polymerization (PP) method was chosen to obtain composites of silicon-based polymers, in which detonation generated nanodiamond (DND) particles were incorporated. The composite layers are homogeneous, chemically resistant, thermally and mechanically stable, thus allowing a large amount of biological components to be loaded onto their surface and to be used in tissue engineering, regenerative medicine, implants, stents, biosensors and other medical and biological devices. Mesenchymal stem cells (MSCs) are the main focus of research in regenerative medicine due to their extraordinary potential to differentiate into different kinds of cells including osteoblasts, which are needed for various bone disease treatments. However, for optimal usage of MSCs knowledge about the factors that influence their initial distribution in the human system, tissue-specific activation and afterwards differentiation into osteoblasts is required. In recent studies it was found that one of these factors is the elasticity of the substrates [2]. The choice of the proper material which specifically guides the differentiation of stem cells even in the absence of growth factors is very important when building modern strategy for bone regeneration. One of the reasons for there not being many studies in this area worldwide is the lack of suitable biomaterials which support these kinds of experiments. The goal of this study is to create substrates suitable for cell culture with a range of mechanical properties

  5. Theoretical investigation of the structural, elastic, electronic and optical properties of the ternary indium sulfide layered structures AInS2 (A = K, Rb and Cs)

    NASA Astrophysics Data System (ADS)

    Bouchenafa, M.; Sidoumou, M.; Halit, M.; Benmakhlouf, A.; Bouhemadou, A.; Maabed, S.; Bentabet, A.; Bin-Omran, S.

    2018-02-01

    Ab initio calculations were performed to investigate the structural, elastic, electronic and optical properties of the ternary layered systems AInS2 (A = K, Rb and Cs). The calculated structural parameters are in good agreement with the existing experimental data. Analysis of the electronic band structure shows that the three studied materials are direct band-gap semiconductors. Density of states, charge transfers and charge density distribution maps were computed and analyzed. Numerical estimations of the elastic moduli and their related properties for single-crystal and polycrystalline aggregates were predicted. The optical properties were calculated for incident radiation polarized along the [100], [010] and [001] crystallographic directions. The studied materials exhibit a noticeable anisotropic behaviour in the elastic and optical properties, which is expected due to the symmetry and the layered nature of these compounds.

  6. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology.

    PubMed

    Schirhagl, Romana; Chang, Kevin; Loretz, Michael; Degen, Christian L

    2014-01-01

    Crystal defects in diamond have emerged as unique objects for a variety of applications, both because they are very stable and because they have interesting optical properties. Embedded in nanocrystals, they can serve, for example, as robust single-photon sources or as fluorescent biomarkers of unlimited photostability and low cytotoxicity. The most fascinating aspect, however, is the ability of some crystal defects, most prominently the nitrogen-vacancy (NV) center, to locally detect and measure a number of physical quantities, such as magnetic and electric fields. This metrology capacity is based on the quantum mechanical interactions of the defect's spin state. In this review, we introduce the new and rapidly evolving field of nanoscale sensing based on single NV centers in diamond. We give a concise overview of the basic properties of diamond, from synthesis to electronic and magnetic properties of embedded NV centers. We describe in detail how single NV centers can be harnessed for nanoscale sensing, including the physical quantities that may be detected, expected sensitivities, and the most common measurement protocols. We conclude by highlighting a number of the diverse and exciting applications that may be enabled by these novel sensors, ranging from measurements of ion concentrations and membrane potentials to nanoscale thermometry and single-spin nuclear magnetic resonance.

  7. Temperature Dependence Of Elastic Constants Of Polymers

    NASA Technical Reports Server (NTRS)

    Simha, Robert; Papazoglou, Elisabeth

    1989-01-01

    Two papers extend theory of elastic constants of disordered solids to finite temperatures below glass-transition temperatures. First paper, entitled "Elastic Constants of Disordered Solids II: Temperature Dependence," applies to cryogenic temperatures. Second paper, entitled "Theory of Thermoelastic Properties for Polymer Glasses," develops unified treatment for static compressional and elongational properties at temperatures up to glass-transition temperatures.

  8. EXAFS and XANES analysis of oxides at the nanoscale.

    PubMed

    Kuzmin, Alexei; Chaboy, Jesús

    2014-11-01

    Worldwide research activity at the nanoscale is triggering the appearance of new, and frequently surprising, materials properties in which the increasing importance of surface and interface effects plays a fundamental role. This opens further possibilities in the development of new multifunctional materials with tuned physical properties that do not arise together at the bulk scale. Unfortunately, the standard methods currently available for solving the atomic structure of bulk crystals fail for nanomaterials due to nanoscale effects (very small crystallite sizes, large surface-to-volume ratio, near-surface relaxation, local lattice distortions etc.). As a consequence, a critical reexamination of the available local-structure characterization methods is needed. This work discusses the real possibilities and limits of X-ray absorption spectroscopy (XAS) analysis at the nanoscale. To this end, the present state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS) is described, including an advanced approach based on the use of classical molecular dynamics and its application to nickel oxide nanoparticles. The limits and possibilities of X-ray absorption near-edge spectroscopy (XANES) to determine several effects associated with the nanocrystalline nature of materials are discussed in connection with the development of ZnO-based dilute magnetic semiconductors (DMSs) and iron oxide nanoparticles.

  9. Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound

    PubMed Central

    Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.

    2013-01-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529

  10. Acoustic radiation force elasticity imaging in diagnostic ultrasound.

    PubMed

    Doherty, Joshua R; Trahey, Gregg E; Nightingale, Kathryn R; Palmeri, Mark L

    2013-04-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo; elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed noninvasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods.

  11. Measuring the elastic properties of fine wire.

    PubMed

    Fallen, C T; Costello, J; Crawford, G; Schmidt, J A

    2001-01-01

    The elastic moduli of fine wires made from MP35N and 304SS used in implantable biomedical devices are assumed to be the same as those published in the literature. However, the cold working required to manufacture the wire significantly alters the elastic moduli of the material. We describe three experiments performed on fine wire made from MP35N and 304SS. The experimentally determined Young's and shear modulus of both wire types were significantly less than the moduli reported in the literature. Young's modulus differed by as much as 26%, and the shear modulus differed by as much as 14% from reported values.

  12. Calculation of elastic properties in lower part of the Kola borehole from bulk chemical compositions of core samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babeyko, A.Yu.; Sobolev, S.V.; Sinelnikov, E.D.

    1994-09-01

    In-situ elastic properties in deep boreholes are controlled by several factors, mainly by lithology, petrofabric, fluid-filled cracks and pores. In order to separate the effects of different factors it is useful to extract lithology-controlled part from observed in-situ velocities. For that purpose we calculated mineralogical composition and isotropic crack-free elastic properties in the lower part of the Kola borehole from bulk chemical compositions of core samples. We use a new technique of petrophysical modeling based on thermodynamic approach. The reasonable accuracy of the modeling is confirmed by comparison with the observations of mineralogical composition and laboratory measurements of density andmore » elastic wave velocities in upper crustal crystalline rocks at high confining pressure. Calculations were carried out for 896 core samples from the depth segment of 6840-10535m. Using these results we estimate density and crack-free isotropic elastic properties of 554 lithology-defined layers composing this depth segment. Average synthetic P-wave velocity appears to be 2.7% higher than the velocity from Vertical Seismic Profiling (VSP), and 5% higher than sonic log velocity. Average synthetic S-wave velocity is 1.4% higher than that from VSP. These differences can be explained by superposition of effects of fabric-related anisotropy, cracks aligned parallel to the foliation plain, and randomly oriented cracks, with the effects of cracks being the predominant control. Low sonic log velocities are likely caused by drilling-induced cracking (hydrofractures) in the borehole walls. The calculated synthetic density and velocity cross-sections can be used for much more detailed interpretations, for which, however, new, more detailed and reliable seismic data are required.« less

  13. Thermoelectric Polymers and their Elastic Aerogels.

    PubMed

    Khan, Zia Ullah; Edberg, Jesper; Hamedi, Mahiar Max; Gabrielsson, Roger; Granberg, Hjalmar; Wågberg, Lars; Engquist, Isak; Berggren, Magnus; Crispin, Xavier

    2016-06-01

    Electronically conducting polymers constitute an emerging class of materials for novel electronics, such as printed electronics and flexible electronics. Their properties have been further diversified to introduce elasticity, which has opened new possibility for "stretchable" electronics. Recent discoveries demonstrate that conducting polymers have thermoelectric properties with a low thermal conductivity, as well as tunable Seebeck coefficients - which is achieved by modulating their electrical conductivity via simple redox reactions. Using these thermoelectric properties, all-organic flexible thermoelectric devices, such as temperature sensors, heat flux sensors, and thermoelectric generators, are being developed. In this article we discuss the combination of the two emerging fields: stretchable electronics and polymer thermoelectrics. The combination of elastic and thermoelectric properties seems to be unique for conducting polymers, and difficult to achieve with inorganic thermoelectric materials. We introduce the basic concepts, and state of the art knowledge, about the thermoelectric properties of conducting polymers, and illustrate the use of elastic thermoelectric conducting polymer aerogels that could be employed as temperature and pressure sensors in an electronic-skin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High pressure structural, elastic and vibrational properties of green energetic oxidizer ammonium dinitramide

    NASA Astrophysics Data System (ADS)

    Yedukondalu, N.; Ghule, Vikas D.; Vaitheeswaran, G.

    2016-08-01

    Ammonium DiNitramide (ADN) is one of the most promising green energetic oxidizers for future rocket propellant formulations. In the present work, we report a detailed theoretical study on structural, elastic, and vibrational properties of the emerging oxidizer under hydrostatic compression using various dispersion correction methods to capture weak intermolecular (van der Waals and hydrogen bonding) interactions. The calculated ground state lattice parameters, axial compressibilities, and equation of state are in good accord with the available experimental results. Strength of intermolecular interactions has been correlated using the calculated compressibility curves and elastic moduli. Apart from this, we also observe discontinuities in the structural parameters and elastic constants as a function of pressure. Pictorial representation and quantification of intermolecular interactions are described by the 3D Hirshfeld surfaces and 2D finger print maps. In addition, the computed infra-red (IR) spectra at ambient pressure reveal that ADN is found to have more hygroscopic nature over Ammonium Perchlorate (AP) due to the presence of strong hydrogen bonding. Pressure dependent IR spectra show blue- and red-shift of bending and stretching frequencies which leads to weakening and strengthening of the hydrogen bonding below and above 5 GPa, respectively. The abrupt changes in the calculated structural, mechanical, and IR spectra suggest that ADN might undergo a first order structural transformation to a high pressure phase around 5-6 GPa. From the predicted detonation properties, ADN is found to have high and low performance characteristics (DCJ = 8.09 km/s and PCJ = 25.54 GPa) when compared with ammonium based energetic oxidizers (DCJ = 6.50 km/s and PCJ = 17.64 GPa for AP, DCJ = 7.28 km/s and PCJ = 18.71 GPa for ammonium nitrate) and well-known secondary explosives for which DCJ = ˜8-10 km/s and PCJ = ˜30-50 GPa, respectively.

  15. Receptor-mediated endocytosis generates nanomechanical force reflective of ligand identity and cellular property.

    PubMed

    Zhang, Xiao; Ren, Juan; Wang, Jingren; Li, Shixie; Zou, Qingze; Gao, Nan

    2018-08-01

    Whether environmental (thermal, chemical, and nutrient) signals generate quantifiable, nanoscale, mechanophysical changes in the cellular plasma membrane has not been well elucidated. Assessment of such mechanophysical properties of plasma membrane may shed lights on fundamental cellular process. Atomic force microscopic (AFM) measurement of the mechanical properties of live cells was hampered by the difficulty in accounting for the effects of the cantilever motion and the associated hydrodynamic force on the mechanical measurement. These challenges have been addressed in our recently developed control-based AFM nanomechanical measurement protocol, which enables a fast, noninvasive, broadband measurement of the real-time changes in plasma membrane elasticity in live cells. Here we show using this newly developed AFM platform that the plasma membrane of live mammalian cells exhibits a constant and quantifiable nanomechanical property, the membrane elasticity. This mechanical property sensitively changes in response to environmental factors, such as the thermal, chemical, and growth factor stimuli. We demonstrate that different chemical inhibitors of endocytosis elicit distinct changes in plasma membrane elastic modulus reflecting their specific molecular actions on the lipid configuration or the endocytic machinery. Interestingly, two different growth factors, EGF and Wnt3a, elicited distinct elastic force profiles revealed by AFM at the plasma membrane during receptor-mediated endocytosis. By applying this platform to genetically modified cells, we uncovered a previously unknown contribution of Cdc42, a key component of the cellular trafficking network, to EGF-stimulated endocytosis at plasma membrane. Together, this nanomechanical AFM study establishes an important foundation that is expandable and adaptable for investigation of cellular membrane evolution in response to various key extracellular signals. © 2017 Wiley Periodicals, Inc.

  16. Elastic Properties of Pore-Spanning Apical Cell Membranes Derived from MDCK II Cells.

    PubMed

    Nehls, Stefan; Janshoff, Andreas

    2017-10-17

    The mechanical response of adherent, polarized cells to indentation is frequently attributed to the presence of an endogenous actin cortex attached to the inner leaflet of the plasma membrane. Here, we scrutinized the elastic properties of apical membranes separated from living cells and attached to a porous mesh in the absence of intracellular factors originating from the cytosol, organelles, the substrate, neighbors, and the nucleus. We found that a tension-based model describes the data very well providing essentially the prestress of the shell generated by adhesion of the apical membrane patches to the pore rim and the apparent area compressibility modulus, an intrinsic elastic modulus modulated by the surface excess stored in membrane reservoirs. Removal of membrane-associated proteins by proteases decreases the area compressibility modulus, whereas fixation and cross-linking of proteins with glutaraldehyde increases it. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Nano-scale mass sensor based on the vibration analysis of a magneto-electro-elastic nanoplate resting on a visco-Pasternak substrate

    NASA Astrophysics Data System (ADS)

    Khanmirza, E.; Jamalpoor, A.; Kiani, A.

    2017-10-01

    In this paper, a magneto-electro-elastic nanoplate resting on a visco-Pasternak medium with added concentrated nanoparticles is presented as a mass nanosensor according to the vibration analysis. The MEE nanoplate is supposed to be subject to external electric voltage and magnetic potential. In order to take into account the size effect on the sensitivity of the sensor, the nonlocal elasticity theory in conjunction with the Kirchhoff plate theory is applied. Partial differential equations are derived by implementing Hamilton's variational principle. Equilibrium equations were solved analytically to determine an explicit closed-form statement for both the damped frequency shift and the relative damped frequency shift using Navier's approach. A genetic algorithm (GA) is employed to achieve the optimal added nanoparticle location to gain the most sensitivity performance of the nanosensor. Numerical studies are performed to illustrate the variation of the sensitivity property corresponding to various values of the number of attached nanoparticles, the mass of each nanoparticle, the nonlocal parameter, external electric voltage and magnetic potential, the aspect ratio, and visco-Pasternak parameters. Some numerical outcomes of this paper show that the minimum value of the damped frequency shift occurs for a certain value of the length-to-thickness ratio. Also, it is shown that the external magnetic and external electric potentials have a different effect on the sensitivity property. It is anticipated that the results reported in this work can be considered as a benchmark in future micro-structures issues.

  18. Spatially localized structure-function relations in the elastic properties of sheared articular cartilage

    NASA Astrophysics Data System (ADS)

    Silverberg, Jesse; Bonassar, Lawrence; Cohen, Itai

    2013-03-01

    Contemporary developments in therapeutic tissue engineering have been enabled by basic research efforts in the field of biomechanics. Further integration of technology in medicine requires a deeper understanding of the mechanical properties of soft biological materials and the structural origins of their response under extreme stresses and strains. Drawing on the science generated by the ``Extreme Mechanics'' community, we present experimental results on the mechanical properties of articular cartilage, a hierarchically structured soft biomaterial found in the joints of mammalian long bones. Measurements of the spatially localized structure and mechanical properties will be compared with theoretical descriptions based on networks of deformed rods, poro-visco-elasticity, and standard continuum models. Discrepancies between experiment and theory will be highlighted, and suggestions for how models can be improved will be given.

  19. Predicting elastic properties of β-HMX from first-principles calculations.

    PubMed

    Peng, Qing; Rahul; Wang, Guangyu; Liu, Gui-Rong; Grimme, Stefan; De, Suvranu

    2015-05-07

    We investigate the performance of van der Waals (vdW) functions in predicting the elastic constants of β cyclotetramethylene tetranitramine (HMX) energetic molecular crystals using density functional theory (DFT) calculations. We confirm that the accuracy of the elastic constants is significantly improved using the vdW corrections with environment-dependent C6 together with PBE and revised PBE exchange-correlation functionals. The elastic constants obtained using PBE-D3(0) calculations yield the most accurate mechanical response of β-HMX when compared with experimental stress-strain data. Our results suggest that PBE-D3 calculations are reliable in predicting the elastic constants of this material.

  20. Nanoscale Footprints of Self-Running Gallium Droplets on GaAs Surface

    PubMed Central

    Wu, Jiang; Wang, Zhiming M.; Li, Alvason Z.; Benamara, Mourad; Li, Shibin; Salamo, Gregory J.

    2011-01-01

    In this work, the nanoscale footprints of self-driven liquid gallium droplet movement on a GaAs (001) surface will be presented and analyzed. The nanoscale footprints of a primary droplet trail and ordered secondary droplets along primary droplet trails are observed on the GaAs surface. A well ordered nanoterrace from the trail is left behind by a running droplet. In addition, collision events between two running droplets are investigated. The exposed fresh surface after a collision demonstrates a superior evaporation property. Based on the observation of droplet evolution at different stages as well as nanoscale footprints, a schematic diagram of droplet evolution is outlined in an attempt to understand the phenomenon of stick-slip droplet motion on the GaAs surface. The present study adds another piece of work to obtain the physical picture of a stick-slip self-driven mechanism in nanoscale, bridging nano and micro systems. PMID:21673965

  1. Transport properties of elastically coupled fractional Brownian motors

    NASA Astrophysics Data System (ADS)

    Lv, Wangyong; Wang, Huiqi; Lin, Lifeng; Wang, Fei; Zhong, Suchuan

    2015-11-01

    Under the background of anomalous diffusion, which is characterized by the sub-linear or super-linear mean-square displacement in time, we proposed the coupled fractional Brownian motors, in which the asymmetrical periodic potential as ratchet is coupled mutually with elastic springs, and the driving source is the external harmonic force and internal thermal fluctuations. The transport mechanism of coupled particles in the overdamped limit is investigated as the function of the temperature of baths, coupling constant and natural length of the spring, the amplitude and frequency of driving force, and the asymmetry of ratchet potential by numerical stimulations. The results indicate that the damping force involving the information of historical velocity leads to the nonlocal memory property and blocks the traditional dissipative motion behaviors, and it even plays a cooperative role of driving force in drift motion of the coupled particles. Thus, we observe various non-monotonic resonance-like behaviors of collective directed transport in the mediums with different diffusion exponents.

  2. 2-Point microstructure archetypes for improved elastic properties

    NASA Astrophysics Data System (ADS)

    Adams, Brent L.; Gao, Xiang

    2004-01-01

    Rectangular models of material microstructure are described by their 1- and 2-point (spatial) correlation statistics of placement of local state. In the procedure described here the local state space is described in discrete form; and the focus is on placement of local state within a finite number of cells comprising rectangular models. It is illustrated that effective elastic properties (generalized Hashin Shtrikman bounds) can be obtained that are linear in components of the correlation statistics. Within this framework the concept of an eigen-microstructure within the microstructure hull is useful. Given the practical innumerability of the microstructure hull, however, we introduce a method for generating a sequence of archetypes of eigen-microstructure, from the 2-point correlation statistics of local state, assuming that the 1-point statistics are stationary. The method is illustrated by obtaining an archetype for an imaginary two-phase material where the objective is to maximize the combination C_{xxxx}^{*} + C_{xyxy}^{*}

  3. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Dupres, Vincent; McEvoy, Kevin; Wildling, Linda; Gruber, Hermann J.; Dufrêne, Yves F.

    2008-09-01

    Although the chemical composition of yeast cell walls is known, the organization, assembly, and interactions of the various macromolecules remain poorly understood. Here, we used in situ atomic force microscopy (AFM) in three different modes to probe the ultrastructure, cell wall elasticity and polymer properties of two brewing yeast strains, i.e. Saccharomyces carlsbergensis and S. cerevisiae. Topographic images of the two strains revealed smooth and homogeneous cell surfaces, and the presence of circular bud scars on dividing cells. Nanomechanical measurements demonstrated that the cell wall elasticity of S. carlsbergensis is homogeneous. By contrast, the bud scar of S. cerevisiae was found to be stiffer than the cell wall, presumably due to the accumulation of chitin. Notably, single molecule force spectroscopy with lectin-modified tips revealed major differences in polysaccharide properties of the two strains. Polysaccharides were clearly more extended on S. cerevisiae, suggesting that not only oligosaccharides, but also polypeptide chains of the mannoproteins were stretched. Consistent with earlier cell surface analyses, these findings may explain the very different aggregation properties of the two organisms. This study demonstrates the power of using multiple complementary AFM modalities for probing the organization and interactions of the various macromolecules of microbial cell walls.

  4. Plastic deformation in nanoscale gold single crystals and open-celled nanoporous gold

    NASA Astrophysics Data System (ADS)

    Lee, Dongyun; Wei, Xiaoding; Zhao, Manhong; Chen, Xi; Jun, Seong C.; Hone, James; Kysar, Jeffrey W.

    2007-01-01

    The results of two sets of experiments to measure the elastic-plastic behaviour of gold at the nanometre length scale are reported. One set of experiments was on free-standing nanoscale single crystals of gold, and the other was on free-standing nanoscale specimens of open-celled nanoporous gold. Both types of specimens were fabricated from commercially available leaf which was either pure Au or a Au/Ag alloy following by dealloying of the Ag. Mechanical testing specimens of a 'dog-bone' shape were fabricated from the leaf using standard lithographic procedures after the leaf had been glued onto a silicon wafer. The thickness of the gauge portion of the specimens was about 100 nm, the width between 250 nm and 300 nm and the length 7 µm. The specimens were mechanically loaded with a nanoindenter (MTS) at the approximate midpoint of the gauge length. The resulting force-displacement curve of the single crystal gold was serrated and it was evident that slip localization occurred on individual slip systems; however, the early stages of the plastic deformation occurred in a non-localized manner. The results of detailed finite element analyses of the specimen suggest that the critical resolved shear stress of the gold single crystal was as high as 135 MPa which would lead to a maximum uniaxial stress of about 500 MPa after several per cent strain. The behaviour of the nanoporous gold was substantially different. It exhibited an apparent elastic behaviour until the point where it failed in an apparently brittle manner, although it is assumed that plastic deformation occurred in the ligaments prior to failure. The average elastic stiffness of three specimens was measured to be Enp = 8.8 GPa and the stress at ultimate failure averaged 190 MPa for the three specimens tested. Scaling arguments suggest that the stress in the individual ligaments could approach the theoretical shear strength. Presented at the IUTAM Symposium on Plasticity at the Micron Scale, Technical

  5. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Klapetek, P.; Koenders, L.

    2011-09-01

    properties of nanoparticles, nanotubes, quantum dots and similar fascinating objects. Currently there is a high level of interest in characterization of nanoparticles since they are increasingly encountered in science, technology, life sciences and even everyday life. Quantitative characterization of nanoparticles has been the subject of many discussions and some recent work over the last couple of years, and both scanning probe microscopy and scanning or transmission electron microscopy characterization of nanoparticles are presented here. There is also a continuous need for improvement of scanning probe microscopy that is a basic tool for nanometrology. Increasing thermal stability, scanning speed and tip stability, improving traceability and reducing uncertainty are all areas being addressed. As scanning probe microscopy is essentially based on force measurements in the nano- and piconewton range, we take notice of large developments, both theoretical and experimental, in the field of traceable measurements of nanoscale forces. This will greatly increase the understanding and quantification of many basic phenomena in scanning probe microscopy. Finally, we observe that high resolution techniques for acquiring more than just morphology are slowly shifting from purely qualitative tools to well defined quantitative methods. Lack of simple and reliable chemical identification in scanning probe microscopy is compensated by many other local probing methods seen in commercial microscopes, like scanning thermal microscopy or the Kelvin probe technique. All these methods still require underpinning with theoretical and experimental work before they can become traceable analytical methods; however, the increased interest in the metrology community gives rise to optimism in this field. The production of this issue involved considerable effort from many contributors. We would like to thank all the authors for their contributions, the referees for their time spent reviewing the

  6. Elastic properties, reaction kinetics, and structural relaxation of an epoxy resin polymer during cure

    NASA Astrophysics Data System (ADS)

    Heili, Manon; Bielawski, Andrew; Kieffer, John

    The cure kinetics of a DGEBA/DETA epoxy is investigated using concurrent Raman and Brillouin light scattering. Raman scattering allows us to monitor the in-situ reaction and quantitatively assess the degree of cure. Brillouin scattering yields the elastic properties of the system, providing a measure of network connectivity. We show that the adiabatic modulus evolves non-uniquely as a function of cure degree, depending on the cure temperature and the molar ratio of the epoxy. Two mechanisms contribute to the increase in the elastic modulus of the material during curing. First, there is the formation of covalent bonds in the network during the curing process. Second, following bond formation, the epoxy undergoes structural relaxation toward an optimally packed network configuration, enhancing non-bonded interactions. We investigate to what extent the non-bonded interaction contribution to structural rigidity in cross-linked polymers is reversible, and to what extent it corresponds to the difference between adiabatic and isothermal moduli obtained from static tensile, i.e. the so-called relaxational modulus. To this end, we simultaneously measure the adiabatic and isothermal elastic moduli as a function of applied strain and deformation rate.

  7. Magnetic superlattices and their nanoscale phase transition effects

    PubMed Central

    Cheon, Jinwoo; Park, Jong-Il; Choi, Jin-sil; Jun, Young-wook; Kim, Sehun; Kim, Min Gyu; Kim, Young-Min; Kim, Youn Joong

    2006-01-01

    The systematic assembly of nanoscale constituents into highly ordered superlattices is of significant interest because of the potential of their multifunctionalities and the discovery of new collective properties. However, successful observations of such superlattice-associated nanoscale phenomena are still elusive. Here, we present magnetic superlattices of Co and Fe3O4 nanoparticles with multidimensional symmetry of either AB (NaCl) or AB2 (AlB2). The discovery of significant enhancement (≈25 times) of ferrimagnetism is further revealed by forming previously undescribed superlattices of magnetically soft–hard Fe3O4@CoFe2O4 through the confined geometrical effect of thermally driven intrasuperlattice phase transition between the nanoparticulate components. PMID:16492783

  8. Extended Tersoff potential for boron nitride: Energetics and elastic properties of pristine and defective h -BN

    NASA Astrophysics Data System (ADS)

    Los, J. H.; Kroes, J. M. H.; Albe, K.; Gordillo, R. M.; Katsnelson, M. I.; Fasolino, A.

    2017-11-01

    We present an extended Tersoff potential for boron nitride (BN-ExTeP) for application in large scale atomistic simulations. BN-ExTeP accurately describes the main low energy B, N, and BN structures and yields quantitatively correct trends in the bonding as a function of coordination. The proposed extension of the bond order, added to improve the dependence of bonding on the chemical environment, leads to an accurate description of point defects in hexagonal BN (h -BN) and cubic BN (c -BN). We have implemented this potential in the molecular dynamics LAMMPS code and used it to determine some basic properties of pristine 2D h -BN and the elastic properties of defective h -BN as a function of defect density at zero temperature. Our results show that there is a strong correlation between the size of the static corrugation induced by the defects and the weakening of the in-plane elastic moduli.

