Science.gov

Sample records for nanoscale metal clusters

  1. Spectroscopic studies of nanoscale metal clusters

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, P.

    2013-06-01

    The present article is intended to elucidate a range of novel spectroscopic studies of nanoscale metal clusters. Various bottom-up and top-down techniques have been utilized to synthesize the metal nanoclusters. Materials like metal nanoclusters of cobalt, silver or gold in various dielectric matrices facilitate to explore interesting phenomena through optical, photoluminescence and vibrational spectroscopy. Interaction of uv-visible light with free electrons of metal nanoclusters, for example, leads to fascinating colors of dielectric matrices through an optical effect known as surface-plasmon resonance. This effect of quantum-confinement of the electrons leads to large enhancements of local electric field in metal nanoclusters. Enhancements of Raman scattering from metal nanoclusters are attributed to the increase of local fields. Optical absorption and Raman scattering spectroscopy particularly have been highlighted here as powerful non-destructive experimental methods to study evolution of metal nanoclusters in different dielectric matrices. In relatively large metal nanoclusters, besides dipolar, quadrupolar surface-plasmon resonances have been observed.

  2. Nanoscale electrodeposition of low-dimensional metal phases and clusters.

    PubMed

    Staikov, Georgi

    2016-08-07

    The present status of the problem of electrochemical formation of low-dimensional metal phases is reviewed. The progress in this field achieved in the last two decades is discussed on the basis of experimental results obtained in selected electrochemical systems with well defined single crystal substrates. The influence of crystallographic orientation and surface inhomogeneities of foreign substrates on the mechanism of formation and the atomic structure of two-dimensional (2D) metal phases in the underpotential deposition range is considered. The localized electrodeposition of metal nanoclusters on solid state surfaces applying the STM-tip as a nanoelectrode is demonstrated.

  3. Nanoscale electrodeposition of low-dimensional metal phases and clusters

    NASA Astrophysics Data System (ADS)

    Staikov, Georgi

    2016-07-01

    The present status of the problem of electrochemical formation of low-dimensional metal phases is reviewed. The progress in this field achieved in the last two decades is discussed on the basis of experimental results obtained in selected electrochemical systems with well defined single crystal substrates. The influence of crystallographic orientation and surface inhomogeneities of foreign substrates on the mechanism of formation and the atomic structure of two-dimensional (2D) metal phases in the underpotential deposition range is considered. The localized electrodeposition of metal nanoclusters on solid state surfaces applying the STM-tip as a nanoelectrode is demonstrated.

  4. Monitoring the dissolution process of metals in the gas phase: reactions of nanoscale Al and Ga metal atom clusters and their relationship to similar metalloid clusters.

    PubMed

    Burgert, Ralf; Schnöckel, Hansgeorg

    2008-05-14

    in order to show that in this cluster only the central naked metal atoms are oxidized, and a smaller metalloid cluster results containing the entire protecting shell as the primary cluster. All the experimental results, supported by quantum chemical calculations, give a rough idea about the complex reaction cascades which occur during the dissolution and formation of metals. Furthermore, these results cast a critical light on many simplifying and generalizing rules in order to understand the bonding and structure of metal clusters. Finally, the experiments and some recent results provided by physical measurements on a crystalline Ga(84) compound build a bridge to nanoscience; i.e. they may be a challenge for chemistry in the next decades, since it has been shown that only with a perfect orientation of nanoscale metal clusters, e.g. in a crystal, can novel, unexpected properties (e.g. superconducting nanoscale materials) be obtained.

  5. Scattering T-matrix theory in wave-vector space for surface-enhanced Raman scattering in clusters of nanoscale spherical metal particles

    NASA Astrophysics Data System (ADS)

    Arya, Karamjeet

    2006-11-01

    Very large enhancements up to 14 orders of magnitude in the Raman cross section from a molecule adsorbed on a single cluster of a few nanoscale metal particles has been reported recently. The enhancement is believed mainly due to the enhanced electric field because of the excitation of the localized surface plasmon modes. We have developed a Green’s function theory using scattering t matrix approach in the wave-vector space to solve the Maxwell equations for the enhanced field near a spherical metal particle cluster. The advantage of working in the wave-vector space is that one does not need to use complicated translational addition theorem required in the real space as used in earlier calculations. Therefore our theory can be easily extended to any shape or size of the cluster. We consider clusters of two, three, and four spherical particles forming a linear chain, triangle, and square and calculate their localized surface modes. These modes have much more localized field near the cluster compared to those of single metal sphere and are redshifted. We find the enhancement in the Raman cross section can reach up to 10 orders of magnitude due to the resonant excitation of these modes for silver particle clusters and is in a broad frequency range. We also find new results that chainlike clusters of three or more particles have very sharp resonant features that give a dramatic increase in the enhancement near the resonance. The results for gold particle clusters are also presented.

  6. Nanoscale metal-organic materials.

    PubMed

    Carné, Arnau; Carbonell, Carlos; Imaz, Inhar; Maspoch, Daniel

    2011-01-01

    Metal-organic materials are found to be a fascinating novel class of functional nanomaterials. The limitless combinations between inorganic and organic building blocks enable researchers to synthesize 0- and 1-D metal-organic discrete nanostructures with varied compositions, morphologies and sizes, fabricate 2-D metal-organic thin films and membranes, and even structure them on surfaces at the nanometre length scale. In this tutorial review, the synthetic methodologies for preparing these miniaturized materials as well as their potential properties and future applications are discussed. This review wants to offer a panoramic view of this embryonic class of nanoscale materials that will be of interest to a cross-section of researchers working in chemistry, physics, medicine, nanotechnology, materials chemistry, etc., in the next years.

  7. Nanoscale fullerene compression of an yttrium carbide cluster.

    PubMed

    Zhang, Jianyuan; Fuhrer, Tim; Fu, Wujun; Ge, Jiechao; Bearden, Daniel W; Dallas, Jerry; Duchamp, James; Walker, Kenneth; Champion, Hunter; Azurmendi, Hugo; Harich, Kim; Dorn, Harry C

    2012-05-23

    The nanoscale parameters of metal clusters and lattices have a crucial influence on the macroscopic properties of materials. Herein, we provide a detailed study on the size and shape of isolated yttrium carbide clusters in different fullerene cages. A family of diyttrium endohedral metallofullerenes with the general formula of Y(2)C(2n) (n = 40-59) are reported. The high field (13)C nuclear magnetic resonance (NMR) and density functional theory (DFT) methods are employed to examine this yttrium carbide cluster in certain family members, Y(2)C(2)@D(5)(450)-C(100), Y(2)C(2)@D(3)(85)-C(92), Y(2)C(2)@C(84), Y(2)C(2)@C(3v)(8)-C(82), and Y(2)C(2)@C(s)(6)-C(82). The results of this study suggest that decreasing the size of a fullerene cage with the same (Y(2)C(2))(4+) cluster results in nanoscale fullerene compression (NFC) from a nearly linear stretched geometry to a constrained "butterfly" structure. The (13)C NMR chemical shift and scalar (1)J(YC) coupling parameters provide a very sensitive measure of this NFC effect for the (Y(2)C(2))(4+) cluster. The crystal structural parameters of a previously reported metal carbide, Y(2)C(3) are directly compared to the (Y(2)C(2))(4+) cluster in the current metallofullerene study.

  8. Label-free colorimetric detection of mercury via Hg2+ ions-accelerated structural transformation of nanoscale metal-oxo clusters

    PubMed Central

    Chen, Kun; She, Shan; Zhang, Jiangwei; Bayaguud, Aruuhan; Wei, Yongge

    2015-01-01

    Mercury and its compounds are known to be extremely toxic but widely distributed in environment. Although many works have been reported to efficiently detect mercury, development of simple and convenient sensors is still longed for quick analyzing mercury in water. In this work, a nanoscale metal-oxo cluster, (n-Bu4N)2[Mo5NaO13(OCH3)4(NO)], (MLPOM), organically-derivatized from monolacunary Lindqvist-type polyoxomolybdate, is found to specifically react with Hg2+ in methanol/water via structural transformation. The MLPOM methanol solution displays a color change from purple to brown within seconds after being mixed with an aqueous solution containing Hg2+. By comparing the structure of polyoxomolybdate before and after reaction, the color change is revealed to be the essentially structural transformation of MLPOM accelerated by Hg2+. Based on this discovery, MLPOM could be utilized as a colorimetric sensor to sense the existence of Hg2+, and a simple and label-free method is developed to selectively detect aqueous Hg2+. Furthermore, the colorimetric sensor has been applied to indicating mercury contamination in industrial sewage. PMID:26559602

  9. Label-free colorimetric detection of mercury via Hg2+ ions-accelerated structural transformation of nanoscale metal-oxo clusters

    NASA Astrophysics Data System (ADS)

    Chen, Kun; She, Shan; Zhang, Jiangwei; Bayaguud, Aruuhan; Wei, Yongge

    2015-11-01

    Mercury and its compounds are known to be extremely toxic but widely distributed in environment. Although many works have been reported to efficiently detect mercury, development of simple and convenient sensors is still longed for quick analyzing mercury in water. In this work, a nanoscale metal-oxo cluster, (n-Bu4N)2[Mo5NaO13(OCH3)4(NO)], (MLPOM), organically-derivatized from monolacunary Lindqvist-type polyoxomolybdate, is found to specifically react with Hg2+ in methanol/water via structural transformation. The MLPOM methanol solution displays a color change from purple to brown within seconds after being mixed with an aqueous solution containing Hg2+. By comparing the structure of polyoxomolybdate before and after reaction, the color change is revealed to be the essentially structural transformation of MLPOM accelerated by Hg2+. Based on this discovery, MLPOM could be utilized as a colorimetric sensor to sense the existence of Hg2+, and a simple and label-free method is developed to selectively detect aqueous Hg2+. Furthermore, the colorimetric sensor has been applied to indicating mercury contamination in industrial sewage.

  10. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics.

    PubMed

    Yang, Yuchao; Gao, Peng; Li, Linze; Pan, Xiaoqing; Tappertzhofen, Stefan; Choi, ShinHyun; Waser, Rainer; Valov, Ilia; Lu, Wei D

    2014-06-23

    Nanoscale metal inclusions in or on solid-state dielectrics are an integral part of modern electrocatalysis, optoelectronics, capacitors, metamaterials and memory devices. The properties of these composite systems strongly depend on the size, dispersion of the inclusions and their chemical stability, and are usually considered constant. Here we demonstrate that nanoscale inclusions (for example, clusters) in dielectrics dynamically change their shape, size and position upon applied electric field. Through systematic in situ transmission electron microscopy studies, we show that fundamental electrochemical processes can lead to universally observed nucleation and growth of metal clusters, even for inert metals like platinum. The clusters exhibit diverse dynamic behaviours governed by kinetic factors including ion mobility and redox rates, leading to different filament growth modes and structures in memristive devices. These findings reveal the microscopic origin behind resistive switching, and also provide general guidance for the design of novel devices involving electronics and ionics.

  11. Nanoscale chirality in metal and semiconductor nanoparticles.

    PubMed

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  12. Nanoscale chirality in metal and semiconductor nanoparticles

    PubMed Central

    Thomas, K. George

    2016-01-01

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided. PMID:27752651

  13. Mesoscale metallic pyramids with nanoscale tips.

    PubMed

    Henzie, Joel; Kwak, Eun-Soo; Odom, Teri W

    2005-07-01

    We report a simple procedure that can generate free-standing mesoscale metallic pyramids composed of one or more materials and having nanoscale tips (radii of curvature of less than 2 nm). Mesoscale holes (100-300 nm) in a chromium film are used as an etch mask to fabricate pyramidal pits and then as a deposition mask to form the metallic pyramids. We have fabricated two- and three-layered pyramids with control over their materials and chemical functionality.

  14. Properties of nanoscale metal hydrides.

    PubMed

    Fichtner, Maximilian

    2009-05-20

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption.

  15. Reactivity of Metal Clusters.

    PubMed

    Luo, Zhixun; Castleman, A W; Khanna, Shiv N

    2016-12-14

    We summarize here the research advances on the reactivity of metal clusters. After a simple introduction of apparatuses used for gas-phase cluster reactions, we focus on the reactivity of metal clusters with various polar and nonpolar molecules in the gas phase and illustrate how elementary reactions of metal clusters proceed one-step at a time under a combination of geometric and electronic reorganization. The topics discussed in this study include chemical adsorption, addition reaction, cleavage of chemical bonds, etching effect, spin effect, the harpoon mechanism, and the complementary active sites (CAS) mechanism, among others. Insights into the reactivity of metal clusters not only facilitate a better understanding of the fundamentals in condensed-phase chemistry but also provide a way to dissect the stability and reactivity of monolayer-protected clusters synthesized via wet chemistry.

  16. Metallic multilayers at the nanoscale

    SciTech Connect

    Jankowski, A.F.

    1994-11-01

    The development of multilayer structures has been driven by a wide range of commercial applications requiring enhanced material behaviors. Innovations in physical vapor deposition technologies, in particular magnetron sputtering, have enabled the synthesis of metallic-based structures with nanoscaled layer dimensions as small as one-to-two monolayers. Parameters used in the deposition process are paramount to the Formation of these small layer dimensions and the stability of the structure. Therefore, optimization of the desired material properties must be related to assessment of the actual microstructure. Characterization techniques as x-ray diffraction and high resolution microscopy are useful to reveal the interface and layer structure-whether ordered or disordered crystalline, amorphous, compositionally abrupt or graded, and/or lattice strained Techniques for the synthesis of metallic multilayers with subnanometric layers will be reviewed with applications based on enhancing material behaviors as reflectivity and magnetic anisotropy but with emphasis on experimental studies of mechanical properties.

  17. Nanoscale growth twins in sputtered metal films

    SciTech Connect

    Misra, Amit; Anderoglu, Osman; Hoagland, Richard G; Zhang, X

    2008-01-01

    We review recent studies on the mechanical properties of sputtered Cu and 330 stainless steel films with {l_brace}1 1 1{r_brace} nanoscale growth twins preferentially oriented perpendicular to growth direction. The mechanisms of formation of growth twins during sputtering and the deformation mechanisms that enable usually high strengths in nanotwinned structures are highlighted. Growth twins in sputtered films possess good thermal stability at elevated temperature, providing an approach to extend the application of high strength nanostructured metals to higher temperatures.

  18. Structure of nanoscale gas bubbles in metals

    SciTech Connect

    Caro, A. Schwen, D.; Martinez, E.

    2013-11-18

    A usual way to estimate the amount of gas in a bubble inside a metal is to assume thermodynamic equilibrium, i.e., the gas pressure P equals the capillarity force 2γ/R, with γ the surface energy of the host material and R the bubble radius; under this condition there is no driving force for vacancies to be emitted or absorbed by the bubble. In contrast to the common assumption that pressure inside a gas or fluid bubble is constant, we show that at the nanoscale this picture is no longer valid. P and density can no longer be defined as global quantities determined by an equation of state (EOS), but they become functions of position because the bubble develops a core-shell structure. We focus on He in Fe and solve the problem using both continuum mechanics and empirical potentials to find a quantitative measure of this effect. We point to the need of redefining an EOS for nanoscale gas bubbles in metals, which can be obtained via an average pressure inside the bubble. The resulting EOS, which is now size dependent, gives pressures that differ by a factor of two or more from the original EOS for bubble diameters of 1 nm and below.

  19. Nanoscale Structure, Dynamics, and Aging Behavior of Metallic Glass Thin Films

    PubMed Central

    Burgess, J. A. J.; Holt, C. M. B.; Luber, E. J.; Fortin, D. C.; Popowich, G.; Zahiri, B.; Concepcion, P.; Mitlin, D.; Freeman, M. R.

    2016-01-01

    Scanning tunnelling microscopy observations resolve the structure and dynamics of metallic glass Cu100−xHfx films and demonstrate scanning tunnelling microscopy control of aging at a metallic glass surface. Surface clusters exhibit heterogeneous hopping dynamics. Low Hf concentration films feature an aged surface of larger, slower clusters. Argon ion-sputtering destroys the aged configuration, yielding a surface in constant fluctuation. Scanning tunnelling microscopy can locally restore the relaxed state, allowing for nanoscale lithographic definition of aged sections. PMID:27498698

  20. Alkali Metal Cluster Theory.

    NASA Astrophysics Data System (ADS)

    Chen, Jian

    Available from UMI in association with The British Library. Requires signed TDF. In this thesis, we apply the tight-binding Hubbard model to alkali metal clusters with Hartree-Fock self-consistent methods and perturbation methods for the numerical calculations. We have studied the relation between the equilibrium structures and the range of the hopping matrix elements in the Hubbard Hamiltonian. The results show that the structures are not sensitive to the interaction range but are determined by the number of valence electrons each atom has. Inertia tensors are used to analyse the symmetries of the clusters. The principal axes of the clusters are determined and they are the axes of rotational symmetries of clusters if the clusters have any. The eigenvalues of inertia tensors which are the indication of the deformation of clusters are compared between our model and the ellipsoidal jellium model. The agreement is good for large clusters. At a finite temperature, the thermal motion fluctuates the structures. We defined a fluctuation function with the distance matrix of a cluster. The fluctuation has been studied with the Monte-Carlo simulation method. Our studies show that the clusters remain in the solid state when temperature is low. The small values of fluctuation functions indicates the thermal vibration of atoms around their equilibrium positions. If the temperature is high, the atoms are delocalized. The cluster melts and enters the liquid region. The cluster melting is simulated by the Monte-Carlo simulation with the fluctuation function we defined. Energy levels of clusters are calculated from the Hubbard model. Ionization potentials and magic numbers are also obtained from these energy levels. The results confirm that the Hubbard model is a good approximation for a small cluster. The excitation energy is presented by the difference between the original level and excited level, and the electron-hole interactions. We also have studied cooling of clusters

  1. Mn clusters: a nanoscale magnetic transition

    NASA Astrophysics Data System (ADS)

    Srinivas, Sudha

    2005-03-01

    Small Mn clusters exhibit remarkable magnetic behavior. Early ESR experiments[1] found the smallest clusters (n=2-5) to be ferromagnetic (FM), while later Stern-Gerlach measurements[2] found larger clusters (n>12) to have very small net moments. Our calculations show that these data reflect a transition in magnetic ordering as a function of cluster size, occurring at n=7 atoms. Specifically, the FM arrangements of the atomic spins favored in smaller clusters give way to antiferromagnetic (AF) arrangements in larger clusters. We find that the FM -> AF transition occurs at n=7, in agreement with experimental data, and is driven by a large change in the relative energies of the FM and AF structures. We present results for the structures and magnetic properties of Mnn (n = 2-13), focusing on correlations between the structural, electronic and magnetic properties of the clusters and discuss the effect of substitutional impurities on the magnetic properties of the clusters. *C. A. Baumann et al., J. Chem. Phys. 78, 190 (1983). *M. B. Knickelbein, Phys. Rev. Lett. 86, 5255 (2001).

  2. Nanoscale uranium-based cage clusters inspired by uranium mineralogy

    SciTech Connect

    Burns, Peter C

    2011-02-01

    Taking advantage of the bent uranyl-peroxide-uranyl interaction found in studtite, 26 nanoscale clusters have been synthesized using uranyl hexagonal bipyramids. Sixteen of these clusters are built from uranyl hexagonal bipyramids only. Eight contain pyrophosphate groups that bridge between uranyl polyhedra, and two contain oxalate groups that adopt a similar structural role. These clusters contain from 20 to 60 uranyl polyhedra and have diameters in the range ~1.5 to 3 nm. All spontaneously self-assemble in aqueous solution under ambient conditions.

  3. Nanoscale Cluster Detection in Massive Atom Probe Tomography Data

    SciTech Connect

    Seal, Sudip K; Yoginath, Srikanth B; Miller, Michael K

    2014-01-01

    Recent technological advances in atom probe tomography (APT) have led to unprecedented data acquisition capabilities that routinely generate data sets containing hundreds of millions of atoms. Detecting nanoscale clusters of different atom types present in these enormous amounts of data and analyzing their spatial correlations with one another are fundamental to understanding the structural properties of the material from which the data is derived. Extant algorithms for nanoscale cluster detection do not scale to large data sets. Here, a scalable, CUDA-based implementation of an autocorrelation algorithm is presented. It isolates spatial correlations amongst atomic clusters present in massive APT data sets in linear time using a linear amount of storage. Correctness of the algorithm is demonstrated using large synthetically generated data with known spatial distributions. Benefits and limitations of using GPU-acceleration for autocorrelation-based APT data analyses are presented with supporting performance results on data sets with up to billions of atoms. To our knowledge, this is the first nanoscale cluster detection algorithm that scales to massive APT data sets and executes on commodity hardware.

  4. Selective molecular recognition by nanoscale environments in a supported iridium cluster catalyst

    NASA Astrophysics Data System (ADS)

    Okrut, Alexander; Runnebaum, Ron C.; Ouyang, Xiaoying; Lu, Jing; Aydin, Ceren; Hwang, Son-Jong; Zhang, Shengjie; Olatunji-Ojo, Olayinka A.; Durkin, Kathleen A.; Dixon, David A.; Gates, Bruce C.; Katz, Alexander

    2014-06-01

    The active sites of enzymes are contained within nanoscale environments that exhibit exquisite levels of specificity to particular molecules. The development of such nanoscale environments on synthetic surfaces, which would be capable of discriminating between molecules that would nominally bind in a similar way to the surface, could be of use in nanosensing, selective catalysis and gas separation. However, mimicking such subtle behaviour, even crudely, with a synthetic system remains a significant challenge. Here, we show that the reactive sites on the surface of a tetrairidium cluster can be controlled by using three calixarene-phosphine ligands to create a selective nanoscale environment at the metal surface. Each ligand is 1.4 nm in length and envelopes the cluster core in a manner that discriminates between the reactivities of the basal-plane and apical iridium atoms. CO ligands are initially present on the clusters and can be selectively removed from the basal-plane sites by thermal dissociation and from the apical sites by reactive decarbonylation with the bulky reactant trimethylamine-N-oxide. Both steps lead to the creation of metal sites that can bind CO molecules, but only the reactive decarbonylation step creates vacancies that are also able to bond to ethylene, and catalyse its hydrogenation.

  5. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical

  6. Deformation of a ceramic/metal interface at the nanoscale

    NASA Astrophysics Data System (ADS)

    Jiang, Lin; Hu, Tao; Yang, Hanry; Zhang, Dalong; Topping, Troy; Lavernia, Enrique J.; Schoenung, Julie M.

    2016-05-01

    The mechanical response of heterophase interfaces has attracted substantial attention in recent years. Here, we utilized an in situ transmission electron microscopy (TEM) technique to isolate an individual nanoscale ceramic/metal interface and characterize its nanomechanical response. The interface, at which there was a Mg-rich segregation nanolayer between the single crystal ceramic (B4C) and the polycrystalline metal (Al alloy, AA5083), was determined to have a bond strength greater than 1.5 GPa. Bimodal failure and metallic grain rotation occurred in the metallic region, allowing the interface to accommodate a deformation strain of 5.4%. The roles of elemental segregation and nanoscale dimensions on interfacial debonding mechanisms are discussed.The mechanical response of heterophase interfaces has attracted substantial attention in recent years. Here, we utilized an in situ transmission electron microscopy (TEM) technique to isolate an individual nanoscale ceramic/metal interface and characterize its nanomechanical response. The interface, at which there was a Mg-rich segregation nanolayer between the single crystal ceramic (B4C) and the polycrystalline metal (Al alloy, AA5083), was determined to have a bond strength greater than 1.5 GPa. Bimodal failure and metallic grain rotation occurred in the metallic region, allowing the interface to accommodate a deformation strain of 5.4%. The roles of elemental segregation and nanoscale dimensions on interfacial debonding mechanisms are discussed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02011a

  7. Reversible electron-transfer reactions within a nanoscale metal oxide cage mediated by metallic substrates

    SciTech Connect

    Fleming, C.; Long, D. L.; McMillian, N.; Johnston, J.; Bovet N.; Dhanak, V.; Gadegaard, N.; Kogerler, P.; Cronin, L.; Kadodwala, M.

    2008-03-30

    Transition metal oxides exhibit a rich collection of electronic properties and have many practical applications in areas such as catalysis and ultra-high-density magnetic data storage. Therefore the development of switchable molecular transition metal oxides has potential for the engineering of single-molecule devices and nanoscale electronics. At present, the electronic properties of transition metal oxides can only be tailored through the irreversible introduction of dopant ions, modifying the electronic structure by either injecting electrons or core holes. Here we show that a molybdenum(VI) oxide 'polyoxometalate' molecular nanocluster containing two embedded redox agents is activated by a metallic surface and can reversibly interconvert between two electronic states. Upon thermal activation two electrons are ejected from the active sulphite anions and delocalized over the metal oxide cluster cage, switching it from a fully oxidized state to a two-electron reduced state along with the concomitant formation of an S-S bonding interaction between the two sulphur centres inside the cluster shell.

  8. Nanoscale patterning of metal nanoparticle distribution in glasses

    PubMed Central

    2013-01-01

    We show that electric field imprinting technique allows for patterning of metal nanoparticles in the glass matrix at the subwavelength scale. The formation of glass-metal nanocomposite strips with a width down to 150 nm is demonstrated. The results of near-field microscopy of imprinted patterns are in good agreement with the performed numerical modeling. Atomic force microscopy reveals that imprinting also results in the formation of nanoscale surface profile with the height going down with the decrease of the strip width. The experiments prove the applicability of this technique for the fabrication of nanoscale plasmonic components. PMID:23724801

  9. Nanoscale segregation at a metal surface

    NASA Astrophysics Data System (ADS)

    Igata, N.

    1996-03-01

    The properties of a surface are fundamentally controlled by the chemical composition of the nanoscale surface layer. Therefore nanoscale segregation at the surface is one of the most important problems in surface science and technology. The chemical analysis of the surface layer and the study of segregation have been developed by various methods, but mainly by AES and TOFAP since 0957-4484/7/1/003/img1. Surface segregation under irradiation is also an urgent problem to be solved and the same methods have been applied. In this paper, the results from TOFAP for segregation both under thermal equilibrium and under irradiation are introduced. As for theoretical aspects, both thermal segregation and segregation under irradiation are interpreted by atomistic theory.

  10. Gas phase metal cluster model systems for heterogeneous catalysis.

    PubMed

    Lang, Sandra M; Bernhardt, Thorsten M

    2012-07-14

    Since the advent of intense cluster sources, physical and chemical properties of isolated metal clusters are an active field of research. In particular, gas phase metal clusters represent ideal model systems to gain molecular level insight into the energetics and kinetics of metal-mediated catalytic reactions. Here we summarize experimental reactivity studies as well as investigations of thermal catalytic reaction cycles on small gas phase metal clusters, mostly in relation to the surprising catalytic activity of nanoscale gold particles. A particular emphasis is put on the importance of conceptual insights gained through the study of gas phase model systems. Based on these concepts future perspectives are formulated in terms of variation and optimization of catalytic materials e.g. by utilization of bimetals and metal oxides. Furthermore, the future potential of bio-inspired catalytic material systems are highlighted and technical developments are discussed.

  11. Deformation of a ceramic/metal interface at the nanoscale.

    PubMed

    Jiang, Lin; Hu, Tao; Yang, Hanry; Zhang, Dalong; Topping, Troy; Lavernia, Enrique J; Schoenung, Julie M

    2016-05-19

    The mechanical response of heterophase interfaces has attracted substantial attention in recent years. Here, we utilized an in situ transmission electron microscopy (TEM) technique to isolate an individual nanoscale ceramic/metal interface and characterize its nanomechanical response. The interface, at which there was a Mg-rich segregation nanolayer between the single crystal ceramic (B4C) and the polycrystalline metal (Al alloy, AA5083), was determined to have a bond strength greater than 1.5 GPa. Bimodal failure and metallic grain rotation occurred in the metallic region, allowing the interface to accommodate a deformation strain of 5.4%. The roles of elemental segregation and nanoscale dimensions on interfacial debonding mechanisms are discussed.

  12. Instability of nanoscale metallic particles under electron irradiation in TEM

    NASA Astrophysics Data System (ADS)

    Chen, X. Y.; Zhang, S. G.; Xia, M. X.; Li, J. G.

    2016-03-01

    The stability of nano metallic glass under electron beam in transmission electron microscope (TEM) was investigated. The most common voltage of TEM used in metallic materials characterization was either 200 kV or 300 kV. Both situations were investigated in this work. An amorphous metallic particle with a dimension of a few hundred nanometers was tested under 300 keV electron irradiation. New phase decomposed from the parent phase was observed. Moreover, a crystal particle with the same composition and dimension was tested under 200 keV irradiation. Decomposition process also occurred in this situation. Besides, crystal orientation modification was observed during irradiation. These results proved that the electron beam in TEM have an effect on the stability of nanoscale samples during long time irradiation. Atomic displacement was induced and diffusion was enhanced by electron irradiation. Thus, artifacts would be induced when a nanoscale metallic sample was characterized in TEM.

  13. Cluster Dynamics: Laying the Foundations for Developing Nanoscale Materials

    DTIC Science & Technology

    2006-12-01

    Technique to Study Delayed Ionization in Time-of-Flight Mass Spectrometry ," J. R. Stairs and A. W. Castleman, Jr., Int. J. Mass Spec., 216, 75-83 (2002...that has been observed in a few metal , fullerene and metal carbide systems. Generally, good candidates to display delayed ionization characteristics...are clusters containing a significant number of vibrational modes that have large bonding energies and low ionization potentials. The magnitude of the

  14. Photoionization of oxidized metal clusters

    SciTech Connect

    Dao, P.D.; Peterson, K.I.; Castleman, A.W. Jr.

    1984-01-01

    Oxidized metal clusters (Na/sub x/O and K/sub x/O for 2< or =x< or =4) were formed in a gas phase reaction between metal clusters and an oxidizing gas using a double expansion technique. Their appearance potentials were measured using a molecular beam-photoionization mass spectrometer system. These first photoionization data for oxidized clusters provide information on trends of ionization potentials as a function of the degree of aggregation. The ionization potentials do not differ greatly from the analogous metallic species, but in the case of the sodium tetramer the value does fall below that of the bare metal cluster. This finding is in accord with what has been observed as an influence of impurities on the work function of the bulk sodium. The results are also of interest concerning questions of octet rule violations and hypervalency.

  15. Liquid metal particle popping: Nanoscale to macroscale

    NASA Astrophysics Data System (ADS)

    Lear, Trevor R.

    Liquid metal nanoparticles can be used to produce stretchable electronic devices. Understanding the mechanical properties of liquid metal nanoparticles is crucial to optimizing their use in various applications, especially printing of flexible, stretchable electronics. Smaller nanoparticles are desired for high-resolution printing and compatibility with existing scalable manufacturing methods; however, they contain less liquid metal and are more difficult to rupture than larger particles, making them less desirable for post-processing functionality. This study investigates the mechanics of liquid metal particle rupture as a function of particle size. We employ compression of particle films to characterize the composition of the particle core and derive a minimum particle size required to achieve sintering and subsequent conductance. We further derive the force required to rupture a single particle and validate the results by rupturing individual nanoparticles using atomic force microscopy. In addition, we relate the liquid metal nanoparticles to isotropically-elastic thin-shell microspheres to approximate the particle shell stiffness. Using the results from this study, spray printing has been used as a scalable process that permits the printing of larger particles in high resolution patterns. Furthermore, existent sintering methods are developed, specifically using laser systems, high voltage generators, and exposure to extreme temperatures. An increased understanding of the behavior of liquid metal nanoparticles during rupture reveals limitations of current manufacturing processes and paves the way for the next generation of scalable mass-producible soft electronics using additive manufacturing technologies.

  16. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    DOE PAGES

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; ...

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less

  17. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    SciTech Connect

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects of both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.

  18. Nanoscale Carbon in Metals for Energy Applications

    DTIC Science & Technology

    2011-10-19

    development • “Immortal” nanocarbon phase, 50-200 nm, to 6 wt. % C • Well-dispersed, not graphite/diamond/fullerene  Chemically bound to metal in a...C Nanocarbon U. Maryland EELS Covetic Spectrum vs. Reference Spectrum of SWCNT Covetic carbon 0 1000 2000 3000 4000 5000 6000 270 280 290 300 310 320...development • “Immortal” nanocarbon phase, 50-200 nm, to 6 wt. % C • Well-dispersed, not graphite/diamond/fullerene  Chemically bound to metal in a way

  19. Nano-scale solute partitioning in devitrified bulk metalic glass.

    SciTech Connect

    Yang, L.; Miller, M. K.; Wang, X. L.; Liu, C. T.; Stoica, A. D.; Ma, D.; Almer, J.; Shi, D.; ORNL; Univ. of Cincinnati; Univ. of Tennessee

    2009-01-01

    Devitrification of bulk metallic glass leads to a novel microstructure, with high-density nanoscale crystalline precipitates evenly distributed in a glassy matrix. Significant chemical segregation is revealed at unprecedented detail by atom-probe tomography. This level of detail is crucial for understanding the interference peaks observed in small-angle X-ray and neutron scattering experiments, an unsolved mystery for over a decade.

  20. Single Metal Particles Nanoscale Friction and Wear

    NASA Astrophysics Data System (ADS)

    Ling, Xing; Kappl, Michael

    2009-06-01

    The sliding behavior between single pairs of gold and carbonyl iron particles with diameters of 5-10 μm were studied by Friction Force Microscopy. Normal load between the particles during friction was varied in the range of 0-3 μN. For the gold particles, two different wear regimes could be observed. At lower loads, only mild wear was observed, probably due to the typical organic contamination layer. At higher loads, strong wear of the gold surface was observed due to direct metallic contact. For the sliding between CIP, only mild wear was observed possibly due to the protective oxide layers which prevented the formaton of direct metallic contacts. The evolution of friction between the sliding particles was quantitively examined by use of inverse cumulative distribution functions, which allowed to correlate the increase in friction with the change in surface topography. During mild wear, the friction in the sliding area was found to change with the local radius of curvature and to increase nearly linear with increasing load. Within this regime, the dependence of friction F on load W followed the relation F = μW+F0. The values μ and F0 obtained from different combinations of particles were 0.42±0.26 and 106±104 nN for gold and 0.36±0.16 and 43±41 nN for iron respectively.

  1. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    PubMed

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  2. Internal gettering by metal alloy clusters

    DOEpatents

    Buonassisi, Anthony; Heuer, Matthias; Istratov, Andrei A.; Pickett, Matthew D.; Marcus, Mathew A.; Weber, Eicke R.

    2010-07-27

    The present invention relates to the internal gettering of impurities in semiconductors by metal alloy clusters. In particular, intermetallic clusters are formed within silicon, such clusters containing two or more transition metal species. Such clusters have melting temperatures below that of the host material and are shown to be particularly effective in gettering impurities within the silicon and collecting them into isolated, less harmful locations. Novel compositions for some of the metal alloy clusters are also described.

  3. Metallic bonding and cluster structure

    SciTech Connect

    Soler, Jose M.; Beltran, Marcela R.; Michaelian, Karo; Garzon, Ignacio L.; Ordejon, Pablo; Sanchez-Portal, Daniel

    2000-02-15

    Knowledge of the structure of clusters is essential to predict many of their physical and chemical properties. Using a many-body semiempirical Gupta potential (to perform global minimizations), and first-principles density functional calculations (to confirm the energy ordering of the local minima), we have recently found [Phys. Rev. Lett. 81, 1600 (1998)] that there are many intermediate-size disordered gold nanoclusters with energy near or below the lowest-energy ordered structure. This is especially surprising because we studied ''magic'' cluster sizes, for which very compact-ordered structures exist. Here, we show how the analysis of the local stress can be used to understand the physical origin of this amorphization. We find that the compact ordered structures, which are very stable for pair potentials, are destabilized by the tendency of metallic bonds to contract at the surface, because of the decreased coordination. The amorphization is also favored by the relatively low energy associated to bondlength and coordination disorder in metals. Although these are very general properties of metallic bonding, we find that they are especially important in the case of gold, and we predict some general trends in the tendency of metallic clusters towards amorphous structures. (c) 2000 The American Physical Society.

  4. Surface plasmon mode analysis of nanoscale metallic rectangular waveguide.

    PubMed

    Kong, Fanmin; Wu, Bae-Ian; Chen, Hongsheng; Kong, Jin Au

    2007-09-17

    A detailed study of guided modes in a nanoscale metallic rectangular waveguide is presented by using the effective dielectric constant approach. The guided modes, including both traditional waveguide mode and surface plasmon mode, are investigated for the silver rectangular waveguide. The mode evolution in narrow waveguide is also discussed with the emphasis on the dependence of mode dispersion with waveguide height. Finally, the red-shift of the cutoff wavelength of the fundamental mode is observed when the waveguide height decreases, contrary to the behavior of regular metallic waveguide with PEC boundary. The comprehensive analysis can provide some guideline in the design of subwavelength optical devices based on the dispersion characteristics of metallic rectangular bore.

  5. NMR probe of metallic states in nanoscale topological insulators.

    PubMed

    Koumoulis, Dimitrios; Chasapis, Thomas C; Taylor, Robert E; Lake, Michael P; King, Danny; Jarenwattananon, Nanette N; Fiete, Gregory A; Kanatzidis, Mercouri G; Bouchard, Louis-S

    2013-01-11

    A 125Te NMR study of bismuth telluride nanoparticles as a function of particle size revealed that the spin-lattice relaxation is enhanced below 33 nm, accompanied by a transition of NMR spectra from the single to the bimodal regime. The satellite peak features a negative Knight shift and higher relaxivity, consistent with core polarization from p-band carriers. Whereas nanocrystals follow a Korringa law in the range 140-420 K, micrometer particles do so only below 200 K. The results reveal increased metallicity of these nanoscale topological insulators in the limit of higher surface-to-volume ratios.

  6. Structure stability and spectroscopy of metal clusters

    SciTech Connect

    Not Available

    1993-01-01

    Theory based on self-consistent field-linear combinations of atomic orbitals-molecular orbital theory was applied to clusters. Four areas were covered: electronic structure, equilibrium geometries, and stability of charged clusters, interaction of metal clusters with H and halogen atoms, thermal stability of isolated clusters, and stability and optical properties of hetero-atomic clusters. (DLC)

  7. Improving proton therapy by metal-containing nanoparticles: nanoscale insights

    PubMed Central

    Schlathölter, Thomas; Eustache, Pierre; Porcel, Erika; Salado, Daniela; Stefancikova, Lenka; Tillement, Olivier; Lux, Francois; Mowat, Pierre; Biegun, Aleksandra K; van Goethem, Marc-Jan; Remita, Hynd; Lacombe, Sandrine

    2016-01-01

    The use of nanoparticles to enhance the effect of radiation-based cancer treatments is a growing field of study and recently, even nanoparticle-induced improvement of proton therapy performance has been investigated. Aiming at a clinical implementation of this approach, it is essential to characterize the mechanisms underlying the synergistic effects of nanoparticles combined with proton irradiation. In this study, we investigated the effect of platinum- and gadolinium-based nanoparticles on the nanoscale damage induced by a proton beam of therapeutically relevant energy (150 MeV) using plasmid DNA molecular probe. Two conditions of irradiation (0.44 and 3.6 keV/μm) were considered to mimic the beam properties at the entrance and at the end of the proton track. We demonstrate that the two metal-containing nanoparticles amplify, in particular, the induction of nanosize damages (>2 nm) which are most lethal for cells. More importantly, this effect is even more pronounced at the end of the proton track. This work gives a new insight into the underlying mechanisms on the nanoscale and indicates that the addition of metal-based nanoparticles is a promising strategy not only to increase the cell killing action of fast protons, but also to improve tumor targeting. PMID:27143877

  8. Instabilities of structured liquid metal geometries on nanoscale

    NASA Astrophysics Data System (ADS)

    Dong, Nanyi; Wu, Yueying; Fowlkes, Jason; Rack, Philip; Kondic, Lou

    2014-03-01

    Directed assembly on nanoscale is one of quickly growing fields in materials science, and understanding basic physical mechanisms that lead to formation of desired patterns is crucial for future progress. This contribution, motivated by the experiments carried out with structured metal geometries liquefied by laser irradiation, centers on formulating simple but realistic models that allow to reach this understanding. The model is based on long-wave limit of Navier-Stokes equations relevant to evolution of liquid metals. Liquid-solid interaction forces are included and we show that these are crucial for instability development. We carry out fully nonlinear simulations of the derived model, and find that the computational results are fully consistent with the experimental ones, thus confirming that the main feature of the experiments could be captured by a simplified continuum model. In addition, our simulations suggest that stochastic effects, possibly due to thermal noise, may play an important role. Supported by NSF Grant No. CBET-1235710

  9. Simple Methods for Production of Nanoscale Metal Oxide Films from Household Sources

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Baliss, Michelle S.; Hinman, Jordan J.; Ziegenhorn, John W.; Andrews, Mark J.; Stevenson, Keith J.

    2013-01-01

    Production of thin metal oxide films was recently explored as part of an outreach program with a goal of producing nanoscale structures with household items. Household items coated with various metals or titanium compounds can be heated to produce colorful films with nanoscale thicknesses. As part of a materials chemistry laboratory experiment…

  10. Simple Methods for Production of Nanoscale Metal Oxide Films from Household Sources

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Baliss, Michelle S.; Hinman, Jordan J.; Ziegenhorn, John W.; Andrews, Mark J.; Stevenson, Keith J.

    2013-01-01

    Production of thin metal oxide films was recently explored as part of an outreach program with a goal of producing nanoscale structures with household items. Household items coated with various metals or titanium compounds can be heated to produce colorful films with nanoscale thicknesses. As part of a materials chemistry laboratory experiment…

  11. Pillared-layer cluster organic frameworks constructed from nanoscale Ln10 and Cu16 clusters.

    PubMed

    Fang, Wei-Hui; Yang, Guo-Yu

    2014-06-02

    Two pillared-layer cluster organic frameworks, [Ln5(μ3-OH)4(μ-H2O)Cu8I8L11]·H2O (L = 4-pyridin-4-yl-benzoate; Ln = Dy(1), Eu(2)), have been made by employing lanthanide oxide and copper(I) halide as the source of lanthanide and transitional metal under hydrothermal condition. Compared to the pillared-layer frameworks constructed from heterometallic layers and organic pillars, these two compounds are derived from lanthanide cluster organic layers and copper(I) halide cluster motifs. Thus, there are two distinct types of inorganic metal connectors in the structure, one is hydroxo lanthanide [Ln10(μ3-OH)8](22+) (Ln10) cluster, and the other is copper(I) halide [Cu16I16] (Cu16) cluster. The rational assembly of these two inorganic connectors and organic linear linkers leads to the formation of the two complexes here. To the best of our knowledge, they appear to be the first 3D frameworks constructed from decanuclear hydroxo lanthanide clusters. From the topological point of view, these compounds represent an intriguing example of a binodal (8,14)-connected net considering the Ln10 and Cu16 connectors as the nodes, revealing that they are typical high dimensional frameworks with high connected net based on high nuclearity nodes. Furthermore, elemental analysis, IR, TGA, PXRD, and UV-vis properties are also studied.

  12. The equipment for the preparation of micro and nanoscale metallic glassy fibers.

    PubMed

    Ding, D W; Yi, J; Liu, G L; Sun, Y T; Zhao, D Q; Pan, M X; Bai, H Y; Wang, W H

    2014-10-01

    A supercooled liquid extraction method and apparatus for micro and nanoscale metallic glassy fiber preparation was developed. Using the fiber fabrication equipment, micro to nanoscale metallic glassy fibers with diameter ranging from 70 nm to 300 μm can be obtained by wire drawing in the supercooled liquid region of metallic glasses via superplastic deformation. The obtained metallic glassy fibers possess precisely designed and controlled sizes, high structural uniformity and high degree of surface smoothness.

  13. The equipment for the preparation of micro and nanoscale metallic glassy fibers

    NASA Astrophysics Data System (ADS)

    Ding, D. W.; Yi, J.; Liu, G. L.; Sun, Y. T.; Zhao, D. Q.; Pan, M. X.; Bai, H. Y.; Wang, W. H.

    2014-10-01

    A supercooled liquid extraction method and apparatus for micro and nanoscale metallic glassy fiber preparation was developed. Using the fiber fabrication equipment, micro to nanoscale metallic glassy fibers with diameter ranging from 70 nm to 300 μm can be obtained by wire drawing in the supercooled liquid region of metallic glasses via superplastic deformation. The obtained metallic glassy fibers possess precisely designed and controlled sizes, high structural uniformity and high degree of surface smoothness.

  14. Overcoming nanoscale friction barriers in transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Cammarata, Antonio; Polcar, Tomas

    2017-08-01

    We study the atomic contributions to the nanoscale friction in layered M X2 (M =Mo , W; X =S , Se, Te) transition metal dichalcogenides by combining ab initio techniques with group-theoretical analysis. Starting from stable atomic configurations, we propose a computational method, named normal-modes transition approximation (NMTA), to individuate possible sliding paths from only the analysis of the phonon modes of the stable geometry. The method provides a way to decompose the atomic displacements realizing the layer sliding in terms of phonon modes of the stable structure, so as to guide the selection and tuning of specific atomic motions promoting M X2 sheets gliding, and to adjust the corresponding energy barrier. The present results show that main contributions to the nanoscale friction are due to few low frequency phonon modes, corresponding to rigid shifts of M X2 layers. We also provide further evidences that a previously reported Ti-doped MoS2 phase is a promising candidate as new material with enhanced tribologic properties. The NMTA approach can be exploited to tune the energetic and the structural features of specific phonon modes, and, thanks to its general formulation, can also be applied to any solid state system, irrespective of the chemical composition and structural topology.

  15. Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface.

    PubMed

    Williamson, M J; Tromp, R M; Vereecken, P M; Hull, R; Ross, F M

    2003-08-01

    Dynamic processes at the solid-liquid interface are of key importance across broad areas of science and technology. Electrochemical deposition of copper, for example, is used for metallization in integrated circuits, and a detailed understanding of nucleation, growth and coalescence is essential in optimizing the final microstructure. Our understanding of processes at the solid-vapour interface has advanced tremendously over the past decade due to the routine availability of real-time, high-resolution imaging techniques yielding data that can be compared quantitatively with theory. However, the difficulty of studying the solid-liquid interface leaves our understanding of processes there less complete. Here we analyse dynamic observations--recorded in situ using a novel transmission electron microscopy technique--of the nucleation and growth of nanoscale copper clusters during electrodeposition. We follow in real time the evolution of individual clusters, and compare their development with simulations incorporating the basic physics of electrodeposition during the early stages of growth. The experimental technique developed here is applicable to a broad range of dynamic phenomena at the solid-liquid interface.

  16. Production of metal particles and clusters

    NASA Technical Reports Server (NTRS)

    Mcmanus, S. P.

    1982-01-01

    The feasibility of producing novel metals or metal clusters in a low gravity environment was studied. The production of coordinately unsaturated metal carbonyls by thermolysis or photolysis of stable metal carbonyls has the potential to generate novel catalysts by this technique. Laser irradiation of available metal carbonyls was investigated. It is found that laser induced decomposition of metal carbonyls is feasible for producing a variety of coordinately unsaturated species. Formation of clustered species does occur but is hampered by weak metal-metal bonds.

  17. The mechanical behavior of nanoscale metallic multilayers: A survey

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Xie, J. Y.; Wang, F.; Huang, P.; Xu, K. W.; Lu, T. J.

    2015-06-01

    The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces existing in the NMMs dictates the unique behavior of this special class of structural composite materials. While there have been a number of reviews on the mechanical mechanism of microlaminates, the rapid development of nanotechnology brought a pressing need for an overview focusing exclusively on a property-based definition of the NMMs, especially their size-dependent microstructure and mechanical performance. This article attempts to provide a comprehensive and up-to-date review on the microstructure, mechanical property and plastic deformation physics of NMMs. We hope this review could accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to scientists and engineers working on NMM systems, and (2) providing a better understanding of interface behavior and the exceptional qualities the interfaces in NMMs display at atomic scale.

  18. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    NASA Astrophysics Data System (ADS)

    Borghi, F.; Sogne, E.; Lenardi, C.; Podestà, A.; Merlini, M.; Ducati, C.; Milani, P.

    2016-08-01

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments.

  19. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    SciTech Connect

    Borghi, F.; Lenardi, C.; Podestà, A.; Milani, P.; Sogne, E.; Merlini, M.; Ducati, C.

    2016-08-07

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments.

  20. Carbon nanotube-metal cluster composites: a new road to chemical sensors?

    PubMed

    Zhao, Q; Buongiorno Nardelli, M; Lu, W; Bernholc, J

    2005-05-01

    Novel carbon nanotube-metal cluster structures are proposed as prototype systems for molecular recognition at the nanoscale. Ab initio calculations show that already the bare nanotube cluster system displays some specificity because the adsorption of ammonia on a carbon nanotube-Al cluster system is easily detected electrically, while diborane adsorption does not provide an electrical signature. Since there are well-established procedures for attaching molecular receptors to metal clusters, these results provide a "proof-of-principle" for the development of novel, high-specificity molecular sensors.

  1. Reactive cluster model of metallic glasses

    SciTech Connect

    Jones, Travis E.; Miorelli, Jonathan; Eberhart, Mark E.

    2014-02-28

    Though discovered more than a half century ago metallic glasses remain a scientific enigma. Unlike crystalline metals, characterized by short, medium, and long-range order, in metallic glasses short and medium-range order persist, though long-range order is absent. This fact has prompted research to develop structural descriptions of metallic glasses. Among these are cluster-based models that attribute amorphous structure to the existence of clusters that are incommensurate with crystalline periodicity. Not addressed, however, are the chemical factors stabilizing these clusters and promoting their interconnections. We have found that glass formers are characterized by a rich cluster chemistry that above the glass transformation temperature promotes exchange as well as static and vibronic sharing of atoms between clusters. The vibronic mechanism induces correlated motions between neighboring clusters and we hypothesize that the distance over which these motions are correlated mediates metallic glass stability and influences critical cooling rates.

  2. Quantum chemical treatments of metal clusters.

    PubMed

    Weigend, Florian; Ahlrichs, Reinhart

    2010-03-28

    This work focuses on finding and rationalizing the building principles of clusters with approximately 300 atoms of different types of metals: main group elements (Al, Sn), alkaline earth metals (Mg), transition metals (Pd) and clusters consisting of two different elements (Ir and Pt). Two tools are inevitable for this purpose: (i) quantum chemical methods that are able to treat a given cluster with both sufficient accuracy and efficiency and (ii) algorithms that are able to systematically scan the (3n-6)-dimensional potential surface of an n-atomic cluster for promising isomers. Currently, the only quantum chemical method that can be applied to metal clusters is density functional theory (DFT). Other methods either do not account for the multi-reference character of metal clusters or are too expensive and thus can be applied only to clusters of very few atoms, which usually is not sufficient for studying the building principles. The accuracy of DFT is not known a priori, but extrapolations to bulk values from calculated series of data show satisfying agreement with experimental data. For scans of the potential surface, simulated annealing techniques or genetic algorithms were used for the smaller clusters (approx. 20-30 atoms), and for the larger clusters considerations were restricted to selected packings and shapes. For the mixed-metallic clusters, perturbation theory turned out to be efficient and successful for finding the most promising distributions of the two atom types at the different sites.

  3. Optical Properties of Controlled Nanoscale Assemblies of Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Westcott, S. L.; Oldenburg, S. J.; Lee, T. R.; Halas, N. J.

    1998-03-01

    The optical response of a metal nanoparticle in an assembly of nanoparticles is affected by scattering from the other nanoparticles in the assembly. In general, this interaction leads to the appearance of lower energy peaks in the absorption spectrum with their location dependent on the geometry of the assembly(M. Quinten and U. Kreibig, Surface Science 172), 557 (1986).. We construct two types of assemblies using functionalized silica nanoparticles as substrates for the immobilization of metal nanoparticles. First, surprisingly monodisperse clusters of small gold nanoparticles spontaneously form and attach to the silica nanoparticles under appropriate solvent conditions. Second, controlled aggregates of metal nanoparticles are synthesized using bifunctional molecular linkers in a step-by-step procedure. The distances between the constituent metallic nanoparticles, as well as the electronic properties of the region between the nanoparticles, are controlled by the choice of bifunctional molecular linker. As a result of either assembly method, metallic nanoparticles can be brought sufficiently close to each other so that interactions may be observed.

  4. Development of Metal Cluster-Based Energetic Materials

    NASA Astrophysics Data System (ADS)

    Lightstone, James; Hooper, Joseph; Stoltz, Chad; Wilson, Becca; Mayo, Dennis; Eichhorn, Bryan; Bowen, Kit

    2011-06-01

    The energy available from the combustion of Al is 2 to 3 times that of conventional high explosives and as a result is often loaded into explosive and propellant formulations in micron and nano-particle form. However, even at the nano-scale the release of energy is slowed by the reaction kinetics of particle oxidation. In order to realize faster reaction rates, on the order of current CHNO explosives, the size of the particles of interest need to be reduced significantly into the molecular size-range (10's of atoms). Current research efforts at NSWC-IHD are utilizing gas-phase molecular beam studies, theoretical calculations, and condensed-phase production methods to identify novel metal cluster systems in which passivated metal clusters make up the subunit of a molecular metal-based energetic material. To date, small amounts of a metal-based compound with a subunit containing four Al atoms and four Cp* ligands has been produced and is currently being characterized using DSC and TGA. Additional Al based systems passivated with a variety of organic ligands are being systematically examined. Analytical and theoretical results obtained for Al4Cp*4 and the additional cluster systems under investigation along with their potential energetic applications will be presented.

  5. Design and fabrication of memory devices based on nanoscale polyoxometalate clusters

    NASA Astrophysics Data System (ADS)

    Busche, Christoph; Vilà-Nadal, Laia; Yan, Jun; Miras, Haralampos N.; Long, De-Liang; Georgiev, Vihar P.; Asenov, Asen; Pedersen, Rasmus H.; Gadegaard, Nikolaj; Mirza, Muhammad M.; Paul, Douglas J.; Poblet, Josep M.; Cronin, Leroy

    2014-11-01

    Flash memory devices--that is, non-volatile computer storage media that can be electrically erased and reprogrammed--are vital for portable electronics, but the scaling down of metal-oxide-semiconductor (MOS) flash memory to sizes of below ten nanometres per data cell presents challenges. Molecules have been proposed to replace MOS flash memory, but they suffer from low electrical conductivity, high resistance, low device yield, and finite thermal stability, limiting their integration into current MOS technologies. Although great advances have been made in the pursuit of molecule-based flash memory, there are a number of significant barriers to the realization of devices using conventional MOS technologies. Here we show that core-shell polyoxometalate (POM) molecules can act as candidate storage nodes for MOS flash memory. Realistic, industry-standard device simulations validate our approach at the nanometre scale, where the device performance is determined mainly by the number of molecules in the storage media and not by their position. To exploit the nature of the core-shell POM clusters, we show, at both the molecular and device level, that embedding [(Se(IV)O3)2]4- as an oxidizable dopant in the cluster core allows the oxidation of the molecule to a [Se(V)2O6]2- moiety containing a {Se(V)-Se(V)} bond (where curly brackets indicate a moiety, not a molecule) and reveals a new 5+ oxidation state for selenium. This new oxidation state can be observed at the device level, resulting in a new type of memory, which we call `write-once-erase'. Taken together, these results show that POMs have the potential to be used as a realistic nanoscale flash memory. Also, the configuration of the doped POM core may lead to new types of electrical behaviour. This work suggests a route to the practical integration of configurable molecules in MOS technologies as the lithographic scales approach the molecular limit.

  6. Design and fabrication of memory devices based on nanoscale polyoxometalate clusters.

    PubMed

    Busche, Christoph; Vilà-Nadal, Laia; Yan, Jun; Miras, Haralampos N; Long, De-Liang; Georgiev, Vihar P; Asenov, Asen; Pedersen, Rasmus H; Gadegaard, Nikolaj; Mirza, Muhammad M; Paul, Douglas J; Poblet, Josep M; Cronin, Leroy

    2014-11-27

    Flash memory devices--that is, non-volatile computer storage media that can be electrically erased and reprogrammed--are vital for portable electronics, but the scaling down of metal-oxide-semiconductor (MOS) flash memory to sizes of below ten nanometres per data cell presents challenges. Molecules have been proposed to replace MOS flash memory, but they suffer from low electrical conductivity, high resistance, low device yield, and finite thermal stability, limiting their integration into current MOS technologies. Although great advances have been made in the pursuit of molecule-based flash memory, there are a number of significant barriers to the realization of devices using conventional MOS technologies. Here we show that core-shell polyoxometalate (POM) molecules can act as candidate storage nodes for MOS flash memory. Realistic, industry-standard device simulations validate our approach at the nanometre scale, where the device performance is determined mainly by the number of molecules in the storage media and not by their position. To exploit the nature of the core-shell POM clusters, we show, at both the molecular and device level, that embedding [(Se(IV)O3)2](4-) as an oxidizable dopant in the cluster core allows the oxidation of the molecule to a [Se(v)2O6](2-) moiety containing a {Se(V)-Se(V)} bond (where curly brackets indicate a moiety, not a molecule) and reveals a new 5+ oxidation state for selenium. This new oxidation state can be observed at the device level, resulting in a new type of memory, which we call 'write-once-erase'. Taken together, these results show that POMs have the potential to be used as a realistic nanoscale flash memory. Also, the configuration of the doped POM core may lead to new types of electrical behaviour. This work suggests a route to the practical integration of configurable molecules in MOS technologies as the lithographic scales approach the molecular limit.

  7. Probing nanoscale interactions on biocompatible cluster-assembled titanium oxide surfaces by atomic force microscopy.

    PubMed

    Vyas, Varun; Podestà, Alessandro; Milani, Paolo

    2011-06-01

    We report on the investigation of the adhesive properties of cluster-assembled nanostructured TiO(x) (ns-TiO(x)) films against a Si3N4 AFM tip, in air and in water. The interacting AFM tip apex represents a model nanometer-sized probe, carrying both silanol (Si-OH) and silamine (Si2-NH) groups: it is therefore well suited to investigate biologically relevant molecular interactions with the biocompatible ns-TiO(x) surface. Coupling nanosphere lithography with supersonic cluster beam deposition we produced sub-micrometer patterns of ns-TiO(x) on a reference amorphous silica surface. These devices are ideal platforms for conducting comparative nanoscale investigations of molecular interactions between surfaces and specific groups. We have found that in the aqueous medium the adhesion is enhanced on ns-TiO(x) with respect to amorphous silica, opposed to the case of humid air. A comparative analysis of the different interactions channels (van der Waals, electrostatic, chemical bonding) led to the conclusion that the key for understanding this behavior can be the ability of incoming nucleophiles like nitrogen or oxygen on the Si3N4 tip to displace adsorbed molecules on ns-TiO(x) and link to Ti atoms via co-ordinate (dative covalent) bonding. This effect is likely enhanced on nanostructured TiO(x) with respect to crystalline or micro-porous TiO2, due to the greatly increased effective area and porosity. This study provides a clue for the understanding of interaction mechanisms of proteins with biocompatible ns-TiO(x), and in general with metal-oxide surfaces.

  8. Surface deposition and encapsulation of metallic clusters

    NASA Astrophysics Data System (ADS)

    Hund, Jared Franklin

    In this work metallic clusters are produced by both encapsulation in an aerogel matrix and deposition on a surface. Entrapment of metal clusters inside aerogels is accomplished though synthesis of a hydrogel precursor, washing it with an aqueous metal salt solution, and controlled reduction of the metal. Although the aerogel matrix stabilizes and prevents subsequent loss or aggregation of the clusters once they are produced, controlling the rate of reduction is key to the size and morphology of the clusters. In order to do this, both radiolytic and chemical reduction methods are used. The radiolytic technique for the formation of metal cluster aerogel composites utilizes gamma radiation to reduce the solution of Ag+ or [AuCl 4]- ions inside of the hydrogel precursor. After exposure to gamma rays, the previously colorless gels have the coloration typical of colloids of Au (pink) and Ag (yellow/brown) clusters. Typical gamma doses are between 2 to 3.5 kGy for hydrogels containing 10-4 to 10-3 mol·L-1 metal solutions. Subsequent characterization confirmed the presence of metal clusters with a fcc structure. The cluster diameters varied between 10 and 200nm, depending on the synthesis parameters. More conventional chemical reduction is also employed in this work to produce noble metal clusters in an aerogel matrix. Hydrogels were washed in a basic solution of Ag+ or [AuCl4]- ions, and formaldehyde was added to the solution. The reduction proceeded relatively slowly, allowing the formaldehyde to diffuse into the hydrogel before complete reduction took place. This procedure was also used to produce alloys of gold and silver clusters embedded in silica aerogels. Also included in this dissertation is the surface deposition of metallic clusters on a silicon surface. The apparatus built produces a cold beam of gas droplets that pick up evaporated metal clusters and deposit them on a surface. The gas clusters are produced by supersonic expansion of a gas (Ar, He, or N2

  9. Nanoscale strengthening mechanisms in metallic thin film systems

    NASA Astrophysics Data System (ADS)

    Schoeppner, Rachel Lynn

    Nano-scale strengthening mechanisms for thin films were investigated for systems governed by two different strengthening techniques: nano-laminate strengthening and oxide dispersion strengthening. Films were tested under elevated temperature conditions to investigate changes in deformation mechanisms at different operating temperatures, and the structural stability. Both systems exhibit remarkable stability after annealing and thus long-term reliability. Nano-scale metallic multilayers with smaller layer thicknesses show a greater relative resistance to decreasing strength at higher temperature testing conditions than those with larger layer thicknesses. This is seen in both Cu/Ni/Nb multilayers as well as a similar tri-component bi-layer system (Cu-Ni/Nb), which removed the coherent interface from the film. Both nanoindentation and micro-pillar compression tests investigated the strain-hardening ability of these two systems to determine what role the coherent interface plays in this mechanism. Tri-layer films showed a higher strain-hardening ability as the layer thickness decreased and a higher strain-hardening exponent than the bi-layer system: verifying the presence of a coherent interface increases the strain-hardening ability of these multilayer systems. Both systems exhibited hardening of the room temperature strength after annealing, suggesting a change in microstructure has occurred, unlike that seen in other multilayer systems. Oxide dispersion strengthened Au films showed a marked increase in hardness and wear resistance with the addition of ZnO particles. The threshold for stress-induced grain-refinement as opposed to grain growth is seen at concentrations of at least 0.5 vol%. These systems exhibited stable microstructures during thermal cycling in films containing at least 1.0%ZnO. Nanoindentation experiments show the drop in hardness following annealing is almost completely attributed to the resulting grain growth. Four-point probe resistivity

  10. STEM characterization of metal clusters in/on oxides

    NASA Astrophysics Data System (ADS)

    Mehraeen, Shareghe

    Dispersed metal clusters in or on a support matrix are key phenomenons in many technological fields. Two widely used examples of them which are investigated in this thesis are supported-metal clusters in heterogeneous catalysis and transition metal clusters in diluted magnetic semiconductors (DMS) applied in spintronics. The catalytic activity and selectivity of catalysts often depend sensitively on structure parameters, such as particles size and shape. With the same analogy, the magnetic properties of DMS oxides are sensitively related to the crystal defects of the host material as a consequence of doping the transition metal. Therefore it is essential to develop and understand the correlation between nanostructure and function of these materials. STEM Z-contrast imaging is the best candidate for this type of study because of a high degree of resolution it provides and the unique ability it offers to detect and differentiate between the clusters and oxide matrix due to the large difference between their atomic numbers. Moreover the technique development in the STEM field fosters the conjugation of electron energy Loss Spectroscopy (EELS) and Z-contrast imaging and their widespread use for nearly atomic level chemical analysis at interface, second phases, and isolated defects. The advanced preparation method of supported clusters catalysts which is by carbonyl ligands offers a controlled cluster size and shape. MgO-supported Os clusters and SiO2-supported Ta clusters prepared by this method are adsorbed on oxide to convert into single-sized supported metal aggregates. The last step of preparation method is by removal of the ligands (decarbonylation) which is very important because it determines the final size distribution and shape of such clusters. Reaching carbonylated decaosmium clusters with the size of theoretically 0.295 nm and the tetrahedral-shape geometry are the aim of the preparation method. The size distribution measurements of sub-nanoclusters of

  11. Mechanical Instability of Oxidized Metal Clusters

    NASA Astrophysics Data System (ADS)

    Celino, Massimo; Cleri, Fabrizio; D'Agostino, Gregorio; Rosato, Vittorio

    1996-09-01

    A mechanism to explain the complete oxidation of small metal clusters is proposed, based on the occurrence of a mechanical instability driven by the expansion of the progressively oxidized cluster surface and the subsequent stress relaxation. Molecular dynamics simulations of spherical Pd clusters show that an expanded surface layer is capable of straining the inner core of the cluster up to the point of inducing cavitation. These findings allow the interpretation of recent experimental results in which oxidized Pd clusters exhibit a hollow spherical shape.

  12. A Simple MO Treatment of Metal Clusters.

    ERIC Educational Resources Information Center

    Sahyun, M. R. V.

    1980-01-01

    Illustrates how a qualitative description of the geometry and electronic characteristics of homogeneous metal clusters can be obtained using semiempirical MO (molecular orbital theory) methods. Computer applications of MO methods to inorganic systems are also described. (CS)

  13. Dynamic Mg2B8 Cluster: A Nanoscale Compass.

    PubMed

    Zhai, Hua-Jin; Wang, Ying-Jin; Feng, Lin-Yan; Guo, Jin-Chang

    2017-09-26

    Boron-based binary cluster Mg2B8 is shown to adopt a compass-like structure via computational global searches, featuring an Mg2 dimer as the needle and a disk-shaped B8 molecular wheel as baseplate. The nanocompass has a diameter of 0.35 nm. Born-Oppenheimer molecular dynamics simulations indicate that Mg2B8 is structurally fluxional with the needle rotating freely on the baseplate, analogous to a functioning compass. The dynamics is readily initiated via a ultrasoft vibrational mode. The rotational barrier is only 0.1 kcal mol-1 at the single-point CCSD(T) level. Chemical bonding analysis suggests that the cluster compass can be formulated as [Mg2]2+[B8]2-; that is, the baseplate and the needle are held together primarily through ionic interactions. The baseplate is doubly aromatic with pi and sigma sextets. The bonding pattern provides dilute, continuous, and delocalized electron cloud, which underlies the dynamics of the nanocompass. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Imaging Mass Spectrometry on the Nanoscale with Cluster Ion Beams

    DOE PAGES

    Winograd, Nicholas

    2014-12-02

    Imaging with cluster secondary ion mass spectrometry (SIMS) is reaching a mature level of development. When, using a variety of molecular ion projectiles to stimulate desorption, 3-dimensional imaging with the selectivity of mass spectrometry can now be achieved with submicrometer spatial resolution and <10 nm depth resolution. In this Perspective, stock is taken regarding what it will require to routinely achieve these remarkable properties. Some issues include the chemical nature of the projectile, topography formation, differential erosion rates, and perhaps most importantly, ionization efficiency. Shortcomings of existing instrumentation are also noted. One key part of this discussion involves speculation onmore » how best to resolve these issues.« less

  15. The magic numbers of metal and metal alloy clusters

    SciTech Connect

    Yamada, Y.; Castleman, A.W. Jr. )

    1992-09-15

    Pure metal and metal alloy clusters including Cu{sub {ital n}}, Ag{sub {ital n}}, Cu{sub {ital n}}Ag{sub {ital m}}, Cu{sub {ital n}}Al{sub {ital m}}, Cu{sub {ital n}}In{sub {ital m}}, Ag{sub {ital n}}Al{sub {ital m}}, Ag{sub {ital n}}In{sub {ital m}}, and Cu{sub {ital n}}Pb{sub {ital m}} are produced by a gas aggregation source and investigated by time-of-flight mass spectrometry following ionization with a KrF excimer laser. In the case of pure metal clusters (Cu{sub {ital n}},Ag{sub {ital n}},In{sub {ital n}}), as well as alloy clusters composed of these metals, magic numbers are observed in their cluster ions which correspond to jellium shell closings (counting the total valence electrons from the component metals). These findings are in good agreement with their expected free-electron behavior. Interestingly, the abundance of pure Pb{sub {ital n}}{sup +} corresponds to species which are expected to be especially stable due to their geometric structure. A similar situation also arises for the Pb-rich alloy clusters. By contrast, the metal alloy clusters Cu{sub {ital n}}Pb{sub {ital m}}{sup +} show magic numbers at jellium shell closing in the series of Cu-rich clusters.

