Science.gov

Sample records for nanoscale multilayer pvd

  1. A chemically stable PVD multilayer encapsulation for lithium microbatteries

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. F.; Sousa, R.; Cunha, D. J.; Vieira, E. M. F.; Silva, M. M.; Dupont, L.; Goncalves, L. M.

    2015-10-01

    A multilayer physical vapour deposition (PVD) thin-film encapsulation method for lithium microbatteries is presented. Lithium microbatteries with a lithium cobalt oxide (LiCoO2) cathode, a lithium phosphorous oxynitride (LiPON) electrolyte and a metallic lithium anode are under development, using PVD deposition techniques. Metallic lithium film is still the most common anode on this battery technology; however, it presents a huge challenge in terms of material encapsulation (lithium reacts with almost any materials deposited on top and almost instantly begins oxidizing in contact with atmosphere). To prove the encapsulation concept and perform all the experiments, lithium films were deposited by thermal evaporation technique on top of a glass substrate, with previously patterned Al/Ti contacts. Three distinct materials, in a multilayer combination, were tested to prevent lithium from reacting with protection materials and atmosphere. These multilayer films were deposited by RF sputtering and were composed of lithium phosphorous oxide (LiPO), LiPON and silicon nitride (Si3N4). To complete the long-term encapsulation after breaking the vacuum, an epoxy was applied on top of the PVD multilayer. In order to evaluate oxidation state of lithium films, the lithium resistance was measured in a four probe setup (cancelling wires/contact resistances) and resistivity calculated, considering physical dimensions. A lithium resistivity of 0.16 Ω μm was maintained for more than a week. This PVD multilayer exonerates the use of chemical vapour deposition (CVD), glove-box chambers and sample manipulation between them, significantly reducing the fabrication cost, since battery and its encapsulation are fabricated in the same PVD chamber.

  2. Tribological and mechanical properties of Ti/TiAlN/TiAlCN nanoscale multilayer PVD coatings deposited on AISI H11 hot work tool steel

    NASA Astrophysics Data System (ADS)

    AL-Bukhaiti, M. A.; Al-hatab, K. A.; Tillmann, W.; Hoffmann, F.; Sprute, T.

    2014-11-01

    A new [Ti/TiAlN/TiAlCN]5 multilayer coatings were deposited onto polished substrate AISI H11 (DIN 1.2343) steel by an industrial magnetron sputtering device. The tribological performance of the coated system was investigated by a ball-on-disk tribometer against 100Cr6 steel and Al2O3 balls. The friction coefficients and specific wear rates were measured at various normal loads (2, 5, 8, and 10 N) and sliding velocities (0.2, 0.4, and 0.8 m/s) in ambient air and dry conditions. The phase structure, composition, wear tracks morphologies, hardness, and film/substrate adhesion of the coatings were characterized by light-microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), 3D-surface analyzer, nanoindentation, and scratch tests. Results showed that the deposited coatings showed low wear rates in the scale of 10-15 m3/N m, low friction coefficients against 100Cr6 and Al2O3 balls in the range of 0.25-0.37, and good hardness in the range of 17-20 GPa. Results also revealed that the friction coefficients and disc wear rates decrease and increase, respectively with the increase in normal load and sliding velocity for both coating/Al2O3 and coating/100Cr6 sliding system. Compared with the uncoated-H11 substrate, the deposited coating exhibited superior tribological and mechanical properties. The dominant wear mechanism was abrasive wear for coating/Al2O3 pair, while for coating/100Cr6 pair, a combination of mild adhesive wear, severe adhesive wear, and abrasive wear (extensive plowing) were the dominant wear mechanisms at different applied normal loads.

  3. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    SciTech Connect

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects of both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.

  4. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    DOE PAGES

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; ...

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less

  5. The mechanical behavior of nanoscale metallic multilayers: A survey

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Xie, J. Y.; Wang, F.; Huang, P.; Xu, K. W.; Lu, T. J.

    2015-06-01

    The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces existing in the NMMs dictates the unique behavior of this special class of structural composite materials. While there have been a number of reviews on the mechanical mechanism of microlaminates, the rapid development of nanotechnology brought a pressing need for an overview focusing exclusively on a property-based definition of the NMMs, especially their size-dependent microstructure and mechanical performance. This article attempts to provide a comprehensive and up-to-date review on the microstructure, mechanical property and plastic deformation physics of NMMs. We hope this review could accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to scientists and engineers working on NMM systems, and (2) providing a better understanding of interface behavior and the exceptional qualities the interfaces in NMMs display at atomic scale.

  6. State diagnostics of RTD based on nanoscale multilayered AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Makeev, M. O.; Meshkov, S. A.; Sinyakin, V. Yu

    2016-08-01

    In the present work the problems of technical diagnostics of RTD based on nanoscale multilayered AlGaAs heterostructures are being solved. The technique and the algorithms of RTD functionality region developing are being considered.

  7. Nanoscale Origins of Ferroelastic Domain Wall Mobility in Ferroelectric Multilayers

    DOE PAGES

    Huang, Hsin-Hui; Hong, Zijian; Xin, Huolin L.; ...

    2016-10-31

    Here we investigate the nanoscale origins of ferroelastic domain wall motion in ferroelectric multilayer thin films that lead to giant electromechanical responses. We present direct evidence for complex underpinning factors that result in ferroelastic domain wall mobility using a combination of atomic-level aberration corrected scanning transmission electron microscopy and phase-field simulations in model epitaxial (001) tetragonal (T) PbZrxTi1-xO3 (PZT)/rhombohedral (R) PbZrxTi1-xO3 (PZT) bilayer heterostructures. The local electric dipole distribution is imaged on an atomic scale for a ferroelastic domain wall that nucleates in the R-layer and cuts through the composition breaking the T/R interface. Our studies reveal a highly complexmore » polarization rotation domain structure that is nearly on the knife-edge at the vicinity of this wall. Induced phases, namely tetragonal-like and rhombohedral-like monoclinic were observed close to the interface, and exotic domain arrangements, such as a half-four-fold closure structure, are observed. Phase field simulations show this is due to the minimization of the excessive elastic and electrostatic energies driven by the enormous strain gradient present at the location of the ferroelastic domain walls. Thus, in response to an applied stimulus, such as an electric field, any polarization reorientation must minimize the elastic and electrostatic discontinuities due to this strain gradient, which would induce a dramatic rearrangement of the domain structure. This insight into the origins of ferroelastic domain wall motion will allow researchers to better “craft” such multilayered ferroelectric systems with precisely tailored domain wall functionality and enhanced sensitivity, which can be exploited for the next generation of integrated piezoelectric technologies.« less

  8. Nanoscale Origins of Ferroelastic Domain Wall Mobility in Ferroelectric Multilayers

    SciTech Connect

    Huang, Hsin-Hui; Hong, Zijian; Xin, Huolin L.; Su, Dong; Chen, Long-Qing; Huang, Guanzhong; Munroe, Paul R.; Valanoor, Nagarajan

    2016-10-31

    Here we investigate the nanoscale origins of ferroelastic domain wall motion in ferroelectric multilayer thin films that lead to giant electromechanical responses. We present direct evidence for complex underpinning factors that result in ferroelastic domain wall mobility using a combination of atomic-level aberration corrected scanning transmission electron microscopy and phase-field simulations in model epitaxial (001) tetragonal (T) PbZrxTi1-xO3 (PZT)/rhombohedral (R) PbZrxTi1-xO3 (PZT) bilayer heterostructures. The local electric dipole distribution is imaged on an atomic scale for a ferroelastic domain wall that nucleates in the R-layer and cuts through the composition breaking the T/R interface. Our studies reveal a highly complex polarization rotation domain structure that is nearly on the knife-edge at the vicinity of this wall. Induced phases, namely tetragonal-like and rhombohedral-like monoclinic were observed close to the interface, and exotic domain arrangements, such as a half-four-fold closure structure, are observed. Phase field simulations show this is due to the minimization of the excessive elastic and electrostatic energies driven by the enormous strain gradient present at the location of the ferroelastic domain walls. Thus, in response to an applied stimulus, such as an electric field, any polarization reorientation must minimize the elastic and electrostatic discontinuities due to this strain gradient, which would induce a dramatic rearrangement of the domain structure. This insight into the origins of ferroelastic domain wall motion will allow researchers to better “craft” such multilayered ferroelectric systems with precisely tailored domain wall functionality and enhanced sensitivity, which can be exploited for the next generation of integrated piezoelectric technologies.

  9. Effect of a ductility layer on the tensile strength of TiAl-based multilayer composite sheets prepared by EB-PVD

    SciTech Connect

    Zhang, Rubing; Zhang, Yaoyao; Liu, Qiang; Chen, Guiqing; Zhang, Deming

    2014-09-15

    TiAl/Nb and TiAl/NiCoCrAl laminate composite sheets with a thickness of 0.4–0.6 mm and dimensions of 150 mm × 100 mm were successfully fabricated by electron beam physical vapor deposition. The microstructures of the sheets were examined, and their mechanical properties were compared with those of TiAl monolithic sheet produced by electron beam physical vapor deposition. Tensile testing was performed at room temperature and 750 °C, and the fracture surfaces were examined by scanning electron microscopy. Among the three microlaminate sheets, the TiAl/NiCoCrAl micro-laminate sheet had the best comprehensive properties at room temperature, and the TiAl/Nb micro-laminate sheet showed the ideal high-temperature strength and plasticity at 750 °C. The result was discussed in terms of metal strengthening mechanism. - Highlights: • TiAl-based multilayer foils was fabricated successfully by using EB-PVD method; • The tensile properties and micro-fracture morphologies of the sheet were investigated; • The deformation behavior of the multilayer foils was discussed.

  10. Microstructure evolution during annealing of TiAl/NiCoCrAl multilayer composite prepared by EB-PVD

    SciTech Connect

    Zhang, Rubing; Zhang, Deming; Chen, Guiqing; Wang, Yuesheng

    2014-07-01

    TiAl/NiCoCrAl laminate composite sheet with a thickness of 0.4–0.6 mm as well as a dimension of 150 mm × 100 mm was fabricated successfully by using electron beam physical vapor deposition (EB-PVD) method. The annealing treatment was processed at 1123 and 1323 K for 3 h in a high vacuum atmosphere, respectively. The phase composition and microstructure of TiAl/NiCoCrAl microlaminated sheet have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Based on the sheet characterization and results of the microstructure evolution during annealing treatment process, the diffusion mechanism of interfacial reaction in TiAl/NiCoCrAl microlaminate was investigated and discussed.

  11. Deformation-induced nanoscale mixing reactions in Cu/Ni and Ag/Pd multilayers

    SciTech Connect

    Wang, Z.; Perepezko, J. H.

    2013-11-04

    During the repeated cold rolling of Cu/Ni and Ag/Pd multilayers, a solid solution forms at the interfaces as nanoscale layer structure with a composition that replicates the overall multilayer composition. The interfacial mixing behavior was investigated by means of X-ray diffraction and scanning transmission electron microscopy. During deformation induced reaction, the intermixing behavior of the Cu/Ni and Ag/Pd multilayers is in contrast to thermally activated diffusion behavior. This distinct behavior can provide new kinetic pathways and offer opportunities for microstructure control that cannot be achieved by thermal processing.

  12. Analysis of self-propagating intermetallic reaction in nanoscale multilayers of binary metals

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungjin

    2017-03-01

    Nanoscale multilayers of two different metals could exhibit super-fast intermetallic reaction wave that accompanies high level of exothermic heat release, while additional advantage is a very small ignition delay. They could be a promising candidate for the core technology in realizing micron-sized initiation device for explosives detonation or propellants ignition in various defense and civilian applications. This numerical investigation focuses on the numerical modeling and computations of the ignition and self-propagating reaction behaviors in nanoscale intermetallic multilayer structures made of alternating binary metal layers of boron and titanium. Due to thin film nature of metallic multilayers, intermetallic reaction propagation across the repeating bimetallic multilayers is approximated to the one-dimensional transient model of thermal diffusion and atomic species diffusion, and the intermetallic reaction between two metal species is assumed to follow Arrhenius dependence on temperature. The computational results show the details of ignition and propagation characteristics of intermetallic reaction wave by evaluating and discussing the effects of key parameters, such as multilayer thickness, excess of one metal species, and presence of atomic premixing at interface of boron and titanium layers, on ignition delay and propagation speed of self-sustaining reaction wave.

  13. Thermal analysis of continuous and patterned multilayer films in the presence of a nanoscale hot spot

    NASA Astrophysics Data System (ADS)

    Juang, Jia-Yang; Zheng, Jinglin

    2016-10-01

    Thermal responses of multilayer films play essential roles in state-of-the-art electronic systems, such as photo/micro-electronic devices, data storage systems, and silicon-on-insulator transistors. In this paper, we focus on the thermal aspects of multilayer films in the presence of a nanoscale hot spot induced by near field laser heating. The problem is set up in the scenario of heat assisted magnetic recording (HAMR), the next-generation technology to overcome the data storage density limit imposed by superparamagnetism. We characterized thermal responses of both continuous and patterned multilayer media films using transient thermal modeling. We observed that material configurations, in particular, the thermal barriers at the material layer interfaces crucially impact the temperature field hence play a key role in determining the hot spot geometry, transient response and power consumption. With a representative generic media model, we further explored the possibility of optimizing thermal performances by designing layers of heat sink and thermal barrier. The modeling approach demonstrates an effective way to characterize thermal behaviors of micro and nano-scale electronic devices with multilayer thin film structures. The insights into the thermal transport scheme will be critical for design and operations of such electronic devices.

  14. Nanoscale patterning of ionic self-assembled multilayers.

    PubMed

    Tulpar, Aysen; Wang, Zhiyong; Jang, Chang-Hyun; Jain, Vaibhav; Heflin, James R; Ducker, William A

    2009-04-15

    Films that are nanostructured in all three dimensions can be fabricated by the templated growth of ionic self-assembled multilayers (ISAMs) on solids that have been patterned by nanografting. Nanografting was used to controllably pattern -COOH surface groups on a background of -OH groups. Atomic force microscopy (AFM) confirms that ISAM bilayers grow selectively on the -COOH groups and not on the surrounding -OH groups. The patterned area clearly shows an increase in height with an increase in the number of bilayers. As compared with other methods of nanofabrication, nanografting with ISAM deposition provides fast and precise control over the size of the pattern region, which remains stable even after repeated washing. This combination allows the fabricated template to be altered in situ without the need of any kind of mask, expensive probe, or post-lithography processing/cleaning methods. We have demonstrated line widths of 75 nm. Ultimately the line width is limited by the width of the AFM tip that causes desorption of the thiol, which is typically about 25 nm. Smaller line widths should be possible with the use of sharper AFM tips.