  9. Influence of different surfactants on the physicochemical properties of elastic liposomes.

    PubMed

    Barbosa, R M; Severino, P; Preté, P S C; Santana, M H A

    2017-05-01

    Elastic liposomes are capable to improve drug transport through the skin by acting as penetration enhancers due to the high fluidity and elasticity of the liposome membranes. Therefore, elastic liposomes were prepared and characterized to facilitate the transdermal transport of bioactive molecules. Liposomes consisted of dimyristoylphosphatidylcholine (DMPC) as the structural component, with different surfactants derived from lauric acid as elastic components: C 12 E 5 (polyoxyethylene-5-lauryl ether), PEG4L (polyethyleneglycol-4-lauryl ester), PEG4DL (polyethylene glycol-4-dilauryl ester), PEG8L (polyethylene glycol-8-lauryl ester) and PEG8DL (polyethylene glycol-8-dilauryl ester). The elastic liposomes were characterized in terms of their phospholipid content, mean diameter, size distribution, elasticity and stability during storage, as well as their ability to incorporate surfactant and permeate through 50 nm pore size membranes. The results showed that the phospholipid phase transition temperature, the fluidity of the lipid bilayer resulting from incorporation of the surfactant and the preservation of particle integrity were factors determining the performance of the elastic liposomes in permeating through nanoporous membranes. The best results were obtained using DMPC combined with the surfactants PEG8L or PEG8DL. The findings demonstrate the potential of using elastic liposomes for transdermal administration of drugs.

  10. The tunable mechanical property of water-filled carbon nanotubes under an electric field

    NASA Astrophysics Data System (ADS)

    Ye, Hongfei; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen; Zong, Zhi; Zheng, Yonggang

    2014-03-01

    The spring-induced compression of water-filled carbon nanotubes (CNTs) under an electric field is investigated by molecular dynamics simulations. Due to the incompressibility and polarity of water, the mechanical property of CNTs can be tuned through filling with water molecules and applying an electric field. To explore the variation of the mechanical property of water-filled CNTs, the effects of the CNT length, the filling density and the electric field intensity are examined. The simulation results indicate that the water filling and electric field can result in a slight change in the elastic property (the elastic modulus and Poisson's ratio) of water-filled CNTs. However, the yield stress and average post-buckling stress exhibit a significant response to the water density and electric field intensity. As compared to hollow CNTs, the increment in yield stress of the water-filled CNTs under an electric field of 2.0 V Å-1 is up to 35.29%, which is even higher than that resulting from metal filling. The findings from this study provide a valuable theoretical basis for designing and fabricating the controlling units at the nanoscale.

  11. Acoustic identification of the elastic properties of porous and nonporous superconducting materials DyBa2-XSrXCu3O7-δ

    NASA Astrophysics Data System (ADS)

    Sayoud, N.; Lazri, H.; Ogam, E.; Boumaiza, Y.; Boudour, A.

    2018-05-01

    This work involves the development of a method using the principle of acoustic microscopy to determine the elastic properties of high-temperature superconducting materials, the method is applied to analyse the variation of the elastic properties of the superconducting alloy DyBa 2-x Sr x Cu 3 O 7‑δ for different variations of the concentration parameters (x = 0, x = 0.3 and x = 0.6), porosity and temperature. The method is based on the reconstruction of the reflection coefficient calculated from the acoustic signature of the signal received by the microscope during the exploration of the superconducting material for different concentrations. This permitted the determination of the velocities of the surface and volume waves from the modelled reflection coefficient. On the other hand, the elastic parameters of the material such as Young’s, shear and bulk moduli were also deduced.

  12. iCVD Cyclic Polysiloxane and Polysilazane as Nanoscale Thin-Film Electrolyte: Synthesis and Properties.

    PubMed

    Chen, Nan; Reeja-Jayan, B; Liu, Andong; Lau, Jonathan; Dunn, Bruce; Gleason, Karen K

    2016-03-01

    A group of crosslinked cyclic siloxane (Si-O) and silazane (Si-N) polymers are synthesized via solvent-free initiated chemical vapor deposition (iCVD). Notably, this is the first report of cyclic polysilazanes synthesized via the gas-phase iCVD method. The deposited nanoscale thin films are thermally stable and chemically inert. By iCVD, they can uniformly and conformally cover nonplanar surfaces having complex geometry. Although polysiloxanes are traditionally utilized as dielectric materials and insulators, our research shows these cyclic organosilicon polymers can conduct lithium ions (Li(+) ) at room temperature. The conformal coating and the room temperature ionic conductivity make these cyclic organosilicon polymers attractive for use as thin-film electrolytes in solid-state batteries. Also, their synthesis process and properties have been systemically studied and discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Elastic continuum theory: towards understanding of the twist-bend nematic phases.

    PubMed

    Barbero, G; Evangelista, L R; Rosseto, M P; Zola, R S; Lelidis, I

    2015-09-01

    The twist-bend nematic phase, N_{TB}, may be viewed as a heliconical molecular arrangement in which the director n precesses uniformly about an extra director field, t. It corresponds to a nematic ground state exhibiting nanoscale periodic modulation. To demonstrate the stability of this phase from the elastic point of view, a natural extension of the Frank elastic energy density is proposed. The elastic energy density is built in terms of the elements of symmetry of the new phase in which intervene the components of these director fields together with the usual Cartesian tensors. It is shown that the ground state corresponds to a deformed state for which K_{22}>K_{33}. In the framework of the model, the phase transition between the usual and the twist-bend nematic phase is of second order with a finite wave vector. The model does not require a negative K_{33} in agreement with recent experimental data that yield K_{33}>0. A threshold is predicted for the molecular twist power below which no transition to a twist-bend nematic may occur.

  14. Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions.

    PubMed

    Wojciechowski, K W; Tretiakov, K V; Kowalik, M

    2003-03-01

    Systems of model planar, nonconvex, hard-body "molecules" of fivefold and sevenfold symmetry axes are studied by constant pressure Monte Carlo simulations with variable shape of the periodic box. The molecules, referred to as pentamers (heptamers), are composed of five (seven) identical hard disks "atoms" with centers forming regular pentagons (heptagons) of sides equal to the disk diameter. The elastic compliances of defect-free solid phases are computed by analysis of strain fluctuations and the reference (equilibrium) state is determined within the same run in which the elastic properties are computed. Results obtained by using pseudorandom number generators based on the idea proposed by Holian and co-workers [Holian et al., Phys. Rev. E 50, 1607 (1994)] are in good agreement with the results generated by DRAND48. It is shown that singular behavior of the elastic constants near close packing is in agreement with the free volume approximation; the coefficients of the leading singularities are estimated. The simulations prove that the highest density structures of heptamers (in which the molecules cannot rotate) are auxetic, i.e., show negative Poisson ratios.

  15. Characterization of elastic-viscoplastic properties of an AS4/PEEK thermoplastic composite

    NASA Technical Reports Server (NTRS)

    Yoon, K. J.; Sun, C. T.

    1991-01-01

    The elastic-viscoplastic properties of an AS4/PEEK (APC-2) thermoplastic composite were characterized at 24 C (75 F) and 121 C (250 F) by using a one-parameter viscoplasticity model. To determine the strain-rate effects, uniaxial tension tests were performed on unidirectional off-axis coupon specimens with different monotonic strain rates. A modified Bodner and Partom's model was also used to describe the viscoplasticity of the thermoplastic composite. The experimental results showed that viscoplastic behavior can be characterized quite well using the one-parameter overstress viscoplasticity model.

  16. Focused-ion-beam induced interfacial intermixing of magnetic bilayers for nanoscale control of magnetic properties.

    PubMed

    Burn, D M; Hase, T P A; Atkinson, D

    2014-06-11

    Modification of the magnetic properties in a thin-film ferromagnetic/non-magnetic bilayer system by low-dose focused ion-beam (FIB) induced intermixing is demonstrated. The highly localized capability of FIB may be used to locally control magnetic behaviour at the nanoscale. The magnetic, electronic and structural properties of NiFe/Au bilayers were investigated as a function of the interfacial structure that was actively modified using focused Ga(+) ion irradiation. Experimental work used MOKE, SQUID, XMCD as well as magnetoresistance measurements to determine the magnetic behavior and grazing incidence x-ray reflectivity to elucidate the interfacial structure. Interfacial intermixing, induced by low-dose irradiation, is shown to lead to complex changes in the magnetic behavior that are associated with monotonic structural evolution of the interface. This behavior may be explained by changes in the local atomic environment within the interface region resulting in a combination of processes including the loss of moment on Ni and Fe, an induced moment on Au and modifications to the spin-orbit coupling between Au and NiFe.

  17. THz elastic dynamics in finite-size CoFeB-MgO phononic superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrichs, Henning, E-mail: hulrich@gwdg.de; Meyer, Dennis; Müller, Markus

    2016-10-14

    In this article, we present the observation of coherent elastic dynamics in a nano-scale phononic superlattice, which consists of only 4 bilayers. We demonstrate how ultra-short light pulses with a length of 40 fs can be utilized to excite a coherent elastic wave at 0.535 THz, which persist over about 20 ps. In later steps of the elastic dynamics, modes with frequency of 1.7 THz and above appear. All these modes are related to acoustic band gaps. Thus, the periodicity strongly manifests in the wave physics, although the system under investigation has only a small number of spatial periods. Tomore » further illustrate this, we show how by breaking the translational invariance of the superlattice, these features can be suppressed. Discussed in terms of phonon blocking and radiation, we elucidate in how far our structures can be considered as useful building blocks for phononic devices.« less

  18. Elastic properties of muscle-tendon complex in long-distance runners.

    PubMed

    Kubo, K; Kanehisa, H; Kawakami, Y; Fukunaga, T

    2000-02-01

    The purpose of this study was to investigate the elastic properties of muscle-tendon complex (MTC) in knee extensor muscles and the capacity for elastic energy utilization in long-distance runners (LDR) by comparing with data obtained from untrained individuals (CON). The elongation (L) of the tendon and aponeurosis of vastus lateralis muscle during isometric knee extension was determined by real-time brightness mode ultrasonography, while the subjects developed a gradually increasing torque from 0 (relaxed) to maximal effort (MVC) within 7 s. In addition, performances in two kinds of maximal vertical jumps, i.e. squatting (SJ) and counter-movement jumps (CMJ), were measured. The relationship between L muscle and force (F) was curvilinear and consisted of an initial region (toe region), characterized by a large increase in L with increasing F, immediately followed by a linear region. The slope of the regression equation for the L-F relationship in the range 50%-100% of MVC was defined as an index of MTC compliance, where the rate of the changes in L to that in muscle F at every 10% of MVC became almost constant. The maximal L (Lmax) and MTC compliance were significantly lower in LDR than in CON: 29.9 (SD 3.9) mm in LDR compared to 33.3 (SD 5.5) mm in CON for Lmax and 1.55 (SD 0.25) x 10(-2) mm.N-1 in LDR compared to 1.88 (SD 0.82) x 10(-2) mm.N-1 in CON for MTC compliance. Also, LDR showed significantly less elastic energy absorption (Ee) than CON, defined as the area below the L-F relationship curve from 0 to 100% of MVC. Not only jump heights but also the differences between the heights in SJ and CMJ, expressed as the percentage of the height in SJ, were significantly lower in LDR than in CON. The augmentation with counter-movement was significantly correlated to either MTC compliance (r = 0.554, P < 0.05) or Ee (r = 0.563, P < 0.05). Thus, the present results would indicate that MTC of vastus lateralis muscle is less compliant and its potential for energy

  19. Laboratory Tests of Bitumen Samples Elasticity

    NASA Astrophysics Data System (ADS)

    Ziganshin, E. R.; Usmanov, S. A.; Khasanov, D. I.; Khamidullina, G. S.

    2018-05-01

    This paper is devoted to the study of the elastic and acoustic properties of bitumen core samples. The travel velocities of the ultrasonic P- and S-waves were determined under in-situ simulation conditions. The resulting data were then used to calculate dynamic Young's modulus and Poisson's ratio. The authors studied the correlation between the elasticity and the permeability and porosity. In addition, the tests looked into how the acoustic properties had changed with temperature rise.

  20. Synthesis and characterization of pH-responsive nanoscale hydrogels for oral delivery of hydrophobic therapeutics.

    PubMed

    Puranik, Amey S; Pao, Ludovic P; White, Vanessa M; Peppas, Nicholas A

    2016-11-01

    pH-responsive, polyanionic nanoscale hydrogels were developed for the oral delivery of hydrophobic therapeutics, such as common chemotherapeutic agents. Nanoscale hydrogels were designed to overcome physicochemical and biological barriers associated with oral delivery of hydrophobic therapeutics such as low solubility and poor permeability due to P-glycoprotein related drug efflux. Synthesis of these nanoscale materials was achieved by a robust photoemulsion polymerization method. By varying hydrophobic monomer components, four formulations were synthesized and screened for optimal physicochemical properties and in vitro biocompatibility. All of the responsive nanoscale hydrogels were capable of undergoing a pH-dependent transition in size. Depending on the selection of the hydrophobic monomer, the sizes of the nanoparticles vary widely from 120nm to about 500nm at pH 7.4. Polymer composition was verified using Fourier transform infrared spectroscopy and 1 H-nuclear magnetic resonance spectroscopy. Polymer biocompatibility was assessed in vitro with an intestinal epithelial cell model. All formulations were found to have no appreciable cytotoxicity, defined as greater than 80% viability after polymer incubation. We demonstrate that these nanoscale hydrogels possess desirable physicochemical properties and exhibit agreeable in vitro biocompatibility for oral delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Picotto, G. B.; Koenders, L.; Wilkening, G.

    2009-08-01

    Instrumentation and measurement techniques at the nanoscale play a crucial role not only in extending our knowledge of the properties of matter and processes in nanosciences, but also in addressing new measurement needs in process control and quality assurance in industry. Micro- and nanotechnologies are now facing a growing demand for quantitative measurements to support the reliability, safety and competitiveness of products and services. Quantitative measurements presuppose reliable and stable instruments and measurement procedures as well as suitable calibration artefacts to ensure the quality of measurements and traceability to standards. This special issue of Measurement Science and Technology presents selected contributions from the Nanoscale 2008 seminar held at the Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, in September 2008. This was the 4th Seminar on Nanoscale Calibration Standards and Methods and the 8th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized by the Nanometrology Group within EUROMET (The European Collaboration in Measurement Standards), the German Nanotechnology Competence Centre 'Ultraprecise Surface Figuring' (CC-UPOB), the Physikalisch-Technische Bundesanstalt (PTB) and INRIM. A special event during the seminar was the 'knighting' of Günter Wilkening from PTB, Braunschweig, Germany, as the 1st Knight of Dimensional Nanometrology. Günter Wilkening received the NanoKnight Award for his outstanding work in the field of dimensional nanometrology over the last 20 years. The contributions in this special issue deal with the developments and improvements of instrumentation and measurement methods for scanning force microscopy (SFM), electron and optical microscopy, high-resolution interferometry, calibration of instruments and new standards, new facilities and applications including critical dimension (CD) measurements on small and medium structures and nanoparticle

  2. Elastic and Piezoelectric Properties of Boron Nitride Nanotube Composites. Part II; Finite Element Model

    NASA Technical Reports Server (NTRS)

    Kim, H. Alicia; Hardie, Robert; Yamakov, Vesselin; Park, Cheol

    2015-01-01

    This paper is the second part of a two-part series where the first part presents a molecular dynamics model of a single Boron Nitride Nanotube (BNNT) and this paper scales up to multiple BNNTs in a polymer matrix. This paper presents finite element (FE) models to investigate the effective elastic and piezoelectric properties of (BNNT) nanocomposites. The nanocomposites studied in this paper are thin films of polymer matrix with aligned co-planar BNNTs. The FE modelling approach provides a computationally efficient way to gain an understanding of the material properties. We examine several FE models to identify the most suitable models and investigate the effective properties with respect to the BNNT volume fraction and the number of nanotube walls. The FE models are constructed to represent aligned and randomly distributed BNNTs in a matrix of resin using 2D and 3D hollow and 3D filled cylinders. The homogenisation approach is employed to determine the overall elastic and piezoelectric constants for a range of volume fractions. These models are compared with an analytical model based on Mori-Tanaka formulation suitable for finite length cylindrical inclusions. The model applies to primarily single-wall BNNTs but is also extended to multi-wall BNNTs, for which preliminary results will be presented. Results from the Part 1 of this series can help to establish a constitutive relationship for input into the finite element model to enable the modeling of multiple BNNTs in a polymer matrix.

  3. Complex Nano-Scale Structures for Unprecedented Properties in Steels

    DOE PAGES

    Caballero, Francisca G.; Poplawsky, Jonathan D.; Yen, Hung Wei; ...

    2016-11-01

    Processing bulk nanoscrystalline materials for structural applications still poses a rather large challenge, particularly in achieving an industrially viable process. In this context, recent work has proved that complex nanoscale steel structures can be formed by solid reaction at low temperatures. These nanocrystalline bainitic steels present the highest strength ever recorded, unprecedented ductility, fatigue on par with commercial bearing steels and exceptional rolling-sliding wear performances. In this paper, a description of the characteristics and significance of these remarkable structures in the context of the atomic mechanism of transformation is provided.

  4. Elasticity of methane hydrate phases at high pressure.

    PubMed

    Beam, Jennifer; Yang, Jing; Liu, Jin; Liu, Chujie; Lin, Jung-Fu

    2016-04-21

    Determination of the full elastic constants (cij) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases' compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.

  5. Tendon elasticity and muscle function.

    PubMed

    Alexander, R McNeill

    2002-12-01

    Vertebrate animals exploit the elastic properties of their tendons in several different ways. Firstly, metabolic energy can be saved in locomotion if tendons stretch and then recoil, storing and returning elastic strain energy, as the animal loses and regains kinetic energy. Leg tendons save energy in this way when birds and mammals run, and an aponeurosis in the back is also important in galloping mammals. Tendons may have similar energy-saving roles in other modes of locomotion, for example in cetacean swimming. Secondly, tendons can recoil elastically much faster than muscles can shorten, enabling animals to jump further than they otherwise could. Thirdly, tendon elasticity affects the control of muscles, enhancing force control at the expense of position control.

  6. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

    NASA Astrophysics Data System (ADS)

    Lawrence, S. K.; Somerday, B. P.; Ingraham, M. D.; Bahr, D. F.

    2018-04-01

    Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases 22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases 20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yielding in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal a direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.

  7. In-situ observation of switchable nanoscale topography for y-shaped binary brushes in fluids.

    PubMed

    Lin, Yen-Hsi; Teng, Jing; Zubarev, Eugene R; Shulha, Hennady; Tsukruk, Vladimir V

    2005-03-01

    Direct, in-fluid observation of the surface morphology and nanomechanical properties of the mixed brushes composed of Y-shaped binary molecules PS-PAA revealed nanoscale network-like surface topography formed by coexisting stretched soluble PAA arms and collapsed insoluble PS chains in water. Placement of Y-shaped brushes in different fluids resulted in dramatic reorganization ranging from soft repellent layer covered by swollen PS arms in toluene to an adhesive, mixed layer composed of coexisting swollen PAA and collapsed PS arms in water. These binary layers with the overall nanoscale thickness can serve as adaptive nanocoatings with stimuli-responsive properties.

  8. Influence of elastic parameters on the evolution of elasticity modulus of thin films

    NASA Astrophysics Data System (ADS)

    Gacem, A.; Doghmane, A.; Hadjoub, Z.; Beldi, I.; Doghmane, M.

    2012-09-01

    In recent years, it appears many structures in the form of thin films or multilayers, used as coatings for surface protection, or to provide materials with new properties different from those of substrates. These properties are the subject of a growing number of studies in order to produce Nano or micro structures with different degrees of quality, and cost as well as the manufacture of thin film properties more functional and more controllable. As the thicknesses are close to micrometric or nanometric scales, the modulus of elasticity are difficult to measure and experimental results are rarely published in the literature. In this context, we propose an analytical qualitative methodology to describe the influence of acoustic parameters of thin films on the evolution of elastic moduli the most used. This method is based on the determination of the acoustic signature V(z) of several thin layers deposited on different substrates, as well the information on the propagation velocity of ultrasonic waves are obtained. Thus, the dispersion curves representing the variation of the modulus of elasticity (Young and the shear), were determined. We have noticed that, according to the type of substrate (light, medium or heavy), we observed the appearance of some anomalies in curves that are generally associated with changes in the acoustic properties of each of the examined layers. We have shown that these anomalies are mainly due to the effect loading, and represent one of the fundamental parameters determining the appearance or disappearance of a phenomenon and represent one of the basic parameters determining the appearance or disappearance of phenomena. Finally, we determine the Poisson ratio of thin films in order to calculate other elastic parameters such as the compressor modulus.

  9. Elastic anomalies in Fe-Cr alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Hualei; Wang, Guisheng; Punkkinen, Marko P. J.; Hertzman, Staffan; Johansson, Börje; Vitos, Levente

    2013-05-01

    Using ab initio alloy theory, we determine the elastic parameters of ferromagnetic and paramagnetic Fe1-cCrc (0 ≤ c ≤ 1) alloys in the body centered cubic crystallographic phase. Comparison with the experimental data demonstrates that the employed theoretical approach accurately describes the observed composition dependence of the polycrystalline elastic moduli. The predicted single-crystal elastic constants follow complex anomalous trends, which are shown to originate from the interplay between magnetic and chemical effects. The nonmonotonic composition dependence of the elastic parameters has marked implications on the micro-mechanical properties of ferrite stainless steels.

  10. On the influence of frequency-dependent elastic properties in vibro-acoustic modelling of porous materials under structural excitation

    NASA Astrophysics Data System (ADS)

    Van der Kelen, C.; Göransson, P.; Pluymers, B.; Desmet, W.

    2014-12-01

    The aspects related to modelling the frequency dependence of the elastic properties of air-saturated porous materials have been largely neglected in the past for several reasons. For acoustic excitation of porous materials, the material behaviour can be quite well represented by models where the properties of the solid frame have little influence. Only recently has the importance of the dynamic moduli of the frame come into focus. This is related to a growing interest in the material behaviour due to structural excitation. Two aspects stand out in connection with the elastic-dynamic behaviour. The first is related to methods for the characterisation of the dynamic moduli of porous materials. The second is a perceived lack of numerical methods able to model the complex material behaviour under structural excitation, in particular at higher frequencies. In the current paper, experimental data from a panel under structural excitation, coated with a porous material, are presented. In an attempt to correlate the experimental data to numerical predictions, it is found that the measured quasi-static material parameters do not suffice for an accurate prediction of the measured results. The elastic material parameters are then estimated by correlating the numerical prediction to the experimental data, following the physical behaviour predicted by the augmented Hooke's law. The change in material behaviour due to the frequency-dependent properties is illustrated in terms of the propagation of the slow wave and the shear wave in the porous material.

  11. Optical Properties of Nanoscale Bismuth Selenide and Its Heterocrystals

    NASA Astrophysics Data System (ADS)

    Vargas, Anthony

    Over the past 12 years since the groundbreaking work on graphene, the field of 2D layered materials has grown by leaps and bounds as more materials are theoretically predicted and experimentically verified. These materials and their unique electronic, optical, and mechanical properties have inspired the scientific community to explore and investigate novel, fundamental physical phenomena as well create and refine technological devices which leverage the host of unique benefits which these materials possess. In the past few years, this burgeoning field has heavily moved towards combining layers of various materials into novel heterostructures. These heterostructures are an exciting area of research because of the plethora of exciting possibilities and results which arise due to the large number of heterostructure combinations and configurations. Particularly, the research into the optical properties of these layered materials and their heterostructures under confinement provides another exciting avenue for developing optoelectric devices. In this dissertation, I present work on the synthesis of Bi2Se 3 nanostructures via chemical vapor deposition (CVD) and the study of the optical properties of these nanostructures and their heterostructures with MoS2. The bulk of the current published work on Bi2Se 3 has focused on the exotic topological properties of its surface states, both interesting fundamental physics purposes as well as for studying avenues for spintronics. In contrast, the work presented here focuses on studying the optical properties of Bi2Se3 nanostructures and how these properties evolve when subjected to confinement. Specifically, the absorbance of singlecrystal Bi2Se3 with sizes tailored down to a few nanometers in diameter and a few quintuple layers (QLs) in thickness. We find a dramatically large bandgap, Eg ≥ 2.5 eV, in the smallest particles which is much higher than that seen in 1QL measurements taken with ARPES. Additionally, utilizing

  12. Designing nanoscale constructs from atomic thin sheets of graphene, boron nitride and gold nanoparticles for advanced material applications

    NASA Astrophysics Data System (ADS)

    Jasuja, Kabeer

    2011-12-01

    Nanoscale materials invite immense interest from diverse scientific disciplines as these provide access to precisely understand the physical world at their most fundamental atomic level. In concert with this aim of enhancing our understanding of the fundamental behavior at nanoscale, this dissertation presents research on three nanomaterials: Gold nanoparticles (GNPs), Graphene and ultra-thin Boron Nitride sheets (UTBNSs). The three-fold goals which drive this research are: incorporating mobility in nanoparticle based single-electron junction constructs, developing effective strategies to functionalize graphene with nano-forms of metal, and exfoliating ultrathin sheets of Boron Nitride. Gold nanoparticle based electronic constructs can achieve a new degree of operational freedom if nanoscale mobility is incorporated in their design. We achieved such a nano-electromechanical construct by incorporating elastic polymer molecules between GNPs to form 2-dimensional (2-D) molecular junctions which show a nanoscale reversible motion on applying macro scale forces. This GNP-polymer assembly works like a molecular spring opening avenues to maneuver nano components and store energy at nano-scale. Graphene is the first isolated nanomaterial that displays single-atom thickness. It exhibits quantum confinement that enables it to possess a unique combination of fascinating electronic, optical, and mechanical properties. Modifying the surface of graphene is extremely significant to enable its incorporation into applications of interest. We demonstrated the ability of chemically modified graphene sheets to act as GNP stabilizing templates in solution, and utilized this to process GNP composites of graphene. We discovered that GNPs synthesized by chemical or microwave reduction stabilize on graphene-oxide sheets to form snow-flake morphologies and bare-surfaces respectively. These hybrid nano constructs were extensively studied to understand the effect and nature of GNPs

  13. Composition and temperature dependence of the dielectric, piezoelectric and elastic properties of pure PZT ceramics.

    PubMed

    Zhuang, Z Q; Haun, M J; Jang, S J; Cross, L E

    1989-01-01

    Pure (undoped) piezoelectric lead zirconate titanate (PZT) ceramic samples at compositions across the ferroelectric region of the phase diagram were prepared from sol-gel-derived fine powders. Excess lead oxide was included in the PZT powders to obtain dense (95-96% of theoretical density) ceramics with large grain size (>7 mum) and to control the lead stoichiometry. The dielectric, piezoelectric, and elastic properties were measured from 4.2 to 300 K. At very low temperatures, the extrinsic domain wall and thermal defect motions freeze out. The low-temperature dielectric data can be used to determine coefficients in a phenomenological theory. The extrinsic contribution to the properties can then be separated from the single-domain properties derived from the theory.