  16. Molecular dynamics simulation of nanoscale surface diffusion of heterogeneous adatoms clusters

    NASA Astrophysics Data System (ADS)

    Muhammad, Imran; Fayyaz, Hussain; Muhammad, Rashid; Muhammad, Ismail; Hafeez, Ullah; Yongqing, Cai; M Arshad, Javid; Ejaz, Ahmad; S, A. Ahmad

    2016-07-01

    Molecular dynamics simulation employing the embedded atom method potential is utilized to investigate nanoscale surface diffusion mechanisms of binary heterogeneous adatoms clusters at 300 K, 500 K, and 700 K. Surface diffusion of heterogeneous adatoms clusters can be vital for the binary island growth on the surface and can be useful for the formation of alloy-based thin film surface through atomic exchange process. The results of the diffusion process show that at 300 K, the diffusion of small adatoms clusters shows hopping, sliding, and shear motion; whereas for large adatoms clusters (hexamer and above), the diffusion is negligible. At 500 K, small adatoms clusters, i.e., dimer, show almost all possible diffusion mechanisms including the atomic exchange process; however no such exchange is observed for adatoms clusters greater than dimer. At 700 K, the exchange mechanism dominates for all types of clusters, where Zr adatoms show maximum tendency and Ag adatoms show minimum or no tendency toward the exchange process. Separation and recombination of one or more adatoms are also observed at 500 K and 700 K. The Ag adatoms also occupy pop-up positions over the adatoms clusters for short intervals. At 700 K, the vacancies are also generated in the vicinity of the adatoms cluster, vacancy formation, filling, and shifting can be observed from the results.

  17. Young star cluster evolution and metallicity .

    NASA Astrophysics Data System (ADS)

    Mapelli, M.; Bressan, A.

    Young star clusters (SCs) are the cradle of stars and the site of important dynamical processes. We present N-body simulations of young SCs including recipes for metal-dependent stellar evolution and mass loss by stellar winds. We show that metallicity affects significantly the collapse and post-core collapse phase, provided that the core collapse timescale is of the same order of magnitude as the lifetime of massive stars. In particular, the reversal of core collapse is faster for metal-rich SCs, where stellar winds are stronger. As a consequence, the half-mass radius of metal-poor SCs expands more than that of metal-rich SCs.

  18. Metal-organic frameworks as templates for nanoscale NaAlH4.

    PubMed

    Bhakta, Raghunandan K; Herberg, Julie L; Jacobs, Benjamin; Highley, Aaron; Behrens, Richard; Ockwig, Nathan W; Greathouse, Jeffery A; Allendorf, Mark D

    2009-09-23

    Metal-organic frameworks (MOFs) offer an attractive alternative to traditional hard and soft templates for nanocluster synthesis because their ordered crystalline lattice provides a highly controlled and inherently understandable environment. We demonstrate that MOFs are stable hosts for metal hydrides proposed for hydrogen storage and their reactive precursors, providing platform to test recent theoretical predictions that some of these materials can be destabilized with respect to hydrogen desorption by reducing their critical dimension to the nanoscale. With the MOF HKUST-1 as template, we show that NaAlH(4) nanoclusters as small as eight formula units can be synthesized. The confinement of these clusters within the MOF pores dramatically accelerates the desorption kinetics, causing decomposition to occur at approximately 100 degrees C lower than bulk NaAlH(4). However, using simultaneous thermogravimetric modulated beam mass spectrometry, we also show that the thermal decomposition mechanism of NaAlH(4) is complex and may involve processes such as nucleation and growth in addition to the normally assumed two-step chemical decomposition reactions.

  19. Metal-Organic Frameworks As Templates for Nanoscale NaAlH 4

    SciTech Connect

    Bhakta, Raghunandan K.; Herberg, Julie L.; Jacobs, Benjamin; Highley, Aaron; Behrens, Richard; Ockwig, Nathan W.; Greathouse, Jeffery A.; Allendorf, Mark D.

    2009-09-01

    Metal-organic frameworks (MOFs) offer an attractive alternative to traditional hard and soft templates for nanocluster synthesis because their ordered crystalline lattice provides a highly controlled and inherently understandable environment. We demonstrate that MOFs are stable hosts for metal hydrides proposed for hydrogen storage and their reactive precursors, providing platform to test recent theoretical predictions that some of these materials can be destabilized with respect to hydrogen desorption by reducing their critical dimension to the nanoscale. With the MOF HKUST-1 as template, we show that NaAlH4 nanoclusters as small as eight formula units can be synthesized. The confinement of these clusters within the MOF pores dramatically accelerates the desorption kinetics, causing decomposition to occur at ~100 °C lower than bulk NaAlH4. However, using simultaneous thermogravimetric modulated beam mass spectrometry, we also show that the thermal decomposition mechanism of NaAlH4 is complex and may involve processes such as nucleation and growth in addition to the normally assumed two-step chemical decomposition reactions.

  20. Nanoscale temperature sensor based on Fano resonance in metal-insulator-metal waveguide

    NASA Astrophysics Data System (ADS)

    Kong, Yan; Wei, Qi; Liu, Cheng; Wang, Shouyu

    2017-02-01

    In order to realize temperature measurements with high sensitivity using compact structure, a nanoscale metal-insulator-metal waveguide based sensor combining with Fano resonance is proposed in this paper. Sealed ethanol in resonant cavity is adopted to further improve sensing performance. Additionally, dual resonant cavity based configuration is designed to generate a Fano-based sharp and asymmetric spectrum, providing high figure of merit in measurements. Moreover, structural parameters are optimized considering both transmission rate and spectral peak width. Certified by numerical calculation, sensitivity of 0.36 nm/°C is acquired with the optimized structure, indicating the designed sensor can play an important role in the nano-integrated plasmonic devices for high-accurate temperature detection.

  1. Cluster Dynamics: Laying the Foundations for Tailoring the Design of Cluster Assembled Nanoscale Materials

    DTIC Science & Technology

    2009-11-30

    11/30/2009 4 . TITLE AND SUBTITLE Cluster Dynamics: Laying the Foundations for Tailoring the Design of Cluster Assembled Nanosclae Materials 5a...and such clusters are now termed “superatoms”.3- 4 , GP632 An example is depicted in Figure 1. Clusters having electron counts that correspond to...Castleman, Jr. Page 4 Final Report FA9550-07-1-0151 December 1, 2006 – November 30, 2009 Figure 1. Energy levels in atoms and clusters, outlining

  2. Structural evolution and metallicity of lead clusters

    NASA Astrophysics Data System (ADS)

    Götz, Daniel A.; Shayeghi, Armin; Johnston, Roy L.; Schwerdtfeger, Peter; Schäfer, Rolf

    2016-05-01

    The evolution of the metallic state in lead clusters and its structural implications are subject to ongoing discussions. Here we present molecular beam electric deflection studies of neutral PbN (N = 19-25, 31, 36, 54) clusters. Many of them exhibit dipole moments or anomalies of the polarizability indicating a non-metallic state. In order to resolve their structures, the configurational space is searched using the Pool Birmingham Cluster Genetic algorithm based on density functional theory. Spin-orbit effects on the geometries and dipole moments are taken into account by further relaxing them with two-component density functional theory. Geometries and dielectric properties from quantum chemical calculations are then used to simulate beam deflection profiles. Structures are assigned by the comparison of measured and simulated beam profiles. Energy gaps are calculated using time-dependent density functional theory. They are compared to Kubo gaps, which are an indicator of the metallicity in finite particles. Both, experimental and theoretical data suggest that lead clusters are not metallic up to at least 36 atoms.The evolution of the metallic state in lead clusters and its structural implications are subject to ongoing discussions. Here we present molecular beam electric deflection studies of neutral PbN (N = 19-25, 31, 36, 54) clusters. Many of them exhibit dipole moments or anomalies of the polarizability indicating a non-metallic state. In order to resolve their structures, the configurational space is searched using the Pool Birmingham Cluster Genetic algorithm based on density functional theory. Spin-orbit effects on the geometries and dipole moments are taken into account by further relaxing them with two-component density functional theory. Geometries and dielectric properties from quantum chemical calculations are then used to simulate beam deflection profiles. Structures are assigned by the comparison of measured and simulated beam profiles. Energy gaps

  3. Using Dynamic Quantum Clustering to Analyze Hierarchically Heterogeneous Samples on the Nanoscale

    SciTech Connect

    Hume, Allison; /Princeton U. /SLAC

    2012-09-07

    Dynamic Quantum Clustering (DQC) is an unsupervised, high visual data mining technique. DQC was tested as an analysis method for X-ray Absorption Near Edge Structure (XANES) data from the Transmission X-ray Microscopy (TXM) group. The TXM group images hierarchically heterogeneous materials with nanoscale resolution and large field of view. XANES data consists of energy spectra for each pixel of an image. It was determined that DQC successfully identifies structure in data of this type without prior knowledge of the components in the sample. Clusters and sub-clusters clearly reflected features of the spectra that identified chemical component, chemical environment, and density in the image. DQC can also be used in conjunction with the established data analysis technique, which does require knowledge of components present.

  4. Smaller is Plastic: Polymorphic Structures and Mechanism of Deformation in Nanoscale hcp Metals.

    PubMed

    Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V

    2015-06-10

    Using first-principles calculations, we establish the existence of highly stable polymorphs of hcp metals (Ti, Mg, Be, La and Y) with nanoscale structural periodicity. They arise from heterogeneous deformation of the hcp structure occurring in response to large shear stresses localized at the basal planes separated by a few nanometers. Through Landau theoretical analysis, we show that their stability derives from nonlinear coupling between strains at different length scales. Such multiscale hyperelasticity and long-period structures constitute a new mechanism of size-dependent plasticity and its enhancement in nanoscale hcp metals.

  5. Hybrid nanostructures using pi-conjugated polymers and nanoscale metals: synthesis, characteristics, and optoelectronic applications.

    PubMed

    Park, Dong Hyuk; Kim, Mi Suk; Joo, Jinsoo

    2010-07-01

    Pi-conjugated organic systems have been used as optoelectronic and sensing materials due to their characteristics of efficient light emission or absorption, and p-type charge transport. The hybrid nanostructures of pi-conjugated organic systems with nanoscale metals offer surface plasmon (SP)-enhanced luminescence, which can be applied to organic-based optoelectronics, photonics, and sensing. Various hybrid nanostructures using light-emitting polymers with nanoscale metals have been fabricated and have shown considerable enhancement of photoluminescence efficiency due to energy and charge transfer effects in SP resonance coupling. In this tutorial review, recent conceptual and technological achievements in light-emitting polymers-based hybrid nanostructures are described.

  6. Nanoscale structural evolution of electrically driven insulator to metal transition in vanadium dioxide

    SciTech Connect

    Freeman, Eugene Shukla, Nikhil; Datta, Suman; Stone, Greg; Engel-Herbert, Roman; Gopalan, Venkatraman; Paik, Hanjong; Moyer, Jarrett A.; Cai, Zhonghou; Wen, Haidan; Schlom, Darrell G.

    2013-12-23

    The structural evolution of tensile strained vanadium dioxide thin films was examined across the electrically driven insulator-to-metal transition by nanoscale hard X-ray diffraction. A metallic filament with rutile (R) structure was found to be the dominant conduction pathway for an electrically driven transition, while the majority of the channel area remained in the monoclinic M1 phase. The filament dimensions were estimated using simultaneous electrical probing and nanoscale X-ray diffraction. Analysis revealed that the width of the conducting channel can be tuned externally using resistive loads in series, enabling the M1/R phase ratio in the phase coexistence regime to be tuned.

  7. Supersonic Bare Metal Cluster Beams. Final Report

    DOE R&D Accomplishments Database

    Smalley, R. E.

    1997-10-14

    A major portion of the project involved elucidating the relation between reactivity and the electronic structure of transition-metal (TM) clusters of 2--200 atoms, which required the construction and continuous development of two principal apparati; the Fourier Transform-Ion Cyclotron Resonance (FT-ICR) apparatus, and Ultraviolet Photoelectron Spectroscopy (UPS). Together, these machines have enabled the most detailed probing of the structure and chemical reactivity of TM clusters. Clusters of all the transition metals were included in these studies. Fundamental aspects in chemisorption, reactivity, and heterogeneous catalysis have also become better understood as a result of these experiments for important classes of systems such as H{sub 2}, CO, and CO{sub 2} adsorbed onto clusters of many of the metals listed above. In particular, a correlation was found between reactivity of H{sub 2} with Fe, Co, and Ni clusters and differences between the cluster IP and EA. As recounted in a previous technical report, the DOE`s role in the initial discovery of fullerenes at Rice was central, and from the start investigations were made into metal atoms trapped in the fullerenes cage. More recently, the authors have discovered that 2--4 atoms of La, Y, or Sc can be produced by laser vaporization of composite graphite/metal-oxide disks. This work was largely motivated by the prospects of using such endohedral TM metals for their catalytic activity without the well-known difficulties of effective support media and lack of control over particle size. Thus, while it will certainly be important to discover ways to efficiently scale up production (e.g., the solar generation method explored with DOE support), the efforts have concentrated more on characterization, purification, and manipulation of doped fullerenes. For the past two years, much of the group`s effort has involved the production, purification, and characterization of carbon nanotubes.

  8. (Electronic structure and reactivities of transition metal clusters)

    SciTech Connect

    Not Available

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  9. Synthesis, characterization and catalytic application of nanoscale metal and metal oxide heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Xue

    Nanoscale metals or metal oxides with high surface area to volume ratios have been widely used as catalysts for various chemical reactions. A major challenge to utilize metal nanocatalysts commercially is their tendency to sinter under working reaction conditions. To overcome this, much research is being done to anchor metal nanocatalysts on various supports to prevent their agglomeration. Mesoporous silica, SBA-15 is an attractive support material candidate because of its high surface area, stable structure and chemical inertness. Scientists have anchored metal nanocatalysts onto the pore of SBA-15 and observed some improvement in the stability. However, the interactions between the nanocatalysts and SBA-15 are relatively weak and sintering still occurs resulting in a loss of activity. In order to impart enhanced robustness, a new type of stable metal/SBA-15 nanocomposite has been prepared by intercalating metal nanoparticles into the walls of mesoporous silica SBA-15 by a unique synthetic strategy using metal coordinating agents such as bis[3-(triethoxysilyl) propyl]-tetrasulfide (TESPTS). In this dissertation, systemic research on the preparation parameters and extension to other metals will be presented. The structure changes caused by addition of TESPTS to the preparation of mesoporous silica were investigated. The relationship between increasing amounts of TESPTS and the structural change was obtained. Afterwards, a new type of PdMS catalyst with Pd intercalated in the walls of SBA-15 was synthesized for the first time using a modified preparation pathway. These materials were characterized by N2 physisorption, X-ray diffraction, transmission electron microscopy and inductively coupled plasma. The PdMS system was utilized as an active and robust catalyst for Heck reactions. Notably, after the catalytic reaction, the PdMS catalysts maintained its reactivity and size without undergoing any agglomeration due to the stable nanocomposite structure. Carbon

  10. Engineered Bacterial Metal-binding Proteins for Nanoscale Self-assembly and heavy Metal Tolerance

    NASA Astrophysics Data System (ADS)

    Hall Sedlak, Ruth Amanda

    Implementing biological principles in material synthesis and assembly is one way to expand our abilities to efficiently assemble nanoscale materials and devices. Specifically, recent advances in identifying peptides that bind inorganic materials with high affinity and specificity has spurred investigation of protein models for nanoscale inorganic assembly. This dissertation presents the results of my studies of several E. coli proteins engineered to bind inorganic materials through simple peptide motifs. I demonstrate that these proteins modulate the self-assembly of DNA-based nanostructures and can introduce heavy metal tolerance into metal-sensitive bacteria. Chapter 2 explores use of the engineered F plasmid DNA relaxase/helicase TraI for the self-assembly of complex DNA-protein-gold nanostructures. The full-length protein is engineered with a gold binding motif at an internal permissive site (TraI369GBP1-7x), while a truncated version of TraI is engineered with the same gold binding motif at the C-terminus (TraI361GBP1-7x). Both constructs bind gold nanoparticles while maintaining their DNA binding activity, and transmission electron microscopy reveals TraI369GBP1-7x utilizes its non-specific DNA binding activity to decorate single-stranded and double-stranded DNA with gold nanoparticles. The self assembly principles demonstrated in this work will be fundamental to constructing higher ordered hybrid nanostructures through DNA-protein-nanoparticle interactions. Chapter 3 studies the effects of expressing inorganic binding peptides within cells. I identified a silver binding peptide that, when fused to the periplasmic maltose binding protein, protects E. coli from silver toxicity in batch culture and reduces silver ions to silver nanoparticles within the bacterial periplasm. Engineered metal-ion tolerant microorganisms such as this E. coli could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo

  11. Recent applications of liquid metals featuring nanoscale surface oxides

    NASA Astrophysics Data System (ADS)

    Neumann, Taylor V.; Dickey, Michael D.

    2016-05-01

    This proceeding describes recent efforts from our group to control the shape and actuation of liquid metal. The liquid metal is an alloy of gallium and indium which is non-toxic, has negligible vapor pressure, and develops a thin, passivating surface oxide layer. The surface oxide allows the liquid metal to be patterned and shaped into structures that do not minimize interfacial energy. The surface oxide can be selectively removed by changes in pH or by applying a voltage. The surface oxide allows the liquid metal to be 3D printed to form free-standing structures. It also allows for the liquid metal to be injected into microfluidic channels and to maintain its shape within the channels. The selective removal of the oxide results in drastic changes in surface tension that can be used to control the flow behavior of the liquid metal. The metal can also wet thin, solid films of metal that accelerates droplets of the liquid along the metal traces .Here we discuss the properties and applications of liquid metal to make soft, reconfigurable electronics.

  12. Magnetic properties of free metal clusters

    NASA Astrophysics Data System (ADS)

    Jiang, Wei

    In this dissertation, results of Stern-Gerlach type magnetic deflection experiments on Chromium, Iron, and Aluminum clusters consisting of ˜20-200 atoms are reported. These metal clusters were produced using a laser vaporization technique in helium, and their beams were formed using supersonic expansion into vacuum. Measurements of their magnetic deflections were conducted at temperature ranging from 50K to 250K and at various magnetic field strengths. Both Chromium and Iron clusters are found to behave in accordance with a superparamagnetic model and to have enhanced magnetism compared to their bulks. For Chromium clusters with N≥34, each cluster has at least two isomers with distinguishable magnetic moments at low temperatures. For Iron clusters with Tvib=55 K, some deviations from the superparamagnetic model were observed. Aluminum clusters with odd numbers of atoms exhibit paramagnetic properties at low temperatures, which are believed to be related to superconductivity. At temperatures as low as 55K, the predicted large diamagnetism of Al56 due to superconductivity was not observed, within our system's resolution.

  13. Nanoscale size effects in crystallization of metallic glass nanorods.

    PubMed

    Sohn, Sungwoo; Jung, Yeonwoong; Xie, Yujun; Osuji, Chinedum; Schroers, Jan; Cha, Judy J

    2015-09-01

    Atomistic understanding of crystallization in solids is incomplete due to the lack of appropriate materials and direct experimental tools. Metallic glasses possess simple metallic bonds and slow crystallization kinetics, making them suitable to study crystallization. Here, we investigate crystallization of metallic glass-forming liquids by in-situ heating metallic glass nanorods inside a transmission electron microscope. We unveil that the crystallization kinetics is affected by the nanorod diameter. With decreasing diameters, crystallization temperature decreases initially, exhibiting a minimum at a certain diameter, and then rapidly increases below that. This unusual crystallization kinetics is a consequence of multiple competing factors: increase in apparent viscosity, reduced nucleation probability and enhanced heterogeneous nucleation. The first two are verified by slowed grain growth and scatter in crystallization temperature with decreasing diameters. Our findings provide insight into relevant length scales in crystallization of supercooled metallic glasses, thus offering accurate processing conditions for predictable metallic glass nanomolding.

  14. Nanoscale etching and flattening of metals with ozone water.

    PubMed

    Hatsuki, Ryuji; Yamamoto, Takatoki

    2012-06-13

    Etchants used for metal etching are generally harmful to the environment. We propose an environmentally friendly method that uses ozone water to etch metals. We measured the dependencies of ozone water etching on the temperature and ozone concentration for several metals and evaluated the surface roughness of the etched surfaces. The etching rate was proportional to the dissolved ozone concentration, and the temperature and the surfaces were smoothed by etching.

  15. Micro/nanoscale patterning of nanostructured metal substrates for plasmonic applications.

    PubMed

    Shankar, S Shiv; Rizzello, Loris; Cingolani, Roberto; Rinaldi, Ross; Pompa, Pier Paolo

    2009-04-28

    The ability to precisely control the pattern of different metals at the micro- and nanoscale, along with their topology, has been demonstrated to be essential for many applications, ranging from material science to biomedical devices, electronics, and photonics. In this work, we show a novel approach, based on a combination of lithographic techniques and galvanic displacement reactions, to fabricate micro- and nanoscale patterns of different metals, with highly controlled surface roughness, onto a number of suitable substrates. We demonstrate the possibility to exploit such metal films to achieve significant fluorescence enhancement of nearby fluorophores, while maintaining accurate spatial control of the process, from submicron resolution to centimeter-sized features. These patterns may be also exploited for a wide range of applications, including SERS, solar cells, DNA microarray technology, hydrophobic/hydrophilic substrates, and magnetic devices.

  16. Plasmon single- and multi-quantum excitation in free metal clusters as seen by photoelectron spectroscopy

    SciTech Connect

    Andersson, T.; Zhang, C.; Rosso, A.; Bradeanu, I.; Svensson, S.; Bjoerneholm, O.; Legendre, S.; Maartensson, N.; Canton, S. E.; Tchaplyguine, M.; Oehrwall, G.; Sorensen, S. L.

    2011-03-07

    Plasmons are investigated in free nanoscale Na, Mg, and K metal clusters using synchrotron radiation-based x-ray photoelectron spectroscopy. The core levels for which the response from bulk and surface atoms can be resolved are probed over an extended binding energy range to include the plasmon loss features. In all species the features due to fundamental plasmons are identified, and in Na and K also those due to either the first order plasmon overtones or sequential plasmon excitation are observed. These features are discussed in view of earlier results for planar macroscopic samples and free clusters of the same materials.

  17. Striped nanoscale phase separation at the metal-insulator transition of heteroepitaxial nickelates.

    PubMed

    Mattoni, G; Zubko, P; Maccherozzi, F; van der Torren, A J H; Boltje, D B; Hadjimichael, M; Manca, N; Catalano, S; Gibert, M; Liu, Y; Aarts, J; Triscone, J-M; Dhesi, S S; Caviglia, A D

    2016-11-02

    Nucleation processes of mixed-phase states are an intrinsic characteristic of first-order phase transitions, typically related to local symmetry breaking. Direct observation of emerging mixed-phase regions in materials showing a first-order metal-insulator transition (MIT) offers unique opportunities to uncover their driving mechanism. Using photoemission electron microscopy, we image the nanoscale formation and growth of insulating domains across the temperature-driven MIT in NdNiO3 epitaxial thin films. Heteroepitaxy is found to strongly determine the nanoscale nature of the phase transition, inducing preferential formation of striped domains along the terraces of atomically flat stepped surfaces. We show that the distribution of transition temperatures is a local property, set by surface morphology and stable across multiple temperature cycles. Our data provide new insights into the MIT of heteroepitaxial nickelates and point to a rich, nanoscale phenomenology in this strongly correlated material.

  18. Striped nanoscale phase separation at the metal-insulator transition of heteroepitaxial nickelates

    NASA Astrophysics Data System (ADS)

    Mattoni, G.; Zubko, P.; Maccherozzi, F.; van der Torren, A. J. H.; Boltje, D. B.; Hadjimichael, M.; Manca, N.; Catalano, S.; Gibert, M.; Liu, Y.; Aarts, J.; Triscone, J.-M.; Dhesi, S. S.; Caviglia, A. D.

    2016-11-01

    Nucleation processes of mixed-phase states are an intrinsic characteristic of first-order phase transitions, typically related to local symmetry breaking. Direct observation of emerging mixed-phase regions in materials showing a first-order metal-insulator transition (MIT) offers unique opportunities to uncover their driving mechanism. Using photoemission electron microscopy, we image the nanoscale formation and growth of insulating domains across the temperature-driven MIT in NdNiO3 epitaxial thin films. Heteroepitaxy is found to strongly determine the nanoscale nature of the phase transition, inducing preferential formation of striped domains along the terraces of atomically flat stepped surfaces. We show that the distribution of transition temperatures is a local property, set by surface morphology and stable across multiple temperature cycles. Our data provide new insights into the MIT of heteroepitaxial nickelates and point to a rich, nanoscale phenomenology in this strongly correlated material.

  19. Electrophobic interaction induced impurity clustering in metals

    SciTech Connect

    Zhou, Hong-Bo; Wang, Jin-Long; Jiang, W.; Lu, Guang-Hong; Aguiar, J. A.; Liu, Feng

    2016-10-01

    We introduce the concept of electrophobic interaction, analogous to hydrophobic interaction, for describing the behavior of impurity atoms in a metal, a 'solvent of electrons'. We demonstrate that there exists a form of electrophobic interaction between impurities with closed electron shell structure, which governs their dissolution behavior in a metal. Using He, Be and Ar as examples, we predict by first-principles calculations that the electrophobic interaction drives He, Be or Ar to form a close-packed cluster with a clustering energy that follows a universal power-law scaling with the number of atoms (N) dissolved in a free electron gas, as well as W or Al lattice, as Ec is proportional to (N2/3-N). This new concept unifies the explanation for a series of experimental observations of close-packed inert-gas bubble formation in metals, and significantly advances our fundamental understanding and capacity to predict the solute behavior of impurities in metals, a useful contribution to be considered in future material design of metals for nuclear, metallurgical, and energy applications.

  20. The structure of small metal clusters

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Pettersson, L. G. M.

    1986-01-01

    One metal atom surrounded by its 12 nearest neighbors is considered for both D(3d) (face-centered cubic-like) and D(3h) (hexagonal close-packed-like) geometries. For Al and Be, the neutral cluster and the positive and negative ions are considered for idealized (all bonds equal) and distorted geometries. The D(3d) geometry is found to be the lowest for Be13, while the D(3h) geometry is lower for Al13. This is the reverse of what is expected based upon the bulk metal structures, Be(hcp) and Al(fcc). Al13 is found to have only small distortions, while Be13 shows large distortions for both the D(3d) and D(3h) geometries. The ions have geometries which are similar to those found for the neutral systems. Both all-electron and effective core potential calculations were carried out on the X13 clusters; the agreement is very good.

  1. Magnetic impurities in small metal clusters

    NASA Astrophysics Data System (ADS)

    Pastor, G. M.

    2005-09-01

    [Dedicated to Bernhard Mühlschlegel on the occasion of his 80th birthday]Magnetic impurities in small metallic clusters are investigated in the framework of the Anderson model by using exact diagonalization and geometry optimization methods.The singlet-triplet spin gap E shows a remarkable dependence as a function of band-filling, cluster structure, and impurity position that can be interpreted in terms of the environment-specific conduction-electron spectrum. The low-energy spin excitations involve similar energies as isomerizations. Interesting correlations between cluster structure and magnetic behavior are revealed. Finite-temperature properties such as specific heat, effective impurity moment, and magnetic susceptibility are calculated exactly in the canonical ensemble. A finite-size equivalent of the Kondo effect is identified and its structural dependence is discussed.

  2. Spectroscopy at metal cluster surfaces. Annual report, Year 2

    SciTech Connect

    Duncan, M.A.

    1995-08-01

    The focus of our research program is the study of gas phase metal clusters to evaluate their potential to model fundamental interactions present on metal surfaces. To do this, we characterize the chemical bonding present between the component atoms in metal clusters as well as the bonding exhibited by ``physisorption`` on cluster surfaces. Electronic spectra, vibrational frequencies and bond neutral and ionized clusters with a variety of laser/mass spectrometry techniques. We are particularly interested in bimetallic cluster systems, and how their properties compare to those of corresponding pure metal clusters.

  3. Structure stability and spectroscopy of metal clusters. Progress report

    SciTech Connect

    Not Available

    1993-06-01

    Theory based on self-consistent field-linear combinations of atomic orbitals-molecular orbital theory was applied to clusters. Four areas were covered: electronic structure, equilibrium geometries, and stability of charged clusters, interaction of metal clusters with H and halogen atoms, thermal stability of isolated clusters, and stability and optical properties of hetero-atomic clusters. (DLC)

  4. Dynamics of transition-metal clusters

    NASA Astrophysics Data System (ADS)

    Sawada, S.; Sugano, S.

    1989-03-01

    The atomic structure and thermodynamic properties of transition-metal 6- and 7-atom clusters are investigated using the molecular dynamics method, where Gupta's potential taking into account many-body interaction is employed. The caloric and the structural fluctuations are studied. The “fluctuating state” is found for N=6 in the region of the temperature near and below the melting point, where clusters undergo structural transition from one isomer to others without making any topological change. The fluctuating state differs from the “coexistence state” found in Ar clusters [1] i.e. the former involves no liquid state. In the liquid state the motion of atom-permutation occurs besides the breathing motion. On the other hand, the fluctuating state is not found for N=7 but only the motion of atom-permutation in the liquid state. The coexistence state is found in both cases of 6- and 7-atom clusters. We also discuss a possibility of larger clusters displaying the fluctuating state.

  5. Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal.

    PubMed

    Pei, Allen; Zheng, Guangyuan; Shi, Feifei; Li, Yuzhang; Cui, Yi

    2017-02-08

    Lithium metal has re-emerged as an exciting anode for high energy lithium-ion batteries due to its high specific capacity of 3860 mAh g(-1) and lowest electrochemical potential of all known materials. However, lithium has been plagued by the issues of dendrite formation, high chemical reactivity with electrolyte, and infinite relative volume expansion during plating and stripping, which present safety hazards and low cycling efficiency in batteries with lithium metal electrodes. There have been a lot of recent studies on Li metal although little work has focused on the initial nucleation and growth behavior of Li metal, neglecting a critical fundamental scientific foundation of Li plating. Here, we study experimentally the morphology of lithium in the early stages of nucleation and growth on planar copper electrodes in liquid organic electrolyte. We elucidate the dependence of lithium nuclei size, shape, and areal density on current rate, consistent with classical nucleation and growth theory. We found that the nuclei size is proportional to the inverse of overpotential and the number density of nuclei is proportional to the cubic power of overpotential. Based on this understanding, we propose a strategy to increase the uniformity of electrodeposited lithium on the electrode surface.

  6. Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal

    DOE PAGES

    Pei, Allen; Zheng, Guangyuan; Shi, Feifei; ...

    2017-01-10

    Lithium metal has re-emerged as an exciting anode for high energy lithium-ion batteries due to its high specific capacity of 3860 mAh g-1 and lowest electrochemical potential of all known materials. However, lithium has been plagued by the issues of dendrite formation, high chemical reactivity with electrolyte, and infinite relative volume expansion during plating and stripping, which present safety hazards and low cycling efficiency in batteries with lithium metal electrodes. There have been a lot of recent studies on Li metal although little work has focused on the initial nucleation and growth behavior of Li metal, neglecting a critical fundamentalmore » scientific foundation of Li plating. Here, we study experimentally the morphology of lithium in the early stages of nucleation and growth on planar copper electrodes in liquid organic electrolyte. We elucidate the dependence of lithium nuclei size, shape, and areal density on current rate, consistent with classical nucleation and growth theory. We found that the nuclei size is proportional to the inverse of overpotential and the number density of nuclei is proportional to the cubic power of overpotential. Finally, based on this understanding, we propose a strategy to increase the uniformity of electrodeposited lithium on the electrode surface.« less

  7. A high fat diet containing saturated but not unsaturated fatty acids enhances T cell receptor clustering on the nanoscale.

    PubMed

    Shaikh, Saame Raza; Boyle, Sarah; Edidin, Michael

    2015-09-01

    Cell culture studies show that the nanoscale lateral organization of surface receptors, their clustering or dispersion, can be altered by changing the lipid composition of the membrane bilayer. However, little is known about similar changes in vivo, which can be effected by changing dietary lipids. We describe the use of a newly developed method, k-space image correlation spectroscopy, kICS, for analysis of quantum dot fluorescence to show that a high fat diet can alter the nanometer-scale clustering of the murine T cell receptor, TCR, on the surface of naive CD4(+) T cells. We found that diets enriched primarily in saturated fatty acids increased TCR nanoscale clustering to a level usually seen only on activated cells. Diets enriched in monounsaturated or n-3 polyunsaturated fatty acids had no effect on TCR clustering. Also none of the high fat diets affected TCR clustering on the micrometer scale. Furthermore, the effect of the diets was similar in young and middle aged mice. Our data establish proof-of-principle that TCR nanoscale clustering is sensitive to the composition of dietary fat. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Nano-scale mechanisms of metal rhizostabilization in mine tailings

    NASA Astrophysics Data System (ADS)

    Chorover, J.; Rushforth, R. R.; Hayes, S.; Root, R.; Maier, R.

    2010-12-01

    Desert mine tailings pose significant health risks to proximal communities and ecosystems because metal-laden particles in the un-vegetated landscapes are readily transported via wind and water erosion. Therefore, establishment of a bioactive, vegetated cover and associated root mass can contribute significantly to site remediation. As a result of delivery to the subsurface of labile forms of reduced carbon, the incipient rhizosphere presents a bioactive zone where geochemical disequilibria are strongly influenced by root-microbe-metal-mineral interactions. Infusion of biota and carbon affect local mineral transformations and the associated speciation of toxic metal(loid)s. We investigated biogeochemical transformations in Pb and Zn containing mine tailings from Klondyke State Superfund site (AZ) as affected by phytostabilization. The research approach was to combine instrumented column experiments with molecular spectroscopy of the solid phase. Pb LIII-edge and Zn K-edge EXAFS spectroscopy, synchrotron-based XRF and XRD, and Raman microspectroscopy were employed to assess local coordination and mineralogy of Pb and Zn. Prior to plant introduction, contaminant Pb in the weathered surficial tailings was dominantly present in the minerals plumbojarosite (PbFe6(SO4)4(OH)12) and PbSO4, whereas Zn was dominantly present as hemimorphite (Zn4Si2O7(OH)2.H2O), Zn phyllosilicate, and ZnSO4(s). Column experiments showed that planted columns diminished pore water and effluent concentrations of both Pb and Zn, whereas transport of some other metals (e.g., Cu) was enhanced by complexation with dissolved organic matter. Spectroscopic studies of fine root tissues and root-microbe-metal associations revealed the formation of apparently biogenic Mn oxide plaques that were highly enriched in Zn and Pb.

  9. Nanoscale limitations in metal oxide electrocatalysts for oxygen evolution.

    PubMed

    Viswanathan, Venkatasubramanian; Pickrahn, Katie L; Luntz, Alan C; Bent, Stacey F; Nørskov, Jens K

    2014-10-08

    Metal oxides are attractive candidates for low cost, earth-abundant electrocatalysts. However, owing to their insulating nature, their widespread application has been limited. Nanostructuring allows the use of insulating materials by enabling tunneling as a possible charge transport mechanism. We demonstrate this using TiO2 as a model system identifying a critical thickness, based on theoretical analysis, of about ∼4 nm for tunneling at a current density of ∼1 mA/cm(2). This is corroborated by electrochemical measurements on conformal thin films synthesized using atomic layer deposition (ALD) identifying a similar critical thickness. We generalize the theoretical analysis deriving a relation between the critical thickness and the location of valence band maximum relative to the limiting potential of the electrochemical surface process. The critical thickness sets the optimum size of the nanoparticle oxide electrocatalyst and this provides an important nanostructuring requirement for metal oxide electrocatalyst design.

  10. Structural Signature of Plasticity Unveiled by Nano-Scale Viscoelastic Contact in a Metallic Glass

    PubMed Central

    Lu, Y. M.; Zeng, J. F.; Wang, S.; Sun, B. A.; Wang, Q.; Lu, J.; Gravier, S.; Bladin, J. J.; Wang, W. H.; Pan, M. X.; Liu, C. T.; Yang, Y.

    2016-01-01

    Room-temperature plasticity in metallic glasses (MGs) is commonly associated with local structural heterogeneity; however, direct observation of the subtle structural change caused by plasticity is vitally important but the data are extremely scarce. Based on dynamic atomic force microscopy (DAFM), here we show that plasticity-induced structural evolution in a Zr-Ni MG can be revealed via nano-scale viscoelastic contacts between an AFM tip and plastically deformed MG surface layers. Our experimental results clearly show a spatial amplification of the nano-scale structural heterogeneity caused by the distributed plastic flow, which can be linked to the limited growth, reorientation and agglomeration of some nano-scale energy-absorbing regions, which are reminiscent of the behavior of the defect-like regions with non-affine deformation as conceived in many theories and models. Furthermore, we are able to experimentally extract the thermodynamic properties of these nano-scale regions, which possess an energy barrier of 0.3–0.5 eV, about half of that for a typical shear transformation event that usually occurs at the onset of plasticity. The outcome of our current work sheds quantitative insights into the correlation between plasticity and structural heterogeneity in MGs. PMID:27383387

  11. Structural Signature of Plasticity Unveiled by Nano-Scale Viscoelastic Contact in a Metallic Glass

    NASA Astrophysics Data System (ADS)

    Lu, Y. M.; Zeng, J. F.; Wang, S.; Sun, B. A.; Wang, Q.; Lu, J.; Gravier, S.; Bladin, J. J.; Wang, W. H.; Pan, M. X.; Liu, C. T.; Yang, Y.

    2016-07-01

    Room-temperature plasticity in metallic glasses (MGs) is commonly associated with local structural heterogeneity; however, direct observation of the subtle structural change caused by plasticity is vitally important but the data are extremely scarce. Based on dynamic atomic force microscopy (DAFM), here we show that plasticity-induced structural evolution in a Zr-Ni MG can be revealed via nano-scale viscoelastic contacts between an AFM tip and plastically deformed MG surface layers. Our experimental results clearly show a spatial amplification of the nano-scale structural heterogeneity caused by the distributed plastic flow, which can be linked to the limited growth, reorientation and agglomeration of some nano-scale energy-absorbing regions, which are reminiscent of the behavior of the defect-like regions with non-affine deformation as conceived in many theories and models. Furthermore, we are able to experimentally extract the thermodynamic properties of these nano-scale regions, which possess an energy barrier of 0.3–0.5 eV, about half of that for a typical shear transformation event that usually occurs at the onset of plasticity. The outcome of our current work sheds quantitative insights into the correlation between plasticity and structural heterogeneity in MGs.

  12. Structural Signature of Plasticity Unveiled by Nano-Scale Viscoelastic Contact in a Metallic Glass.

    PubMed

    Lu, Y M; Zeng, J F; Wang, S; Sun, B A; Wang, Q; Lu, J; Gravier, S; Bladin, J J; Wang, W H; Pan, M X; Liu, C T; Yang, Y

    2016-07-07

    Room-temperature plasticity in metallic glasses (MGs) is commonly associated with local structural heterogeneity; however, direct observation of the subtle structural change caused by plasticity is vitally important but the data are extremely scarce. Based on dynamic atomic force microscopy (DAFM), here we show that plasticity-induced structural evolution in a Zr-Ni MG can be revealed via nano-scale viscoelastic contacts between an AFM tip and plastically deformed MG surface layers. Our experimental results clearly show a spatial amplification of the nano-scale structural heterogeneity caused by the distributed plastic flow, which can be linked to the limited growth, reorientation and agglomeration of some nano-scale energy-absorbing regions, which are reminiscent of the behavior of the defect-like regions with non-affine deformation as conceived in many theories and models. Furthermore, we are able to experimentally extract the thermodynamic properties of these nano-scale regions, which possess an energy barrier of 0.3-0.5 eV, about half of that for a typical shear transformation event that usually occurs at the onset of plasticity. The outcome of our current work sheds quantitative insights into the correlation between plasticity and structural heterogeneity in MGs.

  13. High Temperature In Situ Compression of Thermoplastically Formed Nano-scale Metallic Glass

    NASA Astrophysics Data System (ADS)

    Mridha, Sanghita; Arora, Harpreet Singh; Lefebvre, Joseph; Bhowmick, Sanjit; Mukherjee, Sundeep

    2017-01-01

    The mechanical behavior of nano-scale metallic glasses was investigated by in situ compression tests in a scanning electron microscope. Platinum-based metallic glass nano-pillars were fabricated by thermoplastic forming. The nano-pillars and corresponding bulk substrate were tested in compression over the range of room temperature to glass transition. Stress-strain curves of the nano-pillars were obtained along with in situ observation of their deformation behavior. The bulk substrate as well as nano-pillars showed an increase in elastic modulus with temperature which is explained by diffusive rearrangement of atomic-scale viscoelastic units.

  14. Analysis of self-propagating intermetallic reaction in nanoscale multilayers of binary metals

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungjin

    2017-03-01

    Nanoscale multilayers of two different metals could exhibit super-fast intermetallic reaction wave that accompanies high level of exothermic heat release, while additional advantage is a very small ignition delay. They could be a promising candidate for the core technology in realizing micron-sized initiation device for explosives detonation or propellants ignition in various defense and civilian applications. This numerical investigation focuses on the numerical modeling and computations of the ignition and self-propagating reaction behaviors in nanoscale intermetallic multilayer structures made of alternating binary metal layers of boron and titanium. Due to thin film nature of metallic multilayers, intermetallic reaction propagation across the repeating bimetallic multilayers is approximated to the one-dimensional transient model of thermal diffusion and atomic species diffusion, and the intermetallic reaction between two metal species is assumed to follow Arrhenius dependence on temperature. The computational results show the details of ignition and propagation characteristics of intermetallic reaction wave by evaluating and discussing the effects of key parameters, such as multilayer thickness, excess of one metal species, and presence of atomic premixing at interface of boron and titanium layers, on ignition delay and propagation speed of self-sustaining reaction wave.

  15. Investigating Deformation and Failure Mechanisms in Nanoscale Multilayer Metallic Composites

    SciTech Connect

    Zbib, Hussein M.; Bahr, David F.

    2014-10-22

    Over the history of materials science there are many examples of materials discoveries that have made superlative materials; the strongest, lightest, or toughest material is almost always a goal when we invent new materials. However, often these have been a result of enormous trial and error approaches. A new methodology, one in which researchers design, from the atoms up, new ultra-strong materials for use in energy applications, is taking hold within the science and engineering community. This project focused on one particular new classification of materials; nanolaminate metallic composites. These materials, where two metallic materials are intimately bonded and layered over and over to form sheets or coatings, have been shown over the past decade to reach strengths over 10 times that of their constituents. However, they are not yet widely used in part because while extremely strong (they don’t permanently bend), they are also not particularly tough (they break relatively easily when notched). Our program took a coupled approach to investigating new materials systems within the laminate field. We used computational materials science to explore ways to institute new deformation mechanisms that occurred when a tri-layer, rather than the more common bi-layer system was created. Our predictions suggested that copper-nickel or copper-niobium composites (two very common bi-layer systems) with layer thicknesses on the order of 20 nm and then layered 100’s of times, would be less tough than a copper-nickel-niobium metallic composite of similar thicknesses. In particular, a particular mode of permanent deformation, cross-slip, could be activated only in the tri-layer system; the crystal structure of the other bi-layers would prohibit this particular mode of deformation. We then experimentally validated this predication using a wide range of tools. We utilized a DOE user facility, the Center for Integrated Nanotechnology (CINT), to fabricate, for the first time, these

  16. The chemistry and physics of transition metal clusters

    SciTech Connect

    Parks, E.K.; Jellinek, J.; Knickelbein, M.B.; Riley, S.J.

    1994-06-01

    In this program the authors study the fundamental properties of isolated clusters of transition metal atoms. Experimental studies of cluster chemistry include determination of cluster structure, reactivity, and the nature of cluster-adsorbate interactions. Studies of physical properties include measurements of cluster ionization potentials and photoabsorption cross sections. Theoretical studies focus on the structure and dynamics of clusters, including isomers, phases and phase changes, interactions with molecules, and fragmentation process.

  17. Determination of Globular Cluster metallicities with BUSCA

    NASA Astrophysics Data System (ADS)

    Wittlich, M.; Cordes, O.; Reif, K.

    Globular Clusters (GCs) have always been a topic of great interest probing stellar and galactic evolution. This includes both determination of age and metallicity. The stars in GCs are known to be more or less coeval and therefore considered to be formed out of the same primordial cloud, implying same chemical composition. Deriving metallicities yields indicators for primordial enrichment of the GC forming cloud. Recent studies show abundance differences among GC giants (Kraft 1994). The spread in abundances tends to be correlated with oxygen and CN-band strengths, resulting in new differing formation and evolution scenarios for GC. Strömgren photometry is known to be an adequate method for metallicity determination (Strömgren 1966). In this poster, we present preliminary results of metallicity studies in the Strömgren uvby-Hβ colour system for a sample of bright GCs. The data were obtained with BUSCA (``Bonn University Simultaneous CAmera''), the new 4k×4k CCD 4-colour imaging instrument at the 2.2m telescope at Calar Alto Observatory. The observed GC were selected relying on a wide spread in mean GC metallicities to obtain hints on their formation process. Photometric reduction was conducted using the package DAOPHOT of the IRAF program. Standard stars for calibration were chosen according to Olsen & Perry (1987). A revised Strömgren metallicity calibration for red giants proposed by Hilker (2000) was applied to the data to detect CN variations. In connection with spectroscopy from literature we are able to argue whether the CN variations are triggered by primordial abundance variations or by evolutionary mixing processes.

  18. Quantum Monte Carlo Simulation of Nanoscale MgH2 Cluster Thermodynamics

    NASA Astrophysics Data System (ADS)

    Wu, Zhigang; Allendorf, Mark; Grossman, Jeffrey

    2010-03-01

    We calculated the desorption energy of MgH2 clusters using the quantum Monte Carlo (QMC) approach, which can provide desorption energies with chemical accuracy (within 1 kcal/mol) and therefore a valuable benchmark for such hydrogen-storage simulations. Compared with these QMC results, the widely used density-functional-theory (DFT) computations cannot reach a consistent and suitable level of accuracy across the thermodynamically tunable range for MgH2 clusters, for a wide range of exchange-correlation functionals. Furthermore, our QMC calculations show that the DFT error depends substantially on cluster size. These results suggest that in simulating metal-hydride systems it is crucial to apply accurate methods that go beyond traditional mean-field approaches as a benchmark of their performance for a given material, and QMC is an appealing method for such a benchmark due to its high level of accuracy and favorable scaling (N^3) with number of electrons.

  19. Large area nanoscale metal meshes for use as transparent conductive layers

    NASA Astrophysics Data System (ADS)

    Jin, Yuanhao; Li, Qunqing; Chen, Mo; Li, Guanhong; Zhao, Yudan; Xiao, Xiaoyang; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan

    2015-10-01

    We report on the experimental realization of using super-aligned carbon nanotubes (SACNTs) as etching masks for the fabrication of large area nanoscale metal meshes. This method can easily be extended to different metals on both rigid and flexible substrates. The as-fabricated metal meshes, including the ones made of gold, copper, and aluminum, are suitable for use as transparent conductive layers (TCLs). The metal meshes, which are similar to the SACNT networks in their dimensional features of tens of nanometers, exhibit compatible performance in terms of optical transmittance and sheet resistance. Moreover, because the metal meshes are fabricated as an integrated material, there is no junction resistance between the interconnected metal nanostructures, which markedly lowers their sheet resistance at high temperatures. The fabrication of such an effective etching mask involves a simple drawing process of the SACNT networks prepared and a common deposition process. This approach should be easy to extend to various research fields and has broad prospects in commercial applications.We report on the experimental realization of using super-aligned carbon nanotubes (SACNTs) as etching masks for the fabrication of large area nanoscale metal meshes. This method can easily be extended to different metals on both rigid and flexible substrates. The as-fabricated metal meshes, including the ones made of gold, copper, and aluminum, are suitable for use as transparent conductive layers (TCLs). The metal meshes, which are similar to the SACNT networks in their dimensional features of tens of nanometers, exhibit compatible performance in terms of optical transmittance and sheet resistance. Moreover, because the metal meshes are fabricated as an integrated material, there is no junction resistance between the interconnected metal nanostructures, which markedly lowers their sheet resistance at high temperatures. The fabrication of such an effective etching mask involves a simple

  20. Probing stochastic nano-scale inelastic events in stressed amorphous metal.

    PubMed

    Yang, Y; Fu, X L; Wang, S; Liu, Z Y; Ye, Y F; Sun, B A; Liu, C T

    2014-10-21

    One fundamental yet longstanding issue in materials science is how local inelasticity arises within an amorphous structure before yielding occurs. Although many possible scenarios were postulated or predicted by theories and simulations,however, direct experimental evidence has been lacking today due to the lack of a sensitive way to detect nano-scale inelasticity. Through the carefully designed microcompression method as coupled with the state-of-art nano-scale electric resistance measurement, we here unfold a stochastic inelastic deformation process in a Zr-based metallic glass, which takes place via the recurrence of two types of short-lived inelastic events causing structural damage and recovery, respectively, prior to yielding. Our current findings reveal that these stochastic events not only self-organize into sub-critical events due to elastic coupling, but also compete with each other in a way that enables the whole amorphous structure to self-heal as well as to sustain local damage.

  1. A Technique to Transfer Metallic Nanoscale Patterns to Small and Non-Planar Surfaces

    PubMed Central

    Smythe, Elizabeth J.; Dickey, Michael D.; Whitesides, George M.; Capasso, Federico

    2009-01-01

    Conventional lithographic methods (e.g. electron-beam writing, photolithography) are capable of producing high-resolution structures over large areas, but are generally limited to large (>1 cm2) planar substrates. Incorporation of these features on unconventional substrates (i.e., small (<1 mm2) and/or non-planar substrates) would open possibilities for many applications, including remote fiber-based sensing, nanoscale optical lithography, three-dimensional fabrication, and integration of compact optical elements on fiber and semiconductor lasers. Here we introduce a simple method in which a thin thiol-ene film strips arbitrary nanoscale metallic features from one substrate and is then transferred, along with the attached features, to a substrate that would be difficult or impossible to pattern with conventional lithographic techniques. An oxygen plasma removes the sacrificial film, leaving behind the metallic features. The transfer of dense and sparse patterns of isolated and connected gold features ranging from 30 nm to 1 μm, to both an optical fiber facet and a silica microsphere, demonstrates the versatility of the method. A distinguishing feature of this technique is the use of a thin, sacrificial film to strip and transfer metallic nanopatterns and its ability to directly transfer metallic structures produced by conventional lithography. PMID:19206249

  2. Impact of biogenic nanoscale metals Fe, Cu, Zn and Se on reproductive LV chickens

    NASA Astrophysics Data System (ADS)

    Khiem Nguyen, Quy; Dieu Nguyen, Duy; Kien Nguyen, Van; Thinh Nguyen, Khac; Chau Nguyen, Hoai; Tin Tran, Xuan; Nguyen, Huu Cuong; Tien Phung, Duc

    2015-09-01

    Using biogenic nanoscale metals (Fe, Cu, ZnO, Se) to supplement into diet premix of reproductive LV (a Vietnamese Luong Phuong chicken breed) chickens resulted in certain improvement of poultry farming. The experimental data obtained showed that the farming indices depend mainly on the quantity of nanocrystalline metals which replaced the inorganic mineral component in the feed premix. All four experimental groups with different quantities of the replacement nano component grew and developed normally with livability reaching 91 to 94%, hen’s bodyweight at 38 weeks of age and egg weight ranged from 2.53-2.60 kg/hen and 50.86-51.55 g/egg, respectively. All these farming indices together with laying rate, egg productivity and chick hatchability peaked at group 5 with 25% of nanoscale metals compared to the standard inorganic mineral supplement, while feed consumption was lowest. The results also confirmed that nanocrystalline metals Fe, Cu, ZnO and Se supplemented to chicken feed were able to decrease inorganic minerals in the diet premixes at least four times, allowing animals to more effectively absorb feed minerals, consequently decreasing environmental pollution risks.

  3. Reduction-Triggered Self-Assembly of Nanoscale Molybdenum Oxide Molecular Clusters

    DOE PAGES

    Yin, Panchao; Wu, Bin; Li, Tao; ...

    2016-07-26

    A 2.9 nm molybdenum oxide cluster {Mo132} (Formula: [MoVI72MoV60O372(CH3COO)30(H2O)72]42-) can be obtained by reducing ammonium molybdate with hydrazine sulfate in weakly acidic CH3COOH/CH3COO- buffers. This reaction has been monitored by time-resolved UV-Vis, 1H-NMR, small angle X-ray/neutron scattering, and X-ray absorption near edge structure spectroscopy. The growth of {Mo132} cluster shows a typical sigmoid curve, suggesting a multi-step assembly mechanism for this reaction. The reaction starts with a lag phase period when partial MoVI centers of molybdate precursors are reduced to form {MoV2(acetate)} structures under the coordination effect of the acetate groups. Once the concentration of {MoV2(acetate)} reaches a critical value,more » it triggers the assembly of MoV and MoVI species into {Mo132} clusters. Parameters such as the type and amount of reducing agent, the pH, the type of cation, and the type of organic ligand in the reaction buffer, have been studied for the roles they play in the formation of the target clusters.Understanding the formation mechanism of giant molecular clusters is essential for rational design and synthesis of cluster-based nanomaterials with required morphologies and functionalities. Here, typical synthetic reactions of a 2.9 nm spherical molybdenum oxide cluster, {Mo132} (formula: [MoVI72MoV60O372(CH3COO)30(H2O)72]42), with systematically varied reaction parameters have been fully explored to determine the morphologies and concentration of products, reduction of metal centers, and chemical environments of the organic ligands. The growth of these clusters shows a typical sigmoid curve, suggesting a general multistep self-assembly mechanism for the formation of giant molecular clusters. The reaction starts with a lag phase period when partial MoVI centers of molybdate precursors are reduced to form {MoV2(acetate)} structures under the coordination effect of the acetate groups. Once the concentration of {MoV2(acetate)} reaches a

  4. Local traps as nanoscale reaction-diffusion probes: B clustering in c-Si

    NASA Astrophysics Data System (ADS)

    Pawlak, B. J.; Cowern, N. E. B.; Ahn, C.; Vandervorst, W.; Gwilliam, R.; van Berkum, J. G. M.

    2014-12-01

    A series of B implantation experiments into initially amorphized and not fully recrystallized Si, i.e., into an existing a/c-Si bi-layer material, have been conducted. We varied B dose, energy, and temperature during implantation process itself. Significant B migration has been observed within c-Si part near the a/c-interface and near the end-of-range region before any activation annealing. We propose a general concept of local trapping sites as experimental probes of nanoscale reaction-diffusion processes. Here, the a/c-Si interface acts as a trap, and the process itself is explored as the migration and clustering of mobile BI point defects in nearby c-Si during implantation at temperatures from 77 to 573 K. We find that at room temperature—even at B concentrations as high as 1.6 atomic %, the key B-B pairing step requires diffusion lengths of several nm owing to a small, ˜0.1 eV, pairing energy barrier. Thus, in nanostructures doped by ion implantation, the implant distribution can be strongly influenced by thermal migration to nearby impurities, defects, and interfaces.

  5. Nanoscale Imaging Reveals a Tetraspanin-CD9 Coordinated Elevation of Endothelial ICAM-1 Clusters

    PubMed Central

    Franz, Jonas; Brinkmann, Benjamin F.; König, Michael; Hüve, Jana; Stock, Christian; Ebnet, Klaus; Riethmüller, Christoph

    2016-01-01

    Endothelial barriers have a central role in inflammation as they allow or deny the passage of leukocytes from the vasculature into the tissue. To bind leukocytes, endothelial cells form adhesive clusters containing tetraspanins and ICAM-1, so-called endothelial adhesive platforms (EAPs). Upon leukocyte binding, EAPs evolve into docking structures that emanate from the endothelial surface while engulfing the leukocyte. Here, we show that TNF-α is sufficient to induce apical protrusions in the absence of leukocytes. Using advanced quantitation of atomic force microscopy (AFM) recordings, we found these structures to protrude by 160 ± 80 nm above endothelial surface level. Confocal immunofluorescence microscopy proved them positive for ICAM-1, JAM-A, tetraspanin CD9 and f-actin. Microvilli formation was inhibited in the absence of CD9. Our findings indicate that stimulation with TNF-α induces nanoscale changes in endothelial surface architecture and that—via a tetraspanin CD9 depending mechanism—the EAPs rise above the surface to facilitate leukocyte capture. PMID:26731655

  6. Local traps as nanoscale reaction-diffusion probes: B clustering in c-Si

    SciTech Connect

    Pawlak, B. J.; Cowern, N. E. B.; Ahn, C.; Vandervorst, W.; Gwilliam, R.; Berkum, J. G. M. van

    2014-12-01

    A series of B implantation experiments into initially amorphized and not fully recrystallized Si, i.e., into an existing a/c-Si bi-layer material, have been conducted. We varied B dose, energy, and temperature during implantation process itself. Significant B migration has been observed within c-Si part near the a/c-interface and near the end-of-range region before any activation annealing. We propose a general concept of local trapping sites as experimental probes of nanoscale reaction-diffusion processes. Here, the a/c-Si interface acts as a trap, and the process itself is explored as the migration and clustering of mobile BI point defects in nearby c-Si during implantation at temperatures from 77 to 573 K. We find that at room temperature—even at B concentrations as high as 1.6 atomic %, the key B-B pairing step requires diffusion lengths of several nm owing to a small, ∼0.1 eV, pairing energy barrier. Thus, in nanostructures doped by ion implantation, the implant distribution can be strongly influenced by thermal migration to nearby impurities, defects, and interfaces.

  7. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.

    PubMed

    Sassin, Megan B; Chervin, Christopher N; Rolison, Debra R; Long, Jeffrey W

    2013-05-21

    Transition metal oxides that mix electronic and ionic conductivity are essential active components of many electrochemical charge-storage devices, ranging from primary alkaline cells to more advanced rechargeable Li-ion batteries. In these devices, charge storage occurs via cation-insertion/deinsertion mechanisms in conjunction with the reduction/oxidation of metal sites in the oxide. Batteries that incorporate such metal oxides are typically designed for high specific energy, but not necessarily for high specific power. Electrochemical capacitors (ECs), which are typically composed of symmetric high-surface-area carbon electrodes that store charge via double-layer capacitance, deliver their energy in time scales of seconds, but at much lower specific energy than batteries. The fast, reversible faradaic reactions (typically described as "pseudocapacitance") of particular nanoscale metal oxides (e.g., ruthenium and manganese oxides) provide a strategy for bridging the power/energy performance gap between batteries and conventional ECs. These processes enhance charge-storage capacity to boost specific energy, while maintaining the few-second timescale of the charge-discharge response of carbon-based ECs. In this Account, we describe three examples of redox-based deposition of EC-relevant metal oxides (MnO2, FeOx, and RuO2) and discuss their potential deployment in next-generation ECs that use aqueous electrolytes. To extract the maximum pseudocapacitance functionality of metal oxides, one must carefully consider how they are synthesized and subsequently integrated into practical electrode structures. Expressing the metal oxide in a nanoscale form often enhances electrochemical utilization (maximizing specific capacitance) and facilitates high-rate operation for both charge and discharge. The "wiring" of the metal oxide, in terms of both electron and ion transport, when fabricated into a practical electrode architecture, is also a critical design parameter for

  8. Atomistic simulations of electrochemical metallization cells: mechanisms of ultra-fast resistance switching in nanoscale devices

    NASA Astrophysics Data System (ADS)

    Onofrio, Nicolas; Guzman, David; Strachan, Alejandro

    2016-07-01

    We describe a new method that enables reactive molecular dynamics (MD) simulations of electrochemical processes and apply it to study electrochemical metallization cells (ECMs). The model, called EChemDID, extends the charge equilibration method to capture the effect of external electrochemical potential on partial atomic charges and describes its equilibration over connected metallic structures, on-the-fly, during the MD simulation. We use EChemDID to simulate resistance switching in nanoscale ECMs; these devices consist of an electroactive metal separated from an inactive electrode by an insulator and can be reversibly switched to a low-resistance state by the electrochemical formation of a conducting filament between electrodes. Our structures use Cu as the active electrode and SiO2 as the dielectric and have dimensions at the foreseen limit of scalability of the technology, with a dielectric thickness of approximately 1 nm. We explore the effect of device geometry on switching timescales and find that nanowires with an electroactive shell, where ions migrate towards a smaller inactive electrode core, result in faster switching than planar devices. We observe significant device-to-device variability in switching timescales and intermittent switching for these nanoscale devices. To characterize the evolution in the electronic structure of the dielectric as dissolved metallic ions switch the device, we perform density functional theory calculations on structures obtained from an EChemDID MD simulation. These results confirm the appearance of states around the Fermi energy as the metallic filament bridges the electrodes and show that the metallic ions and not defects in the dielectric contribute to the majority of those states.

  9. Structural evolution of nanoscale metallic glasses during high-pressure torsion: A molecular dynamics analysis

    NASA Astrophysics Data System (ADS)

    Feng, S. D.; Jiao, W.; Jing, Q.; Qi, L.; Pan, S. P.; Li, G.; Ma, M. Z.; Wang, W. H.; Liu, R. P.

    2016-11-01

    Structural evolution in nanoscale Cu50Zr50 metallic glasses during high-pressure torsion is investigated using molecular dynamics simulations. Results show that the strong cooperation of shear transformations can be realized by high-pressure torsion in nanoscale Cu50Zr50 metallic glasses at room temperature. It is further shown that high-pressure torsion could prompt atoms to possess lower five-fold symmetries and higher potential energies, making them more likely to participate in shear transformations. Meanwhile, a higher torsion period leads to a greater degree of forced cooperative flow. And the pronounced forced cooperative flow at room temperature under high-pressure torsion permits the study of the shear transformation, its activation and characteristics, and its relationship to the deformations behaviors. This research not only provides an important platform for probing the atomic-level understanding of the fundamental mechanisms of high-pressure torsion in metallic glasses, but also leads to higher stresses and homogeneous flow near lower temperatures which is impossible previously.

  10. Structural evolution of nanoscale metallic glasses during high-pressure torsion: A molecular dynamics analysis

    PubMed Central

    Feng, S. D.; Jiao, W.; Jing, Q.; Qi, L.; Pan, S. P.; Li, G.; Ma, M. Z.; Wang, W. H.; Liu, R. P.

    2016-01-01

    Structural evolution in nanoscale Cu50Zr50 metallic glasses during high-pressure torsion is investigated using molecular dynamics simulations. Results show that the strong cooperation of shear transformations can be realized by high-pressure torsion in nanoscale Cu50Zr50 metallic glasses at room temperature. It is further shown that high-pressure torsion could prompt atoms to possess lower five-fold symmetries and higher potential energies, making them more likely to participate in shear transformations. Meanwhile, a higher torsion period leads to a greater degree of forced cooperative flow. And the pronounced forced cooperative flow at room temperature under high-pressure torsion permits the study of the shear transformation, its activation and characteristics, and its relationship to the deformations behaviors. This research not only provides an important platform for probing the atomic-level understanding of the fundamental mechanisms of high-pressure torsion in metallic glasses, but also leads to higher stresses and homogeneous flow near lower temperatures which is impossible previously. PMID:27819352

  11. Revealing anelasticity and structural rearrangements in nanoscale metallic glass films using in situ TEM diffraction

    PubMed Central

    Sarkar, Rohit; Ebner, Christian; Izadi, Ehsan; Rentenberger, Christian; Rajagopalan, Jagannathan

    2017-01-01

    ABSTRACT We used a novel diffraction-based method to extract the local, atomic-level elastic strain in nanoscale amorphous TiAl films during in situ transmission electron microscopy deformation, while simultaneously measuring the macroscopic strain. The complementary strain measurements revealed significant anelastic deformation, which was independently confirmed by strain rate experiments. Furthermore, the distribution of first nearest-neighbor distances became narrower during loading and permanent changes were observed in the atomic structure upon unloading, even in the absence of macroscopic plasticity. The results demonstrate the capability of in situ electron diffraction to probe structural rearrangements and decouple elastic and anelastic deformation in metallic glasses. PMID:28382229

  12. On the metallicity of open clusters. III. Homogenised sample

    NASA Astrophysics Data System (ADS)

    Netopil, M.; Paunzen, E.; Heiter, U.; Soubiran, C.

    2016-01-01

    Context. Open clusters are known as excellent tools for various topics in Galactic research. For example, they allow accurately tracing the chemical structure of the Galactic disc. However, the metallicity is known only for a rather low percentage of the open cluster population, and these values are based on a variety of methods and data. Therefore, a large and homogeneous sample is highly desirable. Aims: In the third part of our series we compile a large sample of homogenised open cluster metallicities using a wide variety of different sources. These data and a sample of Cepheids are used to investigate the radial metallicity gradient, age effects, and to test current models. Methods: We used photometric and spectroscopic data to derive cluster metallicities. The different sources were checked and tested for possible offsets and correlations. Results: In total, metallicities for 172 open cluster were derived. We used the spectroscopic data of 100 objects for a study of the radial metallicity distribution and the age-metallicity relation. We found a possible increase of metallicity with age, which, if confirmed, would provide observational evidence for radial migration. Although a statistical significance is given, more studies are certainly needed to exclude selection effects, for example. The comparison of open clusters and Cepheids with recent Galactic models agrees well in general. However, the models do not reproduce the flat gradient of the open clusters in the outer disc. Thus, the effect of radial migration is either underestimated in the models, or an additional mechanism is at work. Conclusions: Apart from the Cepheids, open clusters are the best tracers for metallicity over large Galactocentric distances in the Milky Way. For a sound statistical analysis, a sufficiently large and homogeneous sample of cluster metallicities is needed. Our compilation is currently by far the largest and provides the basis for several basic studies such as the statistical

  13. Molecular dynamical simulations of melting behaviors of metal clusters

    SciTech Connect

    Hamid, Ilyar; Fang, Meng; Duan, Haiming

    2015-04-15

    The melting behaviors of metal clusters are studied in a wide range by molecular dynamics simulations. The calculated results show that there are fluctuations in the heat capacity curves of some metal clusters due to the strong structural competition; For the 13-, 55- and 147-atom clusters, variations of the melting points with atomic number are almost the same; It is found that for different metal clusters the dynamical stabilities of the octahedral structures can be inferred in general by a criterion proposed earlier by F. Baletto et al. [J. Chem. Phys. 116 3856 (2002)] for the statically stable structures.