  15. Identifying Deformation and Strain Hardening Behaviors of Nanoscale Metallic Multilayers Through Nano-wear Testing

    SciTech Connect

    Economy, David Ross; Mara, Nathan A.; Schoeppner, R.; Schultz, Bradley M.; Unocic, Raymond R.; Kennedy, Marian S.

    2016-01-13

    In complex loading conditions (e.g. sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed, as-deposited regions. Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 μm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally, the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022 respectively) were less than was determined for 100 nm systems (n ≈ 0.041). These results suggest that singledislocation based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.

  16. Identifying Deformation and Strain Hardening Behaviors of Nanoscale Metallic Multilayers Through Nano-wear Testing

    DOE PAGES

    Economy, David Ross; Mara, Nathan A.; Schoeppner, R.; ...

    2016-01-13

    In complex loading conditions (e.g. sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed, as-deposited regions. Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 μm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally,more » the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022 respectively) were less than was determined for 100 nm systems (n ≈ 0.041). These results suggest that singledislocation based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.« less

  17. Thermomechanically modulated nanoscale multilayered materials for application in electromagnetic gun systems

    SciTech Connect

    Otooni, M.A.; Brown, I.G.; Monteiro, O.

    1997-12-01

    Fired rails from electromagnetic railguns show severe damage from arcing and tribological mismatch. The authors have fabricated and studied several different nanoscale multilayered materials as possible routes to improve the thermal transport and thermomechanical properties of the rail and armature materials. A vacuum-arc-based plasma deposition technique with wide control of ion energy was used for the film synthesis, and high-energy high-dose (energy up to {approximately}150 keV, dose up to {approximately}1 {times} 10{sup 17} cm{sup {minus}2}) metal ion implantation was also used. The multilayered film structures formed and investigated included sublayers of Ti, TiCo, ZrN, TaN and dlc (diamond-like carbon) in the following combinations: (1) ZrN on TiCo on TaN on dlc on a Cu substrate, (2) ZrN on TiCo on TaN on dlc on an Al substrate, (3) TiN on TiCo on TaN on a stainless steel substrate, and (4) Ti on TiCo on a stainless steel substrate. Individual sublayer film thickness was in the range of 400 {angstrom}--7{micro}. The surfaces were characterized by SEM, TEM, RBS, high energy electron diffraction, and microhardness measurements. Significant improvements in the material surface properties were obtained for virtually all of the surface structures investigated. Here the authors outline the material synthesis and surface modification techniques used and the materials characterization results obtained.

  18. Nanoscale/multilayer gradient materials for application in electromagnetic gun systems

    SciTech Connect

    Otooni, M.A.; Brown, I.G.; Anders, S.; Wang, Z.

    1996-12-31

    Analysis of fired rails from electromagnetic railguns indicates severe surface damage occurs due to high current arcing and tribological mismatch. The authors have explored the behavior of several nanoscale multilayered materials as possible routes to improve the thermomechanical properties of the rail and armature materials. Structures investigated include (i) Ti-Co alloy on Ta-Cu alloy on dlc (diamond-like carbon) on stainless steel; (ii) Ti-Co alloy on Ta-Cu alloy on dlc on Cu, (iii) Ti-Co alloy on Ta-Cu on Cu; and (iv) Ti-Co on Ta-Cu alloy on Al. The alloys were all 50:50 at% and film thicknesses were fin the range 400--1,000 {angstrom}. The films were formed using a repetitively pulsed vacuum arc plasma deposition method with substrate biasing- and IBAD-like techniques. The surfaces were characterized by scanning electron microscopy, transmission electron microscopy, Rutherford backscattering spectroscopy, optical microscopy, microhardness measurements, arc erosion resistance and scratch resistance tests. Preliminary results show improvement in the microhardness, arc erosion resistance and scratch resistance, most especially for the dlc-coated surfaces. This kind of multilayered approach to the fabrication of electromagnetic railgun and armature surfaces could be important for future advanced Electromagnetic EM Gun systems.

  19. Surface modification of 316L stainless steel with magnetron sputtered TiN/VN nanoscale multilayers for bio implant applications.

    PubMed

    Subramanian, B; Ananthakumar, R; Kobayashi, Akira; Jayachandran, M

    2012-02-01

    Nanoscale multilayered TiN/VN coatings were developed by reactive dc magnetron sputtering on 316L stainless steel substrates. The coatings showed a polycrystalline cubic structure with (111) preferential growth. XPS analysis indicated the presence of peaks corresponding to Ti2p, V2p, N1s, O1s, and C1s. Raman spectra exhibited the characteristic peaks in the acoustic range of 160-320 cm(-1) and in the optic range between 480 and 695 cm(-1). Columnar structure of the coatings was observed from TEM analysis. The number of adherent platelets on the surface of the TiN/VN multilayer, VN, TiN single layer coating exhibit fewer aggregation and pseudopodium than on substrates. The wear resistance of the multilayer coatings increases obviously as a result of their high hardness. Tafel plots in simulated bodily fluid showed lower corrosion rate for the TiN/VN nanoscale multilayer coatings compared to single layer and bare 316L SS substrate.

  20. Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics

    NASA Astrophysics Data System (ADS)

    Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert; Yakshin, Andrey; Louis, Eric; Bijkerk, Fred

    2017-03-01

    Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV experiments. Both planar and three dimensional multilayer structures have been developed to tailor the spectral response in a wide wavelength range. For the planar multilayer optics, different layered schemes are explored. Stacks of periodic multilayers and capping layers are demonstrated to achieve multi-channel reflection or suppression of the reflective properties. Aperiodic multilayer structures enable broadband reflection both in angles and wavelengths, with the possibility of polarization control. The broad wavelength band multilayer is also used to shape attosecond pulses for the study of ultrafast phenomena. Narrowband multilayer monochromators are delivered to bridge the resolution gap between crystals and regular multilayers. High spectral purity multilayers with innovated anti-reflection structures are shown to select spectrally clean XUV radiation from broadband X-ray sources, especially the plasma sources for EUV lithography. Significant progress is also made in the three dimensional multilayer optics, i.e., combining micro- and nanostructures with multilayers, in order to provide new freedom to tune the spectral response. Several kinds of multilayer gratings, including multilayer coated gratings, sliced multilayer gratings, and lamellar multilayer gratings are being pursued for high resolution and high efficiency XUV spectrometers/monochromators, with their advantages and disadvantages, respectively. Multilayer diffraction optics are also developed for spectral purity enhancement. New structures like gratings, zone plates, and pyramids that obtain full suppression of the unwanted radiation and high XUV reflectance are reviewed. Based on the present achievement

  1. Structure and mechanical properties of nanoscale multilayered CrN/ZrSiN coatings

    SciTech Connect

    Zhang, Z. G.; Rapaud, O.; Allain, N.; Baraket, M.; Dong, C.; Coddet, C.

    2009-07-15

    Nanocrystalline/amorphous CrN/ZrSiN multilayer coatings with a bilayer thickness ranging from 11 to 153 nm were prepared by reactive magnetron sputtering technique. The microstructure and mechanical properties of these thin films were characterized by x-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and nanoindentation. The formation of nanocrystalline CrN and nanocomposite ZiSiN in the single layer coatings was identified by XRD and FTIR. The periodic structure of the as-deposited multilayer coatings was confirmed by TEM observation. Nanoindentation tests showed that both the values of hardness (H) and reduced elastic modulus (E{sub r}) of CrN/ZrSiN multilayers remained almost constant despite varying the bilayer thickness. The multilayer coatings exhibited higher H of 30 GPa and higher resistance to plastic deformation when compared to the single layer CrN and ZrSiN coatings.

  2. Performance of nanoscale metallic multilayer systems under mechanical and thermal loading

    NASA Astrophysics Data System (ADS)

    Economy, David Ross

    Reports of nanoscale metallic multilayers (NMM) performance show a relatively high strength and radiation damage resistance when compared their monolithic components. Hardness of NMMs has been shown to increase with increasing interfacial density (i.e. decreasing layer thickness). This interface density-dependent behavior within NMMs has been shown to deviate from Hall-Petch strengthening, leading to higher measured strengths during normal loading than those predicted by a rule of mixtures. To fully understand why this occurs, other researchers have looked at the influence of the crystal structures of the component layers, orientations, and compositions on deformation processes. Additionally, a limited number of studies have focused on the structural stability and possible performance variation between as-deposited systems and those exposed to mechanical and thermal loading. This dissertation identified how NMM as-deposited structures and performance are altered by mechanical loading (sliding/wear contact) and/or thermal (such as diffusion, relaxation) loading. These objectives were pursued by tracking hardness evolution during sliding wear and after thermal loading to as-deposited stress and mechanical properties. Residual stress progression was also examined during thermal loading and supporting data was collected to detail structural and chemical changes. All of these experimental observations were conducted using Cu/Nb NMMs with 2 nm, 20 nm, or 100 nm thick individual layers deposited with either 1 microm or 10 microm total thicknesses with two geometries (Cu/Nb and Nb/Cu) on (100) Si. Wear boxes were performed on Cu/Nb NMM using a nanoindentation system with a 1 microm conical diamond counterface. After nano-wear deformation, the hardness of the deformed regions significantly rose with respect to as-deposited measurements, which further increased with greater wear loads. Additionally, NMMs with thinner layers showed less volume loss as measured by laser

  3. Multilayered graphene in K(a)-band: nanoscale coating for aerospace applications.

    PubMed

    Kuzhir, P; Volynets, N; Maksimenko, S; Kaplas, T; Svirko, Yu

    2013-08-01

    We report on the experimental study of electromagnetic (EM) properties of multilayered graphene in K(a)-band synthesized by catalytic chemical vapor deposition (CVD) process in between nanometrically thin Cu catalyst film and dielectric (SiO2) substrate. The quality of the produced multilayered graphene samples was monitored by Raman spectroscopy. The thickness of graphene films was controlled by atomic force microscopy (AFM) and was found to be a few nanometers (up to 5 nm). We discovered, that the fabricated graphene, being only some thousandth of skin depth, provided remarkably high EM shielding efficiency caused by absorption losses at the level of 35-43% of incident power. Being highly conductive at room temperature, multilayer graphene emerges as a promising material for manufacturing ultrathin microwave coatings to be used in aerospace applications.

  4. Nanoscale Bending of Multilayered Boron Nitride and Graphene Ribbons: Experiment and Objective Molecular Dynamics Calculations

    NASA Astrophysics Data System (ADS)

    Nikiforov, Ilia; Tang, Dai-Ming; Wei, Xianlong; Dumitricǎ, Traian; Golberg, Dmitri

    2012-07-01

    By combining experiments performed on nanoribbons in situ within a high-resolution TEM with objective molecular dynamics simulations, we reveal common mechanisms in the bending response of few-layer-thick hexagonal boron nitride and graphene nanoribbons. Both materials are observed forming localized kinks in the fully reversible bending experiments. Microscopic simulations and theoretical analysis indicate platelike bending behavior prior to kinking, in spite of the possibility of interlayer sliding, and give the critical curvature for the kinking onset. This behavior is distinct from the rippling and kinking of multi- and single-wall nanotubes under bending. Our findings have implications for future study of nanoscale layered materials, including nanomechanical device design.

  5. Mechanics of nanoscale metallic multilayers: from atomic-scale to micro-scale

    SciTech Connect

    Wang, Jian; Hoagland, Richard G; Misra, Amit

    2008-01-01

    Layered composites of Cu/Nb with incoherent interfaces achieve very high strength levels. Interfaces play a crucial role in materials strength by acting as barriers to slip. Atomistic models of Cu/Nb bilayers are used to explore the origins of this resistance. The models clearly show that dislocations near an interface experience an attraction toward the interface. This attraction is caused by shear of the interface induced by the stress field of the dislocation. More importantly, atomistic simulations also reveal that interfacial dislocations easily move in interfaces by both glide and climb. Integrating these findings into a micro-scale model, we develop a three-dimensional crystal elastic-plastic model to describe the mechanical behavior of nanoscale metallic multi layers.

  6. Multilayer Nanoscale Encapsulation of Biofunctional Peptides to Enhance Bone Tissue Regeneration In Vivo.

    PubMed

    Gentile, Piergiorgio; Ferreira, Ana Marina; Callaghan, Jill T; Miller, Cheryl A; Atkinson, Joss; Freeman, Christine; Hatton, Paul V

    2017-02-07

    Bone tissue healing is a dynamic process that is initiated by the recruitment of osteoprogenitor cells followed by their migration, proliferation, differentiation, and development of a mineralizing extracellular matrix. The work aims to manufacture a functionalized porous membrane that stimulates early events in bone healing for initiating a regenerative cascade. Layer-by-layer (LbL) assembly is proposed to modify the surface of osteoconductive electrospun meshes, based on poly(lactic-co-glycolic acid) and nanohydroxyapatite, by using poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) as polyelectrolytes. Molecular cues are incorporated by grafting peptide fragments into the discrete nanolayers. KRSR (lysine-arginine-serine-arginine) sequence is grafted to enhance cell adhesion and proliferation, NSPVNSKIPKACCVPTELSAI to guide bone marrow mesenchymal stem cells differentiation in osteoblasts, and FHRRIKA (phenylalanine-histidine-arginine-arginine-isoleucine-lysine-alanine) to improve mineralization matrix formation. Scanning electron microscopy, infrared spectroscopy, and X-ray photoelectron spectroscopy demonstrate the successful surface functionalization. Furthermore, the peptide incorporation enhances cellular processes, with good viability and significant increase of alkaline phosphatase activity, osteopontin, and osteocalcin. The functionalized membrane induces a favorable in vivo response after implantation for four weeks in nonhealing rat calvarial defect model. It is concluded that the multilayer nanoencapsulation of biofunctional peptides using LbL approach has significant potential as innovative manufacturing technique to improve bone regeneration in orthopedic and craniofacial medical devices.

  7. Second-order nonlinear optical characteristics of nanoscale self-assembled multilayer organic films

    NASA Astrophysics Data System (ADS)

    Neyman, Patrick J.