  14. A new model linking elastic properties and ionic conductivity of mixed network former glasses.

    PubMed

    Wang, Weimin; Christensen, Randilynn; Curtis, Brittany; Martin, Steve W; Kieffer, John

    2018-01-17

    Glasses are promising candidate materials for all-solid-state electrolytes for rechargeable batteries due to their outstanding mechanical stability, wide electrochemical stability range, and open structure for potentially high conductivity. Mechanical stiffness and ionic conductivity are two key parameters for solid-state electrolytes. In this study, we investigate two mixed-network former glass systems, sodium borosilicate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)SiO 2 ] and sodium borogermanate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)GeO 2 ] glasses. With mixed-network formers, the structure of the network changes while the network modifier mole fraction is kept constant, i.e., x = 0.2, which allows us to analyze the effect of the network structure on various properties, including ionic conductivity and elastic properties. Besides the non-linear, non-additive mixed glass former effect, we find that the longitudinal, shear and Young's moduli depend on the combined number density of tetrahedrally and octahedrally coordinated network former elements. These units provide connectivity in three dimensions, which is required for the networks to exhibit restoring forces in response to isotropic and shear deformations. Moreover, the activation energy for modifier cation, Na + , migration is strongly correlated with the bulk modulus, suggesting that the elastic strain energy associated with the passageway dilation for the sodium ions is governed by the bulk modulus of the glass. The detailed analysis provided here gives an estimate for the number of atoms in the vicinity of the migrating cation that are affected by elastic deformation during the activated process. The larger this number and the more compliant the glass network, the lower is the activation energy for the cation jump.

  15. Measurement of elastic and thermal properties of composite materials using digital speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Khan, Gufran S.; Shakher, Chandra

    2015-08-01

    In the present work, application of digital speckle pattern interferometry (DSPI) was applied for the measurement of mechanical/elastic and thermal properties of fibre reinforced plastics (FRP). Digital speckle pattern interferometric technique was used to characterize the material constants (Poisson's ratio and Young's modulus) of the composite material. Poisson ratio based on plate bending and Young's modulus based on plate vibration of material are measured by using DSPI. In addition to this, the coefficient of thermal expansion of composite material is also measured. To study the thermal strain analysis, a single DSPI fringe pattern is used to extract the phase information by using Riesz transform and the monogenic signal. The phase extraction from a single DSPI fringe pattern by using Riesz transform does not require a phase-shifting system or spatial carrier. The elastic and thermal parameters obtained from DSPI are in close agreement with the theoretical predictions available in literature.

  16. Elastic properties of a magnetic fluid with an air cavity retained by levitation forces

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Boev, M. L.; Tan, Myo Min; Karpova, G. V.; Roslyakova, L. I.

    2013-01-01

    The paper describes the process of an air cavity rising in a magnetic fluid filling a tube with a bottom, transport, and retention of the cavity by magnetic levitation forces. The elastic and dissipative properties of a vibratory system with an inertial element that is a column of a magnetic fluid over an air cavity are considered. The possibility of using a transported air cavity as a movable reflector for a sound wave is evaluated.

  17. Characterization of Elastic-plastic Material Properties for IMC Layer of ENEPIG by Using Reverse Algorithm

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Min; Lee, Hyun-Boo; Chang, Yoon-Suk; Choi, Jae-Boong; Kim, Young-Jin; Ji, Kum-Young

    2010-05-01

    Recently, the reliability assurance of lead-free solder to prevent environmental contamination is quite important issue for chip-scale packaging. Although lots of efforts have been devoted to the solder undergone drop, shear and creep loads, there was a little research on IMC due primarily to its thickness restriction and geometric irregularity. However, the IMC is known as the weakest layer governing failures of the solder joint. The present work is to characterize realistic material properties of the IMC for ENEPIG process. Lee's modified reverse algorithm was adopted to determine elastic-plastic stress-strain curve and so forth, after examining several methods, which requires inherently elastic data. In this context, a series of nano-indentation tests as well as corresponding simulations were carried out by changing indentation depths from 200 to 400 nm and strain rates from 0.05 to 0.10 1/s. It would be conclude that effect of strain rate is relatively small and IMC layer should be more than 5 times of indentation depth when using the recommended method, which are applicable to generate realistic material properties for further diverse structural integrity simulations.

  18. Evaluation of aortic elastic properties in patients with exaggerated systolic blood pressure response to exercise testing.

    PubMed

    Kilicaslan, Baris; Eren, Nihan Kahya; Nazlı, Cem

    2015-01-01

    We aimed to evaluate the aortic elastic properties in subjects with hypertensive response to exercise stress test (HRE). Sixty-six patients were divided into two groups (33 patients in HRE group and 33 patients in normotensive group). Baseline demographic characteristics were similar. The mean aortic stiffness index (ASI) was significantly higher (p=0.001) whereas aortic distensibility (AD) was significantly lower (p=0.029) in patients suggesting HRE. The C-reactive protein levels of patients with HRE was higher in the HRE group (p=0.03). AD was significantly correlated with age (r=-0.406, p<0.001), pre-test systolic blood presure (SBP) (r=-0.427, p<0.001), peak exercise SBP (r=-0.307, p=0.01), peak exercise diastolic blood presure (DBP) (r=-0.315, p=0.008), and recovery time (3 min) SBP (r=-0.497, p=0.004). Age (β=-0.506, p=0.003) and peak DBP (β=-0.322, p=0.049) were independent predictors of decreased AD. In conclusion, we found a deterioration in arterial elastic properties in patients with HRE.

  19. Influence of extraction pH on the foaming, emulsification, oil-binding and visco-elastic properties of marama protein.

    PubMed

    Gulzar, Muhammad; Taylor, John Rn; Minnaar, Amanda

    2017-11-01

    Marama bean protein, as extracted previously at pH 8, forms a viscous, adhesive and extensible dough. To obtain a protein isolate with optimum functional properties, protein extraction under slightly acidic conditions (pH 6) was investigated. Two-dimensional electrophoresis showed that pH 6 extracted marama protein lacked some basic 11S legumin polypeptides, present in pH 8 extracted protein. However, it additionally contained acidic high molecular weight polypeptides (∼180 kDa), which were disulfide crosslinked into larger proteins. pH 6 extracted marama proteins had similar emulsification properties to soy protein isolate and several times higher foaming capacity than pH 8 extracted protein, egg white and soy protein isolate. pH 6 extracted protein dough was more elastic than pH 8 extracted protein, approaching the elasticity of wheat gluten. Marama protein extracted at pH 6 has excellent food-type functional properties, probably because it lacks some 11S polypeptides but has additional high molecular weight proteins. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale.

    PubMed

    Gómez-Cortés, Jose F; Nó, Maria L; López-Ferreño, Iñaki; Hernández-Saz, Jesús; Molina, Sergio I; Chuvilin, Andrey; San Juan, Jose M

    2017-08-01

    Shape-memory alloys capable of a superelastic stress-induced phase transformation and a high displacement actuation have promise for applications in micro-electromechanical systems for wearable healthcare and flexible electronic technologies. However, some of the fundamental aspects of their nanoscale behaviour remain unclear, including the question of whether the critical stress for the stress-induced martensitic transformation exhibits a size effect similar to that observed in confined plasticity. Here we provide evidence of a strong size effect on the critical stress that induces such a transformation with a threefold increase in the trigger stress in pillars milled on [001] L2 1 single crystals from a Cu-Al-Ni shape-memory alloy from 2 μm to 260 nm in diameter. A power-law size dependence of n = -2 is observed for the nanoscale superelasticity. Our observation is supported by the atomic lattice shearing and an elastic model for homogeneous martensite nucleation.

  1. Effect of Emplacement Material Properties on Chemical Explosion Spectra - Preliminary Analysis Using Synthetic Waveforms Near Elastic Radii

    NASA Astrophysics Data System (ADS)

    Saikia, C. K.; Ezzedine, S. M.; Vorobiev, O.; Antoun, T.; Woods, M. T.

    2017-12-01

    The focus of this study is to investigate the effect of the non-linear material properties on synthetic waveforms at receivers located within the elastic region near the non-linear zone around energetic chemical explosions. The primary goal is to characterize the effect of porosity and joint properties. The joint sizes are typically small compared with the wavelength represented by the computational grid, so the calculations become time consuming to properly represent the fidelity of the calculations. In this study, we use GEODYN-L Lagrangian code, where the joints are included explicitly. We simulate a suite of synthetics for chemical explosions in granite, and varying the porosity and joint orientation. Using the generated synthetic waveforms in the elastic region, we calculate displacement spectra and compare them with homogenous medium solutions (i.e., free of porosity and joints). We are attempting to develop a set of correction factors necessary to apply in various field (emplacement) conditions so that the spectral characteristics can be compared to those predicted by the Mueller-Murphy (MM, 1971; Saikia, 2017) and other source functions (Denny and Johnson, 1991; Ford and Walter, 2013) near the elastic radii. Future investigations will include similar analysis for the nuclear explosions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Elastic Moduli of Permanently Densified Silica Glasses

    PubMed Central

    Deschamps, T.; Margueritat, J.; Martinet, C.; Mermet, A.; Champagnon, B.

    2014-01-01

    Modelling the mechanical response of silica glass is still challenging, due to the lack of knowledge concerning the elastic properties of intermediate states of densification. An extensive Brillouin Light Scattering study on permanently densified silica glasses after cold compression in diamond anvil cell has been carried out, in order to deduce the elastic properties of such glasses and to provide new insights concerning the densification process. From sound velocity measurements, we derive phenomenological laws linking the elastic moduli of silica glass as a function of its densification ratio. The found elastic moduli are in excellent agreement with the sparse data extracted from literature, and we show that they do not depend on the thermodynamic path taken during densification (room temperature or heating). We also demonstrate that the longitudinal sound velocity exhibits an anomalous behavior, displaying a minimum for a densification ratio of 5%, and highlight the fact that this anomaly has to be distinguished from the compressibility anomaly of a-SiO2 in the elastic domain. PMID:25431218

  3. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Samantha K.; Somerday, Brian P.; Ingraham, Mathew Duffy

    Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases ~22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases ~20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yieldingmore » in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.« less

  4. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

    DOE PAGES

    Lawrence, Samantha K.; Somerday, Brian P.; Ingraham, Mathew Duffy; ...

    2018-04-11

    Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases ~22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases ~20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yieldingmore » in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.« less

  5. Retaining large and adjustable elastic strains of kilogram-scale Nb nanowires [Better Superconductor by Elastic Strain Engineering: Kilogram-scale Free-Standing Niobium Metal Composite with Large Retained Elastic Strains

    DOE PAGES

    Hao, Shijie; Cui, Lishan; Wang, Hua; ...

    2016-02-10

    Crystals held at ultrahigh elastic strains and stresses may exhibit exceptional physical and chemical properties. Individual metallic nanowires can sustain ultra-large elastic strains of 4-7%. However, retaining elastic strains of such magnitude in kilogram-scale nanowires is challenging. Here, we find that under active load, ~5.6% elastic strain can be achieved in Nb nanowires in a composite material. Moreover, large tensile (2.8%) and compressive (-2.4%) elastic strains can be retained in kilogram-scale Nb nanowires when the composite is unloaded to a free-standing condition. It is then demonstrated that the retained tensile elastic strains of Nb nanowires significantly increase their superconducting transitionmore » temperature and critical magnetic fields, corroborating ab initio calculations based on BCS theory. This free-standing nanocomposite design paradigm opens new avenues for retaining ultra-large elastic strains in great quantities of nanowires and elastic-strain-engineering at industrial scale.« less

  6. Dispersive elastic properties of Dzyaloshinskii domain walls

    NASA Astrophysics Data System (ADS)

    Pellegren, James; Lau, Derek; Sokalski, Vincent

    Recent studies on the asymmetric field-driven growth of magnetic bubble domains in perpendicular thin films exhibiting an interfacial Dzyaloshinskii-Moriya interaction (DMI) have provided a wealth of experimental evidence to validate models of creep phenomena, as key properties of the domain wall (DW) can be altered with the application of an external in-plane magnetic field. While asymmetric growth behavior has been attributed to the highly anisotropic DW energy, σ (θ) , which results from the combination of DMI and the in-plane field, many experimental results remain anomalous. In this work, we demonstrate that the anisotropy of DW energy alters the elastic response of the DW as characterized by the surface stiffness, σ (θ) = σ (θ) + σ (θ) , and evaluate the impact of this stiffness on the creep law. We find that at in-plane fields larger than and antiparallel to the effective field due to DMI, the DW stiffness decreases rapidly, suggesting that higher energy walls can actually become more mobile than their low energy counterparts. This result is consistent with experiments on CoNi multilayer films where velocity curves for domain walls with DMI fields parallel and antiparallel to the applied field cross over at high in-plane fields.

  7. Investigation of the Structural, Electrical, and Optical Properties of the Nano-Scale GZO Thin Films on Glass and Flexible Polyimide Substrates

    PubMed Central

    Wang, Fang-Hsing; Chen, Kun-Neng; Hsu, Chao-Ming; Liu, Min-Chu; Yang, Cheng-Fu

    2016-01-01

    In this study, Ga2O3-doped ZnO (GZO) thin films were deposited on glass and flexible polyimide (PI) substrates at room temperature (300 K), 373 K, and 473 K by the radio frequency (RF) magnetron sputtering method. After finding the deposition rate, all the GZO thin films with a nano-scale thickness of about 150 ± 10 nm were controlled by the deposition time. X-ray diffraction patterns indicated that the GZO thin films were not amorphous and all exhibited the (002) peak, and field emission scanning electron microscopy showed that only nano-scale particles were observed. The dependences of the structural, electrical, and optical properties of the GZO thin films on different deposition temperatures and substrates were investigated. X-ray photoemission spectroscopy (XPS) was used to measure the elemental composition at the chemical and electronic states of the GZO thin films deposited on different substrates, which could be used to clarify the mechanism of difference in electrical properties of the GZO thin films. In this study, the XPS binding energy spectra of Ga2p3/2 and Ga2p1/2 peaks, Zn2p3/2 and Zn2p1/2 peaks, the Ga3d peak, and O1s peaks for GZO thin films on glass and PI substrates were well compared. PMID:28335216

  8. Rocket Science at the Nanoscale.

    PubMed

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  9. Experimental access to elastic and thermodynamic properties of RbMnFe(CN)6

    NASA Astrophysics Data System (ADS)

    Boukheddaden, K.; Loutete-Dangui, E. D.; Codjovi, E.; Castro, M.; Rodriguéz-Velamazán, J. A.; Ohkoshi, S.; Tokoro, H.; Koubaa, M.; Abid, Y.; Varret, F.

    2011-01-01

    We use spectroscopic ellipsometry to study the elastic and thermodynamic properties of the structural first-order transition of the cooperative Jahn-Teller solid, RbMn[Fe(CN)6]. While the analysis of the thermal dependence of the dielectric constant revealed a remarkable energy shift in the metal-to-ligand charge transfer band, that of the refractive index allowed to evaluate the volumetric thermal expansion coefficient in the two phases through the Gladstone-Dale relation. The access to the elastic properties of the solid is obtained with the reflectivity under pressure measurements, from which we estimated the bulk modulus values in the low- and high-temperature phases as BLT=30(±3) GPa and BHT=23(±2) GPa, respectively. Assuming the system is isotropic, the corresponding Debye temperature values have been found to be θDLT(SE)≃360(±25) K and θDHT(SE)≃290(±20) K, in good agreement with those derived from independent Mössbauer spectrometry investigations which led to θDLT(Moss)≃332(±7) K and θDHT(Moss)≃280(±11) K. Moreover, we have been able to extract from the SE data, the entropy change at the transition, ΔS ≈64 J K-1 mol-1, which has been also found in good agreement with the value, ΔS ≈60±5 J K-1 mol-1, derived from calorimetric experiments performed in this work.

  10. Elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations.

    PubMed

    Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M

    2013-06-19

    The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.

  11. First-principles investigation of structural, elastic, lattice dynamical and thermodynamic properties of lithium sulfur under pressure

    NASA Astrophysics Data System (ADS)

    Saib, S.; Bouarissa, N.

    2017-10-01

    In this study we report on the influence of hydrostatic pressure on structural, elastic, lattice dynamical and thermal properties of Li2S in the anti-fluorite structure using ab initio pseudopotential approach based on the density functional perturbation theory. Our results are found to be in good agreement with those existing in the literature. The present phonon dispersion spectra, dielectric constants and Born effective charges may be seen as the first investigation for the material under load. The pressure dependence of all features of interest has been examined and discussed. Besides, the temperature dependence of the lattice parameter and bulk modulus is predicted. The generalized elastic stability criteria showed that the material of interest is mechanically unstable for pressures beyond 55 GPa.

  12. Anisotropy and temperature dependence of structural, thermodynamic, and elastic properties of crystalline cellulose Iβ: a first-principles investigation

    Treesearch

    ShunLi Shang; Louis G. Hector Jr.; Paul Saxe; Zi-Kui Liu; Robert J. Moon; Pablo D. Zavattieri

    2014-01-01

    Anisotropy and temperature dependence of structural, thermodynamic and elastic properties of crystalline cellulose Iβ were computed with first-principles density functional theory (DFT) and a semi-empirical correction for van der Waals interactions. Specifically, we report the computed temperature variation (up to 500...

  13. Understanding the effects of strain on morphological instabilities of a nanoscale island during heteroepitaxial growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Lu; Wang, Jing; Wang, Shibin

    A comprehensive morphological stability analysis of a nanoscale circular island during heteroepitaxial growth is presented based on continuum elasticity theory. The interplay between kinetic and thermodynamic mechanisms is revealed by including strain-related kinetic processes. In the kinetic regime, the Burton-Cabrera-Frank model is adopted to describe the growth front of the island. Together with kinetic boundary conditions, various kinetic processes including deposition flow, adatom diffusion, attachment-detachment kinetics, and the Ehrlich-Schwoebel barrier can be taken into account at the same time. In the thermodynamic regime, line tension, surface energy, and elastic energy are considered. As the strain relief in the early stagesmore » of heteroepitaxy is more complicated than commonly suggested by simple consideration of lattice mismatch, we also investigate the effects of external applied strain and elastic response due to perturbations on the island shape evolution. The analytical expressions for elastic fields induced by mismatch strain, external applied strain, and relaxation strain are presented. A systematic approach is developed to solve the system via a perturbation analysis which yields the conditions of film morphological instabilities. Consistent with previous experimental and theoretical work, parametric studies show the kinetic evolution of elastic relaxation, island morphology, and film composition under various conditions. Our present work offers an effective theoretical approach to get a comprehensive understanding of the interplay between different growth mechanisms and how to tailor the growth mode by controlling the nature of the crucial factors.« less

  14. Propagating elastic vibrations dominate thermal conduction in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Moon, Jaeyun; Latour, Benoit; Minnich, Austin J.

    2018-01-01

    The thermal atomic vibrations of amorphous solids can be distinguished by whether they propagate as elastic waves or do not propagate due to lack of atomic periodicity. In a -Si, prior works concluded that nonpropagating waves are the dominant contributors to heat transport, with propagating waves being restricted to frequencies less than a few THz and scattered by anharmonicity. Here, we present a lattice and molecular dynamics analysis of vibrations in a -Si that supports a qualitatively different picture in which propagating elastic waves dominate the thermal conduction and are scattered by local fluctuations of elastic modulus rather than anharmonicity. We explicitly demonstrate the propagating nature of waves up to around 10 THz, and further show that pseudoperiodic structures with homogeneous elastic properties exhibit a marked temperature dependence characteristic of anharmonic interactions. Our work suggests that most heat is carried by propagating elastic waves in a -Si and demonstrates that manipulating local elastic modulus variations is a promising route to realize amorphous materials with extreme thermal properties.

  15. Plasticity, elasticity, and adhesion energy of plant cell walls: nanometrology of lignin loss using atomic force microscopy

    DOE PAGES

    Farahi, R. H.; Charrier, Anne M.; Tolbert, Allison K.; ...

    2017-03-10

    The complex organic polymer, lignin, abundant in plants, prevents the efficient extraction of sugars from the cell walls that is required for large scale biofuel production. Because lignin removal is crucial in overcoming this challenge, the question of how the nanoscale properties of the plant cell ultrastructure correlate with delignification processes is important. Here, we report how distinct molecular domains can be identified and how physical quantities of adhesion energy, elasticity, and plasticity undergo changes, and whether such quantitative observations can be used to characterize delignification. By chemically processing biomass, and employing nanometrology, the various stages of lignin removal aremore » shown to be distinguished through the observed morphochemical and nanomechanical variations. Such spatially resolved correlations between chemistry and nanomechanics during deconstruction not only provide a better understanding of the cell wall architecture but also is vital for devising optimum chemical treatments.« less

  16. Dynamic Control over the Optical Transmission of Nanoscale Dielectric Metasurface by Alkali Vapors.

    PubMed

    Bar-David, Jonathan; Stern, Liron; Levy, Uriel

    2017-02-08

    In recent years, dielectric and metallic nanoscale metasurfaces are attracting growing attention and are being used for variety of applications. Resulting from the ability to introduce abrupt changes in optical properties at nanoscale dimensions, metasurfaces enable unprecedented control over light's different degrees of freedom, in an essentially two-dimensional configuration. Yet, the dynamic control over metasurface properties still remains one of the ultimate goals of this field. Here, we demonstrate the optical resonant interaction between a form birefringent dielectric metasurface made of silicon and alkali atomic vapor to control and effectively tune the optical transmission pattern initially generated by the nanoscale dielectric metasurface. By doing so, we present a controllable metasurface system, the output of which may be altered by applying magnetic fields, changing input polarization, or shifting the optical frequency. Furthermore, we also demonstrate the nonlinear behavior of our system taking advantage of the saturation effect of atomic transition. The demonstrated approach paves the way for using metasurfaces in applications where dynamic tunability of the metasurface is in need, for example, for scanning systems, tunable focusing, real time displays, and more.

  17. Finite indentation of highly curved elastic shells

    NASA Astrophysics Data System (ADS)

    Pearce, S. P.; King, J. R.; Steinbrecher, T.; Leubner-Metzger, G.; Everitt, N. M.; Holdsworth, M. J.

    2018-01-01

    Experimentally measuring the elastic properties of thin biological surfaces is non-trivial, particularly when they are curved. One technique that may be used is the indentation of a thin sheet of material by a rigid indenter, while measuring the applied force and displacement. This gives immediate information on the fracture strength of the material (from the force required to puncture), but it is also theoretically possible to determine the elastic properties by comparing the resulting force-displacement curves with a mathematical model. Existing mathematical studies generally assume that the elastic surface is initially flat, which is often not the case for biological membranes. We previously outlined a theory for the indentation of curved isotropic, incompressible, hyperelastic membranes (with no bending stiffness) which breaks down for highly curved surfaces, as the entire membrane becomes wrinkled. Here, we introduce the effect of bending stiffness, ensuring that energy is required to change the shell shape without stretching, and find that commonly neglected terms in the shell equilibrium equation must be included. The theory presented here allows for the estimation of shape- and size-independent elastic properties of highly curved surfaces via indentation experiments, and is particularly relevant for biological surfaces.

  18. Finite indentation of highly curved elastic shells

    PubMed Central

    2018-01-01

    Experimentally measuring the elastic properties of thin biological surfaces is non-trivial, particularly when they are curved. One technique that may be used is the indentation of a thin sheet of material by a rigid indenter, while measuring the applied force and displacement. This gives immediate information on the fracture strength of the material (from the force required to puncture), but it is also theoretically possible to determine the elastic properties by comparing the resulting force–displacement curves with a mathematical model. Existing mathematical studies generally assume that the elastic surface is initially flat, which is often not the case for biological membranes. We previously outlined a theory for the indentation of curved isotropic, incompressible, hyperelastic membranes (with no bending stiffness) which breaks down for highly curved surfaces, as the entire membrane becomes wrinkled. Here, we introduce the effect of bending stiffness, ensuring that energy is required to change the shell shape without stretching, and find that commonly neglected terms in the shell equilibrium equation must be included. The theory presented here allows for the estimation of shape- and size-independent elastic properties of highly curved surfaces via indentation experiments, and is particularly relevant for biological surfaces. PMID:29434505

  19. Stability and Elastic, Electronic, and Thermodynamic Properties of Fe2TiSi1- x Sn x Compounds

    NASA Astrophysics Data System (ADS)

    Jong, Ju-Yong; Yan, Jihong; Zhu, Jingchuan; Kim, Chol-Jin

    2017-10-01

    We have systematically studied the structural, phase, and mechanical stability and elastic, electronic, and thermodynamic properties of Fe2TiSi1- x Sn x ( x = 0, 0.25, 0.5, 0.75, 1) compounds using first-principles calculations. The structural and phase stability and elastic properties of Fe2TiSi1- x Sn x ( x = 0, 0.25, 0.5, 0.75, 1) indicated that all of the compounds are thermodynamically and mechanically stable. The shear modulus, bulk modulus, Young's modulus, Poisson's ratio, electronic band structure, density of states, Debye temperature, and Grüneisen parameter of all the substituted compounds were studied. The results show that Sn substitution in Fe2TiSi enhances its stability and mechanical and thermoelectric properties. The Fe2TiSi1- x Sn x compounds have narrow bandgap from 0.144 eV and 0.472 eV for Sn substitution from 0 to 1. The calculated band structure and density of states (DOS) of Fe2TiSi1- x Sn x show that the thermoelectric properties can be improved at substituent concentration x of 0.75. The lattice thermal conductivity was significantly decreased in the Sn-substituted compounds, and all the results indicate that Fe2TiSi0.25Sn0.75 could be a new candidate high-performance thermoelectric material.

  20. Effects of frequency- and direction-dependent elastic materials on linearly elastic MRE image reconstructions

    NASA Astrophysics Data System (ADS)

    Perreard, I. M.; Pattison, A. J.; Doyley, M.; McGarry, M. D. J.; Barani, Z.; Van Houten, E. E.; Weaver, J. B.; Paulsen, K. D.

    2010-11-01

    The mechanical model commonly used in magnetic resonance elastography (MRE) is linear elasticity. However, soft tissue may exhibit frequency- and direction-dependent (FDD) shear moduli in response to an induced excitation causing a purely linear elastic model to provide an inaccurate image reconstruction of its mechanical properties. The goal of this study was to characterize the effects of reconstructing FDD data using a linear elastic inversion (LEI) algorithm. Linear and FDD phantoms were manufactured and LEI images were obtained from time-harmonic MRE acquisitions with variations in frequency and driving signal amplitude. LEI responses to artificially imposed uniform phase shifts in the displacement data from both purely linear elastic and FDD phantoms were also evaluated. Of the variety of FDD phantoms considered, LEI appeared to tolerate viscoelastic data-model mismatch better than deviations caused by poroelastic and anisotropic mechanical properties in terms of visual image contrast. However, the estimated shear modulus values were substantially incorrect relative to independent mechanical measurements even in the successful viscoelastic cases and the variations in mean values with changes in experimental conditions associated with uniform phase shifts, driving signal frequency and amplitude were unpredictable. Overall, use of LEI to reconstruct data acquired in phantoms with FDD material properties provided biased results under the best conditions and significant artifacts in the worst cases. These findings suggest that the success with which LEI is applied to MRE data in tissue will depend on the underlying mechanical characteristics of the tissues and/or organs systems of clinical interest.