  14. Synthesis and characterization of nanoscale polymer films grafted to metal surfaces

    NASA Astrophysics Data System (ADS)

    Galabura, Yuriy

    Anchoring thin polymer films to metal surfaces allows us to alter, tune, and control their biocompatibility, lubrication, friction, wettability, and adhesion, while the unique properties of the underlying metallic substrates, such as magnetism and electrical conductivity, remain unaltered. This polymer/metal synergy creates significant opportunities to develop new hybrid platforms for a number of devices, actuators, and sensors. This present work focused on the synthesis and characterization of polymer layers grafted to the surface of metal objects. We report the development of a novel method for surface functionalization of arrays of high aspect ratio nickel nanowires/micronails. The polymer "grafting to" technique offers the possibility to functionalize different segments of the nickel nanowires/micronails with polymer layers that possess antagonistic (hydrophobic/hydrophilic) properties. This method results in the synthesis of arrays of Ni nanowires and micronails, where the tips modified with hydrophobic layer (polystyrene) and the bottom portions with a hydrophilic layer (polyacrylic acid). The developed modification platform will enable the fabrication of switchable field-controlled devices (actuators). Specifically, the application of an external magnetic field and the bending deformation of the nickel nanowires and micronails will make initially hydrophobic surface more hydrophilic by exposing different segments of the bent nanowires/micronails. We also investigate the grafting of thin polymer films to gold objects. The developed grafting technique is employed for the surface modification of Si/SiO2/Au microprinted electrodes. When electronic devices are scaled down to submicron sizes, it becomes critical to obtain uniform and robust insulating nanoscale polymer films. Therefore, we address the electrical properties of polymer layers of poly(glycidyl methacrylate) (PGMA), polyacrylic acid (PAA), poly(2-vinylpyridine) (P2VP), and polystyrene (PS) grafted to

  15. Biologically activated noble metal alloys at the nanoscale: for lithium ion battery anodes.

    PubMed

    Lee, Yun Jung; Lee, Youjin; Oh, Dahyun; Chen, Tiffany; Ceder, Gerbrand; Belcher, Angela M

    2010-07-14

    We report the synthesis and electrochemical activity of gold and silver noble metals and their alloy nanowires using multiple virus clones as anode materials for lithium ion batteries. Using two clones, one for specificity (p8#9 virus) and one versatility (E4 virus), noble metal nanowires of high-aspect ratio with diameters below 50 nm were successfully synthesized with control over particle sizes, morphologies, and compositions. The biologically derived noble metal alloy nanowires showed electrochemical activities toward lithium even when the electrodes were prepared from bulk powder forms. The improvement in capacity retention was accomplished by alloy formation and surface stabilization. Although the cost of noble metals renders them a less ideal choice for lithium ion batteries, these noble metal/alloy nanowires serve as great model systems to study electrochemically induced transformation at the nanoscale. Given the demonstration of the electrochemical activity of noble metal alloy nanowires with various compositions, the M13 biological toolkit extended its utility for the study on the basic electrochemical property of materials.

  16. Nanoscale zero-valent metals: a review of synthesis, characterization, and applications to environmental remediation.

    PubMed

    Li, Lingyun; Hu, Jiwei; Shi, Xuedan; Fan, Mingyi; Luo, Jin; Wei, Xionghui

    2016-09-01

    Engineered nanoscale zero-valent metals (NZVMs) representing the forefront of technologies have been considered as promising materials for environmental remediation and antimicrobial effect, due to their high reducibility and strong adsorption capability. This review is focused on the methodology for synthesis of bare NZVMs, supported NZVMs, modified NZVMs, and bimetallic systems with both traditional and green methods. Recent studies have demonstrated that self-assembly methods can play an important role for obtaining ordered, controllable, and tunable NZVMs. In addition to common characterization methods, the state-of-the-art methods have been developed to obtain the properties of NZVMs (e.g., granularity, size distribution, specific surface area, shape, crystal form, and chemical bond) with the resolution down to subnanometer scale. These methods include spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM), electron energy-loss spectroscopy (EELS), and near edge X-ray absorption fine structure (NEXAFS). A growing body of experimental data has proven that nanoscale zero-valent iron (NZVI) is highly effective and versatile. This article discusses the applications of NZVMs to treatment of heavy metals, halogenated organic compounds, polycyclic aromatic hydrocarbons, nutrients, radioelements, and microorganisms, using both ex situ and in situ methods. Furthermore, this paper briefly describes the ecotoxicological effects for NZVMs and the research prospects related to their synthesis, modification, characterization, and applications.

  17. Quantum Monte Carlo simulation of nanoscale MgH2 cluster thermodynamics.

    PubMed

    Wu, Zhigang; Allendorf, Mark D; Grossman, Jeffrey C

    2009-10-07

    We calculated the desorption energy of MgH(2) clusters using the highly accurate quantum Monte Carlo (QMC) approach, which can provide desorption energies with chemical accuracy (within approximately 1 kcal/mol) and therefore provides a valuable benchmark for such hydrogen-storage simulations. Compared with these QMC results, the most widely used density functional theory (DFT) computations (including a wide range of exchange-correlation functionals) cannot reach a consistent and suitable level of accuracy across the thermodynamically tunable range for MgH(2) clusters. Furthermore, our QMC calculations show that the DFT error depends substantially on cluster size. These results suggest that in simulating metal-hydride systems it is very important to apply accurate methods that go beyond traditional mean-field approaches as a benchmark of their performance for a given material, and QMC is an appealing method to provide such a benchmark due to its high level of accuracy and favorable scaling (N(3)) with the number of electrons.

  18. Interfacial Clustering-Triggered Fluorescence-Phosphorescence Dual Solvoluminescence of Metal Nanoclusters.

    PubMed

    Yang, Taiqun; Dai, Shan; Yang, Songqiu; Chen, Li; Liu, Pengcheng; Dong, Kailong; Zhou, Jiasheng; Chen, Yuting; Pan, Haifeng; Zhang, Sanjun; Chen, Jinquan; Zhang, Kun; Wu, Peng; Xu, Jianhua

    2017-09-07

    The fluorescence-phosphorescence dual solvoluminescence (SL) of water-soluble metal nanoclusters (NCs) at room temperature was successfully achieved by a simple solvent-stimulated strategy. The strong interaction between carboxylate ligands and the metal core at the nanoscale interface not only induces rigid conformations of carbonyl groups but also affords a perfect carbonyl cluster that acts as an exact chromophore of metal NCs for aggregation-induced emission (AIE) mechanics. The clustering of carbonyl groups bearing on the polymer backbone chain is promoted by newly discovered n → π* noncovalent interactions. The efficient delocalization of electrons in overlapped C═O double bonds between neighboring carbonyl groups triggered by strong n → π* interactions in the polymer cluster accounts for its unique SL properties, especially the abnormal phosphorescence. This was further confirmed by controlled experiments for the presence of intersystem crossing (ISC) transitions. The results provide novel insights for understanding the complex SL process and open up a new way to study the inherent mechanism of SL by broadening the application of metal NCs.

  19. Reduction-Triggered Self-Assembly of Nanoscale Molybdenum Oxide Molecular Clusters

    SciTech Connect

    Yin, Panchao; Wu, Bin; Li, Tao; Bonnesen, Peter V.; Hong, Kunlun; Seifert, Soenke; Porcar, Lionel; Do, Changwoo; Keum, Jong Kahk

    2016-07-26

    A 2.9 nm molybdenum oxide cluster {Mo132} (Formula: [MoVI72MoV60O372(CH3COO)30(H2O)72]42-) can be obtained by reducing ammonium molybdate with hydrazine sulfate in weakly acidic CH3COOH/CH3COO- buffers. This reaction has been monitored by time-resolved UV-Vis, 1H-NMR, small angle X-ray/neutron scattering, and X-ray absorption near edge structure spectroscopy. The growth of {Mo132} cluster shows a typical sigmoid curve, suggesting a multi-step assembly mechanism for this reaction. The reaction starts with a lag phase period when partial MoVI centers of molybdate precursors are reduced to form {MoV2(acetate)} structures under the coordination effect of the acetate groups. Once the concentration of {MoV2(acetate)} reaches a critical value, it triggers the assembly of MoV and MoVI species into {Mo132} clusters. Parameters such as the type and amount of reducing agent, the pH, the type of cation, and the type of organic ligand in the reaction buffer, have been studied for the roles they play in the formation of the target clusters.Understanding the formation mechanism of giant molecular clusters is essential for rational design and synthesis of cluster-based nanomaterials with required morphologies and functionalities. Here, typical synthetic reactions of a 2.9 nm spherical molybdenum oxide cluster, {Mo132} (formula: [MoVI72MoV60O372(CH3COO)30(H2O)72]42), with systematically varied reaction parameters have been fully explored to determine the morphologies and concentration of products, reduction of metal centers, and chemical environments of the organic ligands. The growth of these clusters shows a typical sigmoid curve, suggesting a general

  20. Bottom-up synthesis of ordered metal/oxide/metal nanodots on substrates for nanoscale resistive switching memory

    PubMed Central

    Han, Un-Bin; Lee, Jang-Sik

    2016-01-01

    The bottom-up approach using self-assembled materials/processes is thought to be a promising solution for next-generation device fabrication, but it is often found to be not feasible for use in real device fabrication. Here, we report a feasible and versatile way to fabricate high-density, nanoscale memory devices by direct bottom-up filling of memory elements. An ordered array of metal/oxide/metal (copper/copper oxide/copper) nanodots was synthesized with a uniform size and thickness defined by self-organized nanotemplate mask by sequential electrochemical deposition (ECD) of each layer. The fabricated memory devices showed bipolar resistive switching behaviors confirmed by conductive atomic force microscopy. This study demonstrates that ECD with bottom-up growth has great potential to fabricate high-density nanoelectronic devices beyond the scaling limit of top-down device fabrication processes. PMID:27157385

  1. Electronic Structure and Geometries of Small Compound Metal Clusters

    SciTech Connect

    1999-04-14

    During the tenure of the DOE grant DE-FG05-87EI145316 we have concentrated on equilibrium geometries, stability, and the electronic structure of transition metal-carbon clusters (met-cars), clusters designed to mimic the chemistry of atoms, and reactivity of homo-nuclear metal clusters and ions with various reactant molecules. It is difficult to describe all the research the authors have accomplished as they have published 38 papers. In this report, they outline briefly the salient features of their work on the following topics: (1) Designer Clusters: Building Blocks for a New Class of Solids; (2) Atomic Structure, Stability, and Electronic Properties of Metallo-Carbohedrenes; (3) Reactivity of Metal Clusters with H{sub 2} and NO; and (4) Anomalous Spectroscopy of Li{sub 4} Clusters.

  2. Nanoscale surface modifications of medically-relevant metals: state-of-the art and perspectives

    PubMed Central

    Variola, Fabio; Brunski, John; Orsini, Giovanna; de Oliveira, Paulo Tambasco; Wazen, Rima; Nanci, Antonio

    2011-01-01

    Evidence that nanoscale surface properties stimulate and guide various molecular and biological processes at the implant/tissue interface is fostering a new trend in designing implantable metals. Cutting-edge expertise and techniques drawn from widely separated fields, such as nanotechnology, materials engineering and biology, have been advantageously exploited to nanoengineer surfaces in ways that control and direct these processes in predictable manners. In this review, we present and discuss the state-of-the-art of nanotechnology-based approaches currently used to modify the surface of metals used for orthopedic and dental applications, and also briefly consider their use in the cardiovascular field. The effects of nanoengineered surfaces on various in vitro molecular and cellular events are firstly discussed. Importantly, this review also provides an overview of in vivo and clinical studies with nanostructured metallic implants, and addresses the potential influence of nanotopography on biomechanical events at interfaces. Ultimately the objective of this work is to give the readership a comprehensive picture of the current advances, future developments and challenges in the application of the infinitesimally small to biomedical surface science. We believe that an integrated understanding of the in vitro and particularly of the in vivo behavior is mandatory for the proper exploitation of nanostructured implantable metals and, as a matter of fact, all biomaterials. PMID:20976359

  3. Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives

    NASA Astrophysics Data System (ADS)

    Variola, Fabio; Brunski, John B.; Orsini, Giovanna; Tambasco de Oliveira, Paulo; Wazen, Rima; Nanci, Antonio

    2011-02-01

    Evidence that nanoscale surface properties stimulate and guide various molecular and biological processes at the implant/tissue interface is fostering a new trend in designing implantable metals. Cutting-edge expertise and techniques drawn from widely separated fields, such as nanotechnology, materials engineering and biology, have been advantageously exploited to nanoengineer surfaces in ways that control and direct these processes in predictable manners. In this review, we present and discuss the state-of-the-art of nanotechnology-based approaches currently adopted to modify the surface of metals used for orthopedic and dental applications, and also briefly consider their use in the cardiovascular field. The effects of nanoengineered surfaces on various in vitro molecular and cellular events are firstly discussed. This review also provides an overview of in vivo and clinical studies with nanostructured metallic implants, and addresses the potential influence of nanotopography on biomechanical events at interfaces. Ultimately, the objective of this work is to give the readership a comprehensive picture of the current advances, future developments and challenges in the application of the infinitesimally small to biomedical surface science. We believe that an integrated understanding of the in vitro and particularly of the in vivo behavior is mandatory for the proper exploitation of nanostructured implantable metals and, indeed, of all biomaterials.

  4. Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices.

    PubMed

    Li, H; Xu, Y; Xiang, J; Li, X F; Zhang, C Y; Tie, S L; Lan, S

    2016-12-07

    The interaction of silicon (Si) nanospheres (NSs) with a thin metal film is investigated numerically and experimentally by characterizing their forward scattering properties. A sharp resonant mode and a zero-scattering dip are found to be introduced in the forward scattering spectrum of a Si NS by putting it on a 50-nm-thick gold film. It is revealed that the sharp resonant mode arises from a new magnetic dipole induced by the electric dipole and its mirror image while the zero-scattering dip originates from the destructive interference between the new magnetic dipole and the original one together with its mirror image. A significant enhancement in both electric and magnetic fields is achieved at the contact point between the Si NS and the metal film. More interestingly, the use of a thin silver film can lead to vivid scattering light with different color indices. It is demonstrated that a small change in the surrounding environment of Si NSs results in the broadening of the resonant mode and the disappearance of the zero-scattering dip. Our findings indicate that dielectric-metal hybrid systems composed of semiconductor NSs and thin metal films act as attractive platforms on which novel nanoscale plasmonic devices can be realized.

  5. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Lin, Dingchang; Liu, Yayuan; Liang, Zheng; Lee, Hyun-Wook; Sun, Jie; Wang, Haotian; Yan, Kai; Xie, Jin; Cui, Yi

    2016-07-01

    Metallic lithium is a promising anode candidate for future high-energy-density lithium batteries. It is a light-weight material, and has the highest theoretical capacity (3,860 mAh g-1) and the lowest electrochemical potential of all candidates. There are, however, at least three major hurdles before lithium metal anodes can become a viable technology: uneven and dendritic lithium deposition, unstable solid electrolyte interphase and almost infinite relative dimension change during cycling. Previous research has tackled the first two issues, but the last is still mostly unsolved. Here we report a composite lithium metal anode that exhibits low dimension variation (˜20%) during cycling and good mechanical flexibility. The anode is composed of 7 wt% ‘lithiophilic’ layered reduced graphene oxide with nanoscale gaps that can host metallic lithium. The anode retains up to ˜3,390 mAh g-1 of capacity, exhibits low overpotential (˜80 mV at 3 mA cm-2) and a flat voltage profile in a carbonate electrolyte. A full-cell battery with a LiCoO2 cathode shows good rate capability and flat voltage profiles.

  6. The investigation of nanoscale effects on schottky interfaces and the scattering rates of high resistivity metals

    NASA Astrophysics Data System (ADS)

    Durcan, Christopher

    Understanding the transport of electrons through materials and across interfaces is fundamental to modern day electronics. As electrons travel, interactions with defects within the crystal lattice induce scattering which gives rise to resistivity. At the interface between two materials, electrostatic barriers exist which can impede the flow of electrons. The work of this thesis is to further the understanding of electron transport by measuring the transport across metal-semiconductor interfaces at the nanoscale and measure scattering phenomena in metals. The measurement technique ballistic electron emission microscopy (BEEM) was used due to its ability to probe the scattering processes within a metal film and across metal semiconductor interfaces with nanoscale resolution. It was discovered that the hot electron transmission of the W/Si(001) Schottky barrier decreases over a period of 21 days with the initial Schottky barrier height of 0.71eV decreasing to 0.62eV. The spatial map changes dramatically from 98% of the spectra able to be fit to only 27%. This is supported by transmission electron microscopy (TEM) showing the formation of a tungsten silicide which increases in thickness. It was discovered that the deposition of tungsten on silicon using electron beam evaporation and RF magnetron sputtering resulted in dramatic differences in the Schottky barrier height and transport of hot electrons. A difference of ˜70meV was measured in the Schottky barrier height's for both p-type and n-type silicon. Spatial maps show a uniform barrier height for the sputter film and varying barrier height for the e-beam film. Histograms show a symmetric gaussian profile for the sputtered film and an asymmetric profile for the evaporated film, arising from an increase in elastic scattering. The hot electron attenuation length of tungsten and chromium thin films were measured on Si(001) and Si(111) substrates. An attenuation length of 2.26nm was measured at 1.0V bias for tungsten

  7. Nanoscale Skyrmions in a Nonchiral Metallic Multiferroic: Ni2MnGa

    DOE PAGES

    Phatak, Charudatta; Heinonen, Olle; De Graef, Marc; ...

    2016-05-17

    Magnetic skyrmions belong to a set of topologically nontrivial spin textures at the nanoscale that have received increased attention due to their emergent behavior and novel potential spintronic applications. Discovering materials systems that can host skyrmions at room temperature in the absence of external magnetic field is of crucial importance not only from a fundamental aspect, but also from a technological point of view. So far, the observations of skyrmions in bulk metallic ferromagnets have been limited to low temperatures and to materials that exhibit strong chiral interactions. In this paper, we show the formation of nanoscale skyrmions in amore » nonchiral multiferroic material, which is ferromagnetic and ferroelastic, Ni2MnGa at room temperature without the presence of external magnetic fields. By using Lorentz transmission electron microscopy in combination with micromagnetic simulations, we elucidate their formation, behavior, and stability under applied magnetic fields at room temperature. Finally, the formation of skyrmions in a multiferroic material with no broken inversion symmetry presents new exciting opportunities for the exploration of the fundamental physics of topologically nontrivial spin textures.« less

  8. Nanoscale Skyrmions in a Nonchiral Metallic Multiferroic: Ni2MnGa

    SciTech Connect

    Phatak, Charudatta; Heinonen, Olle; De Graef, Marc; Petford-Long, Amanda

    2016-05-17

    Magnetic skyrmions belong to a set of topologically nontrivial spin textures at the nanoscale that have received increased attention due to their emergent behavior and novel potential spintronic applications. Discovering materials systems that can host skyrmions at room temperature in the absence of external magnetic field is of crucial importance not only from a fundamental aspect, but also from a technological point of view. So far, the observations of skyrmions in bulk metallic ferromagnets have been limited to low temperatures and to materials that exhibit strong chiral interactions. In this paper, we show the formation of nanoscale skyrmions in a nonchiral multiferroic material, which is ferromagnetic and ferroelastic, Ni2MnGa at room temperature without the presence of external magnetic fields. By using Lorentz transmission electron microscopy in combination with micromagnetic simulations, we elucidate their formation, behavior, and stability under applied magnetic fields at room temperature. Finally, the formation of skyrmions in a multiferroic material with no broken inversion symmetry presents new exciting opportunities for the exploration of the fundamental physics of topologically nontrivial spin textures.

  9. Probing Stochastic Nano-Scale Inelastic Events in Stressed Amorphous Metal

    PubMed Central

    Yang, Y.; Fu, X. L.; Wang, S.; Liu, Z. Y.; Ye, Y. F.; Sun, B. A.; Liu, C. T.

    2014-01-01

    One fundamental yet longstanding issue in materials science is how local inelasticity arises within an amorphous structure before yielding occurs. Although many possible scenarios were postulated or predicted by theories and simulations,however, direct experimental evidence has been lacking today due to the lack of a sensitive way to detect nano-scale inelasticity. Through the carefully designed microcompression method as coupled with the state-of-art nano-scale electric resistance measurement, we here unfold a stochastic inelastic deformation process in a Zr-based metallic glass, which takes place via the recurrence of two types of short-lived inelastic events causing structural damage and recovery, respectively, prior to yielding. Our current findings reveal that these stochastic events not only self-organize into sub-critical events due to elastic coupling, but also compete with each other in a way that enables the whole amorphous structure to self-heal as well as to sustain local damage. PMID:25331932

  10. Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal.

    PubMed

    Ho, Shih-Hsin; Zhu, Shishu; Chang, Jo-Shu

    2017-08-20

    Pollution of heavy metals (HMs) is a detrimental treat to human health and need to be cleaned up in a proper way. Biochar (BC), a low-cost and "green" adsorbent, has attracted significant attention due to its considerable HMs removal capacity. In particular, nano-metals have recently been used to assist BC in improving its reactivity, surface texture and magnetism. Synthesis methods and metal precursors greatly influence the properties and structures of the nanocomposites, thereby affecting their HMs removal performance. This review presents advances in synthesis methods, formation mechanisms and surface characteristics of BC nanocomposites, along with the discussions on HMs removal mechanisms and the effects of environmental factors on HMs removal efficiency. Performance of using BC nanocomposites to remediate real HMs-containing wastewater and issues associated with its process scale-up are also discussed. This review aims to provide useful information to facilitate the development of HMs removal by nanoscale-metal assisted BC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Azobenzenes as light-controlled molecular electronic switches in nanoscale metal-molecule-metal junctions.

    PubMed

    Mativetsky, Jeffrey M; Pace, Giuseppina; Elbing, Mark; Rampi, Maria A; Mayor, Marcel; Samorì, Paolo

    2008-07-23

    Conductance switching associated with the photoisomerization of azobenzene-based (Azo) molecules was observed in nanoscopic metal-molecule-metal junctions. The junctions were formed by using a conducting atomic force microscope (C-AFM) approach, where a metallic AFM tip was used to electrically contact a gold-supported Azo self-assembled monolayer. The measured 30-fold increase in conductance is consistent with the expected decrease in tunneling barrier length resulting from the conformational change of the Azo molecule.

  12. Star Clusters in M31. VII. Global Kinematics and Metallicity Subpopulations of the Globular Clusters

    NASA Astrophysics Data System (ADS)

    Caldwell, Nelson; Romanowsky, Aaron J.

    2016-06-01

    We carry out a joint spatial-kinematical-metallicity analysis of globular clusters (GCs) around the Andromeda Galaxy (M31), using a homogeneous, high-quality spectroscopic data set. In particular, we remove the contaminating young clusters that have plagued many previous analyses. We find that the clusters can be divided into three major metallicity groups based on their radial distributions: (1) an inner metal-rich group ([Fe/H] > -0.4); (2) a group with intermediate metallicity (with median [Fe/H] = -1) and (3) a metal-poor group, with [Fe/H] < -1.5. The metal-rich group has kinematics and spatial properties like those of the disk of M31, while the two more metal-poor groups show mild prograde rotation overall, with larger dispersions—in contrast to previous claims of stronger rotation. The metal-poor GCs are the least concentrated group; such clusters occur five times less frequently in the central bulge than do clusters of higher metallicity. Despite some well-known differences between the M31 and Milky Way GC systems, our revised analysis points to remarkable similarities in their chemodynamical properties, which could help elucidate the different formation stages of galaxies and their GCs. In particular, the M31 results motivate further exploration of a metal-rich GC formation mode in situ, within high-redshift, clumpy galactic disks.

  13. Direct in situ observation of metallic glass deformation by real-time nano-scale indentation

    NASA Astrophysics Data System (ADS)

    Gu, Lin; Xu, Limei; Zhang, Qingsheng; Pan, Deng; Chen, Na; Louzguine-Luzgin, Dmitri V.; Yao, Ke-Fu; Wang, Weihua; Ikuhara, Yuichi

    2015-03-01

    A common understanding of plastic deformation of metallic glasses (MGs) at room temperature is that such deformation occurs via the formation of runaway shear bands that usually lead to catastrophic failure of MGs. Here we demonstrate that inhomogeneous plastic flow at nanoscale can evolve in a well-controlled manner without further developing of shear bands. It is suggested that the sample undergoes an elasto-plastic transition in terms of quasi steady-state localized shearing. During this transition, embryonic shear localization (ESL) propagates with a very slow velocity of order of ~1 nm/s without the formation of a hot matured shear band. This finding further advances our understanding of the microscopic deformation process associated with the elasto-plastic transition and may shed light on the theoretical development of shear deformation in MGs.

  14. Second harmonic generation in nanoscale films of transition metal chalcogenides: Taking into account multibeam interference

    NASA Astrophysics Data System (ADS)

    Lavrov, S. D.; Kudryavtsev, A. V.; Shestakova, A. P.; Kulyuk, L.; Mishina, E. D.

    2016-05-01

    Second harmonic generation is studied in structures containing nanoscale layers of transition metal chalcogenides that are two-dimensional semiconductors and deposited on a SiO2/Si substrate. The second harmonic generation intensity is calculated with allowance for multibeam interference in layers of dichalcogenide and silicon oxide. The coefficient of reflection from the SiO2-layer-based Fabry-Perot cavity is subsequently calculated for pump wave fields initiating nonlinear polarization at every point of dichalcogenide, which is followed by integration of all second harmonic waves generated by this polarization. Calculated second harmonic intensities are presented as functions of dichalcogenide and silicon oxide layer thicknesses. The dependence of the second harmonic intensity on the MoS2 layer thickness is studied experimentally in the layer of 2-140 nm. A good coincidence of the experimental data and numerical simulation results has been obtained.

  15. Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas.

    PubMed

    Park, Hyeong-Ryeol; Bahk, Young-Mi; Ahn, Kwang Jun; Park, Q-Han; Kim, Dai-Sik; Martín-Moreno, Luis; García-Vidal, Francisco J; Bravo-Abad, Jorge

    2011-10-25

    Nanoscale metallic barriers embedded in terahertz (THz) slot antennas are shown to provide unprecedented control of the transition state arising at the crossover between the full- and half-wavelength resonant modes of such antennas. We demonstrate strong near-field coupling between two paired THz slot antennas separated by a 5 nm wide nanobarrier, almost fully inducing the shift to the resonance of the double-length slot antenna. This increases by a factor of 50 the length-scale needed to observe similar coupling strengths in conventional air-gap antennas (around 0.1 nm), making the transition state readily accessible to experiment. Our measurements are in good agreement with a quantitative theoretical modeling, which also provides a simple physical picture of our observations.

  16. Direct in situ observation of metallic glass deformation by real-time nano-scale indentation

    PubMed Central

    Gu, Lin; Xu, Limei; Zhang, Qingsheng; Pan, Deng; Chen, Na; Louzguine-Luzgin, Dmitri V.; Yao, Ke-Fu; Wang, Weihua; Ikuhara, Yuichi

    2015-01-01

    A common understanding of plastic deformation of metallic glasses (MGs) at room temperature is that such deformation occurs via the formation of runaway shear bands that usually lead to catastrophic failure of MGs. Here we demonstrate that inhomogeneous plastic flow at nanoscale can evolve in a well-controlled manner without further developing of shear bands. It is suggested that the sample undergoes an elasto-plastic transition in terms of quasi steady-state localized shearing. During this transition, embryonic shear localization (ESL) propagates with a very slow velocity of order of ~1 nm/s without the formation of a hot matured shear band. This finding further advances our understanding of the microscopic deformation process associated with the elasto-plastic transition and may shed light on the theoretical development of shear deformation in MGs. PMID:25773051

  17. Mechanics of nanoscale metallic multilayers: from atomic-scale to micro-scale

    SciTech Connect

    Wang, Jian; Hoagland, Richard G; Misra, Amit

    2008-01-01

    Layered composites of Cu/Nb with incoherent interfaces achieve very high strength levels. Interfaces play a crucial role in materials strength by acting as barriers to slip. Atomistic models of Cu/Nb bilayers are used to explore the origins of this resistance. The models clearly show that dislocations near an interface experience an attraction toward the interface. This attraction is caused by shear of the interface induced by the stress field of the dislocation. More importantly, atomistic simulations also reveal that interfacial dislocations easily move in interfaces by both glide and climb. Integrating these findings into a micro-scale model, we develop a three-dimensional crystal elastic-plastic model to describe the mechanical behavior of nanoscale metallic multi layers.

  18. Formation and properties of metal clusters isolated in helium droplets.

    PubMed

    Tiggesbäumker, Josef; Stienkemeier, Frank

    2007-09-14

    The unique conditions forming atomic and molecular complexes and clusters using superfluid helium nanodroplets have opened up an innovative route for studying the physical and chemical properties of matter on the nanoscale. This review summarizes the specific characteristics of the formation of atomic clusters partly generated far from equilibrium in the helium environment. Special emphasis is on the optical response, electronic properties as well as dynamical processes which are mostly affected by the surrounding quantum matrix. Experiments include the optical induced response of isolated cluster systems in helium under quite different excitation conditions ranging from the linear regime up to the violent interaction with a strong laser field leading to Coulomb explosion and the generation of highly charged atomic fragments. The variety of results on the outstanding properties in the quantum size regime highlights the peculiar capabilities of helium nanodroplet isolation spectroscopy.

  19. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening

    NASA Astrophysics Data System (ADS)

    Comtet, Jean; Niguès, Antoine; Kaiser, Vojtech; Coasne, Benoit; Bocquet, Lydéric; Siria, Alessandro

    2017-06-01

    Room-temperature ionic liquids (RTILs) are new materials with fundamental importance for energy storage and active lubrication. They are unusual liquids, which challenge the classical frameworks of electrolytes, whose behaviour at electrified interfaces remains elusive, with exotic responses relevant to their electrochemical activity. Using tuning-fork-based atomic force microscope nanorheological measurements, we explore here the properties of confined RTILs, unveiling a dramatic change of the RTIL towards a solid-like phase below a threshold thickness, pointing to capillary freezing in confinement. This threshold is related to the metallic nature of the confining materials, with more metallic surfaces facilitating freezing. This behaviour is interpreted in terms of the shift of the freezing transition, taking into account the influence of the electronic screening on RTIL wetting of the confining surfaces. Our findings provide fresh views on the properties of confined RTIL with implications for their properties inside nanoporous metallic structures, and suggests applications to tune nanoscale lubrication with phase-changing RTILs, by varying the nature and patterning of the substrate, and application of active polarization.

  20. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening.

    PubMed

    Comtet, Jean; Niguès, Antoine; Kaiser, Vojtech; Coasne, Benoit; Bocquet, Lydéric; Siria, Alessandro

    2017-03-27

    Room-temperature ionic liquids (RTILs) are new materials with fundamental importance for energy storage and active lubrication. They are unusual liquids, which challenge the classical frameworks of electrolytes, whose behaviour at electrified interfaces remains elusive, with exotic responses relevant to their electrochemical activity. Using tuning-fork-based atomic force microscope nanorheological measurements, we explore here the properties of confined RTILs, unveiling a dramatic change of the RTIL towards a solid-like phase below a threshold thickness, pointing to capillary freezing in confinement. This threshold is related to the metallic nature of the confining materials, with more metallic surfaces facilitating freezing. This behaviour is interpreted in terms of the shift of the freezing transition, taking into account the influence of the electronic screening on RTIL wetting of the confining surfaces. Our findings provide fresh views on the properties of confined RTIL with implications for their properties inside nanoporous metallic structures, and suggests applications to tune nanoscale lubrication with phase-changing RTILs, by varying the nature and patterning of the substrate, and application of active polarization.

  1. Coherent Control of Nanoscale Ballistic Currents in Transition Metal Dichalcogenide ReS2.

    PubMed

    Cui, Qiannan; Zhao, Hui

    2015-04-28

    Transition metal dichalcogenides are predicted to outperform traditional semiconductors in ballistic devices with nanoscale channel lengths. So far, experimental studies on charge transport in transition metal dichalcogenides are limited to the diffusive regime. Here we show, using ReS2 as an example, all-optical injection, detection, and coherent control of ballistic currents. By utilizing quantum interference between one-photon and two-photon interband transition pathways, ballistic currents are injected in ReS2 thin film samples by a pair of femtosecond laser pulses. We find that the current decays on an ultrafast time scale, resulting in an electron transport of only a fraction of one nanometer. Following the relaxation of the initially injected momentum, backward motion of the electrons for about 1 ps is observed, driven by the Coulomb force from the oppositely moved holes. We also show that the injected current can be controlled by the phase of the laser pulses. These results demonstrate a new platform to study ballistic transport of nonequilibrium carriers in transition metal dichalcogenides.

  2. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening

    PubMed Central

    Comtet, Jean; Niguès, Antoine; Kaiser, Vojtech; Coasne, Benoit; Bocquet, Lydéric; Siria, Alessandro

    2017-01-01

    Room temperature Ionic liquids (RTIL) are new materials with fundamental importance for energy storage and active lubrication. They are unsual liquids, which challenge the classical frameworks of electrolytes, whose behavior at electrified interfaces remains elusive with exotic responses relevant to their electrochemical activity. By means of tuning fork based AFM nanorheological measurements, we explore here the properties of confined RTIL, unveiling a dramatic change of the RTIL towards a solid-like phase below a threshold thickness, pointing to capillary freezing in confinement. This threshold is related to the metallic nature of the confining materials, with more metallic surfaces facilitating freezing. This is interpreted in terms of the shift of freezing transition, taking into account the influence of the electronic screening on RTIL wetting of the confining surfaces. Our findings provide fresh views on the properties of confined RTIL with implications for their properties inside nanoporous metallic structures and suggests applications to tune nanoscale lubrication with phase-changing RTIL, by varying the nature and patterning of the substrate, and application of active polarisation. PMID:28346432

  3. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction.

    PubMed

    Zhao, Shenlong; Yin, Huajie; Du, Lei; He, Liangcan; Zhao, Kun; Chang, Lin; Yin, Geping; Zhao, Huijun; Liu, Shaoqin; Tang, Zhiyong

    2014-12-23

    The oxygen reduction reaction (ORR) is one of the key steps in clean and efficient energy conversion techniques such as in fuel cells and metal-air batteries; however, several disadvantages of current ORRs including the kinetically sluggish process and expensive catalysts hinder mass production of these devices. Herein, we develop carbonized nanoparticles, which are derived from monodisperse nanoscale metal organic frameworks (MIL-88B-NH3), as the high performance ORR catalysts. The onset potential and the half-wave potential for the ORR at these carbonized nanoparticles is up to 1.03 and 0.92 V (vs RHE) in 0.1 M KOH solution, respectively, which represents the best ORR activity of all the non-noble metal catalysts reported so far. Furthermore, when used as the cathode of the alkaline direct fuel cell, the power density obtained with the carbonized nanoparticles reaches 22.7 mW/cm2, 1.7 times higher than the commercial Pt/C catalysts.

  4. Structure of overheated metal clusters: MD simulation study

    SciTech Connect

    Vorontsov, Alexander

    2015-08-17

    The structure of overheated metal clusters appeared in condensation process was studied by computer simulation techniques. It was found that clusters with size larger than several tens of atoms have three layers: core part, intermediate dense packing layer and a gas- like shell with low density. The change of the size and structure of these layers with the variation of internal energy and the size of cluster is discussed.

  5. Charge transport in nanoscale "all-inorganic" networks of semiconductor nanorods linked by metal domains.

    PubMed

    Lavieville, Romain; Zhang, Yang; Casu, Alberto; Genovese, Alessandro; Manna, Liberato; Di Fabrizio, Enzo; Krahne, Roman

    2012-04-24

    Charge transport across metal-semiconductor interfaces at the nanoscale is a crucial issue in nanoelectronics. Chains of semiconductor nanorods linked by Au particles represent an ideal model system in this respect, because the metal-semiconductor interface is an intrinsic feature of the nanosystem and does not manifest solely as the contact to the macroscopic external electrodes. Here we investigate charge transport mechanisms in all-inorganic hybrid metal-semiconductor networks fabricated via self-assembly in solution, in which CdSe nanorods were linked to each other by Au nanoparticles. Thermal annealing of our devices changed the morphology of the networks and resulted in the removal of small Au domains that were present on the lateral nanorod facets, and in ripening of the Au nanoparticles in the nanorod junctions with more homogeneous metal-semiconductor interfaces. In such thermally annealed devices the voltage dependence of the current at room temperature can be well described by a Schottky barrier lowering at a metal semiconductor contact under reverse bias, if the spherical shape of the gold nanoparticles is considered. In this case the natural logarithm of the current does not follow the square-root dependence of the voltage as in the bulk, but that of V(2/3). From our fitting with this model we extract the effective permittivity that agrees well with theoretical predictions for the permittivity near the surface of CdSe nanorods. Furthermore, the annealing improved the network conductance at cryogenic temperatures, which could be related to the reduction of the number of trap states.

  6. Infrared Multiple Photon Dissociation Spectroscopy Of Metal Cluster-Adducts

    NASA Astrophysics Data System (ADS)

    Cox, D. M.; Kaldor, A.; Zakin, M. R.

    1987-01-01

    Recent development of the laser vaporization technique combined with mass-selective detection has made possible new studies of the fundamental chemical and physical properties of unsupported transition metal clusters as a function of the number of constituent atoms. A variety of experimental techniques have been developed in our laboratory to measure ionization threshold energies, magnetic moments, and gas phase reactivity of clusters. However, studies have so far been unable to determine the cluster structure or the chemical state of chemisorbed species on gas phase clusters. The application of infrared multiple photon dissociation IRMPD to obtain the IR absorption properties of metal cluster-adsorbate species in a molecular beam is described here. Specifically using a high power, pulsed CO2 laser as the infrared source, the IRMPD spectrum for methanol chemisorbed on small iron clusters is measured as a function of the number of both iron atoms and methanols in the complex for different methanol isotopes. Both the feasibility and potential utility of IRMPD for characterizing metal cluster-adsorbate interactions are demonstrated. The method is generally applicable to any cluster or cluster-adsorbate system dependent only upon the availability of appropriate high power infrared sources.

  7. Quantitative binomial distribution analyses of nanoscale like-solute atom clustering and segregation in atom probe tomography data.

    PubMed

    Moody, Michael P; Stephenson, Leigh T; Ceguerra, Anna V; Ringer, Simon P

    2008-07-01

    The applicability of the binomial frequency distribution is outlined for the analysis of the evolution nanoscale atomic clustering of dilute solute in an alloy subject to thermal ageing in 3D atom probe data. The conventional chi(2) statistics and significance testing are demonstrated to be inappropriate for comparison of quantity of solute segregation present in two or more different sized system. Pearson coefficient, mu, is shown to normalize chi(2) with respect to sample size over an order of magnitude. A simple computer simulation is implemented to investigate the binomial analysis and infer meaning in the measured value of mu over a series of systems at different solute concentrations and degree of clustering. The simulations replicate the form of experimental data and demonstrate the effect of detector efficiency to significantly underestimate the measured segregation. The binomial analysis is applied to experimental atom probe data sets and complementary simulations are used to interpret the results.

  8. Advanced Electrochemistry of Individual Metal Clusters Electrodeposited Atom by Atom to Nanometer by Nanometer.

    PubMed

    Kim, Jiyeon; Dick, Jeffrey E; Bard, Allen J

    2016-11-15

    Metal clusters are very important as building blocks for nanoparticles (NPs) for electrocatalysis and electroanalysis in both fundamental and applied electrochemistry. Attention has been given to understanding of traditional nucleation and growth of metal clusters and to their catalytic activities for various electrochemical applications in energy harvesting as well as analytical sensing. Importantly, understanding the properties of these clusters, primarily the relationship between catalysis and morphology, is required to optimize catalytic function. This has been difficult due to the heterogeneities in the size, shape, and surface properties. Thus, methods that address these issues are necessary to begin understanding the reactivity of individual catalytic centers as opposed to ensemble measurements, where the effect of size and morphology on the catalysis is averaged out in the measurement. This Account introduces our advanced electrochemical approaches to focus on each isolated metal cluster, where we electrochemically fabricated clusters or NPs atom by atom to nanometer by nanometer and explored their electrochemistry for their kinetic and catalytic behavior. Such approaches expand the dimensions of analysis, to include the electrochemistry of (1) a discrete atomic cluster, (2) solely a single NP, or (3) individual NPs in the ensemble sample. Specifically, we studied the electrocatalysis of atomic metal clusters as a nascent electrocatalyst via direct electrodeposition on carbon ultramicroelectrode (C UME) in a femtomolar metal ion precursor. In addition, we developed tunneling ultramicroelectrodes (TUMEs) to study electron transfer (ET) kinetics of a redox probe at a single metal NP electrodeposited on this TUME. Owing to the small dimension of a NP as an active area of a TUME, extremely high mass transfer conditions yielded a remarkably high standard ET rate constant, k(0), of 36 cm/s for outer-sphere ET reaction. Most recently, we advanced nanoscale

  9. Chemical bonding and dynamic fluxionality of a B15(+) cluster: a nanoscale double-axle tank tread.

    PubMed

    Wang, Ying-Jin; You, Xue-Rui; Chen, Qiang; Feng, Lin-Yan; Wang, Kang; Ou, Ting; Zhao, Xiao-Yun; Zhai, Hua-Jin; Li, Si-Dian

    2016-06-21

    A planar, elongated B15(+) cationic cluster is shown to be structurally fluxional and functions as a nanoscale tank tread on the basis of electronic structure calculations, bonding analyses, and molecular dynamics simulations. The outer B11 peripheral ring behaves like a flexible chain gliding around an inner B4 rhombus core, almost freely at the temperature of 500 K. The rotational energy barrier is only 1.37 kcal mol(-1) (0.06 eV) at the PBE0/6-311+G* level, further refined to 1.66 kcal mol(-1) (0.07 eV) at the single-point CCSD(T)/6-311G*//CCSD/6-311G* level. Two soft vibrational modes of 166.3 and 258.3 cm(-1) are associated with the rotation, serving as double engines for the system. Bonding analysis suggests that the "island" electron clouds, both σ and π, between the peripheral ring and inner core flow and shift continuously during the intramolecular rotation, facilitating the dynamic fluxionality of the system with a small rotational barrier. The B15(+) cluster, roughly 0.6 nm in dimension, is the first double-axle nanoscale tank tread equipped with two engines, which expands the concepts of molecular wheels, Wankel motors, and molecular tanks.

  10. Miniemulsion synthesis of metal-oxo cluster containing copolymer nanobeads.

    PubMed

    Pablico, Michele H; Mertzman, Julie E; Japp, Emily A; Boncher, William L; Nishida, Maki; Van Keuren, Edward; Lofland, Samuel E; Dollahon, Norman; Rubinson, Judith F; Holman, K Travis; Stoll, Sarah L

    2011-10-18

    Hybrid nanobeads containing either a manganese-oxo or manganese-iron-oxo cluster have been prepared via the miniemulsion polymerization technique. Two new ligand substituted oxo clusters, Mn(12)O(12)(VBA)(16)(H(2)O)(4) and Mn(8)Fe(4)O(12)(VBA)(16)(H(2)O)(4) (where VBA = 4-vinylbenzoate), have been prepared and characterized. Polymerization of the functionalized metal-oxo clusters with styrene under miniemulsion conditions produced monodispersed polymer nanoparticles as small as ~60 nm in diameter. The metal-oxo polymer nanobeads were fully characterized in terms of synthetic parameters, composition, structure, and magnetic properties. © 2011 American Chemical Society

  11. Magnetic properties of supported metal atoms and clusters

    NASA Astrophysics Data System (ADS)

    Martins, Michael; Wurth, Wilfried

    2016-12-01

    Clusters are small systems ranging from a few atoms up to several thousand atoms. They are of high interest in basic research, but also for applications due to their specific electronic, magnetic or chemical properties depending on size and composition. For small clusters, quantum size effects play an important role and specific material properties might be tailored by choosing a special size or composition of the cluster. Here, we review the magnetic properties of adatoms and supported small mass-selected transition-metal clusters in the few-atom limit investigated by x-ray magnetic circular dichroism spectroscopy in the soft x-ray regime. The influence of cluster size, composition, the cluster-surface and intra-cluster interaction on the spin and orbital magnetic moments will be discussed.

  12. Probing Globular Cluster Formation in Low Metallicity Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey E.; Hunt, Leslie K.; Reines, Amy E.

    2008-12-01

    The ubiquitous presence of globular clusters around massive galaxies today suggests that these extreme star clusters must have been formed prolifically in the earlier universe in low-metallicity galaxies. Numerous adolescent and massive star clusters are already known to be present in a variety of galaxies in the local universe; however most of these systems have metallicities of 12 + log(O/H) > 8, and are thus not representative of the galaxies in which today's ancient globular clusters were formed. In order to better understand the formation and evolution of these massive clusters in environments with few heavy elements, we have targeted several low-metallicity dwarf galaxies with radio observations, searching for newly-formed massive star clusters still embedded in their birth material. The galaxies in this initial study are HS 0822+3542, UGC 4483, Pox 186, and SBS 0335-052, all of which have metallicities of 12 + log(O/H) < 7.75. While no thermal radio sources, indicative of natal massive star clusters, are found in three of the four galaxies, SBS 0335-052 hosts two such objects, which are incredibly luminous. The radio spectral energy distributions of these intense star-forming regions in SBS 0335-052 suggest the presence of ~12,000 equivalent O-type stars, and the implied star formation rate is nearing the maximum starburst intensity limit.

  13. Properties and Chemisorptive Reactivity of Transition Metal Clusters

    DTIC Science & Technology

    1991-12-14

    structure of metal complexes that go beyond ligand field theory ideas, and of practical importance, in that it is crucial to understand how magnetic...aggregates or clusters of these metals with quntum mechanics, we will be able to develop a detailed understanding of metallic bonding. So far, we have...interactions between early and late TM’s in these so-called Engel-Brewer intermetallic compounds. The only theory that has attempted to explain the high

  14. Trinuclear Metal Clusters in Catalysis by Terpenoid Synthases

    PubMed Central

    Aaron, Julie A.; Christianson, David. W.

    2011-01-01

    Terpenoid synthases are ubiquitous enzymes that catalyze the formation of structurally and stereochemically diverse isoprenoid natural products. Many isoprenoid coupling enzymes and terpenoid cyclases from bacteria, fungi, protists, plants, and animals share the class I terpenoid synthase fold. Despite generally low amino acid sequence identity among these examples, class I terpenoid synthases contain conserved metal binding motifs that coordinate to a trinuclear metal cluster. This cluster not only serves to bind and orient the flexible isoprenoid substrate in the precatalytic Michaelis complex, but it also triggers the departure of the diphosphate leaving group to generate a carbocation that initiates catalysis. Additional conserved hydrogen bond donors assist the metal cluster in this function. Crystal structure analysis reveals that the constellation of three metal ions required for terpenoid synthase catalysis is generally identical among all class I terpenoid synthases of known structure. PMID:21562622

  15. Nanoscale Metal-Organic Particles with Rapid Clearance for Magnetic Resonance Imaging-Guided Photothermal Therapy.

    PubMed

    Yang, Yu; Liu, Jingjing; Liang, Chao; Feng, Liangzhu; Fu, Tingting; Dong, Ziliang; Chao, Yu; Li, Yonggang; Lu, Guang; Chen, Meiwan; Liu, Zhuang

    2016-02-23

    Nanoscale metal-organic particles (NMOPs) are constructed from metal ions and organic bridging ligands via the self-assembly process. Herein, we fabricate NMOPs composed of Mn(2+) and a near-infrared (NIR) dye, IR825, obtaining Mn-IR825 NMOPs, which are then coated with a shell of polydopamine (PDA) and further functionalized with polyethylene glycol (PEG). While Mn(2+) in such Mn-IR825@PDA-PEG NMOPs offers strong contrast in T1-weighted magnetic resonance (MR) imaging, IR825 with strong NIR optical absorbance shows efficient photothermal conversion with great photostability in the NMOP structure. Upon intravenous injection, Mn-IR825@PDA-PEG shows efficient tumor homing together with rapid renal excretion behaviors, as revealed by MR imaging and confirmed by biodistribution measurement. Notably, when irradiated with an 808 nm laser, tumors on mice with Mn-IR825@PDA-PEG injection are completely eliminated without recurrence within 60 days, demonstrating the high efficacy of photothermal therapy with this agent. This study demonstrates the use of NMOPs as a potential photothermal agent, which features excellent tumor-targeted imaging and therapeutic functions, together with rapid renal excretion behavior, the latter of which would be particularly important for future clinical translation of nanomedicine.

  16. Nanoscale Twinning and Martensitic Transformation in Shock-Deformed BCC Metals

    SciTech Connect

    Hsiung, L L

    2005-03-22

    Shock-induced twinning and martensitic transformation in BCC-based polycrystalline metals (Ta and U-6wt%Nb) have been observed and studied using transmission electron microscopy (TEM). The length-scale of domain thickness for both twin lamella and martensite phase is found to be smaller than 100 nm. While deformation twinning of {l_brace}112{r_brace}<111>-type is found in Ta when shock-deformed at 15 GPa, both twinning and martensitic transformation are found in Ta when shock-deformed at 45 GPa. Similar phenomena of nanoscale twinning and martensitic transformation are also found in U6Nb shock-deformed at 30 GPa. Since both deformation twinning and martensitic transformation occurred along the {l_brace}211{r_brace}{sub b} planes associated with high resolved shear stresses, it is suggested that both can be regarded as alternative paths for shear transformations to occur in shock-deformed BCC metals. Heterogeneous nucleation mechanisms for shock-induced twinning and martensitic transformation are proposed and discussed.

  17. Effect of Graphene with Nanopores on Metal Clusters

    SciTech Connect

    Zhou, Hu; Chen, Xianlang; Wang, Lei; Zhong, Xing; Zhuang, Guilin; Li, Xiaonian; Mei, Donghai; Wang, Jianguo

    2015-10-07

    Porous graphene, which is a novel type of defective graphene, shows excellent potential as a support material for metal clusters. In this work, the stability and electronic structures of metal clusters (Pd, Ir, Rh) supported on pristine graphene and graphene with different sizes of nanopore were investigated by first-principle density functional theory (DFT) calculations. Thereafter, CO adsorption and oxidation reaction on the Pd-graphene system were chosen to evaluate its catalytic performance. Graphene with nanopore can strongly stabilize the metal clusters and cause a substantial downshift of the d-band center of the metal clusters, thus decreasing CO adsorption. All binding energies, d-band centers, and adsorption energies show a linear change with the size of the nanopore: a bigger size of nanopore corresponds to a stronger metal clusters bond to the graphene, lower downshift of the d-band center, and weaker CO adsorption. By using a suitable size nanopore, supported Pd clusters on the graphene will have similar CO and O2 adsorption ability, thus leading to superior CO tolerance. The DFT calculated reaction energy barriers show that graphene with nanopore is a superior catalyst for CO oxidation reaction. These properties can play an important role in instructing graphene-supported metal catalyst preparation to prevent the diffusion or agglomeration of metal clusters and enhance catalytic performance. This work was supported by National Basic Research Program of China (973Program) (2013CB733501), the National Natural Science Foundation of China (NSFC-21176221, 21136001, 21101137, 21306169, and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational

  18. Generation of metal-carbon and metal-nitrogen clusters with a laser induced plasma technique

    NASA Astrophysics Data System (ADS)

    Guo, B. C.; Wei, S.; Chen, Z.; Kerns, K. P.; Purnell, J.; Buzza, S.; Castleman, A. W., Jr.

    1992-10-01

    During the course of investigating dehydrogenation reactions induced by transition metals, we find that using a carrier gas containing hydrocarbons and ammonia instead of pure helium, in conjunction with a laser vaporization device, enables the facile production of metal-carbon and metal-nitrogen clusters in both the neutral and ionic forms. With only a change in the nature of the carrier gas, a variety of new classes of clusters can be produced.

  19. Modeling of cluster organization in metal-doped oxide glasses irradiated by a train of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Smetanina, Evgeniya; Chimier, Benoit; Petit, Yannick; Varkentina, Nadezda; Fargin, Evelyne; Hirsch, Lionel; Cardinal, Thierry; Canioni, Lionel; Duchateau, Guillaume

    2016-01-01

    The formation of silver cluster structures at submicrometer spatial scales under the irradiation by high-power femtosecond laser pulses with high repetition rate was observed in various glasses containing silver ions. In order to account for the formation of these structures in metal-doped glasses, we present a theoretical model for the organization of noble metallic clusters induced by a train of femtosecond laser pulses. The model includes photoionization and laser heating of the sample, diffusion, kinetic reactions, and dissociation of metallic species. This model was applied to reproduce the formation of cluster structures in silver-doped phosphate glass. The parameters of the silver structures were obtained numerically under various incident pulse intensities and number of pulses. Numerical modeling shows that the involved microscopic physical and chemical processes naturally lead to the emergence of a silver cluster organization, together with charge migration and subsequent trapping giving rise to a strong static electric field buried in the irradiated area as experimentally observed. Based on this modeling, a theoretical basis is provided for the design of new metallic cluster structures with nanoscale size.

  20. Metallic clusters on a model surface: Quantum versus geometric effects

    NASA Astrophysics Data System (ADS)

    Blundell, S. A.; Haldar, Soumyajyoti; Kanhere, D. G.

    2011-08-01

    We determine the structure and melting behavior of supported metallic clusters using an ab initio density-functional-based treatment of intracluster interactions and an approximate treatment of the surface as an idealized smooth plane yielding an effective Lennard-Jones interaction with the ions of the cluster. We apply this model to determine the structure of sodium clusters containing from 4 to 22 atoms, treating the cluster-surface interaction strength as a variable parameter. For a strong cluster-surface interaction, the clusters form two-dimensional (2D) monolayer structures; comparisons with calculations of structure and dissociation energy performed with a classical Gupta interatomic potential show clearly the role of quantum shell effects in the metallic binding in this case, and evidence is presented that these shell effects correspond to those for a confined 2D electron gas. The thermodynamics and melting behavior of a supported Na20 cluster is considered in detail using the model for several cluster-surface interaction strengths. We find quantitative differences in the melting temperatures and caloric curve from density-functional and Gupta treatments of the valence electrons. A clear dimensional effect on the melting behavior is also demonstrated, with 2D structures showing melting temperatures above those of the bulk or (at very strong cluster-surface interactions) no clear meltinglike transition.

  1. Probing Metal Cluster and Metal Oxide Cluster Interactions with Organo-Sulfur and Organo-Phosphorous Molecules using Mass Spectrometry and Anion PES

    DTIC Science & Technology

    2007-11-02

    DATES COVERED Final 01 Dec 02 – 30 Nov 03 4. TITLE AND SUBTITLE Probing metal cluster and metal oxide cluster interactions with organo -sulfur and... Organo -phosphorous molecules using mass spectrometry and anion PES 5. FUNDING NUMBERS DAAD19-03-1-0009 6. AUTHOR(S) Caroline...298-102 Probing metal cluster and metal oxide cluster interactions with organo -sulfur and organo

  2. Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal.

    PubMed

    Su, Yiming; Adeleye, Adeyemi S; Keller, Arturo A; Huang, Yuxiong; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei

    2015-05-01

    Sulfide-modified nanoscale zerovalent iron (S-nZVI) is attracting a lot of attention due to its ease of production and high reactivity with organic pollutants. However, its structure is still poorly understood and its potential application in heavy metal remediation has not been explored. Herein, the structure of S-nZVI and its cadmium (Cd) removal performance under different aqueous conditions were carefully investigated. Transmission electron microscopy (TEM) with an energy-dispersive X-ray spectroscopy (EDS) analysis suggested that sulfur was incorporated into the zerovalent iron core. Scanning electron microscopy (SEM) with EDS analysis demonstrated that sulfur was also homogeneously distributed within the nanoparticles. When the concentration of Na2S2O4 was increased during synthesis, a flake-like structure (FeSx) increased significantly. S-nZVI had an optimal Cd removal capacity of 85 mg/g, which was >100% higher than for pristine nZVI. Even at pH 5, over 95% removal efficiency was observed, indicating sulfide compounds played a crucial role in metal ion removal and particle chemical stability. Oxygen impaired the structure of S-nZVI but enhanced Cd removal capacity to about 120 mg/g. Particle aging had no negative effect on removal capacity of S-nZVI, and Cd-containing mixtures remained stable in a two months experiment. S-nZVI can efficiently sequester dissolved metal ions from different contaminated water matrices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Chemiluminescence in the Agglomeration of Metal Clusters

    PubMed

    König; Rabin; Schulze; Ertl

    1996-11-22

    The agglomeration of copper or silver atoms in a matrix of noble gas atoms to form small clusters may be accompanied by the emission of visible light. Spectral analysis reveals the intermediate formation of electronically excited atoms and dimers as the source of the chemiluminescence. A mechanism is proposed, according to which the gain in binding energy upon cluster formation may even lead to the ejection of excited fragments as a result of unstable intermediate configurations. A similar concept was introduced in the field of nuclear reactions by Niels Bohr 60 years ago.

  4. Metallic Clusters in Strong Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Suraud, Eric; Reinhard, P.-G.; Ullrich, Carsten A.

    1998-03-01

    We present a theoretical study of the electron response of a Na_9^+ cluster excited by strong femtosecond laser pulses.(C. A. Ullrich, P.-G. Reinhard, and E. Suraud, J. Phys. B 30), 5043 (1997) Our approach is based on time-dependent density functional theory within the adiabatic local density approximation, including a recently developed self-interaction correction scheme. We investigate numerically the full electronic dipolar response and multiphoton ionization of the cluster and discuss the ionization mechanism. A strong correlation between induced electronic dipole oscillations and electron emission is observed, leading to a pronounced resonant enhancement of ionization at the frequency of the Mie plasmon.

  5. Size to density coupling of supported metallic clusters.

    PubMed

    Gross, Elad; Asscher, Micha

    2009-01-28

    One of the difficulties in standard growth of metallic nano-clusters on oxide substrates as model catalysts is the strong coupling between clusters size and density. Employing multiple cycles, amorphous solid water-buffer layer assisted growth (ASW-BLAG) procedure, we demonstrate how the size to density coupling can be eliminated under certain conditions. In this study, gold clusters were deposited on a SiO2/Si(100) substrate in UHV, using ASW as a buffer layer assisting aggregation and growth. The clusters were imaged ex situ by tapping mode atomic force microscope (AFM) and high-resolution scanning electron microscope (HR-SEM). In situ Auger electron spectroscopy (AES) measurements have led to independent evaluation of the gold covered area. In order to increase the clusters density we have introduced a multiple BLAG procedure, in which, a BALG cycle is repeated up to 10 times. The cluster density can be increased this way by more than five fold without changing their size. Above a specific number of cycles, however, the cluster density reaches saturation and a gradual increase in clusters size is observed. Larger clusters correlate with lower saturation density following multiple BLAG cycles. This observation is explained in terms of long range cluster-cluster attraction between clusters already on the substrate and those approaching in the next BLAG cycle. This attraction is more pronounced as the clusters become larger. We have shown that at saturation density, inter-cluster distance can not be smaller than 20 nm for clusters 4 nm in diameter or larger. Employing two consecutive BLAG cycles, characterized by different parameters (metal dosage and buffer layer thickness) result in a bi-modal size distribution. Moreover, it is demonstrated that one can prepare this way co-adsorbed bi-metallic film of e.g. Au and Pd clusters, with specific density and size on the same substrate. The ASW-BLAG procedure is thus expected to introduce a new pathway for tailor made

  6. Metal Optics Based nanoLEDs: In Search of a Fast, Efficient, Nanoscale Light Emitter

    NASA Astrophysics Data System (ADS)

    Eggleston, Michael Scott

    Since the invention of the laser, stimulated emission has been the de facto king of optical communication. Lasers can be directly modulated at rates as high as 50GHz, much faster than a typical solid state light-emitting diode (LED) that is limited by spontaneous emission to <1GHz. Unfortunately, lasers have a severe scaling problem; they require large cavities operated at high power to achieve efficient lasing. A properly designed LED can be made arbitrarily small and still operate with high-efficiency. On-chip interconnects is an area that is in desperate need of a high-speed, low-power optical emitter that can enable on-chip links to replace current high-loss metal wires. In this work, I will show that by utilizing proper antenna design, a nanoLED can be created that is faster than a laser while still operating at >50% efficiency. I start by formulating an optical antenna circuit model whose elements are based completely off of antenna geometry. This allows for intuitive antenna design and suggests that rate enhancements up to ~3,000x are possible while keeping antenna efficiency >50%. Such a massive speed-up in spontaneous emission would enable an LED that can be directly modulated at 100's of GHz, much faster than any laser. I then use the circuit model to design an arch-dipole antenna, a dipole antenna with an inductive arch across the feedgap. I experimentally demonstrate a free-standing arch-dipole based nanoLED with rate enhancement of 115x and 66% antenna efficiency. Because the emitter is InGaAsP, a common III-V material, I experimentally show that this device can be easily and efficiently coupled into an InP waveguide. Experimental coupling efficiencies up to 70% are demonstrated and directional antennas are employed that offer front to back emission ratios of 3:1. Finally, I show that a nanoLED can still have high quantum yield by using a transition metal dichalcogenide, WSe2, as the emitter material. By coupling a monolayer of WSe2 to a cavity

  7. Applications of superatom theory in metal cluster chemistry

    NASA Astrophysics Data System (ADS)

    Tofanelli, Marcus A.

    One of the largest modern scientific debates is understanding the size dependent properties of a metal. While much effort has been performed on understanding metal particles from the top down to much less work has been accomplished from the bottom up. This has lead to a great deal of interest in metal clusters. Metal clusters containing 20 to 200 metal atoms are similar yet strikingly different to both to normal coordination chemistry and continuous bulk systems, therefore neither a classical understanding for bulk or molecular systems appears to be appropriate. Superatom theory has emerged as a useful concept for describing the properties of a metal cluster in this size range. In this model a new set of 'superatomic' orbitals arises from the valence electrons of all the metals in a cluster. From superatom theory the properties of a metal cluster, such as stability, ionization energy, reactivity, and magnetism, should depend on valence of the superatomic orbitals, similar to a normal atom. However superatom theory has largely been used to describe the high stabilities of metal clusters with completed electronic configurations. Thus many features of superatom theory have remained largely untested and the extent that the superatom model truly applies has remained in question for many years. Over the past decade increases in synthetic and analytical techniques have allowed for the isolation of a series of stable monodisperse gold thiolate monolayer protected clusters (MPCs) containing from 10 to 500 gold atoms. The wide range in sizes and high stability of gold thiolate clusters provides an instrumental system for understanding superatom theory and the transition from molecular-like cluster to bulk-like system. In the first part of this thesis the effects of the superatomic valence is investigated under superatomic assumptions. Au25(SR)18 (where SR= any thiolate) can be synthesized in 3 different oxidation states without any major distortions to the geometry of the

  8. METAL PRODUCTION IN GALAXY CLUSTERS: THE NON-GALACTIC COMPONENT

    SciTech Connect

    Bregman, Joel N.; Anderson, Michael E.; Dai Xinyu E-mail: michevan@umich.ed

    2010-06-10

    The metallicity in galaxy clusters is expected to originate from the stars in galaxies, with a population dominated by high-mass stars likely being the most important stellar component, especially in rich clusters. We examine the relationship between the metallicity and the prominence of galaxies as measured by the star-to-baryon ratio, M{sub *}/M{sub bary}. Counter to expectations, we rule out a metallicity that is proportional to M{sub *}/M{sub bary}, where the best fit has the gas-phase metallicity decreasing with M{sub *}/M{sub bary}, or the metallicity of the gas plus the stars being independent of M{sub *}/M{sub bary}. This implies that the population of stars responsible for the metals is largely proportional to the total baryonic mass of the cluster, not to the galaxy mass within the cluster. If generally applicable, most of the heavy elements in the universe were not produced within galaxies.

  9. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    DOEpatents

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-08-01

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  10. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    DOEpatents

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-01-24

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  11. Nonlinear plasmon response in highly excited metallic clusters

    SciTech Connect

    Calvayrac, F.; Reinhard, P.G.; Suraud, E.

    1995-12-15

    We present a dynamical study of the electron response of metallic clusters in the nonlinear regime, as excited, e.g., in ion-cluster interactions or with intense laser beams. We use a quantal time-dependent local-density approximation in axial symmetry to describe the electron dynamics. Ions are either treated in a jellium approximation or explicitly. We find different dynamical regimes depending on the symmetries of the ionic background.

  12. Identifying Deformation and Strain Hardening Behaviors of Nanoscale Metallic Multilayers Through Nano-wear Testing

    SciTech Connect

    Economy, David Ross; Mara, Nathan A.; Schoeppner, R.; Schultz, Bradley M.; Unocic, Raymond R.; Kennedy, Marian S.

    2016-01-13

    In complex loading conditions (e.g. sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed, as-deposited regions. Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 μm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally, the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022 respectively) were less than was determined for 100 nm systems (n ≈ 0.041). These results suggest that singledislocation based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.

  13. Nanoscale size dependence on pulsed laser sintering of hydroxyapatite/titanium particles on metal implants

    NASA Astrophysics Data System (ADS)

    Zhang, Martin Yi; Cheng, Gary J.

    2010-12-01

    Nanoscale size effects on pulsed laser coating of hydroxyapatite/titanium nanoparticles (nanoTi) on metal substrate is discussed in this article. Laser coating method has recently been developed to coat bioceramics material on Ti-6Al-4V substrate. Laser-coated bioceramics implants have several advantages due to the use of nanosized materials: strong interfacial bonding strength, good biocompatibility and potentially longer lifetime cycle. These advantages benefit from intrinsic properties of nanoparticles. Size effects on melting point, heat capacity, thermal, and electrical conductivities have been discussed. Multiphysics model is built to reveal the mechanism of laser coating process. Two submodules are included in the model: electromagnetic module to represent the laser-nanoparticle interactions and heat transfer module to simulate the heat conduction. Both simulation and experimental results showed that nanoTi, functioning as nanoheaters, effectively enhances the laser coating sinterability. For large nanoTi (>100 nm), sinterability enhancement mainly attributes to the stronger laser-particle interactions due to higher plasmon resonance; for small nanoparticles (<100 nm), not only stronger laser-nanoparticle interactions, reduction on melting point also contributes to sinterability enhancement.

  14. Identifying Deformation and Strain Hardening Behaviors of Nanoscale Metallic Multilayers Through Nano-wear Testing

    DOE PAGES

    Economy, David Ross; Mara, Nathan A.; Schoeppner, R.; ...

    2016-01-13

    In complex loading conditions (e.g. sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed, as-deposited regions. Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 μm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally,more » the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022 respectively) were less than was determined for 100 nm systems (n ≈ 0.041). These results suggest that singledislocation based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.« less

  15. Metal Structural Environment in ZnxNi1-xO Macroscale and Nanoscale Solid Solutions

    SciTech Connect

    Peck, Matthea A.; Langell, Marjorie A.

    2014-08-21

    The metal structural environments in macroscale and nanoscale ZnxNi1–xO solid solutions were examined using X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy (XPS). XRD demonstrates that solid solutions form for both macroscale (bulk) and nanoscale crystallites, and that the lattice parameter increases linearly as the amount of zinc increases, an indication of a homogeneous solid solution. XAS for both the bulk material and the nanoparticles reveals that the zinc atoms are incorporated into the rocksalt lattice and do not form zinc oxide clusters. The X-ray absorption near edge spectroscopy (XANES) of the Zn k-edge region in the solid solution is similar to the Ni k-edge region of NiO, and not the Zn k-edge region of ZnO. XPS confirms that solid solutions are formed; Auger parameters for zinc are consistent with a different geometry than the tetrahedral coordination of wurtzite ZnO. Nanoscaled solid solutions show evidence of a lattice contraction relative to macroscale solutions of the same concentration. While the contraction persists across the entire concentration range, the nanoparticle lattice parameter approaches the bulk ZnxNi1–xO value as the concentration of zinc increases to predict ZnO rocksalt lattice parameters that are in agreement with observed ZnO data.

  16. The effect of alkylating agents on model supported metal clusters

    SciTech Connect

    Erdem-Senatalar, A.; Blackmond, D.G.; Wender, I. . Dept. of Chemical and Petroleum Engineering); Oukaci, R. )

    1988-01-01

    Interactions between model supported metal clusters and alkylating agents were studied in an effort to understand a novel chemical trapping technique developed for identifying species adsorbed on catalyst surfaces. It was found that these interactions are more complex than had previously been suggested. Studies were completed using deuterium-labeled dimethyl sulfate (DMS), (CH{sub 3}){sub 2}SO{sub 4}, as a trapping agent to interact with the supported metal cluster ethylidyne tricobalt enneacarbonyl. Results showed that oxygenated products formed during the trapping reaction contained {minus}OCD{sub 3} groups from the DMS, indicating that the interaction was not a simple alkylation. 18 refs., 1 fig., 3 tabs.

  17. Nanoscale patterning of colloidal quantum dots on transparent and metallic planar surfaces.

    PubMed

    Park, Yeonsang; Roh, Young-Geun; Kim, Un Jeong; Chung, Dae-Young; Suh, Hwansoo; Kim, Jineun; Cheon, Sangmo; Lee, Jaesoong; Kim, Tae-Ho; Cho, Kyung-Sang; Lee, Chang-Won

    2012-09-07

    The patterning of colloidal quantum dots with nanometer resolution is essential for their application in photonics and plasmonics. Several patterning approaches, such as the use of polymer composites, molecular lock-and-key methods, inkjet printing and microcontact printing of quantum dots have been recently developed. Herein, we present a simple method of patterning colloidal quantum dots for photonic nanostructures such as straight lines, rings and dot patterns either on transparent or metallic substrates. Sub-10 nm width of the patterned line could be achieved with a well-defined sidewall profile. Using this method, we demonstrate a surface plasmon launcher from a quantum dot cluster in the visible spectrum.