    Ionically self-assembled monolayer (ISAM) films are typically an assemblage of oppositely charged polymers built layer by layer through Coulombic attraction utilizing an environmentally friendly process to form ordered structures that are uniform, molecularly smooth and physically robust. ISAM films have been shown to be capable of the noncentrosymmetric order requisite for a second-order nonlinear optical response with excellent temporal and thermal stability. However, such films fabricated with a nonlinear optical (NLO) polyanion result in significant cancellation of the chromophore orientations. This cancellation occurs by two mechanisms: competitive orientation due to the ionic bonding of the polymer chromophore with the subsequent polycation layer, and random orientation of the chromophores within the bulk of each polyanion layer. A reduction in film thickness accompanied by an increase in net polar ordering is one possible avenue to obtain the second-order susceptibility chi (2) necessary for practical application in electro-optic devices. In this thesis, we discuss the structural characteristics of ISAM films and explore a novel approach to obtain the desired characteristics for nonlinear optical response. This approach involves a hybrid covalent/ionic self-assembly technique which affords improved net dipole alignment and concentration of monomer chromophores in the film. This technique yields a substantial increase in chi(2) due to the preferential chromophore orientation being locked in place by a covalent bond to the preceding polycation layer. The films fabricated in this manner yield a chi(2) (56 x 10-9 esu) that substantially exceeds that of any known polymer-polymer ISAM film (˜0.3 x 10-9 esu). This covalent-hybrid ionically self-assembled multilayer (CHISAM) technique is demonstrated to result in films suitable for electro-optic devices, with measured electro-optic coefficient (14 pm/V) comparable to that of the inorganic crystal lithium niobate

  8. Cast iron cutting with nano TiN and multilayer TiN-CrN coated inserts

    NASA Astrophysics Data System (ADS)

    Perucca, M.; Durante, S.; Semmler, U.; Rüger, C.; Fuentes, G. G.; Almandoz, E.

    2012-09-01

    During the past decade great success has been achieved in the development of duplex and multilayer multi-functional surface systems. Among these surface systems outstanding properties have nanoscale multilayer coatings. Within the framework of the M3-2S project funded in the 7th European Framework Programme, several nanoscale multilayer coatings have been developed and investigated for experimental and industrial validation. This paper shows the performance of TiN and TiN/CrN nanoscale multilayer coatings on WC cutting inserts when machining GJL250 cast iron. The thin films have been deposited by cathodic arc evaporation in an industrial PVD system. The multilayer deposition characteristic and its properties are shown. The inserts have been investigated in systematic cutting experiments of cast iron bars on a turning machine specifically equipped for force measurements, accompanied by wear determination. Furthermore, equivalent experiments have been carried out on an industrial turning unit. Industrial validation criteria have been applied to assess the comparative performance of the coatings. The choice of the material and the machined parts is driven by an interest in automotive applications. The industrial tests show the need to further optimise the multi-scale modelling approach in order to reduce the lead time of the coating development as well as to improve simulation reliability.

  9. Laser beam induced nanoscale spot through nonlinear “thick” samples: A multi-layer thin lens self-focusing model

    SciTech Connect

    Wei, Jingsong; Yan, Hui

    2014-08-14

    Self-focusing is a well-researched phenomenon. Nanoscale spots can be achieved through self-focusing, which is an alternative method for achieving high-density data storage, high-resolution light imaging, and maskless nanolithography. Several research groups have observed that self-focusing spots can be reduced to nanoscale levels via incident laser power manipulation. Self-focusing spots can be analyzed by solving the nonlinear Schrödinger equation and the finite difference time domain method. However, both procedures are complex and time-consuming. In the present work, a multi-layer thin-lens self-focusing model that considers diffraction effects and changes of refractive index along the radial and film thickness directions is proposed to analyze the self-focusing behavior and traveling process of light beams intuitively. The self-focusing behaviors of As{sub 2}S{sub 3} are simulated, and results show that a nanoscale self-focusing spot with a radius of about 0.12 μm can be formed at the bottom of nonlinear sample when the incident laser power exceeds 4.25 mW. Our findings are basically consistent with experimental reports and provide a good method for analyzing and understanding the self-focusing process. An appropriate application schematic design is also provided.

  10. Nanoscale layer-selective readout of magnetization direction from a magnetic multilayer using a spin-torque oscillator

    NASA Astrophysics Data System (ADS)

    Suto, Hirofumi; Nagasawa, Tazumi; Kudo, Kiwamu; Mizushima, Koichi; Sato, Rie

    2014-06-01

    Technology for detecting the magnetization direction of nanoscale magnetic material is crucial for realizing high-density magnetic recording devices. Conventionally, a magnetoresistive device is used that changes its resistivity in accordance with the direction of the stray field from an objective magnet. However, when several magnets are near such a device, the superposition of stray fields from all the magnets acts on the sensor, preventing selective recognition of their individual magnetization directions. Here we introduce a novel readout method for detecting the magnetization direction of a nanoscale magnet by use of a spin-torque oscillator (STO). The principles behind this method are dynamic dipolar coupling between an STO and a nanoscale magnet, and detection of ferromagnetic resonance (FMR) of this coupled system from the STO signal. Because the STO couples with a specific magnet by tuning the STO oscillation frequency to match its FMR frequency, this readout method can selectively determine the magnetization direction of the magnet.

  11. Nanoscale layer-selective readout of magnetization direction from a magnetic multilayer using a spin-torque oscillator.

    PubMed

    Suto, Hirofumi; Nagasawa, Tazumi; Kudo, Kiwamu; Mizushima, Koichi; Sato, Rie

    2014-06-20

    Technology for detecting the magnetization direction of nanoscale magnetic material is crucial for realizing high-density magnetic recording devices. Conventionally, a magnetoresistive device is used that changes its resistivity in accordance with the direction of the stray field from an objective magnet. However, when several magnets are near such a device, the superposition of stray fields from all the magnets acts on the sensor, preventing selective recognition of their individual magnetization directions. Here we introduce a novel readout method for detecting the magnetization direction of a nanoscale magnet by use of a spin-torque oscillator (STO). The principles behind this method are dynamic dipolar coupling between an STO and a nanoscale magnet, and detection of ferromagnetic resonance (FMR) of this coupled system from the STO signal. Because the STO couples with a specific magnet by tuning the STO oscillation frequency to match its FMR frequency, this readout method can selectively determine the magnetization direction of the magnet.

  12. Optical multilayers with an amorphous fluoropolymer

    NASA Astrophysics Data System (ADS)

    Chow, Robert; Loomis, Gary E.; Lindsey, Edward F.

    1994-09-01

    Multilayered coatings were made by physical vapor deposition (PVD) of a perfluorinated amorphous polymer, Teflon AF2400, together with other optical materials. A high reflector at 1064 nm was made with ZnS and AF2400. An all-organic 1064-nm reflector was made from AF2400 and polyethylene. Oxide (HfO2, SiO2) compatibility was also tested. Each multilayer system adhered to itself. The multilayers were influenced by coating stress and unintentional temperature rises during PVD deposition.

  13. Femtosecond Single-Shot Imaging of Nanoscale Ferromagnetic Order in Co/Pd Multilayers using Resonant X-ray Holography

    SciTech Connect

    Wang, Tianhan; Zhu, Diling; Benny Wu,; Graves, Catherine; Schaffert, Stefan; Rander, Torbjorn; Muller, leonard; Vodungbo, Boris; Baumier, Cedric; Bernstein, David P.; Brauer, Bjorn; Cros, Vincent; Jong, Sanne de; Delaunay, Renaud; Fognini, Andreas; Kukreja, Roopali; Lee, Sooheyong; Lopez-Flores, Victor; Mohanty, Jyoti; Pfau, Bastian; Popescu, 5 Horia

    2012-05-15

    We present the first single-shot images of ferromagnetic, nanoscale spin order taken with femtosecond x-ray pulses. X-ray-induced electron and spin dynamics can be outrun with pulses shorter than 80 fs in the investigated fluence regime, and no permanent aftereffects in the samples are observed below a fluence of 25 mJ/cm{sup 2}. Employing resonant spatially-muliplexed x-ray holography results in a low imaging threshold of 5 mJ/cm{sup 2}. Our results open new ways to combine ultrafast laser spectroscopy with sequential snapshot imaging on a single sample, generating a movie of excited state dynamics.

  14. Pvd Growth Method:. Physics and Technology

    NASA Astrophysics Data System (ADS)

    Moshfegh, A. Z.

    2004-06-01

    In this review, the foundation of thin film technology namely fabrication, characterization and application is described. Classification of physical vapor deposition (PVD) is presented based on evaporation and sputtering methods. The physics and technology of three main branches of PVD deposition techniques including sputtering, pulse laser deposition (PLD) and molecular beam epitaxy (MBE) along with their characteristic differences are compared. The application of bias sputtering in producing thin films with modified properties is presented. A correlation between deposition variables and parameters of nucleation and growth is discussed. The initial stages of PVD growth modes such as layer by-layer, island, and mixed layer-island growth mechanisms are reviewed. At the end, the applications of PVD in microelectronics with several recent examples especially in the metallization process are presented.

  15. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    NASA Technical Reports Server (NTRS)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (< 10 microns) single layers to be deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  16. Crystal structure of PvdO from Pseudomonas aeruginosa.

    PubMed

    Yuan, Zenglin; Gao, Fei; Bai, Guohui; Xia, Hengchuan; Gu, Lichuan; Xu, Sujuan

    2017-02-26

    Pyoverdine I (PVDI) is a water-soluble fluorescein siderophore with strong iron chelating ability from the gram-negative pathogen Pseudomonas aeruginosa PAO1. Compared to common siderophores, PVDI is a relatively large compound whose synthesis requires a group of enzymes with different catalytic activities. In addition to four nonribosomal peptide synthetases (NRPS) which are responsible for the production of the peptide backbone of PVDI, several additional enzymes are associated with the modification of the side chains. PvdO is one of these enzymes and participates in PVDI precursor maturation in the periplasm. We determined the crystal structure of PvdO at 1.24 Å resolution. The PvdO structure shares a common fold with some FGly-generating enzymes (FGE) and is stabilized by Ca(2+). However, the catalytic residues in FGE are not observed in PvdO, indicating PvdO adopts a unique catalytic mechanism.

  17. Enhanced coercivity in thermally processed (Nd,Dy)(Fe,Co,Nb,B){sub 5.5}/{alpha}-Fe nanoscale multilayer magnets

    SciTech Connect

    Liu, W.; Li, X.Z.; Liu, J.P.; Sun, X.K.; Chen, C.L.; Skomski, R.; Zhang, Z.D.; Sellmyer, D.J.

    2005-05-15

    Structural and magnetic properties of laminated (Nd,Dy)(Fe,Co,Nb,B){sub 5.5}/Fe nanocomposites are investigated. Normally, the addition of the soft phase to the hard phase enhances the remanence but deteriorates the permanent-magnet performance of the material by reducing the coercivity. In the present system, the coercivity increases to 1608 kA/m (20.2 kOe) in thermally processed Nd-Dy-Fe-Co-Nb-B(15 nm)/Fe(4 nm) multilayered nanocomposites, which is higher than that of the single-layer hard-magnetic film. The abnormally high coercivity is achieved by annealing at relatively high temperature, which breaks the laminated structure of the as-deposited multilayer. A likely physical explanation of the enhanced coercivity is the introduction of the domain-wall pinning sites that counteract the inevitable decrease of the nucleation field.

  18. Protection of yttria-stabilized zirconia for dental applications by oxidic PVD coating.

    PubMed

    Hübsch, C; Dellinger, P; Maier, H J; Stemme, F; Bruns, M; Stiesch, M; Borchers, L

    2015-01-01

    In this study, the application of transparent physical vapor deposition (PVD) coatings on zirconia ceramics was examined as an approach to retard the low-temperature degradation of zirconia for dental applications. Transparent monolayers of titanium oxide (TixOy) and multilayers consisting of titanium oxide-alumina-titanium oxide (TixOy-AlxOy-TixOy) were deposited onto standardized discs of 3Y-TZP using magnetron sputtering. Using X-ray photospectroscopy and time-of-flight secondary-ion mass spectrometry, the compositions of the coatings were verified, and an approximate thickness of 50 nm for each type of coating was ascertained. After aging the coated and uncoated samples in water vapor at 134°C and 3 bar for 4, 8, 16, 32, 64 and 128 h, the monoclinic phase content was determined using X-ray diffraction, and its impact on mechanical properties was assessed in biaxial flexural strength tests. In addition, the depth of the transformation zone was measured from scanning electron microscopy images of the fracture surfaces of hydrothermally aged samples. The results revealed that the tetragonal-to-monoclinic phase transformation of the zirconia ceramic was retarded by the application of PVD coatings. During the first stages of aging, the coated samples exhibited a significantly lower monoclinic phase content than the uncoated samples and, after 128 h of aging, showed a transformation zone which was only ∼12-15 μm thick compared to ∼30 μm in the control group. Biaxial flexural strength decreased by ∼10% during aging and was not influenced by the application of a PVD coating.

  19. Oleophobic optical coating deposited by magnetron PVD

    NASA Astrophysics Data System (ADS)

    Bernt, D.; Ponomarenko, V.; Pisarev, A.

    2016-09-01

    Thin oxinitride films of Zn-Sn-O-N and Si-Al-O-N were deposited on glass by reactive magnetron sputtering at various nitrogen-to-oxygen ratios. Nitrogen added to oxygen led to decrease of the surface roughness and increase of oleophobic properties studied by the oil-drop test. The best oleophobity was obtained for Zn-Sn-O-N oxinitride at Zn:Sn=1:1 and N:O=1:2. Improved oleophobic properties were also demonstrated if the oxinitride film was deposited on top of the multilayer coating as the final step in the industrial cycle of production of energy efficient glass.

  20. Effects of MeV Si ions bombardment on the thermoelectric generator from SiO 2/SiO 2 + Cu and SiO 2/SiO 2 + Au nanolayered multilayer films

    NASA Astrophysics Data System (ADS)

    Budak, S.; Chacha, J.; Smith, C.; Pugh, M.; Colon, T.; Heidary, K.; Johnson, R. B.; Ila, D.

    2011-12-01

    The defects and disorder in the thin films caused by MeV ions bombardment and the grain boundaries of these nanoscale clusters increase phonon scattering and increase the chance of an inelastic interaction and phonon annihilation. We prepared the thermoelectric generator devices from 100 alternating layers of SiO 2/SiO 2 + Cu multi-nano layered superlattice films at the total thickness of 382 nm and 50 alternating layers of SiO 2/SiO 2 + Au multi-nano layered superlattice films at the total thickness of 147 nm using the physical vapor deposition (PVD). Rutherford Backscattering Spectrometry (RBS) and RUMP simulation have been used to determine the stoichiometry of the elements of SiO 2, Cu and Au in the multilayer films and the thickness of the grown multi-layer films. The 5 MeV Si ions bombardments have been performed using the AAMU-Center for Irradiation of Materials (CIM) Pelletron ion beam accelerator to make quantum (nano) dots and/or quantum (quantum) clusters in the multilayered superlattice thin films to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and cross plane electrical conductivity. To characterize the thermoelectric generator devices before and after Si ion bombardments we have measured Seebeck coefficient, cross-plane electrical conductivity, and thermal conductivity in the cross-plane geometry for different fluences.