  1. Effects of frequency- and direction-dependent elastic materials on linearly elastic MRE image reconstructions.

    PubMed

    Perreard, I M; Pattison, A J; Doyley, M; McGarry, M D J; Barani, Z; Van Houten, E E; Weaver, J B; Paulsen, K D

    2010-11-21

    The mechanical model commonly used in magnetic resonance elastography (MRE) is linear elasticity. However, soft tissue may exhibit frequency- and direction-dependent (FDD) shear moduli in response to an induced excitation causing a purely linear elastic model to provide an inaccurate image reconstruction of its mechanical properties. The goal of this study was to characterize the effects of reconstructing FDD data using a linear elastic inversion (LEI) algorithm. Linear and FDD phantoms were manufactured and LEI images were obtained from time-harmonic MRE acquisitions with variations in frequency and driving signal amplitude. LEI responses to artificially imposed uniform phase shifts in the displacement data from both purely linear elastic and FDD phantoms were also evaluated. Of the variety of FDD phantoms considered, LEI appeared to tolerate viscoelastic data-model mismatch better than deviations caused by poroelastic and anisotropic mechanical properties in terms of visual image contrast. However, the estimated shear modulus values were substantially incorrect relative to independent mechanical measurements even in the successful viscoelastic cases and the variations in mean values with changes in experimental conditions associated with uniform phase shifts, driving signal frequency and amplitude were unpredictable. Overall, use of LEI to reconstruct data acquired in phantoms with FDD material properties provided biased results under the best conditions and significant artifacts in the worst cases. These findings suggest that the success with which LEI is applied to MRE data in tissue will depend on the underlying mechanical characteristics of the tissues and/or organs systems of clinical interest.

  2. Elastic properties of continental carbonate rocks: controlling factors and applicable model

    NASA Astrophysics Data System (ADS)

    Regnet, Jean-Baptiste; Fortin, Jérôme; Guéguen, Yves; Pellerin, Matthieu

    2016-04-01

    Continental carbonates gained interest following the discovery of the supergiant field in the post- and pre-salt deposits in offshore Brazil, as they account for a large portion of the deepwater production. The genesis of continental carbonates is generally associated with physico-chemical and biological precipitation of carbonates, coupled with a strong influence of clastic mineralogical inputs. This results in a complex mineralogical mixing, associated with a wide heterogeneity of pore types due to the intense diagenetic overprint potential of carbonate deposits (cementation, dissolution, recrystallisation, dolomitisation...). With that in mind, we propose insights on the controling factors of elastic properties in a continental carbonate dataset, analogue of the brazilian pre-salt deposits. An applicable model based on the effective medium theory is proposed and discussed regarding the experimental results, and try to account for the wide variability of the elastic properties. Analyzed samples exhibit large variation of (1) sedimentary texture (coquinas grainstones, muddy facies (mudstones to packtones), travertines and stromatolites, (2) pore types (moldic, intercrystalline, vuggy and micropores) and shapes (aspect ratio values fall between 0.2 and 0.5) and (3) physical properties (porosity, acoustic velocity). Regarding composition, samples are characterized by three major mineralogical assemblages, from pure calcite, dolomite, to quartz/clay mixing. If porosity is clearly the first order parameter controlling P-wave velocities, the mineralogical overprint can be accounted for the wide variability of the p-wave velocities at a given porosity (figure 1). The lower porosity-velocity relationship trend is dominated by samples with low to large quartz/clay proportions, whereas the higher trend is dominated by dolomitized samples. Two input parameters are extracted from the previous experimental observation: porosity and mineralogical composition of each sample

  3. Marangoni and Gibbs elasticity of flowing soap films

    NASA Astrophysics Data System (ADS)

    Kim, Ildoo; Sane, Aakash; Mandre, Shreyas

    2017-11-01

    A flowing soap film has two elasticities. Marangoni elasticity dynamically stabilizes the film from sudden disturbance, and Gibbs elasticity is an equilibrium property that influences the film's persistence over time. In our experimental investigation, we find that Marangoni elasticity is 22 mN/m independent of the film thickness. On the other hand, Gibbs elasticity depends both on the film thickness and the soap concentration. Interestingly, the soap film made of dilute soap solution has the greater Gibbs elasticity, which is not consistent to the existing theory. Such discrepancy is originated from the flowing nature of our soap films, in which surfactants are continuously replenished.

  4. Evaluation of elastic properties of nanoporous silicon oxide thin films by picosecond laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Mechri, C.; Ruello, P.; Gusev, V.; Breteau, J. M.; Mounier, D.; Henderson, M.; Gibaud, A.; Dourdain, S.

    2008-01-01

    Picosecond laser ultrasonics uses femtosecond laser pulses for the generation and detection of acoustic pulses with a typical duration between few picoseconds and few hundreds of pico seconds. The shorter the duration of the acoustic pulse is, the more precisely could be made the measurements of the film thickness [C. Thomsen et al., Phys. Rev. B 34, 4129 (1986)] and the elastic modulus by pulse-echo method or through Brillouin scattering detection. In this short communication we report the results of the evaluation of the properties of nanoporous silicon oxide thin films which present potential low-k and thermal barrier properties and are also of great interest for the microelectronic industry to replace the traditional silicate glass films in order to decrease the resistance-capacitance transition delay in the VLSI circuits. Most of the studies that have been carried so far have treated the optical properties of such structures. We report the results of the evaluation of acoustic properties of nanoporous thin films.

  5. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Mathur, A. B.; Collinsworth, A. M.; Reichert, W. M.; Kraus, W. E.; Truskey, G. A.

    2001-01-01

    This study evaluated the hypothesis that, due to functional and structural differences, the apparent elastic modulus and viscous behavior of cardiac and skeletal muscle and vascular endothelium would differ. To accurately determine the elastic modulus, the contribution of probe velocity, indentation depth, and the assumed shape of the probe were examined. Hysteresis was observed at high indentation velocities arising from viscous effects. Irreversible deformation was not observed for endothelial cells and hysteresis was negligible below 1 microm/s. For skeletal muscle and cardiac muscle cells, hysteresis was negligible below 0.25 microm/s. Viscous dissipation for endothelial and cardiac muscle cells was higher than for skeletal muscle cells. The calculated elastic modulus was most sensitive to the assumed probe geometry for the first 60 nm of indentation for the three cell types. Modeling the probe as a blunt cone-spherical cap resulted in variation in elastic modulus with indentation depth that was less than that calculated by treating the probe as a conical tip. Substrate contributions were negligible since the elastic modulus reached a steady value for indentations above 60 nm and the probe never indented more than 10% of the cell thickness. Cardiac cells were the stiffest (100.3+/-10.7 kPa), the skeletal muscle cells were intermediate (24.7+/-3.5 kPa), and the endothelial cells were the softest with a range of elastic moduli (1.4+/-0.1 to 6.8+/-0.4 kPa) depending on the location of the cell surface tested. Cardiac and skeletal muscle exhibited nonlinear elastic behavior. These passive mechanical properties are generally consistent with the function of these different cell types.

  6. Al{sub 4}SiC{sub 4} wurtzite crystal: Structural, optoelectronic, elastic, and piezoelectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedesseau, L., E-mail: laurent.pedesseau@insa-rennes.fr, E-mail: jacky.even@insa-rennes.fr; Even, J., E-mail: laurent.pedesseau@insa-rennes.fr, E-mail: jacky.even@insa-rennes.fr; Durand, O.

    New experimental results supported by theoretical analyses are proposed for aluminum silicon carbide (Al{sub 4}SiC{sub 4}). A state of the art implementation of the density functional theory is used to analyze the experimental crystal structure, the Born charges, the elastic properties, and the piezoelectric properties. The Born charge tensor is correlated to the local bonding environment for each atom. The electronic band structure is computed including self-consistent many-body corrections. Al{sub 4}SiC{sub 4} material properties are compared to other wide band gap wurtzite materials. From a comparison between an ellipsometry study of the optical properties and theoretical results, we conclude thatmore » the Al{sub 4}SiC{sub 4} material has indirect and direct band gap energies of about 2.5 eV and 3.2 eV, respectively.« less

  7. Investigation of graphene-based nanoscale radiation sensitive materials

    NASA Astrophysics Data System (ADS)

    Robinson, Joshua A.; Wetherington, Maxwell; Hughes, Zachary; LaBella, Michael, III; Bresnehan, Michael

    2012-06-01

    Current state-of-the-art nanotechnology offers multiple benefits for radiation sensing applications. These include the ability to incorporate nano-sized radiation indicators into widely used materials such as paint, corrosion-resistant coatings, and ceramics to create nano-composite materials that can be widely used in everyday life. Additionally, nanotechnology may lead to the development of ultra-low power, flexible detection systems that can be embedded in clothing or other systems. Graphene, a single layer of graphite, exhibits exceptional electronic and structural properties, and is being investigated for high-frequency devices and sensors. Previous work indicates that graphene-oxide (GO) - a derivative of graphene - exhibits luminescent properties that can be tailored based on chemistry; however, exploration of graphene-oxide's ability to provide a sufficient change in luminescent properties when exposed to gamma or neutron radiation has not been carried out. We investigate the mechanisms of radiation-induced chemical modifications and radiation damage induced shifts in luminescence in graphene-oxide materials to provide a fundamental foundation for further development of radiation sensitive detection architectures. Additionally, we investigate the integration of hexagonal boron nitride (hBN) with graphene-based devices to evaluate radiation induced conductivity in nanoscale devices. Importantly, we demonstrate the sensitivity of graphene transport properties to the presence of alpha particles, and discuss the successful integration of hBN with large area graphene electrodes as a means to provide the foundation for large-area nanoscale radiation sensors.

  8. Determination of elastic modulus of ceramics using ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Sasmita, Firmansyah; Wibisono, Gatot; Judawisastra, Hermawan; Priambodo, Toni Agung

    2018-04-01

    Elastic modulus is important material property on structural ceramics application. However, bending test as a common method for determining this property require particular specimen preparation. Furthermore, elastic modulus of ceramics could vary because it depends on porosity content. For structural ceramics industry, such as ceramic tiles, this property is very important. This drives the development of new method to improve effectivity or verification method as well. In this research, ultrasonic testing was conducted to determine elastic modulus of soda lime glass and ceramic tiles. The experiment parameter was frequency of probe (1, 2, 4 MHz). Characterization of density and porosity were also done for analysis. Results from ultrasonic testing were compared with elastic modulus resulted from bending test. Elastic modulus of soda-lime glass based on ultrasonic testing showed excellent result with error 2.69% for 2 MHz probe relative to bending test result. Testing on red and white ceramic tiles were still contained error up to 41% and 158%, respectively. The results for red ceramic tile showed trend that 1 MHz probe gave better accuracy in determining elastic modulus. However, testing on white ceramic tile showed different trend. It was due to the presence of porosity and near field effect.

  9. Constituent Quark and Diquark Properties from Small Angle Proton--Proton Elastic Scattering at High Energies

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Bzdak, A.

    2007-01-01

    Small momentum transfer elastic proton-proton cross-section at high energies is calculated assuming the nucleon composed of two constituents -- a quark and a diquark. A comparison to data (described very well up to -t approx 2 GeV2/c) allows to determine some properties of the constituents. While quark turns out fairly small, the diquark appears to be rather large, comparable to the size of the proton.

  10. Quantification of Nanoscale Density Fluctuations in Biological Cells/Tissues: Inverse Participation Ratio (IPR) Analysis of Transmission Electron Microscopy Images and Implications for Early-Stage Cancer Detection

    NASA Astrophysics Data System (ADS)

    Pradhan, Prabhakar; Damania, Dhwanil; Joshi, Hrushikesh; Taflove, Allen; Roy, Hemant; Dravid, Vinayak; Backman, Vadim

    2010-03-01

    We report a study of the nanoscale mass density fluctuations of biological cells and tissues by quantifying their nanoscale light-localization properties. Transmission electron microscope (TEM) images of human cells and tissues are used to construct corresponding effective disordered optical lattices. Light-localization properties are studied by statistical analysis of the inverse participation ratio (IPR) of the eigenfunctions of these optical lattices at the nanoscales. Our results indicate elevation of the nanoscale disorder strength (e.g., refractive index fluctuations) in early carcinogenesis. Importantly, our results demonstrate that the increase in the nanoscale disorder represents the earliest structural alteration in cells undergoing carcinogenesis known to-date. Potential applications of the technique for early stage cancer detection will be discussed.

  11. International Workshop on Light Emission and Electronic Properties of Nanoscale Silicon

    DTIC Science & Technology

    1994-04-01

    matrix elements, quantum confinement, surface effects ? CHARLOTFE STANDARD R. Tsu Comparison of Luminescence Efficiency ROLE OF NANOSCALE Si-DEVICES...confinement effects in microcrystalline silicon [2,3] may lead to revolutionary advances in speed and dramatically reduced energy consumption of silicon...Formation: A Quantum Wire Effect ," Avpl. Phys. Lett., 58, 856 (1991). 5. R. Tsu, H. Shen, and M. Dutta, "Correlation of Raman and Photoluminescence

  12. Nanoscale Ionic Liquids

    DTIC Science & Technology

    2006-11-01

    Technical Report 11 December 2005 - 30 November 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanoscale Ionic Liquids 5b. GRANT NUMBER FA9550-06-1-0012...Title: Nanoscale Ionic Liquids Principal Investigator: Emmanuel P. Giannelis Address: Materials Science and Engineering, Bard Hall, Cornell University...based fluids exhibit high ionic conductivity. The NFs are typically synthesized by grafting a charged, oligomeric corona onto the nanoparticle cores

  13. Ab initio study of the structural, electronic, elastic and thermal conductivity properties of SrClF with pressure effects

    NASA Astrophysics Data System (ADS)

    Lv, Zhen-Long; Cui, Hong-Ling; Wang, Hui; Li, Xiao-Hong; Ji, Guang-Fu

    2017-04-01

    SrClF is an important optical crystal and can be used as pressure gauge in diamond anvil cell at high pressure. In this work, we performed a systematic study on the structural, electronic and elastic properties of SrClF under pressure, as well as its thermal conductivity, by first-principles calculation. Different exchange-correlation functionals were tested and PBESOL was finally chosen to study these properties of SrClF. Studies reveal that SrClF has a bulk modulus of about 56.2 GPa (by fitting equation of states) or 54.3 GPa (derived from elastic constants), which agree well with the experimental result. SrClF is mechanically and dynamically stable up to 50 GPa. Its elastic constants increase with the applied pressure, but its mechanical anisotropy deteriorates as the pressure increases. Investigation of its electronic properties reveals that SrClF is a direct band-gap insulator with a gap value of 5.73 eV at 0 GPa, which decreases with the increasing pressure and the reason is found by analysing the partial density of states. Based on the calculated phonon dispersion curves, thermal conductivity of SrClF is predicated. At ambient conditions, the predicted thermal conductivity is about 3.74 Wm-1 K-1, while that obtained using the simplified Slack model give a slightly larger value of 4.62 Wm-1 K-1.

  14. Investigation of structural, electronic, elastic and optical properties of Cd{sub 1-x-y}Zn{sub x}Hg{sub y}Te alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamer, M., E-mail: mehmet.tamer@zirve.edu.tr

    2016-06-15

    Structural, optical and electronic properties and elastic constants of Cd1{sub -x-y}Zn{sub x} Hg{sub y}Te alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers–Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard’s law. It is seen that results obtained from theory and experiments are all in agreement.

  15. First-principles investigations on structural, elastic, electronic properties and Debye temperature of orthorhombic Ni3Ta under pressure

    NASA Astrophysics Data System (ADS)

    Li, Pan; Zhang, Jianxin; Ma, Shiyu; Jin, Huixin; Zhang, Youjian; Zhang, Wenyang

    2018-06-01

    The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν are calculated by the Voigt-Reuss-Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature ΘD calculated from elastic modulus increases along with the pressure.

  16. Study of Electronic Structure, Thermal Conductivity, Elastic and Optical Properties of α, β, γ-Graphyne

    PubMed Central

    Hou, Xun; Xie, Zhongjing; Li, Chunmei; Li, Guannan; Chen, Zhiqian

    2018-01-01

    In recent years, graphyne was found to be the only 2D carbon material that has both sp and sp2 hybridization. It has received significant attention because of its great potential in the field of optoelectronics, which arises due to its small band gap. In this study, the structural stability, electronic structure, elasticity, thermal conductivity and optical properties of α, β, γ-graphynes were investigated using density functional theory (DFT) systematically. γ-graphyne has the largest negative cohesive energy and thus the most stable structure, while the β-graphyne comes 2nd. Both β and γ-graphynes have sp-sp, sp-sp2 and sp2-sp2 hybridization bonds, of which γ-graphyne has shorter bond lengths and thus larger Young’s modulus. Due to the difference in acetylenic bond in the structure cell, the effect of strain on the electronic structure varies between graphynes: α-graphyne has no band gap and is insensitive to strain; β-graphyne’s band gap has a sharp up-turn at 10% strain, while γ-graphyne’s band gap goes up linearly with the strain. All the three graphynes exhibit large free carrier concentration and these free carriers have small effective mass, and both free carrier absorption and intrinsic absorption are found in the light absorption. Based on the effect of strain, optical properties of three structures are also analyzed. It is found that the strain has significant impacts on their optical properties. In summary, band gap, thermal conductivity, elasticity and optical properties of graphyne could all be tailored with adjustment on the amount of acetylenic bonds in the structure cell. PMID:29370070

  17. Study of Electronic Structure, Thermal Conductivity, Elastic and Optical Properties of α, β, γ-Graphyne.

    PubMed

    Hou, Xun; Xie, Zhongjing; Li, Chunmei; Li, Guannan; Chen, Zhiqian

    2018-01-25

    In recent years, graphyne was found to be the only 2D carbon material that has both sp and sp² hybridization. It has received significant attention because of its great potential in the field of optoelectronics, which arises due to its small band gap. In this study, the structural stability, electronic structure, elasticity, thermal conductivity and optical properties of α, β, γ-graphynes were investigated using density functional theory (DFT) systematically. γ-graphyne has the largest negative cohesive energy and thus the most stable structure, while the β-graphyne comes 2nd. Both β and γ-graphynes have sp-sp, sp-sp² and sp²-sp² hybridization bonds, of which γ-graphyne has shorter bond lengths and thus larger Young's modulus. Due to the difference in acetylenic bond in the structure cell, the effect of strain on the electronic structure varies between graphynes: α-graphyne has no band gap and is insensitive to strain; β-graphyne's band gap has a sharp up-turn at 10% strain, while γ-graphyne's band gap goes up linearly with the strain. All the three graphynes exhibit large free carrier concentration and these free carriers have small effective mass, and both free carrier absorption and intrinsic absorption are found in the light absorption. Based on the effect of strain, optical properties of three structures are also analyzed. It is found that the strain has significant impacts on their optical properties. In summary, band gap, thermal conductivity, elasticity and optical properties of graphyne could all be tailored with adjustment on the amount of acetylenic bonds in the structure cell.

  18. The effect of geothermal fluid composition in lime-pozzolan reactions on elastic and transport properties.

    NASA Astrophysics Data System (ADS)

    MacFarlane, J.; Vanorio, T.

    2016-12-01

    Calcium-Silicate-Hydrates (C-S-H) are a complex family of hydrates known to form within hyper-alkaline geothermal systems as well as concrete. Within both environments the formation of C-S-H can be linked to the lime-pozzolan reaction. Pozzolan's defined as a siliceous or alumino-siliceous material, which in itself possesses little or no cementing property, but in the presence of moisture chemically reacts with calcium hydroxide at ordinary temperatures to form cementitious compounds. C-S-H fibers have been discovered in a low permeability, caprock layer beneath the Campi Flegrei caldera, as well as within ancient Roman concrete made using volcanic ash and fluids from the Campi Flegrei region over 2000 years ago. By replicating the recipe for Roman concrete, fibrous minerals have been formed in laboratory experiments and imaged using a scanning electron microscope. The formation of C-S-H within concrete has been shown to depend on the mineral ions present, among other factors. Here, we report on how the geothermal fluid composition effects the elastic and transport properties of laboratory samples. Samples were made using the same volcanic ash as the Romans, called Pozzolana, slaked lime and geothermal fluid. Two geothermal fluids from the Campi Flegrei region were compared, as well as deionized water as a control. Preliminary results have shown changes in both the elastic and transport properties between sample sets made with geothermal fluid and the control. These changes are attributed to the structure of the C-S-H that forms in the lime-pozzolan reaction. Understanding how the geothermal fluid composition controls the properties of this reaction has implications for the understanding of both geothermal systems and concrete engineering.

  19. Gurtin-Murdoch surface elasticity theory revisit: An orbital-free density functional theory perspective

    NASA Astrophysics Data System (ADS)

    Zhu, Yichao; Wei, Yihai; Guo, Xu

    2017-12-01

    In the present paper, the well-established Gurtin-Murdoch theory of surface elasticity (Gurtin and Murdoch, 1975, 1978) is revisited from an orbital-free density functional theory (OFDFT) perspective by taking the boundary layer into consideration. Our analysis indicates that firstly, the quantities introduced in the Gurtin-Murdoch theory of surface elasticity can all find their explicit expressions in the derived OFDFT-based theoretical model. Secondly, the derived expression for surface energy density captures a competition between the surface normal derivatives of the electron density and the electrostatic potential, which well rationalises the onset of signed elastic constants that are observed both experimentally and computationally. Thirdly, the established model naturally yields an inversely linear relationship between the materials surface stiffness and its size, which conforms to relevant findings in literature. Since the proposed OFDFT-based model is established under arbitrarily imposed boundary condition of electron density, electrostatic potential and external load, it also has the potential of being used to investigate the electro-mechanical behaviour of nanoscale materials manifesting surface effect.

  20. Nanoscale tailor-made membranes for precise and rapid molecular sieve separation.

    PubMed

    Wang, Jing; Zhu, Junyong; Zhang, Yatao; Liu, Jindun; Van der Bruggen, Bart

    2017-03-02

    The precise and rapid separation of different molecules from aqueous, organic solutions and gas mixtures is critical to many technologies in the context of resource-saving and sustainable development. The strength of membrane-based technologies is well recognized and they are extensively applied as cost-effective, highly efficient separation techniques. Currently, empirical-based approaches, lacking an accurate nanoscale control, are used to prepare the most advanced membranes. In contrast, nanoscale control renders the membrane molecular specificity (sub-2 nm) necessary for efficient and rapid molecular separation. Therefore, as a growing trend in membrane technology, the field of nanoscale tailor-made membranes is highlighted in this review. An in-depth analysis of the latest advances in tailor-made membranes for precise and rapid molecule sieving is given, along with an outlook to future perspectives of such membranes. Special attention is paid to the established processing strategies, as well as the application of molecular dynamics (MD) simulation in nanoporous membrane design. This review will provide useful guidelines for future research in the development of nanoscale tailor-made membranes with a precise and rapid molecular sieve separation property.

  1. Characterization of elastic-plastic properties of AS4/APC-2 thermoplastic composite

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Yoon, K. J.

    1988-01-01

    Elastic and inelastic properties of AS4/APC-2 composites were characterized with respect to temperature variation by using a one-parameter orthotropic plasticity model and a one parameter failure criterion. Simple uniaxial off-axis tension tests were performed on coupon specimens of unidirectional AS4/APC-2 thermoplastic composite at various temperatures. To avoid the complication caused by the extension-shear coupling effect in off-axis testing, new tabs were designed and used on the test specimens. The experimental results showed that the nonlinear behavior of constitutive relations and the failure strengths can be characterized quite well using the one parameter plasticity model and the failure criterion, respectively.

  2. A mechano-acoustic indentor system for in vivo measurement of nonlinear elastic properties of soft tissue.

    PubMed

    Koo, Terry K; Cohen, Jeffrey H; Zheng, Yongping

    2011-11-01

    Soft tissue exhibits nonlinear stress-strain behavior under compression. Characterizing its nonlinear elasticity may aid detection, diagnosis, and treatment of soft tissue abnormality. The purposes of this study were to develop a rate-controlled Mechano-Acoustic Indentor System and a corresponding finite element optimization method to extract nonlinear elastic parameters of soft tissue and evaluate its test-retest reliability. An indentor system using a linear actuator to drive a force-sensitive probe with a tip-mounted ultrasound transducer was developed. Twenty independent sites at the upper lateral quadrant of the buttock from 11 asymptomatic subjects (7 men and 4 women from a chiropractic college) were indented at 6% per second for 3 sessions, each consisting of 5 trials. Tissue thickness, force at 25% deformation, and area under the load-deformation curve from 0% to 25% deformation were calculated. Optimized hyperelastic parameters of the soft tissue were calculated with a finite element model using a first-order Ogden material model. Load-deformation response on a standardized block was then simulated, and the corresponding area and force parameters were calculated. Between-trials repeatability and test-retest reliability of each parameter were evaluated using coefficients of variation and intraclass correlation coefficients, respectively. Load-deformation responses were highly reproducible under repeated measurements. Coefficients of variation of tissue thickness, area under the load-deformation curve from 0% to 25% deformation, and force at 25% deformation averaged 0.51%, 2.31%, and 2.23%, respectively. Intraclass correlation coefficients ranged between 0.959 and 0.999, indicating excellent test-retest reliability. The automated Mechano-Acoustic Indentor System and its corresponding optimization technique offers a viable technology to make in vivo measurement of the nonlinear elastic properties of soft tissue. This technology showed excellent between

  3. Estimation of brittleness indices for pay zone determination in a shale-gas reservoir by using elastic properties obtained from micromechanics

    NASA Astrophysics Data System (ADS)

    Lizcano-Hernández, Edgar G.; Nicolás-López, Rubén; Valdiviezo-Mijangos, Oscar C.; Meléndez-Martínez, Jaime

    2018-04-01

    The brittleness indices (BI) of gas-shales are computed by using their effective mechanical properties obtained from micromechanical self-consistent modeling with the purpose of assisting in the identification of the more-brittle regions in shale-gas reservoirs, i.e., the so-called ‘pay zone’. The obtained BI are plotted in lambda-rho versus mu-rho λ ρ -μ ρ and Young’s modulus versus Poisson’s ratio E-ν ternary diagrams along with the estimated elastic properties from log data of three productive shale-gas wells where the pay zone is already known. A quantitative comparison between the obtained BI and the well log data allows for the delimitation of regions where BI values could indicate the best reservoir target in regions with the highest shale-gas exploitation potential. Therefore, a range of values for elastic properties and brittleness indexes that can be used as a data source to support the well placement procedure is obtained.

  4. Effects of cation ordering on the elastic and electronic properties of Mg-Fe silicate phases at high pressures

    NASA Astrophysics Data System (ADS)

    Das, Pratik Kr.; Mandal, Nibir; Arya, A.

    2017-12-01

    Olivine [(Mg, Fe)2SiO4] and pyroxene [(Mg, Fe)Si2O6] are naturally occurring silicate phases. Both the phases crystallize with orthorhombic symmetry, displaying ordering of Mg2+ and Fe2+ in their non-equivalent octahedral lattice sites (M1, M2). We address two major issues: (1) how far an inversion of the cation ordering: type I (Mg2+ in M1; Fe2+ in M2) to type II (Mg2+ in M2; Fe2+in M1) can modify their elastic properties and (2) what are the effects of this inversion on their electronic properties? Using density functional theory, we calculate the elastic constant tensors (Cij) as a function of hydrostatic pressure for types I and II ordering. Our calculations suggest that the inversion (types I to II) in olivine significantly reduces the shear elastic constant C55 (˜25%). This has little effect on the Cij of pyroxene in ambient condition, but the effects become strong at elevated pressures (100 GPa), resulting in large variations (>40%) of all the shear elastic constants: C44, C55, and C66. We predict contrasting variations in compressional (VP) and shear (VS) wave velocities by 1% and 9% and by 2% and 11% for olivine and pyroxene, respectively, on types I to II switchover. Our Debye temperature (θD) calculations show that θD of olivine is less sensitive to ordering inversion, whereas that of pyroxene varies substantially (˜22%) under ambient condition. We evaluate the electronic DOS of pyroxene, and obtain a large difference in the magnetic moment between types I and II.