  18. Abundances for globular cluster giants. I. Homogeneous metallicities for 24 clusters

    NASA Astrophysics Data System (ADS)

    Carretta, E.; Gratton, R. G.

    1997-01-01

    We have obtained high resolution, high signal-to-noise ratio CCD echelle spectra of 10 bright red giants in 3 globular clusters (47 Tuc, NGC 6752 and NGC 6397) roughly spanning the whole range of metallicities of the galactic globular cluster system. The analysis of this newly acquired material reveals no significant evidence of star-to-star variation of the [Fe/H] ratio in these three clusters. Moreover, a large set of high quality literature data (equivalent widths from high dispersion CCD spectra) was re-analyzed in an homogeneous and self-consistent way to integrate our observations and derive new metal abundances for more than 160 bright red giants in 24 globular clusters (i.e. about 16% of the known population of galactic globulars). This set was then used to define a new metallicity scale for globular clusters which is the result of high quality, direct spectroscopic data, of new and updated model atmospheres from the grid of \\cite[Kurucz (1992)]{\\ref41}, and of a careful fine abundance analysis; this last, in turn, is based on a common set of both atomic and atmospheric parameters for all the stars examined. Given the very high degree of internal homogeneity, our new scale supersedes the offsets and discrepancies existing in previous attempts to obtain a metallicity scale. The internal uncertainty in [Fe/H] is very small: 0.06 dex (24 clusters) on average, and can be interpreted also as the mean precision of the c luster ranking. Compared to our system, metallicities on the widely used Zinn and West's scale are about 0.10 dex higher for [Fe/H]>-1, 0.23 dex lower for -1<[Fe/H]<-1.9 and 0.11 dex too high for [Fe/H]<-1.9. The non-linearity of the Zinn and West's scale is significant even at 3 sigma level. A quadratic transformation is given to correct older values to the new scale in the range of our calibrating clusters (-2.24 <= [Fe/H]ZW <= -0.51). A minor disagreement is found at low metallicities between the metallicity scale based on field and cluster

  19. Scattering of electrons on metal clusters and fullerenes

    NASA Astrophysics Data System (ADS)

    Gerchikov, Leonid G.; Solov'yov, Andrey V.; Connerade, Jean-Patrick; Greiner, Walter

    1997-09-01

    It is shown that the main contribution to the elastic cross section of fast electrons on metal clusters and fullerenes results from scattering on the frozen cluster potential, which is determined by the electron density distribution of the ground state of the target cluster. The specific shape of the electron distribution in fullerenes and metal clusters manifests itself in the diffraction behaviour of the elastic differential cross section. The analysis of the total elastic cross section dependence upon projectile velocity, the number of atoms in the cluster and its size is provided. The cross section of elastic scattering on a cluster surpasses the sum of the individual scattering cross sections on the equivalent number of isolated atoms. This occurs because of the coherent interaction of the projectile electron with electrons delocalized in the cluster volume. We have demonstrated that collective electron excitations sensitive to the many-electron correlations dominate inelastic scattering. The surface plasmon resonances can be observed in the differential cross section for inelastic scattering. We found a condition for the quadrupole and higher multipole plasmon excitations to contribute relatively little to the electron energy loss spectrum. The results obtained have been compared with experimental data for the electron - fullerene 0953-4075/30/18/013/img7 collision. Reasonable agreement between theoretical and experimental results is reported. We have also demonstrated that plasmon excitations provide the main contribution to the total inelastic cross section over a wide energy range. We have calculated the dependence of the total inelastic cross section on collision energy and compared the result obtained with the experimental data available, giving an interpretation for the plateau region in the cross section as caused by plasmon excitations rather than the cluster fragmentation process. We have shown that the single-particle jellium approximation fails to

  20. Theoretical Study on Metal Porphyrin Chain for Use as a Nanoscale Device

    NASA Astrophysics Data System (ADS)

    Mizuseki, Hiroshi; Igarashi, Nobuaki; Belosludov, Rodion; Farajian, Amir; Kawazoe, Yoshiyuki

    2003-03-01

    Recently, the molecular electronics has attracted strong attention as a ``post-silicone technology'' to realize a future nanoscale electronics device. A quarter century ago Aviram and Ratner (1) have first demonstrated how an organic molecule could function as a molecular rectifying diode. Further this has been supported by many experimental results. Aromatic molecules have ¥pi-conjugation systems through which electrons can flow easily. By substituting different functional groups on an aromatic system it is possible to increase or decrease the ¥pi-electron density and thereby creating acceptor (p-type) and donor (n-type) molecular subunits. Therefore, a rectifier could be built by combining these two molecular subunits between two electrodes in which electrons can flow from cathode to the acceptor or from donor to the anode (2-3). Porphyrin possesses good electron-donating properties due to its large easily ionized ¥pi-electron system, and a long molecular wire of fully conjugated porphyrin. In this study, we propose rectifier diode can be created by combining two metal porphyrin molecules with different metal atom. To estimate the electron transport through this molecule, we have analyzed the spatial extent of the frontier orbitals (HOMO and LUMO), providing a strategy by which the rectifying properties of the porphyrin polymer can be understood. This study was performed through Special Coordination Funds for Promoting Science and Technology of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government. (1) A. Aviram and M. A. Ratner, Chem. Phys. Lett. Vol. 29 (1974) 277. (2) C. Majumder, H. Mizuseki, and Y. Kawazoe, J. Phys. Chem. A, Vol. 105 (2001) 9454. (3) H. Mizuseki, K. Niimura, C. Majumder, and Y. Kawazoe, Comput. Mater. Sci., in press.

  1. Interaction of metallic clusters with biologically active curcumin molecules

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev K.; He, Haiying; Liu, Chunhui; Dutta, Ranu; Pandey, Ravindra

    2015-09-01

    We have investigated the interaction of subnano metallic Gd and Au clusters with curcumin, an important biomolecule having pharmacological activity. Gd clusters show different site preference to curcumin and much stronger interaction strength, in support of the successful synthesis of highly stable curcumin-coated Gd nanoparticles as reported recently. It can be attributed to significant charge transfer from the Gd cluster to curcumin together with a relatively strong hybridization of the Gd df-orbitals with curcumin p-orbitals. These results suggest that Gd nanoparticles can effectively be used as delivery carriers for curcumin at the cellular level for therapy and medical imaging applications.

  2. Theoretical studies of the electronic structure of small metal clusters

    NASA Technical Reports Server (NTRS)

    Jordan, K. D.

    1982-01-01

    Theoretical studies of the electronic structure of metal clusters, in particular clusters of Group IIA and IIB atoms were conducted. Early in the project it became clear that electron correlation involving d orbitals plays a more important role in the binding of these clusters than had been previously anticipated. This necessitated that computer codes for calculating two electron integrals and for constructing the resulting CI Hamiltonions be replaced with newer, more efficient procedures. Program modification, interfacing and testing were performed. Results of both plans are reported.

  3. Reactivity of small transition-metal clusters with CO

    NASA Astrophysics Data System (ADS)

    Andersson, Mats T.; Gronbeck, H.; Holmgren, L.; Rosen, Arne

    1995-09-01

    The size-dependent reactivity of several transition-metal clusters: Con, Nbn, Rhn, and Wn with CO has been investigated in a cluster beam experiment. The reactions occur at single-collision-like conditions and the results are evaluated in terms of the reaction probability (S) in a collision. For all the four metals, clusters with more than 10 - 15 atoms show a high reaction probability, S >= 0.4, rather independent of size. For smaller Nbn and Wn, the reaction probability is lower, and for Nbn, large variations in the CO reactivity are observed in the n equals 8 - 13 range with a distinct minimum at Nb10. Using an LCAO approach within the local spin density approximation (LSDA) the adsorption of molecular CO on Nbn has also been investigated theoretically. The geometries of the bare clusters were optimized and two different sites for CO were investigated. The discussion is based on a detailed analysis of Nb4. The calculations show that compact structures with high coordination numbers are the most stable ones for the bare Nb clusters and hollow sites, also maximizing the coordination, are preferred for CO adsorption. The calculations indicate that a high CO-Nbn bond strength is obtained for clusters with a high density of states close to the Fermi level and for which the HOMO level has a symmetry that allows for an efficient back-donation of electrons to the 2(pi) *-orbital of CO. A particularly low chemisorption energy was calculated for the Nb10 cluster.

  4. Supersonic Bare Metal Cluster Beams. Technical Progress Report, March 16, 1984 - April 1, 1985

    DOE R&D Accomplishments Database

    Smalley, R. E.

    1985-01-01

    There have been four major areas of concentration for the study of bare metal cluster beams: neutral cluster, chemical reactivity, cold cluster ion source development (both positive and negative), bare cluster ion ICR (ion cyclotron resonance) development, and photofragmentation studies of bare metal cluster ions.

  5. Variable Stars In the Unusual, Metal-Rich Globular Cluster

    NASA Technical Reports Server (NTRS)

    Pritzl, Barton J.; Smith, Horace A.; Catelan, Marcio; Sweigart, Allen V.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We have undertaken a search for variable stars in the metal-rich globular cluster NGC 6388 using time-series BV photometry. Twenty-eight new variables were found in this survey, increasing the total number of variables found near NGC 6388 to approx. 57. A significant number of the variables are RR Lyrae (approx. 14), most of which are probable cluster members. The periods of the fundamental mode RR Lyrae are shown to be unusually long compared to metal-rich field stars. The existence of these long period RRab stars suggests that the horizontal branch of NGC 6388 is unusually bright. This implies that the metallicity-luminosity relationship for RR Lyrae stars is not universal if the RR Lyrae in NGC 6388 are indeed metal-rich. We consider the alternative possibility that the stars in NGC 6388 may span a range in [Fe/H]. Four candidate Population II Cepheids were also found. If they are members of the cluster, NGC 6388 would be the most metal-rich globular cluster to contain Population II Cepheids. The mean V magnitude of the RR Lyrae is found to be 16.85 +/- 0.05 resulting in a distance of 9.0 to 10.3 kpc, for a range of assumed values of (M(sub V)) for RR Lyrae. We determine the reddening of the cluster to be E(B - V) = 0.40 +/- 0.03 mag, with differential reddening across the face of the cluster. We discuss the difficulty in determining the Oosterhoff classification of NGC 6388 and NGC 6441 due to the unusual nature of their RR Lyrae, and address evolutionary constraints on a recent suggestion that they are of Oosterhoff type II.

  6. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement.

    PubMed

    Dai, Daoxin; He, Sailing

    2009-09-14

    A hybrid plasmonic waveguide with a metal cap on a silicon-on-insulator rib (or slab) is presented. There is a low-index material nano-layer between the Si layer and the metal layer. The field enhancement in the nano-layer provides a nano-scale confinement of the optical field (e.g., 50 nm x 5 nm) when operates at the optical wavelength lambda = 1550 nm. The theoretical investigation also shows that the present hybrid plasmonic waveguide has a low loss and consequently a relatively long propagation distance (on the order of several tens of lambda).

  7. Litigated Metal Clusters - Structures, Energy and Reactivity

    DTIC Science & Technology

    2016-04-01

    Self Assembly: Novel Ion Mobility Methods Show the Essential Role of Water Do, T. D.; Bowers, M. T. Anal . Chem. 2015, 87, 4243–4252. 3. A New...Buffer Gas Bleiholder, C.; Johnson, N. R.; Contreras, S.; Wyttenbach, T.; Bowers, M. T. Anal . Chem. 2015, 87, 7196–7203. 5. Amino Acid Metaclusters...Bowers, M. T. Anal . Chem. 2016, 88, 868–876. Changes in research objectives (if any): The research objectives were changed from investigation of metal

  8. The structure of deposited metal clusters generated by laser evaporation

    NASA Astrophysics Data System (ADS)

    Faust, P.; Brandstättner, M.; Ding, A.

    1991-09-01

    Metal clusters have been produced using a laser evaporation source. A Nd-YAG laser beam focused onto a solid silver rod was used to evaporate the material, which was then cooled to form clusters with the help of a pulsed high pressure He beam. TOF mass spectra of these clusters reveal a strong occurrence of small and medium sized clusters ( n<100). Clusters were also deposited onto grid supported thin layers of carbon-films which were investigated by transmission electron microscopy. Very high resolution pictures of these grids were used to analyze the size distribution and the structure of the deposited clusters. The diffraction pattern caused by crystalline structure of the clusters reveals 3-and 5-fold symmetries as well as fcc bulk structure. This can be explained in terms of icosahedron and cuboctahedron type clusters deposited on the surface of the carbon layer. There is strong evidence that part of these cluster geometries had already been formed before the depostion process. The non-linear dependence of the cluster size and the cluster density on the generating conditions is discussed. Therefore the samples were observed in HREM in the stable DEEKO 100 microscope of the Fritz-Haber-Institut operating at 100 KV with the spherical aberration c S =0.5 mm. The quality of the pictures was improved by using the conditions of minimum phase contrast hollow cone illumination. This procedure led to a minimum of phase contrast artefacts. Among the well-crystallized particles were a great amount of five- and three-fold symmetries, icosahedra and cuboctahedra respectively. The largest clusters with five- and three-fold symmetries have been found with diameters of 7 nm; the smallest particles displaying the same undistorted symmetries were of about 2 mm. Even smaller ones with strong distortions could be observed although their classification is difficult. The quality of the images was improved by applying Fourier filtering techniques.

  9. Hitomi observations of the Perseus Cluster / Constant metallicity in the outskirts of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Werner, Norbert; Simionescu, Aurora; Urban, Ondrej; Allen, Steven

    2016-07-01

    X-ray observations with the Suzaku satellite reveal a remarkably homogeneous distribution of iron out to the virial radii of nearby galaxy clusters. Observations of the Virgo Cluster, that also allow us to measure the abundances of Si, S, and Mg out to the outskirts, show that the chemical composition of the intra-cluster medium is constant on large scales. These observations require that most of the metal enrichment and mixing of the intergalactic medium occurred before clusters formed, probably more than ten billion years ago, during the period of maximal star formation and black hole activity. We estimate the ratio between the number of SN Ia and the total number of supernovae enriching the intergalactic medium to be between 15-20%, generally consistent with the metal abundance patterns in our own Galaxy.

  10. Group additivity-Pourbaix diagrams advocate thermodynamically stable nanoscale clusters in aqueous environments.

    PubMed

    Wills, Lindsay A; Qu, Xiaohui; Chang, I-Ya; Mustard, Thomas J L; Keszler, Douglas A; Persson, Kristin A; Cheong, Paul Ha-Yeon

    2017-06-15

    The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions.

  11. Group additivity-Pourbaix diagrams advocate thermodynamically stable nanoscale clusters in aqueous environments

    PubMed Central

    Wills, Lindsay A.; Qu, Xiaohui; Chang, I-Ya; Mustard, Thomas J. L.; Keszler, Douglas A.; Persson, Kristin A.; Cheong, Paul Ha-Yeon

    2017-01-01

    The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions. PMID:28643782

  12. Group additivity-Pourbaix diagrams advocate thermodynamically stable nanoscale clusters in aqueous environments

    NASA Astrophysics Data System (ADS)

    Wills, Lindsay A.; Qu, Xiaohui; Chang, I.-Ya; Mustard, Thomas J. L.; Keszler, Douglas A.; Persson, Kristin A.; Cheong, Paul Ha-Yeon

    2017-06-01

    The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions.

  13. Metallicity in the Galactic Center: The Arches Cluster

    NASA Astrophysics Data System (ADS)

    Najarro, Francisco; Figer, Donald F.; Hillier, D. John; Kudritzki, Rolf P.

    2004-04-01

    We present a quantitative spectral analysis of five very massive stars in the Arches cluster, located near the Galactic center, to determine stellar parameters, stellar wind properties, and, most importantly, metallicity content. The analysis uses a new technique, presented here for the first time, and uses line-blanketed non-LTE wind/atmosphere models fitted to high-resolution near-infrared spectra of late-type nitrogen-rich Wolf-Rayet stars and OfI+ stars in the cluster. It relies on the fact that massive stars reach a maximum nitrogen abundance that is related to initial metallicity when they are in the WNL phase. We determine the present-day nitrogen abundance of the WNL stars in the Arches cluster to be 1.6% (mass fraction) and constrain the stellar metallicity in the cluster to be solar. This result is invariant to assumptions about the mass-luminosity relationship, the mass-loss rates, and rotation speeds. In addition, from this analysis, we find the age of the Arches cluster to be 2-2.5 Myr, assuming coeval formation.

  14. Clustered field evaporation of metallic glasses in atom probe tomography.

    PubMed

    Zemp, J; Gerstl, S S A; Löffler, J F; Schönfeld, B

    2016-03-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different - as yet unknown - physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses.

  15. Hydride encapsulation by molecular alkali-metal clusters.

    PubMed

    Haywood, Joanna; Wheatley, Andrew E H

    2008-07-14

    The sequential treatment of group 12 and 13 Lewis acids with alkali-metal organometallics is well established to yield so-called ''ate' complexes, whereby the Lewis-acid metal undergoes nucleophilic attack to give an anion, at least one group 1 metal acting to counter this charge. However, an alternative, less well recognised, reaction pathway involves the Lewis acid abstracting hydride from the organolithium reagent via a beta-elimination mechanism. It has recently been shown that in the presence of N,N'-bidentate ligands this chemistry can be harnessed to yield a new type of molecular main-group metal cluster in which the abstracted LiH is effectively trapped, with the hydride ion occupying an interstitial site in the cluster core. Discussion focuses on the development of this field, detailing advances in our understanding of the roles of Lewis acid, organolithium, and amine substrates in the syntheses of these compounds. Structure-types are discussed, as are efforts to manipulate cluster geometry and composition as well as hydride-coordination. Embryonic mechanistic studies are reported, as well as attempts to generate hydride-encapsulation clusters under catalytic control.

  16. Flexible macrocycles as versatile supports for catalytically active metal clusters

    DOE PAGES

    Ryan, Jason D.; Gagnon, Kevin J.; Teat, Simon J.; ...

    2016-02-12

    Here we present three structurally diverse clusters stabilised by the same macrocyclic polyphenol; t-butylcalix[8]arene. This work demonstrates the range of conformations the flexible ligand is capable of adopting, highlighting its versatility in metal coordination. In addition, a Ti complex displays activity for the ring-opening polymerisation of lactide

  17. Flexible macrocycles as versatile supports for catalytically active metal clusters

    SciTech Connect

    Ryan, Jason D.; Gagnon, Kevin J.; Teat, Simon J.; McIntosh, Ruaraidh D.

    2016-02-12

    Here we present three structurally diverse clusters stabilised by the same macrocyclic polyphenol; t-butylcalix[8]arene. This work demonstrates the range of conformations the flexible ligand is capable of adopting, highlighting its versatility in metal coordination. In addition, a Ti complex displays activity for the ring-opening polymerisation of lactide

  18. Structure of fluorescent metal clusters on a DNA template.

    NASA Astrophysics Data System (ADS)

    Vdovichev, A. A.; Sych, T. S.; Reveguk, Z. V.; Smirnova, A. A.; Maksimov, D. A.; Ramazanov, R. R.; Kononov, A. I.

    2016-08-01

    Luminescent metal clusters are a subject of growing interest in recent years due to their bright emission from visible to near infrared range. Detailed structure of the fluorescent complexes of Ag and other metal clusters with ligands still remains a challenging task. In this joint experimental and theoretical study we synthesized Ag-DNA complexes on a DNA oligonucleotide emitting in violet- green spectral range. The structure of DNA template was determined by means of various spectral measurements (CD, MS, XPS). Comparison of the experimental fluorescent excitation spectra and calculated absorption spectra for different QM/MM optimized structures allowed us to determine the detailed structure of the green cluster containing three silver atoms in the stem of the DNA hairpin structure stabilized by cytosine-Ag+-cytosine bonds.

  19. Developing an Effective Model for Shale Gas Flow in Nano-scale Pore Clusters based on FIB-SEM Images

    NASA Astrophysics Data System (ADS)

    Jiang, W. B.; Lin, M.; Yi, Z. X.; Li, H. S.

    2016-12-01

    Nano-scale pores existed in the form of clusters are the controlling void space in shale gas reservoir. Gas transport in nanopores which has a significant influence on shale gas' recoverability displays multiple transport regimes, including viscous, slippage flow and Knudsen diffusion. In addition, it is also influenced by pore space characteristics. For convenience and efficiency consideration, it is necessary to develop an upscaling model from nano pore to pore cluster scale. Existing models are more like framework functions that provide a format, because the parameters that represent pore space characteristics are underdetermined and may have multiple possibilities. Therefore, it is urgent to make them clear and obtained a model that is closer to reality. FIB-SEM imaging technology is able to acquire three dimensional images with nanometer resolution that nano pores can be visible. Based on the images of two shale samples, we used a high-precision pore network extraction algorithm to generate equivalent pore networks and simulate multiple regime (non-Darcy) flow in it. Several structural parameters can be obtained through pore network modelling. It is found that although the throat-radius distributions are very close, throat flux-radius distributions of different samples can be divided into two categories. The variation of tortuosity with pressure and the overall trend of throat-flux distribution changes with pressure are disclosed. A deeper understanding of shale gas flow in nano-scale pore clusters is obtained. After all, an upscaling model that connects absolute permeability, apparent permeability and other characteristic parameters is proposed, and the best parameter scheme considering throat number-radius distribution and flowing porosity for this model is selected out of three schemes based on pore scale results, and it can avoid multiple-solution problem and is useful in reservoir modelling and experiment result analysis, etc. This work is supported by

  20. Atomic resolution electron microscopy of small metal clusters

    NASA Astrophysics Data System (ADS)

    Bovin, J.-O.; Malm, J.-O.

    1991-03-01

    Atomic resolution imaging of cluster structures has been performed with high resolution transmission electron microscopy (HRTEM). Metal particles of the sizes 1 nanometer to tens of nanometers have been surface profile imaged on different supports; like zeolites, cordierite and amorphous carbon. It is shown that organic ligands in Schmid-clusters coordinated to the metal surface are desorbed or destroyed by the electron beam. Dynamic events on the surfaces and in the bulk of small metal particles have been recorded for small crystals of Au, Pt, Rh and Pb and can be classified under three headings; The smaller the crystals are the faster rearrangements of the crystal structure; “clouds” of atoms existing outside some surfaces are involved in extensive structural rearrangements of the surface or crystal surface growth; localized atom hopping on surfaces during crystal growth and desorption also occurs.

  1. Structure, optical properties and defects in nitride (III-V) nanoscale cage clusters.

    PubMed

    Shevlin, S A; Guo, Z X; van Dam, H J J; Sherwood, P; A Catlow, C R; Sokol, A A; Woodley, S M

    2008-04-14

    Density Functional Theory calculations are reported on cage structured BN, AlN, GaN and InN sub- and low nanosize stoichiometric clusters, including two octahedral families of T(d) and T(h) symmetry. The structures and energetics are determined, and we observe that BN clusters in particular show high stability with respect to the bulk phase. The cluster formation energy is demonstrated to include a constant term that we attribute to the curvature energy and the formation of six tetragonal defects. The (BN)(60) onion double-bubble structure was found to be particularly unstable. In contrast, similar or greater stability was found for double and single shell cages for the other nitrides. The optical absorption spectra have been first characterised by the one-electron Kohn-Sham orbital energies for all compounds, after which we concentrated on BN where we employed a recently developed Time Dependent Density Functional Theory approach. The one-electron band gaps do not show a strong and consistent size dependency, in disagreement with the predictions of quantum confinement theory. The density of excited bound states and absorption spectrum have been calculated for four smallest BN clusters within the first ionisation potential cut-off energy. The relative stability of different BN clusters has been further explored by studying principal point defects and their complexes including topological B-N bond rotational defects, vacancies, antisites and interstititials. The latter have the lowest energy of formation.

  2. Nanoscale metal-organic frameworks for photodynamic therapy and cancer immunotherapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lin, Wenbin

    2017-02-01

    Photodynamic therapy (PDT) is an effective anticancer procedure that relies on tumor localization of a photosensitizer followed by light activation to generate cytotoxic reactive oxygen species. We recently reported the rational design of a Hf-porphyrin nanoscale metal-organic framework, DBP-UiO, as an exceptionally effective photosensitizer for PDT of resistant head and neck cancer. DBP-UiO efficiently generates singlet oxygen owing to site isolation of porphyrin ligands, enhanced intersystem crossing by heavy Hf centers, and facile singlet oxygen diffusion through porous DBP-UiO nanoplates. Consequently, DBP-UiO displayed greatly enhanced PDT efficacy both in vitro and in vivo, leading to complete tumor eradication in half of the mice receiving a single DBP-UiO dose and a single light exposure. The photophysical properties of DBP-UiO are however not optimum with the lowest energy absorption at 634 nm and a relatively small extinction coefficient of 2200 M-1·cm-1. We recently designed a chlorin-based NMOF, DBC-UiO, with much improved photophysical properties and PDT efficacy in two colon cancer mouse models. Reduction of the DBP ligands in DBP-UiO to the DBC ligands in DBC-UiO led to a 13 nm red-shift and an 11-fold extinction coefficient increase of the lowest energy Q-band. While inheriting the crystallinity, stability, porosity, and nanoplate morphology of DBP-UiO, DBC-UiO sensitizes more efficient singlet oxygen generation and exhibits much enhanced photodynamic therapy (PDT) efficacy on two colon cancer mouse models as a result of its improved photophysical properties. Both apoptosis and immunogenic cell death contributed to cancer cell-killing in DBC-UiO induced PDT. Our work has thus demonstrated that NMOFs represent a new class of highly potent PDT agents and hold great promise in treating resistant cancers in the clinic.

  3. Aggregation of nanoscale iron oxyhydroxides and corresponding effects on metal uptake, retention, and speciation: II. Temperature and time

    NASA Astrophysics Data System (ADS)

    Stegemeier, J. P.; Reinsch, B. C.; Lentini, C. J.; Dale, J. G.; Kim, C. S.

    2015-01-01

    The aggregation and growth of nanosized particles can greatly impact their capacity to sorb and retain dissolved metals, thus affecting metal fate and transport in contaminated systems. Aqueous suspensions of synthesized nanoscale iron oxyhydroxides were exposed to dissolved Zn(II) or Cu(II) and aged at room temperature (∼20 °C), 50 °C, and 75 °C for timeframes ranging from 0 to 96 h before sorbed metal ions were desorbed by lowering the suspension pH. Atomic absorption spectroscopic analysis of supernatants both before and after the desorption step determined how temperature and time affect macroscopic metal uptake and retention capacities. Extended X-ray absorption fine structure (EXAFS) spectroscopy analysis described the local binding environment of the sorbed/retained metals on the solid phase. With increasing aging temperature and time, the initial ∼5-nm oblong nanoparticles formed dense aggregates, lost reactive surface area, and retained progressively larger fractions of the initially-introduced Zn(II) and Cu(II) following the desorption step, with the copper species inhibiting the oriented aggregation of the nanoparticles into nanorods. Based on EXAFS analysis, the speciation of the sorbed metal species evolves with increasing time and temperature from surface-sorbed metal ions, which readily desorb and return to solution, to more strongly-bound, structurally-incorporated metal ions. These retained metals appear to associate intimately with the nanoparticle aggregates by substituting for iron in the nanoparticle lattice or by binding within nanoparticle aggregate pore spaces.

  4. Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron

    NASA Astrophysics Data System (ADS)

    Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang

    2017-09-01

    The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (<600 K), which consists of < 110 > dumbbells and < 111 > crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [ hkl ] interstitial loop within the family of < hkl > loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress direction and the orientation of the < 111 > crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.

  5. Complex nanoscale cage clusters built from uranyl polyhedra and phosphate tetrahedra

    SciTech Connect

    Unruh, Daniel K.; Ling, Jie; Qiu, Jie; Pressprich, Laura; Baranay, Melissa; Ward, Matthew; Burns, Peter C.

    2011-06-20

    Five cage clusters that self-assemble in alkaline aqueous solution have been isolated and characterized. Each is built from uranyl hexagonal bipyramids with two or three equatorial edges occupied by peroxide, and three also contain phosphate tetrahedra. These clusters contain 30 uranyl polyhedra; 30 uranyl polyhedra and six pyrophosphate groups; 30 uranyl polyhedra, 12 pyrophosphate groups, and one phosphate tetrahedron; 42 uranyl polyhedra; and 40 uranyl polyhedra and three pyrophosphate groups. These clusters present complex topologies as well as a range of compositions, sizes, and charges. Two adopt fullerene topologies, and the others contain combinations of topological squares, pentagons, and hexagons. An analysis of possible topologies further indicates that higher-symmetry topologies are favored.

  6. Characterization of oxide supported metal carbonyl clusters

    NASA Astrophysics Data System (ADS)

    Evans, John

    The chemisorption of [Ma 3(CO) 1 2] on silica (M = Ru and Os) and alumina (M = Os) has been studied by vibrational and X-ray absorption spectroscopies making close comparisons with model compounds. The results indicate that the first chemisorption species observed has the form [M 3H(CO) 10(O---O)]; the bridging hydride was observed directly for the silica systems as evidenced by the M-H-M bending vibration in the i.r. Also consistent with this structure are the EXAFS analysis of the Ru/SiOz material. This indicated an essentially equilateral ruthenium triangle and coordination to oxygen. The published low frequency Raman data on the Os/Al2Oa product was shown to match most closely with that of model compounds with a bidentate oxygen donor ligand (acac or O2CR). The tethered cluster [O s3H 2(CO) 9(PPh 2C 2H 4SIL)] was found to be a relatively short lived species on a silica surface. Under ambient conditions it reacts further and the i.r., EXAFS and 31P NMR data of this species suggest that the two osmium atoms not coordinated to the tethering phosphine become involved with a bidentate site from the surface.

  7. Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal-Organic Frameworks.

    PubMed

    Yuan, Shuai; Chen, Ying-Pin; Qin, Junsheng; Lu, Weigang; Wang, Xuan; Zhang, Qiang; Bosch, Mathieu; Liu, Tian-Fu; Lian, Xizhen; Zhou, Hong-Cai

    2015-12-01

    Cooperative cluster metalation and ligand migration were performed on a Zr-MOF, leading to the isolation of unique bimetallic MOFs based on decanuclear Zr6M4 (M = Ni, Co) clusters. The M(2+) reacts with the μ3-OH and terminal H2O ligands on an 8-connected [Zr6O4(OH)8(H2O)4] cluster to form a bimetallic [Zr6M4O8(OH)8(H2O)8] cluster. Along with the metalation of Zr6 cluster, ligand migration is observed in which a Zr-carboxylate bond dissociates to form a M-carboxylate bond. Single-crystal to single-crystal transformation is realized so that snapshots for cooperative cluster metalation and ligand migration processes are captured by successive single-crystal X-ray structures. In(3+) was metalated into the same Zr-MOF which showed excellent catalytic activity in the acetaldehyde cyclotrimerization reaction. This work not only provides a powerful tool to functionalize Zr-MOFs with other metals, but also structurally elucidates the formation mechanism of the resulting heterometallic MOFs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater.

    PubMed

    Sun, Yuqing; Lei, Cheng; Khan, Eakalak; Chen, Season S; Tsang, Daniel C W; Ok, Yong Sik; Lin, Daohui; Feng, Yujie; Li, Xiang-Dong

    2017-06-01

    Nanoscale zero-valent iron (nZVI) was tested for the removal of Cu(II), Zn(II), Cr(VI), and As(V) in model saline wastewaters from hydraulic fracturing. Increasing ionic strength (I) from 0.35 to 4.10 M (Day-1 to Day-90 wastewaters) increased Cu(II) removal (25.4-80.0%), inhibited Zn(II) removal (58.7-42.9%), slightly increased and then reduced Cr(VI) removal (65.7-44.1%), and almost unaffected As(V) removal (66.7-75.1%) by 8-h reaction with nZVI at 1-2 g L(-1). The removal kinetics conformed to pseudo-second-order model, and increasing I decreased the surface area-normalized rate coefficient (ksa) of Cu(II) and Cr(VI), probably because agglomeration of nZVI in saline wastewaters restricted diffusion of metal(loid)s to active surface sites. Increasing I induced severe Fe dissolution from 0.37 to 0.77% in DIW to 4.87-13.0% in Day-90 wastewater; and Fe dissolution showed a significant positive correlation with Cu(II) removal. With surface stabilization by alginate and polyvinyl alcohol, the performance of entrapped nZVI in Day-90 wastewater was improved for Zn(II) and Cr(VI), and Fe dissolution was restrained (3.20-7.36%). The X-ray spectroscopic analysis and chemical speciation modelling demonstrated that the difference in removal trends from Day-1 to Day-90 wastewaters was attributed to: (i) distinctive removal mechanisms of Cu(II) and Cr(VI) (adsorption, (co-)precipitation, and reduction), compared to Zn(II) (adsorption) and As(V) (bidentate inner-sphere complexation); and (ii) changes in solution speciation (e.g., from Zn(2+) to ZnCl3(-) and ZnCl4(2-); from CrO4(2-) to CaCrO4 complex). Bare nZVI was susceptible to variations in wastewater chemistry while entrapped nZVI was more stable and environmentally benign, which could be used to remove metals/metalloids before subsequent treatment for reuse/disposal.

  9. Long-lived excited states in metal clusters.

    PubMed

    Koop, Alexander; Gantefoer, Gerd; Kim, Young Dok

    2017-08-16

    Bare metal clusters have properties that make them interesting for applications in photochemistry and photovoltaics. Long-lived excited states are a prerequisite for such applications, because in them the energy of the photon can be stored. Clusters have a low density of states and long-lived excited states should therefore occur frequently. However, in fact, such states are a rarity, as indicated by time-resolved photoelectron data of mass-selected cluster anions. And there is another puzzling observation: only clusters with narrow peaks in their photoelectron spectra exhibit long-lived excited states. Both findings can be explained if internal conversion, i.e. the conversion of electronic excitation energy into vibrational excitations, is the major relaxation mechanism in clusters. It becomes more likely, if a change of the electronic configuration results in a large geometry change, which is probably the case for most clusters. Only clusters with a weak coupling between geometric and electronic structure may have long-lived excited states and narrow peaks.

  10. Evolution of metallic screening in small metal clusters probed by PCI-Auger spectroscopy.

    PubMed

    Peters, Sven; Peredkov, Sergey; Balkaya, Baris; Ferretti, Nicoletta; Neeb, Matthias; Eberhardt, Wolfgang

    2010-09-07

    Excitation-energy dependent Auger spectra of small copper clusters supported by a thin silica layer have been measured as function of cluster size. The Auger kinetic energy of the clusters clearly changes with the excess energy of the emitted photoelectron while not for the bulk. The kinetic energy shift is attributed to post-collision interaction (PCI) and exhibits a reduced metallic screening ability of small Cu-clusters. The spectroscopic data reveal an evolution from a long-range Coulomb-like interaction to a short-range "screened" electrostatic interaction within the sub-nm range. The data show that core electron spectroscopy such as PCI-Auger measurements can be used as a general tool to follow the metallic character of supported clusters.

  11. Spectroscopy at metal cluster surfaces. Final report, September 15, 1993--September 14, 1996

    SciTech Connect

    Duncan, M.A.

    1998-06-01

    The focus of this research program is the study of gas phase metal clusters to evaluate their potential as models for the fundamental interactions present in catalysis. To do this, the authors characterize the chemical bonding present between the component atoms in metal clusters as well as the bonding exhibited by {open_quotes}physisorption{close_quotes} on metal atom or metal cluster surfaces. Electronic spectra, vibrational frequencies and bond dissociation energies are measured for both neutral and ionized clusters with a variety of laser/mass spectrometry techniques. The authors are particularly interested in bimetallic cluster systems, and how their properties compare to those of corresponding pure metal clusters.

  12. Nonvolatile nuclear spin memory enables sensor-unlimited nanoscale spectroscopy of small spin clusters.

    PubMed

    Pfender, Matthias; Aslam, Nabeel; Sumiya, Hitoshi; Onoda, Shinobu; Neumann, Philipp; Isoya, Junichi; Meriles, Carlos A; Wrachtrup, Jörg

    2017-10-10

    In nanoscale metrology, dissipation of the sensor limits its performance. Strong dissipation has a negative impact on sensitivity, and sensor-target interaction even causes relaxation or dephasing of the latter. The weak dissipation of nitrogen-vacancy (NV) sensors in room temperature diamond enables detection of individual target nuclear spins, yet limits the spectral resolution of nuclear magnetic resonance (NMR) spectroscopy to several hundred Hertz, which typically prevents molecular recognition. Here, we use the NV intrinsic nuclear spin as a nonvolatile classical memory to store NMR information, while suppressing sensor back-action on the target using controlled decoupling of sensor, memory, and target. We demonstrate memory lifetimes up to 4 min and apply measurement and decoupling protocols, which exploit such memories efficiently. Our universal NV-based sensor device records single-spin NMR spectra with 13 Hz resolution at room temperature.Dissipation of the sensor is a limiting factor in metrology. Here, Pfender et al. suppress this effect employing the nuclear spin of an NV centre for robust intermediate storage of classical NMR information, allowing then to record single-spin NMR spectra with 13 Hz resolution at room temperature.

  13. Metallic-like bonding in plasma-born silicon nanocrystals for nanoscale bandgap engineering.

    PubMed

    Vach, Holger; Ivanova, Lena V; Timerghazin, Qadir K; Jardali, Fatme; Le, Ha-Linh Thi

    2016-10-27

    Based on ab initio molecular dynamics simulations, we show that small nanoclusters of about 1 nm size spontaneously generated in a low-temperature silane plasma do not possess tetrahedral structures, but are ultrastable. Apparently small differences in the cluster structure result in substantial modifications in their electric, magnetic, and optical properties, without the need for any dopants. Their non-tetrahedral geometries notably lead to electron deficient bonds that introduce efficient electron delocalization that strongly resembles the one of a homogeneous electron gas leading to metallic-like bonding within a semiconductor nanocrystal. As a result, pure hydrogenated silicon clusters that form by self-assembly in a plasma reactor possess optical gaps covering most of the solar spectrum from 1.0 eV to 5.2 eV depending simply on their structure and, in turn, on their degree of electron delocalization. This feature makes them ideal candidates for future bandgap engineering not only for photovoltaics, but also for many nano-electronic devices employing nothing else but silicon and hydrogen atoms.

  14. Electronic Structure and Properties of Metal Cluster Isomers

    NASA Astrophysics Data System (ADS)

    Jena, Puru

    1997-03-01

    One of the most interesting features of clusters is that they exhibit many isomeric forms. The geometries, binding energies, and electronic structure of isomers of alkali and transition metal clusters have been studied using first principles calculations based on molecular orbital theory. The existence of energetically degenerate isomers manifests in many novel features in photoelectron spectroscopy, reactivity, and magnetic properties. The theoretical results will be used not only to explain recent anomalous experimental data but also to predict phenomena that could be verified by future experiments.

  15. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    SciTech Connect

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than

  16. Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: Effect of environmental humidity

    NASA Astrophysics Data System (ADS)

    Morsali, Seyedreza; Daryadel, Soheil; Zhou, Zhong; Behroozfar, Ali; Qian, Dong; Minary-Jolandan, Majid

    2017-01-01

    Capability to print metals at micro/nanoscale in arbitrary 3D patterns at local points of interest will have applications in nano-electronics and sensors. Meniscus-confined electrodeposition (MCED) is a manufacturing process that enables depositing metals from an electrolyte containing nozzle (pipette) in arbitrary 3D patterns. In this process, a meniscus (liquid bridge or capillary) between the pipette tip and the substrate governs the localized electrodeposition process. Fabrication of metallic microstructures using this process is a multi-physics process in which electrodeposition, fluid dynamics, and mass and heat transfer physics are simultaneously involved. We utilized multi-physics finite element simulation, guided by experimental data, to understand the effect of water evaporation from the liquid meniscus at the tip of the nozzle for deposition of free-standing copper microwires in MCED process.

  17. Understanding and Practical Use of Ligand and Metal Exchange Reactions in Thiolate-Protected Metal Clusters to Synthesize Controlled Metal Clusters.

    PubMed

    Niihori, Yoshiki; Hossain, Sakiat; Sharma, Sachil; Kumar, Bharat; Kurashige, Wataru; Negishi, Yuichi

    2017-05-01

    It is now possible to accurately synthesize thiolate (SR)-protected gold clusters (Aun (SR)m ) with various chemical compositions with atomic precision. The geometric structure, electronic structure, physical properties, and functions of these clusters are well known. In contrast, the ligand or metal atom exchange reactions between these clusters and other substances have not been studied extensively until recently, even though these phenomena were observed during early studies. Understanding the mechanisms of these reactions could allow desired functional metal clusters to be produced via exchange reactions. Therefore, we have studied the exchange reactions between Aun (SR)m and analogous clusters and other substances for the past four years. The results have enabled us to gain deep understanding of ligand exchange with respect to preferential exchange sites, acceleration means, effect on electronic structure, and intercluster exchange. We have also synthesized several new metal clusters using ligand and metal exchange reactions. In this account, we summarize our research on ligand and metal exchange reactions. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Globular Cluster Systems in Brightest Cluster Galaxies: Bimodal Metallicity Distributions and the Nature of the High-Luminosity Clusters

    NASA Astrophysics Data System (ADS)

    Harris, William E.; Whitmore, Bradley C.; Karakla, Diane; Okoń, Waldemar; Baum, William A.; Hanes, David A.; Kavelaars, J. J.

    2006-01-01

    We present new (B, I) photometry for the globular cluster systems in eight brightest cluster galaxies (BCGs), obtained with the ACS/WFC camera on the Hubble Space Telescope. In the very rich cluster systems that reside within these giant galaxies, we find that all have strongly bimodal color distributions that are clearly resolved by the metallicity-sensitive (B-I) index. Furthermore, the mean colors and internal color range of the blue subpopulation are remarkably similar from one galaxy to the next, to well within the +/-0.02-0.03 mag uncertainties in the foreground reddenings and photometric zero points. By contrast, the mean color and internal color range for the red subpopulation differ from one galaxy to the next by twice as much as the blue population. All the BCGs show population gradients, with much higher relative numbers of red clusters within 5 kpc of their centers, consistent with their having formed at later times than the blue, metal-poor population. A striking new feature of the color distributions emerging from our data is that for the brightest clusters (MI<-10.5) the color distribution becomes broad and less obviously bimodal. This effect was first noticed by Ostrov et al. and Dirsch et al. for the Fornax giant NGC 1399; our data suggest that it may be a characteristic of many BCGs and perhaps other large galaxies. Our data indicate that the blue (metal-poor) clusters brighter than MI~=-10 become progressively redder with increasing luminosity, following a mass/metallicity scaling relation Z~M0.55. A basically similar relation has been found for M87 by Strader et al. (2005). We argue that these GCS characteristics are consistent with a hierarchical-merging galaxy formation picture in which the metal-poor clusters formed in protogalactic clouds or dense starburst complexes with gas masses in the range 107-1010 Msolar, but where the more massive clusters on average formed in bigger clouds with deeper potential wells where more preenrichment could

  19. Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale.

    PubMed

    Bian, Yusheng; Gong, Qihuang

    2015-03-14

    The simultaneous realization of nanoscale field localization and low transmission loss remains one of the major challenges in nanophotonics. Metal nanowire waveguides can fulfill this goal to a certain extent by confining light within subwavelength space, yet their optical performances are still restricted by the tradeoff between confinement and loss, which results in quite limited propagation distances when their mode sizes are reduced down to the nanometer scale. Here we introduce a class of low-loss guiding schemes by integrating silicon-on-insulator (SOI) waveguides with plasmon nanowire structures. The closely spaced silicon and metal configurations allow efficient light squeezing within the nanometer, low-index silica gaps between them, enabling deep-subwavelength light transmission with low modal attenuation. Optimizations of key structural parameters unravel the wide-range existence of the high-performance hybrid nanowire plasmon mode, which demonstrates improved guiding properties compared to the conventional hybrid and nanowire plasmon polaritons. The excitation strategy of the guided mode and the feasibility of the waveguide for compact photonic integration as well as active components are also discussed to lay the foundation for its practical implementation. The remarkable properties of these metallic-nanowire-loaded SOI waveguides potentially lend themselves to the implementation of high performance nanophotonic components, and open up promising opportunities for a variety of intriguing applications on the nanoscale.

  20. Si clusters are more metallic than bulk Si

    NASA Astrophysics Data System (ADS)

    Jackson, Koblar; Jellinek, Julius

    2016-12-01

    Dipole polarizabilities were computed using density functional theory for silicon clusters over a broad range of sizes up to N = 147 atoms. The calculated total effective polarizabilities, which include contributions from permanent dipole moments of the clusters, are in very good agreement with recently measured values. We show that the permanent dipole contributions are most important for clusters in the intermediate size range and that the measured polarizabilities can be used to distinguish between energetically nearly degenerate cluster isomers at these sizes. We decompose the computed total polarizabilities α into the so-called dipole and charge transfer contributions, αp and αq, using a site-specific analysis. When the per-atom values of these quantities are plotted against N-1 /3, clear linear trends emerge that can be extrapolated to the large size limit (N-1 /3→0 ), resulting in a value for α/N of 30.5 bohrs3/atom that is significantly larger than the per-atom polarizability of semiconducting bulk Si, 25.04 bohrs3/atom. This indicates that Si clusters possess a higher degree of metallicity than bulk Si, a conclusion that is consistent with the strong electrostatic screening of the cluster interiors made evident by the analysis of the calculated atomic polarizabilities.

  1. The lifetime of electronic excitations in metal clusters

    NASA Astrophysics Data System (ADS)

    Quijada, M.; Díez Muiño, R.; Echenique, P. M.

    2005-05-01

    Density functional theory and the self-energy formalism are used to evaluate the lifetime of electronic excitations in metal clusters of nanometre size. The electronic structure of the cluster is obtained in the jellium model and spherical symmetry is assumed. Two effects that depend on the size of the clusters are discussed: the change in the number of final states to which the excitation can decay, and the modification in the screened interaction between electrons. For clusters with density parameter rs = 4 and diameter a few nanometres, a lifetime value of {\\approx }5 fs is reached for electronic excitations of {\\approx }1 eV. This value is of the same order of magnitude of that obtained in the bulk limit at the same level of approximation. For smaller clusters, a distinct non-monotonic behaviour of the lifetime as a function of the cluster size is found and the lifetime of excitations of {\\approx }1 eV can vary between 4 and 30 fs.

  2. Metallicity of Globular Cluster M13 from VI CCD Photometry

    NASA Astrophysics Data System (ADS)

    Shon, Young-Jong

    2000-12-01

    From the VI images of M13, obtained by using 2K CCD camera and the BOAO 1.8m telescope, we derive the (V-I)-V CMD of M13. From the shapes of red giant branch, the magnitude of horizontal branch, and the giant branch bump on the constructed CMD, we determined the metallicity of the globular cluster to be 1.74 ~<[Fe/H]~< -1.41. The good agreement between our determination of [Fe/H] and those determined by using other methods implies that the morphology of red giant and horizontal branches on (V-I)-V CMD's can be good indirect metallicity indicators of Galactic globular clusters.

  3. Scattering of ultrashort electromagnetic pulses on metal clusters

    SciTech Connect

    Astapenko, V. A. Sakhno, S. V.

    2016-12-15

    We have calculated and analyzed the probability of ultrashort electromagnetic pulse (USP) scattering on small metal clusters in the frequency range of plasmon resonances during the field action. The main attention is devoted to dependence of the probability of scattering on the pulse duration for various detunings of the USP carrier frequency from the plasmon resonance frequency. Peculiarities of the USP scattering from plasmon resonances with various figures of merit are revealed.

  4. NGC 1252: a high altitude, metal poor open cluster remnant

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, R.; de la Fuente Marcos, C.; Moni Bidin, C.; Carraro, G.; Costa, E.

    2013-09-01

    If stars form in clusters but most stars belong to the field, understanding the details of the transition from the former to the latter is imperative to explain the observational properties of the field. Aging open clusters are one of the sources of field stars. The disruption rate of open clusters slows down with age but, as an object gets older, the distinction between the remaining cluster or open cluster remnant (OCR) and the surrounding field becomes less and less obvious. As a result, finding good OCR candidates or confirming the OCR nature of some of the best candidates still remain elusive. One of these objects is NGC 1252, a scattered group of about 20 stars in Horologium. Here we use new wide-field photometry in the UBVI passbands, proper motions from the Yale/San Juan SPM 4.0 catalogue and high-resolution spectroscopy concurrently with results from N-body simulations to decipher NGC 1252's enigmatic character. Spectroscopy shows that most of the brightest stars in the studied area are chemically, kinematically and spatially unrelated to each other. However, after analysing proper motions, we find one relevant kinematic group. This sparse object is relatively close (˜1 kpc), metal poor and is probably not only one of the oldest clusters (3 Gyr) within 1.5 kpc from the Sun but also one of the clusters located farthest from the disc, at an altitude of nearly -900 pc. That makes NGC 1252 the first open cluster that can be truly considered a high Galactic altitude OCR: an unusual object that may hint at a star formation event induced on a high Galactic altitude gas cloud. We also conclude that the variable TW Horologii and the blue straggler candidate HD 20286 are unlikely to be part of NGC 1252. NGC 1252 17 is identified as an unrelated, Population II cannonball star moving at about 400 km s-1.

  5. Unusual Electro-Optic Kerr Response in a Self-Stabilized Amorphous Blue Phase with Nanoscale Smectic Clusters.

    PubMed

    Le, Khoa V; Hafuri, Miho; Ocak, Hale; Bilgin-Eran, Belkız; Tschierske, Carsten; Sasaki, Takeo; Araoka, Fumito

    2016-05-18

    We investigated the electro-optic response in the "foggy" amorphous blue phase (BPIII) as well as in the isotropic phase. To the best of our knowledge, such a study has not yet been performed due to the very limited thermal range of BPIII. In this study, we used a single-component chiral bent-core liquid crystal with a self-stabilized BPIII, which is stable over a wide temperature range. The results show that the response time is on the order of hundreds of microseconds in the isotropic phase and increases to 1-2 ms in the BPIII (at TI-BP -T <1), then drastically increases up to a few tens of milliseconds upon further cooling in BPIII. Such an unusual behavior was explained on the basis of the high rotational viscosity and/or the existence of nanoscale smectic (Sm) clusters. The Kerr constant was also measured and found to be ∼500 pm V(-2) , which is the largest among bent-core BP systems reported so far and comparable with that of polymer-stabilized BPs.

  6. The old, metal-poor, anticentre open cluster Trumpler 5

    NASA Astrophysics Data System (ADS)

    Donati, P.; Cocozza, G.; Bragaglia, A.; Pancino, E.; Cantat-Gaudin, T.; Carrera, R.; Tosi, M.

    2015-01-01

    As part of a long-term programme, we analyse the evolutionary status and properties of the old and populous open cluster Trumpler 5 (Tr 5), located in the Galactic anticentre direction, almost on the Galactic plane. Tr 5 was observed with Wide Field Imager@MPG/ESO Telescope using the Bessel U, B, and V filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method, i.e. the direct comparison of the observational CMD with a library of synthetic CMDs generated with different stellar evolution sets (Padova, FRANEC, and FST). Age, reddening, and distance are derived through the synthetic CMD method using stellar evolutionary models with subsolar metallicity (Z = 0.004 or Z = 0.006). Additional spectroscopic observations with Ultraviolet VLT Echelle Spectrograph@Very Large Telescope of three red clump stars of the cluster were used to determine more robustly the chemical properties of the cluster. Our analysis shows that Tr 5 has subsolar metallicity, with [Fe/H] = -0.403 ± 0.006 dex (derived from spectroscopy), age between 2.9 and 4 Gyr (the lower age is found using stellar models without core overshooting), reddening E(B - V) in the range 0.60-0.66 mag complicated by a differential pattern (of the order of ˜±0.1 mag), and distance modulus (m - M)0 = 12.4 ± 0.1 mag.

  7. Nanoscale Positional Order Correlations: Swarms, Cybotactic Groups, Clusters, and Pretransitional Fluctuations in Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Kumar, Satyendra; Agra-Kooijman, Dena; Acharya, Bharat

    2012-02-01

    Short-range molecular associations in organic liquids were first described as ``cybotactic'' groups [1] followed by the development of the swarm theory [2] to explain the structure, strong light scattering, and flow behavior of the nematic (N) liquid crystal phase. However, these ideas became inconsequential with the advent of the Oseen-Frank's continuum theory [3]. In 1970, de Vries reinvoked cybotactic groups for the N phase of bis-(4'-n-octyloxybenzal)-2-chloro-l,4-phenylenediamine. These were eventually understood to be SmC pretransitional fluctuations, i.e., small correlated regions of the lower symmetry phase near the transition. Thermotropic biaxial mesophases have resurrected the faith in cybotacticity in the guise of a new word - ``clusters''. Previous x-ray studies of normal organic fluids, and calamitic, lyotropic, and bent-core mesogens show that these clusters fall into three groups depending on the relative contributions of normal liquid structure and pretransitional fluctuations. A comparison with other organic and inorganic fluids will also be made.[4pt] [1] G.W. Stewart, Phys. Rev. 35, 726 (1930).[0pt] [2] L.S. Ornestein and W. Kast, Trans. Farad. Soc. 29, 931 (1933).[0pt] [3] FC Frank, Discuss. Faraday Soc. 25, 19 (1958); W. Oseen, Ark. Mat., Astron. Fys. 19, 1 (1925).

  8. Electronic Principles Governing the Stability and Reactivity of Ligated Metal and Silicon Encapsulated Transition Metal Clusters

    NASA Astrophysics Data System (ADS)

    Abreu, Marissa Baddick

    A thorough understanding of the underlying electronic principles guiding the stability and reactivity of clusters has direct implications for the identification of stable clusters for incorporation into clusters-assembled materials with tunable properties. This work explores the electronic principles governing the stability and reactivity of two types of clusters: ligated metal clusters and silicon encapsulated transition metal clusters. In the first case, the reactivity of iodine-protected aluminum clusters, Al13Ix - (x=0-4) and Al14Iy- (y=0-5), with the protic species methanol was studied. The symmetrical ground states of Al13Ix- showed no reactivity with methanol but reactivity was achieved in a higher energy isomer of Al 13I2- with iodines on adjacent aluminum atoms -- complementary Lewis acid-base active sites were induced on the opposite side of the cluster capable of breaking the O-H bond in methanol. Al 14Iy- (y=2-5) react with methanol, but only at the ligated adatom site. Reaction of methanol with Al14 - and Al14I- showed that ligation of the adatom was necessary for the reaction to occur there -- revealing the concept of a ligand-activated adatom. In the second case, the study focused heavily on CrSi12, a silicon encapsulated transition metal cluster whose stability and the reason for that stability has been debated heavily in the literature. Calculations of the energetic properties of CrSi n (n=6-16) revealed both CrSi12 and CrSi14 to have enhanced stability relative to other clusters; however CrSi12 lacks all the traditional markers of a magic cluster. Molecular orbital analysis of each of these clusters showed the CNFEG model to be inadequate in describing their stability. Because the 3dz2 orbital of Cr is unfilled in CrSi12, this cluster has only 16 effective valence electrons, meaning that the 18-electron rule is not applicable. The moderate stability of CrSi 12 can be accounted for by the crystal-field splitting of the 3d orbitals, which pushes the

  9. An anti-ultrasonic-stripping effect in confined micro/nanoscale cavities and its applications for efficient multiscale metallic patterning.

    PubMed

    Xiang, Quan; Chen, Yiqin; Li, Zhiqin; Bi, Kaixi; Zhang, Guanhua; Duan, Huigao

    2016-12-01

    We report a method to reliably and efficiently fabricate high-fidelity metallic structures from a ten-nanometer to a millimeter scale based on an anti-ultrasonic-stripping (AUS) effect in confined micro/nanoscale cavities. With this AUS effect, metallic structures, which are surrounded by the pre-patterned closed templates, could be defined through selectively removing the evaporated metallic layer at the top and outside of the templates by ultrasonic-cavitation-induced stripping. Because only pre-patterned templates are required for exposure in this multiscale patterning process, this AUS-based process enables much smaller and more reliable plasmonic nanogaps due to the mitigated proximity effect and allows rapid fabrication of multiscale metallic structures which require both tiny and large structures. With unprecedented efficiency and resolution down to a ten-nanometer scale, various metallic structures were fabricated using this AUS-effect-based multiscale patterning process. This AUS effect paves the way for direct writing of metallic structures with a high resolution over a large area for practical applications in plasmonics and nanogap-based electronics.

  10. The chemical evolution of globular clusters - II. Metals and fluorine

    NASA Astrophysics Data System (ADS)

    Sánchez-Blázquez, P.; Marcolini, A.; Gibson, B. K.; Karakas, A. I.; Pilkington, K.; Calura, F.

    2012-01-01

    In the first paper of this series, we proposed a new framework in which to model the chemical evolution of globular clusters. This model is predicated upon the assumption that clusters form within an interstellar medium enriched locally by the ejecta of a single Type Ia supernova and varying numbers of asymptotic giant branch stars, superimposed on an ambient medium pre-enriched by low-metallicity Type II supernovae. Paper I was concerned with the application of this model to the observed abundances of several reactive elements and so-called non-metals for three classical intermediate-metallicity clusters, with the hallmark of the work being the successful recovery of many of their well-known elemental and isotopic abundance anomalies. Here, we expand upon our initial analysis by (i) applying the model to a much broader range of metallicities (from the factor of 3 explored in Paper I, to now a factor of ˜50; i.e. essentially, the full range of Galactic globular cluster abundances; and (ii) incorporating a broader suite of chemical species, including a number of iron-peak isotopes, heavier α-elements and fluorine. While allowing for an appropriate fine-tuning of the model input parameters, most empirical globular cluster abundance trends are reproduced; our model would suggest the need for a higher production of calcium, silicon and copper in low-metallicity (or so-called 'prompt') Type Ia supernovae than predicted in current stellar models in order to reproduce the observed trends in NGC 6752, and a factor of 2 reduction in carbon production from asymptotic giant branch stars to explain the observed trends between carbon and nitrogen. Observations of heavy-element isotopes produced primarily by Type Ia supernovae, including those of titanium, iron and nickel, could support/refute unequivocally our proposed framework, although currently the feasibility of the proposed observations is well beyond current instrumental capabilities. Hydrodynamical simulations would

  11. Metal Adatoms and Clusters on Ultrathin Zirconia Films

    PubMed Central

    2016-01-01

    Nucleation and growth of transition metals on zirconia has been studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Since STM requires electrical conductivity, ultrathin ZrO2 films grown by oxidation of Pt3Zr(0001) and Pd3Zr(0001) were used as model systems. DFT studies were performed for single metal adatoms on supported ZrO2 films as well as the (1̅11) surface of monoclinic ZrO2. STM shows decreasing cluster size, indicative of increasing metal–oxide interaction, in the sequence Ag < Pd ≈ Au < Ni ≈ Fe. Ag and Pd nucleate mostly at steps and domain boundaries of ZrO2/Pt3Zr(0001) and form three-dimensional clusters. Deposition of low coverages of Ni and Fe at room temperature leads to a high density of few-atom clusters on the oxide terraces. Weak bonding of Ag to the oxide is demonstrated by removing Ag clusters with the STM tip. DFT calculations for single adatoms show that the metal–oxide interaction strength increases in the sequence Ag < Au < Pd < Ni on monoclinic ZrO2, and Ag ≈ Au < Pd < Ni on the supported ultrathin ZrO2 film. With the exception of Au, metal nucleation and growth on ultrathin zirconia films follow the usual rules: More reactive (more electropositive) metals result in a higher cluster density and wet the surface more strongly than more noble metals. These bind mainly to the oxygen anions of the oxide. Au is an exception because it can bind strongly to the Zr cations. Au diffusion may be impeded by changing its charge state between −1 and +1. We discuss differences between the supported ultrathin zirconia films and the surfaces of bulk ZrO2, such as the possibility of charge transfer to the substrate of the films. Due to their large in-plane lattice constant and the variety of adsorption sites, ZrO2{111} surfaces are more reactive than many other oxygen-terminated oxide surfaces. PMID:27213024

  12. The Old, Super-Metal-Rich Open Cluster, NGC 6791

    NASA Astrophysics Data System (ADS)

    Boesgaard, Ann Merchant; Lum, Michael G. G.; Deliyannis, Constantine P.

    2015-08-01

    Stellar evolution and Galactic evolution have both been greatly advanced by the study of star clusters. In addition the elemental abundance results from clusters have revealed information about Galactic chemical evolution and nucleosynthesis. The cluster, NGC 6791, has a number of bizarre properties that make it especially interesting for comparative cluster studies. It is old (8.3 Gyr) yet metal-rich ([Fe/H] = +0.30). It has a heliocentric distance of 4 kpc and a galactic latitude of +11 degrees which makes it 1 kpc above the galactic plane. Its boxy orbit has a high eccentricity (~0.5) with a perigalactic distance of 3 kpc and an apogalactic distance of 10 kpc. The orbital period of ~130 Myr indicates that it has crossed the Galactic plane several times yet has remained as an intact cluster. We have determined abundances from high-resolution (R = 46,000) Keck/HIRES spectra of turn-off stars in this open cluster NGC 6791. We have a solid determination of [Fe/H] = +0.30 +/-0.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 Å and are corrected for small nLTE effects. We find consistent ratios of [O/Fe]n with a mean of -0.06 +/-0.02, indicating a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe] and [Ti/Fe] are near solar and compare well with those of old, metal-rich field stars. The Fe-peak elements, Cr and Ni, have values of [Cr/Fe] = +0.05 +/-0.02 and [Ni/Fe] = +0.04 +/-0.01. Determinations of upper limits were found for Li by spectrum synthesis; this is consistent with the upper limits in this temperature range for turn-off/subgiant stars in the relatively old, super-metal-rich cluster NGC 6253. We speculate that no stars in NGC 6791 have retained the Li with which they formed.

  13. Implementation of nanoscale circuits using dual metal gate engineered nanowire MOSFET with high-k dielectrics for low power applications

    NASA Astrophysics Data System (ADS)

    Charles Pravin, J.; Nirmal, D.; Prajoon, P.; Ajayan, J.

    2016-09-01

    This work covers the impact of dual metal gate engineered Junctionless MOSFET with various high-k dielectric in Nanoscale circuits for low power applications. Due to gate engineering in junctionless MOSFET, graded potential is obtained and results in higher electron velocity of about 31% for HfO2 than SiO2 in the channel region, which in turn improves the carrier transport efficiency. The simulation is done using sentaurus TCAD, ON current, OFF current, ION/IOFF ratio, DIBL, gain, transconductance and transconductance generation factor parameters are analysed. When using HfO2, DIBL shows a reduction of 61.5% over SiO2. The transconductance and transconductance generation factor shows an improvement of 44% and 35% respectively. The gain and output resistance also shows considerable improvement with high-k dielectrics. Using this device, inverter circuit is implemented with different high-k dielectric material and delay have been decreased by 4% with HfO2 when compared to SiO2. In addition, a significant reduction in power dissipation of the inverter circuit is obtained with high-k dielectric Dual Metal Surround Gate Junctionless Transistor than SiO2 based device. From the analysis, it is found that HfO2 will be a better alternative for the future nanoscale device.

  14. Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience

    PubMed Central

    Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; Baksi, Ananya; Pradeep, Thalappil

    2012-01-01

    Noble metal quantum clusters (NMQCs) are the missing link between isolated noble metal atoms and nanoparticles. NMQCs are sub-nanometer core sized clusters composed of a group of atoms, most often luminescent in the visible region, and possess intriguing photo-physical and chemical properties. A trend is observed in the use of ligands, ranging from phosphines to functional proteins, for the synthesis of NMQCs in the liquid phase. In this review, we briefly overview recent advancements in the synthesis of protein protected NMQCs with special emphasis on their structural and photo-physical properties. In view of the protein protection, coupled with direct synthesis and easy functionalization, this hybrid QC-protein system is expected to have numerous optical and bioimaging applications in the future, pointers in this direction are visible in the literature. PMID:22312454

  15. Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience.

    PubMed

    Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; Baksi, Ananya; Pradeep, Thalappil

    2012-01-01

    Noble metal quantum clusters (NMQCs) are the missing link between isolated noble metal atoms and nanoparticles. NMQCs are sub-nanometer core sized clusters composed of a group of atoms, most often luminescent in the visible region, and possess intriguing photo-physical and chemical properties. A trend is observed in the use of ligands, ranging from phosphines to functional proteins, for the synthesis of NMQCs in the liquid phase. In this review, we briefly overview recent advancements in the synthesis of protein protected NMQCs with special emphasis on their structural and photo-physical properties. In view of the protein protection, coupled with direct synthesis and easy functionalization, this hybrid QC-protein system is expected to have numerous optical and bioimaging applications in the future, pointers in this direction are visible in the literature.

  16. FURTHER DEFINITION OF THE MASS-METALLICITY RELATION IN GLOBULAR CLUSTER SYSTEMS AROUND BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Cockcroft, Robert; Harris, William E.; Wehner, Elizabeth M. H.; Whitmore, Bradley C.; Rothberg, Barry E-mail: harris@physics.mcmaster.ca E-mail: whitmore@stsci.edu

    2009-09-15

    We combine the globular cluster (GC) data for 15 brightest cluster galaxies and use this material to trace the mass-metallicity relations (MMRs) in their globular cluster systems (GCSs). This work extends previous studies which correlate the properties of the MMR with those of the host galaxy. Our combined data sets show a mean trend for the metal-poor subpopulation that corresponds to a scaling of heavy-element abundance with cluster mass Z {approx} M {sup 0.30{+-}}{sup 0.05}. No trend is seen for the metal-rich subpopulation which has a scaling relation that is consistent with zero. We also find that the scaling exponent is independent of the GCS specific frequency and host galaxy luminosity, except perhaps for dwarf galaxies. We present new photometry in (g',i') obtained with Gemini/GMOS for the GC populations around the southern giant ellipticals NGC 5193 and IC 4329. Both galaxies have rich cluster populations which show up as normal, bimodal sequences in the color-magnitude diagram. We test the observed MMRs and argue that they are statistically real, and not an artifact caused by the method we used. We also argue against asymmetric contamination causing the observed MMR as our mean results are no different from other contamination-free studies. Finally, we compare our method to the standard bimodal fitting method (KMM or RMIX) and find our results are consistent. Interpretation of these results is consistent with recent models for GC formation in which the MMR is determined by GC self-enrichment during their brief formation period.

  17. Vibrationally resolved anion photoelectron spectroscopy of metal clusters

    NASA Astrophysics Data System (ADS)

    Miller, Stephen R.