  1. Evaporation rate and composition monitoring of electron beam PVD processes

    SciTech Connect

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; Meier, T.; McClelland, M.A.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is developing sensor and control technology to improve the quality and range of applicability of electron beam PVD. The approach being developed uses tunable lasers to measure, the density and composition of the vapor plume. This paper reviews the principles of operation of laser based sensors and discusses data from experiments in which titanium and niobium are co-vaporized. Laser data agreed well with deposited film compositions and spatial variations in deposited film cross sections. Laser based vapor monitoring appears to have broad applicability and has the potential to extend the use of high rate electron beam PVD.

  2. Prediction of the properties of PVD/CVD coatings with the use of FEM analysis

    NASA Astrophysics Data System (ADS)

    Śliwa, Agata; Mikuła, Jarosław; Gołombek, Klaudiusz; Tański, Tomasz; Kwaśny, Waldemar; Bonek, Mirosław; Brytan, Zbigniew

    2016-12-01

    The aim of this paper is to present the results of the prediction of the properties of PVD/CVD coatings with the use of finite element method (FEM) analysis. The possibility of employing the FEM in the evaluation of stress distribution in multilayer Ti/Ti(C,N)/CrN, Ti/Ti(C,N)/(Ti,Al)N, Ti/(Ti,Si)N/(Ti,Si)N, and Ti/DLC/DLC coatings by taking into account their deposition conditions on magnesium alloys has been discussed in the paper. The difference in internal stresses in the zone between the coating and the substrate is caused by, first of all, the difference between the mechanical and thermal properties of the substrate and the coating, and also by the structural changes that occur in these materials during the fabrication process, especially during the cooling process following PVD and CVD treatment. The experimental values of stresses were determined based on X-ray diffraction patterns that correspond to the modelled values, which in turn can be used to confirm the correctness of the accepted mathematical model for testing the problem. An FEM model was established for the purpose of building a computer simulation of the internal stresses in the coatings. The accuracy of the FEM model was verified by comparing the results of the computer simulation of the stresses with experimental results. A computer simulation of the stresses was carried out in the ANSYS environment using the FEM method. Structure observations, chemical composition measurements, and mechanical property characterisations of the investigated materials has been carried out to give a background for the discussion of the results that were recorded during the modelling process.

  3. Multilayer dielectric narrow band mangin mirror

    NASA Astrophysics Data System (ADS)

    Ahmed, K.; Khan, A. N.; Rauf, A.; Gul, A.

    2014-06-01

    The design of multilayer stack of dielectric films for narrow band mirror is developed using thin film coating software. The proposed design is materialized by employing thin film coating (PVD) method and reflectance in narrow band spectrum range is achieved. Thickness of high and low refractive index material is taken precisely up to nanometer level. The curved coated substrate is cemented with another K9 matching substrate that forms a Mangin mirror for wavelength 650nm. Narrow band mirrors with reflectivity more than 90% has been produced by properly stacking of 21 layers and advantage of the use of this type of mirror as an interference filter is discussed.

  4. Cutting performance and wear mechanisms of PVD coated carbide tools during dry drilling of newly produced ADI

    NASA Astrophysics Data System (ADS)

    Meena, Anil; El Mansori, Mohamed

    2016-10-01

    The austempered ductile iron (ADI) material is widely used for automotive and structural applications. However, it is considered a difficult to machine material due to its strain hardening behavior and low thermal conductivity characteristics; thus delivering higher mechanical and thermal loads at the tool-chip interface, which significantly affects the tool wear and surface quality. The paper thus overviews the cutting performance and wear behavior of different cutting tools during dry drilling of newly produced ADI material. Cutting performance was evaluated in terms of specific cutting energy, workpiece surface integrity and tool wear behavior. Tool wear behavior shows crater wear mode and workpiece adhesion. The surface alteration at the machined subsurface was confirmed from the hardness variation. Multilayer (Ti,Al,Cr)N coated tool shows improved cutting performance and wear behavior due to its enhanced tribological adaptability as compared to another PVD coating leading to the reduction in specific cutting energy by 25%.

  5. Feature Evolution Simulation of I-PVD Copper Films

    NASA Astrophysics Data System (ADS)

    Vyvoda, Michael A.; Abrams, Cameron F.; Graves, David B.

    1998-10-01

    As the semiconductor industry trends toward the use of copper as a primary metallization material, robust process technologies for depositing this material in high aspect structures must be developed. One technique that has shown promise in accomplishing this task is ionized physical vapor deposition (I-PVD),(P.F. Cheng et al.), J. Vac. Sci. Technol. B 13, 203 (1995). which can be used to perform the entire fill or provide a seed layer for subsequent copper electroplating. A key need in designing I-PVD processes is controlling the degree of sidewall copper coverage during seed layer deposition and preventing pinch-off during total fill. We have developed a numerical simulation of copper film evolution during I-PVD processing that addresses these issues. The simulation uses as inputs distribution functions of plasma ions (Ar^+ and Cu^+) and neutrals (Cu) as well as reflection and sputtering distributions of energetic species impacting copper surfaces.(C.F. Abrams, unpublished.) This methodology allows for the proper tracking of reflected and sputtered material as it redeposits elsewhere within the feature. Independent variables include ion-ion and ion-neutral flux ratios as well as wafer bias voltage. We show that for a given initial feature aspect ratio, optimal conditions for achieving high film conformality and pinch-free fill can be determined by proper adjustment of these independent variables.

  6. Enhanced Corrosion Resistance of PVD-CrN Coatings by ALD Sealing Layers.

    PubMed

    Wan; Zhang, Teng Fei; Ding, Ji Cheng; Kim, Chang-Min; Park, So-Won; Yang, Yang; Kim, Kwang-Ho; Kwon, Se-Hun

    2017-12-01

    Multilayered hard coatings with a CrN matrix and an Al2O3, TiO2, or nanolaminate-Al2O3/TiO2 sealing layer were designed by a hybrid deposition process combined with physical vapor deposition (PVD) and atomic layer deposition (ALD). The strategy was to utilize ALD thin films as pinhole-free barriers to seal the intrinsic defects to protect the CrN matrix. The influences of the different sealing layers added in the coatings on the microstructure, surface roughness, and corrosion behaviors were investigated. The results indicated that the sealing layer added by ALD significantly decreased the average grain size and improved the corrosion resistance of the CrN coatings. The insertion of the nanolaminate-Al2O3/TiO2 sealing layers resulted in a further increase in corrosion resistance, which was attributed to the synergistic effect of Al2O3 and TiO2, both acting as excellent passivation barriers to the diffusion of corrosive substances.

  7. The fretting corrosion resistance of PVD surface-modified orthopedic implant alloys.

    PubMed

    Hendry, J A; Pilliar, R M

    2001-01-01

    The objective of this study was to evaluate the fretting corrosion resistance of both modified and unmodified Ti6Al4V flats fretted against CoCr-alloy spheres in a buffered Hank's solution at 37 degrees C using an original fretting apparatus. A physical vapor deposition (PVD) cathodic arc evaporation technique was used to deposit 3-4 microm thick titanium nitride (TiN), zirconium nitride (ZrN), or amorphous carbon (AC) coatings onto the Ti6Al4V substrates. The fretting behavior of the nitride films (TiN and ZrN) was characterized by the absence of surface damage and the deposition of a Cr-rich oxide transferred from the CoCr-alloy spheres to the modified surfaces. This oxide led to a slight increase in surface roughness. Three of the six multilayered AC coatings tested exhibited extensive fretting damage and generated large, deep, wear scars. Cohesive failure of the AC coating was observed in the low contact stress areas of the fretting scars. The remaining AC-coated specimens experienced only slight polishing wear. The reason for the different behavior within the AC-coated specimens is not clear at the present time. The unmodified Ti6Al4V surfaces experienced severe surface damage consistent with the adhesive galling mechanism to which these alloys are susceptible.

  8. Nanoscale Wicking

    NASA Astrophysics Data System (ADS)

    Zhou, Jijie; Sansom, Elijah; Gharib, Mory; Noca, Flavio

    2003-11-01

    A wick is a bundle of fibers that by capillary attraction draws up to be burned a steady supply of the oil in lamps. In textile research, wicking is the process by which liquids are transported across or along fibers by capillary action (of relevance to perspiration). A similar phenomenon was recently discovered in our lab with mats of nanoscale fibers. A droplet containing a surfactant solution was placed on top of a well-aligned mat of carbon nanotubes: wicking was then observed as a film of liquid propagating within the nanocarpet, such as a stain or drop absorbed into a textile fabric. The nanoscale wicking process in carbon nano-arrays offers a simple and enabling technology for the processing (transport, mixing, filtering) of picoliters of fluids without any need for confinement (nanochannel) or bulky driving pressure apparatus. In this work, nanoscale wicking properties are quantified as a function of surfactant activity and carbon nanoarray geometry. The biomolecular sieving capability of the nanotube arrays is also put to test by the addition of biomolecules, while using the wicking process as the fluid driving force.

  9. Nanoscale Proteomics

    SciTech Connect

    Shen, Yufeng; Tolic, Nikola; Masselon, Christophe D.; Pasa-Tolic, Liljiana; Camp, David G.; Anderson, Gordon A.; Smith, Richard D.; Lipton, Mary S.

    2004-02-01

    This paper describes efforts to develop a liquid chromatography (LC)/mass spectrometry (MS) technology for ultra-sensitive proteomics studies, i.e. nanoscale proteomics. The approach combines high-efficiency nano-scale LC with advanced MS, including high sensitivity and high resolution Fourier transform ion cyclotron resonance (FTICR) MS, to perform both single-stage MS and tandem MS (MS/MS) proteomic analyses. The technology developed enables large-scale protein identification from nanogram size proteomic samples and characterization of more abundant proteins from sub-picogram size complex samples. Protein identification in such studies using MS is feasible from <75 zeptomole of a protein, and the average proteome measurement throughput is >200 proteins/h and ~3 h/sample. Higher throughput (>1000 proteins/h) and more sensitive detection limits can be obtained using a “accurate mass and time” tag approach developed at our laboratory. These capabilities lay the foundation for studies from single or limited numbers of cells.

  10. Nanoscale flexoelectricity.

    PubMed

    Nguyen, Thanh D; Mao, Sheng; Yeh, Yao-Wen; Purohit, Prashant K; McAlpine, Michael C

    2013-02-20

    Electromechanical effects are ubiquitous in biological and materials systems. Understanding the fundamentals of these coupling phenomena is critical to devising next-generation electromechanical transducers. Piezoelectricity has been studied in detail, in both the bulk and at mesoscopic scales. Recently, an increasing amount of attention has been paid to flexoelectricity: electrical polarization induced by a strain gradient. While piezoelectricity requires crystalline structures with no inversion symmetry, flexoelectricity does not carry this requirement, since the effect is caused by inhomogeneous strains. Flexoelectricity explains many interesting electromechanical behaviors in hard crystalline materials and underpins core mechanoelectric transduction phenomena in soft biomaterials. Most excitingly, flexoelectricity is a size-dependent effect which becomes more significant in nanoscale systems. With increasing interest in nanoscale and nano-bio hybrid materials, flexoelectricity will continue to gain prominence. This Review summarizes work in this area. First, methods to amplify or manipulate the flexoelectric effect to enhance material properties will be investigated, particularly at nanometer scales. Next, the nature and history of these effects in soft biomaterials will be explored. Finally, some theoretical interpretations for the effect will be presented. Overall, flexoelectricity represents an exciting phenomenon which is expected to become more considerable as materials continue to shrink.

  11. Nanograined Net-Shaped Fabrication of Rhenium Components by EB-PVD

    SciTech Connect

    Singh, Jogender; Wolfe, Douglas E.

    2004-02-04

    Cost-effective net-shaped forming components have brought considerable interest into DoD, NASA and DoE. Electron beam physical vapor deposition (EB-PVD) offers flexibility in forming net-shaped components with tailored microstructure and chemistry. High purity rhenium (Re) components including rhenium-coated graphite balls, Re- plates and tubes have been successfully manufactured by EB-PVD. EB-PVD Re components exhibited sub-micron and nano-sized grains with high hardness and strength as compared to CVD. It is estimated that the cost of Re components manufactured by EB-PVD would be less than the current CVD and powder-HIP Technologies.

  12. Antimicrobial titanium/silver PVD coatings on titanium

    PubMed Central

    Ewald, Andrea; Glückermann, Susanne K; Thull, Roger; Gbureck, Uwe

    2006-01-01

    Background Biofilm formation and deep infection of endoprostheses is a recurrent complication in implant surgery. Post-operative infections may be overcome by adjusting antimicrobial properties of the implant surface prior to implantation. In this work we described the development of an antimicrobial titanium/silver hard coating via the physical vapor deposition (PVD) process. Methods Coatings with a thickness of approximately 2 μm were deposited on titanium surfaces by simultaneous vaporisation of both metals in an inert argon atmosphere with a silver content of approximately 0.7 – 9% as indicated by energy dispersive X-ray analysis. On these surfaces microorganisms and eukaryotic culture cells were grown. Results The coatings released sufficient silver ions (0.5–2.3 ppb) when immersed in PBS and showed significant antimicrobial potency against Staphylococcus epidermis and Klebsiella pneumoniae strains. At the same time, no cytotoxic effects of the coatings on osteoblast and epithelial cells were found. Conclusion Due to similar mechanical performance when compared to pure titanium, the TiAg coatings should be suitable to provide antimicrobial activity on load-bearing implant surfaces. PMID:16556327

  13. Parameter tuning of PVD process based on artificial intelligence technique

    NASA Astrophysics Data System (ADS)

    Norlina, M. S.; Diyana, M. S. Nor; Mazidah, P.; Rusop, M.

    2016-07-01

    In this study, an artificial intelligence technique is proposed to be implemented in the parameter tuning of a PVD process. Due to its previous adaptation in similar optimization problems, genetic algorithm (GA) is selected to optimize the parameter tuning of the RF magnetron sputtering process. The most optimized parameter combination obtained from GA's optimization result is expected to produce the desirable zinc oxide (ZnO) thin film from the sputtering process. The parameters involved in this study were RF power, deposition time and substrate temperature. The algorithm was tested to optimize the 25 datasets of parameter combinations. The results from the computational experiment were then compared with the actual result from the laboratory experiment. Based on the comparison, GA had shown that the algorithm was reliable to optimize the parameter combination before the parameter tuning could be done to the RF magnetron sputtering machine. In order to verify the result of GA, the algorithm was also been compared to other well known optimization algorithms, which were, particle swarm optimization (PSO) and gravitational search algorithm (GSA). The results had shown that GA was reliable in solving this RF magnetron sputtering process parameter tuning problem. GA had shown better accuracy in the optimization based on the fitness evaluation.