  5. Pressure effects on structural, electronic, elastic and lattice dynamical properties of XSi2 (X = Cr, Mo, W) from first principles

    NASA Astrophysics Data System (ADS)

    Zhu, Haiyan; Shi, Liwei; Li, Shuaiqi; Zhang, Shaobo; Xia, Wangsuo

    2018-04-01

    First-principles calculations have been performed to study the structure, elastic and lattice dynamical properties of C40 XSi2 (X=Cr, Mo, W) under hydrostatic pressure. The obtained structural parameters are in line with existing experimental and theoretical data. The evolutions of fundamental bandgap energies, elastic moduli, IR absorption spectra with pressure have been investigated in detail. Our results indicate that the energy gaps of XSi2 (X=Cr, Mo, W) show different trends as the pressure increases. Larger BH/GH ratio and Poisson’s ratio are achieved with pressure, suggesting an improved ductility for XSi2 (X=Cr, Mo, W). Moreover, a large elastic anisotropy under pressure is exhibited in Young’s anisotropic factors. The infrared-active phonon frequencies exhibit substantial blueshifts under pressure.

  6. The effect of boron concentration on the structure and elastic properties of Ru-Ir alloys: first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Zhou, Zhaobo; Hu, Riming; Zhou, Xiaolong; Yu, Jie; Liu, Manmen

    2018-04-01

    The Phase stability, electronic structure, elastic properties and hardness of Ru-Ir alloys with different B concentration were investigated by first principles calculations. The calculated formation enthaplies and cohesive energies show that these compounds are all thermodynamically stable. Information on electronic structure indicates that they possess metallic characteristic and Ru-Ir-B alloys were composed of the Ru-B and Ir-B covalent bond. The elastic properties were calculated, which included bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and hardness. The calculated results reveal that the plastic of Ru-Ir-B alloys increase with the increase of the content of B atoms, but the hardness of Ru-Ir-B alloys have no substantial progress with the increase of the content of B atoms. However, it is interesting that the hardness of the Ru-Ir-B compound was improved obviously as the B content was higher than 18 atoms because of a phase structure transition.

  7. Multifunctional, angle dependent antireflection, and hydrophilic properties of SiO2 inspired by nano-scale structures of cicada wings

    NASA Astrophysics Data System (ADS)

    Zada, Imran; Zhang, Wang; Sun, Peng; Imtiaz, Muhammad; Abbas, Waseem; Zhang, Di

    2017-10-01

    Inspired by the multifunctional properties of cicada wings, we have precisely replicated biomorphic SiO2 with antireflective structures (ARSs) using a simple, inexpensive, and highly effective sol-gel ultrasonic method. The biomorphic replica of SiO2 was directly achieved from a cicada template at high calcination. The biomorphic SiO2 not only inherited the ARS effectively but also exhibited the excellent angle dependent antireflective properties over a wide range of incident angles (10°-60°). The change in reflectance spectra (visible wavelength) of biomorphic SiO2 was observed from 0.3% to 3.3% with the increasing incident angles. The smooth surface of the SiO2 crystal without nanostructures showed a high reflection of 9.2% compared to the biomorphic SiO2 with ARS. These excellent antireflective properties of biomorphic SiO2 can be attributed to the nanoscale structures which introduce a gradient in the refractive index between air and the material surface via ARS. In the meantime, biomorphic SiO2 demonstrates high hydrophilic properties due to the existence of nanostructures on its surface. These multifunctional properties of biomorphic SiO2, angle dependent antireflective properties, and hydrophilicity with high thermal stability may have potential applications in solar cells and antifogging optical materials.

  8. Friction laws at the nanoscale.

    PubMed

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  9. Elastic metamaterial beam with remotely tunable stiffness

    NASA Astrophysics Data System (ADS)

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.

    2016-02-01

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  10. Influence of intra-molecular flexibility on the elastic property of double-stranded DNA film on a substrate

    NASA Astrophysics Data System (ADS)

    Wu, Jun-Zheng; Meng, Wei-Lie; Tang, Heng-Song; Zhang, Neng-Hui

    2017-05-01

    DNA film self-assembled or nanografted on a substrate, as a kind of soft matter, consists of fixed DNA chains endowed with negative charges and an aqueous solution full of cations, anions and water molecules. Their thermal/electrical/mechanical properties are closely related to the complex biodetection signals in nano-/micro-scale biosensors and other new genome technologies. This makes it important to properly characterize these properties. In this paper, the effect of flexible micro-scale configurations on the elastic moduli of DNA films is investigated. First, illuminated by Qiu’s sphere model, an alternative bead-chain model in terms of the Yukawa potential is presented for flexible intra-DNA configurations to describe interactions between DNA fragments. The effective charges of coarse-grained DNA beads could be derived, in which the empirical parameters are identified by curve fitting with Qiu’s experimental data. Second, the updated mesoscopic bead-chain model and the thought experiment of a continuum compression bar are used to compare the elastic moduli of double-stranded DNA (dsDNA) films prepared by self-assembling and nanografting techniques. Configurational sampling is achieved via Monte Carlo simulation. Our predictions quantitatively or qualitatively agree well with the relevant experiments on the effective charge of dsDNA from low to moderate monovalent counterion concentration, immobilization deflection of single-stranded DNA (ssDNA) or dsDNA microcantilever with the variation of salt concentration, and elastic modulus of ssDNA film in the air. The results reveal that different solution environment stimulates the diverse mechanical properties of dsDNA film on a substrate, and the end effect (i.e. terminal group effect) makes self-assembling dsDNA film stiffer in the sense of the same average packing density.

  11. Elasticity and Fluctuations of Frustrated Nanoribbons

    NASA Astrophysics Data System (ADS)

    Grossman, Doron; Sharon, Eran; Diamant, Haim

    2016-06-01

    We derive a reduced quasi-one-dimensional theory of geometrically frustrated elastic ribbons. Expressed in terms of geometric properties alone, it applies to ribbons over a wide range of scales, allowing the study of their elastic equilibrium, as well as thermal fluctuations. We use the theory to account for the twisted-to-helical transition of ribbons with spontaneous negative curvature and the effect of fluctuations on the corresponding critical exponents. The persistence length of such ribbons changes nonmonotonically with the ribbon's width, dropping to zero at the transition. This and other statistical properties qualitatively differ from those of nonfrustrated fluctuating filaments.

  12. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  13. Investigation of the structural, electronic, elastic and thermodynamic properties of Curium Monopnictides: An ab initio study

    NASA Astrophysics Data System (ADS)

    Baaziz, H.; Guendouz, Dj.; Charifi, Z.; Akbudak, S.; Uğur, G.; Uğur, Ş.; Boudiaf, K.

    2017-12-01

    The structural, electronic, elastic and thermodynamic properties of Curium Monopnictides CmX (X = N, P, As, Sb and Bi) are investigated using first-principles calculations based on the density functional theory (DFT) and full potential linearized augmented plane wave (FP-LAPW) method under ambient condition and high pressure. The exchange-correlation term is treated using two approximations spin-polarized local density approximation (LSDA) and spin-polarized generalized gradient approximation generalized (GGA). The structural parameters such as the equilibrium lattice parameters, bulk modulus and the total energies are calculated in two phases: namely NaCl (B1) and CsCl (B2). The obtained results are compared with the previous theoretical and experimental results. A structural phase transition from B1 phase to B2 phase for Curium pnictides has been obtained. The highest transition pressure is 122 GPa for CmN and the lowest one is 10.0 GPa for CmBi compound. The electronic properties show that these materials exhibit half-metallic behavior in both phases. The magnetic moment is found to be around 7.0 μB. The mechanical properties of CmX (X = N, P, As, Sb and Bi) are predicted from the calculated elastic constants. Our calculated results are in good agreement with the theoretical results in literature. The effect of pressure and temperature on the thermodynamic properties like the cell volume, bulk modulus and the specific heats C𝜗 and CP, the entropy 𝒮 and the Grüneisen parameter γ have been foreseen at expanded pressure and temperature ranges.

  14. Nanoscale size effect in in situ titanium based composites with cell viability and cytocompatibility studies.

    PubMed

    Miklaszewski, Andrzej; Jurczyk, Mieczysława U; Kaczmarek, Mariusz; Paszel-Jaworska, Anna; Romaniuk, Aleksandra; Lipińska, Natalia; Żurawski, Jakub; Urbaniak, Paulina; Jurczyk, Mieczyslaw

    2017-04-01

    Novel in situ Metal Matrix Nanocomposite (MMNC) materials based on titanium and boron, revealed their new properties in the nanoscale range. In situ nanocomposites, obtained through mechanical alloying and traditional powder metallurgy compaction and sintering, show obvious differences to their microstructural analogue. A unique microstructure connected with good mechanical properties reliant on the processing conditions favour the nanoscale range of results of the Ti-TiB in situ MMNC example. The data summarised in this work, support and extend the knowledge boundaries of the nanoscale size effect that influence not only the mechanical properties but also the studies on the cell viability and cytocompatibility. Prepared in the same bulk, in situ MMNC, based on titanium and boron, could be considered as a possible candidate for dental implants and other medical applications. The observed relations and research conclusions are transferable to the in situ MMNC material group. Aside from all the discussed relations, the increasing share of these composites in the ever-growing material markets, heavily depends on the attractiveness and a possible wider application of these composites as well as their operational simplicity presented in this work. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Seismic transmission operator reciprocity - II: impedance-operator symmetry via elastic lateral modes

    NASA Astrophysics Data System (ADS)

    Thomson, C. J.

    2015-08-01

    The properties of the overburden transmission response are of particular interest for the analysis of reflectivity illumination or blurring in seismic depth imaging. The first step to showing a transmission-operator reciprocity property is to identify the symmetry of the so-called displacement-to-traction operators. The latter are analogous to Dirichlet-to-Neumann operators and they may also be called impedance operators. Their symmetry is deduced here after development of a formal spectral or modal theory of lateral wavefunctions in a laterally heterogeneous generally anisotropic elastic medium. The elastic lateral modes are displacement-traction 6-vectors and they are built from two auxiliary 3-vector lateral-mode bases. These auxiliary modes arise from Hermitian and anti-Hermitian operators, so they have familiar properties such as orthogonality. There is no assumption of down/up symmetry of the elasticity tensor, but basic assumptions are made about the existence and completeness of the elastic modes. A point-symmetry property appears and plays a central role. The 6-vector elastic modes have a symplectic orthogonality property, which facilitates the development of modal expansions for 6-vector functions of the lateral coordinates when completeness is assumed. While the elastic modal theory is consistent with the laterally homogeneous case, numerical work would provide confidence that it is correct in general. An appendix contains an introductory overview of acoustic lateral modes that were studied by other authors, given from the perspective of this new work. A distinction is drawn between unit normalization of scalar auxiliary modes and a separate energy-flux normalization of 2-vector acoustic modes. Neither is crucial to the form of acoustic pressure-to-velocity or impedance operators. This statement carries over to the elastic case for the 3-vector auxiliary- and 6-vector elastic-mode normalizations. The modal theory is used to construct the kernel of the

  16. Stiffness, working stroke, and force of single-myosin molecules in skeletal muscle: elucidation of these mechanical properties via nonlinear elasticity evaluation.

    PubMed

    Kaya, Motoshi; Higuchi, Hideo

    2013-11-01

    In muscles, the arrays of skeletal myosin molecules interact with actin filaments and continuously generate force at various contraction speeds. Therefore, it is crucial for myosin molecules to generate force collectively and minimize the interference between individual myosin molecules. Knowledge of the elasticity of myosin molecules is crucial for understanding the molecular mechanisms of muscle contractions because elasticity directly affects the working and drag (resistance) force generation when myosin molecules are positively or negatively strained. The working stroke distance is also an important mechanical property necessary for elucidation of the thermodynamic efficiency of muscle contractions at the molecular level. In this review, we focus on these mechanical properties obtained from single-fiber and single-molecule studies and discuss recent findings associated with these mechanical properties. We also discuss the potential molecular mechanisms associated with reduction of the drag effect caused by negatively strained myosin molecules.

  17. Effect of parylene C coating on the antibiocorrosive and mechanical properties of different magnesium alloys

    NASA Astrophysics Data System (ADS)

    Surmeneva, M. A.; Vladescu, A.; Cotrut, C. M.; Tyurin, A. I.; Pirozhkova, T. S.; Shuvarin, I. A.; Elkin, B.; Oehr, C.; Surmenev, R. A.

    2018-01-01

    In this paper, parylene C coating with the thickness of 2 μm was deposited on different magnesium alloy substrates (AZ31, WE43 and AZ91). The structure and phase composition of parylene C coating was analysed by Fourier transformed infrared (FTIR) spectroscopy and X-ray diffraction (XRD). In addition, extensive surface characterization was done using atomic force microscopy. The corrosion performance of polymer-coated magnesium alloys was investigated by electrochemical measurements in Hanks' balanced salts solution that simulates bodily fluids at 37 ± 0.5 °C. The depth-dependent mechanical properties including Young's modulus and nanohardness of parylene C films were investigated using nanoindentation technique. The effect of the penetration depth on the properties on nano- and microscale level have been described in detail. The percentage of elastic recovery was used to characterize the elastic properties of the polymeric coatings. The results of XRD showed (020) preferred orientation of the monoclinic unit cell of the alpha phase of parylene C. The parylene C revealed a semicrystalline structure with nanocrystalline blocks of 4.9 nm. The parylene C film shows a uniform surface morphology with a higher roughness level at micro and nanoscales compared to magnesium alloy surfaces. All of the uncoated substrates exhibited a low corrosion resistance compared to the coated samples, indicating that the corrosion resistance of the magnesium alloys could be improved by parylene C coating. The resulting average nanohardness and Young's modulus of the parylene C coatings deposited onto different substrates were in the range of 0.18-0.25 GPa and 4.19-5.14 GPa, respectively. Furthermore, a higher percentage of elastic recovery of the polymer coating indicated a higher elasticity as compared to the magnesium alloy surface. The polymer coating has revealed the ability to recover elastically. Therefore, parylene C coating can not only improve corrosion resistance, but also

  18. How to keep your pants on: historic metamaterials and elasticity before the invention of elastic

    NASA Astrophysics Data System (ADS)

    Matsumoto, Elisabetta A.; Mahadevan, L.

    2015-03-01

    How do you create stretching from an inextensible material? Remarkably, the centuries-old embroidery technique known as smocking accomplishes just this. With the recent explosion of origami-based engineering, the search is on for a set of design principles to generate materials with prescribed mechanical properties. This quickly becomes a complex mathematical question due to the strict constraints of rigid origami imposed by the inextensibility of paper. Softening these constraints by considering woven fabrics, which have two orthogonal inextensible directions and a skewed soft shear mode, opens up a zoo of possible configurations. We explore the emergence of elastic properties in smocked fabrics as functions of both fabric elasticity and smocking pattern.

  19. Self-consistent Modeling of Elastic Anisotropy in Shale

    NASA Astrophysics Data System (ADS)

    Kanitpanyacharoen, W.; Wenk, H.; Matthies, S.; Vasin, R.

    2012-12-01

    Elastic anisotropy in clay-rich sedimentary rocks has increasingly received attention because of significance for prospecting of petroleum deposits, as well as seals in the context of nuclear waste and CO2 sequestration. The orientation of component minerals and pores/fractures is a critical factor that influences elastic anisotropy. In this study, we investigate lattice and shape preferred orientation (LPO and SPO) of three shales from the North Sea in UK, the Qusaiba Formation in Saudi Arabia, and the Officer Basin in Australia (referred to as N1, Qu3, and L1905, respectively) to calculate elastic properties and compare them with experimental results. Synchrotron hard X-ray diffraction and microtomography experiments were performed to quantify LPO, weight proportions, and three-dimensional SPO of constituent minerals and pores. Our preliminary results show that the degree of LPO and total amount of clays are highest in Qu3 (3.3-6.5 m.r.d and 74vol%), moderately high in N1 (2.4-5.6 m.r.d. and 70vol%), and lowest in L1905 (2.3-2.5 m.r.d. and 42vol%). In addition, porosity in Qu3 is as low as 2% while it is up to 6% in L1605 and 8% in N1, respectively. Based on this information and single crystal elastic properties of mineral components, we apply a self-consistent averaging method to calculate macroscopic elastic properties and corresponding seismic velocities for different shales. The elastic model is then compared with measured acoustic velocities on the same samples. The P-wave velocities measured from Qu3 (4.1-5.3 km/s, 26.3%Ani.) are faster than those obtained from L1905 (3.9-4.7 km/s, 18.6%Ani.) and N1 (3.6-4.3 km/s, 17.7%Ani.). By making adjustments for pore structure (aspect ratio) and single crystal elastic properties of clay minerals, a good agreement between our calculation and the ultrasonic measurement is obtained.

  20. Ultrafast imaging of cell elasticity with optical microelastography

    PubMed Central

    Grasland-Mongrain, Pol; Zorgani, Ali; Nakagawa, Shoma; Bernard, Simon; Paim, Lia Gomes; Fitzharris, Greg; Catheline, Stefan

    2018-01-01

    Elasticity is a fundamental cellular property that is related to the anatomy, functionality, and pathological state of cells and tissues. However, current techniques based on cell deformation, atomic force microscopy, or Brillouin scattering are rather slow and do not always accurately represent cell elasticity. Here, we have developed an alternative technique by applying shear wave elastography to the micrometer scale. Elastic waves were mechanically induced in live mammalian oocytes using a vibrating micropipette. These audible frequency waves were observed optically at 200,000 frames per second and tracked with an optical flow algorithm. Whole-cell elasticity was then mapped using an elastography method inspired by the seismology field. Using this approach we show that the elasticity of mouse oocytes is decreased when the oocyte cytoskeleton is disrupted with cytochalasin B. The technique is fast (less than 1 ms for data acquisition), precise (spatial resolution of a few micrometers), able to map internal cell structures, and robust and thus represents a tractable option for interrogating biomechanical properties of diverse cell types. PMID:29339488

  1. Elastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry and resonant sphere methods

    NASA Astrophysics Data System (ADS)

    Chang, Yun-Yuan; Jacobsen, Steven D.; Kimura, Masaki; Irifune, Tetsuo; Ohno, Ichiro

    2014-03-01

    The sound velocities and elastic moduli of transparent nano-polycrystalline diamond (NPD) have been determined by GHz-ultrasonic interferometry on three different bulk samples, and by resonant spectroscopy on a spherically fabricated NPD sample. We employ a newly-developed optical contact micrometer to measure the thickness of ultrasonic samples to ±0.05 μm with a spatial resolution of ∼50 μm in the same position of the GHz-ultrasonic measurements, resulting in acoustic-wave sound velocity measurements with uncertainties of 0.005-0.02%. The isotropic and adiabatic bulk and shear moduli of NPD measured by GHz-ultrasonic interferometry are KS0 = 442.5 (±0.5) GPa and G0 = 532.4 (±0.5) GPa. By rotating the shear-wave polarization direction, we observe no transverse anisotropy in this NPD. Using resonant sphere spectroscopy, we obtain KS0 = 440.3 (±0.5) GPa and G0 = 532.7 (±0.4) GPa. For comparison, we also measured by GHz-ultrasonic interferometry the elastic constants of a natural single-crystal type-IA diamond with about one-half the experimental uncertainty of previous measurements. The resulting Voigt-Reuss-Hill averaged bulk and shear moduli of natural diamond are KS0 = 441.8 (±0.8) GPa and G0 = 532.6 (±0.5) GPa, demonstrating that the bulk-elastic properties of transparent NPD are equivalent to natural single-crystal diamond as calculated from polycrystalline averaging of its elastic constants.

  2. Nanoscale Silicon as a Catalyst for Graphene Growth: Mechanistic Insight from in Situ Raman Spectroscopy

    DOE PAGES

    Share, Keith; Carter, Rachel E.; Nikolaev, Pavel; ...

    2016-06-08

    Nanoscale carbons are typically synthesized by thermal decomposition of a hydrocarbon at the surface of a metal catalyst. Whereas the use of silicon as an alternative to metal catalysts could unlock new techniques to seamlessly couple carbon nanostructures and semiconductor materials, stable carbide formation renders bulk silicon incapable of the precipitation and growth of graphitic structures. In this article, we provide evidence supported by comprehensive in situ Raman experiments that indicates nanoscale grains of silicon in porous silicon (PSi) scaffolds act as catalysts for hydrocarbon decomposition and growth of few-layered graphene at temperatures as low as 700 K. Self-limiting growthmore » kinetics of graphene with activation energies measured between 0.32–0.37 eV elucidates the formation of highly reactive surface-bound Si radicals that aid in the decomposition of hydrocarbons. Nucleation and growth of graphitic layers on PSi exhibits striking similarity to catalytic growth on nickel surfaces, involving temperature dependent surface and subsurface diffusion of carbon. Lastly, this work elucidates how the nanoscale properties of silicon can be exploited to yield catalytic properties distinguished from bulk silicon, opening an important avenue to engineer catalytic interfaces combining the two most technologically important materials for modern applications—silicon and nanoscale carbons.« less

  3. Structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 phases from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, X. D.; Li, K.; Wei, C. H.; Han, W. D.; Zhou, N. G.

    2018-06-01

    The structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 are systematically investigated by using first-principles calculations method based on density functional theory (DFT). The calculated formation enthalpies and cohesive energies show that CaSi2 possesses the greatest structural stability and CaSi has the strongest alloying ability. The structural stability of the three phases is compared according to electronic structures. Further analysis on electronic structures indicates that the bonding of these phases exhibits the combinations of metallic, covalent, and ionic bonds. The elastic constants are calculated, and the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor of polycrystalline materials are deduced. Additionally, the thermodynamic properties were theoretically predicted and discussed.

  4. Investigation of Plant Cell Wall Properties: A Study of Contributions from the Nanoscale to the Macroscale Impacting Cell Wall Recalcitrance

    NASA Astrophysics Data System (ADS)

    Crowe, Jacob Dillon

    , alkaline hydrogen peroxide and liquid hot water pretreatments were shown to alter structural properties impacting nanoscale porosity in corn stover. Delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity, with subsequent cell wall swelling resulting in increased nanoscale porosity and improved enzymatic hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 A dextran probe within the cell wall was found to be positively correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields. In the third study, the effect of altered xylan content and structure was investigated in irregular xylem (irx) Arabidopsis thaliana mutants to understand the role xylan plays in secondary cell wall development and organization. Higher xylan extractability and lower cellulose crystallinity observed in irx9 and irx15 irx15-L mutants compared to wild type indicated altered xylan integration into the secondary cell wall. Nanoscale cell wall organization observed using multiple microscopy techniques was impacted to some extent in all irx mutants, with disorganized cellulose microfibril layers in sclerenchyma secondary cell walls likely resulting from irregular xylan structure and content. Irregular secondary cell wall microfibril layers showed heterogeneous nanomechanical properties compared to wild type, which translated to mechanical deficiencies observed in stem tensile tests. These results suggest nanoscale defects in cell wall strength can correspond to macroscale phenotypes.

  5. Molecular modeling of the elastomeric properties of repeating units and building blocks of resilin, a disordered elastic protein.

    PubMed

    Khandaker, Md Shahriar K; Dudek, Daniel M; Beers, Eric P; Dillard, David A; Bevan, David R

    2016-08-01

    The mechanisms responsible for the properties of disordered elastomeric proteins are not well known. To better understand the relationship between elastomeric behavior and amino acid sequence, we investigated resilin, a disordered rubber-like protein, found in specialized regions of the cuticle of insects. Resilin of Drosophila melanogaster contains Gly-rich repetitive motifs comprised of the amino acids, PSSSYGAPGGGNGGR, which confer elastic properties to resilin. The repetitive motifs of insect resilin can be divided into smaller partially conserved building blocks: PSS, SYGAP, GGGN and GGR. Using molecular dynamics (MD) simulations, we studied the relative roles of SYGAP, and its less common variants SYSAP and TYGAP, on the elastomeric properties of resilin. Results showed that SYGAP adopts a bent structure that is one-half to one-third the end-to-end length of the other motifs having an equal number of amino acids but containing SYSAP or TYGAP substituted for SYGAP. The bent structure of SYGAP forms due to conformational freedom of glycine, and hydrogen bonding within the motif apparently plays a role in maintaining this conformation. These structural features of SYGAP result in higher extensibility compared to other motifs, which may contribute to elastic properties at the macroscopic level. Overall, the results are consistent with a role for the SYGAP building block in the elastomeric properties of these disordered proteins. What we learned from simulating the repetitive motifs of resilin may be applicable to the biology and mechanics of other elastomeric biomaterials, and may provide us the deeper understanding of their unique properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A first principles study of the electronic structure, elastic and thermal properties of UB2

    NASA Astrophysics Data System (ADS)

    Jossou, Ericmoore; Malakkal, Linu; Szpunar, Barbara; Oladimeji, Dotun; Szpunar, Jerzy A.

    2017-07-01

    Uranium diboride (UB2) has been widely deployed for refractory use and is a proposed material for Accident Tolerant Fuel (ATF) due to its high thermal conductivity. However, the applicability of UB2 towards high temperature usage in a nuclear reactor requires the need to investigate the thermomechanical properties, and recent studies have failed in highlighting applicable properties. In this work, we present an in-depth theoretical outlook of the structural and thermophysical properties of UB2, including but not limited to elastic, electronic and thermal transport properties. These calculations were performed within the framework of Density Functional Theory (DFT) + U approach, using Quantum ESPRESSO (QE) code considering the addition of Coulomb correlations on the uranium atom. The phonon spectra and elastic constant analysis show the dynamic and mechanical stability of UB2 structure respectively. The electronic structure of UB2 was investigated using full potential linear augmented plane waves plus local orbitals method (FP-LAPW+lo) as implemented in WIEN2k code. The absence of a band gap in the total and partial density of states confirms the metallic nature while the valence electron density plot reveals the presence of covalent bond between adjacent B-B atoms. We predicted the lattice thermal conductivity (kL) by solving Boltzmann Transport Equation (BTE) using ShengBTE. The second order harmonic and third-order anharmonic interatomic force constants required as input to ShengBTE was calculated using the Density-functional perturbation theory (DFPT). However, we predicted the electronic thermal conductivity (kel) using Wiedemann-Franz law as implemented in Boltztrap code. We also show that the sound velocity along 'a' and 'c' axes exhibit high anisotropy, which accounts for the anisotropic thermal conductivity of UB2.

  7. Elastic Properties of Subduction Zone Materials in the Large Shallow Slip Environment for the Tohoku 2011 Earthquake: Laboratory data from JFAST Core Samples

    NASA Astrophysics Data System (ADS)

    Jeppson, T.; Tobin, H. J.

    2014-12-01

    The 11 March 2011 Tohoku-Oki earthquake (Mw=9.0) produced large displacements of ~50 meters near the Japan Trench. In order to understand earthquake propagation and slip stabilization in this environment, quantitative values of the real elastic properties of fault zones and their surrounding wall rock material is crucial. Because elastic and mechanical properties of faults and wallrocks are controlling factors in fault strength, earthquake generation and propagation, and slip stabilization, an understanding of these properties and their depth dependence is essential to understanding and accurately modeling earthquake rupture. In particular, quantitatively measured S-wave speeds, needed for estimation of elastic properties, are scarce in the literature. We report laboratory ultrasonic velocity measurements performed at elevated pressures, as well as the calculated dynamic elastic moduli, for samples of the rock surrounding the Tohoku earthquake principal fault zone recovered by drilling during IODP Expedition 343, Japan Trench Fast Drilling Project (JFAST). We performed measurements on five samples of gray mudstone from the hanging wall and one sample of underthrust brown mudstone from the footwall. We find P- and S-wave velocities of 2.0 to 2.4 km/s and 0.7 to 1.0 km/s, respectively, at 5 MPa effective pressure. At the same effective pressure, the hanging wall samples have shear moduli ranging from 1.4 to 2.2 GPa and the footwall sample has a shear modulus of 1.0 GPa. While these values are perhaps not surprising for shallow, clay-rich subduction zone sediments, they are substantially lower than the 30 GPa commonly assumed for rigidity in earthquake rupture and propagation models [e.g., Ide et al., 1993; Liu and Rice, 2005; Loveless and Meade, 2011]. In order to better understand the elastic properties of shallow subduction zone sediments, our measurements from the Japan Trench are compared to similar shallow drill core samples from the Nankai Trough, Costa Rica

  8. Damage of the Interface Between an Orthodontic Bracket and Enamel - the Effect of Some Elastic Properties of the Adhesive Material

    NASA Astrophysics Data System (ADS)

    Durgesh, B. H.; Alkheraif, A. A.; Al Sharawy, M.; Varrela, J.; Vallittu, P. K.