    Vibrationally resolved anion photoelectron spectroscopy of metal clusters Vibrationally resolved anion photoelectron spectroscopy (APES) and density functional theory (DFT) are applied to the study of structure and reactivity in small metal containing molecules. The studies described fall into two general categories: the study of bare metal clusters and the study of metal/organic ligand reactions. The current lack of spectroscopic data for small, bare gas-phase metal compounds makes the experimental study of such compounds important for understanding structure and bonding in open-shell metallic species. The heteronuclear diatomic anions MCu- (M = Cr, Mo) were prepared in a flowing afterglow ion-molecule reactor, and studied experimentally with APES. Anion and neutral vibrational frequencies and MCu electron affinities were obtained for both systems. The experiments were supplemented by DFT calculations. The combined use of experiment and theory allows for the assignment of both photoelectron spectra, including a reassignment of the CrCu ground state reported in the literature. Similarly, DFT was used to assign the anionic/neutral electronic states observed in the photoelectron spectra of Al3- and Al3O-. The study of partially ligated organometallic complexes offers a means of examining the interactions between metal atoms and individual ligand molecules. DFT was used to assign electronic states observed in the photoelectron spectra of NbC2H2-, NbC4H4 -NbC6H6- and VC6H 6-. Comparison of the NbnHn - (n = 2, 4, 6) spectra (obtained through the reaction of C2 H4 and Nb) with DFT results provides the first direct spectroscopic evidence of the conversion of ethylene to benzene by a gas phase metal atom. Experiments were used to probe the reactivity of Y with C2H 4 in an effort to examine the generality of the metal induced C 2H4 dehydrogenation/cyclization reactions. Some of the key products in the Y reactions were YC2H-, YC 2H2-, and YC6H5 -. However, the results

  18. An age difference of two billion years between a metal-rich and a metal-poor globular cluster.

    PubMed

    Hansen, B M S; Kalirai, J S; Anderson, J; Dotter, A; Richer, H B; Rich, R M; Shara, M M; Fahlman, G G; Hurley, J R; King, I R; Reitzel, D; Stetson, P B

    2013-08-01

    Globular clusters trace the formation history of the spheroidal components of our Galaxy and other galaxies, which represent the bulk of star formation over the history of the Universe. The clusters exhibit a range of metallicities (abundances of elements heavier than helium), with metal-poor clusters dominating the stellar halo of the Galaxy, and higher-metallicity clusters found within the inner Galaxy, associated with the stellar bulge, or the thick disk. Age differences between these clusters can indicate the sequence in which the components of the Galaxy formed, and in particular which clusters were formed outside the Galaxy and were later engulfed along with their original host galaxies, and which were formed within it. Here we report an absolute age of 9.9 ± 0.7 billion years (at 95 per cent confidence) for the metal-rich globular cluster 47 Tucanae, determined by modelling the properties of the cluster's white-dwarf cooling sequence. This is about two billion years younger than has been inferred for the metal-poor cluster NGC 6397 from the same models, and provides quantitative evidence that metal-rich clusters like 47 Tucanae formed later than metal-poor halo clusters like NGC 6397.

  19. Theory-guided design of nanoscale multi-metallic catalysts for fuel cells

    SciTech Connect

    Balbuena, Perla B; Seminario, Jorge M

    2007-04-30

    Research goals This project aims to address the following aspects of the oxygen reduction reaction on multimetallic nanocatalysts: 1. Elucidate physical and chemical aspects of electron and proton transfer 2. Incorporate local and nonlocal field effects to the analysis 3. Investigate the performance of bimetallic and multimetallic nanocatalytic ensembles a. Explore combinations of Pt with other non-precious metals b. Explore theoretically the performance of active catalytic sites/substrate/proton-carrier systems towards maximizing oxygen reduction currents. c. Explore compatibility catalyst/substrate/ionic carrier. 4. Investigate nanocatalyst stability under the reaction conditions, effects of pH and overall composition; surface segregation phenomena in nanoclusters. 5. Carry out theory-guided experiments involving electron transfer as proof of concept. Specific objectives for the previous year: Determine trends for catalytic activity towards the oxygen reduction reaction and stability against dissolution of Pt-based alloy nanocatalysts exposed to acid medium. Reactivity and stability trends are sought as a function of surface composition and atomic distribution in the first 2-3 surface layers. Investigate possible mechanisms for metal dissolution. Developing and testing new computational approaches to characterize the catalytic interface. Significant achievements and results for the previous year: Catalytic activity: Variations in atomic distribution (mixed vs. ordered structures) analyzed in small clusters and extended surfaces of PtxPdy at fixed overall composition revealed polarization effects caused by specific electronic density distributions determining trends in reactivity. We studied other bimetallic and trimetallic systems to characterize the ability of various alloy elements for modifying Pt reactivity. We found an interesting parallelism between metalloenzymes and bimetallic nanocatalysts for the oxygen reduction reaction. Along the same lines, we are

  20. Significant Enhancement of the Adhesion between Metal Films and Polymer Substrates by UV-Ozone Surface Modification in Nanoscale.

    PubMed

    Liu, Junshan; He, Licheng; Wang, Liang; Man, Yuncheng; Huang, Luyi; Xu, Zheng; Ge, Dan; Li, Jingmin; Liu, Chong; Wang, Liding

    2016-11-09

    Polymer metallization is extensively used in a variety of micro- and nanosystem technologies. However, the deposited metal film exhibits poor adhesion to polymer substrates, which may cause difficulties in many applications. In this work, ultraviolet (UV)-ozone surface modification is for the first time put forward to enhance the adhesion between metal films and polymer substrates. The adhesion of sputtered Cu films on UV-ozone modified poly(methyl methacrylate) (PMMA) substrates is enhanced by a factor of 6, and that of Au films is improved by a factor of 10. Moreover, metal films on the modified PMMA substrates can withstand a long-time liquid immersion. To understand the mechanism for the adhesion enhancement, the surface modification is studied with contact angle measurements, attenuated total reflection Fourier-transform infrared spectrometry (ATR-FTIR) and atomic force microscopy (AFM). Detailed characterization results indicate that the significant adhesion enhancement is attributed to the increases of both the surface wettability by generating some polar functional groups and the roughness of the surface in nanoscale. To demonstrate this novel polymer metallization method, a 6-in. PMMA chip with arrays of three-electrode electrochemical microsensors is designed and fabricated, and the microsensor exhibits excellent reproducibility, uniformity, and long-term stability.

  1. Shell structure of magnesium and other divalent metal clusters

    SciTech Connect

    Diederich, Th.; Doeppner, T.; Fennel, Th.; Tiggesbaeumker, J.; Meiwes-Broer, K.-H.

    2005-08-15

    Clusters of the divalent metals magnesium, cadmium, and zinc have been grown in ultracold helium nanodroplets and studied by high-resolution mass spectrometry, with a special emphasis on magnesium. The mass spectra of all materials show similar characteristic features independent of the chosen ionization technique - i.e., electron impact ionization as well as nanosecond and femtosecond multiphoton excitation. In the lower-size range the abundance distributions can be explained by an electronic shell structure. The associated electron delocalization - i.e., metallic bonding - is found to set in at about N=20 atoms. For Mg{sub N} we have resolved crossings of electronic levels at the highest-occupied molecular orbital which result in additional magic numbers compared to the alkali metals: e.g., Mg{sub 40} with 80 electrons. This specific electronic shell structure is also present in the intensity pattern of doubly charged Mg{sub N}. For larger clusters (N{>=}92) a coexistence of electronic shell effects and geometrical packing is observed and a clear signature of icosahedral structure is present beyond N{>=}147.

  2. Multiple populations in more metal-rich galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Cordero, Maria J.

    In this thesis we present chemical abundances for bright stars in the intermediate metallicity globular cluster (GC) M5, and the relatively metal-rich GCs M71 and 47 Tuc with the goal of improving the understanding of chemical evolution in the metallicity regime sampled by these three GCs. The first chapter presents a brief historical overview in light element abundance variations in globular clusters. In the second chapter we present the results obtained for 47 Tuc, the most-metal rich cluster of my sample. 47 Tuc is an ideal target to study chemical evolution and GC formation in massive more metal-rich GCs since it is the closest massive GC. Chemical abundances for O, Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu were determined for 164 red giant branch (RGB) stars in 47 Tuc using spectra obtained with both the Hydra multi-fiber spectrograph at the Blanco 4-m telescope and the FLAMES multi-object spectrograph at the ESO Very Large Telescope. The average [Fe/H]= --0.79+/-0.09 dex is consistent with literature values, as well as over-abundances of alpha-elements ([alpha/Fe] ~ 0.3 dex). The n-capture process elements indicate that 47 Tuc is r-process dominated ([Eu/La]=+0.24), and the light elements O, Na, and Al exhibit star-to-star variations. The Na-O anti-correlation, a signature typically seen in Galactic GCs, is present in 47 Tuc, and extends to include a small number of stars with [O/Fe] ~ --0.5. Additionally, the [O/Na] ratios of our sample reveal that the cluster stars can be separated into three distinct populations. A KS-test demonstrates that the O-poor/Na-rich stars are more centrally concentrated than the O-rich/Na-poor stars. The observed number and radial distribution of 47 Tuc's stellar populations, as distinguished by their light element composition, agrees closely with the results obtained from photometric data. We do not find evidence supporting a strong Na-Al correlation in 47 Tuc, which is consistent with current models of AGB nucleosynthesis yields

  3. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    SciTech Connect

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  4. Investigation on the special Smith-Purcell radiation from a nano-scale rectangular metallic grating

    SciTech Connect

    Li, Weiwei; Liu, Weihao Jia, Qika

    2016-03-15

    The special Smith-Purcell radiation (S-SPR), which is from the radiating eigen modes of a grating, has remarkable higher intensity than the ordinary Smith-Purcell radiation. Yet in previous studies, the gratings were treated as perfect conductor without considering the surface plasmon polaritons (SPPs) which are of significance for the nano-scale gratings especially in the optical region. In present paper, the rigorous theoretical investigations on the S-SPR from a nano-grating with SPPs taken into consideration are carried out. The dispersion relations and radiation characteristics are obtained, and the results are verified by simulations. According to the analyses, the tunable light radiation can be achieved by the S-SPR from a nano-grating, which offers a new prospect for developing the nano-scale light sources.

  5. The Sound Parameter Effect in Metal-Rich Globular Clusters

    NASA Technical Reports Server (NTRS)

    Hall, D. K

    1998-01-01

    Recent Hubble Space Telescope observations have found that the horizontal branches (HBs) in the metal-rich globular clusters NGC 6388 and NGC 6441 slope upward with decreasing B - V. Such a slope is not predicted by canonical HB models and cannot be produced by either a greater cluster age or enhanced mass loss along the red giant branch (RGB). The peculiar HB morphology in these clusters may provide an important clue for understanding the second-parameter effect. We have carried out extensive evolutionary calculations and numerical simulations in order to explore three noncanonical scenarios for explaining the sloped HBs in NGC 6388 and NGC 6441: (1) a high cluster helium abundance scenario, in which the HB evolution is characterized by long blue loops; (2) a rotation scenario, in which internal rotation during the RGB phase increases the HB core mass; and (3) a helium-mixing scenario, in which deep mixing on the RGB enhances the envelope helium abundance. All of these scenarios predict sloped HBs with anomalously bright RR Lyrae variables. We compare this prediction with the properties of the two known RR Lyrae variables in NGC 6388. Additional observational tests of these scenarios are suggested.

  6. Inherent size effects on XANES of nanometer metal clusters: Size-selected platinum clusters on silica

    SciTech Connect

    Dai, Yang; Gorey, Timothy J.; Anderson, Scott L.; Lee, Sungsik; Lee, Sungwon; Seifert, Soenke; Winans, Randall E.

    2016-12-12

    X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials, however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Ptn/SiO2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O2 exposure and annealing in H2. Here, the clusters are found to be stable during deposition and upon air exposure, but sinter if heated above ~150 °C. XANES shows shifts in the Pt L3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized, however, XPS shows that they are not. Instead, the XANES effects are attributable to development of a band gap and localization of empty state wavefunctions in small clusters.

  7. Inherent size effects on XANES of nanometer metal clusters: Size-selected platinum clusters on silica

    DOE PAGES

    Dai, Yang; Gorey, Timothy J.; Anderson, Scott L.; ...

    2016-12-12

    X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials, however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Ptn/SiO2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O2 exposure and annealing in H2. Here, the clusters are found to be stable during depositionmore » and upon air exposure, but sinter if heated above ~150 °C. XANES shows shifts in the Pt L3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized, however, XPS shows that they are not. Instead, the XANES effects are attributable to development of a band gap and localization of empty state wavefunctions in small clusters.« less

  8. Nano-Scale Metal Oxide Particles as Materials for Air Purification

    DTIC Science & Technology

    1994-02-22

    carried out. Methods for preparing the nanoscale particles, including core/shell overlayer particles, have been worked out. Surface characterization...since these heteroatoms are notorious for catalyst poisoning. Solid reagents that might serve as effective destructive adsorbents must have high capacity...to basic and applied science. Further understanding of their Avadlab1i1ty Codem vRiI1 and/ar Dgst Specle. |~1 1 I] Pagr 3 synthesis , properties, and

  9. The electronic structure of free aluminum clusters: Metallicity and plasmons

    SciTech Connect

    Andersson, Tomas; Zhang Chaofan; Svensson, Svante; Maartensson, Nils; Bjoerneholm, Olle; Tchaplyguine, Maxim

    2012-05-28

    The electronic structure of free aluminum clusters with {approx}3-4 nm radius has been investigated using synchrotron radiation-based photoelectron and Auger electron spectroscopy. A beam of free clusters has been produced using a gas-aggregation source. The 2p core level and the valence band have been probed. Photoelectron energy-loss features corresponding to both bulk and surface plasmon excitation following photoionization of the 2p level have been observed, and the excitation energies have been derived. In contrast to some expectations, the loss features have been detected at energies very close to those of the macroscopic solid. The results are discussed from the point of view of metallic properties in nanoparticles with a finite number of constituent atoms.

  10. Mixed-metal chalcogenide tetrahedral clusters with an exo-polyhedral metal fragment.

    PubMed

    Yuvaraj, K; Roy, Dipak Kumar; Anju, V P; Mondal, Bijnaneswar; Varghese, Babu; Ghosh, Sundargopal

    2014-12-07

    The reaction of metal carbonyl compounds with group 6 and 8 metallaboranes led us to report the synthesis and structural characterization of several novel mixed-metal chalcogenide tetrahedral clusters. Thermolysis of arachno-[(Cp*RuCO)2B2H6], 1, and [Os3(CO)12] in the presence of 2-methylthiophene yielded [Cp*Ru(CO)2(μ-H){Os3(CO)9}S], 3, and [Cp*Ru(μ-H){Os3(CO)11}], 4. In a similar fashion, the reaction of [(Cp*Mo)2B5H9], 2, with [Ru3(CO)12] and 2-methylthiophene yielded [Cp*Ru(CO)2(μ-H){Ru3(CO)9}S], 5, and conjuncto-[(Cp*Mo)2B5H8(μ-H){Ru3(CO)9}S], 6. Both compounds 3 and 5 can be described as 50-cve (cluster valence electron) mixed-metal chalcogenide clusters, in which a sulfur atom replaces one of the vertices of the tetrahedral core. Compounds 3 and 5 possess a [M3S] tetrahedral core, in which the sulfur is attached to an exo-metal fragment, unique in the [M3S] metal chalcogenide tetrahedral arrangements. All the compounds have been characterized by mass spectrometry, IR, and (1)H, (11)B and (13)C NMR spectroscopy in solution, and the solid state structures were unequivocally established by crystallographic analysis of compounds 3, 5 and 6.

  11. Direct-Liquid-Evaporation Chemical Vapor Deposition of Nanocrystalline Cobalt Metal for Nanoscale Copper Interconnect Encapsulation.

    PubMed

    Feng, Jun; Gong, Xian; Lou, Xiabing; Gordon, Roy G

    2017-03-29

    In advanced microelectronics, precise design of liner and capping layers become critical, especially when it comes to the fabrication of Cu interconnects with dimensions lower than its mean free path. Herein, we demonstrate that direct-liquid-evaporation chemical vapor deposition (DLE-CVD) of Co is a promising method to make liner and capping layers for nanoscale Cu interconnects. DLE-CVD makes pure, smooth, nanocrystalline, and highly conformal Co films with highly controllable growth characteristics. This process allows full Co encapsulation of nanoscale Cu interconnects, thus stabilizing Cu against diffusion and electromigration. Electrical measurements and high-resolution elemental imaging studies show that the DLE-CVD Co encapsulation layer can improve the reliability and thermal stability of Cu interconnects. Also, with the high conductivity of Co, the DLE-CVD Co encapsulation layer have the potential to further decrease the power consumption of nanoscale Cu interconnects, paving the way for Cu interconnects with higher efficiency in future high-end microelectronics.

  12. Studies of silicon cluster--metal atom compound formation in a supersonic molecular beam

    SciTech Connect

    Beck, S.M.

    1987-10-01

    The first observation of a reaction between a metal atom and silicon in a supersonic jet to form metal atom silicon clusters is reported. Using the technique of laser vaporization supersonic expansion with metal carbonyl seeded carrier gas, clusters of the form MSi/sub n/ have been detected by ArF and KrF laser photoionization time-of-flight mass spectrometry. Three transition metals have been investigated, Cr, Mo, and W. The dominant product cluster peaks observed in the mass spectra obtained for all three metals corresponds to identical but remarkable cluster stoichiometries. The dominant peaks have formulas given by MSi/sub n/ where n = 15 and n = 16. The metal--semiconductor clusters are relatively more stable towards photofragmentation than the bare silicon cluster of the same size. The observation of these new species may be relevant to reactions which occur at the interface between a silicon wafer and deposited metals.

  13. Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale

    NASA Astrophysics Data System (ADS)

    Bian, Yusheng; Gong, Qihuang

    2015-02-01

    The simultaneous realization of nanoscale field localization and low transmission loss remains one of the major challenges in nanophotonics. Metal nanowire waveguides can fulfill this goal to a certain extent by confining light within subwavelength space, yet their optical performances are still restricted by the tradeoff between confinement and loss, which results in quite limited propagation distances when their mode sizes are reduced down to the nanometer scale. Here we introduce a class of low-loss guiding schemes by integrating silicon-on-insulator (SOI) waveguides with plasmon nanowire structures. The closely spaced silicon and metal configurations allow efficient light squeezing within the nanometer, low-index silica gaps between them, enabling deep-subwavelength light transmission with low modal attenuation. Optimizations of key structural parameters unravel the wide-range existence of the high-performance hybrid nanowire plasmon mode, which demonstrates improved guiding properties compared to the conventional hybrid and nanowire plasmon polaritons. The excitation strategy of the guided mode and the feasibility of the waveguide for compact photonic integration as well as active components are also discussed to lay the foundation for its practical implementation. The remarkable properties of these metallic-nanowire-loaded SOI waveguides potentially lend themselves to the implementation of high performance nanophotonic components, and open up promising opportunities for a variety of intriguing applications on the nanoscale.The simultaneous realization of nanoscale field localization and low transmission loss remains one of the major challenges in nanophotonics. Metal nanowire waveguides can fulfill this goal to a certain extent by confining light within subwavelength space, yet their optical performances are still restricted by the tradeoff between confinement and loss, which results in quite limited propagation distances when their mode sizes are reduced

  14. Metal thiolate clusters in cobalt(II)-metallothionein.

    PubMed

    Vasák, M; Kägi, J H

    1981-11-01

    Rabbit liver metallothionein-1 in which all seven metal-binding sites are occupied by cobalt(II) exhibits spectral features typical of tetrathiolate coordination with approximate Td microsymmetry [Vasák, M. (1980) J. Am. Chem. Soc. 102, 3953-3955]. With a total of 20 cysteine residues per molecule, this mode of metal binding implies that some of the thiolate ligands are shared by neighboring Co(II) ions, resulting in clustered structures. In this study, evidence for the existence of thiolate-linked Co(II) clusters is presented and their mode of formation is explored by comparing the optical and magnetic properties of forms of Co(II)-metallothionein containing 1-7 equivalents of Co(II). Preparations with up to 4 Co(II) equivalents display electronic spectra in the d-d and charge-transfer regions that resemble those of isolated tetrahedral Co(II)-tetrathiolate complexes. Upon binding of more than four Co(II) ions, however, the spectrum changes progressively and approaches in the fully saturated Co(II)-metallothionein an absorption profile similar to that of crystallographically defined model (Co)II-tetrathiolate clusters [Dance, I. G. (1979) J. Am. Chem. Soc. 101, 6264-6273]. These effects are closely paralleled by changes in the ESR spectrum. Above 4 Co(II) equivalents per thionein, the ESR signal at gx approximately 5.9 measured at 4 K decreases progressively in intensity, until in the fully occupied protein the complex is nearly diamagnetic. These changes, which were confirmed by measurements of paramagnetic susceptibility, establish the existence of Co(II) thiolate clusters in Co(II)-metallothionein. The loss of paramagnetism reflects most likely antiferromagnetic coupling of neighboring Co(II) ions brought about by a superexchange mechanism via the thiolate bridging ligands.

  15. Metal thiolate clusters in cobalt(II)-metallothionein.

    PubMed Central

    Vasák, M; Kägi, J H

    1981-01-01

    Rabbit liver metallothionein-1 in which all seven metal-binding sites are occupied by cobalt(II) exhibits spectral features typical of tetrathiolate coordination with approximate Td microsymmetry [Vasák, M. (1980) J. Am. Chem. Soc. 102, 3953-3955]. With a total of 20 cysteine residues per molecule, this mode of metal binding implies that some of the thiolate ligands are shared by neighboring Co(II) ions, resulting in clustered structures. In this study, evidence for the existence of thiolate-linked Co(II) clusters is presented and their mode of formation is explored by comparing the optical and magnetic properties of forms of Co(II)-metallothionein containing 1-7 equivalents of Co(II). Preparations with up to 4 Co(II) equivalents display electronic spectra in the d-d and charge-transfer regions that resemble those of isolated tetrahedral Co(II)-tetrathiolate complexes. Upon binding of more than four Co(II) ions, however, the spectrum changes progressively and approaches in the fully saturated Co(II)-metallothionein an absorption profile similar to that of crystallographically defined model (Co)II-tetrathiolate clusters [Dance, I. G. (1979) J. Am. Chem. Soc. 101, 6264-6273]. These effects are closely paralleled by changes in the ESR spectrum. Above 4 Co(II) equivalents per thionein, the ESR signal at gx approximately 5.9 measured at 4 K decreases progressively in intensity, until in the fully occupied protein the complex is nearly diamagnetic. These changes, which were confirmed by measurements of paramagnetic susceptibility, establish the existence of Co(II) thiolate clusters in Co(II)-metallothionein. The loss of paramagnetism reflects most likely antiferromagnetic coupling of neighboring Co(II) ions brought about by a superexchange mechanism via the thiolate bridging ligands. PMID:6273885

  16. Superatoms and Metal-Semiconductor Motifs for Cluster Materials

    SciTech Connect

    Castleman, A. W.

    2013-10-11

    A molecular understanding of catalysis and catalytically active materials is of fundamental importance in designing new substances for applications in energy and fuels. We have performed reactivity studies and ultrafast ionization and coulomb explosion studies on a variety of catalytically-relevant materials, including transition metal oxides of Fe, Co, Ni, Cu, Ti, V, Nb, and Ta. We demonstrate that differences in charge state, geometry, and elemental composition of clusters of such materials determine chemical reactivity and ionization behavior, crucial steps in improving performance of catalysts.

  17. On the origin of metal homogeneities in globular clusters

    NASA Technical Reports Server (NTRS)

    Murray, Stephen D.; Lin, Douglas N. C.

    1990-01-01

    Various transport processes which may have affected the chemical homogeneity in protocluster clouds are examined. It is shown that the characteristic diffusion time scale associated with collisions between grains and gas atoms is considerably longer than that on which star formation is expected to occur. Collisions between large grains and gas atoms lead to mass segregation and metallicity gradients on a time scale comparable to the crossing time of the clusters in the Galaxy. One possible mechanism for inducing and maintaining chemical homogeneity is turbulent diffusion in the clouds. The mixing time scale required in this case is comparable to several internal dynamical time scales, longer than the evolutionary time scale of the most massive stars, and shorter than the Galactic orbital time scale of the clouds. Thus, metals in presently observed stars probably did not originate from upper main-sequence stars of a coeval generation.

  18. Zintl cluster chemistry in the alkali-metal-gallium systems

    SciTech Connect

    Henning, Robert

    1998-03-27

    Previous research into the alkali-metal-gallium systems has revealed a large variety of networked gallium deltahedra. The clusters are analogues to borane clusters and follow the same electronic requirements of 2n+2 skeletal electrons for closo-deltahedra. This work has focused on compounds that do not follow the typical electron counting rules. The first isolated gallium cluster was found in Cs8Ga11. The geometry of the Ga117- unit is not deltahedral but can be described as a penta-capped trigonal prism. The reduction of the charge from a closo-Ga1113- to Ga117- is believed to be the driving force of the distortion. The compound is paramagnetic because of an extra electron but incorporation of a halide atom into the structure captures the unpaired electron and forms a diamagnetic compound. A second isolated cluster has been found in Na10Ga10Ni where the tetra-capped trigonal prismatic gallium is centered by nickel. Stabilization of the cluster occurs through Ni-Ga bonding. A simple two-dimensional network occurs in the binary K2Ga3 Octahedra are connected through four waist atoms to form a layered structure with the potassium atoms sitting between the layers. Na30.5Ga60-xAgx is nonstoichiometric and needs only a small amount of silver to form (x ~ 2-6). The structure is composed of three different clusters which are interconnected to form a three-dimensional structure. The RbGa3-xAux system is also nonstoichiometric with a three-dimensional structure composed of Ga8 dodecahedra and four-bonded gallium atoms. Unlike Na30.5Ga60-xAgx, the RbGa3 binary is also stable. The binary is formally a Zintl phase but the ternary is not. Some chemistry in the alkali-metal-indium system also has been explored. A new potassium-indium binary

  19. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    NASA Astrophysics Data System (ADS)

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd

    2014-11-01

    Comproportionation reactions of rare-earth metal trihalides (RX3) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ({T3R11}X15-type, P63/m), tetramers ({T4R16}X28{R4} (P-43m), {T4R16}X20 (P42/nnm), {T4R16}X24(RX3)4 (I41/a) and {T4R16}X23 (C2/m) types of structure) and pentamers ({Ru5La14}2Br39, Cc) of {TRr}n (n=2-5) clusters. These oligomers are further enveloped by inner (Xi) as well as outer (Xa) halido ligands, which possess diverse functionalities and interconnect like oligomers through i-i, i-a and/or a-i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of {TR6} octahedra via common edges are more frequent than trimers and pentamers, in which the {TRr} clusters share common faces.

  20. Tuning aromaticity in trigonal alkaline earth metal clusters and their alkali metal salts.

    PubMed

    Jiménez-Halla, J Oscar C; Matito, Eduard; Blancafort, Lluís; Robles, Juvencio; Solà, Miquel

    2009-12-01

    In this work, we analyze the geometry and electronic structure of the [X(n)M(3)](n-2) species (M = Be, Mg, and Ca; X = Li, Na, and K; n = 0, 1, and 2), with special emphasis on the electron delocalization properties and aromaticity of the cyclo-[M(3)](2-) unit. The cyclo-[M(3)](2-) ring is held together through a three-center two-electron bond of sigma-character. Interestingly, the interaction of these small clusters with alkali metals stabilizes the cyclo-[M(3)](2-) ring and leads to a change from sigma-aromaticity in the bound state of the cyclo-[M(3)](2-) to pi-aromaticity in the XM(3) (-) and X(2)M(3) metallic clusters. Our results also show that the aromaticity of the cyclo-[M(3)](2-) unit in the X(2)M(3) metallic clusters depends on the nature of X and M. Moreover, we explored the possibility for tuning the aromaticity by simply moving X perpendicularly to the center of the M(3) ring. The Na(2)Mg(3), Li(2)Mg(3), and X(2)Ca(3) clusters undergo drastic aromaticity alterations when changing the distance from X to the center of the M(3) ring, whereas X(2)Be(3) and K(2)Mg(3) keep its aromaticity relatively constant along this process. (c) 2009 Wiley Periodicals, Inc.

  1. Size control of noble metal clusters and metallic heterostructures through the reduction kinetics of metal precursors

    NASA Astrophysics Data System (ADS)

    Sevonkaev, Igor V.; Herein, Daniel; Jeske, Gerald; Goia, Dan V.

    2014-07-01

    Eight precious metal salts/complexes were reduced in propylene glycol at temperatures ranging between 110 and 170 °C. We found that the reduction temperature and the size of precipitated metallic nanoparticles formed were significantly affected by the structure and reactivity of the metal precursors. The choice of noble metal precursor offers flexibility for designing, fabricating and controlling the size of metallic heterostructures with tunable properties.Eight precious metal salts/complexes were reduced in propylene glycol at temperatures ranging between 110 and 170 °C. We found that the reduction temperature and the size of precipitated metallic nanoparticles formed were significantly affected by the structure and reactivity of the metal precursors. The choice of noble metal precursor offers flexibility for designing, fabricating and controlling the size of metallic heterostructures with tunable properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03045a

  2. Antiferromagnetic resonance in alkali-metal clusters in sodalite

    NASA Astrophysics Data System (ADS)

    Nakano, Takehito; Tsugeno, Hajime; Hanazawa, Atsufumi; Kashiwagi, Takanari; Nozue, Yasuo; Hagiwara, Masayuki

    2013-11-01

    We have performed electron spin resonance (ESR) studies of K43+ and (K3Rb)3+ nanoclusters incorporated in powder specimens of aluminosilicate sodalite at several microwave frequencies between 9 and 34 GHz. The K43+ and (K3Rb)3+ clusters are arrayed in a bcc structure and are known to show antiferromagnetic ordering below the Néel temperatures of TN ≃72 and ≃80 K, respectively, due to the exchange coupling between s electrons confined in the clusters. We have found sudden broadenings of ESR spectra in both samples below TN. The line shape of the spectra below TN is analyzed by powder pattern simulations of antiferromagnetic resonance (AFMR) spectra. The calculated line shapes well reproduce the experimental ones at all the frequencies by assuming a biaxial magnetic anisotropy. We have evaluated extremely small anisotropy fields of approximately 1 Oe indicating that these materials are ideal Heisenberg antiferromagnets. We have also found that the magnetic anisotropy changes from easy-plane type to uniaxial type by changing into a heavier alkali-metal cluster and that the g value shifts to a large value beyond two below TN for K43+ and (K3Rb)3+ nanoclusters. These novel features of K43+ and (K3Rb)3+ nanoclusters incorporated in sodalite are discussed.

  3. Effect of geometrical constraint condition on the formation of nanoscale twins in the Ni-based metallic glass composite

    SciTech Connect

    Lee, M H; Kim, B S; Kim, D H; Ott, R T; Sansoz, F; Eckert, J

    2014-04-25

    We investigated the effect of geometrically constrained stress-strain conditions on the formation of nanotwins in alpha-brass phase reinforced Ni59Zr20Ti16Si2Sn3 metallic glass (MG) matrix deformed under macroscopic uniaxial compression. The specific geometrically constrained conditions in the samples lead to a deviation from a simple uniaxial state to a multi-axial stress state, for which nanocrystallization in the MG matrix together with nanoscale twinning of the brass reinforcement is observed in localized regions during plastic flow. The nanocrystals in the MG matrix and the appearance of the twinned structure in the reinforcements indicate that the strain energy is highly confined and the local stress reaches a very high level upon yielding. Both the effective distribution of reinforcements on the strain enhancement of composite and the effects of the complicated stress states on the development of nanotwins in the second-phase brass particles are discussed.

  4. Performance of nanoscale metallic multilayer systems under mechanical and thermal loading

    NASA Astrophysics Data System (ADS)

    Economy, David Ross

    Reports of nanoscale metallic multilayers (NMM) performance show a relatively high strength and radiation damage resistance when compared their monolithic components. Hardness of NMMs has been shown to increase with increasing interfacial density (i.e. decreasing layer thickness). This interface density-dependent behavior within NMMs has been shown to deviate from Hall-Petch strengthening, leading to higher measured strengths during normal loading than those predicted by a rule of mixtures. To fully understand why this occurs, other researchers have looked at the influence of the crystal structures of the component layers, orientations, and compositions on deformation processes. Additionally, a limited number of studies have focused on the structural stability and possible performance variation between as-deposited systems and those exposed to mechanical and thermal loading. This dissertation identified how NMM as-deposited structures and performance are altered by mechanical loading (sliding/wear contact) and/or thermal (such as diffusion, relaxation) loading. These objectives were pursued by tracking hardness evolution during sliding wear and after thermal loading to as-deposited stress and mechanical properties. Residual stress progression was also examined during thermal loading and supporting data was collected to detail structural and chemical changes. All of these experimental observations were conducted using Cu/Nb NMMs with 2 nm, 20 nm, or 100 nm thick individual layers deposited with either 1 microm or 10 microm total thicknesses with two geometries (Cu/Nb and Nb/Cu) on (100) Si. Wear boxes were performed on Cu/Nb NMM using a nanoindentation system with a 1 microm conical diamond counterface. After nano-wear deformation, the hardness of the deformed regions significantly rose with respect to as-deposited measurements, which further increased with greater wear loads. Additionally, NMMs with thinner layers showed less volume loss as measured by laser

  5. Sulphur in the metal poor globular cluster NGC 6397

    NASA Astrophysics Data System (ADS)

    Koch, A.; Caffau, E.

    2011-10-01

    Sulphur (S) is a non-refractory α-element that is not locked into dust grains in the interstellar medium. Thus no correction to the measured, interstellar sulphur abundance is needed and it can be readily compared to the S content in stellar photospheres. Here we present the first measurement of sulphur in the metal poor globular cluster (GC) NGC 6397, as detected in a MIKE/Magellan high signal-to-noise, high-resolution spectrum of one red giant star. While abundance ratios of sulphur are available for a larger number of Galactic stars down to an [Fe/H] of ~ -3.5 dex, no measurements in globular clusters more metal poor than -1.5 dex have been reported so far. We find aNLTE, 3-D abundance ratio of [S/Fe] = +0.52 ± 0.20 (stat.) ± 0.08 (sys.), based on theS I, Multiplet 1 line at 9212.8 Å. This value is consistent with a Galactic halo plateau as typical of other α-elements in GCs and field stars, but we cannot rule out its membership with a second branch of increasing [S/Fe] with decreasing [Fe/H], claimed in the literature, which leads to a large scatter at metallicities around - 2 dex. The [S/Mg] and [S/Ca] ratios in this star are compatible with a Solar value to within the (large) uncertainties. Despite the very large scatter in these ratios across Galactic stars between literature samples, this indicates that sulphur traces the chemical imprints of the other α-elements in metal poor GCs. Combined with its moderate sodium abundance ([S/Na]NLTE = 0.48), the [S/Fe] ratio in this GC extends a global, positive S-Na correlation that is not seen in field stars and might indicate that proton-capture reactions contributed to the production of sulphur in the (metal poor) early GC environments. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  6. Probing the History of Galaxy Clusters with Metallicity and Entropy Measurements

    NASA Astrophysics Data System (ADS)

    Elkholy, Tamer Yohanna

    Galaxy clusters are the largest gravitationally bound objects found today in our Universe. The gas they contain, the intra-cluster medium (ICM), is heated to temperatures in the approximate range of 1 to 10 keV, and thus emits X-ray radiation. Studying the ICM through the spatial and spectral analysis of its emission returns the richest information about both the overall cosmological context which governs the formation of clusters, as well as the physical processes occurring within. The aim of this thesis is to learn about the history of the physical processes that drive the evolution of galaxy clusters, through careful, spatially resolved measurements of their metallicity and entropy content. A sample of 45 nearby clusters observed with Chandra is analyzed to produce radial density, temperature, entropy and metallicity profiles. The entropy profiles are computed to larger radial extents than in previous Chandra analyses. The results of this analysis are made available to the scientific community in an electronic database. Comparing metallicity and entropy in the outskirts of clusters, we find no signature on the entropy profiles of the ensemble of supernovae that produced the observed metals. In the centers of clusters, we find that the metallicities of high-mass clusters are much less dispersed than those of low-mass clusters. A comparison of metallicity with the regularity of the X-ray emission morphology suggests that metallicities in low-mass clusters are more susceptible to increase from violent events such as mergers. We also find that the variation in the stellar-to-gas mass ratio as a function of cluster mass can explain the variation of central metallicity with cluster mass, only if we assume that there is a constant level of metallicity for clusters of all masses, above which the observed galaxies add more metals in proportion to their mass. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  7. Different shades of oxide: from nanoscale wetting mechanisms to contact printing of gallium-based liquid metals.

    PubMed

    Doudrick, Kyle; Liu, Shanliangzi; Mutunga, Eva M; Klein, Kate L; Damle, Viraj; Varanasi, Kripa K; Rykaczewski, Konrad

    2014-06-17

    Gallium-based liquid metals are of interest for a variety of applications including flexible electronics, soft robotics, and biomedical devices. Still, nano- to microscale device fabrication with these materials is challenging because, despite having surface tension 10 times higher than water, they strongly adhere to a majority of substrates. This unusually high adhesion is attributed to the formation of a thin oxide shell; however, its role in the adhesion process has not yet been established. In this work, we demonstrate that, dependent on dynamics of formation and resulting morphology of the liquid metal-substrate interface, GaInSn adhesion can occur in two modes. The first mode occurs when the oxide shell is not ruptured as it makes contact with the substrate. Because of the nanoscale topology of the oxide surface, this mode results in minimal adhesion between the liquid metal and most solids, regardless of substrate's surface energy or texture. In the second mode, the formation of the GaInSn-substrate interface involves rupturing of the original oxide skin and formation of a composite interface that includes contact between the substrate and pieces of old oxide, bare liquid metal, and new oxide. We demonstrate that in this latter mode GaInSn adhesion is dominated by the intimate contact between new oxide and substrate. We also show that by varying the pinned contact line length using varied degrees of surface texturing, the adhesion of GaInSn in this mode can be either decreased or increased. Lastly, we demonstrate how these two adhesion modes limit microcontact printing of GaInSn patterns but can be exploited to repeatedly print individual sub-200 nm liquid metal drops.

  8. A new nanomaterial synthesized from size-selected, ligand-free metal clusters

    NASA Astrophysics Data System (ADS)

    Li, X.; Wepasnick, K.; Tang, X.; Fairbrother, D. H.; Bowen, K. H.; Dollinger, A.; Strobel, C. H.; Huber, J.; Mangler, T.; Luo, Y.; Proch, S.; Gantefoer, G.

    2014-03-01

    Thins films are synthesized by deposition of size-selected Mon- cluster anions on an inert substrate. Scanning tunneling microscopy pictures indicate that the deposited material consists of individual particles with diameters corresponding to the size of the preformed clusters from the gas phase. Previous attempts to manufacture cluster materials from metals failed since these clusters coalesced at room temperature. Our data suggest the possibility to synthesize new nanomaterials from clusters of high fusing metals. This may prove to be the key to harness size-dependent and tuneable properties of clusters for creating novel classes of functional tailor-made materials.

  9. All-metal clusters that mimic the chemistry of halogens.

    PubMed

    Zhao, Tianshan; Li, Yawei; Wang, Qian; Jena, Puru

    2013-10-07

    Owing to their s(2)p(5) electronic configuration, halogen atoms are highly electronegative and constitute the anionic components of salts. Whereas clusters that contain no halogen atoms, such as AlH(4), mimic the chemistry of halogens and readily form salts (e.g., Na(+)(AlH(4))(-)), clusters that are solely composed of metal atoms and yet behave in the same manner as a halogen are rare. Because coinage-metal atoms (Cu, Ag, and Au) only have one valence electron in their outermost electronic shell, as in H, we examined the possibility that, on interacting with Al, in particular as AlX(4) (X=Cu, Ag, Au), these metal atoms may exhibit halogen-like properties. By using density functional theory, we show that AlAu(4) not only mimics the chemistry of halogens, but also, with a vertical detachment energy (VDE) of 3.98 eV in its anionic form, is a superhalogen. Similarly, analogous to XHX superhalogens (X=F, Cl, Br), XAuX species with VDEs of 4.65, 4.50, and 4.34 eV in their anionic form, respectively, also form superhalogens. In addition, Au can also form hyperhalogens, a recently discovered species that show electron affinities (EAs) that are even higher than those of their corresponding superhalogen building blocks. For example, the VDEs of M(AlAu(4))(2)(-) (M=Na and K) and anionic (FAuF)Au(FAuF) range from 4.06 to 5.70 eV. Au-based superhalogen anions, such as AlAu(4)(-) and AuF(2)(-), have the additional advantage that they exhibit wider optical absorption ranges than their H-based analogues, AlH(4)(-) and HF(2)(-). Because of the catalytic properties and the biocompatibility of Au, Au-based superhalogens may be multifunctional. However, similar studies that were carried out for Cu and Ag atoms have shown that, unlike AlAu(4), AlX(4) (X=Cu, Ag) clusters are not superhalogens, a property that can be attributed to the large EA of the Au atom.

  10. Study of globular cluster M53: new variables, distance, metallicity

    NASA Astrophysics Data System (ADS)

    Dékány, I.; Kovács, G.

    2009-11-01

    Aims: We study the variable star content of the globular cluster M53 to compute the physical parameters of the constituting stars and the distance of the cluster. Methods: Covering two adjacent seasons in 2007 and 2008, new photometric data are gathered for 3048 objects in the field of M53. By using the OIS (optimal image subtraction) method and subsequently TFA (trend filtering algorithm), we search for variables in the full sample by using discrete Fourier transformation and box-fitting least squares methods. We select variables based on the statistics related to these methods combined with visual inspection. Results: We identified 12 new variables (2 RR Lyrae stars, 7 short periodic stars - 3 of them are SX Phe stars - and 3 long-period variables). No eclipsing binaries were found in the present sample. Except for the 3 (hitherto unknown) Blazhko RR Lyrae (two RRab and an RRc) stars, no multiperiodic variables were found. We showed that after proper period shift, the PLC (period-luminosity-color) relation for the first overtone RR Lyrae sample tightly follows the one spanned by the fundamental stars. Furthermore, the slope is in agreement with that derived from other clusters. Based on the earlier Baade-Wesselink calibration of the PLC relations, the derived reddening-free distance modulus of M53 is 16.31±0.04 mag, corresponding to a distance modulus of 18.5 mag for the Large Magellanic Cloud. From the Fourier parameters of the RRab stars we obtained an average iron abundance of -1.58± 0.03 (error of the mean). This is ~0.5 dex higher than the overall abundance of the giants as given in the literature and derived in this paper from the three-color photometry of giants. We suspect that the source of this discrepancy (observable also in other, low-metallicity clusters) is the lack of a sufficient number of low-metallicity objects in the calibrating sample of the Fourier method. Table 1 is only available in electronic form at http://www.aanda.org Photometric data

  11. High-dispersion spectroscopy of giants in metal-poor globular clusters. I - Iron abundances

    NASA Technical Reports Server (NTRS)

    Minniti, Dante; Geisler, Doug; Peterson, Ruth C.; Claria, Juan J.

    1993-01-01

    High-resolution, high-SNR CCD spectra have been obtained for 16 giants in eight metal-poor Galactic globular clusters. Fe abundances accurate to 0.15 dex have been determined by a fully consistent set of model atmospheres and spectrum synthesis techniques. A metallicity scale is presented for metal-poor clusters that should prove useful for calibrating a wide variety of photometric and low-resolution spectroscopic metallicity indicators.

  12. High-dispersion spectroscopy of giants in metal-poor globular clusters. I - Iron abundances

    NASA Technical Reports Server (NTRS)

    Minniti, Dante; Geisler, Doug; Peterson, Ruth C.; Claria, Juan J.

    1993-01-01

    High-resolution, high-SNR CCD spectra have been obtained for 16 giants in eight metal-poor Galactic globular clusters. Fe abundances accurate to 0.15 dex have been determined by a fully consistent set of model atmospheres and spectrum synthesis techniques. A metallicity scale is presented for metal-poor clusters that should prove useful for calibrating a wide variety of photometric and low-resolution spectroscopic metallicity indicators.

  13. Observation of small metal clusters on graphite surface with scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Shen, Jian; Zhu, Changxin; Ma, Zili; Pang, Shijin; Xue, Zengquan

    The motivation for studying the dynamic behavior and morphology of small metal clusters on solid single crystal surface is the desire to understand the physical mechanisms evolving in the initial stages of thin-film growth. In the experiments we have used a scanning tunneling microscope to study the static morphology of small Pt and Ni clusters supported on clean graphite surfaces, as well as the dynamic behaviors of small Pt clusters in an ultrahigh vacuum chamber. The metal deposition was fulfilled by controllable evaporation from ultra-pure superfine metal wires at room temperature in UHV. The STM images of small Pt and Ni clusters on graphite substrates with atomic resolution, as well as a series of STM images reveal some transformation processes of small metal clusters on the solid crystal surfaces, which provide us a better understanding on the procedure of atomic diffusion of metal clusters. All the STM images have been performed at room temperature.

  14. Shapes, Sizes, and Faceting of Nanoscale Metal Particles for Applications in Catalysis

    SciTech Connect

    Strand, M. B.; Leong, G. J.; Dinh, H. N.; Richards, R. M.

    2013-01-01

    In an effort to reduce the world's dependence on fossil fuels, proton exchange membrane fuel cells (PEMFC) are commonly considered as a prime candidate for alternative energy sources. The efficiency of fuel cells is limited by the oxygen reduction reaction (ORR) which is driven by platinum based catalysts. Numerous methods have been developed to synthesize particles which contain more active surfaces by tuning shapes, sizes and facets. Here, we will present a study of a well known wet chemical reduction method targeting specific morphologies and the resulting electrochemical activity. Studying the relationship between Pt facets at the bulk phase single crystal level versus the nanoscale correlates the effects of faceting on activities. Studying the formation of crystals during the course of the synthesis via transmission electron microscopy (TEM) and small angle x-ray scattering (SAXS) provides mechanistic insight on growth, while electrochemical studies correlate physical properties to performance.

  15. Prominent thermodynamical interaction with surroundings on nanoscale memristive switching of metal oxides.

    PubMed

    Nagashima, Kazuki; Yanagida, Takeshi; Oka, Keisuke; Kanai, Masaki; Klamchuen, Annop; Rahong, Sakon; Meng, Gang; Horprathum, Mati; Xu, Bo; Zhuge, Fuwei; He, Yong; Park, Bae Ho; Kawai, Tomoji

    2012-11-14

    This study demonstrates the effect of surroundings on a memristive switching at nanoscale by utilizing an open top planar-type device. NiO(x) and CoO(x) planar-type devices have exhibited a memristive behavior under atmospheric pressure, whereas TiO(2-x) planar-type devices did not show a memristive switching even under the same surroundings. A memristive behavior of TiO(2-x) planar-type devices has emerged when reducing an ambient pressure and/or employing a SiO(2) passivation layer. These results reveal that a thermodynamical interaction with surroundings critically determines the occurrence of memristive switching via varying a stability of nonstoichiometry. Since this effect tends to be more significant for smaller devices with larger specific surface area, tailoring the surrounding effect by an appropriate passivation will be essential for high density devices.

  16. Synthetic Fabrication of Nanoscale MoS2-Based Transition Metal Sulfides

    PubMed Central

    Wang, Shutao; An, Changhua; Yuan, Jikang

    2010-01-01

    Transition metal sulfides are scientifically and technologically important materials. This review summarizes recent progress on the synthetic fabrication of transition metal sulfides nanocrystals with controlled shape, size, and surface functionality. Special attention is paid to the case of MoS2 nanoparticles, where organic (surfactant, polymer), inorganic (support, promoter, doping) compounds and intercalation chemistry are applied.

  17. Permanent excimer superstructures by supramolecular networking of metal quantum clusters

    NASA Astrophysics Data System (ADS)

    Santiago-Gonzalez, Beatriz; Monguzzi, Angelo; Azpiroz, Jon Mikel; Prato, Mirko; Erratico, Silvia; Campione, Marcello; Lorenzi, Roberto; Pedrini, Jacopo; Santambrogio, Carlo; Torrente, Yvan; De Angelis, Filippo; Meinardi, Francesco; Brovelli, Sergio

    2016-08-01

    Excimers are evanescent quasi-particles that typically form during collisional intermolecular interactions and exist exclusively for their excited-state lifetime. We exploited the distinctive structure of metal quantum clusters to fabricate permanent excimer-like colloidal superstructures made of ground-state noninteracting gold cores, held together by a network of hydrogen bonds between their capping ligands. This previously unknown aggregation state of matter, studied through spectroscopic experiments and ab initio calculations, conveys the photophysics of excimers into stable nanoparticles, which overcome the intrinsic limitation of excimers in single-particle applications—that is, their nearly zero formation probability in ultra-diluted solutions. In vitro experiments demonstrate the suitability of the superstructures as nonresonant intracellular probes and further reveal their ability to scavenge reactive oxygen species, which enhances their potential as anticytotoxic agents for biomedical applications.

  18. Are the Effects of Structure Formation Seen in the Central Metallicity of Galaxy Clusters?

    NASA Astrophysics Data System (ADS)

    Elkholy, Tamer Y.; Bautz, Mark W.; Canizares, Claude R.

    2015-05-01

    A sample of 46 nearby clusters observed with Chandra is analyzed to produce radial density, temperature, entropy, and metallicity profiles, as well as other morphological measurements. The entropy profiles are computed to larger radii than in previous Chandra cluster sample analyses. We find that the iron mass fraction measured in the inner 0.15{{R}500} shows a larger dispersion across the sample of low-mass clusters than it does for the sample of high-mass clusters. We interpret this finding as the result of the mixing of more halos in large clusters than in small clusters, leading to an averaging of the metallicity in the large clusters, and thus less dispersion of metallicity. This interpretation lends support to the idea that the low-entropy, metal-rich gas of merging halos reaches the clusters’ centers, which explains observations of core-collapse supernova product metallicity peaks, and which is seen in hydrodynamical simulations. The gas in these merging halos would have to reach cluster centers without mixing in the outer regions. On the other hand, the metallicity dispersion does not change with mass in the outer regions of the clusters, suggesting that most of the outer metals originate from a source with a more uniform metallicity level, such as during pre-enrichment. We also measure a correlation between the metal content in low-mass clusters and the morphological disturbance of their intracluster medium, as measured by centroid shift. This suggests an alternative interpretation, whereby transitional metallicity boosts in the center of low-mass clusters account for the larger dispersion of their metallicities.

  19. Entrapment of Metal Clusters in MOF Channels by Extended Hooks Anchored at Open Metal Sites

    PubMed Central

    Zheng, Shou-Tian; Zhao, Xiang; Lau, Samuel; Fuhr, Addis; Feng, Pingyun; Bu, Xianhui

    2015-01-01

    Reported here is a new concept and its practical implementation that involves the novel utilization of open metal sites (OMS) for architectural pore design. Specifically, it is shown here that OMS can be used to run extended hooks (isonicotinate in this work) from the framework wall to channel centers to effect the capture of single metal ions or clusters, with the concurrent partition of the large channel space into multiple domains, alteration of host-guest charge relationship and associated guest-exchange properties, as well as the transfer of OMS from the wall to the channel centers. The concept of the extended hook, demonstrated here in the multi-component dual-metal and dual-ligand system, should be generally applicable to a range of framework types. PMID:23826752

  20. In situ electron microscopy studies of electromechanical behavior in metals at the nanoscale using a novel microdevice-based system

    NASA Astrophysics Data System (ADS)

    Kang, Wonmo; Beniam, Iyoel; Qidwai, Siddiq M.

    2016-09-01

    Electrically assisted deformation (EAD) is an emerging technique to enhance formability of metals by applying an electric current through them. Despite its increasing importance in manufacturing applications, there is still an unresolved debate on the nature of the fundamental deformation mechanisms underlying EAD, mainly between electroplasticity (non-thermal effects) and resistive heating (thermal effects). This status is due to two critical challenges: (1) a lack of experimental techniques to directly observe fundamental mechanisms of material deformation during EAD, and (2) intrinsic coupling between electric current and Joule heating giving rise to unwanted thermally activated mechanisms. To overcome these challenges, we have developed a microdevice-based electromechanical testing system (MEMTS) to characterize nanoscale metal specimens in transmission electron microscopy (TEM). Our studies reveal that MEMTS eliminates the effect of Joule heating on material deformation, a critical advantage over macroscopic experiments, owing to its unique scale. For example, a negligible change in temperature (<0.02 °C) is predicted at ˜3500 A/mm2. Utilizing the attractive features of MEMTS, we have directly investigated potential electron-dislocation interactions in single crystal copper (SCC) specimens that are simultaneously subjected to uniaxial loading and electric current density up to 5000 A/mm2. Our in situ TEM studies indicate that for SCC, electroplasticity does not play a key role as no differences in dislocation activities, such as depinning and movement, are observed.

  1. In situ electron microscopy studies of electromechanical behavior in metals at the nanoscale using a novel microdevice-based system.

    PubMed

    Kang, Wonmo; Beniam, Iyoel; Qidwai, Siddiq M

    2016-09-01

    Electrically assisted deformation (EAD) is an emerging technique to enhance formability of metals by applying an electric current through them. Despite its increasing importance in manufacturing applications, there is still an unresolved debate on the nature of the fundamental deformation mechanisms underlying EAD, mainly between electroplasticity (non-thermal effects) and resistive heating (thermal effects). This status is due to two critical challenges: (1) a lack of experimental techniques to directly observe fundamental mechanisms of material deformation during EAD, and (2) intrinsic coupling between electric current and Joule heating giving rise to unwanted thermally activated mechanisms. To overcome these challenges, we have developed a microdevice-based electromechanical testing system (MEMTS) to characterize nanoscale metal specimens in transmission electron microscopy (TEM). Our studies reveal that MEMTS eliminates the effect of Joule heating on material deformation, a critical advantage over macroscopic experiments, owing to its unique scale. For example, a negligible change in temperature (<0.02 °C) is predicted at ∼3500 A/mm(2). Utilizing the attractive features of MEMTS, we have directly investigated potential electron-dislocation interactions in single crystal copper (SCC) specimens that are simultaneously subjected to uniaxial loading and electric current density up to 5000 A/mm(2). Our in situ TEM studies indicate that for SCC, electroplasticity does not play a key role as no differences in dislocation activities, such as depinning and movement, are observed.

  2. In situ electron microscopy studies of electromechanical behavior in metals at the nanoscale using a novel microdevice-based system

    SciTech Connect

    Kang, Wonmo Beniam, Iyoel; Qidwai, Siddiq M.

    2016-09-15

    Electrically assisted deformation (EAD) is an emerging technique to enhance formability of metals by applying an electric current through them. Despite its increasing importance in manufacturing applications, there is still an unresolved debate on the nature of the fundamental deformation mechanisms underlying EAD, mainly between electroplasticity (non-thermal effects) and resistive heating (thermal effects). This status is due to two critical challenges: (1) a lack of experimental techniques to directly observe fundamental mechanisms of material deformation during EAD, and (2) intrinsic coupling between electric current and Joule heating giving rise to unwanted thermally activated mechanisms. To overcome these challenges, we have developed a microdevice-based electromechanical testing system (MEMTS) to characterize nanoscale metal specimens in transmission electron microscopy (TEM). Our studies reveal that MEMTS eliminates the effect of Joule heating on material deformation, a critical advantage over macroscopic experiments, owing to its unique scale. For example, a negligible change in temperature (<0.02 °C) is predicted at ∼3500 A/mm{sup 2}. Utilizing the attractive features of MEMTS, we have directly investigated potential electron-dislocation interactions in single crystal copper (SCC) specimens that are simultaneously subjected to uniaxial loading and electric current density up to 5000 A/mm{sup 2}. Our in situ TEM studies indicate that for SCC, electroplasticity does not play a key role as no differences in dislocation activities, such as depinning and movement, are observed.

  3. Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances.

    PubMed

    Muhammed, Madathumpady Abubaker Habeeb; Döblinger, Markus; Rodríguez-Fernández, Jessica

    2015-09-16

    Exerting control over the near-infrared (NIR) plasmonic response of nanosized metals and semiconductors can facilitate access to unexplored phenomena and applications. Here we combine electrostatic self-assembly and Cd(2+)/Cu(+) cation exchange to obtain an anisotropic core-shell nanoparticle cluster (NPC) whose optical properties stem from two dissimilar plasmonic materials: a gold nanorod (AuNR) core and a copper selenide (Cu(2-x)Se, x ≥ 0) supraparticle shell. The spectral response of the AuNR@Cu2Se NPCs is governed by the transverse and longitudinal plasmon bands (LPB) of the anisotropic metallic core, since the Cu2Se shell is nonplasmonic. Under aerobic conditions the shell undergoes vacancy doping (x > 0), leading to the plasmon-rich NIR spectrum of the AuNR@Cu(2-x)Se NPCs. For low vacancy doping levels the NIR optical properties of the dually plasmonic NPCs are determined by the LPBs of the semiconductor shell (along its major longitudinal axis) and of the metal core. Conversely, for high vacancy doping levels their NIR optical response is dominated by the two most intense plasmon modes from the shell: the transverse (along the shortest transversal axis) and longitudinal (along the major longitudinal axis) modes. The optical properties of the NPCs can be reversibly switched back to a purely metallic plasmonic character upon reversible conversion of AuNR@Cu(2-x)Se into AuNR@Cu2Se. Such well-defined nanosized colloidal assemblies feature the unique ability of holding an all-metallic, a metallic/semiconductor, or an all-semiconductor plasmonic response in the NIR. Therefore, they can serve as an ideal platform to evaluate the crosstalk between plasmonic metals and plasmonic semiconductors at the nanoscale. Furthermore, their versatility to display plasmon modes in the first, second, or both NIR windows is particularly advantageous for bioapplications, especially considering their strong absorbing and near-field enhancing properties.

  4. Electron emission from nanometer-size metallic clusters: Electronic states and structural stability of supported Au clusters

    SciTech Connect

    Lin, M.E.; Ramachandra, A.; Andres, R.P.; Reifenberger, R.

    1992-12-31

    Techniques developed to measure the thermodynamic and electronic properties of a single metallic cluster with nanometer-size dimensions are described. Using these techniques, experiments that resolve the quantized energy spectrum of electrons in a nanometer-size cluster of metallic atoms at room temperature have been performed. Studies on the stability of the electron emission current from an individual nanometer-size cluster supported on a tungsten tip have been performed to learn more about the intrinsic stability of these nanometer-size objects. The data show abrupt jumps between different emission states that are revisited as time progresses. This phenomenon is attributed to a rearrangement of the duster structure and/or orientation on the substrate and provides new evidence of multiple `isomeric` structures for small clusters of metallic atoms.

  5. Growth of Metal Nano-Clusters on Metal and Oxide Surfaces:. a Rheed Study

    NASA Astrophysics Data System (ADS)

    Zei, M. S.

    The powerful RHEED technique has been demonstrated for the structural determination of the nano-crystals grown on metal and oxide substrate surfaces. Pt was electrochemically deposited onto a Ru(10bar {1}0) electrode, while Pb and cobalt were vapor deposited onto Ag(111) and oxide film/NiAl(100), respectively under UHV conditions. At any Pt coverage, 3D-clusters develop for which the Pt clusters grow in (311) orientation on the Ru(10bar {1}0) substrate surface, where the [01bar {1}] atomic rows of the (311) facet are parallel to the [1bar {2}10] atomic rows of the Ru(10bar {1}0) surface. Due to the strong bonding at Pb/Ag(111) interface, the Pb deposit grows in 2D-islands with a (√ {3} × √ {3})R30o phase (Θ < 1 ML). On the other hand, the β-crystallites of ≈ 1 nm in diameter with inclusion of smaller-sized particles (D < 1 nm) are observed on Θ-Al2O3 after Co deposition at room temperature. Annealing at 900 K Co clusters (≈ 3 nm) grow larger at expense of small particles on thin oxide film on NiAl(100) and become better ordered, where the [110] axis of the Co(001) facet is parallel to the [100] direction of the (001)-oxide surface. The in-plane lattice constant of Co clusters is ca. 4 larger than that of bulk Co, yielding less strain at the (001)-oxide surface. These results demonstrate that both orientation and phase of metal nano-clusters are governed by surface structure of the substrate.

  6. Defining nanoscale metal features on an atomically clean silicon surface with a stencil.

    PubMed

    Linklater, A; Nogami, J

    2008-07-16

    Metal features with nanometer scale edge definition have been created on an atomically clean Si(001) surface with a stencil. These features were subsequently characterized by scanning tunneling microscopy and scanning electron microscopy. The stencil was brought into contact with the substrate while allowing the stencil to pivot so that it self-aligned parallel to the substrate surface. With this simple method, feature edge spreading was reduced to less than 10 nm in the best case. At the same time, atomic resolution images of the metal feature/silicon boundary showed significant spreading of a sub-monolayer of metal beyond the deposited area. This spreading may pose a limit on the ultimate resolution that can be achieved for metals deposited on atomically clean silicon surfaces.

  7. Homometallic rare-Earth metal phosphinidene clusters: synthesis and reactivity.

    PubMed

    Wang, Kai; Luo, Gen; Hong, Jianquan; Zhou, Xigeng; Weng, Linhong; Luo, Yi; Zhang, Lixin

    2014-01-20

    Two new trinuclear μ3 -bridged rare-earth metal phosphinidene complexes, [{L(Ln)(μ-Me)}3 (μ3 -Me)(μ3 -PPh)] (L=[PhC(NC6 H4 iPr2 -2,6)2 ](-) , Ln=Y (2 a), Lu (2 b)), were synthesized through methane elimination of the corresponding carbene precursors with phenylphosphine. Heating a toluene solution of 2 at 120 °C leads to an unprecedented ortho CH bond activation of the PhP ligand to form the bridged phosphinidene/phenyl complexes. Reactions of 2 with ketones, thione, or isothiocyanate show clear phospha-Wittig chemistry, giving the corresponding organic phosphinidenation products and oxide (sulfide) complexes. Reaction of 2 with CS2 leads to the formation of novel trinuclear rare-earth metal thione dianion clusters, for which a possible pathway was determined by DFT calculation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Embedded cluster metal-polymeric micro interface and process for producing the same

    DOEpatents

    Menezes, Marlon E.; Birnbaum, Howard K.; Robertson, Ian M.

    2002-01-29

    A micro interface between a polymeric layer and a metal layer includes isolated clusters of metal partially embedded in the polymeric layer. The exposed portion of the clusters is smaller than embedded portions, so that a cross section, taken parallel to the interface, of an exposed portion of an individual cluster is smaller than a cross section, taken parallel to the interface, of an embedded portion of the individual cluster. At least half, but not all of the height of a preferred spherical cluster is embedded. The metal layer is completed by a continuous layer of metal bonded to the exposed portions of the discontinuous clusters. The micro interface is formed by heating a polymeric layer to a temperature, near its glass transition temperature, sufficient to allow penetration of the layer by metal clusters, after isolated clusters have been deposited on the layer at lower temperatures. The layer is recooled after embedding, and a continuous metal layer is deposited upon the polymeric layer to bond with the discontinuous metal clusters.

  9. Structure and mobility of metal clusters in MOFs: Au, Pd, and AuPd clusters in MOF-74.

    PubMed

    Vilhelmsen, Lasse B; Walton, Krista S; Sholl, David S

    2012-08-01

    Understanding the adsorption and mobility of metal-organic framework (MOF)-supported metal nanoclusters is critical to the development of these catalytic materials. We present the first theoretical investigation of Au-, Pd-, and AuPd-supported clusters in a MOF, namely MOF-74. We combine density functional theory (DFT) calculations with a genetic algorithm (GA) to reliably predict the structure of the adsorbed clusters. This approach allows comparison of hundreds of adsorbed configurations for each cluster. From the investigation of Au(8), Pd(8), and Au(4)Pd(4) we find that the organic part of the MOF is just as important for nanocluster adsorption as open Zn or Mg metal sites. Using the large number of clusters generated by the GA, we developed a systematic method for predicting the mobility of adsorbed clusters. Through the investigation of diffusion paths a relationship between the cluster's adsorption energy and diffusion barrier is established, confirming that Au clusters are highly mobile in the MOF-74 framework and Pd clusters are less mobile.

  10. Structural, electronic and magnetic properties of binary transition metal aluminum clusters: absence of electronic shell structure.

    PubMed

    Chauhan, Vikas; Singh, Akansha; Majumder, Chiranjib; Sen, Prasenjit

    2014-01-08

    Single Cr, Mn, Fe, Co and Ni doped Al clusters having up to 12 Al atoms are studied using density functional methods. The global minima of structure for all the clusters are identified, and their relative stability and electronic and magnetic properties are studied. FeAl4 and CoAl3 are found to have enhanced stability and aromatic behavior. In contrast to binary transition metal alkali and transition metal alkaline earth clusters, spherical shell models cannot describe the electronic structure of transition metal aluminum clusters.

  11. Simulation studies of electroless metal deposition using gold nano-clusters on polymeric surfaces

    NASA Astrophysics Data System (ADS)

    Lively, Mike; Bhattacharya, Aniket; Grabill, Chris; Kuebler, Stephen M.; Dutta, Aniruddha; Heinrich, Helge

    2010-03-01

    We report lattice Monte Carlo (MC) simulation studies of deposition of metallic silver on randomly distributed gold nano clusters on a polymeric surface. The gold nano-clusters act as seeds for further deposition of silver atoms. We assume ballistic growth for the growth of metallic silver on gold clusters but treat the lateral growth (which eventually form bridges among original clusters) with different rules and study the evolving morphologies of the deposited silver atoms as a function of the surface density and the size distribution of gold nano-clusters and compare simulation results with those obtained from TEM studies of the prepared samples.

  12. Hydrogen mimicking the properties of coinage metal atoms in Cu and Ag monohydride clusters.

    PubMed

    Vetter, Karsten; Proch, Sebastian; Ganteför, Gerd F; Behera, Swayamprabha; Jena, Puru

    2013-12-28

    A systematic study of the electronic structure and equilibrium geometries of Cun, Cun-1H, Agn, and Agn-1H; n = 2-5 clusters is carried out using photoelectron spectroscopy (PES) experiments and density functional theory based calculations. Our objective is to see if the substitution of a coinage metal atom by hydrogen would retain the electronic structure of the parent metal cluster since both systems are isoelectronic. For clusters with n ≥ 3, we find that the measured PES and vertical detachment energies (VDEs) (i.e. energies necessary to remove an electron from the anionic Mn(-) (M = Cu, Ag) clusters without changing their geometries) are close to those of Mn-1H(-) clusters, suggesting that substitution of a metal atom with hydrogen does not perturb the electronic structure of the parent cluster anion significantly. Calculated VDEs agree very well with experiment validating the theoretical methods used as well as the geometries of the neutral and anionic clusters.

  13. Performance enhancement of metal nanowire-based transparent electrodes by electrically driven nanoscale nucleation of metal oxides

    NASA Astrophysics Data System (ADS)

    Shiau, Yu-Jeng; Chiang, Kai-Ming; Lin, Hao-Wu

    2015-07-01

    Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (<50 °C), and thus low energy consumption, are required for ZnO nucleation. This made the use of substrates with very low operating temperatures, such as PET and PEN, feasible. The optimized AgNW transparent conductive electrodes (TCE) fabricated using this promising linking method exhibited a low sheet resistance (13 Ω sq-1), a high transmission (92% at 550 nm), a high figure of merit (FOM; up to σDC/σOp = 340) and can be applied to wide range of next-generation flexible optoelectronic devices.Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (<50 °C), and thus

  14. Formation of metallic magnetic clusters in a Kondo-lattice metal: evidence from an optical study.

    PubMed

    Kovaleva, N N; Kugel, K I; Bazhenov, A V; Fursova, T N; Löser, W; Xu, Y; Behr, G; Kusmartsev, F V

    2012-01-01

    Magnetic materials are usually divided into two classes: those with localised magnetic moments, and those with itinerant charge carriers. We present a comprehensive experimental (spectroscopic ellipsomerty) and theoretical study to demonstrate that these two types of magnetism do not only coexist but complement each other in the Kondo-lattice metal, Tb(2)PdSi(3). In this material the itinerant charge carriers interact with large localised magnetic moments of Tb(4f) states, forming complex magnetic lattices at low temperatures, which we associate with self-organisation of magnetic clusters. The formation of magnetic clusters results in low-energy optical spectral weight shifts, which correspond to opening of the pseudogap in the conduction band of the itinerant charge carriers and development of the low- and high-spin intersite electronic transitions. This phenomenon, driven by self-trapping of electrons by magnetic fluctuations, could be common in correlated metals, including besides Kondo-lattice metals, Fe-based and cuprate superconductors.

  15. Formation of metallic magnetic clusters in a Kondo-lattice metal: Evidence from an optical study

    NASA Astrophysics Data System (ADS)

    Kovaleva, N. N.; Kugel, K. I.; Bazhenov, A. V.; Fursova, T. N.; Löser, W.; Xu, Y.; Behr, G.; Kusmartsev, F. V.

    2012-11-01

    Magnetic materials are usually divided into two classes: those with localised magnetic moments, and those with itinerant charge carriers. We present a comprehensive experimental (spectroscopic ellipsomerty) and theoretical study to demonstrate that these two types of magnetism do not only coexist but complement each other in the Kondo-lattice metal, Tb2PdSi3. In this material the itinerant charge carriers interact with large localised magnetic moments of Tb(4f) states, forming complex magnetic lattices at low temperatures, which we associate with self-organisation of magnetic clusters. The formation of magnetic clusters results in low-energy optical spectral weight shifts, which correspond to opening of the pseudogap in the conduction band of the itinerant charge carriers and development of the low- and high-spin intersite electronic transitions. This phenomenon, driven by self-trapping of electrons by magnetic fluctuations, could be common in correlated metals, including besides Kondo-lattice metals, Fe-based and cuprate superconductors.