  14. Antibacterial PVD coatings doped with silver by ion implantation

    NASA Astrophysics Data System (ADS)

    Osés, J.; Palacio, J. F.; Kulkarni, S.; Medrano, A.; García, J. A.; Rodríguez, R.

    2014-08-01

    The antibacterial effect of certain metal ions, like silver, has been exploited since antiquity. Obviously, the ways to employ the biocide activity of this element have evolved throughout time and it is currently used in a wide range of clinical applications. The work presented here reports the results of an investigation focused on combining the protective properties of PVD coatings with the biocide property of silver, applied by ion implantation. For this purpose, chromium nitride layers were doped with silver implanted at two different doses (5 × 1016 and 1 × 1017 ion/cm2) at 100 keV of energy and perpendicular incidence. Full characterization of the coatings was performed to determine its topographical and mechanical properties. The concentration profile of Ag was analyzed by GD-OES. The thickness of the layers, nano-hardness, roughness, wear resistance and coefficient of friction were measured. Finally, the anti-bacterial efficacy of the coatings was determined following the JIS Z-2801:2010 Standard. The results provide clear insights into the efficacy of silver for antibacterial purposes, as well as on its influence in the mechanical and tribological behaviour of the coatings matrix.

  15. Nanoscale 2013

    NASA Astrophysics Data System (ADS)

    Koenders, Ludger; Ducourtieux, Sebastien

    2014-04-01

    The accurate determination of the properties of micro- and nano-structures is essential in research and development. It is also a prerequisite in process control and quality assurance in industry. In most cases, especially at the nanometer range, knowledge of the dimensional properties of structures is the fundamental base, to which further physical properties are linked. Quantitative measurements presuppose reliable and stable instruments, suitable measurement procedures as well as calibration artifacts and methods. This special issue of Measurement Science and Technology presents selected contributions from the NanoScale 2013 seminar held in Paris, France, on 25 and 26 April. It was the 6th Seminar on NanoScale Calibration Standards and Methods and the 10th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized with the Nanometrology Group of the Technical Committee-Length of EURAMET, the Physikalisch-Technische Bundesanstalt and the Laboratoire National de Métrologie et d'Essais. Three satellite meetings related to nanometrology were coupled to the seminar. The first one was an open Symposium on Scanning Probe Microscopy Standardization organized by the ISO/TC 201/SC9 technical committee. The two others were specific meetings focused on two European Metrology Research Projects funded by the European Association of National Metrology Institutes (EURAMET) (see www.euramet.org), the first one focused on the improvement of the traceability for high accuracy devices dealing with sub-nm length measurement and implementing optical interferometers or capacitive sensors (JRP SIB08 subnano), the second one aiming to develop a new metrological traceability for the measurement of the mechanical properties of nano-objects (JRP NEW05 MechProNo). More than 100 experts from industry, calibration laboratories and metrology institutes from around the world joined the NanoScale 2013 Seminar to attend 23 oral and 64 poster

  16. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Picotto, G. B.; Koenders, L.; Wilkening, G.

    2009-08-01

    Instrumentation and measurement techniques at the nanoscale play a crucial role not only in extending our knowledge of the properties of matter and processes in nanosciences, but also in addressing new measurement needs in process control and quality assurance in industry. Micro- and nanotechnologies are now facing a growing demand for quantitative measurements to support the reliability, safety and competitiveness of products and services. Quantitative measurements presuppose reliable and stable instruments and measurement procedures as well as suitable calibration artefacts to ensure the quality of measurements and traceability to standards. This special issue of Measurement Science and Technology presents selected contributions from the Nanoscale 2008 seminar held at the Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, in September 2008. This was the 4th Seminar on Nanoscale Calibration Standards and Methods and the 8th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized by the Nanometrology Group within EUROMET (The European Collaboration in Measurement Standards), the German Nanotechnology Competence Centre 'Ultraprecise Surface Figuring' (CC-UPOB), the Physikalisch-Technische Bundesanstalt (PTB) and INRIM. A special event during the seminar was the 'knighting' of Günter Wilkening from PTB, Braunschweig, Germany, as the 1st Knight of Dimensional Nanometrology. Günter Wilkening received the NanoKnight Award for his outstanding work in the field of dimensional nanometrology over the last 20 years. The contributions in this special issue deal with the developments and improvements of instrumentation and measurement methods for scanning force microscopy (SFM), electron and optical microscopy, high-resolution interferometry, calibration of instruments and new standards, new facilities and applications including critical dimension (CD) measurements on small and medium structures and nanoparticle

  17. Transparent Conductive AGZO/Ag/AGZO Multilayers on PET Substrate by Roll-to-Roll Sputtering.

    PubMed

    Kim, Taehoon; Park, Kwangwon; Kim, Jongsu

    2016-02-01

    Indium-free Al and Ga-codoped ZnO (AGZO) multilayer films with nanoscale Ag interlayer were deposited by dual target roll-to-roll RF for AGZO and DC sputtering systems for Ag at room temperature for a large scale. The thicknesses of AGZO/Ag/AGZO multilayer were optimized by changing the roll speed: 0.15/1.1/0.15 m/min for AGZO/Ag/AGZO multilayers, respectively. The optimum thicknesses of AGZO/Ag/AGZO multilayer are 9.21, 8.32 and 8.04 nm, respectively. Optimized AGZO/Ag/AGZO multilayer films showed an excellent transparency (84% at 550 nm) and a low sheet resistance (9.2 omega/sq.) on PET substrates for opto-electronic applications. The effects of nanoscale Ag interlayer on optical and electrical properties of AGZO/Ag/AGZO multilayer films were discussed.

  18. Hierarchical adaptive nanostructured PVD coatings for extreme tribological applications: the quest for nonequilibrium states and emergent behavior.

    PubMed

    Fox-Rabinovich, German S; Yamamoto, Kenji; Beake, Ben D; Gershman, Iosif S; Kovalev, Anatoly I; Veldhuis, Stephen C; Aguirre, Myriam H; Dosbaeva, Goulnara; Endrino, Jose L

    2012-08-01

    Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear

  19. Hierarchical adaptive nanostructured PVD coatings for extreme tribological applications: the quest for nonequilibrium states and emergent behavior

    PubMed Central

    Fox-Rabinovich, German S; Yamamoto, Kenji; Beake, Ben D; Gershman, Iosif S; Kovalev, Anatoly I; Veldhuis, Stephen C; Aguirre, Myriam H.; Dosbaeva, Goulnara; Endrino, Jose L

    2012-01-01

    Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear

  20. Electrodeposited Multilayer Solar Cell Materials^*

    NASA Astrophysics Data System (ADS)

    Friedfeld, R.; Raffaelle, R. P.; Mantovani, J. G.

    1996-03-01

    We have been investigating the synthesis of electrochemically deposited multilayer structures based on the Cu_xIn_2-xSe2 system for use in thin film solar cells. Electrochemical deposition is a cost- effective alternative for producing these solar cell materials. Cu_xIn_2-xSe2 is one of the most promising thin film solar cell materials, due to its ideal optical and electrical properties. The interest in multilayer structures is due to their proposed use in increasing thin film solar cell efficiency. We present our attempts at synthesizing nanoscale multilayer thin films based on the Cu_xIn_2-xSe2 system using various solutions and techniques. We have characterized the composition, structure, and optical properties of these films using energy dispersive spectroscopy, x-ray diffraction, scanning tunneling microscopy, and optical spectroscopy. * This work was supported by the Southeastern University Research Association in collaboration with Oak Ridge National Laboratory and the Florida Solar Energy Center.

  1. Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase

    NASA Astrophysics Data System (ADS)

    von Niessen, Konstantin; Gindrat, Malko

    2011-06-01

    Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion

  2. Magnetic multilayer structure

    DOEpatents

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2017-03-21

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  3. Magnetic multilayer structure

    SciTech Connect

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  4. A review-application of physical vapor deposition (PVD) and related methods in the textile industry

    NASA Astrophysics Data System (ADS)

    Shahidi, Sheila; Moazzenchi, Bahareh; Ghoranneviss, Mahmood

    2015-09-01

    Physical vapor deposition (PVD) is a coating process in which thin films are deposited by the condensation of a vaporized form of the desired film material onto the substrate. The PVD process is carried out in a vacuum. PVD processes include different types, such as: cathode arc deposition, electron beam physical vapor deposition, evaporative deposition, sputtering, ion plating and enhanced sputtering. In the PVD method, the solid coating material is evaporated by heat or by bombardment with ions (sputtering). At the same time, a reactive gas is also introduced; it forms a compound with the metal vapor and is deposited on the substrate as a thin film with highly adherent coating. Such coatings are used in a wide range of applications such as aerospace, automotive, surgical, medical, dyes and molds for all manner of material processing, cutting tools, firearms, optics, thin films and textiles. The objective of this work is to give a comprehensive description and review of the science and technology related to physical vapor deposition with particular emphasis on their potential use in the textile industry. Physical vapor deposition has opened up new possibilities in the modification of textile materials and is an exciting prospect for usage in textile design and technical textiles. The basic principle of PVD is explained and the major applications, particularly sputter coatings in the modification and functionalization of textiles, are introduced in this research.

  5. Phase stability in metallic multilayers

    NASA Astrophysics Data System (ADS)

    Genc, Arda

    As the thin film materials used in electronic and optical applications continue to decrease in thickness to the nano-scales, marked changes in functional properties are expected to occur due to changes in crystal structure of these materials. Therefore, such multilayer systems have been of considerable interest due to the ability to control properties by engineering the structure of materials at these scales. The new characterization tools allow direct imaging and analysis of such materials in order to link the performance variations with the crystal structure variations. Transmission Electron Microscopy (TEM) has been often the technique of choice in characterization of nanomaterials enabling not only imaging the structure of the material but also chemically probing of the composition changes at a high spatial resolution. The ultimate resolution achievable in the electron microscope is a product of both microscope and the specimen and the simultaneous effect of each defines the quality and quantity of the information transferred through the microscope. In this sense, the common ion-beam assisted TEM sample preparation techniques have been deeply recognized as being surface damaging at high ion milling energies (>5kV) thus limiting the information transfer in the microscope. For the first time, a low energy (<2kV) focused Ar ion beam milling system has been applied to remove the surface artifacts created by the high energy conventional broad Ar or focused Ga beam milling techniques. The overall quality of the samples drastically improved after the application of the low energy milling practices and the outcome results directly enhanced the clarity of the information gathered at the atomic and nanoscale by the electron microscope. Besides the specimen the resolution achievable in the electron microscope is strongly limited by the imperfections in the electron optics of the microscope column such as the spherical aberration of the electromagnetic lenses. Recently

  6. PvdP Is a Tyrosinase That Drives Maturation of the Pyoverdine Chromophore in Pseudomonas aeruginosa

    PubMed Central

    Nadal-Jimenez, Pol; Koch, Gudrun; Reis, Carlos R.; Muntendam, Remco; Raj, Hans; Jeronimus-Stratingh, C. Margot; Cool, Robbert H.

    2014-01-01

    The iron binding siderophore pyoverdine constitutes a major adaptive factor contributing to both virulence and survival in fluorescent pseudomonads. For decades, pyoverdine production has allowed the identification and classification of fluorescent and nonfluorescent pseudomonads. Here, we demonstrate that PvdP, a periplasmic enzyme of previously unknown function, is a tyrosinase required for the maturation of the pyoverdine chromophore in Pseudomonas aeruginosa. PvdP converts the nonfluorescent ferribactin, containing two iron binding groups, into a fluorescent pyoverdine, forming a strong hexadentate complex with ferrous iron, by three consecutive oxidation steps. PvdP represents the first characterized member of a small family of tyrosinases present in fluorescent pseudomonads that are required for siderophore maturation and are capable of acting on large peptidic substrates. PMID:24816606

  7. PvD1 defensin, a plant antimicrobial peptide with inhibitory activity against Leishmania amazonensis.

    PubMed

    do Nascimento, Viviane V; Mello, Érica de O; Carvalho, Laís P; de Melo, Edésio J T; Carvalho, André de O; Fernandes, Katia V S; Gomes, Valdirene M

    2015-08-18

    Plant defensins are small cysteine-rich peptides and exhibit antimicrobial activity against a variety of both plant and human pathogens. Despite the broad inhibitory activity that plant defensins exhibit against different micro-organisms, little is known about their activity against protozoa. In a previous study, we isolated a plant defensin named PvD1 from Phaseolus vulgaris (cv. Pérola) seeds, which was seen to be deleterious against different yeast cells and filamentous fungi. It exerted its effects by causing an increase in the endogenous production of ROS (reactive oxygen species) and NO (nitric oxide), plasma membrane permeabilization and the inhibition of medium acidification. In the present study, we investigated whether PvD1 could act against the protozoan Leishmania amazonensis. Our results show that, besides inhibiting the proliferation of L. amazonensis promastigotes, the PvD1 defensin was able to cause cytoplasmic fragmentation, formation of multiple cytoplasmic vacuoles and membrane permeabilization in the cells of this organism. Furthermore, we show, for the first time, that PvD1 defensin was located within the L. amazonensis cells, suggesting the existence of a possible intracellular target.

  8. PvD1 defensin, a plant antimicrobial peptide with inhibitory activity against Leishmania amazonensis

    PubMed Central

    do Nascimento, Viviane V.; Mello, Érica de O.; Carvalho, Laís P.; de Melo, Edésio J.T.; Carvalho, André de O.; Fernandes, Katia V.S.; Gomes, Valdirene M.

    2015-01-01

    Plant defensins are small cysteine-rich peptides and exhibit antimicrobial activity against a variety of both plant and human pathogens. Despite the broad inhibitory activity that plant defensins exhibit against different micro-organisms, little is known about their activity against protozoa. In a previous study, we isolated a plant defensin named PvD1 from Phaseolus vulgaris (cv. Pérola) seeds, which was seen to be deleterious against different yeast cells and filamentous fungi. It exerted its effects by causing an increase in the endogenous production of ROS (reactive oxygen species) and NO (nitric oxide), plasma membrane permeabilization and the inhibition of medium acidification. In the present study, we investigated whether PvD1 could act against the protozoan Leishmania amazonensis. Our results show that, besides inhibiting the proliferation of L. amazonensis promastigotes, the PvD1 defensin was able to cause cytoplasmic fragmentation, formation of multiple cytoplasmic vacuoles and membrane permeabilization in the cells of this organism. Furthermore, we show, for the first time, that PvD1 defensin was located within the L. amazonensis cells, suggesting the existence of a possible intracellular target. PMID:26285803

  9. Pyoverdine and beyond: PvdS dependent gene regulation in Pseudomonas syringae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The extracytoplasmic function (ECF) sigma factor PvdS regulates the expression of genes in Pseudomonas aeruginosa encoding virulence factors and the biosynthesis and transport of pyoverdine, a siderophore involved in iron acquisition. The production of pyoverdine is a distinctive trait of the fluor...