    2016-01-01

    The aim of this study was to investigate the magnitude of debonding stress of an orthodontic bracket bonded to the enamel with resin systems having different elastic properties. For the same purpose, sixty human premolars were randomly divided into four groups according to the adhesive system used for bonding brackets: G Fix flowable resin (GFI) with Everstick NET (ESN), GFI, G Aenial Universal Flow (GAU) with ESN, and GAU. The brackets were stressed in the occlusogingival direction on a universal testing machine. The values of debonding load and displacement were determined at the point of debonding. The elastic modulus of the tested materials was determined using nanoindentation. An analysis of variance showed a significant difference in the loads required to debond the bracket among the groups tested. The GAU group had the highest elastic modulus, followed by the GFI and ESN groups. ARI (Adhesive Remnant Index) scores demonstrated more remnants of the adhesive material on the bracket surface with adhesives having a higher elastic modulus. Taking into consideration results of the present in-vitro study, it can be concluded that the incorporation of a glass-fiber-reinforced composite resin (FRC) with a low elastic modulus between the orthodontic bracket and enamel increases the debonding force and strain more than with adhesive systems having a higher elastic modulus.

  9. Characterizing Nanoscale Transient Communication.

    PubMed

    Chen, Yifan; Anwar, Putri Santi; Huang, Limin; Asvial, Muhamad

    2016-04-01

    We consider the novel paradigm of nanoscale transient communication (NTC), where certain components of the small-scale communication link are physically transient. As such, the transmitter and the receiver may change their properties over a prescribed lifespan due to their time-varying structures. The NTC systems may find important applications in the biomedical, environmental, and military fields, where system degradability allows for benign integration into life and environment. In this paper, we analyze the NTC systems from the channel-modeling and capacity-analysis perspectives and focus on the stochastically meaningful slow transience scenario, where the coherence time of degeneration Td is much longer than the coding delay Tc. We first develop novel and parsimonious models to characterize the NTC channels, where three types of physical layers are considered: electromagnetism-based terahertz (THz) communication, diffusion-based molecular communication (DMC), and nanobots-assisted touchable communication (TouchCom). We then revisit the classical performance measure of ϵ-outage channel capacity and take a fresh look at its formulations in the NTC context. Next, we present the notion of capacity degeneration profile (CDP), which describes the reduction of channel capacity with respect to the degeneration time. Finally, we provide numerical examples to demonstrate the features of CDP. To the best of our knowledge, the current work represents a first attempt to systematically evaluate the quality of nanoscale communication systems deteriorating with time.

  10. Faraday wave lattice as an elastic metamaterial.

    PubMed

    Domino, L; Tarpin, M; Patinet, S; Eddi, A

    2016-05-01

    Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.

  11. First-principles calculations of stability, electronic and elastic properties of the precipitates present in 7055 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Huang, Cheng; Shao, Hongbang; Ma, Yunlong; Huang, Yuanchun; Xiao, Zhengbing

    2018-04-01

    The structural stability, electronic structures and elastic properties of the strengthening precipitates, namely Al3Zr, MgZn2, Al2CuMg and Al2Cu, present in 7055 aluminum alloy were investigated by the first-principles calculations based on density functional theory (DFT). The optimized structural parameters are in good agreement with literature values available. It is found that Al3Zr has the strongest alloying ability and structural stability, while for MgZn2, its structural stability is the worst. The calculated electronic results indicate that covalent bonding is the dominant cohesion of Al3Zr, whereas the fractional ionic interactions coexisting with metallic bonding are found in MgZn2, Al2CuMg and Al2Cu. The elastic constants Cij of these precipitates were calculated, and the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and universal elastic anisotropy were derived. It is suggested that MgZn2 is ductile, whereas Al3Zr, Al2CuMg and Al2Cu are brittle, and the elastic anisotropies of them increase in the following sequence: Al3Zr

  12. A first principle calculation of anisotropic elastic, mechanical and electronic properties of TiB

    NASA Astrophysics Data System (ADS)

    Zhang, Junqin; Zhao, Bin; Ma, Huihui; Wei, Qun; Yang, Yintang

    2018-04-01

    The structural, mechanical and electronic properties of the NaCl-type structure TiB are theoretically calculated based on the first principles. The density of states of TiB shows obvious density peaks at -0.70eV. Furthermore, there exists a pseudogap at 0.71eV to the right of the Fermi level. The calculated structural and mechanical parameters (i.e., bulk modulus, shear modulus, Young's modulus, Poisson's ratio and universal elastic anisotropy index) were in good agreement both with the previously reported experimental values and theoretical results at zero pressure. The mechanical stability criterion proves that TiB at zero pressure is mechanistically stable and exhibits ductility. The universal anisotropic index and the 3D graphics of Young's modulus are also given in this paper, which indicates that TiB is anisotropy under zero pressure. Moreover, the effects of applied pressures on the structural, mechanical and anisotropic elastic of TiB were studied in the range from 0 to 100GPa. It was found that ductility and anisotropy of TiB were enhanced with the increase of pressure.

  13. Micromechanical modeling of elastic properties of cortical bone accounting for anisotropy of dense tissue.

    PubMed

    Salguero, Laura; Saadat, Fatemeh; Sevostianov, Igor

    2014-10-17

    The paper analyzes the connection between microstructure of the osteonal cortical bone and its overall elastic properties. The existing models either neglect anisotropy of the dense tissue or simplify cortical bone microstructure (accounting for Haversian canals only). These simplifications (related mostly to insufficient mathematical apparatus) complicate quantitative analysis of the effect of microstructural changes - produced by age, microgravity, or some diseases - on the overall mechanical performance of cortical bone. The present analysis fills this gap; it accounts for anisotropy of the dense tissue and uses realistic model of the porous microstructure. The approach is based on recent results of Sevostianov et al. (2005) and Saadat et al. (2012) on inhomogeneities in a transversely-isotropic material. Bone's microstructure is modeled according to books of Martin and Burr (1989), Currey (2002), and Fung (1993) and includes four main families of pores. The calculated elastic constants for porous cortical bone are in agreement with available experimental data. The influence of each of the pore types on the overall moduli is examined. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Achilles and patellar tendinopathy display opposite changes in elastic properties: A shear wave elastography study.

    PubMed

    Coombes, B K; Tucker, K; Vicenzino, B; Vuvan, V; Mellor, R; Heales, L; Nordez, A; Hug, F

    2018-03-01

    To compare tendon elastic and structural properties of healthy individuals with those with Achilles or patellar tendinopathy. Sixty-seven participants (22 Achilles tendinopathy, 17 patellar tendinopathy, and 28 healthy controls) were recruited between March 2015 and March 2016. Shear wave velocity (SWV), an index of tissue elastic modulus, and tendon thickness were measured bilaterally at mid-tendon and insertional regions of Achilles and patellar tendons by an examiner blinded to group. Analysis of covariance, adjusted for age, body mass index, and sex was used to compare differences in tendon thickness and SWV between the two tendinopathy groups (relative to controls) and regions. Tendon thickness was included as a covariate for analysis of SWV. Compared to controls, participants with Achilles tendinopathy had lower SWV at the distal insertion (Mean difference MD; 95% CI: -1.56; -2.49 to -0.62 m/s; P < .001) and greater thickness at the mid-tendon (MD 0.19; 0.05-0.33 cm; P = .007). Compared to controls, participants with patellar tendinopathy had higher SWV at both regions (MD 1.25; 0.40-2.10 m/s; P = .005) and greater thickness proximally (MD 0.17; 0.06-0.29 cm; P = .003). Compared to controls, participants with Achilles and patellar tendinopathy displayed lower Achilles tendon elastic modulus and higher patellar tendon elastic modulus, respectively. More research is needed to explore whether maturation, aging, or chronic load underlie these findings and whether current management programs for Achilles and patellar tendinopathy need to be tailored to the tendon. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Elasticity of plagioclase feldspars

    NASA Astrophysics Data System (ADS)

    Brown, J. Michael; Angel, Ross J.; Ross, Nancy L.

    2016-02-01

    Elastic properties are reported for eight plagioclase feldspars that span compositions from albite (NaSi3AlO8) to anorthite (CaSi2Al2O8). Surface acoustic wave velocities measured using Impulsive Stimulated Light Scattering and compliance sums from high-pressure X-ray compression studies accurately determine all 21 components of the elasticity tensor for these triclinic minerals. The overall pattern of elasticity and the changes in individual elastic components with composition can be rationalized on the basis of the evolution of crystal structures and chemistry across this solid-solution join. All plagioclase feldspars have high elastic anisotropy; a* (the direction perpendicular to the b and c axes) is the softest direction by a factor of 3 in albite. From albite to anorthite the stiffness of this direction undergoes the greatest change, increasing twofold. Small discontinuities in the elastic components, inferred to occur between the three plagioclase phases with distinct symmetry (C1>¯, I1>¯, and P1>¯), appear consistent with the nature of the underlying conformation of the framework-linked tetrahedra and the associated structural changes. Measured body wave velocities of plagioclase-rich rocks, reported over the last five decades, are consistent with calculated Hill-averaged velocities using the current moduli. This confirms long-standing speculation that previously reported elastic moduli for plagioclase feldspars are systematically in error. The current results provide greater assurance that the seismic structure of the middle and lower crusts can be accurately estimated on the basis of specified mineral modes, chemistry, and fabric.

  16. An evaluation method for nanoscale wrinkle

    NASA Astrophysics Data System (ADS)

    Liu, Y. P.; Wang, C. G.; Zhang, L. M.; Tan, H. F.

    2016-06-01

    In this paper, a spectrum-based wrinkling analysis method via two-dimensional Fourier transformation is proposed aiming to solve the difficulty of nanoscale wrinkle evaluation. It evaluates the wrinkle characteristics including wrinkling wavelength and direction simply using a single wrinkling image. Based on this method, the evaluation results of nanoscale wrinkle characteristics show agreement with the open experimental results within an error of 6%. It is also verified to be appropriate for the macro wrinkle evaluation without scale limitations. The spectrum-based wrinkling analysis is an effective method for nanoscale evaluation, which contributes to reveal the mechanism of nanoscale wrinkling.

  17. The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements.

    PubMed

    Daszkiewicz, Karol; Maquer, Ghislain; Zysset, Philippe K

    2017-06-01

    Boundary conditions (BCs) and sample size affect the measured elastic properties of cancellous bone. Samples too small to be representative appear stiffer under kinematic uniform BCs (KUBCs) than under periodicity-compatible mixed uniform BCs (PMUBCs). To avoid those effects, we propose to determine the effective properties of trabecular bone using an embedded configuration. Cubic samples of various sizes (2.63, 5.29, 7.96, 10.58 and 15.87 mm) were cropped from [Formula: see text] scans of femoral heads and vertebral bodies. They were converted into [Formula: see text] models and their stiffness tensor was established via six uniaxial and shear load cases. PMUBCs- and KUBCs-based tensors were determined for each sample. "In situ" stiffness tensors were also evaluated for the embedded configuration, i.e. when the loads were transmitted to the samples via a layer of trabecular bone. The Zysset-Curnier model accounting for bone volume fraction and fabric anisotropy was fitted to those stiffness tensors, and model parameters [Formula: see text] (Poisson's ratio) [Formula: see text] and [Formula: see text] (elastic and shear moduli) were compared between sizes. BCs and sample size had little impact on [Formula: see text]. However, KUBCs- and PMUBCs-based [Formula: see text] and [Formula: see text], respectively, decreased and increased with growing size, though convergence was not reached even for our largest samples. Both BCs produced upper and lower bounds for the in situ values that were almost constant across samples dimensions, thus appearing as an approximation of the effective properties. PMUBCs seem also appropriate for mimicking the trabecular core, but they still underestimate its elastic properties (especially in shear) even for nearly orthotropic samples.

  18. Structural, Electronic and Elastic Properties of Half-Heusler Alloys CrNiZ (Z = Al, Si, Ge and As)

    NASA Astrophysics Data System (ADS)

    Zitouni, A.; Benstaali, W.; Abbad, A.; Lantri, T.; Bouadjemi, B.; Aziz, Z.

    2018-06-01

    In the present work, a self-consistent ab-initio calculation using the full- potential linearized augmented plane wave (FP-LAPW) method within the framework of the spin-polarized density functional theory (DFT) was used to study the structural, electronic, magnetic and elastic properties of the half Heusler alloys CrNiZ (Z = Al, Si, Ge and As) in three phases ( α, β and γ phases). The generalized gradient approximation (GGA) described by Perdew-Burke-Ernzerhof (PBE) was used. The results obtained for the spin-polarized band structure and the density of states show a halfmetallic behavior for the four compounds. The elastic constants ( C ij ) show that our compounds are ductile, stiff and anisotropic.

  19. Estimation of local stresses and elastic properties of a mortar sample by FFT computation of fields on a 3D image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escoda, J.; Departement Materiaux et Mecanique des Composants, Electricite de France, Moret-sur-Loing; Willot, F., E-mail: francois.willot@ensmp.f

    2011-05-15

    This study concerns the prediction of the elastic properties of a 3D mortar image, obtained by micro-tomography, using a combined image segmentation and numerical homogenization approach. The microstructure is obtained by segmentation of the 3D image into aggregates, voids and cement paste. Full-fields computations of the elastic response of mortar are undertaken using the Fast Fourier Transform method. Emphasis is made on highly-contrasted properties between aggregates and matrix, to anticipate needs for creep or damage computation. The representative volume element, i.e. the volume size necessary to compute the effective properties with a prescribed accuracy, is given. Overall, the volumes usedmore » in this work were sufficient to estimate the effective response of mortar with a precision of 5%, 6% and 10% for contrast ratios of 100, 1000 and 10,000, resp. Finally, a statistical and local characterization of the component of the stress field parallel to the applied loading is carried out.« less

  20. Elasticity, biodegradability and cell adhesive properties of chitosan/hyaluronan multilayer films

    NASA Astrophysics Data System (ADS)

    Schneider, Aurore; Richert, Ludovic; Francius, Gregory; Voegel, Jean-Claude; Picart, Catherine

    2007-03-01

    In the bioengineering field, a recent and promising approach to modifying biomaterial surfaces is the layer-by-layer (LbL) technique used to build thin polyelectrolyte multilayer films. In this work, we focused on polyelectrolyte multilayer films made of two polysaccharides, chitosan (CHI) and hyaluronan (HA), and on the control of their physico-chemical and cell adhesive properties by chemical cross-linking. CHI/HA films were cross-linked using a water soluble carbodiimide and observed by confocal laser scanning microscopy (CLSM) with a fluorescently labeled CHI. Film thicknesses were similar for native and cross-linked films. The film nanometer roughness was measured by atomic force microscopy and was found to be higher for cross-linked films. Cross-linking the films also leads to a drastic change in film stiffness. The elastic modulus of the films (Young's modulus) as measured by AFM nano-indentation was about tenfold increased for cross-linked films as compared to native ones. From a biological point of view, cross-liked films are more resistant to enzymatic degradation by hyaluronidase. Furthermore, the increase in film stiffness has a favorable effect on the adhesion and spreading of chondrosarcoma cells. Thus, the CHI/HA cross-linked films could be used for various applications due to their adhesive properties and to their mechanical properties (including stability in enzymatic media).

  1. Exposure, Health and Ecological Effects Review of Engineered Nanoscale Cerium and Cerium Oxide Associated with its Use as a Fuel Additive

    EPA Science Inventory

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coa...

  2. Endocytosis of Nanoscale Systems for Cancer Treatments.

    PubMed

    Chen, Kai; Li, Xue; Zhu, Hongyan; Gong, Qiyong; Luo, Kui

    2017-04-28

    Advances of nanoscale systems for cancer treatment have been involved in enabling highly regulated site-specific localization to sub cellular organelles hidden beneath cell membranes. Thus far, the cellular entry of these nanoscale systems has been not fully understood. Endocytosisis a form of active transport in which cell transports elected extracellular molecules (such as proteins, viruses, micro-organisms and nanoscale systems) are allowed into cell interiors by engulfing them in an energy-dependent process. This process appears at the plasma membrane surface and contains internalization of the cell membrane as well as the membrane proteins and lipids of cell. There are multiform pathways of endocytosis for nanoscale systems. Further comprehension for the mechanisms of endocytosis is achieved with a combination of efficient genetic manipulations, cell dynamic imaging, and chemical endocytosis inhibitors. This review provides an account of various endocytic pathways, itemizes current methods to study endocytosis of nanoscale systems, discusses some factors associated with cellular uptake for nanoscale systems and introduces the trafficking behavior for nanoscale systems with active targeting. An insight into the endocytosis mechanism is urgent and significant for developing safe and efficient nanoscale systems for cancer diagnosis and therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. First-principles study on the electronic, elastic and thermodynamic properties of three novel germanium nitrides

    NASA Astrophysics Data System (ADS)

    Yuping, Cang; Xiaoling, Yao; Dong, Chen; Fan, Yang; Huiming, Yang

    2016-07-01

    The ultrasoft pseudo-potential plane wave method combined with the quasi-harmonic approach have been used to study the electronic, elastic and thermodynamic properties of the tetragonal, monoclinic and orthorhombic Ge3N4. The negative formation enthalpies, the satisfactory of Born's criteria and the linear variations of elastic constants with pressure indicate that the three polymorphs can retain their stabilities in the pressure range of 0-25 GPa. The three Ge3N4 are brittle solids at 0 GPa, while they behave in ductile manners in the pressure range of 5-25 GPa. t- and o-Ge3N4 are hard materials but anisotropic. m-Ge3N4 has the largest ductility among the three phases. The results reveal that m-Ge3N4 belongs to an indirect band gap semiconductor, while t- and o-Ge3N4 have direct band gaps. For the thermal properties, several interesting features can be observed above 300 K. o-Ge3N4 exhibits the largest heat capacity, while m-Ge3N4 shows the highest Debye temperature. The results predicted in this work can provide reference data for future experiments. Project supported by the National Natural Science Foundation of China (Nos. 61475132, 11475143, 61501392, 11304141) and the National Training Programs of Innovation and Entrepreneurship for Undergraduates (No. 201510477001).

  4. Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO)

    DOE PAGES

    Yu, Seungho; Schmidt, Robert D.; Garcia-mendez, Regina; ...

    2015-12-16

    The oxide known as LLZO, with nominal composition Li 7La 3Zr 2O 12, is a promising solid electrolyte for Li-based batteries due to its high Li-ion conductivity and chemical stability with respect to lithium. Solid electrolytes may also enable the use of metallic Li anodes by serving as a physical barrier that suppresses dendrite initiation and propagation during cycling. Prior linear elasticity models of the Li electrode/solid electrolyte interface suggest that the stability of this interface is highly dependent on the elastic properties of the solid separator. For example, dendritic suppression is predicted to be enhanced as the electrolyte smore » shear modulus increases. In the present study a combination of first-principles calculations, acoustic impulse excitation measurements, and nanoindentation experiments are used to determine the elastic constants and moduli for highconductivity LLZO compositions based on Al and Ta doping. The calculated and measured isotropic shear moduli are in good agreement and fall within the range of 56-61 GPa. These values are an order of magnitude larger than that for Li metal and far exceed the minimum value ( 8.5 GPa) believed to be necessary to suppress dendrite initiation. These data suggest that LLZO exhibits sufficient stiffness to warrant additional development as a solid electrolyte for Li batteries.« less

  5. Elastic properties and strain-to-crack-initiation of calcium phosphate bone cements: Revelations of a high-resolution measurement technique.

    PubMed

    Ajaxon, Ingrid; Acciaioli, Alice; Lionello, Giacomo; Ginebra, Maria-Pau; Öhman-Mägi, Caroline; Baleani, Massimiliano; Persson, Cecilia

    2017-10-01

    Calcium phosphate cements (CPCs) should ideally have mechanical properties similar to those of the bone tissue the material is used to replace or repair. Usually, the compressive strength of the CPCs is reported and, more rarely, the elastic modulus. Conversely, scarce or no data are available on Poisson's ratio and strain-to-crack-initiation. This is unfortunate, as data on the elastic response is key to, e.g., numerical model accuracy. In this study, the compressive behaviour of brushite, monetite and apatite cements was fully characterised. Measurement of the surface strains was done using a digital image correlation (DIC) technique, and compared to results obtained with the commonly used built-in displacement measurement of the materials testers. The collected data showed that the use of fixed compression platens, as opposed to spherically seated ones, may in some cases underestimate the compressive strength by up to 40%. Also, the built-in measurements may underestimate the elastic modulus by up to 62% as compared to DIC measurements. Using DIC, the brushite cement was found to be much stiffer (24.3 ± 2.3GPa) than the apatite (13.5 ± 1.6GPa) and monetite (7.1 ± 1.0GPa) cements, and elastic moduli were inversely related to the porosity of the materials. Poisson's ratio was determined to be 0.26 ± 0.02 for brushite, 0.21 ± 0.02 for apatite and 0.20 ± 0.03 for monetite. All investigated CPCs showed low strain-to-crack-initiation (0.17-0.19%). In summary, the elastic modulus of CPCs is substantially higher than previously reported and it is concluded that an accurate procedure is a prerequisite in order to properly compare the mechanical properties of different CPC formulations. It is recommended to use spherically seated platens and measuring the strain at a relevant resolution and on the specimen surface. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Elasticity of bilayers containing PEG lipids

    NASA Astrophysics Data System (ADS)

    Bivas, I.; Winterhalter, M.; Méléard, P.; Bothorel, P.

    1998-02-01

    The addition of lipids with a poly(ethylene glycol) head group (Stealth or grafted or PEG lipids) to a phosphatidylcholine bilayer changes the mechanical properties of the membrane. We calculate the dependences of the bending and stretching elasticities of the bilayer on the PEG lipid concentration and on the monomer number in its polymer chain. The role of the bending elasticity at blocked flip-flop of the pure bilayer is revealed.

  7. Structural, elastic and electronic properties of transition metal carbides ZnC, NbC and their ternary alloys ZnxNb1-xC

    NASA Astrophysics Data System (ADS)

    Zidi, Y.; Méçabih, S.; Abbar, B.; Amari, S.

    2018-02-01

    We have investigated the structural, electronic and elastic properties of transition-metal carbides ZnxNb1-xC alloys in the range of 0 ≤ x ≤ 1 using the density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) and GGA + U (where U is the Hubbard correlation terms) approach is used to perform the calculations presented here. The lattice parameters, the bulk modulus, its pressure derivative and the elastic constants were determined. We have obtained Young's modulus, shear modulus, Poisson's ratio, anisotropy factor by the aid of the calculated elastic constants. We discuss the total and partial densities of states and charge densities.

  8. Effect of pressure variation on structural, elastic, mechanical, optoelectronic and thermodynamic properties of SrNaF3 fluoroperovskite

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-12-01

    The effect of pressure variation on structural, electronic, elastic, mechanical, optical and thermodynamic characteristics of cubic SrNaF3 fluoroperovskite have been investigated by employing first-principles method within the framework of gradient approximation (GGA). For the total energy calculations, we have used the full-potential linearized augmented plane wave (FP-LAPW) method. Thermodynamic properties are computed in terms of quasi-harmonic Debye model. The pressure effects are determined in the range of 0-25 GPa, in which mechanical stability of SrNaF3 fluoroperovskite remains valid. A prominent decrease in lattice constant and bonds length is observed with the increase in pressure from 0 to 25 GPa. The effect of increase in pressure on band structure calculations with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential reveals a predominant characteristic associated with widening of bandgap. The influence of pressure on set of isotropic elastic parameters and their related properties are numerically estimated for SrNaF3 polycrystalline aggregate. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is observed as pressure is increased from 0 to 25 GPa. We have successfully obtained variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities with pressure and temperature in the range of 0-25 GPa and 0-600 K. All the calculated optical properties such as the complex dielectric function ɛ(ω), optical conductivity σ(ω), energy loss function L(ω), absorption coefficient α(w), refractive index n(ω), reflectivity R(ω), and effective number of electrons n eff, via sum rules shift towards the higher energies under the application of pressure.

  9. Non-contact, Ultrasound-based Indentation Method for Measuring Elastic Properties of Biological Tissues Using Harmonic Motion Imaging (HMI)

    PubMed Central

    Vappou, Jonathan; Hou, Gary Y.; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E.

    2015-01-01

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by Harmonic Motion Imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking RF signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the actual Young’s modulus and the HMI modulus in the numerical study (r2>0.99, relative error <10%) and on polyacrylamide gels (r2=0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI=2.62±0.41 kPa, compared to EMechTesting=4.2±2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens. PMID:25776065

  10. Nanoscale Insight and Control of Structural and Electronic Properties of Organic Semiconductor / Metal Interfaces

    NASA Astrophysics Data System (ADS)

    Maughan, Bret

    Organic semiconductor interfaces are promising materials for use in next-generation electronic and optoelectronic devices. Current models for metal-organic interfacial electronic structure and dynamics are inadequate for strongly hybridized systems. This work aims to address this issue by identifying the factors most important for understanding chemisorbed interfaces with an eye towards tuning the interfacial properties. Here, I present the results of my research on chemisorbed interfaces formed between thin-films of phthalocyanine molecules grown on monocrystalline Cu(110). Using atomically-resolved nanoscale imaging in combination with surface-sensitive photoemission techniques, I show that single-molecule level interactions control the structural and electronic properties of the interface. I then demonstrate that surface modifications aimed at controlling interfacial interactions are an effective way to tailor the physical and electronic structure of the interface. This dissertation details a systematic investigation of the effect of molecular and surface functionalization on interfacial interactions. To understand the role of molecular structure, two types of phthalocyanine (Pc) molecules are studied: non-planar, dipolar molecules (TiOPc), and planar, non-polar molecules (H2Pc and CuPc). Multiple adsorption configurations for TiOPc lead to configuration-dependent self-assembly, Kondo screening, and electronic energy-level alignment. To understand the role of surface structure, the Cu(110) surface is textured and passivated by oxygen chemisorption prior to molecular deposition, which gives control over thin-film growth and interfacial electronic structure in H2Pc and CuPc films. Overall, the work presented here demonstrates a method for understanding interfacial electronic structure of strongly hybridized interfaces, an important first step towards developing more robust models for metal-organic interfaces, and reliable, predictive tuning of interfacial

  11. Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms

    PubMed Central

    Amador, Carolina; Urban, Matthew W.; Chen, Shigao; Chen, Qingshan; An, Kai-Nan; Greenleaf, James F.