  16. Formation of metallic magnetic clusters in a Kondo-lattice metal: Evidence from an optical study

    PubMed Central

    Kovaleva, N. N.; Kugel, K. I.; Bazhenov, A. V.; Fursova, T. N.; Löser, W.; Xu, Y.; Behr, G.; Kusmartsev, F. V.

    2012-01-01

    Magnetic materials are usually divided into two classes: those with localised magnetic moments, and those with itinerant charge carriers. We present a comprehensive experimental (spectroscopic ellipsomerty) and theoretical study to demonstrate that these two types of magnetism do not only coexist but complement each other in the Kondo-lattice metal, Tb2PdSi3. In this material the itinerant charge carriers interact with large localised magnetic moments of Tb(4f) states, forming complex magnetic lattices at low temperatures, which we associate with self-organisation of magnetic clusters. The formation of magnetic clusters results in low-energy optical spectral weight shifts, which correspond to opening of the pseudogap in the conduction band of the itinerant charge carriers and development of the low- and high-spin intersite electronic transitions. This phenomenon, driven by self-trapping of electrons by magnetic fluctuations, could be common in correlated metals, including besides Kondo-lattice metals, Fe-based and cuprate superconductors. PMID:23189239

  17. Pal 12 - A metal-rich globular cluster in the outer halo

    NASA Technical Reports Server (NTRS)

    Cohen, J. G.; Frogel, J. A.; Persson, S. E.; Zinn, R.

    1980-01-01

    New optical and infrared observations of several stars in the distant globular cluster Pal 12 show that they have CO strengths and heavy element abundances only slightly less than in M 71, one of the more metal-rich globular clusters. Pal 12 thus has a metal abundance near the high end of the range over which globular clusters exist and lies in the outer galactic halo. Its red horizontal branch is not anomalous in view of the abundance that has been found.

  18. Pal 12 - A metal-rich globular cluster in the outer halo

    NASA Technical Reports Server (NTRS)

    Cohen, J. G.; Frogel, J. A.; Persson, S. E.; Zinn, R.

    1980-01-01

    New optical and infrared observations of several stars in the distant globular cluster Pal 12 show that they have CO strengths and heavy element abundances only slightly less than in M 71, one of the more metal-rich globular clusters. Pal 12 thus has a metal abundance near the high end of the range over which globular clusters exist and lies in the outer galactic halo. Its red horizontal branch is not anomalous in view of the abundance that has been found.

  19. Surface modification of metal and metal coated nanoparticles to induce clustering

    NASA Astrophysics Data System (ADS)

    Gowda, M. H.; Glembocki, O. J.; Geng, S.; Prokes, S. M.; Garces, N.; Caldwell, J. D.

    2010-08-01

    Surface enhanced Raman scattering (SERS) is a powerful technique for the detection of submonolayer coverage of gold or silver surfaces. The magnitude of the effect and the spectral wavelength of the peak depend on the metal nanoparticles used and its geometry. In this paper we show that the use of chemicals that bind to gold or silver can lead to the clustering of nanoparticles. We used well defined Au nanoparticles in our experiments and add cysteamine to solutions containing the nanoparticles. The plasmonic response of the nanoparticles is measured by transmission Surface Plasmon Resonance (SPR) spectroscopy. We observed significant changes to the SPR spectra that are characteristics of close coupled nanoparticles. The time evolution of these changes indicates the formation of gold nanoparticles clusters. The SERS response of these clustered nanoparticles is observed to red shift from the designed peak wavelength in the green to the red. In addition, the placement of these clusters on dielectric surfaces shifts the SPR even more into the red. The experimental results are supported by calculations of the electromagnetic fields using finite difference methods.

  20. Laser Spectroscopy of Small Mass Selected Metal Clusters and Complexes

    NASA Astrophysics Data System (ADS)

    Robbins, David Lee

    1995-01-01

    been reported and furthermore no other metal dimer-ligand complex had been reported prior to these studies. The metal dimer work is relevant to surface adsorption and catalysis and represents the simplest adsorption experiment to date, that is adsorption of a ligand on the smallest metal cluster surface. The Mg^+ -N_2 study along with other recently investigated ion-molecule complexes are the first such complexes to be investigated.

  1. Origin of Selective Adsorption for Metal Nano-clusters on Graphene/Ru(0001)

    NASA Astrophysics Data System (ADS)

    Zhang, Lizhi; Sun, Jiatao; Huang, Li; Pan, Lida; Du, Shixuan; Gao, Hongjun

    2013-03-01

    These years, metal nano-clusters have attracted many interests because of their exciting properties and the potential applications in the catalysis industries, the information storage and so on. Recently, many groups composed the homogenous and size-controlled metal nano-clusters on graphene/Ru(0001) moiré template (G/Ru(0001)). However, the growth modes of these nano-clusters are not very clear. Here, we investigated the mechanism of selective adsorption of some transition metal (TM) atoms on G/Ru(0001) by DFT calculations, and proposed a criterion to estimate the growth mode of TM atoms on G/Ru(0001). We found that both the intensity of sp3 hybridization of carbon atoms in different regions of G/Ru(0001) and the electronic structure of the transition metal atoms influence the adsorption site and the selectivity of metal atoms on G/Ru(0001) at initio stage. According to the electronic structures of some other different G/metal systems, we also predicted that some other G/metal templates can be used to grow the metal nano-clusters. The growth mechanism agrees well with the experimental observations, and provides a way to select suitable metal atoms to form dispersed metal nano-clusters on the G/metal template.

  2. Probing the nanoscale Schottky barrier of metal/semiconductor interfaces of Pt/CdSe/Pt nanodumbbells by conductive-probe atomic force microscopy.

    PubMed

    Kwon, Sangku; Lee, Seon Joo; Kim, Sun Mi; Lee, Youngkeun; Song, Hyunjoon; Park, Jeong Young

    2015-08-07

    The electrical nature of the nanoscale contact between metal nanodots and semiconductor rods has drawn significant interest because of potential applications for metal-semiconductor hybrid nanostructures in energy conversion or heterogeneous catalysis. Here, we studied the nanoscale electrical character of the Pt/CdSe junction in Pt/CdSe/Pt nanodumbbells on connected Au islands by conductive-probe atomic force microscopy under ultra-high vacuum. Current-voltage plots measured in contact mode revealed Schottky barrier heights of individual nanojunctions of 0.41 ± 0.02 eV. The measured value of the Schottky barrier is significantly lower than that of planar thin-film diodes because of a reduction in the barrier width and enhanced tunneling probability at the interface.

  3. Linear scaling explicitly correlated MP2-F12 and ONIOM methods for the long-range interactions of the nanoscale clusters in methanol aqueous solutions.

    PubMed

    Li, Wei

    2013-01-07

    A linear scaling quantum chemistry method, generalized energy-based fragmentation (GEBF) approach has been extended to the explicitly correlated second-order Møller-Plesset perturbation theory F12 (MP2-F12) method and own N-layer integrated molecular orbital molecular mechanics (ONIOM) method, in which GEBF-MP2-F12, GEBF-MP2, and conventional density functional tight-binding methods could be used for different layers. Then the long-range interactions in dilute methanol aqueous solutions are studied by computing the binding energies between methanol molecule and water molecules in gas-phase and condensed phase methanol-water clusters with various sizes, which were taken from classic molecular dynamics (MD) snapshots. By comparing with the results of force field methods, including SPC, TIP3P, PCFF, and AMOEBA09, the GEBF-MP2-F12 and GEBF-ONIOM methods are shown to be powerful and efficient for studying the long-range interactions at a high level. With the GEBF-ONIOM(MP2-F12:MP2) and GEBF-ONIOM(MP2-F12:MP2:cDFTB) methods, the diameters of the largest nanoscale clusters under studies are about 2.4 nm (747 atoms and 10 209 basis functions with aug-cc-pVDZ basis set) and 4 nm (3351 atoms), respectively, which are almost impossible to be treated by conventional MP2 or MP2-F12 method. Thus, the GEBF-F12 and GEBF-ONIOM methods are expected to be a practical tool for studying the nanoscale clusters in condensed phase, providing an alternative benchmark for ab initio and density functional theory studies, and developing new force fields by combining with classic MD simulations.

  4. The SLUGGS survey: calcium triplet-based spectroscopic metallicities for over 900 globular clusters

    NASA Astrophysics Data System (ADS)

    Usher, Christopher; Forbes, Duncan A.; Brodie, Jean P.; Foster, Caroline; Spitler, Lee R.; Arnold, Jacob A.; Romanowsky, Aaron J.; Strader, Jay; Pota, Vincenzo

    2012-10-01

    Although the colour distribution of globular clusters in massive galaxies is well known to be bimodal, the spectroscopic metallicity distribution has been measured in only a few galaxies. After redefining the calcium triplet index-metallicity relation, we use our relation to derive the metallicity of 903 globular clusters in 11 early-type galaxies. This is the largest sample of spectroscopic globular cluster metallicities yet assembled. We compare these metallicities with those derived from Lick indices finding good agreement. In six of the eight galaxies with sufficient numbers of high-quality spectra we find bimodality in the spectroscopic metallicity distribution. Our results imply that most massive early-type galaxies have bimodal metallicity as well as colour distributions. This bimodality suggests that most massive early-type galaxies experienced two periods of star formation.

  5. Metal clusters and nanoparticles in dielectric matrices: Formation and optical properties

    NASA Astrophysics Data System (ADS)

    Gladskikh, I. A.; Vartanyan, T. A.

    2016-12-01

    The optical properties of thin dielectric films with metal inclusions and their dependence on thermal and laser annealing are studied experimentally. Metal clusters (Ag, Au, and Cu) in dielectric materials (Al2O3 and SiO2) are obtained by simultaneous vacuum deposition of metal and dielectric on the surface of a corresponding dielectric substrate (sapphire and quartz). It is shown that, depending on the deposited dielectric material, on the weight ratio of deposited metal and dielectric, and on the subsequent thermal treatment, one can obtain different metal structures, from clusters with a small number of atoms to complex dendritic plasmonic structures.

  6. Computational Study of Tensile Deformation of a Constrained Nanoscale Metallic Glass

    NASA Astrophysics Data System (ADS)

    Pang, Jianjun; Tan, Ming-Jen; Liew, Kim-Meow

    In this study a nanometer-sized metallic glass (nano-MG) Ti50Cu50 was generated with constrained atoms at both ends and was extended until fracture under a tensile load by molecular dynamics simulation using the general embedded-atom model (GEAM) potential. Totally different mechanical behavior was observed in the nano-MG, such as strain hardening and necking, both of which have been discovered in a few real and simulated MGs and can be related to the generation of shear transformation zones (STZs). A dramatic drop in Young's modulus was found due to the surface effect. Such effect results from the large fraction of surface atoms which have a different surrounding configuration from bulk atoms. At fracture the nano-MG breaks by atomic separation as reported in metal nanowires. The fracture strain is as large as about 120%, indicating that nano-MGs are intrinsically ductile.

  7. Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts

    NASA Astrophysics Data System (ADS)

    Grosse, Kyle L.; Bae, Myung-Ho; Lian, Feifei; Pop, Eric; King, William P.

    2011-05-01

    The performance and scaling of graphene-based electronics is limited by the quality of contacts between the graphene and metal electrodes. However, the nature of graphene-metal contacts remains incompletely understood. Here, we use atomic force microscopy to measure the temperature distributions at the contacts of working graphene transistors with a spatial resolution of ~10 nm (refs 5, , , 8), allowing us to identify the presence of Joule heating, current crowding and thermoelectric heating and cooling. Comparison with simulation enables extraction of the contact resistivity (150-200 Ω µm2) and transfer length (0.2-0.5 µm) in our devices; these generally limit performance and must be minimized. Our data indicate that thermoelectric effects account for up to one-third of the contact temperature changes, and that current crowding accounts for most of the remainder. Modelling predicts that the role of current crowding will diminish and the role of thermoelectric effects will increase as contacts improve.

  8. Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts.

    PubMed

    Grosse, Kyle L; Bae, Myung-Ho; Lian, Feifei; Pop, Eric; King, William P

    2011-05-01

    The performance and scaling of graphene-based electronics is limited by the quality of contacts between the graphene and metal electrodes. However, the nature of graphene-metal contacts remains incompletely understood. Here, we use atomic force microscopy to measure the temperature distributions at the contacts of working graphene transistors with a spatial resolution of ~ 10 nm (refs 5-8), allowing us to identify the presence of Joule heating, current crowding and thermoelectric heating and cooling. Comparison with simulation enables extraction of the contact resistivity (150-200 Ω µm²) and transfer length (0.2-0.5 µm) in our devices; these generally limit performance and must be minimized. Our data indicate that thermoelectric effects account for up to one-third of the contact temperature changes, and that current crowding accounts for most of the remainder. Modelling predicts that the role of current crowding will diminish and the role of thermoelectric effects will increase as contacts improve.

  9. Charging and discharging at the nanoscale: Fermi level equilibration of metallic nanoparticles

    PubMed Central

    Scanlon, Micheál D.; Peljo, Pekka; Méndez, Manuel A.; Smirnov, Evgeny

    2015-01-01

    The redox properties of metallic nanoparticles are discussed, in particular the relationships between excess charge, size and the Fermi level of the electrons. The redox potentials are derived using simple electrostatic models to provide a straightforward understanding of the basic phenomena. The different techniques used to measure the variation of Fermi level are presented. Finally, redox aspects of processes such as toxicity, electrochromicity and surface plasmon spectroscopy are discussed. PMID:28706663

  10. Novel Metal-Matrix Composites With Integrally-Bound Nanoscale Carbon

    DTIC Science & Technology

    2012-06-01

    nanomaterials with up to 5 wt% nanocarbon (aka “covetics”) in aluminum and copper metals. The nanocarbon is detectable by EDS and XPS but not by...analytical methods such as LECO and GDMS. Nanocarbon raises the melting point and significantly alters surface tension, and thus porosity, during...observed an increase in as-rolled strength and hardness with increasing amounts of nanocarbon . In copper, thermal conductivity was anisotropic

  11. Capturing heterogeneous nucleation of nanoscale pits and subsequent crystal shrinkage during Ostwald ripening of a metal phosphate.

    PubMed

    Chung, Sung-Yoon; Kim, Young-Min; Choi, Si-Young; Kim, Jin-Gyu

    2015-01-27

    It has been generally accepted that crystal shrinkage during Ostwald ripening can be understood simply as a reverse process of crystal growth, and as a result, little attention has been paid to shrinkage behavior. The entire microstructure of polycrystalline materials, however, forms as a consequence of both growing and shrinking crystals. Thus, scrutiny of shrinking characteristics in addition to growth aspects is essential for a complete understanding of the evolution of microstructure during Ostwald ripening. By capturing real-time in situ high-resolution electron micrographs at high temperature, we herein demonstrate the shrinkage behavior of nanocrystals embedded in a solid crystalline matrix during the ripening process of a metal phosphate. Unlike typical crystal growth behavior based on two-dimensional homogeneous nucleation, heterogeneous types of nucleation with nanoscale pits at solid-solid interfaces (or crystal edges) are observed to dominantly occur during shrinkage of the crystals. The findings of this study suggest that crystal shrinkage proceeds with a lower activation energy barrier than that of crystal growth, although both crystal growth and shrinkage take place at the same time during Ostwald ripening.

  12. Deformation Mechanism Map of Cu/Nb Nanoscale Metallic Multilayers as a Function of Temperature and Layer Thickness

    NASA Astrophysics Data System (ADS)

    Snel, J.; Monclús, M. A.; Castillo-Rodríguez, M.; Mara, N.; Beyerlein, I. J.; Llorca, J.; Molina-Aldareguía, J. M.

    2017-08-01

    The mechanical properties and deformation mechanisms of Cu/Nb nanoscale metallic multilayers (NMMs) manufactured by accumulative roll bonding are studied at 25°C and 400°C. Cu/Nb NMMs with individual layer thicknesses between 7 nm and 63 nm were tested by in situ micropillar compression inside a scanning electron microscope. Yield strength, strain-rate sensitivities and activation volumes were obtained from the pillar compression tests. The deformed micropillars were examined under scanning and transmission electron microscopy in order to examine the deformation mechanisms active for different layer thicknesses and temperatures. The analysis suggests that room temperature deformation was determined by dislocation glide at larger layer thicknesses and interface-related mechanisms at the thinner layer thicknesses. The high-temperature compression tests, in contrast, revealed superior thermo-mechanical stability and strength retention for the NMMs with larger layer thicknesses with deformation controlled by dislocation glide. A remarkable transition in deformation mechanism occurred as the layer thickness decreased, to a deformation response controlled by diffusion processes along the interfaces, which resulted in temperature-induced softening. A deformation mechanism map, in terms of layer thickness and temperature, is proposed from the results obtained in this investigation.

  13. Design and simulation of a nanoscale electro-plasmonic 1 × 2 switch based on asymmetric metal-insulator-metal stub filters.

    PubMed

    Taheri, Ahmad Naseri; Kaatuzian, Hassan

    2014-10-01

    A compact nanoscale electro-plasmonic 1 × 2 switch based on asymmetrical metal-insulator-metal stub filters is introduced. The structure is designed and analyzed based on the transmission line method, and the switching operation of the device is numerically simulated and verified by the finite element method. It is found that by adjusting the length of the stubs on each output branch of the structure the surface plasmon polaritons (SPPs) are guided to only one of the output ports. By altering the refractive index of the electro-optical material (DAST) as the core of the structure with a 35 V applied voltage, the SPPs are steered to the opposite port. The reflected SPPs from one stub filter enhance the output intensity of another filter. The operating wavelength of the switch is the communication wavelength λ=1550 nm. Nevertheless, it can be easily redesigned for another wavelength in the range of 800-2000 nm. The insertion losses and the extinction ratios guarantee an almost symmetrical switching for two outputs. The overall size of the switch is 800 nm × 450 nm × 750 nm. The bandwidth of the switch is anticipated over 100 GHz.

  14. White Dwarfs in the Metal-Rich Open Cluster NGC 6253

    NASA Astrophysics Data System (ADS)

    Jeffery, E. J.; Campos, F.; Romero, A.; Kepler, S. O.

    2017-03-01

    We have obtained 53 images with the g filter and 19 images with the i filter, each with 600-second exposures of the super metal rich open cluster NGC 6253 with the Gemini-South telescope to create deep images of the cluster to observe the cluster white dwarfs for the first time. We will analyze the white dwarf luminosity function to measure the cluster's white dwarf age, search for any anomalous features (as has been seen in the similarly metal rich cluster NGC 6791), and constrain the initial-final mass relation at high metallicities. We present an update on these observations and our program to study the formation of white dwarfs in super high metallicity environments.

  15. Determination of the Structures of Silicon and Metal Doped Silicon Clusters

    NASA Astrophysics Data System (ADS)

    Lyon, Jonathan T.; Fielicke, Andre; Janssens, Ewald; Lievens, Peter

    2014-06-01

    Strongly bound clusters are often used as convenient models for bulk material. Silicon clusters are particularly interesting due to their importance in the electronics industry. We perform experimental IR multiple photon dissociation spectroscopy in the gas-phase, which makes use of a free electron laser, and compare the results with that predicted by density functional and MP2 theory calculations. Comparison of the vibrational spectra with that predicted by theoretical calculations for several structural isomers for each cluster size leads to accurate structural assignments. Here, we present our results for silicon clusters, and compare the structures with those of select transition metal doped SinM clusters. Of particular interest is the transition from exohedral to endoheral metal doped silicon clusters and how the transition size changes for different metal dopant atoms. Journal of Chemical Physics 2012, 136, 064301 e.g., ChemPhysChem 2014, 15, 328.

  16. Color-magnitude diagrams for six metal-rich, low-latitude globular clusters

    NASA Technical Reports Server (NTRS)

    Armandroff, Taft E.

    1988-01-01

    Colors and magnitudes for stars on CCD frames for six metal-rich, low-latitude, previously unstudied globular clusters and one well-studied, metal-rich cluster (47 Tuc) have been derived and color-magnitude diagrams have been constructed. The photometry for stars in 47 Tuc are in good agreement with previous studies, while the V magnitudes of the horizontal-branch stars in the six program clusters do not agree with estimates based on secondary methods. The distances to these clusters are different from prior estimates. Redding values are derived for each program cluster. The horizontal branches of the program clusters all appear to lie entirely redwards of the red edge of the instability strip, as is normal for their metallicities.

  17. A uniform metal distribution in the intergalactic medium of the Perseus cluster of galaxies.

    PubMed

    Werner, Norbert; Urban, Ondrej; Simionescu, Aurora; Allen, Steven W

    2013-10-31

    Most of the metals (elements heavier than helium) produced by stars in the member galaxies of clusters currently reside within the hot, X-ray-emitting intra-cluster gas. Observations of X-ray line emission from this intergalactic medium have suggested a relatively small cluster-to-cluster scatter outside the cluster centres and enrichment with iron out to large radii, leading to the idea that the metal enrichment occurred early in the history of the Universe. Models with early enrichment predict a uniform metal distribution at large radii in clusters, whereas those with late-time enrichment are expected to introduce significant spatial variations of the metallicity. To discriminate clearly between these competing models, it is essential to test for potential inhomogeneities by measuring the abundances out to large radii along multiple directions in clusters, which has not hitherto been done. Here we report a remarkably uniform iron abundance, as a function of radius and azimuth, that is statistically consistent with a constant value of ZFe = 0.306 ± 0.012 in solar units out to the edge of the nearby Perseus cluster. This homogeneous distribution requires that most of the metal enrichment of the intergalactic medium occurred before the cluster formed, probably more than ten billion years ago, during the period of maximal star formation and black hole activity.

  18. Internal Morphologies of Cycled Li-Metal Electrodes Investigated by Nano-Scale Resolution X-ray Computed Tomography.

    PubMed

    Frisco, Sarah; Liu, Danny X; Kumar, Arjun; Whitacre, Jay F; Love, Corey T; Swider-Lyons, Karen E; Litster, Shawn

    2017-06-07

    While some commercially available primary batteries have lithium metal anodes, there has yet to be a commercially viable secondary battery with this type of electrode. Research prototypes of these cells typically exhibit a limited cycle life before dendrites form and cause internal cell shorting, an occurrence that is more pronounced during high-rate cycling. To better understand the effects of high-rate cycling that can lead to cell failure, we use ex situ nanoscale-resolution X-ray computed tomography (nano-CT) with the aid of Zernike phase contrast to image the internal morphologies of lithium metal electrodes on copper wire current collectors that have been cycled at low and high current densities. The Li that is deposited on a Cu wire and then stripped and deposited at low current density appears uniform in morphology. Those cycled at high current density undergo short voltage transients to >3 V during Li-stripping from the electrode, during which electrolyte oxidation and Cu dissolution from the current collector may occur. The effect of temperature is also explored with separate cycling experiments performed at 5 and 33 °C. The resulting morphologies are nonuniform films filled with voids that are semispherical in shape with diameters ranging from hundreds of nanometers to tens of micrometers, where the void size distributions are temperature-dependent. Low-temperature cycling elicits a high proportion of submicrometer voids, while the higher-temperature sample morphology is dominated by voids larger than 2 μm. In evaluating these morphologies, we consider the importance of nonidealities during extreme charging, such as electrolyte decomposition. We conclude that nano-CT is an effective tool for resolving features and aggressive cycling-induced anomalies in Li films in the range of 100 nm to 100 μm.

  19. Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron.

    PubMed

    Wang, Yu; Zhou, Dongmei; Wang, Yujun; Zhu, Xiangdong; Jin, Shengyang

    2011-01-01

    Transformation of polychlorinated biphenyls (PCBs) by zero-valent iron represents one of the latest innovative technologies for environmental remediation. The dechlorination of 4-chlorobiphenyl (4-ClBP) by nanoscale zero-valent iron (NZVI) in the presence of humic acid or metal ions was investigated. The results showed that the dechlorination of 4-ClBP by NZVI increased with decreased solution pH. When the initial pH value was 4.0, 5.5, 6.8, and 9.0, the dechlorination efficiencies of 4-ClBP after 48 hr were 53.8%, 47.8%, 35.7%, and 35.6%, respectively. The presence of humic acid inhibited the reduction of 4-ClBP in the first 4 hr, and then significantly accelerated the dechlorination by reaching 86.3% in 48 hr. Divalent metal ions, Co2+, Cu2+, and Ni2+, were reduced and formed bimetals with NZVI, thereby enhanced the dechlorination of 4-ClBP. The dechlorination percentages of 4-ClBP in the presence of 0.1 mmol/L Co2+, Cu2+ and Ni2+ were 66.1%, 66.0% and 64.6% in 48 hr, and then increased to 67.9%, 71.3% and 73.5%, after 96 hr respectively. The dechlorination kinetics of 4-ClBP by the NZVI in all cases followed pseudo-first order model. The results provide a basis for better understanding of the dechlorination mechanisms of PCBs in real environment.

  20. Composite Hybrid Cluster Built from the Integration of Polyoxometalate and a Metal Halide Cluster: Synthetic Strategy, Structure, and Properties.

    PubMed

    Li, Xin-Xiong; Ma, Xiang; Zheng, Wen-Xu; Qi, Yan-Jie; Zheng, Shou-Tian; Yang, Guo-Yu

    2016-09-06

    A step-by-step synthetic strategy, setting up a bridge between the polyoxometalate (POM) and metal halide cluster (MHC) systems, is demonstrated to construct an unprecedented composite hybrid cluster built up from one high-nuclearity cationic MHC [Cu8I6](2+) and eight Anderson-type anionic POMs [HCrMo6O18(OH)6](2-) cross-linked by a tripodal alcohol derivative.

  1. Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts.

    PubMed

    Ye, Rong; Zhukhovitskiy, Aleksandr V; Deraedt, Christophe V; Toste, F Dean; Somorjai, Gabor A

    2017-08-15

    Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles-some without homogeneous analogues-for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts in our laboratories are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence, and structural uniformity, dendrimers have proven to be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g., π-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g., oxidation states) of the catalysts and their activity. Moreover, we have

  2. First examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands

    SciTech Connect

    Wang Lamei; Fan Yong; Wang Yan; Xiao Lina; Hu Yangyang; Peng Yu; Wang Tiegang; Gao Zhongmin; Zheng Dafang; Cui Xiaobing; Xu Jiqing

    2012-07-15

    Two new organic-inorganic compounds based on polyoxometalates, metal halide clusters and organic ligands: [BW{sub 12}O{sub 40}]{sub 2}[Cu{sub 2}(Phen){sub 4}Cl](H{sub 2}4, 4 Prime -bpy){sub 4}{center_dot}H{sub 3}O{center_dot}5H{sub 2}O (1) and [HPW{sub 12}O{sub 40}][Cd{sub 2}(Phen){sub 4}Cl{sub 2}](4, 4 Prime -bpy) (2) (Phen=1, 10-phenanthroline, bpy=bipyridine), have been prepared and characterized by IR, UV-vis, XPS, XRD and single crystal X-ray diffraction analyses. Crystal structure analyses reveal that compound 1 is constructed from [BW{sub 12}O{sub 40}]{sup 5-}, metal halide clusters [Cu{sub 2}(Phen){sub 4}Cl]{sup +}and 4, 4 Prime -bpy ligands, while compound 2 is constructed from [PW{sub 12}O{sub 40}]{sup 3-}, metal halide cluster [Cd{sub 2}(Phen){sub 4}Cl{sub 2}]{sup 2+} and 4, 4 Prime -bpy ligands. Compound 1 and compound 2 are not common hybrids based on polyoxometalates and metal halide clusters, they also contain dissociated organic ligands, therefore, compound 1 and 2 are the first examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands. - Graphical Abstract: Two new compounds have been synthesized and characterized. Structure analyses revealed that the two compounds are the first examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands. Highlights: Black-Right-Pointing-Pointer First examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands. Black-Right-Pointing-Pointer Two different kinds of metal halide clusters. Black-Right-Pointing-Pointer Supramolecular structures based on polyoxometalates, metal halide clusters and organic ligands. Black-Right-Pointing-Pointer Hybridization of three different of building blocks.

  3. Attosecond physics at a nanoscale metal tip: strong field physics meets near-field optics

    NASA Astrophysics Data System (ADS)

    Krüger, M.; Thomas, S.; Förster, M.; Maisenbacher, L.; Wachter, G.; Lemell, Chr.; Burgdörfer, J.; Hommelhoff, P.

    2013-03-01

    Attosecond physics, centering on the control of electronic matter waves within a single cycle of the optical laser's driving field, has led to tremendously successful experiments with atoms and molecules in the gas phase. We show that pivotal phenomena such as elastic electron rescattering at the parent matter, a strong carrier-evenlope phase sensitivity and electronic matter wave intereference also show up in few-cycle laser driven electron emission from nanometric sharp metal tips. Furthermore, we utilize spectral signatures to measure the enhanced near-field with a spatial resolution of 1nm.

  4. Nanoscale optical properties of metal nanoparticles probed by Second Harmonic Generation microscopy.

    PubMed

    Shen, Hong; Nguyen, Ngoc; Gachet, David; Maillard, Vincent; Toury, Timothée; Brasselet, Sophie

    2013-05-20

    We report spatial and vectorial imaging of local fields' confinement properties in metal nanoparticles with branched shapes, using Second Harmonic Generation (SHG) microscopy. Taking advantage of the coherent nature of this nonlinear process, the technique provides a direct evidence of the coupling between the excitation polarization and both localization and polarization specificities of local fields at the sub-diffraction scale. These combined features, which are governed by the nanoparticles' symmetry, are not accessible using other contrasts such as linear optical techniques or two-photon luminescence.

  5. Dynamic evolution of nanoscale shear bands in a bulk-metallic glass

    SciTech Connect

    Yang Bing; Morrison, Mark L.; Liaw, Peter K.; Buchanan, Raymond A.; Wang Gongyao; Liu, Chain T.; Denda, Mitsunori

    2005-04-04

    Dynamic shear-band-evolution processes in a bulk-metallic glass (BMG), an emerging class of materials, were captured by a state-of-the-art, high-speed, infrared camera. Many shear bands initiated, propagated, and arrested before the final fracture in tension, each with decreasing temperature, and shear-strain profiles. A free-volume-exhaustion mechanism was proposed to explain the phenomena. The results contribute to understanding and improving the limited ductility of BMGs, which otherwise have superior mechanical properties.

  6. Tetrahedral Clusters of GaMo 4S 8-Type Compounds: A Metal Bonding Analysis

    NASA Astrophysics Data System (ADS)

    Le Beuze, A.; Loirat, H.; Zerrouki, M. C.; Lissillour, R.

    1995-11-01

    Extended Hückel tight binding calculations have been performed on ligated as well as on ligand-free Mo4 and Mo6 extended frames, in order to analyze the metal-metal bonding within the clusters and particularly the appreciable changes of the metal-metal bond lengths through the M4 tetrahedral units contained in GaM4X8 (M = Mo, Nb, V, Ta; X = S, Se, Te), Mo4S4Y4 (Y = Cl, Br, I). A comparison with the M6 octahedral units of the M Mo6X8 (M = Pb, Ag, La; X = S, Se) series is made. By means of DOS, COOP curves, and overlap populations, results clearly display the strong reorganization of the electronic structure of the bare metal clusters network while the ligand interactions occur, inducing a strong reduction of the strength of the metal-metal bonds. We outline the relationship between the metal-metal bond lengths and various parameters such as the valence electron count (VEC) per cluster and the nature of the ligands. Our results indicate that the two series M4 and M6 differ: M-M bond lengths are unaffected by the VEC in the regular M4 cluster, whereas some M-M bond lengths undergo a significant change when the VEC increases in the distorded M6 clusters. Likewise, it is worthy to note that metal d orbitals have a more significant effect in M4 cluster series. In contrast, the metal-ligand covalency induces similar elongations of metal-metal bonds in the two series.

  7. Inverse polarity of the resistive switching effect and strong inhomogeneity in nanoscale YBCO-metal contacts

    NASA Astrophysics Data System (ADS)

    Truchly, M.; Plecenik, T.; Zhitlukhina, E.; Belogolovskii, M.; Dvoranova, M.; Kus, P.; Plecenik, A.

    2016-11-01

    We have studied a bipolar resistive switching phenomenon in c-axis oriented normal-state YBa2Cu3O7-c (YBCO) thin films at room temperature by scanning spreading resistance microscopy (SSRM) and scanning tunneling microscopy (STM) techniques. The most striking experimental finding has been the opposite (in contrast to the previous room and low-temperature data for planar metal counter-electrode-YBCO bilayers) voltage-bias polarity of the switching effect in all SSRM and a number of STM measurements. We have assumed that the hysteretic phenomena in current-voltage characteristics of YBCO-based contacts can be explained by migration of oxygen-vacancy defects and, as a result, by the formation or dissolution of more or less conductive regions near the metal-YBCO interface. To support our interpretation of the macroscopic resistive switching phenomenon, a minimalist model that describes radical modifications of the oxygen-vacancy effective charge in terms of a charge-wind effect was proposed. It was shown theoretically that due to the momentum exchange between current carriers (holes in the YBCO compound) and activated oxygen ions, the direction in which oxygen vacancies are moving is defined by the balance between the direct electrostatic force on them and that caused by the current-carrier flow.

  8. Electrical properties of nanoscale metallic thin films on dielectric elastomer at various strain rates

    NASA Astrophysics Data System (ADS)

    Faisal, Md. Shahnewaz Sabit; Ye, Zhihang; Chen, Zheng; Asmatulu, Ramazan

    2015-04-01

    Dielectric elastomers (DEs) have significant applications in artificial muscle and other biomedical equipment and device fabrications. Metallic thin films by thin film transfer and sputter coating techniques can provide conductive surfaces on the DE samples, and can be used as electrodes for the actuators and other biomedical sensing devices. In the present study, 3M VHB 4910 tape was used as a DE for the coating and electrical characterization tests. A 150 nm thickness of gold was coated on the DE surfaces by sputter coating under vacuum with different pre-strains, ranging from 0 to 100%. Some of the thin films were transferred to the surface of the DEs. Sputter coating, and direct transferring gold leaf coating methods were studied and the results were analyzed in detail in terms of the strain rates and electrical resistivity changes. Initial studies indicated that the metallic surfaces remain conductive even though the DE films were considerably elongated. The coated DEs can be used as artificial muscle by applying electrical stimulation through the conductive surfaces. This study may provide great benefits to the readers, researchers, as well as companies involved in manufacturing of artificial muscles and actuators using smart materials.

  9. Temporal stability of magic-number metal clusters: beyond the shell closing model.

    PubMed

    Desireddy, Anil; Kumar, Santosh; Guo, Jingshu; Bolan, Michael D; Griffith, Wendell P; Bigioni, Terry P

    2013-03-07

    The anomalous stability of magic-number metal clusters has been associated with closed geometric and electronic shells and the opening of HOMO-LUMO gaps. Despite this enhanced stability, magic-number clusters are known to decay and react in the condensed phase to form other products. Improving our understanding of their decay mechanisms and developing strategies to control or eliminate cluster instability is a priority, to develop a more complete theory of their stability, to avoid studying mixtures of clusters produced by the decay of purified materials, and to enable technology development. Silver clusters are sufficiently reactive to facilitate the study of the ambient temporal stability of magic-number metal clusters and to begin to understand their decay mechanisms. Here, the solution phase stability of a series of silver:glutathione (Ag:SG) clusters was studied as a function of size, pH and chemical environment. Cluster stability was found to be a non-monotonic function of size. Electrophoretic separations showed that the dominant mechanism involved the redistribution of mass toward smaller sizes, where the products were almost exclusively previously known cluster sizes. Optical absorption spectra showed that the smaller clusters evolved toward the two most stable cluster sizes. The net surface charge was found to play an important role in cluster stabilization although charge screening had no effect on stability, contrary to DLVO theory. The decay mechanism was found to involve the loss of Ag(+) ions and silver glutathionates. Clusters could be stabilized by the addition of Ag(+) ions and destabilized by either the addition of glutathione or the removal of Ag(+) ions. Clusters were also found to be most stable in near neutral pH, where they had a net negative surface charge. These results provide new mechanistic insights into the control of post-synthesis stability and chemical decay of magic-number metal clusters, which could be used to develop design

  10. Structure, dynamic and energetic of mixed transition metal clusters. A computational study of mixed clusters of silver and nickel

    NASA Astrophysics Data System (ADS)

    Hewage, J. W.; Rupika, W. L.; Amar, F. G.

    2012-11-01

    Classical molecular dynamics simulation (MD) with Sutton-Chen potential has been used to generate the minimum energy and to study the thermodynamic and dynamic properties of mixed transition metal cluster motifs of Ag n Ni(13- n) for n ≤ 13. Literature results of thirteen particle clusters of neat silver and nickel atoms were first reproduced before the successive replacement of the silver atom by nickel. Calculation was repeated for both silver-centred and nickel-centred clusters. It was found that the nickel-centred clusters were more stable than the silver-centred clusters. Heat capacities and hence the melting points of silver and nickel-centred clusters were determined by using the Histogram method. Species-centric order parameters developed by Hewage and Amar were used to understand the dynamic behaviour in the transition of silver-centred clusters to more stable nickel-centred clusters. This species-centric order parameter calculation further confirmed the stability of nickel-centred clusters over those of silver-centred species.

  11. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    PubMed Central

    Vander Wal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems. PMID:22408484

  12. Nanoscale zinc-based metal-organic framework with high capacity for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Changdong; Gao, Yuanrui; Liu, Lili; Song, Yidan; Wang, Xianmei; Liu, Hong-Jiang; Liu, Qi

    2016-12-01

    Layered zinc-based metal-organic framework ([Zn(4,4'-bpy)(tfbdc)(H2O)2], Zn-LMOF) nanosheets were synthesized by a facile hydrothermal method (4,4'-bpy = 4,4'-bipyridine, H2tfbdc = tetrafluoroterephthalic acid). The materials were characterized by IR spectrum, elemental analysis, thermogravimetric analysis, powder X-ray diffraction, transmission electron microscope (TEM), scanning electron microscope (SEM), and the Brunauer-Emmett-Teller (BET) surface. When the Zn-LMOF nanosheets with the thickness of about 24 ± 8 nm were used as an anode material of lithium-ion batteries, not only the Zn-LMOF electrode shows a high reversible capacity, retaining 623 mAh g-1 after 100 cycles at a current density of 50 mA g-1 but also exhibits an excellent cyclic stability and a higher rate performance.

  13. LITHIUM ABUNDANCES OF THE SUPER-METAL-RICH OPEN CLUSTER NGC 6253

    SciTech Connect

    Cummings, Jeffrey D.; Deliyannis, Constantine P.; Maderak, Ryan M.; Anthony-Twarog, Barbara; Twarog, Bruce E-mail: con@astro.indiana.edu E-mail: bjat@ku.edu

    2012-11-01

    High-resolution CTIO 4 m/HYDRA spectroscopy of the super-metal-rich open cluster NGC 6253 ([Fe/H] = +0.43 {+-} 0.01) has been used to study the stellar lithium (Li) abundances near the cluster's turnoff. NGC 6253 greatly expands the range of [Fe/H] for clusters that have a Li abundance analysis. This is important for studying the complicated effects of, and potential correlations with, stellar Fe abundance on surface Li abundance. Comparisons to the younger and less-metal-rich Hyades and to the similarly aged but solar-metallicity M67 show that NGC 6253's Li abundances are qualitatively consistent with the prediction, from Standard Stellar Evolution Theory, that higher-metallicity stars have a greater Li depletion. Comparison with M67 provides evidence that the more-metal-rich NGC 6253 had a higher initial Li, which is consistent with expectations from models of Galactic Li production. NGC 6253 is also compared to the intermediate-aged NGC 3680, NGC 752, and IC 4651 open clusters. Comparison of the Li-gap positions in all six clusters shows that (1) the gap's position in T{sub eff} is independent of metallicity, but (2) higher-metallicity clusters have their gaps in higher-mass stars. In addition, the Li gap's position is shown not to evolve with age, which provides an important constraint for the non-standard depletion mechanisms that may create the Li gap.

  14. Self-Assembly of Silver Metal Clusters of Small Atomicity on Cyclic Peptide Nanotubes.

    PubMed

    Cuerva, Miguel; García-Fandiño, Rebeca; Vázquez-Vázquez, Carlos; López-Quintela, M Arturo; Montenegro, Javier; Granja, Juan R

    2015-11-24

    Subnanometric noble metal clusters, composed by only a few atoms, behave like molecular entities and display magnetic, luminescent and catalytic activities. However, noncovalent interactions of molecular metal clusters, lacking of any ligand or surfactant, have not been seen at work. Theoretically attractive and experimentally discernible, van der Waals forces and noncovalent interactions at the metal/organic interfaces will be crucial to understand and develop the next generation of hybrid nanomaterials. Here, we present experimental and theoretical evidence of noncovalent interactions between subnanometric metal (0) silver clusters and aromatic rings and their application in the preparation of 1D self-assembled hybrid architectures with ditopic peptide nanotubes. Atomic force microscopy, fluorescence experiments, circular dichroism and computational simulations verified the occurrence of these interactions in the clean and mild formation of a novel peptide nanotube and metal cluster hybrid material. The findings reported here confirmed the sensitivity of silver metal clusters of small atomicity toward noncovalent interactions, a concept that could find multiple applications in nanotechnology. We conclude that induced supramolecular forces are optimal candidates for the precise spatial positioning and properties modulation of molecular metal clusters. The reported results herein outline and generalize the possibilities that noncovalent interactions will have in this emerging field.

  15. Reactions of metal cluster anions with inorganic and organic molecules in the gas phase.

    PubMed

    Zhao, Yan-Xia; Liu, Qing-Yu; Zhang, Mei-Qi; He, Sheng-Gui

    2016-07-28

    The study of gas phase ion-molecule reactions by state-of-the-art mass spectrometric experiments in conjunction with quantum chemistry calculations offers an opportunity to clarify the elementary steps and mechanistic details of bond activation and conversion processes. In the past few decades, a considerable number of publications have been devoted to the ion-molecule reactions of metal clusters, the experimentally and theoretically tractable models for the active phase of condensed phase systems. The focus of this perspective concerns progress on activation and transformation of important inorganic and organic molecules by negatively charged metal clusters. The metal cluster anions cover bare metal clusters as well as ligated systems with oxygen, carbon, and nitrogen, among others. The following important issues have been summarized and discussed: (i) dependence of chemical reactivity and selectivity on cluster structures and sizes, metals and metal oxidation states, odd-even electron numbers, etc. and (ii) effects of doping, ligation, and pre-adsorption on the reactivity of metal clusters toward rather inert molecules.

  16. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries.

    PubMed

    Lu, Yizhong; Chen, Wei

    2012-05-07

    Sub-nanometre sized metal clusters, with dimensions between metal atoms and nanoparticles, have attracted more and more attention due to their unique electronic structures and the subsequent unusual physical and chemical properties. However, the tiny size of the metal clusters brings the difficulty of their synthesis compared to the easier preparation of large nanoparticles. Up to now various synthetic techniques and routes have been successfully applied to the preparation of sub-nanometre clusters. Among the metals, gold clusters, especially the alkanethiolate monolayer protected clusters (MPCs), have been extensively investigated during the past decades. In recent years, silver and copper nanoclusters have also attracted enormous interest mainly due to their excellent photoluminescent properties. Meanwhile, more structural characteristics, particular optical, catalytic, electronic and magnetic properties and the related technical applications of the metal nanoclusters have been discovered in recent years. In this critical review, recent advances in sub-nanometre sized metal clusters (Au, Ag, Cu, etc.) including the synthetic techniques, structural characterizations, novel physical, chemical and optical properties and their potential applications are discussed in detail. We finally give a brief outlook on the future development of metal nanoclusters from the viewpoint of controlled synthesis and their potential applications.

  17. Decoration of Micro-/Nanoscale Noble Metal Particles on 3D Porous Nickel Using Electrodeposition Technique as Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Electrolyte.

    PubMed

    Qian, Xin; Hang, Tao; Shanmugam, Sangaraju; Li, Ming

    2015-07-29

    Micro-/nanoscale noble metal (Ag, Au, and Pt) particle-decorated 3D porous nickel electrodes for hydrogen evolution reaction (HER) in alkaline electrolyte are fabricated via galvanostatic electrodeposition technique. The developed electrodes are characterized by field emission scanning electron microscopy and electrochemical measurements including Tafel polarization curves, cyclic voltammetry, and electrochemical impedance spectroscopy. It is clearly shown that the enlarged real surface area caused by 3D highly porous dendritic structure has greatly reinforced the electrocatalytic activity toward HER. Comparative analysis of electrodeposited Ag, Au, and Pt particle-decorated porous nickel electrodes for HER indicates that both intrinsic property and size of the noble metal particles can lead to distinct catalytic activities. Both nanoscale Au and Pt particles have further reinforcement effect toward HER, whereas microscale Ag particles exhibit the reverse effect. As an effective 3D hydrogen evolution cathode, the nanoscale Pt-particle-decorated 3D porous nickel electrode demonstrates the highest catalytic activity with an extremely low overpotential of -0.045 V for hydrogen production, a considerable exchange current density of 9.47 mA cm(-2) at 25 °C, and high durability in long-term electrolysis, all of which are attributed to the intrinsic catalytic property and the extremely small size of Pt particles.

  18. Nanoscale-phase-separated Pd-Rh boxes synthesized via metal migration: an archetype for studying lattice strain and composition effects in electrocatalysis.

    PubMed

    Sneed, Brian T; Brodsky, Casey N; Kuo, Chun-Hong; Lamontagne, Leo K; Jiang, Ying; Wang, Yong; Tao, Franklin Feng; Huang, Weixin; Tsung, Chia-Kuang

    2013-10-02

    Developing syntheses of more sophisticated nanostructures comprising late transition metals broadens the tools to rationally design suitable heterogeneous catalysts for chemical transformations. Herein, we report a synthesis of Pd-Rh nanoboxes by controlling the migration of metals in a core-shell nanoparticle. The Pd-Rh nanobox structure is a grid-like arrangement of two distinct metal phases, and the surfaces of these boxes are {100} dominant Pd and Rh. The catalytic behaviors of the particles were examined in electrochemistry to investigate strain effects arising from this structure. It was found that the trends in activity of model fuel cell reactions cannot be explained solely by the surface composition. The lattice strain emerging from the nanoscale separation of metal phases at the surface also plays an important role.

  19. Bright Stars and Metallicity Spread in the Globular Cluster omega Centauri

    NASA Astrophysics Data System (ADS)

    Ortolani, Sergio; Covino, Stefano; Carraro, Giovanni

    The globular cluster omega Centauri (NGC~5139) is the most massive and brightest cluster in our Galaxy. It has also a moderately high mass to light ratio (3.6) and an anomalous flattening (0.83) for a globular cluster. This cluster is also very interesting because it is one of a few examples of globular clusters with a measurable spread in the metal abundance (see Da Costa & Willumsen 1981, Norris et al. 1996, and Suntzeff and Kraft 1996 and references therein) and then it offers a unique, big sample of nearby stars having all the same distance and reddening but showing different metallicity (and age ?) effects. A recent paper by Norris et al. (1997) shows also an interesting correlation between kinematics and metal abundance.

  20. VizieR Online Data Catalog: Metallicity estimates of M31 globular clusters (Galleti+, 2009)

    NASA Astrophysics Data System (ADS)

    Galleti, S.; Bellazzini, M.; Buzzoni, A.; Federici, L.; Fusi Pecci, F.

    2010-04-01

    New empirical relations of [Fe/H] as a function of [MgFe] and Mg2 indices are based on the well-studied galactic globular clusters, complemented with theoretical model predictions for -0.2<=[Fe/H]<=+0.5. Lick indices for M31 clusters from various literature sources (225 clusters) and from new observations by our team (71 clusters) have been transformed into the Trager et al. (2000AJ....119.1645T) system, yielding new metallicity estimates for 245 globular clusters of M31. (3 data files).

  1. Theoretical research program to study transition metal trimers and embedded clusters

    NASA Technical Reports Server (NTRS)

    Walch, S. P.

    1984-01-01

    Small transition metal clusters were studied at a high level of approximation, including all the valence electrons in the calculation and extensive electron correlation, in order to understand the electronic structure of these small metal clusters. By comparison of dimers, trimers, and possibly higher clusters, the information obtained was used to provide insights into the electronic structure of bulk transition metals. Small metal clusters are currently of considerable experimental interest and some information is becomming available both from matrix electron spin resonance studies and from gas phase spectroscopy. Collaboration between theorists and experimentalists is thus expected to be especially profitable at this time since there is some experimental information which can serve to guide the theoretical work.

  2. Theoretical research program to study transition metal trimers and embedded clusters

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1987-01-01

    The results of ab-initio calculations are reported for (1) small transition metal clusters and (2) potential energy surfaces for chemical reactions important in hydrogen combustion and high temperature air chemistry.

  3. Improved metal cluster deposition on a genetically engineered tobacco mosaic virus template

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yup; Royston, Elizabeth; Culver, James N.; Harris, Michael T.

    2005-07-01

    Improved depositions of various metal clusters onto a biomolecular template were achieved using a genetically engineered tobacco mosaic virus (TMV). Wild-type TMV was genetically altered to display multiple solid metal binding sites through the insertion of two cysteine residues within the amino-terminus of the virus coat protein. Gold, silver, and palladium clusters synthesized through in situ chemical reductions could be readily deposited onto the genetically modified template via the exposed cysteine-derived thiol groups. Metal cluster coatings on the cysteine-modified template were more densely deposited and stable than similar coatings on the unmodified wild-type template. Combined, these results confirm that the introduction of cysteine residues onto the outer surface of the TMV coat protein enhances the usefulness of this virus as a biotemplate for the deposition of metal clusters.

  4. Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters.

    PubMed

    Osakada, Yasuko; Pratx, Guillem; Sun, Conroy; Sakamoto, Masanori; Ahmad, Moiz; Volotskova, Olga; Ong, Qunxiang; Teranishi, Toshiharu; Harada, Yoshie; Xing, Lei; Cui, Bianxiao

    2014-04-07

    Here, we demonstrate that biomolecule-directed metal clusters are applicable in the study of hard X-ray excited optical luminescence, promising a new direction in the development of novel X-ray-activated imaging probes.

  5. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation.

    PubMed

    He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A Lindsay

    2016-05-16

    At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands.

  6. Second harmonic generation in nanoscale films of transition metal dichalcogenide: Accounting for multipath interference

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. V.; Lavrov, S. D.; Shestakova, A. P.; Kulyuk, L. L.; Mishina, E. D.

    2016-09-01

    The transfer matrix method has been widely used to calculate wave propagation through the layered structures consisting entirely of either linear or nonlinear optical materials. In the present work, we develop the transfer matrix method for structures consisting of alternating layers of linear and nonlinear optical materials. The result is presented in a form that allows one to directly substitute the values of material constants, refractive index and absorption coefficient, into the expressions describing the second harmonic generation (SHG) field. The model is applied to the calculation of second harmonic (SH) field generated in nano-thin layers of transition metal dichalcogenides exfoliated on top of silicon oxide/silicon Fabry-Perot cavity. These structures are intensively studied both in view of their unique properties and perspective applications. A good agreement between experimental and numerical results can be achieved by small modification of optical constants, which may arise in an experiment due to a strong electric field of an incident focused pump laser beam. By considering the SHG effect, this paper completes the series of works describing the role of Fabry-Perot cavity in different optical effects (optical reflection, photoluminescence and Raman scattering) in 2D semiconductors that is extremely important for characterization of these unique materials.

  7. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation

    PubMed Central

    He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A. Lindsay

    2016-01-01

    At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands. PMID:27181922

  8. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging

    NASA Astrophysics Data System (ADS)

    Horcajada, Patricia; Chalati, Tamim; Serre, Christian; Gillet, Brigitte; Sebrie, Catherine; Baati, Tarek; Eubank, Jarrod F.; Heurtaux, Daniela; Clayette, Pascal; Kreuz, Christine; Chang, Jong-San; Hwang, Young Kyu; Marsaud, Veronique; Bories, Phuong-Nhi; Cynober, Luc; Gil, Sophie; Férey, Gérard; Couvreur, Patrick; Gref, Ruxandra

    2010-02-01

    In the domain of health, one important challenge is the efficient delivery of drugs in the body using non-toxic nanocarriers. Most of the existing carrier materials show poor drug loading (usually less than 5wt% of the transported drug versus the carrier material) and/or rapid release of the proportion of the drug that is simply adsorbed (or anchored) at the external surface of the nanocarrier. In this context, porous hybrid solids, with the ability to tune their structures and porosities for better drug interactions and high loadings, are well suited to serve as nanocarriers for delivery and imaging applications. Here we show that specific non-toxic porous iron(III)-based metal-organic frameworks with engineered cores and surfaces, as well as imaging properties, function as superior nanocarriers for efficient controlled delivery of challenging antitumoural and retroviral drugs (that is, busulfan, azidothymidine triphosphate, doxorubicin or cidofovir) against cancer and AIDS. In addition to their high loadings, they also potentially associate therapeutics and diagnostics, thus opening the way for theranostics, or personalized patient treatments.

  9. Synthesis of gadolinium nanoscale metal-organic framework with hydrotropes: manipulation of particle size and magnetic resonance imaging capability.

    PubMed

    Hatakeyama, Wilasinee; Sanchez, Talia J; Rowe, Misty D; Serkova, Natalie J; Liberatore, Matthew W; Boyes, Stephen G

    2011-05-01

    Gadolinium metal-organic framework (Gd MOF) nanoparticles are an interesting and novel class of nanomaterials that are being studied as a potential replacement for small molecule positive contrast agents in magnetic resonance imaging (MRI). Despite the tremendous interest in these nanoscale imaging constructs, there are limitations, particularly with respect to controlling the particle size, which need to be overcome before these nanoparticles can be integrated into in vivo applications. In an effort to control the size, shape, and size distribution of Gd MOF nanoparticles, hydrotropes were incorporated into the reverse microemulsion synthesis used to produce these nanoparticles. A study of how hydrotropes influenced the mechanism of formation of reverse micelles offered a great deal of information with respect to the physical properties of the Gd MOF nanoparticles formed. Specifically, this study incorporated the hydrotropes, sodium salicylate (NaSal), 5-methyl salicylic acid, and salicylic acid into the reverse microemulsion. Results demonstrated that addition of each of the hydrotropes into the synthesis of Gd MOFs provided a simple route to control the nanoparticle size as a function of hydrotrope concentration. Specifically, Gd MOF nanoparticles synthesized with NaSal showed the best reduction in size distributions in both length and width with percent relative standard deviations being nearly 50% less than nanoparticles produced via the standard route from the literature. Finally, the effect of the size of the Gd MOF nanoparticles with respect to their MRI relaxation properties was evaluated. Initial results indicated a positive correlation between the surface areas of the Gd MOF nanoparticles with the longitudinal relaxivity in MRI. In particular, Gd MOF nanoparticles with an average size of 82 nm with the addition of NaSal, yielded a longitudinal relaxivity value of 83.9 mM⁻¹ [Gd³⁺] sec⁻¹, one of the highest reported values compared to other Gd

  10. Electrostatic effect of Au nanoparticles on near-infrared photoluminescence from Si/SiGe due to nanoscale metal/semiconductor contact.

    PubMed

    Yin, Yefei; Wang, Ze; Wang, Shuguang; Bai, Yujie; Jiang, Zuimin; Zhong, Zhenyang

    2017-04-18

    Photoluminescence (PL) from Si and SiGe is comprehensively modified by Au NPs under excitation without surface plasmon resonance. Moreover, the PL sensitively depends on the size of the Au NPs, the excitation power and the thickness of the Si layer between the Au NPs and SiGe. A model is proposed in terms of the electrostatic effects of Au NPs naturally charged by electron transfer through the nanoscale metal/semiconductor Schottky junction without an external bias or external injection of carriers. The model accounts well for all the unique PL features. It also reveals that Au NPs can substantially modify the energy band structures, distribution and transition of carriers in the nanoscale region below the Au NPs. Our results demonstrate that Au NPs on semiconductors can efficiently modulate light-matter interaction.

  11. Electrostatic effect of Au nanoparticles on near-infrared photoluminescence from Si/SiGe due to nanoscale metal/semiconductor contact

    NASA Astrophysics Data System (ADS)

    Yin, Yefei; Wang, Ze; Wang, Shuguang; Bai, Yujie; Jiang, Zuimin; Zhong, Zhenyang

    2017-04-01

    Photoluminescence (PL) from Si and SiGe is comprehensively modified by Au NPs under excitation without surface plasmon resonance. Moreover, the PL sensitively depends on the size of the Au NPs, the excitation power and the thickness of the Si layer between the Au NPs and SiGe. A model is proposed in terms of the electrostatic effects of Au NPs naturally charged by electron transfer through the nanoscale metal/semiconductor Schottky junction without an external bias or external injection of carriers. The model accounts well for all the unique PL features. It also reveals that Au NPs can substantially modify the energy band structures, distribution and transition of carriers in the nanoscale region below the Au NPs. Our results demonstrate that Au NPs on semiconductors can efficiently modulate light–matter interaction.

  12. 25. Steenbock symposium -- Biosynthesis and function of metal clusters for enzymes: Proceedings

    SciTech Connect

    1997-12-31

    This symposium was held June 10--14, 1997 in Madison, Wisconsin. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on biochemistry of enzymes that have an affinity for metal clusters. Attention is focused on the following: metal clusters involved in energy conservation and remediation; tungsten, molybdenum, and cobalt-containing enzymes; Fe proteins, and Mo-binding proteins; nickel enzymes; and nitrogenase.

  13. 24 electron cluster formulas as the 'molecular' units of ideal metallic glasses

    NASA Astrophysics Data System (ADS)

    Luo, L. J.; Chen, H.; Wang, Y. M.; Qiang, J. B.; Wang, Q.; Dong, C.; Häussler, P.

    2014-08-01

    It is known that ideal metallic glasses fully complying with the Hume-Rothery stabilization mechanism can be expressed by a universal cluster formula of the form [cluster](glue atom)1 or 3. In the present work, it is shown, after a re-examination of the cluster-resonance model, that the number of electrons per unit cluster formula, e/u, is universally 24. The cluster formulas are then the atomic as well as the electronic structural units, mimicking the 'molecular' formulas for chemical substances. The origin of different electron number per atom ratios e/a is related to the total number of atoms Z in unit cluster formula, e/a = 24/Z. The 24 electron formulas are well confirmed in typical binary and ternary bulk metallic glasses.

  14. Chemical abundances in Virgo cluster spirals - what drives the environmental dependence of galaxy metallicity?

    NASA Astrophysics Data System (ADS)

    Ellison, Sara; Skillman, Evan; Chung, Aeree

    2009-08-01

    The Virgo cluster is not only our nearest massive cluster, but its dynamical infancy also renders it an ideal laboratory for studies of cluster formation and galaxy evolution. Given the intense interest in Virgo, it is astounding that only 9 out of over 100 spirals in its firmament have chemical abundance measurements. We propose to simultaneously address this gap in our fundamental knowledge of Virgo cluster spirals and investigate how the metallicity and abundance gradients of star forming galaxies are sensitive to environment. Our sample consists of 13 Virgo cluster spiral galaxies, preferentially gas-poor early types, which complement the existing metallicity measurements. We also sample a range of clustercentric distances (0.3 -- 3 Mpc from M87), local densities and include several galaxies which exhibit evidence for interactions with the intra-cluster medium.

  15. Sulfide ions as modulators of metal-thiolate cluster size in a plant metallothionein.

    PubMed

    Huber, Tamara; Freisinger, Eva

    2013-06-28

    Metallothioneins are small cysteine-rich proteins coordinating various transition metal ions preferably with the electron configuration d(10). They are ubiquitously present in all phyla, and next to phytochelatins they represent a successful molecular concept for high-capacity metal ion binding. Recent studies showed the incorporation of sulfide ions into the metal-thiolate cluster of metallothionein 2 from the plant Cicer arietinum (cicMT2) increasing the cadmium binding capacity and stability of the cluster. In the present work, the sulfide-induced structural changes accompanying the cluster formation and the sulfide-modulated increase in cluster size are analyzed in detail with a variety of analytical and spectroscopic techniques. Evaluation of the mechanism of sulfide containing Cd(II)-thiolate cluster formation in cicMT2 reveals a strong dependence on the sequence of metal and sulfide additions for successful sulfide incorporation. To probe the general ability of metallothioneins to form sulfide containing larger metal-thiolate clusters, analogous experiments were performed with a mammalian metallothionein. The observation that the cadmium binding ability of rabbit liver MT2A was only slightly increased led to the development of a hypothesis in which the long cysteine-free linker regions present in certain plant metallothioneins may contribute to the accommodation of the respective larger cluster assemblies.

  16. Effect of functionalization of boron nitride flakes by main group metal clusters on their optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2017-10-01

    The possibility of functionalizing boron nitride flakes (BNFs) with some selected main group metal clusters, viz. OLi4, NLi5, CLi6, BLI7 and Al12Be, has been analyzed with the aid of density functional theory (DFT) based computations. Thermochemical as well as energetic considerations suggest that all the metal clusters interact with the BNF moiety in a favorable fashion. As a result of functionalization, the static (first) hyperpolarizability (β ) values of the metal cluster supported BNF moieties increase quite significantly as compared to that in the case of pristine BNF. Time dependent DFT analysis reveals that the metal clusters can lower the transition energies associated with the dominant electronic transitions quite significantly thereby enabling the metal cluster supported BNF moieties to exhibit significant non-linear optical activity. Moreover, the studied systems demonstrate broad band absorption capability spanning the UV–visible as well as infra-red domains. Energy decomposition analysis reveals that the electrostatic interactions principally stabilize the metal cluster supported BNF moieties.

  17. Mixed protein-templated luminescent metal clusters (Au and Pt) for H2O2 sensing

    NASA Astrophysics Data System (ADS)

    Li, Min; Yang, Da-Peng; Wang, Xiansong; Lu, Jianxin; Cui, Daxiang

    2013-04-01

    A simple and cost-effective method to synthesize the luminescent noble metal clusters (Au and Pt) in chicken egg white aqueous solution at room temperature is reported. The red-emitting Au cluster is used as fluorescent probe for sensitive detection of H2O2.

  18. Nanoscale control of polyoxometalate assembly: a {Mn8W4} cluster within a {W36Si4Mn10} cluster showing a new type of isomerism.

    PubMed

    Winter, Ross S; Yan, Jun; Busche, Christoph; Mathieson, Jennifer S; Prescimone, Alessandro; Brechin, Euan K; Long, De-Liang; Cronin, Leroy

    2013-02-25

    Two near isomeric clusters containing a novel {Mn(8)W(4)} Keggin cluster within a [W(36)Mn(10)Si(4)O(136)(OH)(4)(H(2)O)8](24-) cluster are reported: K(10)Li(14)[W(36)Si(4)O(136)Mn(II)(10)(OH)(4)(H(2)O)(8)] (1) and K(10)Li1(3.5)Mn(0.25)[W(36)Si(4)O(136)Mn(II)(10)(OH)(4)(H(2)O)(8) ] (1'). Bulk characterization of the clusters has been carried out by single crystal X-ray structure analysis, ICP-MS, TGA, ESI-MS, CV and SQUID-magnetometer analysis. X-ray analysis revealed that 1' has eight positions within the central Keggin core that were disordered W/Mn whereas 1 contained no such disorder. This subtle difference is due to a differences is how the two clusters assemble and recrystallize from the same mother liquor and represents a new type of isomerism. The rapid recrystallization process was captured via digital microscopy and this uncovered two "intermediate" types of crystal which formed temporarily and provided nucleation sites for the final clusters to assemble. The intermediates were investigated by single crystal X-ray analysis and revealed to be novel clusters K(4)Li(22)[W(36)Si(4)Mn(7)O(136)(H(2)O)(8)]·56H(2)O (2) and Mn(2)K(8)Li(14)[W(36)Si(4)Mn(7)O(136)(H(2)O)(8)]·45H(2)O (3). The intermediate clusters contained different yet related building blocks to the final clusters which allowed for the postulation of a mechanism of assembly. This demonstrates a rare example where the use X-ray crystallography directly facilitated understanding the means by which a POM assembled. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Infrared Probes of Metal Cluster Structure and Bonding

    DTIC Science & Technology

    2006-03-01

    corresponding niobium and tantalum analogues of these clusters. Preliminary attempts were conducted for the production of other ligand- coated ...interactions. Prospects are evaluated for macroscopic synthesis of cluster materials and synthesis experiments employing ligand- coating strategies have been...experiments that isolate ligand- coated nanoclusters in solution were conducted using a new laser ablation flowtube reactor. Graduate and undergraduate

  20. Metal Sulfide Cluster Complexes and their Biogeochemical Importance in the Environment

    NASA Astrophysics Data System (ADS)

    Luther, George W.; Rickard, David T.

    2005-10-01

    Aqueous clusters of FeS, ZnS and CuS constitute a major fraction of the dissolved metal load in anoxic oceanic, sedimentary, freshwater and deep ocean vent environments. Their ubiquity explains how metals are transported in anoxic environmental systems. Thermodynamic and kinetic considerations show that they have high stability in oxic aqueous environments, and are also a significant fraction of the total metal load in oxic river waters. Molecular modeling indicates that the clusters are very similar to the basic structural elements of the first condensed phase forming from aqueous solutions in the Fe-S, Zn-S and Cu-S systems. The structure of the first condensed phase is determined by the structure of the cluster in solution. This provides an alternative explanation of Ostwald's Rule, where the most soluble, metastable phases form before the stable phases. For example, in the case of FeS, we showed that the first condensed phase is nanoparticulate, metastable mackinawite with a particle size of 2 nm consisting of about 150 FeS subunits, representing the end of a continuum between aqueous FeS clusters and condensed material. These metal sulfide clusters and nanoparticles are significant in biogeochemistry. Metal sulfide clusters reduce sulfide and metal toxicity and help drive ecology. FeS cluster formation drives vent ecology and AgS cluster formation detoxifies Ag in Daphnia magna neonates. We also note a new reaction between FeS and DNA and discuss the potential role of FeS clusters in denaturing DNA.

  1. Nanoscale heat transport from Ge hut, dome, and relaxed clusters on Si(001) measured by ultrafast electron diffraction

    SciTech Connect

    Frigge, T. Hafke, B.; Tinnemann, V.; Krenzer, B.; Horn-von Hoegen, M.

    2015-02-02

    The thermal transport properties of crystalline nanostructures on Si were studied by ultra-fast surface sensitive time-resolved electron diffraction. Self-organized growth of epitaxial Ge hut, dome, and relaxed clusters was achieved by in-situ deposition of 8 monolayers of Ge on Si(001) at 550 °C under UHV conditions. The thermal response of the three different cluster types subsequent to impulsive heating by fs laser pulses was determined through the Debye-Waller effect. Time resolved spot profile analysis and life-time mapping was employed to distinguish between the thermal response of the different cluster types. While dome clusters are cooling with a time constant of τ = 150 ps, which agrees well with numerical simulations, the smaller hut clusters with a height of 2.3 nm exhibit a cooling time constant of τ = 50 ps, which is a factor of 1.4 slower than expected.