  10. Experimental investigation of the ultra-precision turning capability of PVD ZnSe

    NASA Astrophysics Data System (ADS)

    Li, Wei-hao; Yang, Kun; Wang, Peng; Zhang, Gao-feng; Liu, Dan-dan

    2016-10-01

    ZnSe is widely used in infrared optical systems because of the good optical characteristics in 0.5 22μm and the good processability. Physical Vapor Deposition(PVD) of ZnSe is good at no pollution in production process, lower price, etc. Infrared optical parts should be made by single point diamond turning or single point diamond fly-cutting after the experimental investigation of the ultra-precision turning capability of PVD ZnSe. The orthogonal experiment of ultra-precision turning PVD ZnSe was done at first, then the smooth turning surface and the rough turning surface were observed by metallographic microscope and 3D profilometer, and the mechanism of the defects on the turning surface was discussed. The result shows: the quality of ultra-precision turning surface of PVD ZnSe was restricted by the grain size and the distribution of the grain which could easily cause the variegated macula at the grain size, rising the spindle speed, reducing the feed rate and reducing the cut depth could make the quality of ultra-precision turning surface better and reduce the roughness Ra value lower, the roughness Ra value of the smooth turning surface was reached 3 4nm which is enough to the infrared optical image systems currently by using the optimization of parameters.

  11. Optical/Electronic Heterogeneity of WSe2 at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Park, Kyoung-Duck; Khatib, Omar; Kravtsov, Vasily; Ulbricht, Ronald; Clark, Genevieve; Xu, Xiaodong; Raschke, Markus

    Many classes of two-dimensional (2D) materials have emerged as a potential platform for novel electronic and optical devices. However, the physical properties are strongly influenced by nanoscale heterogeneities in the form of nucleation sites, defects, strains, and edges. Here we demonstrate nano-optical imaging of the associated influence on structure and electronic properties with sub-20 nm spatial resolution from combined tip-enhanced Raman scattering (TERS) and photoluminescence (TEPL) spectroscopy and imaging. In monolayer WSe2 micro-crystals grown by physical vapor deposition (PVD), we observe significant variations in TERS and TEPL near crystal edges and atomic-scale grain boundaries (GBs), consistent with variations in strain and/or exciton diffusion. Specifically, theoretical exciton diffusion lengths (25 nm) at GBs and heterogeneous nanoscale (30-80 nm) PL emission including a spectral blue-shift at edges are experimentally probed. Further, we are able to engineer the local bandgap of WSe2 crystals by dynamic AFM-control in reversible (24 meV) and irreversible (48 meV) fashions, enabling systematic in-situ studies of the coupling of mechanical degrees of freedom to the nanoscale electronic properties in layered 2D materials.

  12. Characterization of Mo/Si multilayer growth on stepped topographies

    SciTech Connect

    Boogaard, A. J. R. vcan den; Louis, E.; Zoethout, E.; Goldberg, K. A.; Bijkerk, F.

    2011-08-31

    Mo/Si multilayer mirrors with nanoscale bilayer thicknesses have been deposited on stepped substrate topographies, using various deposition angles. The multilayer morphology at the stepedge region was studied by cross section transmission electron microscopy. A transition from a continuous- to columnar layer morphology is observed near the step-edge, as a function of the local angle of incidence of the deposition flux. Taking into account the corresponding kinetics and anisotropy in layer growth, a continuum model has been developed to give a detailed description of the height profiles of the individual continuous layers. Complementary optical characterization of the multilayer system using a microscope operating in the extreme ultraviolet wavelength range, revealed that the influence of the step-edge on the planar multilayer structure is restricted to a region within 300 nm from the step-edge.

  13. Nanoscale thermal probing

    PubMed Central

    Yue, Yanan; Wang, Xinwei

    2012-01-01

    Nanoscale novel devices have raised the demand for nanoscale thermal characterization that is critical for evaluating the device performance and durability. Achieving nanoscale spatial resolution and high accuracy in temperature measurement is very challenging due to the limitation of measurement pathways. In this review, we discuss four methodologies currently developed in nanoscale surface imaging and temperature measurement. To overcome the restriction of the conventional methods, the scanning thermal microscopy technique is widely used. From the perspective of measuring target, the optical feature size method can be applied by using either Raman or fluorescence thermometry. The near-field optical method that measures nanoscale temperature by focusing the optical field to a nano-sized region provides a non-contact and non-destructive way for nanoscale thermal probing. Although the resistance thermometry based on nano-sized thermal sensors is possible for nanoscale thermal probing, significant effort is still needed to reduce the size of the current sensors by using advanced fabrication techniques. At the same time, the development of nanoscale imaging techniques, such as fluorescence imaging, provides a great potential solution to resolve the nanoscale thermal probing problem. PMID:22419968

  14. Magnetic pinning in superconductor-ferromagnet multilayers

    SciTech Connect

    Bulaevskii, L. N.; Chudnovsky, E. M.; Maley, M. P.

    2000-05-01

    We argue that superconductor/ferromagnet multilayers of nanoscale period should exhibit strong pinning of vortices by the magnetic domain structure in magnetic fields below the coercive field when ferromagnetic layers exhibit strong perpendicular magnetic anisotropy. The estimated maximum magnetic pinning energy for single vortex in such a system is about 100 times larger than the pinning energy by columnar defects. This pinning energy may provide critical currents as high as 10{sup 6}-10{sup 7} A/cm{sup 2} at high temperatures (but not very close to T{sub c}) at least in magnetic fields below 0.1 T. (c) 2000 American Institute of Physics.

  15. Toughening mechanisms in bioinspired multilayered materials.

    PubMed

    Askarinejad, Sina; Rahbar, Nima

    2015-01-06

    Outstanding mechanical properties of biological multilayered materials are strongly influenced by nanoscale features in their structure. In this study, mechanical behaviour and toughening mechanisms of abalone nacre-inspired multilayered materials are explored. In nacre's structure, the organic matrix, pillars and the roughness of the aragonite platelets play important roles in its overall mechanical performance. A micromechanical model for multilayered biological materials is proposed to simulate their mechanical deformation and toughening mechanisms. The fundamental hypothesis of the model is the inclusion of nanoscale pillars with near theoretical strength (σth ~ E/30). It is also assumed that pillars and asperities confine the organic matrix to the proximity of the platelets, and, hence, increase their stiffness, since it has been previously shown that the organic matrix behaves more stiffly in the proximity of mineral platelets. The modelling results are in excellent agreement with the available experimental data for abalone nacre. The results demonstrate that the aragonite platelets, pillars and organic matrix synergistically affect the stiffness of nacre, and the pillars significantly contribute to the mechanical performance of nacre. It is also shown that the roughness induced interactions between the organic matrix and aragonite platelet, represented in the model by asperity elements, play a key role in strength and toughness of abalone nacre. The highly nonlinear behaviour of the proposed multilayered material is the result of distributed deformation in the nacre-like structure due to the existence of nano-asperities and nanopillars with near theoretical strength. Finally, tensile toughness is studied as a function of the components in the microstructure of nacre.

  16. Toughening mechanisms in bioinspired multilayered materials

    PubMed Central

    Askarinejad, Sina; Rahbar, Nima

    2015-01-01

    Outstanding mechanical properties of biological multilayered materials are strongly influenced by nanoscale features in their structure. In this study, mechanical behaviour and toughening mechanisms of abalone nacre-inspired multilayered materials are explored. In nacre's structure, the organic matrix, pillars and the roughness of the aragonite platelets play important roles in its overall mechanical performance. A micromechanical model for multilayered biological materials is proposed to simulate their mechanical deformation and toughening mechanisms. The fundamental hypothesis of the model is the inclusion of nanoscale pillars with near theoretical strength (σth ~ E/30). It is also assumed that pillars and asperities confine the organic matrix to the proximity of the platelets, and, hence, increase their stiffness, since it has been previously shown that the organic matrix behaves more stiffly in the proximity of mineral platelets. The modelling results are in excellent agreement with the available experimental data for abalone nacre. The results demonstrate that the aragonite platelets, pillars and organic matrix synergistically affect the stiffness of nacre, and the pillars significantly contribute to the mechanical performance of nacre. It is also shown that the roughness induced interactions between the organic matrix and aragonite platelet, represented in the model by asperity elements, play a key role in strength and toughness of abalone nacre. The highly nonlinear behaviour of the proposed multilayered material is the result of distributed deformation in the nacre-like structure due to the existence of nano-asperities and nanopillars with near theoretical strength. Finally, tensile toughness is studied as a function of the components in the microstructure of nacre. PMID:25551150

  17. Thermal Conductivity of EB-PVD Thermal Barrier Coatings Evaluated by a Steady-State Laser Heat Flux Technique

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Nagaraj, Ben A.; Bruce, Robert W.

    2000-01-01

    The thermal conductivity of electron beam-physical vapor deposited (EB-PVD) Zr02-8wt%Y2O3 thermal barrier coatings was determined by a steady-state heat flux laser technique. Thermal conductivity change kinetics of the EB-PVD ceramic coatings were also obtained in real time, at high temperatures, under the laser high heat flux, long term test conditions. The thermal conductivity increase due to micro-pore sintering and the decrease due to coating micro-delaminations in the EB-PVD coatings were evaluated for grooved and non-grooved EB-PVD coating systems under isothermal and thermal cycling conditions. The coating failure modes under the high heat flux test conditions were also investigated. The test technique provides a viable means for obtaining coating thermal conductivity data for use in design, development, and life prediction for engine applications.

  18. Multiple frequency capacitive plasmas as a tool to optimize PVD processes

    NASA Astrophysics Data System (ADS)

    Bienholz, Stefan; Semmler, Egmont; Awakowicz, Peter

    2011-10-01

    Capacitively coupled plasmas are widely used in PVD processes over several years. Nowadays mainly DC-Magnetron sputter coaters are commonly used, which do not allow a separate control of ion flux and ion energy distribution at the target. A possibility to overcome this constriction consists of exciting the plasma at two different radio frequencies simultaneously. In this contribution we discuss the possibility of tuning electrical discharge quantities such as target voltage waveform and self bias voltage by using multiple excitation frequencies. The influence of the relative phase between one frequency and its second harmonic on these quantities is also investigated. The experiments show, that capacitively coupled multiple frequency discharges are a promising complement to existing PVD processes. The authors would like to acknowledge the funding provided by the ``Deutsche Forschungsgemeinschaft'' within the frame of the SFB-TR 87 and the ``Ruhr University Bochum Research School.''

  19. The Photovoltaic Performances of PVdF-HFP Electrospun Membranes Employed Quasi-Solid-State Dye Sensitized Solar Cells.

    PubMed

    Gnana kumar, G; Balanay, Mannix P; Nirmala, R; Kim, Dong Hee; Raj kumar, T; Senthilkumar, N; Kim, Ae Rhan; Yoo, Dong Jin

    2016-01-01

    The PVdF-HFP nanofiber membranes with different molecular weight were prepared by electrospinning technique and were investigated as solid state electrolyte membranes in quasi solid state dye sensitized solar cells (QS-DSSC). The homogeneously distributed and fully interconnected nanofibers were obtained for all of the prepared PVdF-HFP electrospun membranes and the average fiber diameters of fabricated membranes were dependent upon the molecular weight of polymer. The thermal stability of electrospun PVdF-HFP membrane was decreased with a decrement of molecular weight, specifying the high heat transfer area of small diameter nanofibers. The QS-DSSC fabricated with the lower molecular weight PVdF-HFP electrospun nanofiber membrane exhibited the power conversion efficiency of 1 = 5.38%, which is superior over the high molecular weight membranes and is comparable with the liquid electrolyte. Furthermore, the electrospun PVdF-HFP membrane exhibited long-term durability over the liquid electrolyte, owing to the higher adsorption and retention efficiencies of liquid electrolyte in its highly porous and interconnected nanofibers. Thus the proposed electrospun PVdF-HFP membrane effectively tackled the volatilization and leakage of liquid electrolyte and provided good photoconversion efficiency associated with an excellent stability, which constructs the prepared electrospun membranes as credible solid state candidates for the application of QS-DSSCs.

  20. Complete wetting of Pt(111) by nanoscale liquid water films

    SciTech Connect

    Xu, Yuntao; Dibble, Collin J.; Petrik, Nikolay G.; Smith, R. Scott; Kay, Bruce D.; Kimmel, Gregory A.

    2016-02-04

    The melting and wetting of nanoscale crystalline ice films on Pt(111) that are transiently heated above the melting point using nanosecond laser pulses are studied with infrared refection absorption spectroscopy (IRAS) and Kr temperature programmed desorption (TPD). The as-grown crystalline ice films consist of isolated nanoscale ice crystallites embedded in a hydrophobic water monolayer. Upon heating above the melting point, these ice crystallites rapidly melt to form nanoscale droplets of liquid water. Rapid cooling of the system to cryogenic temperatures after each laser pulse quenches the water films and allows them to be interrogated with IRAS, Kr TPD and other ultrahigh vacuum surface science techniques. With each successive heat pulse, these liquid drops spread across the surface until it is entirely covered with multilayer water films after several pulses. These results, which show that nanoscale water films completely wet Pt(111), are in contrast to molecular dynamics simulations predicting partial wetting of nanoscale water drops on a hydrophobic water monolayer. The results provide valuable new insights into the wetting characteristics of nanoscale water films on a clean, well-characterized single crystal surface.

  1. Multilayer Insulation Material Guidelines

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Dooling, D.

    1999-01-01

    Multilayer Insulation Material Guidelines provides data on multilayer insulation materials used by previous spacecraft such as Spacelab and the Long-Duration Exposure Facility and outlines other concerns. The data presented in the document are presented for information only. They can be used as guidelines for multilayer insulation design for future spacecraft provided the thermal requirements of each new design and the environmental effects on these materials are taken into account.