    2011-01-01

    Tissue mechanical properties such as elasticity are linked to tissue pathology state. Several groups have proposed shear wave propagation speed to quantify tissue mechanical properties. It is well known that biological tissues are viscoelastic materials; therefore velocity dispersion resulting from material viscoelasticity is expected. A method called Shearwave Dispersion Ultrasound Vibrometry (SDUV) can be used to quantify tissue viscoelasticity by measuring dispersion of shear wave propagation speed. However, there is not a gold standard method for validation. In this study we present an independent validation method of shear elastic modulus estimation by SDUV in 3 gelatin phantoms of differing stiffness. In addition, the indentation measurements are compared to estimates of elasticity derived from shear wave group velocities. The shear elastic moduli from indentation were 1.16, 3.40 and 5.6 kPa for a 7, 10 and 15% gelatin phantom respectively. SDUV measurements were 1.61, 3.57 and 5.37 kPa for the gelatin phantoms respectively. Shear elastic moduli derived from shear wave group velocities were 1.78, 5.2 and 7.18 kPa for the gelatin phantoms respectively. The shear elastic modulus estimated from the SDUV, matched the elastic modulus measured by indentation. On the other hand, shear elastic modulus estimated by group velocity did not agree with indentation test estimations. These results suggest that shear elastic modulus estimation by group velocity will be bias when the medium being investigated is dispersive. Therefore a rheological model should be used in order to estimate mechanical properties of viscoelastic materials. PMID:21317078

  12. Simulations of Metallic Nanoscale Structures

    NASA Astrophysics Data System (ADS)

    Jacobsen, Karsten W.

    2003-03-01

    Density-functional-theory calculations can be used to understand and predict materials properties based on their nanoscale composition and structure. In combination with efficient search algorithms DFT can furthermore be applied in the nanoscale design of optimized materials. The first part of the talk will focus on two different types of nanostructures with an interesting interplay between chemical activity and conducting states. MoS2 nanoclusters are known for their catalyzing effect in the hydrodesulfurization process which removes sulfur-containing molecules from oil products. MoS2 is a layered material which is insulating. However, DFT calculations indicates the exsistence of metallic states at some of the edges of MoS2 nanoclusters, and the calculations show that the conducting states are not passivated by for example the presence of hydrogen gas. The edge states may play an important role for the chemical activity of MoS_2. Metallic nanocontacts can be formed during the breaking of a piece of metal, and atomically thin structures with conductance of only a single quantum unit may be formed. Such open metallic structures are chemically very active and susceptible to restructuring through interactions with molecular gases. DFT calculations show for example that atomically thin gold wires may incorporate oxygen atoms forming a new type of metallic nanowire. Adsorbates like hydrogen may also affect the conductance. In the last part of the talk I shall discuss the possibilities for designing alloys with optimal mechanical properties based on a combination of DFT calculations with genetic search algorithms. Simulaneous optimization of several parameters (stability, price, compressibility) is addressed through the determination of Pareto optimal alloy compositions within a large database of more than 64000 alloys.

  13. High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO 4 and TmPO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomis, O.; Lavina, B.; Rodríguez-Hernández, P.

    2017-01-20

    Zircon-type holmium phosphate (HoPO 4) and thulium phosphate (TmPO 4) have been studied by single-crystal x-ray diffraction and ab initio calculations. We report on the influence of pressure on the crystal structure, and on the elastic and thermodynamic properties. The equation of state for both compounds is accurately determined. We have also obtained information on the polyhedral compressibility which is used to explain the anisotropic axial compressibility and the bulk compressibility. Both compounds are ductile and more resistive to volume compression than to shear deformation at all pressures. Furthermore, the elastic anisotropy is enhanced upon compression. Finally, the calculations indicatemore » that the possible causes that make the zircon structure unstable are mechanical instabilities and the softening of a silent B 1u mode.« less

  14. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration.

    PubMed

    Jun, Young-Shin; Zhang, Lijie; Min, Yujia; Li, Qingyun

    2017-07-18

    Geologic CO 2 sequestration (GCS) is a promising strategy to mitigate anthropogenic CO 2 emission to the atmosphere. Suitable geologic storage sites should have a porous reservoir rock zone where injected CO 2 can displace brine and be stored in pores, and an impermeable zone on top of reservoir rocks to hinder upward movement of buoyant CO 2 . The injection wells (steel casings encased in concrete) pass through these geologic zones and lead CO 2 to the desired zones. In subsurface environments, CO 2 is reactive as both a supercritical (sc) phase and aqueous (aq) species. Its nanoscale chemical reactions with geomedia and wellbores are closely related to the safety and efficiency of CO 2 storage. For example, the injection pressure is determined by the wettability and permeability of geomedia, which can be sensitive to nanoscale mineral-fluid interactions; the sealing safety of the injection sites is affected by the opening and closing of fractures in caprocks and the alteration of wellbore integrity caused by nanoscale chemical reactions; and the time scale for CO 2 mineralization is also largely dependent on the chemical reactivities of the reservoir rocks. Therefore, nanoscale chemical processes can influence the hydrogeological and mechanical properties of geomedia, such as their wettability, permeability, mechanical strength, and fracturing. This Account reviews our group's work on nanoscale chemical reactions and their qualitative impacts on seal integrity and storage capacity at GCS sites from four points of view. First, studies on dissolution of feldspar, an important reservoir rock constituent, and subsequent secondary mineral precipitation are discussed, focusing on the effects of feldspar crystallography, cations, and sulfate anions. Second, interfacial reactions between caprock and brine are introduced using model clay minerals, with focuses on the effects of water chemistries (salinity and organic ligands) and water content on mineral dissolution and

  15. Center for Nanoscale Science and Technology

    National Institute of Standards and Technology Data Gateway

    NIST Center for Nanoscale Science and Technology (Program website, free access)   Currently there is no database matching your keyword search, but the NIST Center for Nanoscale Science and Technology website may be of interest. The Center for Nanoscale Science and Technology enables science and industry by providing essential measurement methods, instrumentation, and standards to support all phases of nanotechnology development, from discovery to production.

  16. Surface effect on resonant properties of nanowires predicted by an elastic theory for nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yin; Chen, Shaohua, E-mail: chenshaohua72@hotmail.com, E-mail: shchen@LNM.imech.ac.cn

    2015-07-28

    A recently developed continuum theory considering surface effect in nanomaterials is adopted to investigate the resonant properties of nanowires with different boundary conditions in the present paper. The main feature of the adopted theory is that the surface effect in nanomaterials is characterized by the surface energy density of the corresponding bulk materials and the surface relaxation parameter in nanoscale. Based on a fixed-fixed beam model and a cantilever one, the governing equation of resonant frequency for corresponding nanowires is obtained. Numerical calculation of the fundamental resonant frequency is carried out, the result of which is well consistent with themore » existing numerical ones. Comparing to the result predicted by the conventionally structural dynamics, the resonant frequency of a fixed-fixed nanowire is improved, while that of a cantilever nanowire is weakened due to the surface effect. Both a decreasing characteristic size (height or diameter) and an increasing aspect ratio could further enhance the varying trend of resonant properties for both kinds of nanowires. The present result should be helpful for the design of nano-devices and nanostructures related to nanowires.« less

  17. Template-guided highly aligned, nano-scale wrinkle structure on a large-area

    NASA Astrophysics Data System (ADS)

    Lim, Jongcheon; Kim, Pilnam

    This study presents a novel technique to induce aligned, nano-scale wrinkle on a polysiloxane-based UV curable resin. There have been studies on generating randomized sub-micron wrinkle using oxygen plasma treatment which causes equibiaxial compressive stress on the film surface. Few works have been reported on how to control the surface wrinkle orientation. Currently available approaches for regulating the wrinkle pattern typically require polydimethylsiloxane (PDMS)-based bilayer system under uniaxial stress condition which hampers various technological applications. Here, we demonstrate a method to generate aligned wrinkle with UV curable polymers. Highly regular array of nanoscale wrinkles were formed by elastic buckling of bilayered UV curable resin, resulting from a combination of confinement effect and anchor-guided propagation of structure. The wrinkle tends to align uniformly lateral to the template pattern as the resin filled in the pattern forms more convex meniscus. The wavelength of the wrinkle was controlled by UV exposure time yielding as small as 170nm. From our results, we suggest the confinement provided by the template pattern may have affected the direction of thin film's expansion yielding unidirectional compressive stress. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-IT1402-02.

  18. First-principles study of the structural and elastic properties of AuxV1-x and AuxNb1-x alloys

    NASA Astrophysics Data System (ADS)

    Al-Zoubi, N.

    2018-04-01

    Ab initio total energy calculations, based on the Exact Muffin-Tin Orbitals (EMTO) method in combination with the coherent potential approximation (CPA), are used to calculate the total energy of AuxV1-x and AuxNb1-x random alloys along the Bain path that connects the body-centred cubic (bcc) and face-centred cubic (fcc) structures as a function of composition x (0 ≤ x ≤ 1). The equilibrium Wigner-Seitz radius and the elastic properties of both systems are determined as a function of composition. Our theoretical prediction in case of pure elements (x = 0 or x = 1) are in good agreement with the available experimental data. For the Au-V system, the equilibrium Wigner-Seitz radius increase as x increases, while for the Au-Nb system, the equilibrium Wigner-Seitz radius is almost constant. The bulk modulus B and C44 for both alloys exhibit nearly parabolic trend. On the other hand, the tetragonal shear elastic constant C‧ decreases as x increases and correlates reasonably well with the structural energy difference between fcc and bcc structures. Our results offer a consistent starting point for further theoretical and experimental studies of the elastic and micromechanical properties of Au-V and Au-Nb systems.

  19. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite.

    PubMed

    Ching, W Y; Rulis, Paul; Misra, A

    2009-10-01

    We report elastic constant calculation and a "theoretical" tensile experiment on stoichiometric hydroxyapatite (HAP) crystal using an ab initio technique. These results compare favorably with a variety of measured data. Theoretical tensile experiments are performed on the orthorhombic cell of HAP for both uniaxial and biaxial loading. The results show considerable anisotropy in the stress-strain behavior. It is shown that the failure behavior of the perfect HAP crystal is brittle for tension along the z-axis with a maximum stress of 9.6 GPa at 10% strain. Biaxial failure envelopes from six "theoretical" loading tests show a highly anisotropic pattern. Structural analysis of the crystal under various stages of tensile strain reveals that the deformation behavior manifests itself mainly in the rotation of the PO(4) tetrahedron with concomitant movements of both the columnar and axial Ca ions. These results are discussed in the context of mechanical properties of bioceramic composites relevant to mineralized tissues.

  20. Polycrystalline gamma plutonium's elastic moduli versus temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Migliori, Albert; Betts, J; Trugman, A

    2009-01-01

    Resonant ultrasound spectroscopy was used to measure the elastic properties of pure polycrystalline {sup 239}Pu in the {gamma} phase. Shear and longitudinal elastic moduli were measured simultaneously and the bulk modulus was computed from them. A smooth, linear, and large decrease of all elastic moduli with increasing temperature was observed. They calculated the Poisson ratio and found that it increases from 0.242 at 519 K to 0.252 at 571 K. These measurements on extremely well characterized pure Pu are in agreement with other reported results where overlap occurs.

  1. Simulation of long-term fatigue damage in bioprosthetic heart valves: effects of leaflet and stent elastic properties

    PubMed Central

    Martin, Caitlin

    2014-01-01

    One of the major failure modes of bioprosthetic heart valves (BHVs) is noncalcific structural deterioration due to fatigue of the tissue leaflets; yet, the mechanisms of fatigue are not well understood. BHV durability is primarily assessed based on visual inspection of the leaflets following accelerated wear testing. In this study, we developed a computational framework to simulate BHV leaflet fatigue, which is both efficient and quantitative, making it an attractive alternative to traditional accelerated wear testing. We utilize a phenomenological soft tissue fatigue damage model developed previously to describe the stress softening and permanent set of the glutaraldehyde-treated bovine pericardium leaflets in BHVs subjected to cyclic loading. A parametric study was conducted to determine the effects of altered leaflet and stent elastic properties on the fatigue of the leaflets. The simulation results show that heterogeneity of the leaflet elastic properties, poor leaflet coaptation, and little stent-tip deflection may accelerate leaflet fatigue, which agrees with clinical findings. Therefore, the developed framework may be an invaluable tool for evaluating leaflet durability in new tissue valve designs, including traditional BHVs as well as new transcatheter valves. PMID:24092257

  2. Elastic and mechanical softening in boron-doped diamond

    PubMed Central

    Liu, Xiaobing; Chang, Yun-Yuan; Tkachev, Sergey N.; Bina, Craig R.; Jacobsen, Steven D.

    2017-01-01

    Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh’s modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50–3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials. PMID:28233808

  3. Elastic and mechanical softening in boron-doped diamond

    NASA Astrophysics Data System (ADS)

    Liu, Xiaobing; Chang, Yun-Yuan; Tkachev, Sergey N.; Bina, Craig R.; Jacobsen, Steven D.

    2017-02-01

    Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh’s modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50-3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials.

  4. Nanoscale growth twins in sputtered metal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, Amit; Anderoglu, Osman; Hoagland, Richard G

    2008-01-01

    We review recent studies on the mechanical properties of sputtered Cu and 330 stainless steel films with {l_brace}1 1 1{r_brace} nanoscale growth twins preferentially oriented perpendicular to growth direction. The mechanisms of formation of growth twins during sputtering and the deformation mechanisms that enable usually high strengths in nanotwinned structures are highlighted. Growth twins in sputtered films possess good thermal stability at elevated temperature, providing an approach to extend the application of high strength nanostructured metals to higher temperatures.

  5. Sub-micron elastic property characterization of materials using a near-field scanning optical microscope

    NASA Astrophysics Data System (ADS)

    Blodgett, David W.; Spicer, James B.

    2001-12-01

    The ability to characterize the sub-surface mechanical properties of a bulk or thin film material at the sub-micron level has applications in the microelectronics and thin film industries. In the microelectronics industry, with the decrease of line widths and the increase of component densities, sub-surface voids have become increasingly detrimental. Any voids along an integrated circuit (IC) line can lead to improper electrical connections between components and can cause failure of the device. In the thin film industry, the detection of impurities is also important. Any impurities can detract from the film's desired optical, electrical, or mechanical properties. Just as important as the detection of voids and impurities, is the measurement of the elastic properties of a material on the nanometer scale. These elastic measurements provide insight into the microstructural properties of the material. We have been investigating a technique that couples the high-resolution surface imaging capabilities of the apertureless near-field scanning optical microscope (ANSOM) with the sub-surface characterization strengths of high-frequency ultrasound. As an ultrasonic wave propagates, the amplitude decreases due to geometrical spreading, attenuation from absorption, and scattering from discontinuities. Measurement of wave speeds and attenuation provides the information needed to quantify the bulk or surface properties of a material. The arrival of an ultrasonic wave at or along the surface of a material is accompanied with a small surface displacement. Conventional methods for the ultrasound detection rely on either a contact transducer or optical technique (interferometric, beam deflection, etc.). However, each of these methods is limited by the spatial resolution dictated by the detection footprint. As the footprint size increases, variations across the ultrasonic wavefront are effectively averaged, masking the presence of any nanometer-scale sub-surface or surface

  6. Elasticity and dislocation anelasticity of crystals

    NASA Astrophysics Data System (ADS)

    Nikanorov, S. P.; Kardashev, B. K.

    The book is concerned with the application of the results of physical acoustic studies of elasticity and dislocation anelasticity to the investigation of interatomic interactions and interactions between lattice defects. The analysis of the potential functions determining the energy of interatomic interactions is based on a study of the elastic properties of crystals over a wide temperature range; data on the dislocation structure and on the interaction between dislocations and point defects are based mainly on a study of inelastic effects. Particular attention is given to the relationship between microplastic effects and the initial stage of plastic deformation under conditions of elastic oscillations, when the multiplication of dislocations is negligible.

  7. Elasticity and dislocation inelasticity of crystals

    NASA Astrophysics Data System (ADS)

    Nikanorov, S. P.; Kardashev, B. K.

    The use of methods of physical acoustics for studying the elasticity and dislocation inelasticity of crystals is discussed, as is the application of the results of such studies to the analysis of interatomic and lattice defect interactions. The analysis of the potential functions determining the energy of interatomic interactions is based on an analysis of the elastic properties of crystals over a wide temperature range. The data on the dislocation structure and the interaction between dislocations and point defects are obtained from a study of inelastic effects. Particular attention is given to the relationship between microplastic effects under conditions of elastic oscillations and the initial stage of plastic deformation.

  8. Coupling between Inclusions and Membranes at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Bories, Florent; Constantin, Doru; Galatola, Paolo; Fournier, Jean-Baptiste

    2018-03-01

    The activity of cell membrane inclusions (such as ion channels) is influenced by the host lipid membrane, to which they are elastically coupled. This coupling concerns the hydrophobic thickness of the bilayer (imposed by the length of the channel, as per the hydrophobic matching principle) but also its slope at the boundary of the inclusion. However, this parameter has never been measured so far. We combine small-angle x-ray scattering data and a complete elastic model to measure the slope for the model gramicidin channel and show that it is surprisingly steep in two membrane systems with very different elastic properties. This conclusion is confirmed and generalized by the comparison with recent results in the simulation literature and with conductivity measurements.

  9. The cancellous bone multiscale morphology-elasticity relationship.

    PubMed

    Agić, Ante; Nikolić, Vasilije; Mijović, Budimir

    2006-06-01

    The cancellous bone effective properties relations are analysed on multiscale across two aspects; properties of representative volume element on micro scale and statistical measure of trabecular trajectory orientation on mesoscale. Anisotropy of the microstructure is described across fabric tensor measure with trajectory orientation tensor as bridging scale connection. The scatter measured data (elastic modulus, trajectory orientation, apparent density) from compression test are fitted by stochastic interpolation procedure. The engineering constants of the elasticity tensor are estimated by last square fitt procedure in multidimensional space by Nelder-Mead simplex. The multiaxial failure surface in strain space is constructed and interpolated by modified super-ellipsoid.

  10. Nanoscale Correlated Disorder in Out-of-Equilibrium Myelin Ultrastructure.

    PubMed

    Campi, Gaetano; Di Gioacchino, Michael; Poccia, Nicola; Ricci, Alessandro; Burghammer, Manfred; Ciasca, Gabriele; Bianconi, Antonio

    2018-01-23

    Ultrastructural fluctuations at nanoscale are fundamental to assess properties and functionalities of advanced out-of-equilibrium materials. We have taken myelin as a model of supramolecular assembly in out-of-equilibrium living matter. Myelin sheath is a simple stable multilamellar structure of high relevance and impact in biomedicine. Although it is known that myelin has a quasi-crystalline ultrastructure, there is no information on its fluctuations at nanoscale in different states due to limitations of the available standard techniques. To overcome these limitations, we have used scanning micro X-ray diffraction, which is a unique non-invasive probe of both reciprocal and real space to visualize statistical fluctuations of myelin order of the sciatic nerve of Xenopus laevis. The results show that the ultrastructure period of the myelin is stabilized by large anticorrelated fluctuations at nanoscale, between hydrophobic and hydrophilic layers. The ratio between the total thickness of hydrophilic and hydrophobic layers defines the conformational parameter, which describes the different states of myelin. Our key result is that myelin in its out-of-equilibrium functional state fluctuates point-to-point between different conformations showing a correlated disorder described by a Levy distribution. As the system approaches the thermodynamic equilibrium in an aged state, the disorder loses its correlation degree and the structural fluctuation distribution changes to Gaussian. In a denatured state at low pH, it changes to a completely disordered stage. Our results aim to clarify the degradation mechanism in biological systems by associating these states with ultrastructural dynamic fluctuations at nanoscale.

  11. First-principles theory of iron up to earth-core pressures: Structural, vibrational, and elastic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soederlind, P.; Moriarty, J.A.; Wills, J.M.

    1996-06-01

    {ital Ab} {ital initio} electronic-structure calculations, based on density-functional theory and a full-potential linear-muffin-tin-orbital method, have been used to predict crystal-structure phase stabilities, elastic constants, and Brillouin-zone-boundary phonons for iron under compression. Total energies for five crystal structures, bcc, fcc, bct, hcp, and dhcp, have been calculated over a wide volume range. In agreement with experiment and previous theoretical calculations, a magnetic bcc ground state is obtained at ambient pressure and a nonmagnetic hcp ground state is found at high pressure, with a predicted bcc {r_arrow} hcp phase transition at about 10 GPa. Also in agreement with very recent diamond-anvil-cellmore » experiments, a metastable dhcp phase is found at high pressure, which remains magnetic and consequently accessible at high temperature up to about 50 GPa. In addition, the bcc structure becomes mechanically unstable at pressures above 2 Mbar (200 GPa) and a metastable, but still magnetic, bct phase ({ital c}/{ital a} {approx_equal} 0.875) develops. For high-pressure nonmagnetic iron, fcc and hcp elastic constants and fcc phonon frequencies have been calculated to above 4 Mbar. These quantities rise smoothly with pressure, but an increasing tendency towards elastic anisotropy as a function of compression is observed, and this has important implications for the solid inner-core of the earth. The fcc elastic-constant and phonon data have also been used in combination with generalized pseudopotential theory to develop many-body interatomic potentials, from which high-temperature thermodynamic properties and melting can be obtained. In this paper, these potentials have been used to calculate full fcc and hcp phonon spectra and corresponding Debye temperatures as a function of compression. {copyright} {ital 1996 The American Physical Society.}« less

  12. Electron Microscopy and Analytical X-ray Characterization of Compositional and Nanoscale Structural Changes in Fossil Bone

    NASA Astrophysics Data System (ADS)

    Boatman, Elizabeth Marie

    The nanoscale structure of compact bone contains several features that are direct indicators of bulk tissue mechanical properties. Fossil bone tissues represent unique opportunities to understand the compact bone structure/property relationships from a deep time perspective, offering a possible array of new insights into bone diseases, biomimicry of composite materials, and basic knowledge of bioapatite composition and nanoscale bone structure. To date, most work with fossil bone has employed microscale techniques and has counter-indicated the survival of bioapatite and other nanoscale structural features. The obvious disconnect between the use of microscale techniques and the discernment of nanoscale structure has prompted this work. The goal of this study was to characterize the nanoscale constituents of fossil compact bone by applying a suite of diffraction, microscopy, and spectrometry techniques, representing the highest levels of spatial and energy resolution available today, and capable of complementary structural and compositional characterization from the micro- to the nanoscale. Fossil dinosaur and crocodile long bone specimens, as well as modern ratite and crocodile femurs, were acquired from the UC Museum of Paleontology. Preserved physiological features of significance were documented with scanning electron microscopy back-scattered imaging. Electron microprobe wavelength-dispersive X-ray spectroscopy (WDS) revealed fossil bone compositions enriched in fluorine with a complementary loss of oxygen. X-ray diffraction analyses demonstrated that all specimens were composed of apatite. Transmission electron microscopy (TEM) imaging revealed preserved nanocrystallinity in the fossil bones and electron diffraction studies further identified these nanocrystallites as apatite. Tomographic analyses of nanoscale elements imaged by TEM and small angle X-ray scattering were performed, with the results of each analysis further indicating that nanoscale structure is

  13. Evaluation of the Elastic Properties of Thirteen Silicone Interocclusal Recording Materials

    PubMed Central

    Zietek, Marek

    2016-01-01

    Background. Addition silicones are popular as dental impression materials and are used in bite registration procedures. Objective. This study aimed to compare the postsetting elasticities and other mechanical properties of thirteen addition silicone interocclusal recording materials. Materials and Methods. The following materials were investigated: Colorbite D, Futar D, Genie Bite, Jet Blue Bite fast, Memoreg 2, O-Bite, Occlufast Rock, Omni-Bite Plus, Regidur i, Registrado X-tra, Regofix transparent, StoneBite, and Variotime Bite. Thirty specimens of each material were tested. The elasticities and strengths of the materials were measured with a universal testing machine, and computer software was used to determine the E-moduli, ultimate tensile strengths, and ultimate elongations of the specimens. Results. The results were subjected to statistical analysis using the Kruskal-Wallis test (p ≤ 0.05). The statistics revealed that the mean E-modulus values varied significantly across the materials (p = 0.000) and were highest for the StoneBite and Registrado X-tra and lowest for the Regofix transparent. The ultimate tensile strengths were highest for the Regofix transparent and Registrado X-tra (p = 0.000) and lowest for the Jet Blue Bite fast and Memoreg 2 (p = 0.000). The elongation percentages at the point of breaking varied significantly across the materials (p = 0.000); the lowest value was observed for the StoneBite, whereas the Regofix transparent nearly doubled original length. Conclusions. The authors concluded that materials with the high E-moduli and great ultimate tensile strengths may be most useful clinically. Registrado X-tra and StoneBite best met these criteria. PMID:27747239

  14. Measurement of an Elasticity Map in the Human Cornea

    PubMed Central

    Mikula, Eric R.; Jester, James V.; Juhasz, Tibor

    2016-01-01

    Purpose The biomechanical properties of the cornea have an important role in determining the shape of the cornea and visual acuity. Since the cornea is a nonhomogeneous tissue, it is thought that the elastic properties vary throughout the cornea. We aim to measure a map of corneal elasticity across the cornea. Methods An acoustic radiation force elasticity microscope (ARFEM) was used to create a map of corneal elasticity in the human cornea. This ARFEM uses a low frequency, high intensity acoustic force to displace a femtosecond laser-generated microbubble, while using a high frequency, low intensity ultrasound to monitor the position of the microbubble within the cornea. From the displacement of the bubble and the magnitude of the acoustic radiation force, the local value of corneal elasticity is calculated in the direction of the displacement. Measurements were conducted at 6 locations, ranging from the central to peripheral cornea at anterior and posterior depths. Results The mean anterior elastic moduli were 4.2 ± 1.2, 3.4 ± 0.7, and 1.9 ± 0.7 kPa in the central, mid, and peripheral regions, respectively, while the posterior elastic moduli were 2.3 ± 0.7, 1.6 ± 0.3, and 2.9 ± 1.2 kPa in the same radial locations. Conclusions We found that there is a unique distribution of elasticity axially and radially throughout the cornea. PMID:27327584

  15. On the relationship between the dynamic behavior and nanoscale staggered structure of the bone

    NASA Astrophysics Data System (ADS)

    Qwamizadeh, Mahan; Zhang, Zuoqi; Zhou, Kun; Zhang, Yong Wei

    2015-05-01

    Bone, a typical load-bearing biological material, composed of ordinary base materials such as organic protein and inorganic mineral arranged in a hierarchical architecture, exhibits extraordinary mechanical properties. Up to now, most of previous studies focused on its mechanical properties under static loading. However, failure of the bone occurs often under dynamic loading. An interesting question is: Are the structural sizes and layouts of the bone related or even adapted to the functionalities demanded by its dynamic performance? In the present work, systematic finite element analysis was performed on the dynamic response of nanoscale bone structures under dynamic loading. It was found that for a fixed mineral volume fraction and unit cell area, there exists a nanoscale staggered structure at some specific feature size and layout which exhibits the fastest attenuation of stress waves. Remarkably, these specific feature sizes and layouts are in excellent agreement with those experimentally observed in the bone at the same scale, indicating that the structural size and layout of the bone at the nanoscale are evolutionarily adapted to its dynamic behavior. The present work points out the importance of dynamic effect on the biological evolution of load-bearing biological materials.

  16. Human elastin polypeptides improve the biomechanical properties of three-dimensional matrices through the regulation of elastogenesis.