  2. One-dimensional fast migration of vacancy clusters in metals

    SciTech Connect

    Matsukawa, Yoshitaka; Zinkle, Steven J

    2007-01-01

    The migration of point defects, e.g. crystal lattice vacancies and self-interstitial atoms (SIAs), typically occurs through three-dimensional (3-D) random walk. However, when vacancies and SIAs agglomerate with like defects forming clusters, the migration mode may change. Recently, atomic-scale computer simulations using molecular dynamics (MD) codes have reported that nanometer-sized two-dimensional (2-D) clusters of SIAs exhibit one-dimensional (1-D) fast migration1-7. The 1-D migration mode transports the entire cluster containing several tens of SIAs with a mobility comparable to single SIAs3. This anisotropic migration of SIA clusters can have a significant impact on the evolution of a material fs neutron-irradiation damage microstructure, which dominates the material fs lifetime in nuclear reactor environments8-9. This is also proposed to be a key physical mechanism for the self-organization of nanometer-sized sessile vacancy cluster arrays10-13. Given these findings for SIA clusters, a fundamental question is whether the 1-D migration mode is also possible for 2-D clusters of vacancies. Preceding MD results predicted that 1-D migration of vacancy clusters is possible in body-centered cubic (bcc) iron, but not in face-centered cubic (fcc) copper2. Previous experimental studies have reported 1-D migration of SIA clusters14, but there have been no observations of 1-D vacancy cluster migration. Here we present the first experimental transmission electron microscopy (TEM) dynamic observation demonstrating the 1-D migration of vacancy clusters in fcc gold. It was found that the mobility of the vacancy clusters via the 1-D migration is much higher than single vacancies via 3-D random walk and comparable to single SIAs via 3-D random walk. Hence, the mobility of the glissile clusters is not associated with the character of their constituent point defects. Dynamic conversion of a planar vacancy loop into a 3-D stacking fault tetrahedron geometry was also observed.

  3. Metal etching with reactive gas cluster ion beams using pickup cell

    SciTech Connect

    Toyoda, Noriaki; Yamada, Isao

    2012-11-06

    Mixed gas cluster ion beams were formed using pickup cell for metal etching. O{sub 2} neutral clusters pick up acetic acid and formed mixed cluster beam. By using O{sub 2}-GCIB with acetic acid, enhancement of Cu etching was observed. Because of dense energy deposition by GCIB, etching of Cu proceeds by CuO formation, enhancement of chemical reaction with acetic acid and desorption of etching products. Surface roughening was not observed on poly crystalline Cu because of the small dependence of etching rate on crystal orientation. Halogen free and low-temperature metal etching with GCIB using pickup cell is possible.

  4. "Bottom-up" meets "top-down" assembly in nanoscale polyoxometalate clusters: self-assembly of [P4W52O178](24-) and disassembly to [P3W39O134](19-).

    PubMed

    Pradeep, Chullikkattil P; Long, De-Liang; Streb, Carsten; Cronin, Leroy

    2008-11-12

    The pH-controlled assembly/disassembly of a nanoscale {P4W52O178}24- cluster at pH 2 to a {P4W44O152}20- cluster at pH 3-5 via a {P3W39O134}19- cluster species at pH 2-3 to finally give {P2W19O69(OH2)}14- at pH 6 is reported. This process can be traced in the solid state crystallographically and in solution using dynamic light scattering studies.

  5. Detecting and destroying cancer cells in more than one way with noble metals and different confinement properties on the nanoscale.

    PubMed

    Dreaden, Erik C; El-Sayed, Mostafa A

    2012-11-20

    Today, 1 in 2 males and 1 in 3 females in the United States will develop cancer at some point during their lifetimes, and 1 in 4 males and 1 in 5 females in the United States will die from the disease. New methods for detection and treatment have dramatically improved cancer care in the United States. However, as improved detection and increasing exposure to carcinogens has led to higher rates of cancer incidence, clinicians and researchers have not balanced that increase with a similar decrease in cancer mortality rates. This mismatch highlights a clear and urgent need for increasingly potent and selective methods with which to detect and treat cancers at their earliest stages. Nanotechnology, the use of materials with structural features ranging from 1 to 100 nm in size, has dramatically altered the design, use, and delivery of cancer diagnostic and therapeutic agents. The unique and newly discovered properties of these structures can enhance the specificities with which biomedical agents are delivered, complementing their efficacy or diminishing unintended side effects. Gold (and silver) nanotechnologies afford a particularly unique set of physiological and optical properties which can be leveraged in applications ranging from in vitro/vivo therapeutics and drug delivery to imaging and diagnostics, surgical guidance, and treatment monitoring. Nanoscale diagnostic and therapeutic agents have been in use since the development of micellar nanocarriers and polymer-drug nanoconjugates in the mid-1950s, liposomes by Bangham and Watkins in the mid-1960s, and the introduction of polymeric nanoparticles by Langer and Folkman in 1976. Since then, nanoscale constructs such as dendrimers, protein nanoconjugates, and inorganic nanoparticles have been developed for the systemic delivery of agents to specific disease sites. Today, more than 20 FDA-approved diagnostic or therapeutic nanotechnologies are in clinical use with roughly 250 others in clinical development. The global

  6. Computational Prediction of Structures and Optical Excitations for Nanoscale Ultrasmall ZnS and CdSe Clusters.

    PubMed

    Nguyen, Kiet A; Pachter, Ruth; Day, Paul N

    2013-08-13

    Small semiconductor nanoclusters are important for understanding the initial formation and growth of quantum dots and also for application, for example in the tunability provided by size. However, electronic structures and effects of capping ligands have not been systematically characterized. Thus, ground and excited state calculations using coupled-cluster methods were carried out to provide benchmarks for evaluating the applicability of density functional theory (DFT) and time-dependent DFT (TDDFT) with different functionals for the ground and excited states, respectively. Our computed data suggests that the popular B3LYP functional does not deliver optimal results for the ground and excited state. While the PBE0 functional was found to provide a good description for both the ground and excited states for small bare (ZnS)n and bare and ligated (CdSe)n clusters, the results for the hydrated (ZnS)n clusters were found to deteriorate significantly. However, the errors appear to decrease with increasing cluster size. Excitation energies obtained with the long-range hybrid CAM-B3LYP and CA-B3LYP were found to provide more consistent results for both anhydrous and hydrated (ZnS)n clusters. However, their performance in spectral predictions for larger clusters requires further study. Using PBE0, electronic structures of the ground and excited states for (ZnS)n and (CdSe)n up to n = 37 using DFT and TDDFT, respectively, were re-examined. With the exception of the cage-core (ZnS)13, (CdSe)13, and (CdSe)14, small (ZnS)n and (CdSe)n are predicted to be spheroids and tubular structures (6, 8-12, 15-19) with squares and hexagons, similar to the structures of carbon single-wall nanotubes. Wurtzite (n = 23-27, 36, 37) and cage-core (n = 29-35) structures are energetically more favorable for larger clusters. We find that water and amines increase the intensities and blue shift the excitations of bare clusters. One photon absorption spectra predicted by TDDFT with the PCM

  7. Near-infrared photometry of globular clusters towards the Galactic bulge: observations and photometric metallicity indicators

    NASA Astrophysics Data System (ADS)

    Cohen, Roger E.; Moni Bidin, Christian; Mauro, Francesco; Bonatto, Charles; Geisler, Douglas

    2017-01-01

    We present wide-field JHKS photometry of 16 Galactic globular clusters located towards the Galactic bulge, calibrated on the Two Micron All-Sky Survey photometric system. Differential reddening corrections and statistical field star decontamination are employed for all of these clusters before fitting fiducial sequences to the cluster red giant branches (RGBs). Observed values and uncertainties are reported for several photometric features, including the magnitude of the RGB bump, tip, the horizontal branch (HB) and the slope of the upper RGB. The latest spectroscopically determined chemical abundances are used to build distance- and reddening-independent relations between observed photometric features and cluster metallicity, optimizing the sample size and metallicity baseline of these relations by supplementing our sample with results from the literature. We find that the magnitude difference between the HB and the RGB bump can be used to predict metallicities, in terms of both iron abundance [Fe/H] and global metallicity [M/H], with a precision of better than 0.1 dex in all three near-IR bandpasses for relatively metal-rich ([M/H] ≳ -1) clusters. Meanwhile, both the slope of the upper RGB and the magnitude difference between the RGB tip and bump are useful metallicity indicators over the entire sampled metallicity range (-2 ≲ [M/H] ≲ 0) with a precision of 0.2 dex or better, despite model predictions that the RGB slope may become unreliable at high (near-solar) metallicities. Our results agree with previous calibrations in light of the relevant uncertainties, and we discuss implications for clusters with controversial metallicities as well as directions for further investigation.

  8. Particle clustering and dielectric enhancement in percolating metal-insulator composites

    NASA Astrophysics Data System (ADS)

    Doyle, William T.

    1995-11-01

    An effective cluster model has been developed [Phys. Rev. B 42, 9319 (1990)] that treats a disordered suspension of monodisperse metal spheres as a mixture of isolated spheres and close-packed spherical clusters of spheres using the Clausius-Mossotti or Maxwell equations. The effective cluster model is adapted to such suspensions with a random intermingled cluster topology using Bruggemann's symmetrical equation. Model susceptibilities for the two cluster topologies are contrasted with one another and compared with experiments. Guillien's permittivity measurements [Ann. Phys. (Paris) Ser. 11 16, 205 (1941)] and Turner's conductivity measurements [Chem. Eng. Sci. 31, 487 (1976)] exemplify nonpercolating island topology suspensions. The permittivity measurements of Grannan, Garland, and Tanner [Phys. Rev. Lett. 46, 375 (1981)] exemplify percolating random topology clusters. The models for both cluster topologies are in excellent agreement with experiment over the entire accessible range of volume loading.

  9. Assembly of Tungsten-Oxide-Based Pentagonal Motifs in Solution Leads to Nanoscale {W48}, {W56}, and {W92} Polyoxometalate Clusters.

    PubMed

    Zhan, Cai-Hong; Winter, Ross S; Zheng, Qi; Yan, Jun; Cameron, Jamie M; Long, De-Liang; Cronin, Leroy

    2015-11-23

    We report an approach to synthesize molecular tungsten-oxide-based pentagonal building blocks, in a new {W21 O72} unit, and show how this leads to a family of gigantic molecular architectures including [H12W48O164](28-) {W48}, [H20W56O190](24-) {W56}, and [H12W92O311](58-) {W92}. The {W48} and {W56} clusters are both dimeric species incorporating two {W21} units and the {W56} species is the first example of a molecular metal oxide cluster containing a chiral "double-stranded" motif which is stable in solution as confirmed by mass spectrometry. The {W92} anion having four {W21} units is one of the largest transition metal substituted isopolyoxotungstates known. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Formation of metal clusters in halloysite clay nanotubes

    DOE PAGES

    Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; ...

    2017-02-16

    We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9more » wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.« less

  11. Formation of metal clusters in halloysite clay nanotubes

    PubMed Central

    Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; Ivanov, Evgenii V.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A.; Lvov, Yuri M.

    2017-01-01

    Abstract We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3–5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10–12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions. PMID:28458738

  12. Structures and stability of metal-doped GenM (n = 9, 10) clusters

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; Zhao, Li-Zhen; Zang, Qing-Jun; Wang, C. Z.; Ho, K. M.

    2015-06-01

    The lowest-energy structures of neutral and cationic GenM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge9 and Ge10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Gen clusters. However, the neutral and cationic FeGe9,10,MnGe9,10 and Ge10Al are cage-like with the metal atom encapsulated inside. Such cage-like transition metal doped Gen clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge9,10Fe and Ge9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.

  13. Mo-Cu metal cluster formation and binding in an orange protein isolated from Desulfovibrio gigas.

    PubMed

    Carepo, Marta S P; Pauleta, Sofia R; Wedd, Anthony G; Moura, José J G; Moura, Isabel

    2014-06-01

    The orange protein (ORP) isolated from the sulfate-reducing bacterium Desulfovibrio gigas (11.8 kDa) contains a mixed-metal sulfide cluster of the type [S2MoS2CuS2MoS2](3-) noncovalently bound to the polypeptide chain. The D. gigas ORP was heterologously produced in Escherichia coli in the apo form. Different strategies were used to reconstitute the metal cluster into apo-ORP and obtain insights into the metal cluster synthesis: (1) incorporation of a synthesized inorganic analogue of the native metal cluster and (2) the in situ synthesis of the metal cluster on the addition to apo-ORP of copper chloride and tetrathiomolybdate or tetrathiotungstate. This latter procedure was successful, and the visible spectrum of the Mo-Cu reconstituted ORP is identical to the one reported for the native protein with absorption maxima at 340 and 480 nm. The (1)H-(15)N heteronuclear single quantum coherence spectra of the reconstituted ORP obtained by strategy 2, in contrast to strategy 1, exhibited large changes, which required sequential assignment in order to identify, by chemical shift differences, the residues affected by the incorporation of the cluster, which is stabilized inside the protein by both electrostatic and hydrophobic interactions.

  14. Structures and stability of metal-doped GenM (n = 9, 10) clusters

    DOE PAGES

    Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; ...

    2015-06-26

    The lowest-energy structures of neutral and cationic Ge nM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge9 and Ge10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Gen clusters. However, the neutral and cationic FeGe9,10,MnGe9,10 and Ge10Al are cage-like with the metal atom encapsulated inside. Suchmore » cage-like transition metal doped Gen clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge9,10Fe and Ge9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less

  15. Development of metal cluster-based energetic materials at NSWC-IHD

    NASA Astrophysics Data System (ADS)

    Lightstone, James; Stoltz, Chad; Wilson, Rebecca M.; Horn, Jillian M.; Hooper, Joe; Mayo, Dennis; Eichhorn, Bryan; Bowen, Kit H.; White, Michael G.

    2012-03-01

    Current research efforts at NSWC-IHD are utilizing gas-phase molecular beam studies, theoretical calculations, and condensed-phase production methods to identify novel metal cluster systems in which passivated metal clusters make up the subunit of a molecular metal-based energetic material. The reactivity of NixAly+ clusters with nitromethane was investigated using a gas-phase molecular beam system. Results indicate that nitromethane is highly reactive toward the NixAly+ clusters and suggests it would not make a good passivating ligand for these cluster systems. To date, small amounts of a metal-based compound with a subunit containing four aluminum atoms and four Cp* ligands has been produced and was characterized using DSC and TGA. Results indicate this cluster material is more reactive than micron- and nano-sized aluminum. However lack of stability in air precludes it from being a viable replacement for current aluminum particles. Volumetric heat of combustion of Al50Cp*12 was determined using thermodynamic data obtained from first principles calculations. The Al50 cluster is found to have a heat of combustion near 60% that of pure aluminum.

  16. Chemical bonding and aromaticity in trinuclear transition-metal halide clusters.

    PubMed

    Weck, Philippe F; Sergeeva, Alina P; Kim, Eunja; Boldyrev, Alexander I; Czerwinski, Kenneth R

    2011-02-07

    Trinuclear transition-metal complexes such as Re(3)X(9) (X = Cl, Br, I), with their uniquely featured structure among metal halides, have posed intriguing questions related to multicenter electron delocalization for several decades. Here we report a comprehensive study of the technetium halide clusters [Tc(3)(μ-X)(3)X(6)](0/1-/2-) (X = F, Cl, Br, I), isomorphous with their rhenium congeners, predicted from density functional theory calculations. The chemical bonding and aromaticity in these clusters are analyzed using the recently developed adaptive natural density partitioning method, which indicates that only [Tc(3)X(9)](2-) clusters exhibit aromatic character, stemming from a d-orbital-based π bond delocalized over the three metal centers. We also show that standard methods founded on the nucleus-independent chemical shift concept incorrectly predict the neutral Tc(3)X(9) clusters to be aromatic.

  17. Theoretical research program to study transition metal trimers and embedded clusters

    NASA Technical Reports Server (NTRS)

    Walch, S. P.

    1985-01-01

    Small transition metal clusters at a high level of approximation i.e. including all the valence electrons in the calculation and also including extensive electron correlation were studied. Perhaps the most useful end result of these studies is the qualitative information about the electronic structure of these small metal clusters, including the nature of the bonding. The electronic structure studies of the small clusters are directly applicable to problems in catalysis. From comparison of dimers, trimers and possibly higher clusters, it is possible to extrapolate the information obtained to provide insights into the electronic structure of bulk transition metals and their interaction with other atoms and molecules at both surface and interior locations.

  18. Bonding study in all-metal clusters containing Al4 units.

    PubMed

    Mandado, Marcos; Krishtal, Alisa; Van Alsenoy, Christian; Bultinck, Patrick; Hermida-Ramón, J M

    2007-11-22

    The nature of the bonding of a series of gas-phase all-metal clusters containing the Al4 unit attached to an alkaline, alkaline earth, or transition metal is investigated at the DFT level using Mulliken, quantum theory of atoms in molecules (QTAIM), and Hirshfeld iterative (Hirshfeld-I) atomic partitionings. The characterization of ionic, covalent, and metallic bonds is done by means of charge polarization and multicenter electron delocalization. This Article uses for the first time Hirshfeld-I multicenter indices as well as Hirshfeld-I based atomic energy calculations. The QTAIM charges are in line with the electronegativity scale, whereas Hirshfeld-I calculations display deviations for transition metal clusters. The Mulliken charges fail to represent the charge polarization in alkaline metal clusters. The large ionic character of Li-Al and Na-Al bonds results in weak covalent bonds. On the contrary, scarcely ionic bonds (Be-Al, Cu-Al and Zn-Al) display stronger covalent bonds. These findings are in line with the topology of the electron density. The metallic character of these clusters is reflected in large 3-, 4- and 5-center electron delocalization, which is found for all the molecular fragments using the three atomic definitions. The previously reported magnetic inactivity (based on means of magnetic ring currents) of the pi system in the Al42- cluster contrasts with its large pi electron delocalization. However, it is shown that the different results not necessary contradict each other.

  19. The Photo-Electric Effect in Metallic Clusters

    NASA Astrophysics Data System (ADS)

    Krc, Eugene

    Small clusters of Silver atoms have been observed to yield about 100 times more photo-electrons than crystalline Silver (per unit area of surface) for photons with energy up to 1.5 ev above threshold. I have calculated the yield from Silver and Sodium clusters of up to 55 atoms using a Green's function formalism. A method of successive approximations takes into account the scattering of the electrons by the ion-cores as well as by the surface. The formalism is applied to an independent-electron model with a muffin -tin potential. Each electron feels the incident light wave and the polarization field of all the other electrons computed with the bulk dielectric function. Scattering of the photo-excited electron is included as a final step in the photo-emission process. The cross-sections calculated for Silver clusters are in good agreement with experiment; for Sodium clusters, however, the relevant experimental data are incomplete.

  20. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode.

    PubMed

    Liu, Qi; Long, Shibing; Lv, Hangbing; Wang, Wei; Niu, Jiebin; Huo, Zongliang; Chen, Junning; Liu, Ming

    2010-10-26

    Resistive memory (ReRAM) based on a solid-electrolyte insulator is a promising nanoscale device and has great potentials in nonvolatile memory, analog circuits, and neuromorphic applications. The underlying resistive switching (RS) mechanism of ReRAM is suggested to be the formation and rupture of nanoscale conductive filament (CF) inside the solid-electrolyte layer. However, the random nature of the nucleation and growth of the CF makes their formation difficult to control, which is a major obstacle for ReRAM performance improvement. Here, we report a novel approach to resolve this challenge by adopting a metal nanocrystal (NC) covered bottom electrode (BE) to replace the conventional ReRAM BE. As a demonstration vehicle, a Ag/ZrO(2)/Cu NC/Pt structure is prepared and the Cu NC covered Pt BE can control CF nucleation and growth to provide superior uniformity of RS properties. The controllable growth of nanoscale CF bridges between Cu NC and Ag top electrode has been vividly observed by transmission electron microscopy (TEM). On the basis of energy-dispersive X-ray spectroscopy (EDS) and elemental mapping analyses, we further confirm that the chemical contents of the CF are mainly Ag atoms. These testing/metrology results are consistent with the simulation results of electric-field distribution, showing that the electric field will enhance and concentrate on the NC sites and control location and orientation of Ag CFs.

  1. Age and metallicity of star clusters in the Small Magellanic Cloud from integrated spectroscopy

    NASA Astrophysics Data System (ADS)

    Dias, B.; Coelho, P.; Barbuy, B.; Kerber, L.; Idiart, T.

    2010-09-01

    Context. Analysis of ages and metallicities of star clusters in the Magellanic Clouds provide information for studies on the chemical evolution of the Clouds and other dwarf irregular galaxies. Aims: The aim is to derive ages and metallicities from integrated spectra of 14 star clusters in the Small Magellanic Cloud, including a few intermediate/old age star clusters. Methods: Making use of a full-spectrum fitting technique, we compared the integrated spectra of the sample clusters to three different sets of single stellar population models, using two fitting codes available in the literature. Results: We derive the ages and metallicities of 9 intermediate/old age clusters, some of them previously unstudied, and 5 young clusters. Conclusions: We point out the interest of the newly identified as intermediate/old age clusters HW1, NGC 152, Lindsay 3, Lindsay 11, and Lindsay 113. We also confirm the old ages of NGC 361, NGC 419, Kron 3, and of the very well-known oldest SMC cluster, NGC 121. Appendix A is only available in electronic form at http://www.aanda.org

  2. Nucleoside modification with boron clusters and their metal complexes.

    PubMed

    Wojtczak, Blazej A; Olejniczak, Agnieszka B; Lesnikowski, Zbigniew J

    2009-09-01

    General methods for the synthesis of nucleosides modified with borane clusters and metallacarborane complexes are presented. These include: (1) the click chemistry approach based on Huisgen 1,3-dipolar cycloaddition and (2) tethering of the metallacarborane group to the aglycone of a nucleoside via a dioxane ring opening in oxonium metallacarborane derivatives. The proposed methodologies broaden the availability of nucleoside-borane cluster conjugates and open up new areas for their applications.

  3. Nonlinear Color--Metallicity Relations of Globular Clusters. VI. On Calcium II Triplet Based Metallicities of Globular Clusters in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Chung, Chul; Yoon, Suk-Jin; Lee, Sang-Yoon; Lee, Young-Wook

    2016-02-01

    The metallicity distribution function of globular clusters (GCs) in galaxies is a key to understanding galactic formation and evolution. The calcium II triplet (CaT) index has recently become a popular metal abundance indicator thanks to its sensitivity to GC metallicity. Here we revisit and assess the reliability of CaT as a metallicity indicator using our new stellar population synthesis simulations based on empirical high-resolution fluxes. The model shows that the CaT strength of old (>10 Gyr) GCs is proportional to [Fe/H] below -0.5. In the modest metal-rich regime, however, CaT does not increase anymore with [Fe/H] due to the little contribution from coolest red giant stars to the CaT absorption. The nonlinear nature of the color-CaT relation is confirmed by the observations of GCs in nearby early-type galaxies. This indicates that the CaT should be used carefully when deriving metallicities of metal-rich stellar populations. Our results offer an explanation for the observed sharp difference between the color and CaT distributions of GCs in the same galaxies. We take this as an analogy to the view that metallicity-color and metallicity-Lick index nonlinearity of GCs is primarily responsible for their observed “bimodal” distributions of colors and absorption indices.

  4. Nanoscale decomposition of Nb-Ru-O

    NASA Astrophysics Data System (ADS)

    Music, Denis; Geyer, Richard W.; Chen, Yen-Ting

    2016-11-01

    A correlative theoretical and experimental methodology has been employed to explore the decomposition of amorphous Nb-Ru-O at elevated temperatures. Density functional theory based molecular dynamics simulations reveal that amorphous Nb-Ru-O is structurally modified within 10 ps at 800 K giving rise to an increase in the planar metal - oxygen and metal - metal population and hence formation of large clusters, which signifies atomic segregation. The driving force for this atomic segregation process is 0.5 eV/atom. This is validated by diffraction experiments and transmission electron microscopy of sputter-synthesized Nb-Ru-O thin films. Room temperature samples are amorphous, while at 800 K nanoscale rutile RuO2 grains, self-organized in an amorphous Nb-O matrix, are observed, which is consistent with our theoretical predictions. This amorphous/crystalline interplay may be of importance for next generation of thermoelectric devices.

  5. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    SciTech Connect

    Arslan, Ilke; Dixon, David A.; Gates, Bruce C.; Katz, Alexander

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-the art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify

  6. Generation and characterization of alkali metal clusters in Y-FAU zeolites. An ESR and MAS NMR spectroscopic study

    NASA Astrophysics Data System (ADS)

    Hannus, István; Béres, Attila; Nagy, János B.; Halász, János; Kiricsi, Imre

    1997-06-01

    Charged and neutral metal clusters of various compositions and sizes can be prepared by controlling the alkali metal content by the decomposition of alkali azides and the composition of the host zeolite by ion-exchange. ESR signals show that electron transfer from alkali metal atoms to alkali metal cations does occur, but in a direction opposite to that predicted by the gas-phase thermochemistry. Alkali metal clusters proved to be very active basic catalytic centers.

  7. The inhomogeneous reionization of the local intergalactic medium by metal-poor globular clusters

    NASA Astrophysics Data System (ADS)

    Griffen, B. F.; Drinkwater, M. J.; Iliev, Ilian T.; Thomas, P. A.; Mellema, Garrelt

    2013-06-01

    We present detailed radiative transfer simulations of the reionization of the Milky Way by metal-poor globular clusters. We identify potential metal-poor globular cluster candidates within the Aquarius simulation using dark matter halo velocity dispersions. We calculate the local ionization fields via a photon-conserving, three dimensional non-equilibrium chemistry code. The key feature of the model is that globular cluster formation is suppressed if the local gas is ionized. We assume that at these early times, the ionization field is dominated by the flux from metal-poor globular clusters. Our spatial treatment of the ionization field leads to drastically different numbers and spatial distributions when compared to models where globular cluster formation is simply truncated at early redshifts (z ˜ 13). The spatial distributions are more extended and more globular clusters are produced. We find that additional sources of ionization are required at later epochs (z ˜ 10) to ionize the remaining gas and recover radial distributions statistically consistent with that of the Milky Way metal-poor globular clusters. We investigate a range of plausible ionization efficiencies to determine the effect photon-rich and photon-poor models have on present-day globular cluster properties. If globular clusters do indeed form within high-redshift dark matter haloes, they produce enough photons to ionize 98 and 90 per cent local (i.e. 23 h-3 Mpc3 centred on the host galaxy) volume and mass by redshift 10, respectively. In our photon-poorest model, this contribution drops to 60 and 50 per cent. Our model therefore implies that globular clusters are important contributors to the reionization process on local scales at high-redshift until more photon-rich sources dominate the photon budget at later times. The surviving clusters in all models have a narrow average age range (mean = 13.34 Gyr, σ = 0.04 Gyr) consistent with current age estimates of the Milky Way metal-poor globular

  8. Ligand-modified metal clusters for gas separation and purification

    DOEpatents

    Okrut, Alexander; Ouyang, Xiaoying; Runnebaum, Ron; Gates, Bruce C.; Katz, Alexander

    2017-02-21

    Provided is an organic ligand-bound metal surface that selects one gaseous species over another. The species can be closely sized molecular species having less than 1 Angstrom difference in kinetic diameter. In one embodiment, the species comprise carbon monoxide and ethylene. Such organic ligand-bound metal surfaces can be successfully used in gas phase separations or purifications, sensing, and in catalysis.

  9. Introduction: advances and opportunities in cluster research. [Neutral (metal) and ionic clusters

    SciTech Connect

    Castleman, A.W. Jr.

    1983-01-01

    Examples of neutral and ionic clusters include these in the upper and lower atmosphere, interstellar grain formation, combustion, radiation physics and chemistry, surface bombardment, fission product transport in reactors, corrosion, etc. This paper is a brief overview of some recent developments in cluster research. (DLC)

  10. Age and metallicity of star clusters in the Small Magellanic Cloud from integrated spectroscopy

    NASA Astrophysics Data System (ADS)

    Dias, Bruno; Coelho, Paula; Kerber, Leandro; Barbuy, Beatriz; Idiart, Thais

    2010-04-01

    Analysis of integrated spectra of star clusters in the Magellanic Clouds can bring important information for studies on the chemical evolution of the Clouds. The aim of the present work is to derive ages and metallicities from integrated spectra of 15 star clusters in the Small Magellanic Cloud (SMC), some of them not studied so far. Making use of a full spectrum fitting technique, we compared the integrated spectra of the sample clusters to three different sets of single stellar population models available in the literature. We derived ages and metallicities for the sample clusters employing the codes STARLIGHT and ULySS. Out of the 15 clusters in our sample, 9 are old/intermediate age clusters and 6 are young clusters. We point out the results for the newly identified as old/intermediate age clusters HW1, NGC 152, Lindsay 3 and 11. We also confirm old ages for NGC 361, NGC 419 and Kron 3, and the oldest well-known SMC cluster NGC 121.

  11. Energetics of small clusters of group IB metals (Cu, Ag, and Au) adsorbed on graphene

    NASA Astrophysics Data System (ADS)

    Kaur, Gagandeep; Gupta, Shuchi; Dharamvir, Keya

    2013-06-01

    The 2D structure of graphene maximizes the interaction of adsorbate on the layer. Many experiments have been devised to form stable metallic clusters of different sizes. We study the structure and binding energies of group IB clusters Mn (M=Au, Ag, Cu n=1, 3) adsorbed on graphene using Gupta potential [1] (for M-M interaction) and Lennard-Jones potential [2] (for metal-carbon interaction). The total energy of the system has been obtained by placing each of Mn cluster a certain distance above the graphene sheet at various positions and in various orientations. The minimized energy configurations, for all Mn clusters, lie above the center of a hexagon and parallel to the graphene sheet. Binding energy per atom for Ag and Cu metal clusters are less than those of respective Au indicating the lower stability of Ag/Cu metal-graphene system. Using various energy barriers, we can calculate the energy required to move small cluster from one position of minimum energy to another on graphene.

  12. First examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands

    NASA Astrophysics Data System (ADS)

    Wang, La-Mei; Fan, Yong; Wang, Yan; Xiao, Li-Na; Hu, Yang-Yang; Peng, Yu; Wang, Tie-Gang; Gao, Zhong-Min; Zheng, Da-Fang; Cui, Xiao-Bing; Xu, Ji-Qing

    2012-07-01

    Two new organic-inorganic compounds based on polyoxometalates, metal halide clusters and organic ligands: [BW12O40]2[Cu2(Phen)4Cl](H24, 4'-bpy)4·H3O·5H2O (1) and [HPW12O40][Cd2(Phen)4Cl2](4, 4'-bpy) (2) (Phen=1, 10-phenanthroline, bpy=bipyridine), have been prepared and characterized by IR, UV-vis, XPS, XRD and single crystal X-ray diffraction analyses. Crystal structure analyses reveal that compound 1 is constructed from [BW12O40]5-, metal halide clusters [Cu2(Phen)4Cl]+and 4, 4'-bpy ligands, while compound 2 is constructed from [PW12O40]3-, metal halide cluster [Cd2(Phen)4Cl2]2+ and 4, 4'-bpy ligands. Compound 1 and compound 2 are not common hybrids based on polyoxometalates and metal halide clusters, they also contain dissociated organic ligands, therefore, compound 1 and 2 are the first examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands.

  13. Removing Cool Cores and Central Metallicity Peaks in Galaxy Clusters with Powerful Active Galactic Nucleus Outbursts

    NASA Astrophysics Data System (ADS)

    Guo, Fulai; Mathews, William G.

    2010-07-01

    Recent X-ray observations of galaxy clusters suggest that cluster populations are bimodally distributed according to central gas entropy and are separated into two distinct classes: cool core (CC) and non-cool core (NCC) clusters. While it is widely accepted that active galactic nucleus (AGN) feedback plays a key role in offsetting radiative losses and maintaining many clusters in the CC state, the origin of NCC clusters is much less clear. At the same time, a handful of extremely powerful AGN outbursts have recently been detected in clusters, with a total energy ~1061-1062 erg. Using two-dimensional hydrodynamic simulations, we show that if a large fraction of this energy is deposited near the centers of CC clusters, which is likely common due to dense cores, these AGN outbursts can completely remove CCs, transforming them to NCC clusters. Our model also has interesting implications for cluster abundance profiles, which usually show a central peak in CC systems. Our calculations indicate that during the CC to NCC transformation, AGN outbursts efficiently mix metals in cluster central regions and may even remove central abundance peaks if they are not broad enough. For CC clusters with broad central abundance peaks, AGN outbursts decrease peak abundances, but cannot effectively destroy the peaks. Our model may simultaneously explain the contradictory (possibly bimodal) results of abundance profiles in NCC clusters, some of which are nearly flat, while others have strong central peaks similar to those in CC clusters. A statistical analysis of the sizes of central abundance peaks and their redshift evolution may shed interesting insights on the origin of both types of NCC clusters and the evolution history of thermodynamics and AGN activity in clusters.

  14. REMOVING COOL CORES AND CENTRAL METALLICITY PEAKS IN GALAXY CLUSTERS WITH POWERFUL ACTIVE GALACTIC NUCLEUS OUTBURSTS

    SciTech Connect

    Guo Fulai; Mathews, William G.

    2010-07-10

    Recent X-ray observations of galaxy clusters suggest that cluster populations are bimodally distributed according to central gas entropy and are separated into two distinct classes: cool core (CC) and non-cool core (NCC) clusters. While it is widely accepted that active galactic nucleus (AGN) feedback plays a key role in offsetting radiative losses and maintaining many clusters in the CC state, the origin of NCC clusters is much less clear. At the same time, a handful of extremely powerful AGN outbursts have recently been detected in clusters, with a total energy {approx}10{sup 61}-10{sup 62} erg. Using two-dimensional hydrodynamic simulations, we show that if a large fraction of this energy is deposited near the centers of CC clusters, which is likely common due to dense cores, these AGN outbursts can completely remove CCs, transforming them to NCC clusters. Our model also has interesting implications for cluster abundance profiles, which usually show a central peak in CC systems. Our calculations indicate that during the CC to NCC transformation, AGN outbursts efficiently mix metals in cluster central regions and may even remove central abundance peaks if they are not broad enough. For CC clusters with broad central abundance peaks, AGN outbursts decrease peak abundances, but cannot effectively destroy the peaks. Our model may simultaneously explain the contradictory (possibly bimodal) results of abundance profiles in NCC clusters, some of which are nearly flat, while others have strong central peaks similar to those in CC clusters. A statistical analysis of the sizes of central abundance peaks and their redshift evolution may shed interesting insights on the origin of both types of NCC clusters and the evolution history of thermodynamics and AGN activity in clusters.

  15. Growth modes of thin films of ligand-free metal clusters

    SciTech Connect

    Dollinger, A.; Strobel, C. H.; Bleuel, H.; Marsteller, A.; Gantefoer, G.; Fairbrother, D. H.; Tang, Xin; Bowen, K. H.; Kim, Young Dok

    2015-05-21

    Size-selected Mo{sub n}{sup −}, W{sub n}{sup −}, and Fe{sub n}{sup −} cluster anions are deposited on a weakly interacting substrate (highly oriented pyrolytic graphite) and studied ex-situ using atomic force microscopy. Depending on size, three growth modes can be distinguished. Very small clusters consisting of less than 10–30 atoms behave similar to atoms and coalesce into 3-dimensional bulk-like islands. Medium sized clusters consisting of hundreds of atoms do not coalesce and follow a Stanski-Krastanov growth pattern. At low coverage, an almost perfect monolayer is formed. This is a new finding different from all previous studies on deposited metal clusters. For clusters with several thousands of atoms, the growth pattern again changes. At low coverage, the substrate is dotted with individual clusters, while at high coverage, the surface becomes extremely rough.

  16. Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review.

    PubMed

    Zou, Yidong; Wang, Xiangxue; Khan, Ayub; Wang, Pengyi; Liu, Yunhai; Alsaedi, Ahmed; Hayat, Tasawar; Wang, Xiangke

    2016-07-19

    The presence of heavy metals in the industrial effluents has recently been a challenging issue for human health. Efficient removal of heavy metal ions from environment is one of the most important issues from biological and environmental point of view, and many studies have been devoted to investigate the environmental behavior of nanoscale zerovalent iron (NZVI) for the removal of toxic heavy metal ions, present both in the surface and underground wastewater. The aim of this review is to show the excellent removal capacity and environmental remediation of NZVI-based materials for various heavy metal ions. A new look on NZVI-based materials (e.g., modified or matrix-supported NZVI materials) and possible interaction mechanism (e.g., adsorption, reduction and oxidation) and the latest environmental application. The effects of various environmental conditions (e.g., pH, temperature, coexisting oxy-anions and cations) and potential problems for the removal of heavy metal ions on NZVI-based materials with the DFT theoretical calculations and EXAFS technology are discussed. Research shows that NZVI-based materials have satisfactory removal capacities for heavy metal ions and play an important role in the environmental pollution cleanup. Possible improvement of NZVI-based materials and potential areas for future applications in environment remediation are also proposed.

  17. Electrochemical Synthesis and Catalytic Properties of Encapsulated Metal Clusters within Zeolitic Imidazolate Frameworks.

    PubMed

    Wang, Pengyuan; Liu, Jia; Liu, Chuanfang; Zheng, Bin; Zou, Xiaoqin; Jia, Mingjun; Zhu, Guangshan

    2016-11-07

    It is very interesting and also a big challenge to encapsulate metal clusters within microporous solids to expand their application diversity. For this target, herein, we present an electrochemical synthesis strategy for the encapsulation of noble metals (Au, Pd, Pt) within ZIF-8 cavities. In this method, metal precursors of AuCl4(2-) , PtCl6(2-) , and PdCl4(2-) are introduced into ZIF-8 crystals during the concurrent crystallization of ZIF-8 at the anode. As a consequence, very small metal clusters with sizes around 1.2 nm are obtained within ZIF-8 crystals after hydrogen reduction; these clusters exhibit high thermal stability, as evident from the good maintenance of their original sizes after a high-temperature test. The catalytic properties of the encapsulated metal clusters within ZIF-8 are evaluated for CO oxidations. Because of the small pore window of ZIF-8 (0.34 nm) and the confinement effect of small pores, about 80 % of the metal clusters (fractions of 0.74, 0.77, and 0.75 for Au, Pt, and Pd in ZIF-8, respectively) retain their catalytic activity after exposure to the organosulfur poison thiophene (0.46 nm), which is in contrast to their counterparts (fractions of 0.22, 0.25, and 0.20 for Au, Pt, and Pd on the SiO2 support). The excellent performances of metal clusters encapsulated within ZIF-8 crystals give new opportunities for catalytic reactions.

  18. Structure and Dynamics in Metal-Containing Clusters

    DTIC Science & Technology

    2010-03-11

    increases but the basic nature of the vibration remains constant. A surprising development followed from this new spectroscopic study of titanium ...establishes that titanium -carbide nanocrystals are seeds present in the early phases of the formation of stardust. Titanium -carbide crystallites are actually...multi-metal sandwiches (M3-coronene2). In some species (e.g., iron with C6o or niobium with coronene), the metal inserts into the organic ring system

  19. Why nanoscale tank treads move? Structures, chemical bonding, and molecular dynamics of a doped boron cluster B10C.

    PubMed

    Wang, Ying-Jin; Guo, Jin-Chang; Zhai, Hua-Jin

    2017-07-13

    Planar boron clusters form dynamic rotors, either as molecular Wankel motors or subnanoscale tank treads, the latter being exemplified by an elongated B11(-) cluster. For an in-depth mechanistic understanding of the rotors, we investigate herein a doped boron cluster, B10C, in which a C atom isovalently substitutes B(-) in the B11(-) tank tread. Two critical structures are achieved: the Cs ((1)A') global minimum (GM) with C positioned in the peripheral ring and the C2v ((1)A1) local minimum (LM) with C in the diatomic core. In the GM the C atom completely halts the rotation of B10C, whereas in the LM the dynamic fluxionality remains. The energy barriers for in-plane rotation differ markedly: 12.93/18.31 kcal mol(-1) for GM versus 1.84 kcal mol(-1) for LM at the single-point CCSD(T) level. The GM rotates via two transition states (TS), compared to one for the LM. Chemical bonding in the structures is elucidated via canonical molecular orbital (CMO) analysis, adaptive natural density partitioning (AdNDP), electron localization functions (ELFs), and Wiberg bond indices (WBI). Electron delocalization is shown to be essential for structural fluxionality. In particular, the variation of WBI from the GM or LM geometries to their TS structures correlates positively with the energy barrier, which offers a quasi-quantitative measure of the barrier height and hence controls the dynamics. This finding may be extended to all molecular rotors. It also helps rationalize why a strongly covalently bound system can behave dynamically in a manner similar to a weakly bound one; it is the latter that is generally anticipated to be structurally fluxional.

  20. Metal abundances in the cool cores of galaxy clusters

    NASA Astrophysics Data System (ADS)

    de Grandi, S.; Molendi, S.

    2009-12-01

    We use XMM-Newton data to carry out a detailed study of the Si, Fe and Ni abundances in the cool cores of a representative sample of 26 local clusters. We performed a careful evaluation of the systematic uncertainties related to the instruments, the plasma codes and the spectral modeling, finding that the major source of uncertainty is the plasma codes. Our Si, Fe, Ni, Si/Fe and Ni/Fe distributions feature only moderate spreads (from 20% to 30%) around their mean values strongly suggesting similar enrichment processes at work in all our cluster cores. Our sample-averaged Si/Fe ratio is comparable to those measured in samples of groups and high luminosity ellipticals, implying that the enrichment process in ellipticals, dominant galaxies in groups and BCGs in clusters is quite similar. Although our Si/Fe and Ni/Fe abundance ratios are fairly well constrained, the large uncertainties in the supernova yields prevent us from making a firm assessment of the relative contribution of type Ia and core-collapsed supernovae to the enrichment process. All that can be said with some certainty is that both contribute to the enrichment of cluster cores. Tables and Appendix are only available in electronic form at http://www.aanda.org

  1. Spherical Clusters of Simple Metals: Madelung Energies and Structure.

    DTIC Science & Technology

    1986-06-01

    crystalline structures remain lower than those of the optimal structures even at cluster sizes of more than 90 atoms. Also the calculations of the...differ from crystalline structures up to clus- ter sizes of hundreds of atoms. Acknowledgements - The author would like to thank N.W. Ashcroft, J.W

  2. Multi-orbital cluster perturbation theory for transition metal oxides.

    PubMed

    Manghi, F

    2014-01-08

    We present an extension of cluster perturbation theory to include many-body correlations associated with local e-e repulsion in real materials. We show that this approach can describe the physics of complex correlated materials where different atomic species and different orbitals coexist. The prototypical case of MnO is considered.

  3. Radial metal abundance profiles in the intra-cluster medium of cool-core galaxy clusters, groups, and ellipticals

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Kaastra, J. S.; Zhang, Y.-Y.; Akamatsu, H.; Gu, L.; Kosec, P.; Mao, J.; Pinto, C.; Reiprich, T. H.; Sanders, J. S.; Simionescu, A.; Werner, N.

    2017-07-01

    The hot intra-cluster medium (ICM) permeating galaxy clusters and groups is not pristine, as it has been continuously enriched by metals synthesised in Type Ia (SNIa) and core-collapse (SNcc) supernovae since the major epoch of star formation (z ≃ 2-3). The cluster/group enrichment history and mechanisms responsible for releasing and mixing the metals can be probed via the radial distribution of SNIa and SNcc products within the ICM. In this paper, we use deep XMM-Newton/EPIC observations from a sample of 44 nearby cool-core galaxy clusters, groups, and ellipticals (CHEERS) to constrain the average radial O, Mg, Si, S, Ar, Ca, Fe, and Ni abundance profiles. The radial distributions of all these elements, averaged over a large sample for the first time, represent the best constrained profiles available currently. Specific attention is devoted to a proper modelling of the EPIC spectral components, and to other systematic uncertainties that may affect our results. We find an overall decrease of the Fe abundance with radius out to 0.9 r500 and 0.6 r500 for clusters and groups, respectively, in good agreement with predictions from the most recent hydrodynamical simulations. The average radial profiles of all the other elements (X) are also centrally peaked and, when rescaled to their average central X/Fe ratios, follow well the Fe profile out to at least 0.5 r500. As predicted by recent simulations, we find that the relative contribution of SNIa (SNcc) to the total ICM enrichment is consistent with being uniform at all radii, both for clusters and groups using two sets of SNIa and SNcc yield models that reproduce the X/Fe abundance pattern in the core well. In addition to implying that the central metal peak is balanced between SNIa and SNcc, our results suggest that the enriching SNIa and SNcc products must share the same origin and that the delay between the bulk of the SNIa and SNcc explosions must be shorter than the timescale necessary to diffuse out the metals

  4. Evidence for nanoscale two-dimensional Co clusters in CoPt3 films with perpendicular magnetic anisotropy.

    PubMed

    Cross, J O; Newville, M; Maranville, B B; Bordel, C; Hellman, F; Harris, V G

    2010-04-14

    The length scale of the local chemical anisotropy responsible for the growth-temperature-induced perpendicular magnetic anisotropy of face-centered cubic CoPt(3) alloy films was investigated using polarized extended x-ray absorption fine structure (EXAFS). These x-ray measurements were performed on a series of four (111) CoPt(3) films epitaxially grown on (0001) sapphire substrates. The EXAFS data show a preference for Co-Co pairs parallel to the film plane when the film exhibits magnetic anisotropy, and random chemical order otherwise. Furthermore, atomic pair correlation anisotropy was evidenced only in the EXAFS signal from the next neighbors to the absorbing Co atoms and from multiple scattering paths focused through the next neighbors. This suggests that the Co clusters are no more than a few atoms in extent in the plane and one monolayer in extent out of the plane. Our EXAFS results confirm the correlation between perpendicular magnetic anisotropy and two-dimensional Co segregation in CoPt(3) alloy films, and establish a length scale on the order of 10 Å for the Co clusters.

  5. An aligned stream of low-metallicity clusters in the halo of the Milky Way.

    PubMed

    Yoon, Suk-Jin; Lee, Young-Wook

    2002-07-26

    One of the long-standing problems in modern astronomy is the curious division of Galactic globular clusters, the "Oosterhoff dichotomy," according to the properties of their RR Lyrae stars. Here, we find that most of the lowest metallicity ([Fe/H] < -2.0) clusters, which are essential to an understanding of this phenomenon, display a planar alignment in the outer halo. This alignment, combined with evidence from kinematics and stellar population, indicates a captured origin from a satellite galaxy. We show that, together with the horizontal-branch evolutionary effect, the factor producing the dichotomy could be a small time gap between the cluster-formation epochs in the Milky Way and the satellite. The results oppose the traditional view that the metal-poorest clusters represent the indigenous and oldest population of the Galaxy.

  6. FT-ICR Studies of the Structures and Reactivities of Metal-Carbon Clusters

    NASA Astrophysics Data System (ADS)

    Freiser, Ben S.

    1997-03-01

    A new class of transition metal-carbon clusters has become the focus of intense investigations with the discovery of M_8C_12 (M = Ti, V, Zr, Hf) by Castleman and coworkers. In addition, Duncan and coworkers have suggested that selected clusters of approximately 1:1 metal-to-carbon ratio are cubic in nature. In this talk we report on the ion-molecule reactions of several of these clusters with water, methanol, ammonia, acetonitrile, benzene and the methyl halides and try to relate the observed chemistry to proposed structures. The clusters are generated in a Smalley compact supersonic source and monitored under the low pressure conditions of an FT-ICR mass spectrometer.

  7. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. V. NONLINEAR ABSORPTION-LINE INDEX VERSUS METALLICITY RELATIONS AND BIMODAL INDEX DISTRIBUTIONS OF M31 GLOBULAR CLUSTERS

    SciTech Connect

    Kim, Sooyoung; Yoon, Suk-Jin; Chung, Chul; Lee, Young-Wook; Caldwell, Nelson; Schiavon, Ricardo P.; Kang, Yongbeom; Rey, Soo-Chang

    2013-05-10

    Recent spectroscopy on the globular cluster (GC) system of M31 with unprecedented precision witnessed a clear bimodality in absorption-line index distributions of old GCs. Such division of extragalactic GCs, so far asserted mainly by photometric color bimodality, has been viewed as the presence of merely two distinct metallicity subgroups within individual galaxies and forms a critical backbone of various galaxy formation theories. Given that spectroscopy is a more detailed probe into stellar population than photometry, the discovery of index bimodality may point to the very existence of dual GC populations. However, here we show that the observed spectroscopic dichotomy of M31 GCs emerges due to the nonlinear nature of metallicity-to-index conversion and thus one does not necessarily have to invoke two separate GC subsystems. We take this as a close analogy to the recent view that metallicity-color nonlinearity is primarily responsible for observed GC color bimodality. We also demonstrate that the metallicity-sensitive magnesium line displays non-negligible metallicity-index nonlinearity and Balmer lines show rather strong nonlinearity. This gives rise to bimodal index distributions, which are routinely interpreted as bimodal metallicity distributions, not considering metallicity-index nonlinearity. Our findings give a new insight into the constitution of M31's GC system, which could change much of the current thought on the formation of GC systems and their host galaxies.

  8. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites.

    PubMed

    Goel, Sarika; Wu, Zhijie; Zones, Stacey I; Iglesia, Enrique

    2012-10-24

    The synthesis protocols for encapsulation of metal clusters reported here expand the diversity in catalytic chemistries made possible by the ability of microporous solids to select reactants, transition states, and products on the basis of their molecular size. We report a synthesis strategy for the encapsulation of noble metals and their oxides within SOD (Sodalite, 0.28 nm × 0.28 nm), GIS (Gismondine, 0.45 nm × 0.31 nm), and ANA (Analcime, 0.42 nm × 0.16 nm) zeolites. Encapsulation was achieved via direct hydrothermal synthesis for SOD and GIS using metal precursors stabilized by ammonia or organic amine ligands, which prevent their decomposition or precipitation as colloidal hydroxides at the conditions of hydrothermal synthesis (<380 K) and favor interactions between metal precursors and incipient aluminosilicate nuclei during self-assembly of microporous frameworks. The synthesis of ANA requires higher crystallization temperatures (~415 K) and high pH (>12), thereby causing precipitation of even ligand-stabilized metal precursors as hydroxides. As a result, encapsulation was achieved by the recrystallization of metal clusters containing GIS into ANA, which retained these metal clusters within voids throughout the GIS-ANA transformation.

  9. CO adsorption on transition metal clusters: Trends from density functional theory

    NASA Astrophysics Data System (ADS)

    Zeinalipour-Yazdi, Constantinos D.; Cooksy, Andrew L.; Efstathiou, Angelos M.

    2008-05-01

    This work reports for the first time the trends for carbon monoxide (CO) chemisorption on transition metal clusters present in supported metal catalysts. In particular, the energetic, structural and infrared adsorption characteristics of linearly (atop) CO adsorbed on transition metal nano-clusters of less than 10 Å in size were explored. Spin-unrestricted density functional theory (DFT) calculations were employed to explore the trends of CO adsorption energy (AM-CO) and C-O vibrational frequency (νCO) for clusters composed of Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt and Au. The effects of the transition metal electronic structure onto the adsorption energy of CO and the vibrational stretching frequency of C-O, and how these chemical parameters can be correlated to the catalytic activity of transition supported metal catalysts that involve the adsorption, surface diffusion, and C-O bond dissociation elementary steps in heterogeneous catalytic surface reactions, are discussed. Our findings show that an increase of the electronic d-shell occupancy and the principal quantum number (n) in transition metals causes an increase in the vibrational stretching frequency of the C-O bond. This trend is inconsistent with the classical Blyholder model for the metal-carbonyl bond.

  10. Low-metallicity Young Clusters in the Outer Galaxy. II. Sh 2-208

    NASA Astrophysics Data System (ADS)

    Yasui, Chikako; Kobayashi, Naoto; Saito, Masao; Izumi, Natsuko

    2016-05-01

    We obtained deep near-infrared images of Sh 2-208, one of the lowest-metallicity H ii regions in the Galaxy, [O/H] = -0.8 dex. We detected a young cluster in the center of the H ii region with a limiting magnitude of K = 18.0 mag (10σ), which corresponds to a mass detection limit of ˜0.2 M⊙. This enables the comparison of star-forming properties under low metallicity with those of the solar neighborhood. We identified 89 cluster members. From the fitting of the K-band luminosity function (KLF), the age and distance of the cluster are estimated to be ˜0.5 Myr and ˜4 kpc, respectively. The estimated young age is consistent with the detection of strong CO emission in the cluster region and the estimated large extinction of cluster members (AV ˜ 4-25 mag). The observed KLF suggests that the underlying initial mass function (IMF) of the low-metallicity cluster is not significantly different from canonical IMFs in the solar neighborhood in terms of both high-mass slope and IMF peak (characteristic mass). Despite the very young age, the disk fraction of the cluster is estimated at only 27% ± 6%, which is significantly lower than those in the solar metallicity. Those results are similar to Sh 2-207, which is another star-forming region close to Sh 2-208 with a separation of 12 pc, suggesting that their star-forming activities in low-metallicity environments are essentially identical to those in the solar neighborhood, except for the disk dispersal timescale. From large-scale mid-infrared images, we suggest that sequential star formation is taking place in Sh 2-207, Sh 2-208, and the surrounding region, triggered by an expanding bubble with a ˜30 pc radius.

  11. Size and Charge Distributions of Stable Clusters Formed in Ion Sputtering of Metals

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Kapustin, S. N.

    2016-10-01

    A theory of ion sputtering of metals in the form of neutral and charged clusters with their subsequent fragmentation into the stable state is developed. The theory is based on simple physical assumptions and is in good agreement with experiment. Results are presented in the form of formulas convenient for practical application. As an example, calculations of the total yield of stable neutral and charged clusters of silver, indium, and niobium are carried out.

  12. FT-ICR studies of the structures and reactivities of metal-carbon clusters

    SciTech Connect

    Byun, Y.G.; Yeh, C.S.; Afzaal, S.

    1995-12-31

    Castleman and co-workers were the first to report the growth of the unusual met-car clusters. A new class of transition metal-carbon clusters with the stoichiometry M{sub 8}C{sub 12} (M=Ti, V, Zr, Hf, Cr, Fe, Mo, and Nb), Nb{sub 4}C{sub 4} and M{sub 14}C{sub 13} (M=Ti, V) has become a focus of intense research area.

  13. BVRI CCD photometry of the metal-poor globular cluster M68 (NGC 4590)

    SciTech Connect

    Alcaino, G.; Liller, W.; Alvarado, F.; Wenderoth, E. )

    1990-06-01

    BVRI photometry of the low metallicity globular cluster M68 (NGC 4590) was obtained with a CCD camera and the 2.2-m ESO telescope. The resulting BV color-magnitude diagrams are compared with the observations of McClure et al. (1987). The observations are also compared with theoretical isochrones, yielding a cluster age of 13 Gyr with a likely external uncertainty of 2 or 3 Gyr. 25 refs.

  14. METAL DEFICIENCY IN CLUSTER STAR-FORMING GALAXIES AT Z = 2

    SciTech Connect

    Valentino, F.; Daddi, E.; Strazzullo, V.; Gobat, R.; Bournaud, F.; Juneau, S.; Zanella, A.; Renzini, A.; Arimoto, N.

    2015-03-10

    We investigate the environmental effect on the metal enrichment of star-forming galaxies (SFGs) in the farthest spectroscopically confirmed and X-ray-detected cluster, CL J1449+0856 at z = 1.99. We combined Hubble Space Telescope/WFC3 G141 slitless spectroscopic data, our thirteen-band photometry, and a recent Subaru/Multi-object InfraRed Camera and Spectrograph (MOIRCS) near-infrared spectroscopic follow-up to constrain the physical properties of SFGs in CL J1449+0856 and in a mass-matched field sample. After a conservative removal of active galactic nuclei, stacking individual MOIRCS spectra of 6 (31) sources in the cluster (field) in the mass range 10 ≤ log(M/M{sub ⊙}) ≤ 11, we find a ∼4σ lower [N ii]/Hα ratio in the cluster than in the field. Stacking a subsample of 16 field galaxies with Hβ and [O iii] in the observed range, we measure an [O iii]/Hβ ratio fully compatible with the cluster value. Converting these ratios into metallicities, we find that the cluster SFGs are up to 0.25 dex poorer in metals than their field counterparts, depending on the adopted calibration. The low metallicity in cluster sources is confirmed using alternative indicators. Furthermore, we observe a significantly higher Hα luminosity and equivalent width in the average cluster spectrum than in the field. This is likely due to the enhanced specific star formation rate; even if lower dust reddening and/or an uncertain environmental dependence on the continuum-to-nebular emission differential reddening may play a role. Our findings might be explained by the accretion of pristine gas around galaxies at z = 2 and from cluster-scale reservoirs, possibly connected with a phase of rapid halo mass assembly at z > 2 and of a high galaxy merging rate.

  15. Method of preparing size-selected metal clusters

    DOEpatents

    Elam, Jeffrey W.; Pellin, Michael J.; Stair, Peter C.

    2010-05-11

    The invention provides a method for depositing catalytic clusters on a surface, the method comprising confining the surface to a controlled atmosphere; contacting the surface with catalyst containing vapor for a first period of time; removing the vapor from the controlled atmosphere; and contacting the surface with a reducing agent for a second period of time so as to produce catalyst-containing nucleation sites.

  16. Formation of fe cluster superlattice in a metal-organic quantum-box network.

    PubMed

    Pivetta, Marina; Pacchioni, Giulia E; Schlickum, Uta; Barth, Johannes V; Brune, Harald

    2013-02-22

    We report on the self-assembly of Fe adatoms on a Cu(111) surface that is patterned by a metal-organic honeycomb network, formed by coordination of dicarbonitrile pentaphenyl molecules with Cu adatoms. Fe atoms landing on the metal surface are mobile and steered by the quantum confinement of the surface state electrons towards the center of the network hexagonal cavities. In cavities hosting more than one Fe, preferential interatomic distances are observed. The adatoms in each hexagon aggregate into a single cluster upon gentle annealing. These clusters are again centered in the cavities and their size is discerned by their distinct apparent heights.

  17. Controlled insulator-to-metal transformation in printable polymer composites with nanometal clusters

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Sankaran; Chia, Perq-Jon; Yeo, Yee-Chia; Chua, Lay-Lay; Ho, Peter K.-H.

    2007-02-01

    Although organic semiconductors have received the most attention, the development of compatible passive elements, such as interconnects and electrodes, is also central to plastic electronics. For this, ligand-protected metal-cluster films have been shown to anneal at low temperatures below 250∘C to highly conductive metal films, but they suffer from cracking and inadequate substrate adhesion. Here, we report printable metal-cluster-polymer nanocomposites that anneal to a controlled-percolation nanostructure without complete sintering of the metal clusters. This overcomes the previous challenges while still retaining the desired low transformation temperatures. Highly water- and alcohol-soluble gold clusters (75mgml-1) were synthesized and homogeneously dispersed into poly(3,4-ethylenedioxythiophene) to give a material with annealed d.c. conductivity tuneable between 10-4 and 105Scm-1. These composites can inject holes efficiently into all-printed polymer organic transistors. The insulator-metal transformation can also be electrically induced at 1MVcm-1, suggesting possible memory applications.

  18. From linking of metal-oxide building blocks in a dynamic library to giant clusters with unique properties and towards adaptive chemistry.

    PubMed

    Müller, Achim; Gouzerh, Pierre

    2012-11-21

    Following Nature's lessons, today chemists can cross the boundary of the small molecule world to construct multifunctional and highly complex molecular nano-objects up to protein size and even cell-like nanosystems showing responsive sensing. Impressive examples emerge from studies of the solutions of some oxoanions of the early transition metals especially under reducing conditions which enable the controlled linking of metal-oxide building blocks. The latter are available from constitutional dynamic libraries, thus providing the option to generate multifunctional unique nanoscale molecular systems with exquisite architectures, which even opens the way towards adaptive and evolutive (Darwinian) chemistry. The present review presents the first comprehensive report of current knowledge (including synthesis aspects not discussed before) regarding the related giant metal-oxide clusters mainly of the type {Mo(57)M'(6)} (M' = Fe(III), V(IV)) (torus structure), {M(72)M'(30)} (M = Mo, M' = V(IV), Cr(III), Fe(III), Mo(V)), {M(72)Mo(60)} (M = Mo, W) (Keplerates), {Mo(154)}, {Mo(176)}, {Mo(248)} ("big wheels"), and {Mo(368)} ("blue lemon") - all having the important transferable pentagonal {(M)M(5)} groups in common. These discoveries expanded the frontiers of inorganic chemistry to the mesoscopic world, while there is probably no collection of discrete inorganic compounds which offers such a versatile chemistry and the option to study new phenomena of interdisciplinary interest. The variety of different properties of the sphere- and wheel-type metal-oxide-based clusters can directly be related to their unique architectures: The spherical Keplerate-type capsules having 20 crown-ether-type pores and tunable internal functionalities allow the investigation of confined matter as well as that of sphere-surface-supramolecular and encapsulation chemistry - including related new aspects of the biologically important hydrophobic effects - but also of nanoscale ion transport and

  19. The N-heterocyclic carbene chemistry of transition-metal carbonyl clusters.

    PubMed

    Cabeza, Javier A; García-Álvarez, Pablo

    2011-11-01

    In the last decade, chemists have dedicated many efforts to investigate the coordination chemistry of N-heterocyclic carbenes (NHCs). Although most of that research activity has been devoted to mononuclear complexes, transition-metal carbonyl clusters have not escaped from these investigations. This critical review, which is focussed on the reactivity of NHCs (or their precursors) with transition-metal carbonyl clusters (mostly are of ruthenium and osmium) and on the transformations underwent by the NHC-containing species initially formed in those reactions, shows that the polynuclear character of these metallic compounds or, more precisely, the close proximity of one or more metal atoms to that which is or can be attached to the NHC ligand, is responsible for reactivity patterns that have no parallel in the NHC chemistry of mononuclear complexes (74 references).

  20. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.

    PubMed

    Hu, Lin; Chen, Qianwang

    2014-01-01

    Lithium-ion batteries (LIBs), owing to their high energy density, light weight, and long cycle life, have shown considerable promise for storage devices. The successful utilization of LIBs depends strongly on the preparation of nanomaterials with outstanding lithium storage properties. Recent progress has demonstrated that hollow/porous nanostructured oxides are very attractive candidates for LIBs anodes due to their high storage capacities. Here, we aim to provide an overview of nanoscale metal-organic frameworks (NMOFs)-templated synthesis of hollow/porous nanostructured oxides and their LIBs applications. By choosing some typical NMOFs as examples, we present a comprehensive summary of synthetic procedures for nanostructured oxides, such as binary, ternary and composite oxides. Hollow/porous structures are readily obtained due to volume loss and release of internally generated gas molecules during the calcination of NMOFs in air. Interestingly, the NMOFs-derived hollow/porous structures possess several special features: pores generated from gas molecules release will connect to each other, which are distinct from "dead pores"; pore size often appears to be <10 nm; in terms of surface chemistry, the pore surface is hydrophobic. These structural features are believed to be the most critical factors that determine LIBs' performance. Indeed, it has been shown that these NMOFs-derived hollow/porous oxides exhibit excellent electrochemical performance as anode materials for LIBs, including high storage capacity, good cycle stability, and so on. For example, a high charge capacity of 1465 mA h g(-1) at a rate of 300 mA g(-1) was observed after 50 cycles for NMOFs-derived Co3O4 porous nanocages, which corresponds to 94.09% of the initial capacity (1557 mA h g(-1)), indicating excellent stability. The capacity of NMOFs-derived Co3O4 is higher than that of other Co3O4 nanostructures obtained by a conventional two-step route, including nanosheets (1450 mA h g(-1) at 50 m

  1. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hu, Lin; Chen, Qianwang

    2014-01-01

    Lithium-ion batteries (LIBs), owing to their high energy density, light weight, and long cycle life, have shown considerable promise for storage devices. The successful utilization of LIBs depends strongly on the preparation of nanomaterials with outstanding lithium storage properties. Recent progress has demonstrated that hollow/porous nanostructured oxides are very attractive candidates for LIBs anodes due to their high storage capacities. Here, we aim to provide an overview of nanoscale metal-organic frameworks (NMOFs)-templated synthesis of hollow/porous nanostructured oxides and their LIBs applications. By choosing some typical NMOFs as examples, we present a comprehensive summary of synthetic procedures for nanostructured oxides, such as binary, ternary and composite oxides. Hollow/porous structures are readily obtained due to volume loss and release of internally generated gas molecules during the calcination of NMOFs in air. Interestingly, the NMOFs-derived hollow/porous structures possess several special features: pores generated from gas molecules release will connect to each other, which are distinct from ``dead pores'' pore size often appears to be <10 nm; in terms of surface chemistry, the pore surface is hydrophobic. These structural features are believed to be the most critical factors that determine LIBs' performance. Indeed, it has been shown that these NMOFs-derived hollow/porous oxides exhibit excellent electrochemical performance as anode materials for LIBs, including high storage capacity, good cycle stability, and so on. For example, a high charge capacity of 1465 mA h g-1 at a rate of 300 mA g-1 was observed after 50 cycles for NMOFs-derived Co3O4 porous nanocages, which corresponds to 94.09% of the initial capacity (1557 mA h g-1), indicating excellent stability. The capacity of NMOFs-derived Co3O4 is higher than that of other Co3O4 nanostructures obtained by a conventional two-step route, including nanosheets (1450 mA h g-1 at 50 mA g-1

  2. Trinuclear Metal Chalcogenide Clusters as Precursors for Superatomic Solids and Cluster Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Shott, Jessica Lauren

    Inorganic molecular clusters Ni3(mu3-I) 2(mu2-dppm)3 (1), Ni3(mu 3-Te)2(mu2-dppm)3 (2), Ni3(mu3-Se)2(mu2-dppm) 3 (3), Ni3(mu3-S)2(mu 2-dppm)3 (4), Co4(mu3-S) 4(PPri3)4 (5), and Mo3(mu3-S)2(mu2-S)3(PMe 3)6 (6) have been used as building block precursors in the formation of binary superatomic solids with fullerenes (1-6•C 60). These solids are crystallized from solution and charge transfer from the electron-rich molecular cluster precursors to fullerene was confirmed using infrared (IR) spectroscopy. Structural data for these superatomic solids was obtained using single-crystal X-ray diffraction (XRD) experiments and suggests that their assembly is directed by noncovalent interactions. Close-contacts, reminiscent of halogen bonds, between cluster capping ligands and fulleride anions are observed in the solid state. Superconducting quantum interference device (SQUID) magnetometry and two-probe conductivity measurements indicate that compounds 1•C60 and 2•C 60 are paramagnetic and one hundred times more conductive than the constituent cluster precursors. Additionally, derivatives of molecular clusters 5 and 6 have been synthesized and investigated for use as superatomic secondary building units for 2D and 3D cluster organic frameworks. Characterization of these novel building blocks was accomplished using NMR spectroscopy as well as matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and XRD analysis.

  3. A study of rotating globular clusters. The case of the old, metal-poor globular cluster NGC 4372

    NASA Astrophysics Data System (ADS)

    Kacharov, N.; Bianchini, P.; Koch, A.; Frank, M. J.; Martin, N. F.; van de Ven, G.; Puzia, T. H.; McDonald, I.; Johnson, C. I.; Zijlstra, A. A.

    2014-07-01

    Context. NGC 4372 is a poorly studied old, very metal-poor globular cluster (GC) located in the inner Milky Way halo. Aims: We present the first in-depth study of the kinematic properties and derive the structural parameters of NGC 4372 based on the fit of a Plummer profile and a rotating, physical model. We explore the link between internal rotation to different cluster properties and together with similar studies of more GCs, we put these in the context of globular cluster formation and evolution. Methods: We present radial velocities for 131 cluster member stars measured from high-resolution FLAMES/GIRAFFE observations. Their membership to the GC is additionally confirmed from precise metallicity estimates. We build a velocity dispersion profile and a systemic rotation curve using this kinematic data set. Additionally, we obtain an elliptical number density profile of NGC 4372 based on optical images using a Markov chain Monte Carlo fitting algorithm. From this, we derive the cluster's half-light radius and ellipticity as rh = 3.44' ± 0.04' and ɛ = 0.08 ± 0.01. Finally, we give a physical interpretation of the observed morphological and kinematic properties of this GC by fitting an axisymmetric, differentially rotating, dynamical model. Results: Our results show that NGC 4372 has an unusually high ratio of rotation amplitude to velocity dispersion (1.2 vs. 4.5 km s-1) for its metallicity. This puts it in line, however, with two other exceptional, very metal-poor GCs: M 15 and NGC 4590. We also find a mild flattening of NGC 4372 in the direction of its rotation. Given its old age, this suggests that the flattening is indeed caused by the systemic rotation rather than tidal interactions with the Galaxy. Additionally, we estimate the dynamical mass of the GC Mdyn = 2.0 ± 0.5 × 105M⊙ based on the dynamical model, which constrains the mass-to-light ratio of NGC 4372 between 1.4 and 2.3 M⊙/L⊙, representative of an old, purely stellar population. Based on

  4. Energies, charges, and sizes of clusters under ion sputtering of a metal

    SciTech Connect

    Matveev, V. I. Kochkin, S. A.