  2. Functional expression and activity of the recombinant antifungal defensin PvD1r from Phaseolus vulgaris L. (common bean) seeds

    PubMed Central

    2014-01-01

    Background Defensins are basic, cysteine-rich antimicrobial peptides that are important components of plant defense against pathogens. Previously, we isolated a defensin, PvD1, from Phaseolus vulgaris L. (common bean) seeds. Results The aim of this study was to overexpress PvD1 in a prokaryotic system, verify the biologic function of recombinant PvD1 (PvD1r) by comparing the antimicrobial activity of PvD1r to that of the natural defensin, PvD1, and use a mutant Candida albicans strain that lacks the gene for sphingolipid biosynthesis to unravel the target site of the PvD1r in C. albicans cells. The cDNA encoding PvD1, which was previously obtained, was cloned into the pET-32 EK/LIC vector, and the resulting construct was used to transform bacterial cells (Rosetta Gami 2 (DE3) pLysS) leading to recombinant protein expression. After expression had been induced, PvD1r was purified, cleaved with enterokinase and repurified by chromatographic steps. N-terminal amino acid sequencing showed that the overall process of the recombinant production of PvD1r, including cleavage with the enterokinase, was successful. Additionally, modeling revealed that PvD1r had a structure that was similar to the defensin isolated from plants. Purified PvD1 and PvD1r possessed inhibitory activity against the growth of the wild-type pathogenic yeast strain C. albicans. Both defensins, however, did not present inhibitory activity against the mutant strain of C. albicans. Antifungal assays with the wild-type C. albicans strains showed morphological changes upon observation by light microscopy following growth assays. PvD1r was coupled to FITC, and the subsequent treatment of wild type C. albicans with DAPI revealed that the labeled peptide was intracellularly localized. In the mutant strain, no intracellular labeling was detected. Conclusion Our results indicate that PvD1r retains full biological activity after recombinant production, enterokinase cleavage and purification. Additionally, our

  3. Nano-scale adhesion in multilayered drug eluting stents.

    PubMed

    Youssefian, Sina; Rahbar, Nima

    2013-02-01

    Using stainless steel 316L for drug-eluting stents needs specific surface finishing due to corrosion phenomena that take place on the metal surface upon prolonged contact with human tissue. Poly (o-chloro-p-xylylene) (Parylene C) is one of the inert and biocompatible materials that are used for 316L coating with γ-methacryloxypropyltrimethoxysilane as an adhesion promoter. In this study, a combination of atomic force microscopy experiments and contact theories have been used to quantify the work of adhesion between parylene C/316L and silane added parylene C/316L. An atomistic simulation has been used, first, to investigate and compare the adhesion at the room temperature with the experiments and then, to investigate the effect of aqueous environment with higher temperature, inside the body, on the adhesion between layers in the structure of drug eluting stent. The simulation results of simplified model for 316L are in good agreement with the experimental results and suggest that the week affiliation between this polymer and 316L is mainly due to Van der Waals interactions. The effect of temperature on the adhesion is found to be regressive and as the water molecules permeate the polymer the adhesion decreases. They also imply that the effect of silane on the adhesion between parylene C and steel is modest.

  4. Investigating Deformation and Failure Mechanisms in Nanoscale Multilayer Metallic Composites

    SciTech Connect

    Zbib, Hussein M.; Bahr, David F.

    2014-10-22

    Over the history of materials science there are many examples of materials discoveries that have made superlative materials; the strongest, lightest, or toughest material is almost always a goal when we invent new materials. However, often these have been a result of enormous trial and error approaches. A new methodology, one in which researchers design, from the atoms up, new ultra-strong materials for use in energy applications, is taking hold within the science and engineering community. This project focused on one particular new classification of materials; nanolaminate metallic composites. These materials, where two metallic materials are intimately bonded and layered over and over to form sheets or coatings, have been shown over the past decade to reach strengths over 10 times that of their constituents. However, they are not yet widely used in part because while extremely strong (they don’t permanently bend), they are also not particularly tough (they break relatively easily when notched). Our program took a coupled approach to investigating new materials systems within the laminate field. We used computational materials science to explore ways to institute new deformation mechanisms that occurred when a tri-layer, rather than the more common bi-layer system was created. Our predictions suggested that copper-nickel or copper-niobium composites (two very common bi-layer systems) with layer thicknesses on the order of 20 nm and then layered 100’s of times, would be less tough than a copper-nickel-niobium metallic composite of similar thicknesses. In particular, a particular mode of permanent deformation, cross-slip, could be activated only in the tri-layer system; the crystal structure of the other bi-layers would prohibit this particular mode of deformation. We then experimentally validated this predication using a wide range of tools. We utilized a DOE user facility, the Center for Integrated Nanotechnology (CINT), to fabricate, for the first time, these tri-layer composites. CINT formed nanolaminate composites were tested in tension, with bulge testing, using nanoindentation, and using micro-compression testing to demonstrate that the tri-layer films were indeed tougher and hardened more during deformation (they got stronger as we deformed them) than equivalent bi-layers. The seven graduate students, 4 post-docs and research faculty, and the two faculty co-PI’s were able to create a collaborated computational prediction and experimental validation team to demonstrate the benefits of this class of materials to the community. The computational work crossed from atomistic to bulk simulations, and the experiments coupled form nm-scale to the mm scale; closely matching the simulations. The simulations provided viable mechanisms that explained the observed results, and new experimental results were used to push the boundaries of the simulation tools. Over the life of the 7 years of this program we proved that tri-layer nanolaminate metallic composite systems exceeded the mechanical performance of bi-layer systems if the right materials were chosen, and that the mechanism responsible for this was tied to the cross slip of dislocations. With 30 journal publications resulting from this work we have broadly disseminated this family of results to the scientific community.

  5. Hybrid diffusive/PVD treatments to improve the tribological resistance of Ti-6Al-4V.

    PubMed

    Marin, E; Offoiach, R; Lanzutti, A; Regis, M; Fusi, S; Fedrizzi, L

    2014-01-01

    Titanium alloys are nowadays used for a wide range of biomedical applications thanks to their combination of high mechanical resistance, high corrosion resistance and biocompatibility. Nevertheless, the applicability of titanium alloys is sometimes limited due to their low microhardness and tribological resistance. Thus the titanium alloys cannot be successfully applied to prosthetic joint couplings. A wide range of surface treatments, in particular PVD coatings such as CrN and TiN, have been used in order to improve the tribological behaviour of titanium alloys. However, the low microhardness of the titanium substrate often results in coating failure due to cracks and delamination. For this reason, hybrid technologies based on diffusive treatments and subsequent PVD coatings may improve the overall coating resistance. In this work, conventional PVD coatings of CrN or TiCN, deposited on Titanium Grade 5, were characterized and then combined with a standard thermal diffusive nitriding treatment in order to improve the tribological resistance of the titanium alloys and avoid coating delamination. The different treatments were studied by means of scanning electron microscopy both on the sample surface and in cross-section. In-depth composition profiles were obtained using glow discharge optical emission spectrometry (GDOES) and localized energy dispersive X-ray diffraction on linear scan-lines. The microhardness and adhesion properties of the different treatments were evaluated using Vickers microhardness tests at different load conditions. The indentations were observed by means of SEM in order to evaluate delaminated areas and the crack's shape and density. The tribological behaviour of the different treatments was tested in dry conditions and in solution, in alternate pin-on-flat configuration, with a frequency of 0.5 Hz. After testing, the surface was investigated by means of stylus profilometry and SEM both on the surface and in cross-section. The standalone PVD

  6. Modular, Multilayer Perceptron

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Liu, Tsuen-Hsi

    1991-01-01

    Combination of proposed modular, multilayer perceptron and algorithm for its operation recognizes new objects after relatively brief retraining sessions. (Perceptron is multilayer, feedforward artificial neural network fully connected and trained via back-propagation learning algorithm.) Knowledge pertaining to each object to be recognized resides in subnetwork of full network, therefore not necessary to retrain full network to recognize each new object.

  7. Microstructures and mechanical properties of sputtered Cu/Cr multilayers

    SciTech Connect

    Misra, A.; Kung, H.; Mitchell, T.E.; Jervis, T.R.; Nastasi, M.

    1998-03-01

    The microstructures and mechanical properties of Cu/Cr multilayers prepared by sputtering onto {l_brace}100{r_brace} Si substrates at room temperature are presented. The films exhibit columnar grain microstructures with nanoscale grain sizes. The interfaces are planar and abrupt with no intermixing, as expected from the phase diagram. The multilayers tend to adopt a Kurdjumov-Sachs (KS) orientation relationship: {l_brace}110{r_brace}Cr // {l_brace}111{r_brace}Cu, <111>Cr // <110>Cu. The hardness of the multilayered structures, as measured by nanoindentation, increase with decreasing layer thickness for layer thicknesses ranging from 200 nm to 50 nm, whereas for lower thicknesses the hardness of the multilayers is independent of the layer thickness. Dislocation-based models are used to interpret the variation of hardness with layer periodicity. The possible effects of factors such as grain size within the layers, density and composition of films and residual stress in the multilayers are highlighted. Comparisons are made to the mechanical properties of sputtered polycrystalline Cu/Nb multilayers which, like Cu/Cr, exhibit sharp fcc/bcc interfaces with no intermixing and a KS orientation relationship, but have a small shear modulus mismatch.

  8. High Temperature Multilayer Environmental Barrier Coatings Deposited Via Plasma Spray-Physical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2014-01-01

    Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.

  9. Scanning Tunneling Microscopy of Multilayer Thin Film Solar Cell Materials^*

    NASA Astrophysics Data System (ADS)

    Mantovani, J. G.; Friedfeld, R.; Raffaelle, R. P.

    1996-03-01

    We have been investigating electrochemically deposited multilayer structures based on the Cu_xIn_2-xSe2 system for use in thin film solar cells. The interest in multilayer structures is due to their proposed use in increasing thin film solar cell efficiency. We have imaged the artificially imposed superstructure of our nanoscale multilayers using a scanning tunneling microscope. A comparison is made between the theoretically calculated modulation wavelengths and those generated by Fourier analysis of the scanning tunneling microscope images. A discussion of the use of photo-assisted tunneling spectroscopy in a modified STM is presented. * This work was supported by the Southeastern University Research Association in collaboration with Oak Ridge National Laboratory and the Florida Solar Energy Center.

  10. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  11. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  12. Structural characterisation of oxygen diffusion hardened alpha-tantalum PVD-coatings on titanium.

    PubMed

    Hertl, C; Koll, L; Schmitz, T; Werner, E; Gbureck, U

    2014-08-01

    Titanium substrates were coated with tantalum layers of 5 μm thickness using physical vapour deposition (PVD). The tantalum layers showed a (110)-preferred orientation. The coated samples were hardened by oxygen diffusion. Using X-ray diffraction the crystallographic structure of the tantalum coatings was characterised, comparing untreated and diffusion hardened specimen conditions. Oxygen depth profiles were determined by glow discharge spectrometry. The hardening effect of the heat treatment was examined by Vickers microhardness testing. The increase of surface hardness caused by oxygen diffusion was at least 50%.

  13. Growth Mechanism for Low Temperature PVD Graphene Synthesis on Copper Using Amorphous Carbon

    NASA Astrophysics Data System (ADS)

    Narula, Udit; Tan, Cher Ming; Lai, Chao Sung

    2017-03-01

    Growth mechanism for synthesizing PVD based Graphene using Amorphous Carbon, catalyzed by Copper is investigated in this work. Different experiments with respect to Amorphous Carbon film thickness, annealing time and temperature are performed for the investigation. Copper film stress and its effect on hydrogen diffusion through the film grain boundaries are found to be the key factors for the growth mechanism, and supported by our Finite Element Modeling. Low temperature growth of Graphene is achieved and the proposed growth mechanism is found to remain valid at low temperatures.

  14. Growth Mechanism for Low Temperature PVD Graphene Synthesis on Copper Using Amorphous Carbon

    PubMed Central

    Narula, Udit; Tan, Cher Ming; Lai, Chao Sung

    2017-01-01

    Growth mechanism for synthesizing PVD based Graphene using Amorphous Carbon, catalyzed by Copper is investigated in this work. Different experiments with respect to Amorphous Carbon film thickness, annealing time and temperature are performed for the investigation. Copper film stress and its effect on hydrogen diffusion through the film grain boundaries are found to be the key factors for the growth mechanism, and supported by our Finite Element Modeling. Low temperature growth of Graphene is achieved and the proposed growth mechanism is found to remain valid at low temperatures. PMID:28276475

  15. Silicon based solar cells using a multilayer oxide as emitter

    NASA Astrophysics Data System (ADS)

    Bao, Jie; Wu, Weiliang; Liu, Zongtao; Shen, Hui

    2016-08-01

    In this work, n-type silicon based solar cells with WO3/Ag/WO3 multilayer films as emitter (WAW/n-Si solar cells) were presented via simple physical vapor deposition (PVD). Microstructure and composition of WAW/n-Si solar cells were studied by TEM and XPS, respectively. Furthermore, the dependence of the solar cells performances on each WO3 layer thickness was investigated. The results indicated that the bottom WO3 layer mainly induced band bending and facilitated charge-carriers separation, while the top WO3 layer degraded open-circuit voltage but actually improved optical absorption of the solar cells. The WAW/n-Si solar cells, with optimized bottom and top WO3 layer thicknesses, exhibited 5.21% efficiency on polished wafer with area of 4 cm2 under AM 1.5 condition (25 °C and 100 mW/cm2). Compared with WO3 single-layer film, WAW multilayer films demonstrated better surface passivation quality but more optical loss, while the optical loss could be effectively reduced by implementing light-trapping structures. These results pave a new way for dopant-free solar cells in terms of low-cost and facile process flow.

  16. Toward nanoscale genome sequencing.

    PubMed

    Ryan, Declan; Rahimi, Maryam; Lund, John; Mehta, Ranjana; Parviz, Babak A

    2007-09-01

    This article reports on the state-of-the-art technologies that sequence DNA using miniaturized devices. The article considers the miniaturization of existing technologies for sequencing DNA and the opportunities for cost reduction that 'on-chip' devices can deliver. The ability to construct nano-scale structures and perform measurements using novel nano-scale effects has provided new opportunities to identify nucleotides directly using physical, and not chemical, methods. The challenges that these technologies need to overcome to provide a US$1000-genome sequencing technology are also presented.

  17. Conductivity studies of LiCF3SO3 doped PVA: PVdF blend polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Tamilselvi, P.; Hema, M.