    PubMed

    Boccafoschi, Francesca; Ramella, Martina; Sibillano, Teresa; De Caro, Liberato; Giannini, Cinzia; Comparelli, Roberto; Bandiera, Antonella; Cannas, Mario

    2015-03-01

    The replacement of diseased tissues with biological substitutes with suitable biomechanical properties is one of the most important goal in tissue engineering. Collagen represents a satisfactory choice for scaffolds. Unfortunately, the lack of elasticity represents a restriction to a wide use of collagen for several applications. In this work, we studied the effect of human elastin-like polypeptide (HELP) as hybrid collagen-elastin matrices. In particular, we studied the biomechanical properties of collagen/HELP scaffolds considering several components involved in ECM remodeling (elastin, collagen, fibrillin, lectin-like receptor, metalloproteinases) and cell phenotype (myogenin, myosin heavy chain) with particular awareness for vascular tissue engineering applications. Elastin and collagen content resulted upregulated in collagen-HELP matrices, even showing an improved structural remodeling through the involvement of proteins to a ECM remodeling activity. Moreover, the hybrid matrices enhanced the contractile activity of C2C12 cells concurring to improve the mechanical properties of the scaffold. Finally, small-angle X-ray scattering analyses were performed to enable a very detailed analysis of the matrices at the nanoscale, comparing the scaffolds with native blood vessels. In conclusion, our work shows the use of recombinant HELP, as a very promising complement able to significantly improve the biomechanical properties of three-dimensional collagen matrices in terms of tensile stress and elastic modulus. © 2014 Wiley Periodicals, Inc.

  17. Structural, electronic, magnetic, elastic, and thermal properties of Co-based equiatomic quaternary Heusler alloys

    NASA Astrophysics Data System (ADS)

    Paudel, Ramesh; Zhu, Jingchuan

    2018-05-01

    In this research work, we have predicted the physical properties of CoFeZrGe and CoFeZrSb for the first time by utilizing first principle calculations based on density functional theory. The exchange-correlation potentials are treated within the generalized-gradient approximation of Perdew-Burke and Ernzerhof (GGA-PBE). The investigated equilibrium lattice parameters of CoFeCrSi are in agreement with available theoretical data and for CoFeZrZ(Z = Ge,Sb) are 6.0013 and 6.2546 Å respectively. The calculated magnetic moments are 1.01μB /fu , 2μB /fu and 1μB /fu for CoFeZrZ(Z = Ge, Sb and Si) respectively, and agree with the Slater-Pauling rule, Mt =Zt - 24 . The CoFeZrGe, CoFeZrSb and CoFeZrSi composites showed half-metallic behaviour with 100 % spin polarization at equilibrium lattice parameters with band gap of 0.43, 0.70 and 0.59 eV for GGA and an improved band gap of 0.86, 1.01 and 1.08 for GGA + U respectively. Elastic properties are also discussed in this paper and it is found that all the materials are mechanically stable and ductile in nature. The CoFeZrSi alloy is found to be stiffer than CoFeZrZ(Z = Ge and Sb) alloys. The Debye temperatures are predicted by using calculated elastic constants. Moreover, the volume heat capacities (Cv) are investigated by utilizing the quasi-harmonic Debye model.

  18. Effects of topographical and mechanical property alterations induced by oxygen plasma modification on stem cell behavior.

    PubMed

    Yang, Yong; Kulangara, Karina; Lam, Ruby T S; Dharmawan, Rena; Leong, Kam W

    2012-10-23

    Polymeric substrates intended for cell culture and tissue engineering are often surface-modified to facilitate cell attachment of most anchorage-dependent cell types. The modification alters the surface chemistry and possibly topography. However, scant attention has been paid to other surface property alterations. In studying oxygen plasma treatment of polydimethylsiloxane (PDMS), we show that oxygen plasma treatment alters the surface chemistry and, consequently, the topography and elasticity of PDMS at the nanoscale level. The elasticity factor has the predominant effect, compared with the chemical and topographical factors, on cell adhesions of human mesenchymal stem cells (hMSCs). The enhanced focal adhesions favor cell spreading and osteogenesis of hMSCs. Given the prevalent use of PDMS in biomedical device construction and cell culture experiments, this study highlights the importance of understanding how oxygen plasma treatment would impact subsequent cell-substrate interactions. It helps explain inconsistency in the literature and guides preparation of PDMS-based biomedical devices in the future.

  19. How tough is bone? Application of elastic-plastic fracture mechanics to bone.

    PubMed

    Yan, Jiahau; Mecholsky, John J; Clifton, Kari B

    2007-02-01

    Bone, with a hierarchical structure that spans from the nano-scale to the macro-scale and a composite design composed of nano-sized mineral crystals embedded in an organic matrix, has been shown to have several toughening mechanisms that increases its toughness. These mechanisms can stop, slow, or deflect crack propagation and cause bone to have a moderate amount of apparent plastic deformation before fracture. In addition, bone contains a high volumetric percentage of organics and water that makes it behave nonlinearly before fracture. Many researchers used strength or critical stress intensity factor (fracture toughness) to characterize the mechanical property of bone. However, these parameters do not account for the energy spent in plastic deformation before bone fracture. To accurately describe the mechanical characteristics of bone, we applied elastic-plastic fracture mechanics to study bone's fracture toughness. The J integral, a parameter that estimates both the energies consumed in the elastic and plastic deformations, was used to quantify the total energy spent before bone fracture. Twenty cortical bone specimens were cut from the mid-diaphysis of bovine femurs. Ten of them were prepared to undergo transverse fracture and the other 10 were prepared to undergo longitudinal fracture. The specimens were prepared following the apparatus suggested in ASTM E1820 and tested in distilled water at 37 degrees C. The average J integral of the transverse-fractured specimens was found to be 6.6 kPa m, which is 187% greater than that of longitudinal-fractured specimens (2.3 kPa m). The energy spent in the plastic deformation of the longitudinal-fractured and transverse-fractured bovine specimens was found to be 3.6-4.1 times the energy spent in the elastic deformation. This study shows that the toughness of bone estimated using the J integral is much greater than the toughness measured using the critical stress intensity factor. We suggest that the J integral method is

  20. Quantification of nanoscale density fluctuations by electron microscopy: probing cellular alterations in early carcinogenesis

    NASA Astrophysics Data System (ADS)

    Pradhan, Prabhakar; Damania, Dhwanil; Joshi, Hrushikesh M.; Turzhitsky, Vladimir; Subramanian, Hariharan; Roy, Hemant K.; Taflove, Allen; Dravid, Vinayak P.; Backman, Vadim

    2011-04-01

    Most cancers are curable if they are diagnosed and treated at an early stage. Recent studies suggest that nanoarchitectural changes occur within cells during early carcinogenesis and that such changes precede microscopically evident tissue alterations. It follows that the ability to comprehensively interrogate cell nanoarchitecture (e.g., macromolecular complexes, DNA, RNA, proteins and lipid membranes) could be critical to the diagnosis of early carcinogenesis. We present a study of the nanoscale mass-density fluctuations of biological tissues by quantifying their degree of disorder at the nanoscale. Transmission electron microscopy images of human tissues are used to construct corresponding effective disordered optical lattices. The properties of nanoscale disorder are then studied by statistical analysis of the inverse participation ratio (IPR) of the spatially localized eigenfunctions of these optical lattices at the nanoscale. Our results show an increase in the disorder of human colonic epithelial cells in subjects harboring early stages of colon neoplasia. Furthermore, our findings strongly suggest that increased nanoscale disorder correlates with the degree of tumorigenicity. Therefore, the IPR technique provides a practicable tool for the detection of nanoarchitectural alterations in the earliest stages of carcinogenesis. Potential applications of the technique for early cancer screening and detection are also discussed. Originally submitted for the special focus issue on physical oncology.

  1. Hydrostatic pressure effects on the structural, elastic and thermodynamic properties of the complex transition metal hydrides A2OsH6 (A = Mg, Ca, Sr and Ba)

    NASA Astrophysics Data System (ADS)

    Souadia, Z.; Bouhemadou, A.; Boudrifa, O.; Bin-Omran, S.; Khenata, R.; Al-Douri, Y.

    2017-10-01

    We report a systematic first-principles density functional theory study on the pressure dependence of the structural parameters, elastic constants and related properties and thermodynamic properties of the complex transition metal hydrides Mg2OsH6, Ca2OsH6, Sr2OsH6 and Ba2OsH6. The calculated structural parameters are in excellent agreement with the existing data in the scientific literature. The single-crystal elastic constants and related properties were predicted using the stress-strain method. The elastic moduli of the polycrystalline aggregates were evaluated via the Voigt-Reuss-Hill approach. The dependences of the lattice parameter, bulk modulus, volume thermal expansion coefficient, isobaric and isochoric heat capacity and Debye temperature on the pressure and temperature, ranging from 0 to 15 GPa and from 0 to 1000 K, respectively, were investigated using the quasi-harmonic Debye model in combination with first-principles calculations.

  2. Structural, electronic, and elastic properties of CuFeS2: first-principles study

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Gao, Xiang; Cheng, Yan; Chen, Xiangrong; Cai, Lingcang

    2015-03-01

    The structural, electronic, and elastic properties of CuFeS2 have been investigated by using the generalized gradient approximation (GGA), GGA + U (on-site Coulomb repulsion energy), the local density approximation (LDA), and the LDA + U approach in the frame of density functional theory. It is shown that when the GGA + U formalism is selected with a U value of 3 eV for the 3d state of Fe, the calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA + U calculations indicate that CuFeS2 is a semiconductor with a band gap of 0.552 eV and with a magnetic moment of 3.64 µB per Fe atom, which are well consistent with the experimental results. Combined with the density of states, the band structure characteristics of CuFeS2 have been analyzed and their origins have been specified, which reveals a hybridization existing between Fe-3d, Cu-3s, and S-3p, respectively. The charge and Mulliken population analyses indicate that CuFeS2 is a covalent crystal. Moreover, the calculated elastic constants prove that CuFeS2 is mechanically stable but anisotropic. The bulk modulus obtained from elastic constants is 87.1 GPa, which agrees well with the experimental value of 91 ± 15 GPa and better than the theoretical bulk modulus 74 GPa obtained from GGA method by Lazewski et al. The obtained shear modulus and Debye temperature are 21.0 GPa and 287 K, respectively, and the latter accords well with the available experimental value. It is expected that our work can provide useful information to further investigate CuFeS2 from both the experimental and theoretical sides.

  3. Nanoscale measurement of Nernst effect in two-dimensional charge density wave material 1T-TaS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen M.; Luican-Mayer, Adina; Bhattacharya, Anand

    Advances in nanoscale material characterization on two-dimensional van der Waals layered materials primarily involve their optical and electronic properties. The thermal properties of these materials are harder to access due to the difficulty of thermal measurements at the nanoscale. In this work, we create a nanoscale magnetothermal device platform to access the basic out-of-plane magnetothermal transport properties of ultrathin van der Waals materials. Specifically, the Nernst effect in the charge density wave transition metal dichalcogenide 1T-TaS 2 is examined on nano-thin flakes in a patterned device structure. It is revealed that near the commensurate charge density wave (CCDW) to nearlymore » commensurate charge density wave (NCCDW) phase transition, the polarity of the Nernst effect changes. Since the Nernst effect is especially sensitive to changes in the Fermi surface, this suggests that large changes are occurring in the out-of-plane electronic structure of 1T-TaS 2, which are otherwise unresolved in just in-plane electronic transport measurements. This may signal a coherent evolution of out-of-plane stacking in the CCDW! NCCDW transition.« less

  4. Determination of elastic properties of polycrystalline U 3Si 2 using resonant ultrasound spectroscopy

    DOE PAGES

    Carvajal-Nunez, Ursula; Saleh, Tarik A.; White, Joshua Taylor; ...

    2017-11-10

    For this research, the elastic properties of U 3Si 2 at room temperature have been measured via resonant ultrasound spectroscopy. Results show that the average value of Young's and the bulk modulus for U 3Si 2 are 130.4±0.5 and 68.3±0.5 GPa, respectively. Further, a numerical model to assess thermal stress in an operating fuel is evaluated. Lastly, the thermal stress evolved in U 3Si 2 is compared to UO 2 to facilitate an estimation of the probability of crack formation in U 3Si 2 under representative light water reactor operating conditions.

  5. Determination of elastic properties of polycrystalline U 3Si 2 using resonant ultrasound spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvajal-Nunez, Ursula; Saleh, Tarik A.; White, Joshua Taylor

    For this research, the elastic properties of U 3Si 2 at room temperature have been measured via resonant ultrasound spectroscopy. Results show that the average value of Young's and the bulk modulus for U 3Si 2 are 130.4±0.5 and 68.3±0.5 GPa, respectively. Further, a numerical model to assess thermal stress in an operating fuel is evaluated. Lastly, the thermal stress evolved in U 3Si 2 is compared to UO 2 to facilitate an estimation of the probability of crack formation in U 3Si 2 under representative light water reactor operating conditions.

  6. Nanoscale potentiometry.

    PubMed

    Bakker, Eric; Pretsch, Ernö

    2008-01-01

    Potentiometric sensors share unique characteristics that set them apart from other electrochemical sensors. Potentiometric nanoelectrodes have been reported and successfully used for many decades, and we review these developments. Current research chiefly focuses on nanoscale films at the outer or the inner side of the membrane, with outer layers for increasing biocompatibility, expanding the sensor response, or improving the limit of detection (LOD). Inner layers are mainly used for stabilizing the response and eliminating inner aqueous contacts or undesired nanoscale layers of water. We also discuss the ultimate detectability of ions with such sensors and the power of coupling the ultra-low LODs of ion-selective electrodes with nanoparticle labels to give attractive bioassays that can compete with state-of-the-art electrochemical detection.

  7. Elastic band prediction equations for combined free-weight and elastic band bench presses and squats.

    PubMed

    Shoepe, Todd C; Ramirez, David A; Almstedt, Hawley C

    2010-01-01

    Elastic bands added to traditional free-weight techniques have become a part of suggested training routines in recent years. Because of the variable loading patterns of elastic bands (i.e., greater stretch produces greater resistance), it is necessary to quantify the exact loading patterns of bands to identify the volume and intensity of training. The purpose of this study was to determine the length vs. tension properties of multiple sizes of a set of commonly used elastic bands to quantify the resistance that would be applied to free-weight plus elastic bench presses (BP) and squats (SQ). Five elastic bands of varying thickness were affixed to an overhead support beam. Dumbbells of varying weights were progressively added to the free end while the linear deformation was recorded with each subsequent weight increment. The resistance was plotted as a factor of linear deformation, and best-fit nonlinear logarithmic regression equations were then matched to the data. For both the BP and SQ loading conditions and all band thicknesses tested, R values were greater than 0.9623. These data suggest that differences in load exist as a result of the thickness of the elastic band, attachment technique, and type of exercise being performed. Facilities should adopt their own form of loading quantification to match their unique set of circumstances when acquiring, researching, and implementing elastic band and free-weight exercises into the training programs.

  8. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope

    PubMed Central

    Nitzan, Sarah H.; Zega, Valentina; Li, Mo; Ahn, Chae H.; Corigliano, Alberto; Kenny, Thomas W.; Horsley, David A.

    2015-01-01

    Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes. PMID:25762243

  9. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope.

    PubMed

    Nitzan, Sarah H; Zega, Valentina; Li, Mo; Ahn, Chae H; Corigliano, Alberto; Kenny, Thomas W; Horsley, David A

    2015-03-12

    Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes.

  10. ``Elastic properties'' of magnetic fluids

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. I.; Shipilin, A. M.; Shkolnicov, E. N.; Zaharova, I. N.

    1999-07-01

    The results of Mössbauer investigations of the viscous magnetic liquids at temperatures of 100-300 K are discussed. The investigated ferrofluids were the colloidal dispersions of magnetite particles with average diameters of 7.5 and 10 nm in silicone carrier fluid. Supposing that the intensity of the Mössbauer line is determined by the factor f=f'ṡf″ (f' is Mössbauer factor for magnetite powder; f″ is a similar factor depending on oscillations of particles in a liquid), we estimated the values of the factor f″(T) at various temperatures. To describe the dependence f'(T), the Debye approximation was used. By means of the data on the dependence f″(T) the estimations of frequencies of particles oscillations Ω and "elasticity modulus" E of the investigated substances were obtained.

  11. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale

    NASA Astrophysics Data System (ADS)

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons’ law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.

  12. First principles predictions of electronic and elastic properties of BaPb2As2 in the ThCr2Si2-type structure

    NASA Astrophysics Data System (ADS)

    Bourourou, Y.; Amari, S.; Yahiaoui, I. E.; Bouhafs, B.

    2018-01-01

    A first-principles approach is used to predicts the electronic and elastic properties of BaPb2As2 superconductor compound, using full-potential linearized augmented plane wave plus local orbitals (FP-L/APW+lo) scheme within the local density approximation LDA. The calculated equilibrium structural parameter a agree well with the experiment while the c/a ratio is far away from the experimental result. The band structure, density of states, together with the charge density and chemical bonding are discussed. The calculated elastic constants for our compound indicate that it is mechanically stable at ambient pressure. Polycrystalline elastic moduli (Young's, Bulk, shear Modulus and the Poisson's ratio) were calculated according to the Voigte-Reusse-Hill (VRH) average.

  13. Demonstration of elastic fibres with reagents for detection of magnesium.

    PubMed Central

    Müller, W; Firsching, R

    1991-01-01

    Investigation of elastic fibres in various human and animal tissues with the reagents quinalizarin, magneson II, and titan yellow for the detection of magnesium revealed striking positive results. After pretreatment of skin and ligamentum flavum with elastase the tests were negative. The results support the supposition that the amount of magnesium in elastic fibres is sufficient for histochemical detection. It is speculated that the marked chelate-forming property of magnesium, or its antagonistic function to calcium, is associated with the elastic property of the fibres. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:1711022

  14. Bio-Organic Nanotechnology: Using Proteins and Synthetic Polymers for Nanoscale Devices

    NASA Technical Reports Server (NTRS)

    Molnar, Linda K.; Xu, Ting; Trent, Jonathan D.; Russell, Thomas P.

    2003-01-01

    While the ability of proteins to self-assemble makes them powerful tools in nanotechnology, in biological systems protein-based structures ultimately depend on the context in which they form. We combine the self-assembling properties of synthetic diblock copolymers and proteins to construct intricately ordered, three-dimensional polymer protein structures with the ultimate goal of forming nano-scale devices. This hybrid approach takes advantage of the capabilities of organic polymer chemistry to build ordered structures and the capabilities of genetic engineering to create proteins that are selective for inorganic or organic substrates. Here, microphase-separated block copolymers coupled with genetically engineered heat shock proteins are used to produce nano-scale patterning that maximizes the potential for both increased structural complexity and integrity.

  15. Effects of crystallization and bubble nucleation on the elastic properties of magmas

    NASA Astrophysics Data System (ADS)

    Tripoli, B. A.; Ulmer, P.; Eric, R.; Cordonnier, B.; Burg, J.

    2012-12-01

    Seismic tomography of potentially hazardous volcanoes is a prime tool to assess the physical state of magma reservoirs. Processes occurring in the conduit or in the chamber, such as crystallization and bubble exsolution, control the magma rheology, hence the style of volcanic eruption. Elastic parameters of vapor-saturated, partially molten systems are thus providing fundamental information for the identification of such reservoirs under active and seemingly dormant volcanoes. This knowledge will potentially serve to assess their risk. We present preliminary data on compression and shear wave propagation velocities of a chemically simplified melt analogous to andesite and trachyte, in the system CaO-Na2O-Al2O3-SiO2-H2O-CO2. These ultrasonic velocities are measured simultaneously in a Paterson-type internally-heated gas pressure apparatus at confining pressures up to 300 MPa and temperatures up to 1000°C. Using the pulse transmission technique, the experiments are performed at frequencies ranging from 0.1 to 3 MHz. Variations in the elastic parameters induced by the presence of bubbles or dissolved water in glassy samples are discussed for various pressures and temperatures. As the investigated melt undergoes plagioclase crystallization, a thermal plateau is maintained over specific time duration in order to measure the changes in seismic properties of in-situ crystallizing magmas. This maintained temperature varies between 800° and 1000°C depending on the amount of dissolved water in the system.

  16. Highly repeatable nanoscale phase coexistence in vanadium dioxide films

    NASA Astrophysics Data System (ADS)

    Huffman, T. J.; Lahneman, D. J.; Wang, S. L.; Slusar, T.; Kim, Bong-Jun; Kim, Hyun-Tak; Qazilbash, M. M.

    2018-02-01

    It is generally believed that in first-order phase transitions in materials with imperfections, the formation of phase domains must be affected to some extent by stochastic (probabilistic) processes. The stochasticity would lead to unreliable performance in nanoscale devices that have the potential to exploit the transformation of physical properties in a phase transition. Here we show that stochasticity at nanometer length scales is completely suppressed in the thermally driven metal-insulator transition (MIT) in sputtered vanadium dioxide (V O2 ) films. The nucleation and growth of domain patterns of metallic and insulating phases occur in a strikingly reproducible way. The completely deterministic nature of domain formation and growth in films with imperfections is a fundamental and unexpected finding about the kinetics of this material. Moreover, it opens the door for realizing reliable nanoscale devices based on the MIT in V O2 and similar phase-change materials.

  17. Extrapolation of bulk rock elastic moduli of different rock types to high pressure conditions and comparison with texture-derived elastic moduli

    NASA Astrophysics Data System (ADS)

    Ullemeyer, Klaus; Lokajíček, Tomás; Vasin, Roman N.; Keppler, Ruth; Behrmann, Jan H.

    2018-02-01

    In this study elastic moduli of three different rock types of simple (calcite marble) and more complex (amphibolite, micaschist) mineralogical compositions were determined by modeling of elastic moduli using texture (crystallographic preferred orientation; CPO) data, experimental investigation and extrapolation. 3D models were calculated using single crystal elastic moduli, and CPO measured using time-of-flight neutron diffraction at the SKAT diffractometer in Dubna (Russia) and subsequently analyzed using Rietveld Texture Analysis. To define extrinsic factors influencing elastic behaviour, P-wave and S-wave velocity anisotropies were experimentally determined at 200, 400 and 600 MPa confining pressure. Functions describing variations of the elastic moduli with confining pressure were then used to predict elastic properties at 1000 MPa, revealing anisotropies in a supposedly crack-free medium. In the calcite marble elastic anisotropy is dominated by the CPO. Velocities continuously increase, while anisotropies decrease from measured, over extrapolated to CPO derived data. Differences in velocity patterns with sample orientation suggest that the foliation forms an important mechanical anisotropy. The amphibolite sample shows similar magnitudes of extrapolated and CPO derived velocities, however the pattern of CPO derived velocity is closer to that measured at 200 MPa. Anisotropy decreases from the extrapolated to the CPO derived data. In the micaschist, velocities are higher and anisotropies are lower in the extrapolated data, in comparison to the data from measurements at lower pressures. Generally our results show that predictions for the elastic behavior of rocks at great depths are possible based on experimental data and those computed from CPO. The elastic properties of the lower crust can, thus, be characterized with an improved degree of confidence using extrapolations. Anisotropically distributed spherical micro-pores are likely to be preserved, affecting

  18. Changes in Morphological and Elastic Properties of Patellar Tendon in Athletes with Unilateral Patellar Tendinopathy and Their Relationships with Pain and Functional Disability

    PubMed Central

    Zhang, Zhi Jie; Ng, Gabriel Yin-fat; Lee, Wai Chun; Fu, Siu Ngor

    2014-01-01

    Background Patellar tendinopathy (PT) is one of the most common knee disorders among athletes. Changes in morphology and elasticity of the painful tendon and how these relate to the self-perceived pain and dysfunction remain unclear. Objectives To compare the morphology and elastic properties of patellar tendons between athlete with and without unilateral PT and to examine its association with self-perceived pain and dysfunction. Methods In this cross-sectional study, 33 male athletes (20 healthy and 13 with unilateral PT) were enrolled. The morphology and elastic properties of the patellar tendon were assessed by the grey and elastography mode of supersonic shear imaging (SSI) technique while the intensity of pressure pain, self-perceived pain and dysfunction were quantified with a 10-lb force to the most painful site and the Victorian Institute of Sport Assessment-patella (VISA-P) questionnaire, respectively. Results In athletes with unilateral PT, the painful tendons had higher shear elastic modulus (SEM) and larger tendon than the non-painful side (p<0.05) or the dominant side of the healthy athletes (p<0.05). Significant correlations were found between tendon SEM ratio (SEM of painful over non-painful tendon) and the intensity of pressure pain (rho  = 0.62; p = 0.024), VISA-P scores (rho  = −0.61; p = 0.026), and the sub-scores of the VISA-P scores on going down stairs, lunge, single leg hopping and squatting (rho ranged from −0.63 to −0.67; p<0.05). Conclusions Athletes with unilateral PT had stiffer and larger tendon on the painful side than the non-painful side and the dominant side of healthy athletes. No significant differences on the patellar tendon morphology and elastic properties were detected between the dominant and non-dominant knees of the healthy control. The ratio of the SEM of painful to non-painful sides was associated with pain and dysfunction among athletes with unilateral PT. PMID:25303466

  19. First-principle calculations of structural, electronic, optical, elastic and thermal properties of MgXAs2 (X=Si, Ge) compounds

    NASA Astrophysics Data System (ADS)

    Cheddadi, S.; Boubendira, K.; Meradji, H.; Ghemid, S.; Hassan, F. El Haj; Lakel, S.; Khenata, R.

    2017-12-01

    First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite MgXAs2 (X=Si, Ge) have been performed within the density functional theory (DFT) using the full-potential linearized augmented plane wave (FP-LAPW) method. The obtained equilibrium structural parameters are in good agreement with the available experimental data and theoretical results. The calculated band structures reveal a direct energy band gap for the interested compounds. The predicted band gaps using the modified Becke-Johnson (mBJ) exchange approximation are in fairly good agreement with the experimental data. The optical constants such as the dielectric function, refractive index, and the extinction coefficient are calculated and analysed. The independent elastic parameters namely, C_{11}, C_{12}, C_{13}, C_{33}, C_{44} and C_{66 } are evaluated. The effects of temperature and pressure on some macroscopic properties of MgSiAs2 and MgGeAs2 are predicted using the quasiharmonic Debye model in which the lattice vibrations are taken into account.

  20. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    systems. In addition, the role of thermodynamic fluctuations on superconducting properties has been extensively studied in the context of nanoparticles and nanowires both experimentally and theoretically. In the past decade, a lot of work has been initiated in the area of interface superconductivity where different techniques have been demonstrated to tune Tc. Although the progress in this field has deepened our understanding of nanoscale superconductors, there are several open and key questions which need to be addressed. Some of these are: (1) can superconductivity be enhanced and Tc increased in nanostructures with respect to the bulk limit and if so, how can it be controlled? (2) What are the theoretical and experimental limits for the enhancement and control of superconductivity? (3) Can the phenomena identified in conventional nanostructures shed light on phenomena in high Tc superconductors and vice versa? (4) How will the new fundamental physics of superconductivity at the nanoscale promote advances in nanotechnology applications and vice versa? The papers in this focus section reflect the advances made in this field, in particular in nanowires and nanofilms, but also attempt to answer some of the key open questions outlined above. The theoretical papers explore unconventional quantum phenomena such as the role of confinement in the dynamics of single Cooper pairs in isolated grains [1] and Fano resonances in superconducting gaps in multi-condensate superconductors near a 2.5 Lifshitz transition [2]. Here a new emerging class of quantum phenomena of fundamental physics appear at the Bose-BCS crossover in multi-condensate superconductors [2]. Nanosize effects can now be manipulated by controlling defects in layered oxides [3]. A new approach is provided by controlling the self-organization of oxygen interstitials in layered copper oxides that show an intrinsic nanoscale phase separation [4]. In this case a non-trivial distribution of superconducting nanograins