    2010-04-15

    A theory of ion sputtering of a metal in the form of neutral and singly charged clusters with a number of atoms of N {>=} 5 has been developed. This theory is based on simple physical assumptions and agrees well with experiment. The results are presented in the form of expressions convenient for practical use. The energy spectra of clusters, charge distributions, ionization coefficients, and total yields of neutral and singly charged clusters at different target temperatures are calculated in terms of the proposed theory as an example.

  5. Obscured clusters. II. GLIMPSE-C02 - A new metal rich globular cluster in the Milky Way

    NASA Astrophysics Data System (ADS)

    Kurtev, R.; Ivanov, V. D.; Borissova, J.; Ortolani, S.

    2008-10-01

    Context: The estimated total number of Milky Way globulars is 160 ± 20. The question of whether there are any more undiscovered globular clusters in the Milky Way is particularly relevant with advances in near and mid-IR instrumentation. Aims: This investigation is a part of a long-term project to search the inner Milky Way for hidden star clusters and to study them in detail. GLIMPSE-C02 (G02) is one of these objects, situated near the Galactic plane (l = 14.129 deg, b = -0.644 deg). Methods: Our analysis is based on SOFI/NTT JHKS imaging and low resolution (R˜ 1400) spectroscopy of three bright cluster red giants in the K atmospheric window. We derived the metal abundance by analysis of these spectra and from the slope of the RGB. Results: The cluster is deeply embedded in dust and undergoes a mean reddening of AV ~ 24.8 ± 3 mag. The distance to the object is D = 4.6 ± 0.7 kpc. The metal abundance of G02 is [Fe/H]H96 = -0.33± 0.14 and [Fe/H]CG = -0.16 ± 0.12 using different scales. The best fit to the radial surface brightness profile with a single-mass King's model yields a core radius rc = 0.70 arcmin (0.9 pc), tidal radius rt = 15 arcmin (20 pc), and central concentration c = 1.33. Conclusions: We demonstrate that G02 is new Milky Way globular cluster, among the most metal rich globular clusters in the Galaxy. The object is physically located at the inner edge of the thin disk and the transition region with the bulge, and also falls in the zone of the “missing” globulars toward the central region of the Milky Way. Based on observations collected with the ESO New Technology Telescope, observing program 77.D-0089. Table with photometry is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/489/583

  6. Temporal stability of magic-number metal clusters: beyond the shell closing model

    NASA Astrophysics Data System (ADS)

    Desireddy, Anil; Kumar, Santosh; Guo, Jingshu; Bolan, Michael D.; Griffith, Wendell P.; Bigioni, Terry P.

    2013-02-01

    The anomalous stability of magic-number metal clusters has been associated with closed geometric and electronic shells and the opening of HOMO-LUMO gaps. Despite this enhanced stability, magic-number clusters are known to decay and react in the condensed phase to form other products. Improving our understanding of their decay mechanisms and developing strategies to control or eliminate cluster instability is a priority, to develop a more complete theory of their stability, to avoid studying mixtures of clusters produced by the decay of purified materials, and to enable technology development. Silver clusters are sufficiently reactive to facilitate the study of the ambient temporal stability of magic-number metal clusters and to begin to understand their decay mechanisms. Here, the solution phase stability of a series of silver:glutathione (Ag:SG) clusters was studied as a function of size, pH and chemical environment. Cluster stability was found to be a non-monotonic function of size. Electrophoretic separations showed that the dominant mechanism involved the redistribution of mass toward smaller sizes, where the products were almost exclusively previously known cluster sizes. Optical absorption spectra showed that the smaller clusters evolved toward the two most stable cluster sizes. The net surface charge was found to play an important role in cluster stabilization although charge screening had no effect on stability, contrary to DLVO theory. The decay mechanism was found to involve the loss of Ag+ ions and silver glutathionates. Clusters could be stabilized by the addition of Ag+ ions and destabilized by either the addition of glutathione or the removal of Ag+ ions. Clusters were also found to be most stable in near neutral pH, where they had a net negative surface charge. These results provide new mechanistic insights into the control of post-synthesis stability and chemical decay of magic-number metal clusters, which could be used to develop design principles

  7. Nano-confinement inside molecular metal oxide clusters: Dynamics and modified encapsulation behavior

    SciTech Connect

    Wang, Zhe; Daemen, Luke L.; Cheng, Yongqiang; Mamontov, Eugene; Bonnesen, Peter V.; Hong, Kunlun; Ramirez-Cuesta, Anibal J.; Yin, Panchao

    2016-08-19

    Encapsulation behavior, as well as the presence of internal catalytically-active sites, has been spurring the applications of a 3 nm hollow spherical metal oxide cluster {Mo132} as an encapsulation host and a nano-reactor. Due to its well-defined and tunable cluster structures, and nano-scaled internal void space comparable to the volumes of small molecules, this cluster provides a good model to study the dynamics of materials under ultra-confinement. Neutron scattering studies suggest that bulky internal ligands inside the cluster show slower and limited dynamics compared to their counterparts in the bulk state, revealing the rigid nature of the skeleton of the internal ligands. Furthermore, NMR studies indicate that the rigid internal ligands that partially cover the interfacial pore on the molybdenum oxide shells are able to block some large guest molecules from going inside the capsule cluster, which provides a convincing protocol for size-selective encapsulation and separation.

  8. S-P coupling induced unusual open-shell metal clusters.

    PubMed

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Melko, Joshua J; Castleman, A W

    2014-04-02

    Metal clusters featuring closed supershells or aromatic character usually exhibit remarkably enhanced stability in their cluster series. However, not all stable clusters are subject to these fundamental constraints. Here, by employing photoelectron imaging spectroscopy and ab initio calculations, we present experimental and theoretical evidence on the existence of unexpectedly stable open-shell clusters, which are more stable than their closed-shell and aromatic counterparts. The stabilization of these open-shell Al-Mg clusters is proposed to originate from the S-P molecular orbital coupling, leading to highly stable species with increased HOMO-LUMO gaps, akin to s-p hybridization in an organic carbon atom that is beneficial to form stable species. Introduction of the coupling effect highlighted here not only shows the limitations of the conventional closed-shell model and aromaticity but also provides the possibility to design valuable building blocks.

  9. Nano-confinement inside molecular metal oxide clusters: Dynamics and modified encapsulation behavior

    SciTech Connect

    Wang, Zhe; Daemen, Luke L.; Cheng, Yongqiang; Mamontov, Eugene; Bonnesen, Peter V.; Hong, Kunlun; Ramirez-Cuesta, Anibal J.; Yin, Panchao

    2016-08-19

    Encapsulation behavior, as well as the presence of internal catalytically-active sites, has been spurring the applications of a 3 nm hollow spherical metal oxide cluster {Mo132} as an encapsulation host and a nano-reactor. Due to its well-defined and tunable cluster structures, and nano-scaled internal void space comparable to the volumes of small molecules, this cluster provides a good model to study the dynamics of materials under ultra-confinement. Neutron scattering studies suggest that bulky internal ligands inside the cluster show slower and limited dynamics compared to their counterparts in the bulk state, revealing the rigid nature of the skeleton of the internal ligands. Furthermore, NMR studies indicate that the rigid internal ligands that partially cover the interfacial pore on the molybdenum oxide shells are able to block some large guest molecules from going inside the capsule cluster, which provides a convincing protocol for size-selective encapsulation and separation.

  10. DFT study of adsorption of CO2 on palladium cluster doped by transition metal

    NASA Astrophysics Data System (ADS)

    Saputro, A. G.; Agusta, M. K.; Wungu, T. D. K.; Suprijadi; Rusydi, F.; Dipojono, H. K.

    2016-08-01

    We report on a theoretical study of CO2 adsorption on Pd6-M (M: Ni, Cu, Pt, Rh) cluster using first-principles density functional theory (DFT) calculations. We find that CO2 molecule is adsorbed with a bidendate configuration on Pd7 and on most of Pd6M clusters. The bidendate adsorption configuration is formed due to the filling of the unoccupied n* orbital of CO2 molecule upon its interaction with d-orbitals of the cluster. We find that transition metal doping could modify the adsorption energy, adsorption site and adsorption configuration of CO2 molecule on Pd7 cluster. We also predict that the usage of Pd6M clusters as CO2 hydrogenation catalysts might facilitate the formations of HCOO/COOH.

  11. Effect of electron impact ionization in laser-metal-cluster interactions

    NASA Astrophysics Data System (ADS)

    Liang, Zhenfeng; Zhang, Bo; Liu, Hongjie; Li, Xibo; Luo, Jiangshan; Zhou, Weimin; Cao, Leifeng; Yi, Yougen; Gu, Yuqiu

    2017-05-01

    The effects of electron impact ionization (EII) in laser-metal-cluster interactions are investigated with two-dimensional particle-in-cell simulations. For large Cu clusters (R = 10 nm) heated by moderate laser pulses (peak intensities I M = 8.8 × 1015 W cm-2), the effects of EII depend on the atom/ion density of neutral cluster or cluster plasma. In high density neutral cluster (HDNC), EII is the dominant ionization mechanism and EII efficiency reaches 55%. However, in the case of low density cluster plasma (LDCP), EII plays a minor role that only increases the mean ion charges by 5%. Moreover, when EII is considered, the energy of ions with the same charges is reduced by 60% in the HDNC case but not in the LDCP case. This is due to the fact that ions in HDNC mainly gain energy through hydrodynamic expansion while ions in LDCP obtain energy through Coulomb explosion. More importantly, it is found that EII efficiency increases when the density of cluster plasma increases and is most pronounced in the neutral cluster. The density dependence of the EII efficiency provides a control mechanism for cluster ionization products with pump-probe technology.

  12. Quantum chemical calculation of the equilibrium structures of small metal atom clusters

    NASA Technical Reports Server (NTRS)

    Kahn, L. R.

    1982-01-01

    Metal atom clusters are studied based on the application of ab initio quantum mechanical approaches. Because these large 'molecular' systems pose special practical computational problems in the application of the quantum mechanical methods, there is a special need to find simplifying techniques that do not compromise the reliability of the calculations. Research is therefore directed towards various aspects of the implementation of the effective core potential technique for the removal of the metal atom core electrons from the calculations.

  13. Phosphorus vacancy cluster model for phosphorus diffusion gettering of metals in Si

    SciTech Connect

    Chen, Renyu; Trzynadlowski, Bart; Dunham, Scott T.

    2014-02-07

    In this work, we develop models for the gettering of metals in silicon by high phosphorus concentration. We first performed ab initio calculations to determine favorable configurations of complexes involving phosphorus and transition metals (Fe, Cu, Cr, Ni, Ti, Mo, and W). Our ab initio calculations found that the P{sub 4}V cluster, a vacancy surrounded by 4 nearest-neighbor phosphorus atoms, which is the most favorable inactive P species in heavily doped Si, strongly binds metals such as Cu, Cr, Ni, and Fe. Based on the calculated binding energies, we build continuum models to describe the P deactivation and Fe gettering processes with model parameters calibrated against experimental data. In contrast to previous models assuming metal-P{sub 1}V or metal-P{sub 2}V as the gettered species, the binding of metals to P{sub 4}V satisfactorily explains the experimentally observed strong gettering behavior at high phosphorus concentrations.

  14. Advanced use of high-performance liquid chromatography for synthesis of controlled metal clusters

    NASA Astrophysics Data System (ADS)

    Niihori, Yoshiki; Matsuzaki, Miku; Uchida, Chihiro; Negishi, Yuichi

    2014-06-01

    Because the synthesis of metal clusters with multiple ligand types results in a distribution of ligands, high-resolution separation of each unique cluster from the mixture is required for precise control of the ligand composition. Reverse-phase high-performance liquid chromatography combined with appropriate transitioning of the mobile phase composition is an extremely effective means of separating ligand combinations when working with metal clusters protected by two different types of thiolates. We report herein advanced use of this method. The studies involving Au24Pd(SR1)18-x(SR2)x and Au24Pd(SR1)18-x(SeR2)x (SR1, SR2 = thiolate, SeR2 = selenolate) revealed the following. (1) In general, an increase in the difference between the polarities of the functional groups incorporated in the two types of ligands improves the separation resolution. A suitable ligand combination for separation can be predicted from the retention times of Au24Pd(SR1)18 and Au24Pd(SR2)18, which cause the terminal peaks in a series of peaks. (2) The use of a step-gradient program during the mobile phase substitution results in improved resolution compared to that achievable with the linear gradients applied in prior work. (3) This technique is also useful for the evaluation of the chemical compositions of metal clusters protected by two different types of ligands with similar molecular weights. These findings will provide clear design guidelines for the functionalization of metal clusters via control of the ligand composition, and will also improve our understanding of the high-resolution isolation of metal clusters.Because the synthesis of metal clusters with multiple ligand types results in a distribution of ligands, high-resolution separation of each unique cluster from the mixture is required for precise control of the ligand composition. Reverse-phase high-performance liquid chromatography combined with appropriate transitioning of the mobile phase composition is an extremely effective

  15. Nonlinear Color-Metallicity Relations of Globular Clusters. VII. Nonlinear Absorption-line Index versus Metallicity Relations and Bimodal Index Distributions of NGC 5128 Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kim, Sooyoung; Yoon, Suk-Jin

    2017-07-01

    Spectroscopy on the globular cluster (GC) system of NGC 5128 revealed bimodality in absorption-line index distributions of its old GCs. GC division is a widely observed and studied phenomenon whose interpretation has depicted host galaxy formation and evolution such that it harbors two distinct metallicity groups. Such a conventional view of GC bimodality has mainly been based on photometry. The recent GC photometric data, however, presented an alternative perspective in which the nonlinear metallicity-to-color transformation is responsible for color bimodality of GC systems. Here we apply the same line of analysis to the spectral indices and examine the absorption-line index versus metallicity relations for the NGC 5128 GC system. NGC 5128 GCs display nonlinearity in the metallicity-index planes, most prominently for the Balmer lines and by a non-negligible degree for the metallicity-sensitive magnesium line. We demonstrate that the observed spectroscopic division of NGC 5128 GCs can be caused by the nonlinear nature of the metallicity-to-index conversions and thus one does not need to resort to two separate GC subgroups. Our analysis incorporating this nonlinearity provides a new perspective on the structure of NGC 5128's GC system, and a further piece to the global picture of the formation of GC systems and their host galaxies.

  16. Quintuple super bonding between the superatoms of metallic clusters.

    PubMed

    Wang, Haiyan; Cheng, Longjiu

    2017-09-14

    The synthesis of a stable compound with Cr-Cr quintuple bonding (σ, 2π, 2δ) opened the door to a new field of chemistry (T. Nguyen, A. D. Sutton, M. Brynda, J. C. Fettinger, G. J. Long and P. P. Power, Science, 2005, 310, 844). Looking back to the mass experiments on sodium clusters (W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou and M. L. Cohen, Phys. Rev. Lett., 1984, 52, 2141), this work tells some new stories about the experimentally viewed magic numbers 26e and 30e. By unbiased global search, the 26e Li20Mg3 cluster has a perfect double-icosahedral motif with a large HOMO-LUMO energy gap (1.44 eV). We theoretically found that each icosahedron is an independent superatom and molecule-like electronic shell-closure is achieved via quintuple super bonding between two superatoms: [8e](1D2S)(5)-(1D2S)(5)[8e]. Similar quintuple bonding also exists in the 30e double-icosahedral Li18Mg3Al2 cluster: [8e](1D2S)(7)-(1D2S)(7)[8e]. The 26e/30e quintuple bonding was verified by the beautiful analogies in molecular orbital diagrams and chemical bonding patterns with V2/Re2 molecules. Such a quintuple super bonding makes a bridge between the jellium model and chemical bonding, which further expands the community of chemical bonds.

  17. The Effect of Metallicity on Surface Lithium Abundance in Hyades-Aged Open Clusters

    NASA Astrophysics Data System (ADS)

    Gayetsky, Lisa; Cummings, J.; Deliyannis, C. P.; Steinhauer, A.; James, D.; Sarajedini, A.

    2007-12-01

    Two of the most important predictions from standard stellar evolution theory about the lithium depletion of solar-type F and G dwarfs are that it occurs primarily during the pre-main sequence and that it depends on metallicity. Abundant evidence from star clusters shows that Li depletion does indeed occur during the pre-main sequence, but then also continues during the main sequence, perhaps due to the effects of (non-standard) rotationally-induced or wave-induced mixing. However, little is known about whether Li depletion depends on metallicity. To test the predicted dependence of standard Li depletion on metallicity, a program has begun that compares the Li-Teff relation in Hyades-aged clusters of different metallicities. Here, we present high resolution results from WIYN/Hydra observations of IC 4756. We find, first, that our data qualitatively support the prediction that stars with higher metallicity have depleted more Li. Second, if a reasonable adjustment is made to the (unknown) initial cluster Li abundances that is consistent with knowledge of Galactic Li production from the field dwarf Li-Fe relation, then our data are also in good quantitative agreement with the metallicity-dependence of the Li depletion from standard theory. This work has been supported by the National Science Foundation under grants AST-0452975 and AST-0206202.

  18. Pulse laser-induced generation of cluster codes from metal nanoparticles for immunoassay applications

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Yin; Chu, Han-Wei; Unnikrishnan, Binesh; Peng, Lung-Hsiang; Cang, Jinshun; Hsu, Pang-Hung; Huang, Chih-Ching

    2017-05-01

    In this work, we have developed an assay for the detection of proteins by functionalized nanomaterials coupled with laser-induced desorption/ionization mass spectrometry (LDI-MS) by monitoring the generation of metal cluster ions. We achieved selective detection of three proteins [thrombin, vascular endothelial growth factor-A165 (VEGF-A165), and platelet-derived growth factor-BB (PDGF-BB)] by modifying nanoparticles (NPs) of three different metals (Au, Ag, and Pt) with the corresponding aptamer or antibody in one assay. The Au, Ag, and Pt acted as metal bio-codes for the analysis of thrombin, VEGF-A165, and PDGF-BB, respectively, and a microporous cellulose acetate membrane (CAM) served as a medium for an in situ separation of target protein-bound and -unbound NPs. The functionalized metal nanoparticles bound to their specific proteins were subjected to LDI-MS on the CAM. The functional nanoparticles/CAM system can function as a signal transducer and amplifier by transforming the protein concentration into an intense metal cluster ion signal during LDI-MS analysis. This system can selectively detect proteins at picomolar concentrations. Most importantly, the system has great potential for the detection of multiple proteins without any pre-concentration, separation, or purification process because LDI-MS coupled with CAM effectively removes all signals except for those from the metal cluster ions.

  19. Metal, Semiconductor, and Carbon Cluster Studies Including the Discovery and Characterization of Carbon -60: Buckminsterfullerene.

    NASA Astrophysics Data System (ADS)

    Heath, James Richard

    Experiments using the laser vaporization technique for production of metal clusters have been performed. The reactions of neutral metal clusters with various gases have been studied using a fast flow reactor. Dramatic reactivity variations were observed which depended on cluster size, metal, and reactant. A laser vaporization disc source has been developed for the study of semiconductor clusters. Some preliminary studies on neutral germanium and silicon clusters were performed. Their ionization potentials have been bracketed and the clusters were found to fragment by a fissioning process and to have long lived (100 nanoseconds) excited electronic states. A detailed study has been undertaken into carbon clusters. Laser synthesis of astrophysically important polyyne molecules such as H-C-(C-C)_{ rm 2n}-N has been done. Chains containing up to 22 carbon atoms are formed in a vaporized carbon and reactant gas plasma. A photophysically stable and chemically inert cluster, C_{60}, has been discovered and hypothesized to have the structure of a truncated icosahedron. All even clusters in the 60 atom size range were found to be inert to highly reactive gases, while odd clusters readily reacted. The results are consistent with a whole series (30-90 atoms) of closed cage-like structures. Closure of even clusters only is possible via the inclusion of twelve pentagons into a hexagonal network. Odd clusters show neither the photophysical nor chemical stability of the even clusters. A mechanism for the formation of spherical soot particles has been developed. Stable organometallic complexes of the formula C_{rm 2n}M (20 < n < 40 and M = La, Ba, Sr, Ca) have been laser synthesized. The dominant complex observed was C_{60}M ^+. These species are photophysically stable, chemically inert, and no C_{rm 2n}M_2^ecies were detected. The ultraviolet and visible absorption spectrum of C_{60} has been measured. Because excited electronic states are not expected to live long in a molecule

  20. Advanced use of high-performance liquid chromatography for synthesis of controlled metal clusters.

    PubMed

    Niihori, Yoshiki; Matsuzaki, Miku; Uchida, Chihiro; Negishi, Yuichi

    2014-07-21

    Because the synthesis of metal clusters with multiple ligand types results in a distribution of ligands, high-resolution separation of each unique cluster from the mixture is required for precise control of the ligand composition. Reverse-phase high-performance liquid chromatography combined with appropriate transitioning of the mobile phase composition is an extremely effective means of separating ligand combinations when working with metal clusters protected by two different types of thiolates. We report herein advanced use of this method. The studies involving Au₂₄Pd(SR₁)₁₈-x(SR₂)x and Au₂₄Pd(SR₁)₁₈-x(SeR₂)x (SR₁, SR₂ = thiolate, SeR₂ = selenolate) revealed the following. (1) In general, an increase in the difference between the polarities of the functional groups incorporated in the two types of ligands improves the separation resolution. A suitable ligand combination for separation can be predicted from the retention times of Au₂₄Pd(SR₁)₁₈ and Au₂₄Pd(SR₂)₁₈, which cause the terminal peaks in a series of peaks. (2) The use of a step-gradient program during the mobile phase substitution results in improved resolution compared to that achievable with the linear gradients applied in prior work. (3) This technique is also useful for the evaluation of the chemical compositions of metal clusters protected by two different types of ligands with similar molecular weights. These findings will provide clear design guidelines for the functionalization of metal clusters via control of the ligand composition, and will also improve our understanding of the high-resolution isolation of metal clusters.

  1. Polyoxometalate Cluster-Incorporated Metal-Organic Framework Hierarchical Nanotubes.

    PubMed

    Xu, Xiaobin; Chen, Shuangming; Chen, Yifeng; Sun, Hongyu; Song, Li; He, Wei; Wang, Xun

    2016-06-01

    A simple method to prepare metal-organic framework (MOF) nanotubes is developed by employing polyoxometalates (POMs) as modulators. The local structure of the MOF nanotubes is investigated combining XANES and EXAFS studies. These nanotubes show both an excellent catalytic performance in the detoxification of sulfur compounds in O2 atmosphere and a remarkable cycling stability as the anode material for lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Deciphering the Structural Evolution and Electronic Properties of Magnesium Clusters: An Aromatic Homonuclear Metal Mg17 Cluster.

    PubMed

    Xia, Xinxin; Kuang, Xiaoyu; Lu, Cheng; Jin, Yuanyuan; Xing, Xiaodong; Merino, Gabriel; Hermann, Andreas

    2016-10-13

    The structures and electronic properties of low-energy neutral and anionic Mgn (n = 3-20) clusters have been studied by utilizing a widely adopted CALYPSO structure searching method coupled with density functional theory calculations. A large number of low-energy isomers are optimized at the B3PW91 functional with the 6-311+G(d) basis set. The optimized geometries clearly indicate that a structural transition from hollow three-dimensional configurations to filled-cage-like structures occurs at n = 16 for both neutral and anionic clusters. Based on the anionic ground state structures, photoelectron spectra are simulated using time-dependent density functional theory (TD-DFT) and compared with experimental results. The good agreement validates that the current ground state structures, obtained from the symmetry-unconstrained searches, are true global minima. A detailed chemical bonding analysis distinctly indicates that the Mg17 cluster is the first neutral locally π-aromatic homonuclear all-metal cluster, which perfectly satisfies Hückel's well-known 4N + 2 rule.

  3. Catalytic Conversion of Short-Chain Alcohols on Atomically Dispersed Au and Pd Supported on Nanoscale Metal Oxides

    NASA Astrophysics Data System (ADS)

    Wang, Chongyang

    With the development of technologies for cellulosic biomass conversion to fuels and chemicals, bio-alcohols are among the main alternative feedstocks to fossil fuels. The research pursued in my thesis was the investigation of gold and palladium as catalysts for the application of short aliphatic alcohols to hydrogen generation and value-added chemicals production. Specifically, selective methanol steam reforming and non-oxidative ethanol dehydrogenation to hydrogen and acetaldehyde were investigated in this thesis work. A major aim of the thesis was to develop atomically efficient catalysts with tuned surface chemistry for the desired reactions, using suitable synthesis methods. Methanol steam reforming (SRM) for hydrogen production has recently been investigated on gold catalysts to overcome the drawbacks of copper catalysts (deactivation, pyrophoricity). Previous work at Tufts University has shown that both CeO2 and ZnO are suitable supports for gold. In this thesis, nanoscale composite oxides ZnZrOx were prepared by a carbon hard-template method, which resulted in homogeneous distribution of Zn species in the matrix of ZrO2. Tunable surface chemistry of ZnZrO x was demonstrated by varying the Zn/Zr ratio to suppress the strong Lewis acidity of ZrO2, which leads to undesired production of CO through methanol decomposition. With atomic dispersion of gold, Au/ZnZrO x catalyzes the SRM reaction exclusively via the methanol self-coupling pathway up to 375°C. The activity of Au/ZnZrOx catalysts was compared to Au/TiO2, which is another catalyst system demonstrating atomic dispersion of gold. Similarity in the apparent activation energy of SRM on all the supported gold catalysts studied in this thesis and in the literature further confirms the same single-site Au-Ox-MO centers as active sites for SRM with indirect effects of the supports exploited. With this fundamental understanding of gold-catalyzed C1 alcohol reforming, the Au/ZnZrOx catalyst was evaluated for the

  4. Trap state passivation improved hot-carrier instability by zirconium-doping in hafnium oxide in a nanoscale n-metal-oxide semiconductor-field effect transistors with high-k/metal gate

    SciTech Connect

    Liu, Hsi-Wen; Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Chang, Ting-Chang; Chen, Ching-En; Tseng, Tseung-Yuen; Lin, Chien-Yu; Cheng, Osbert; Huang, Cheng-Tung; Ye, Yi-Han

    2016-04-25

    This work investigates the effect on hot carrier degradation (HCD) of doping zirconium into the hafnium oxide high-k layer in the nanoscale high-k/metal gate n-channel metal-oxide-semiconductor field-effect-transistors. Previous n-metal-oxide semiconductor-field effect transistor studies demonstrated that zirconium-doped hafnium oxide reduces charge trapping and improves positive bias temperature instability. In this work, a clear reduction in HCD is observed with zirconium-doped hafnium oxide because channel hot electron (CHE) trapping in pre-existing high-k bulk defects is the main degradation mechanism. However, this reduced HCD became ineffective at ultra-low temperature, since CHE traps in the deeper bulk defects at ultra-low temperature, while zirconium-doping only passivates shallow bulk defects.

  5. Asymmetric partitioning of metals among cluster anions and cations generated via laser ablation of mixed aluminum/Group 6 transition metal targets.

    PubMed

    Waller, Sarah E; Mann, Jennifer E; Jarrold, Caroline Chick

    2013-02-28

    While high-power laser ablation of metal alloys indiscriminately produces gas-phase atomic ions in proportion to the abundance of the various metals in the alloy, gas-phase ions produced by moderate-power laser ablation sources coupled with molecular beams are formed by more complicated mechanisms. A mass spectrometric study that directly compares the mass distributions of cluster anions and cations generated from laser ablation of pure aluminum, an aluminum/molybdenum mixed target, and an aluminum/tungsten mixed target is detailed. Mass spectra of anionic species generated from the mixed targets showed that both tungsten and molybdenum were in higher abundance in the negatively charged species than in the target material. Mass spectra of the cationic species showed primarily Al(+) and aluminum oxide and hydroxide cluster cations. No molybdenum- or tungsten-containing cluster cations were definitively assigned. The asymmetric distribution of aluminum and Group 6 transition metals in cation and anion cluster composition is attributed to the low ionization energy of atomic aluminum and aluminum suboxide clusters. In addition, the propensity of both molybdenum and tungsten to form metal oxide cluster anions under the same conditions that favor metallic aluminum cluster anions is attributed to differences in the optical properties of the surface oxide that is present in the metal powders used to prepare the ablation targets. Mechanisms of mixed metal oxide clusters are considered.

  6. Negative ion photoelectron spectroscopic studies of transition metal cluster

    NASA Astrophysics Data System (ADS)

    Marcy, Timothy Paul

    The studies reported in this thesis were performed using a negative ion photoelectron spectrometer consisting of a cold cathode DC discharge ion source, a flowing afterglow ion-molecule reactor, a magnetic sector mass analyzer, an argon ion laser for photodetachment and a hemispherical electron kinetic energy analyzer and microchannel plate detector for photoelectron spectrum generation. The 476.5 nm (2.601 eV), 488.0 nm (2.540 eV) and 514.5 nm (2.410 eV) negative ion photoelectron spectra of VMn are reported and compared to the previously studied spectra of isoelectronic Cr2.1 The photoelectron spectra are remarkably similar to those of Cr2 in electron affinity and vibrational frequencies. The 488.0 nm photoelectron spectra and electron affinities of Nb n- (n = 1 - 9) are reported with discussion of observed vibrational structure. There are transitions to several electronic states of Nb2 in the reported spectra with overlapping vibrational progressions. The spectra of Nb3, Nb4 and Nb6 show partially resolved vibrational structure in the transitions to the lowest observed electronic state of each cluster. There is a single distinct active vibrational mode in the transition to the ground state of Nb8. Spin-orbit energies of Nb- are also reported. The 488.0 nm negative ion photoelectron spectra of Nb3H(D) are reported and compared to those of Nb3. There is a single vibrational mode active in the spectra of Nb3H(D) which is very similar to the most distinct mode active in the spectrum of Nb3. The 488.0 nm photoelectron spectra of the NbxCyH(D) y- (x = 1, 2, 3, y = 2, 4, 6) dehydrogenated products of the reactions of ethylene with niobium cluster anions are reported. Temperature studies of some of these species give evidence for the presence of multiple isomers of each molecule in the ion beam. The spectra of NbC6H(D) 6 are identical to those obtained from the reactions of benzene with niobium clusters and indicate that benzene is being formed from ethylene in the flow

  7. Controllable Assembly, Structures, and Properties of Lanthanide-Transition Metal-Amino Acid Clusters

    NASA Astrophysics Data System (ADS)

    Xiang, Sheng-Chang; Hu, Sheng-Min; Sheng, Tian-Lu; Chen, Ling; Wu, Xin-Tao

    Amino acids are the basic building blocks in the chemistry of life. This chapter describes the controllable assembly, structures and properties of lathanide(III)-transition metal-amino acid clusters developed recently by our group. The effects on the assembly of several factors of influence, such as presence of a secondary ligand, lanthanides, crystallization conditions, the ratio of metal ions to amino acids, and transition metal ions have been expounded. The dynamic balance of metalloligands and the substitution of weak coordination bonds account for the occurrence of diverse structures in this series of compounds.

  8. Glass formation and cluster evolution in the rapidly solidified monatomic metallic liquid Ta under high pressure

    NASA Astrophysics Data System (ADS)

    Jiang, Dejun; Wen, Dadong; Tian, Zean; Liu, Rangsu

    2016-12-01

    Molecular dynamics (MD) simulations have been performed to examine the glass formation and cluster evolution during the rapid solidification of monatomic metallic liquid Ta under high pressure. The atomic structures in the systems are characterized by the radical distribution function (RDF), Honeycutt-Anderson (H-A) bond-type index method and cluster-type index method (CTIM). It is observed that the defective icosahedra play the critical role in the formation of Ta monatomic metallic glasses (MGs) rather than (12 0 12 0) perfect icosahedra, which have been identified as the basic local atomic units in many multi-component MGs. With the increase of pressure P, the fraction of icosahedral type clusters decreases remarkably in Ta MGs, while the fraction of bcc type clusters rises evidently. The evolution of vitrification degree (DSRO or DMRO) of the rapidly cooled metal Ta system further reveals that a higher pressure P is disadvantageous to the formation of Ta monatomic MGs. The weaker glass forming ability (GFA) of liquid metal Ta obtained under higher pressure P can be contributed to the decrease of DSRO or DMRO which is induced by increasing high pressure P to some extent.

  9. Carbonyl clusters of transition metals on oxide supports as heterogeneous catalysts for hydrocarbon synthesis

    SciTech Connect

    Kuznetsov, B.N.; Koval`chuk, V.I.

    1995-05-01

    The methods of preparation of heterogeneous catalysts by immobilization of carbonyl clusters of transition metals on oxide supports, as well as the study of the state of supported compounds and their catalytic properties in CO hydrogenation and olefin hydroformulation are briefly reviewed.

  10. Ring current and electron delocalisation in an all-metal cluster, Al 42-

    NASA Astrophysics Data System (ADS)

    Fowler, P. W.; Havenith, R. W. A.; Steiner, E.

    2002-06-01

    Localised-orbital analysis of the current density induced by a perpendicular magnetic field in square-planar Al 42- demonstrates the intrinsic non-localisability of the σ electrons of this metallic cluster and confirms their dominant role in its diamagnetic ring current. Though delocalised, the π electrons do not give rise to a significant ring current.

  11. Optical response and gas sequestration properties of metal cluster supported graphene nanoflakes.

    PubMed

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2016-07-28

    The possibility of obtaining metal cluster (M3O(+), M = Li, Na, K) supported pristine, B-doped and BN-doped graphene nanoflakes (GR, BGR and BNGR, respectively) has been investigated by carrying out density functional theory (DFT) based calculations. Thermochemical analysis reveals the good stability of M3O(+)@GR/BGR/BNGR moieties. The dynamic stability of M3O(+)@GR/BGR/BNGR moieties is confirmed through an atom-centered density matrix propagation simulation at 298 K up to 500 fs. Orbital and electrostatic interactions play pivotal roles in stabilizing the metal-cluster supported graphene nanoflakes. The metal clusters lower the Fermi levels of the host nanoflakes and enable them to exhibit reasonably good optical response properties such as polarizability and static first hyperpolarizability. In particular, Na3O(+)/K3O(+)@BGR complexes exhibit very large first hyperpolarizability values at the static field limit. All the M3O(+)@BGR/BNGR moieties demonstrate broadband optical absorption encompassing the ultraviolet, visible as well as infrared domains. The metal-cluster supported graphene nanoflakes, in general, can sequestrate polar molecules, viz. CO, NO and CH3OH, in a thermodynamically more favorable way than GR, BGR and BNGR. In the adsorbed state, the CO, NO and CH3OH molecules, in general, attain an 'active' state as compared to their free counterparts.

  12. Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities.

    PubMed

    Mejia, Camilo A; Huang, Ningfeng; Povinelli, Michelle L

    2012-09-01

    We predict the formation of optically trapped, metal-dielectric nanoparticle clusters above photonic crystal microcavities. We determine the conditions on particle size and position for a gold particle to be trapped above the microcavity. We then show that strong field redistribution and enhancement near the trapped gold nanoparticle results in secondary trapping sites for a pair of dielectric nanoparticles.

  13. The extended stellar substructures of four metal-poor globular clusters in the galactic bulge

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Sohn, Young-Jong

    2015-08-01

    We investigated stellar spatial density distribution around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642 and NGC 6723) in order to find extended stellar substructures. Wide-field deep J, H, and K imaging data were taken using the WFCAM near-infrared array on United Kingdom Infrared Telescope (UKIRT). The contamination of field stars around clusters was minimised by applying a statistical weighted filtering algorithm for the stars on the color-magnitude diagram. In two-dimensional isodensity contour map, we find that all four of the globular clusters shows tidal stripping stellar features in the form of tidal tails (NGC 6266 and NGC 6723) or small density lobes/chunk (NGC 6642 and NGC 6723). The stellar substructures extend toward the Galactic centre or anticancer, and the proper motion direction of the clusters. The radial density profiles of the clusters also depart from theoretical King and Wilson models and show overdensity feature with a break in a slope of profile at the outer region of clusters. The observed results indicate that four globular clusters in the Galactic bulge have experienced strong tidal force or bulge/disk shock effect of the Galaxy. These observational results provide us further constraints to understand the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  14. Radial Velocities, Metallicities, and Improved Fundamental Parameters of Outer Disk Open Clusters

    NASA Astrophysics Data System (ADS)

    Zasowski, Gail; Hamm, K.; Beaton, R.; Damke, G.; Carlberg, J. K.; Majewski, S. R.; Frinchaboy, P. M.

    2014-01-01

    Open stellar clusters have proven to be powerful tools for understanding the structure and stellar evolution of our Galaxy. Using photometry from 2MASS and the new Spitzer-IRAC GLIMPSE-360 surveys, Zasowski et al. (2013) identified and characterized more than a dozen new or poorly studied, heavily reddened open clusters in the outer Galactic disk. Here, we present follow-up spectroscopy for 11 of the clusters. Low resolution optical spectra were obtained with the DIS spectrograph on the Apache Point Observatory 3.5-meter telescope (R˜1200) for candidate members of seven clusters (GLM-CYGX 16, GLM-G360 18, GLM-G360 105, SAI 24, Berkeley 14, Berkeley 14a, and Czernik 20), and with the B&C spectrograph on the Las Campanas Observatory duPont telescope (R˜5400) for three clusters (GLM-G360 50, GLM-G360 75, and GLM-G360 79). High resolution (R˜22,500) infrared (H-band) spectra were also obtained for one cluster (GLM-G360 90) as part of an ancillary program for the SDSS-III/APOGEE survey. We use the mean chemical abundances and radial velocities (RVs) to identify likely cluster members and then revisit our previous isochrone fits. With reddening constrained by the Rayleigh-Jeans Color Excess method and mean metallicities by spectroscopy, the cluster distances and ages are estimated from improved isochrone fits to the stellar overdensity, weighted by confirmed RV and/or abundance members.

  15. STAR CLUSTERS IN M33: UPDATED UBVRI PHOTOMETRY, AGES, METALLICITIES, AND MASSES

    SciTech Connect

    Fan, Zhou; De Grijs, Richard E-mail: grijs@pku.edu.cn

    2014-04-01

    The photometric characterization of M33 star clusters is far from complete. In this paper, we present homogeneous UBVRI photometry of 708 star clusters and cluster candidates in M33 based on archival images from the Local Group Galaxies Survey, which covers 0.8 deg{sup 2} along the galaxy's major axis. Our photometry includes 387, 563, 616, 580, and 478 objects in the UBVRI bands, respectively, of which 276, 405, 430, 457, and 363 do not have previously published UBVRI photometry. Our photometry is consistent with previous measurements (where available) in all filters. We adopted Sloan Digital Sky Survey ugriz photometry for complementary purposes, as well as Two Micron All Sky Survey near-infrared JHK photometry where available. We fitted the spectral-energy distributions of 671 star clusters and candidates to derive their ages, metallicities, and masses based on the updated PARSEC simple stellar populations synthesis models. The results of our χ{sup 2} minimization routines show that only 205 of the 671 clusters (31%) are older than 2 Gyr, which represents a much smaller fraction of the cluster population than that in M31 (56%), suggesting that M33 is dominated by young star clusters (<1 Gyr). We investigate the mass distributions of the star clusters—both open and globular clusters—in M33, M31, the Milky Way, and the Large Magellanic Cloud. Their mean values are log (M {sub cl}/M {sub ☉}) = 4.25, 5.43, 2.72, and 4.18, respectively. The fraction of open to globular clusters is highest in the Milky Way and lowest in M31. Our comparisons of the cluster ages, masses, and metallicities show that our results are basically in agreement with previous studies (where objects in common are available); differences can be traced back to differences in the models adopted, the fitting methods used, and stochastic sampling effects.

  16. Light-Induced In Situ Transformation of Metal Clusters to Metal Nanocrystals for Photocatalysis.

    PubMed

    Xiao, Fang-Xing; Zeng, Zhiping; Hsu, Shao-Hui; Hung, Sung-Fu; Chen, Hao Ming; Liu, Bin

    2015-12-30

    In situ transformation of glutathione-capped gold (Aux) clusters to gold (Au) nanocrystals under simulated solar light irradiation was achieved and utilized as a facile synthetic approach to rationally fabricate Aux/Au/TiO2 ternary and Au/TiO2 binary heterostructures. Synergistic interaction of Aux clusters and Au nanocrystals contributes to enhanced visible-light-driven photocatalysis.

  17. Hydration process of alkaline-earth metal atoms in water clusters

    NASA Astrophysics Data System (ADS)

    Okai, Nobuhiro; Ishikawa, Haruki; Fuke, Kiyokazu

    2005-10-01

    Ionization potentials (IPs) of water clusters containing alkaline-earth metal atoms are measured by a photoionization threshold method to examine the hydration process of the metal atoms in clusters. IPs of Mg(H 2O) n and Ca(H 2O) n are found to decrease with increasing n and become constant at 3.18 eV for n ⩾ 9 and n ⩾ 8, respectively. The observed constant IP agrees with an estimated photoelectric threshold (3.2 eV) of bulk ice. From the comparison with the results on the theoretical calculations as well as the IPs for alkali atom-water clusters, the anomalous size dependence of IPs is ascribed to the formation of an ion-pair state.

  18. BVRI CCD photometry of the metal-poor globular cluster NGC 4372

    SciTech Connect

    Alcaino, G.; Liller, W.; Alvarado, F.; Wenderoth, E. )

    1991-07-01

    BVRI CCD photometry is presented in two overlapping fields in the metal-poor globular cluster NGC 4372. The observations extend approximately 2 mag below the main-sequence turnoff to V about 21. By comparing the color-magnitude diagram (CMD) with those of clusters with similar metallicities, it is found that E(B-V) = 0.50 {plus minus} 0.03, and (m-M)v = 14.75 {plus minus} 0.06. Comparison with theoretical isochrones leads to a value E(B-V) = 0.53 {plus minus} 0.03. Comparison of the CMD with that of bright stars published by other authors yields a value for Delta V(TO-HB) = 3.3 {plus minus} 0.3. The weighted mean value of the age of the cluster, derived from the four colors, is 15 {plus minus} 4 Gyr (estimated external uncertainty). 17 refs.

  19. Metal Chalcogenide Clusters with Closed Electronic Shells and the Electronic Properties of Alkalis and Halogens.

    PubMed

    Chauhan, Vikas; Reber, Arthur C; Khanna, Shiv N

    2017-02-08

    Clusters with filled electronic shells and a large gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are generally energetically and chemically stable. Enabling clusters to become electron donors with low ionization energies or electron acceptors with high electron affinities usually requires changing the valence electron count. Here we demonstrate that a metal cluster may be transformed from an electron donor to an acceptor by exchanging ligands while the neutral form of the clusters has closed electronic shells. Our studies on Co6Te8(PEt3)m(CO)n (m + n = 6) clusters show that Co6Te8(PEt3)6 has a closed electronic shell and a low ionization energy of 4.74 eV, and the successive replacement of PEt3 by CO ligands ends with Co6Te8(CO)6 exhibiting halogen-like behavior. Both the low ionization energy Co6Te8(PEt3)6 and high electron affinity Co6Te8(CO)6 have closed electronic shells marked by high HOMO-LUMO gaps of 1.24 and 1.39 eV, respectively. Further, the clusters with an even number of ligands favor a symmetrical placement of ligands around the metal core.

  20. Stable structures and electronic properties of 6-atom noble metal clusters using density functional theory

    NASA Astrophysics Data System (ADS)

    Phaisangittisakul, N.; Paiboon, K.; Bovornratanaraks, T.; Pinsook, U.

    2012-08-01

    The 6-atom clusters of group IB noble metals have been investigated theoretically using the density functional calculation with a plane-wave basis (CASTEP). We have calculated their optimized structures, relative cluster's energies, atomic and bonding populations, spectra of the vibrational frequencies, energy gaps between the highest occupied and the lowest unoccupied molecular orbitals, and average polarizabilities per atom. The stable structures we found are planar triangular, pentagonal pyramid, and capped trigonal bipyramid. For the Cu6 and Ag6 cluster, the planar structure energetically competes with the pyramid structure for the ground state. According to the population analyses, the s-d orbital hybridization is explicitly shown to be in association with the corner atoms of the planar structure. We found that the vibrational spectra of the clusters are structural dependent. The average polarizabilities for the planar structure of the Cu6 and Ag6 cluster are quite different from their other stable isomers. In contrast, the polarizabilities are about the same for all stable gold hexamers. Our calculations benefit a reliable geometry identification of the 6-atom noble metal clusters.

  1. Molecular-dynamics simulations of collisions between energetic clusters of atoms and metal substrates

    SciTech Connect

    Hsieh, H.; Averback, R.S. ); Sellers, H. ); Flynn, C.P. )

    1992-02-15

    The collisional dynamics between clusters of Cu, Ni, or Al atoms, with energies of 92 eV to 1.0 keV and sizes of 4 to 92 atoms, and substrates of these same metals were studied using molecular-dynamics computer simulations. A diverse behavior was observed, depending sensitively on the size and energy of the cluster, the elastic and chemical properties of the cluster-substrate combination, and the relative mass of the cluster and substrate atoms. For the 92-atom Cu clusters impacting a Cu substrate, the cluster can form a glob'' on the surface at low energy, while penetrating the substrate and heavily deforming it at high energies. When the cluster energy exceeds {approx}25 eV/atom, the substrate suffers radiation damage. The 92-atom Al clusters do not much deform Ni substrates, but rather tend to spread epitaxially over the surface, despite the 15% lattice mismatch. For 1-keV collisions, several Al atoms dissociate from the cluster, either reflecting into the vacuum or scattering over the surface. 326-eV Ni clusters embed themselves almost completely within Al substrates and form localized amorphous zones. The potentials for these simulations were derived from the embedded-atom method, although modified to treat the higher-energy events. IAb initioP linear-combination-of-atomic-orbitals--molecular-orbitals calculations were employed to test these potentials over a wide range of energies. A simple model for the expected macroscopic behavior of cluster-solid interactions is included as an appendix for a comparison with the atomistic description offered by the simulations.

  2. Processes of conversion of a hot metal particle into aerogel through clusters

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.

    2015-10-01

    Processes are considered for conversion into a fractal structure of a hot metal micron-size particle that is located in a buffer gas or a gas flow and is heated by an external electric or electromagnetic source or by a plasma. The parameter of this heating is the particle temperature, which is the same in the entire particle volume because of its small size and high conductivity. Three processes determine the particle heat balance: particle radiation, evaporation of metal atoms from the particle surface, and heat transport to the surrounding gas due to its thermal conductivity. The particle heat balance is analyzed based on these processes, which are analogous to those for bulk metals with the small particle size, and its high temperature taken into account. Outside the particle, where the gas temperature is lower than on its surface, the formed metal vapor in a buffer gas flow is converted into clusters. Clusters grow as a result of coagulation until they become liquid, and then clusters form fractal aggregates if they are removed form the gas flow. Subsequently, associations of fractal aggregates join into a fractal structure. The rate of this process increases in medium electric fields, and the formed fractal structure has features of aerogels and fractal fibers. As a result of a chain of the above processes, a porous metal film may be manufactured for use as a filter or catalyst for gas flows.

  3. Processes of conversion of a hot metal particle into aerogel through clusters

    SciTech Connect

    Smirnov, B. M.

    2015-10-15

    Processes are considered for conversion into a fractal structure of a hot metal micron-size particle that is located in a buffer gas or a gas flow and is heated by an external electric or electromagnetic source or by a plasma. The parameter of this heating is the particle temperature, which is the same in the entire particle volume because of its small size and high conductivity. Three processes determine the particle heat balance: particle radiation, evaporation of metal atoms from the particle surface, and heat transport to the surrounding gas due to its thermal conductivity. The particle heat balance is analyzed based on these processes, which are analogous to those for bulk metals with the small particle size, and its high temperature taken into account. Outside the particle, where the gas temperature is lower than on its surface, the formed metal vapor in a buffer gas flow is converted into clusters. Clusters grow as a result of coagulation until they become liquid, and then clusters form fractal aggregates if they are removed form the gas flow. Subsequently, associations of fractal aggregates join into a fractal structure. The rate of this process increases in medium electric fields, and the formed fractal structure has features of aerogels and fractal fibers. As a result of a chain of the above processes, a porous metal film may be manufactured for use as a filter or catalyst for gas flows.

  4. Effect of nanoscale zero-valent iron and magnetite (Fe3O4) on the fate of metals during anaerobic digestion of sludge.

    PubMed

    Suanon, Fidèle; Sun, Qian; Mama, Daouda; Li, Jiangwei; Dimon, Biaou; Yu, Chang-Ping

    2016-01-01

    Anaerobic digestion (AD) is one of the most widely used processes to stabilize waste sewage sludge and produce biogas renewable energy. In this study, two different iron nanoparticles [nanoscale zero-valent iron (nZVI) and magnetite (Fe3O4)] were used in the mesophilic AD processes (37 ± 1 °C) to improve biogas production. In addition, changes of heavy metal (Cd, Co, Cu, Zn, Ni and Cr) speciation during AD of sludge with and without iron nanoparticles have been investigated. Concentrations of metals in the initial sludge were as follows: 63.1, 73.4, 1102.2, 2060.3, 483.9 and 604.1 mg kg(-1) (dry sludge basis) for Cd, Co, Cu, Zn, Ni and Cr, respectively. Sequential fractionation showed that metals were predominantly bonded to organic matter and carbonates in the initial sludge. Compared with AD without iron nanoparticles, the application of iron nanoparticles (at dose of 0.5% in this study) showed positive impact not only on biogas production, but also on improvement of metals stabilization in the digestate. Metals were found concentrated in Fe-Mn bound and residual fractions and little was accumulated in the liquid digestate and most mobile fractions of solid digestate (water soluble, exchangeable and carbonates bound). Therefore, iron nanoparticles when properly used, could improve not only biogas yield, but also regulate and control the mobilization of metals during AD process. However, our study also observed that iron nanoparticles could promote the immobilization of phosphorus within the sludge during AD, and more research is needed to fully address the mechanism behind this phenomenon and the impact on future phosphorus reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Theoretical research program to predict the properties of molecules and clusters containing transition metal atoms

    NASA Technical Reports Server (NTRS)

    Walch, S.

    1984-01-01

    The primary focus of this research has been the theoretical study of transition metal (TM) chemistry. A major goal of this work is to provide reliable information about the interaction of H atoms with iron metal. This information is needed to understand the effect of H atoms on the processes of embrittlement and crack propagation in iron. The method in the iron hydrogen studies is the cluster method in which the bulk metal is modelled by a finite number of iron atoms. There are several difficulties in the application of this approach to the hydrogen iron system. First the nature of TM-TM and TM-H bonding for even diatomic molecules was not well understood when these studies were started. Secondly relatively large iron clusters are needed to provide reasonable results.

  6. A Transition Metal Complex (Venus Flytrap Cluster) for Radioimmunodetection and Radioimmunotherapy

    NASA Astrophysics Data System (ADS)

    Paxton, Raymond J.; Beatty, Barbara G.; Hawthorne, M. Frederick; Varadarajan, Aravamuthan; Williams, Lawrence E.; Curtis, Frederick L.; Knobler, Carolyn B.; Beatty, J. David; Shiveley, John E.

    1991-04-01

    A novel transition metal complex, Venus flytrap cluster (VFC), is described for the preparation of radiolabeled antibodies. VFC contained 57Co, which was held tightly between the faces of two covalently bridged carborane ligands by cluster bonding of the metal with appropriate ligand orbitals. Anti-carcinoembryonic antigen monoclonal antibody T84.66 was conjugated to 57Co-VFC with full retention of immunological activity. Biodistribution studies in nude mice bearing carcinoembryonic antigen-producing tumors showed excellent tumor localization of 57Co-VFC-T84.66. The accumulation of radionuclide in normal liver was low and independent of dose, which may reflect the stability of the radionuclide complex. These results presage the use of VFC systems for binding transition metals that are clinically useful for radio-immunodiagnosis and radioimmunotherapy.

  7. Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters

    SciTech Connect

    Sacci, Robert L; Black, Jennifer M.; Wisinger, Nina; Dudney, Nancy J.; More, Karren Leslie; Unocic, Raymond R.

    2015-02-23

    The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase formation and Li electrodeposition from a standard battery electrolyte, we use in situ electrochemical scanning transmission electron microscopy for controlled potential sweep-hold electrochemical measurements with simultaneous BF and ADF STEM image acquisition. Through a combined quantitative electrochemical measurement and quantitative STEM imaging approach, based upon electron scattering theory, we show that chemically sensitive ADF STEM imaging can be used to estimate the density of evolving SEI constituents and distinguish contrast mechanisms of Li-bearing components in the liquid cell.

  8. Heterometallic rare earth/group II metal chalcogenolate clusters

    SciTech Connect

    Berardini, M.; Emge, T.; Brennan, J.G. )

    1994-07-27

    Heterometallic Group II/rare earth (RE) thiolates, selenolates, and tellurolates have a broad range of potential applications in the rapidly developing field of RE-doped semiconductor technology . Given the tendency of RE chalcogenolates to form polymetallic species with bridging chalcogenolate ligands, we reasoned that RE complexes of the heavier chalcogenolates could be stabilized by bridging the chalcogenide to a softer Group II metal to form heterometallic compounds. In this paper, we show that such stabilization is significant, and we describe the isolation and structural characterization of the first two examples of a broad class of heterometallic chalcogenolate complexes having the general formula MM[prime](EPh)[sub x](L)[sub y] [M = Zn, Cd, Hg; M[prime] = divalent (x = 4) or trivalent (x = 5) rare earth; E = S, Se, Te; L = THF, pyridine]. 9 refs., 1 fig.

  9. Cu(Ir1 − xCrx)2S4: a model system for studying nanoscale phase coexistence at the metal-insulator transition

    PubMed Central

    Božin, E. S.; Knox, K. R.; Juhás, P.; Hor, Y. S.; Mitchell, J. F.; Billinge, S. J. L.

    2014-01-01

    Increasingly, nanoscale phase coexistence and hidden broken symmetry states are being found in the vicinity of metal-insulator transitions (MIT), for example, in high temperature superconductors, heavy fermion and colossal magnetoresistive materials, but their importance and possible role in the MIT and related emergent behaviors is not understood. Despite their ubiquity, they are hard to study because they produce weak diffuse signals in most measurements. Here we propose Cu(Ir1 − xCrx)2S4 as a model system, where robust local structural signals lead to key new insights. We demonstrate a hitherto unobserved coexistence of an Ir4+ charge-localized dimer phase and Cr-ferromagnetism. The resulting phase diagram that takes into account the short range dimer order is highly reminiscent of a generic MIT phase diagram similar to the cuprates. We suggest that the presence of quenched strain from dopant ions acts as an arbiter deciding between the competing ground states. PMID:24518384

  10. Direct Simulations of Coupled Transport and Reaction on Nano-Scale X-Ray Computed Tomography Images of Platinum Group Metal-Free Catalyst Cathodes

    SciTech Connect

    Ogawa, S.; Komini Babu, S.; Chung, H. T.; Zelenay, P.; Litster, S.

    2016-08-22

    The nano/micro-scale geometry of polymer electrolyte fuel cell (PEFC) catalyst layers critically affects cell performance. The small length scales and complex structure of these composite layers make it challenging to analyze cell performance and physics at the particle scale by experiment. We present a computational method to simulate transport and chemical reaction phenomena at the pore/particle-scale and apply it to a PEFC cathode with platinum group metal free (PGM-free) catalyst. Here, we numerically solve the governing equations for the physics with heterogeneous oxygen diffusion coefficient and proton conductivity evaluated using the actual electrode structure and ionomer distribution obtained using nano-scale resolution X-ray computed tomography (nano-CT). Using this approach, the oxygen concentration and electrolyte potential distributions imposed by the oxygen reduction reaction are solved and the impact of the catalyst layer structure on performance is evaluated.

  11. Intracluster electron transfer from a metal atom/cluster followed by anionic oligomerization of vinyl molecules

    NASA Astrophysics Data System (ADS)

    Ohshimo, K.; Tsunoyama, H.; Misaizu, F.; Ohno, K.

    Intracluster electron transfer and oligomerization reaction were investigated by mass spectrometry of clusters of alkali metal atom (M) with acrylonitrile (AN; CH2=CHCN). In the photoionization mass spectra of M(AN)n, magic numbers were clearly observed at n = 3k (k = 1-4 for M = Na and K, k = 1 for M = Li). The results of photodissociation of neutral K(AN)n indicate that the n = 3 cluster has an anomalous stability relative to other sizes of clusters. The C=C bond in vinyl molecules is also found to be necessary to form the magic numbers by measuring the photoionization mass spectrum of K atom with propionitrile. These results strongly support the intracluster anionic oligomerization reaction initiated by electron transfer from the alkali atom. The quantum chemical calculations have revealed that the evaporation induced by excess energy generated by intracluster oligomerization is important to form the magic numbers in the present clusters.

  12. On the Nature of Bonding in Parallel Spins in Monovalent Metal Clusters.

    PubMed

    Danovich, David; Shaik, Sason

    2016-05-27

    As we approach the Lewis model centennial, it may be timely to discuss novel bonding motifs. Accordingly, this review discusses no-pair ferromagnetic (NPFM) bonds that hold together monovalent metallic atoms using exclusively parallel spins. Thus, without any traditional electron-pair bonds, the bonding energy per atom in these clusters can reach 20 kcal mol(-1). This review describes the origins of NPFM bonding using a valence bond (VB) analysis, which shows that this bonding motif arises from bound triplet electron pairs that are delocalized over all the close neighbors of a given atom in the cluster. The VB model accounts for the tendency of NPFM clusters to assume polyhedral shapes with rather high symmetry and for the very steep rise of the bonding energy per atom. The advent of NPFM clusters offers new horizons in chemistry of highly magnetic species sensitive to magnetic and electric fields.

  13. Evolution of long-lived globular cluster stars. II. Sodium abundance variations on the asymptotic giant branch as a function of globular cluster age and metallicity

    NASA Astrophysics Data System (ADS)

    Charbonnel, Corinne; Chantereau, William

    2016-02-01

    Context. Long-lived stars in globular clusters exhibit chemical peculiarities with respect to their halo counterparts. In particular, sodium-enriched stars are identified as belonging to a second stellar population born from cluster material contaminated by the hydrogen-burning ashes of a first stellar population. Their presence and numbers in different locations of the colour-magnitude diagram provide important constraints on the self-enrichment scenarios. In particular, the ratio of Na-poor to Na-rich stars on the asymptotic giant branch (AGB) has recently been found to vary strongly from cluster to cluster (NGC 6752, 47 Tuc, and NGC 2808), while it is relatively constant on the red giant branch (RGB). Aims: We investigate the impact of both age and metallicity on the theoretical sodium spread along the AGB within the framework of the fast rotating massive star (FRMS) scenario for globular cluster self-enrichment. Methods: We computed evolution models of low-mass stars for four different metallicities ([Fe/H] = -2.2, -1.75, -1.15, -0.5) assuming the initial helium-sodium abundance correlation for second population stars derived from the FRMS models and using mass loss prescriptions on the RGB with two realistic values of the free parameter in the Reimers formula. Results: Based on this grid of models we derive the theoretical critical initial mass for a star born with a given helium, sodium, and metal content that determines whether that star will climb or not the AGB. This allows us to predict the maximum sodium content expected on the AGB for globular clusters as a function of both their metallicity and age. We find that (1) at a given metallicity, younger clusters are expected to host AGB stars exhibiting a larger sodium spread than older clusters and (2) at a given age, higher sodium dispersion along the AGB is predicted in the most metal-poor globular clusters than in the metal-rich ones. We also confirm the strong impact of the mass loss rate in the earlier

  14. Global metallicity of globular cluster stars from colour-magnitude diagrams

    NASA Astrophysics Data System (ADS)

    Caputo, F.; Cassisi, S.

    2002-07-01

    We have developed an homogeneous evolutionary scenario for H- and He-burning low-mass stars by computing updated stellar models for a wide metallicity and age range [0.0002<=Z<=0.004 and 9<=t(Gyr)<=15, respectively] suitable to study globular clusters. This theoretical scenario allows us to provide self-consistent predictions about the dependence of selected observational features of the colour-magnitude diagram, such as the brightness of the turn-off (TO), the zero-age horizontal branch (ZAHB) and the red giant branch bump (BUMP), on the cluster metallicity and age. Taking into account these predictions, we introduce a new observable based on the visual magnitude difference between the TO and the ZAHB [ΔMV(TO-ZAHB)], and the TO and the BUMP [ΔMV(TO-BUMP)], given by A=ΔMV(TO-BUMP)-0.566ΔMV(TO-ZAHB). We show that the parameter A does not depend at all on the cluster age, but that it does strongly depend on the cluster global metallicity. The calibration of the parameter A as a function of Z is then provided, as based on our evolutionary models. We tested the reliability of this result by also considering stellar models computed by other authors, employing different input physics. Eventually, we present clear evidence that the variation of ΔMV(TO-BUMP) with ΔMV(TO-ZAHB) does supply a powerful probe of the global metal abundance, at least when homogeneous theoretical frameworks are adopted. Specifically, we show that the extensive set of models by Vanden Berg et al. suggests a slightly different calibration of A versus Z calibration, which however provides global metallicities higher by only 0.08+/-0.06dex with respect to the results from our computations. We provide an estimate of the global metallicity of 36 globular clusters in the Milky Way, based on our A-Z calibration, and a large observational data base of Galactic globular clusters. By considering the empirical [Fe/H] scales by both Zinn & West and Carretta & Gratton, we are able to provide an estimate

  15. Filling the gap between the quantum and classical worlds of nanoscale magnetism: giant molecular aggregates based on paramagnetic 3d metal ions.

    PubMed

    Papatriantafyllopoulou, Constantina; Moushi, Eleni E; Christou, George; Tasiopoulos, Anastasios J

    2016-03-21

    In this review, aspects of the syntheses, structures and magnetic properties of giant 3d and 3d/4f paramagnetic metal clusters in moderate oxidation states are discussed. The term "giant clusters" is used herein to denote metal clusters with nuclearity of 30 or greater. Many synthetic strategies towards such species have been developed and are discussed in this paper. Attempts are made to categorize some of the most successful methods to giant clusters, but it will be pointed out that the characteristics of the crystal structures of such compounds including nuclearity, shape, architecture, etc. are unpredictable depending on the specific structural features of the included organic ligands, reaction conditions and other factors. The majority of the described compounds in this review are of special interest not only for their fascinating nanosized structures but also because they sometimes display interesting magnetic phenomena, such as ferromagnetic exchange interactions, large ground state spin values, single-molecule magnetism behaviour or impressively large magnetocaloric effects. In addition, they often possess the properties of both the quantum and the classical world, and thus their systematic study offers the potential for the discovery of new physical phenomena, as well as a better understanding of the existing ones. The research field of giant clusters is under continuous evolution and their intriguing structural characteristics and magnetism properties that attract the interest of synthetic Inorganic Chemists promise a brilliant future for this class of compounds.

  16. Geographic clustering of elevated blood heavy metal levels in pregnant women.

    PubMed

    King, Katherine E; Darrah, Thomas H; Money, Eric; Meentemeyer, Ross; Maguire, Rachel L; Nye, Monica D; Michener, Lloyd; Murtha, Amy P; Jirtle, Randy; Murphy, Susan K; Mendez, Michelle A; Robarge, Wayne; Vengosh, Avner; Hoyo, Cathrine

    2015-10-09

    Cadmium (Cd), lead (Pb), mercury (Hg), and arsenic (As) exposure is ubiquitous and has been associated with higher risk of growth restriction and cardiometabolic and neurodevelopmental disorders. However, cost-efficient strategies to identify at-risk populations and potential sources of exposure to inform mitigation efforts are limited. The objective of this study was to describe the spatial distribution and identify factors associated with Cd, Pb, Hg, and As concentrations in peripheral blood of pregnant women. Heavy metals were measured in whole peripheral blood of 310 pregnant women obtained at gestational age ~12 weeks. Prenatal residential addresses were geocoded and geospatial analysis (Getis-Ord Gi* statistics) was used to determine if elevated blood concentrations were geographically clustered. Logistic regression models were used to identify factors associated with elevated blood metal levels and cluster membership. Geospatial clusters for Cd and Pb were identified with high confidence (p-value for Gi* statistic <0.01). The Cd and Pb clusters comprised 10.5 and 9.2 % of Durham County residents, respectively. Medians and interquartile ranges of blood concentrations (μg/dL) for all participants were Cd 0.02 (0.01-0.04), Hg 0.03 (0.01-0.07), Pb 0.34 (0.16-0.83), and As 0.04 (0.04-0.05). In the Cd cluster, medians and interquartile ranges of blood concentrations (μg/dL) were Cd 0.06 (0.02-0.16), Hg 0.02 (0.00-0.05), Pb 0.54 (0.23-1.23), and As 0.05 (0.04-0.05). In the Pb cluster, medians and interquartile ranges of blood concentrations (μg/dL) were Cd 0.03 (0.02-0.15), Hg 0.01 (0.01-0.05), Pb 0.39 (0.24-0.74), and As 0.04 (0.04-0.05). Co-exposure with Pb and Cd was also clustered, the p-values for the Gi* statistic for Pb and Cd was <0.01. Cluster membership was associated with lower education levels and higher pre-pregnancy BMI. Our data support that elevated blood concentrations of Cd and Pb are spatially clustered in this urban environment compared to

  17. Electronic charging of non-metallic clusters: size-selected Mo(x)S(y) clusters supported on an ultrathin alumina film on NiAl(110).

    PubMed

    Zhou, Jing; Zhou, Jia; Camillone, Nicholas; White, Michael G

    2012-06-14

    Two photon photoemission was used to investigate the interfacial charge transfer for size-selected Mo(x)S(y) (x/y: 2/6, 4/6, 6/8, 7/10) clusters deposited on an ultrathin alumina film prepared on a NiAl(110) surface. The local work function of the surface increases with increasing cluster coverage, which is unexpected for charge transfer resulting from the formation of Mo-O bonds between the clusters and the alumina surface. By analogy with Au atoms and clusters on metal-supported ultrathin oxide films, we invoke electron tunneling from the NiAl substrate to explain the charge transfer to the Mo(x)S(y) clusters. Electron tunneling is favored by the large electron affinities of the Mo(x)S(y) clusters and the relatively low work function induced by the presence of the alumina film. The interfacial dipole moments derived from coverage-dependent measurements are cluster dependent and reflect differences in Mo(x)S(y) cluster structure and surface bonding. These results extend previous observations of electronic charging to non-metallic clusters, specifically, metal sulfides, and suggest a novel way to modify the electronic structure and reactivity of nanocatalysts for heterogeneous chemistry.

  18. Metal-Organic Frameworks (MOFs) of a Cubic Metal Cluster with Multicentered Mn(I)-Mn(I) Bonds.

    PubMed

    Hu, Huan-Cheng; Hu, Han-Shi; Zhao, Bin; Cui, Ping; Cheng, Peng; Li, Jun

    2015-09-28

    MOFs with both multicentered metal-metal bonds and low-oxidation-state (LOS) metal ions have been underexplored hitherto. Here we report the first cubic [Mn(I) 8 ] cluster-based MOF (1) with multicentered Mn(I)-Mn(I) bonds and +1 oxidation state of manganese (Mn(I) or Mn(I)), as is supported by single-crystal structure determination, XPS analyses, and quantum chemical studies. Compound 1 possesses the shortest Mn(I)-Mn(I) bond of 2.372 Å. Theoretical studies with density functional theory (DFT) reveal extensive electron delocalization over the [Mn(I) 8 ] cube. The 48 electrons in the [Mn(I) 8 ] cube fully occupy half of the 3d-based and the lowest 4s-based bonding orbitals, with six electrons lying at the nonbonding 3d-orbitals. This bonding feature renders so-called cubic aromaticity. Magnetic properties measurements show that 1 is an antiferromagnet. This work is expected to inspire further investigation of cubic metal-metal bonding, MOF materials with LOS metals</