    2014-03-01

    Different composition of lithium ion conducting PVA: PVdF: Lithium triflate (LiCF3SO3) polymer electrolytes have been prepared by solution casting technique. Dielectric and conductivity studies have been carried out for the prepared samples. The addition of salt into the polymer matrix increases the ionic conductivity of blend polymer electrolytes. The conductivity analysis reveals 80PVA: 20PVdF: 15LiCF3SO3 polymer electrolyte exhibits the maximum ionic conductivity of 2.7×10-3 S cm-1 at 303 K. The temperature dependence of ionic conductivity for all the composition of PVA: PVdF: LiCF3SO3 polymer films obey Arrhenius relation. Low activation energy has been obtained for highest conducting sample. The dielectric spectra show absolute β-relaxation peak.

  18. Wedged multilayer Laue Lens.

    SciTech Connect

    Conley, R.; Liu, C.; Qian, J.; Kewish, C. M.; Macrander, A. T.; Yan, H.; Kang, H. C.; Maser, J.; Stephenson, G. B.

    2008-05-01

    A multilayer Laue lens (MLL) is an x-ray focusing optic fabricated from a multilayer structure consisting of thousands of layers of two different materials produced by thin-film deposition. The sequence of layer thicknesses is controlled to satisfy the Fresnel zone plate law and the multilayer is sectioned to form the optic. An improved MLL geometry can be created by growing each layer with an in-plane thickness gradient to form a wedge, so that every interface makes the correct angle with the incident beam for symmetric Bragg diffraction. The ultimate hard x-ray focusing performance of a wedged MLL has been predicted to be significantly better than that of a nonwedged MLL, giving subnanometer resolution with high efficiency. Here, we describe a method to deposit the multilayer structure needed for an ideal wedged MLL and report our initial deposition results to produce these structures.

  19. [PVD-layering for increased retention of glass fibre reinforced endodontic posts].

    PubMed

    Edelhoff, Daniel; Weber, Michael; Spiekermann, Hubertus; Marx, Rudolf

    2006-01-01

    For esthetical and biomechanical reasons root canal posts made of fibre-reinforced composite (FRC) have gained an important role in clinical application. Additionally, in contrast to metal or ceramic posts, FRC-posts offer the option of removal. Prior to adhesive placement of FRC-posts the root canal dentin of the non vital tooth and the post surface have to be preconditioned. Up to now the post preconditioning has to be proceeded in the chair side technique. This leads to an additional time expense in the clinical treatment schedule. Also a certain risk of errors in application during chair side conditioning procedure is of concern. Modern PVD-technologies can help to make the treatment by the manufacturer well in advance of the clinical use more efficient and reliable, as well as saving clinicians valuable chair-time. For this reason the apical surfaces of the posts were intensively cleaned and activated, PVD-layered and coated by a conserving transparent layer. This coating has the meaning to protect the surface against environmental contamination and allows the try-in of the posts without any risk of damage of the preconditioned surface. To prove the stability of the layer system under simulated clinical conditions pull out tests after 180 days'storage in physiological saline solution have been performed.

  20. Characterization of ultrathin oxide-based multilayer SERS nanoprobes for intracellular sensing

    NASA Astrophysics Data System (ADS)

    Strobbia, Pietro; Cullum, Brian M.

    2014-05-01

    Photonic nanosensors (e.g. PEBBLES, quantum dots-based sensors, etc.) have begun to allow the study of these previously inaccessible environments. Unfortunately, many current techniques suffer from biocompatibility issues, limited ability to monitor multiple species simultaneously and/or complicated fabrication chemistries. Recently SERS immuno-nanoprobes have demonstrated the capability to overcome many of these limitations. Such intracellular SERS nanosensors require optimized substrate geometry to achieve the sensitivity necessary to detect the trace analyte concentrations present. To address this, we have developed a novel multilayered SERS substrate nanoarchitecture that is capable of enhancing SERS signals by over two orders of magnitude relative to comparable single layer substrates. These structures are fabricated using different deposition techniques (PVD, ALD, etc) in which multiple films of Ag (between 10-125 nm thick) are alternately deposited with ultrathin dielectric layers (tens of Å). This geometry allows surface plasmons from different metal layers to be generated. The resulting multilayer enhancement increases the sensitivity while also improving the robustness of the nanoprobes. In this paper, we investigate and characterize SERS immuno-nanoprobes fabricated using this multilayered geometry and discuss the effect of the dielectric spacer (Ag2O, TiO2, Ta2O5) work functions and conductive band offsets on the multilayer enhancement.

  1. Applications of multilayer optics

    NASA Astrophysics Data System (ADS)

    Wang, Zhanshan; Zhu, Jingtao; Mu, Baozhong; Zhang, Zhong; Wang, Fengli; Xu, Jing; Li, Wenbin; Chen, Lingyan

    2010-11-01

    Recent development of multilayer mirror and its applications in extreme ultraviolet (EUV), soft X-ray ranges in China was reviewed in this paper. Three types of multilayer mirrors were developed with special performance for dense plasma diagnostics, EUV astronomical observation. Firstly, dual-periodic W/B 4C multilayer mirror was designed for Kirkpatrick-Baez (K-B) microscopy working at TiKα line (4.75 keV), which is highly reflective both at hard X-ray (CuKα line at 8.05 keV) and soft X-ray (4.75 keV). Using this mirror, the K-B system can be aligned conveniently in air using hard X-ray instead of in vacuum. The second mirror is aperiodic Mg/SiC multilayer, also a bi-functional mirror with high reflectivity for He-II emission line (30.4 nm) but suppressing He-I emission line (58.4 nm) in astronomy observation, which will replace the traditional combination of periodic multilayer and the fragile film filter. This will be more safe in satellite launching. The third mirror is Mo/Si periodic multilayer, depositing on a parabolic substrate with diameter of 230 mm, which is designed for EUV telescope for imaging of solar corona by selecting Fe-XII emission (19.5 nm). The uniformity of lateral layer thickness distribution is within ±0.3% along the diameter of mirror, measured by X-ray reflectometry. The measured peak reflectivity is 42% at the wavelength of 19.5 nm. All these multilayer mirrors were prepared by using magnetron sputtering system in our group.

  2. Mapping nanoscale light fields

    NASA Astrophysics Data System (ADS)

    Rotenberg, N.; Kuipers, L.

    2014-12-01

    The control of light fields on subwavelength scales in nanophotonic structures has become ubiquitous, driven by both curiosity and a multitude of applications in fields ranging from biosensing to quantum optics. Mapping these fields in detail is crucial, as theoretical modelling is far from trivial and highly dependent on nanoscale geometry. Recent developments of nanoscale field mapping, particularly with near-field microscopy, have not only led to a vastly increased resolution, but have also resulted in increased functionality. The phase and amplitude of different vector components of both the electric and magnetic fields are now accessible, as is the ultrafast temporal or spectral evolution of propagating pulses in nanostructures. In this Review we assess the current state-of-the-art of subwavelength light mapping, highlighting the new science and nanostructures that have subsequently become accessible.

  3. Tunable nanoscale graphene magnetometers.

    PubMed

    Pisana, Simone; Braganca, Patrick M; Marinero, Ernesto E; Gurney, Bruce A

    2010-01-01

    The detection of magnetic fields with nanoscale resolution is a fundamental challenge for scanning probe magnetometry, biosensing, and magnetic storage. Current technologies based on giant magnetoresistance and tunneling magnetoresistance are limited at small sizes by thermal magnetic noise and spin-torque instability. These limitations do not affect Hall sensors consisting of high mobility semiconductors or metal thin films, but the loss of magnetic flux throughout the sensor's thickness greatly limits spatial resolution and sensitivity. Here we demonstrate graphene extraordinary magnetoresistance devices that combine the Hall effect and enhanced geometric magnetoresistance, yielding sensitivities rivaling that of state of the art sensors but do so with subnanometer sense layer thickness at the sensor surface. Back-gating provides the ability to control sensor characteristics, which can mitigate both inherent variations in material properties and fabrication-induced device-to-device variability that is unavoidable at the nanoscale.

  4. Magnetic multilayer interface anisotropy

    SciTech Connect

    Pechan, M.J.

    1992-01-01

    Ni/Mo and Ni/V multilayer magnetic anisotropy has been investigated as a function of Ni layer thickness, frequency and temperature. Variable frequency ferromagnetic resonance (FMR) measurements show, for the first time, significant frequency dependence associated with the multilayer magnetic anisotropy. The thickness dependence allows one to extract the interface contribution from the total anisotropy. Temperature dependent FMR (9 GHz) and room temperature magnetization indicate that strain between Ni and the non-magnetic layers is contributing significantly to the source of the interface anisotropy and the state of the interfacial magnetization. In order to examine the interface properties of other transition metal multilayer systems, investigations on Fe/Cu are underway and CoCr/Ag is being proposed. ESR measurements have been reported on Gd substituted YBaCuO superconductors and a novel quasi-equilibrium method has been developed to determine quickly and precisely the ransition temperature.

  5. Crack prediction in EB-PVD thermal barrier coatings based on the simulation of residual stresses

    NASA Astrophysics Data System (ADS)

    Chen, J. W.; Zhao, Y.; Liu, S.; Zhang, Z. Z.; Ma, J.

    2016-07-01

    Thermal barrier coatings systems (TBCs) are widely used in the field of aerospace. The durability and insulating ability of TBCs are highly dependent on the residual stresses of top coatings, thus the investigation of the residual stresses is helpful to understand the failure mechanisms of TBCs. The simulation of residual stresses evolution in electron beam physical vapor deposition (EB-PVD) TBCs is described in this work. The interface morphology of TBCs subjected to cyclic heating and cooling is observed using scanning electron microscope (SEM). An interface model of TBCs is established based on thermal elastic-plastic finite method. Residual stress distributions in TBCs are obtained to reflect the influence of interfacial roughness. Both experimental and simulation results show that it is feasible to predict the crack location by stress analysis, which is crucial to failure prediction.

  6. Computational modelling of constrained sintering in EB-PVD thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Cocks, A. C. F.

    2013-09-01

    A micromechanical model is developed to simulate the evolution of microstructure during in-service sintering and eventual inter-columnar cracking in coatings made using electron beam vapour deposition (EB-PVD) route. The coating is idealized with a discrete distribution of axisymmetric asperities across interfaces between columnar grains. The model assumes that inter-columnar sintering is driven by changes in interface free energy of columns and the potential energy of the applied stress. Much faster diffusion that occurs over the free surfaces of the asperities is neglected. It is further assumed that the rate of sintering of the contacting asperities is determined by diffusion along the interface between the contacting asperities. Time evolution of contact modulus of the coating is accounted for as a function of sintering strain. The developed macroscopic constitutive model is employed to evaluate the sensitivity of the sintering response to imperfections and examine the conditions under which inter-columnar cracks can develop within the coating.

  7. Investigation of failure mechanism of thermal barrier coatings (TBCs) deposited by EB-PVD technique

    NASA Astrophysics Data System (ADS)

    Shahid, M. R.; Abbas, Musharaf

    2013-06-01

    Failure mechanism of thermal barrier coatings (TBCs) prepared by electron beam physical vapor deposition (EB-PVD) technique owing to formation of micro cracks was investigated. The TBCs were deposited on the Ni-based super alloy IN-100 and the micro cracks were observed within the top ceramic coat of thermally cycled TBCs at 1050°C. It was observed that these cracks propagate in the ceramic coat in the direction normal to interface while no cracks were observed in the bond coat. SEM/EDS studies revealed that some non-uniform oxides were formed on the interface between ceramic top and metallic bond coat just below the cracks. Study proposed that the cracks were initiated due to stress owing to big difference in Pilling-Bed worth ratio of non-uniform oxides as well as thermal stress, which caused the formation of cracks in top ceramic coat leading to failure of TBCs

  8. Injection moulding of optical functional micro structures using laser structured, PVD-coated mould inserts

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C.; Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T.; Steger, M.

    2015-05-01

    Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.

  9. Injection moulding of optical functional micro structures using laser structured, PVD-coated mould inserts

    SciTech Connect

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C.; Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T.; Steger, M.

    2015-05-22

    Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.

  10. Influence of EB-PVD TBC Microstructure on Thermal Barrier Coating System Performance Under Cyclic Conditions

    SciTech Connect

    Leyens, C; Pint, B A; Schulz, U; Wright, I G

    1999-04-12

    The lifetimes of electron beam physical vapor deposited (EB-PVD) thermal barrier coating systems (TBCs) with three different microstructures of the Y2O3-stabilized ZrO, YSZ) ceramic top layer were investigated in lh thermal cycles at 1100 and 1150°C in flowing oxygen. Single crystal alloys CMSX-4 and Rene N5 that had been coated with an EB-PVD NiCoCrAlY bond coat were chosen as substrate materials. At 1150°C all samples failed after 80-100, lh cycles, predominantly at the bond coat/alumina interface after cooling down from test temperature. The alumina scale remained adherent to the YSZ after spallation. Despite the different YSZ microstructures no clear tendency regarding differences in spallation behavior were observed at 1150°C. At 1100°C the minimum lifetime was 750 , lh cycles for CMSX-4, whereas the first Rene N5 specimen failed after 1750, lh cycles. The longest TBC lifetime on CMSX-4 substrates was 1250, lh cycles, whereas the respective Rene N5 specimens have not yet failed after 2300, lh cycles. The failure mode at 1100°C was identical to that at 1150°C, i.e. the TBC spalled off the surface exposing bare metal after cooling. Even though not all specimens have failed to date, the available results at 1100°C suggested that both, the substrate alloy chemistry and the YSZ microstructure significantly affect the spallation resistance of the TBC.

  11. Diffusion bonding of CMSX-4 to UDIMET 720 using PVD-coated interfaces and HIP

    SciTech Connect

    Larker, R.; Ockborn, J.; Selling, B.

    1999-07-01

    There is an increasing interest in development of manufacturing methods for Dual Property BLISKs (BLaded dISKs), consisting of creep resistant airfoils and fatigue resistant disks bonded together by a durable joint. Optimum heat treatments are, however, very different for creep resistant single crystal CMSX-4 and fatigue resistant polycrystalline Udimet 720 selected in this study, but fortunately the first aging treatment for CMSX-4 (1140 C, 2-6h, AC) is similar to the partial solution treatment of U 720 HS2 (1115 C, 4h, OQ). Based on this, diffusion bonding was performed by HIP at 1120 C and 200 MPa argon pressure for 4 h, followed by cooling to 400 C. Subsequently, a shortened Udimet 720 HS2 two-step aging treatment was adopted by heating to 650 C for 6 h followed by cooling to 400 C, heating to 760 C for 2 h, and finally cooling to R.T. under remaining HIP pressure. Plasma etching followed by thin (80 nm) PVD coating with either nickel or titanium were used to clean and protect the polished surfaces before joining. The selection of coatings was governed by the possibility to reduce oxidized nickel by flushing with hydrogen at 330 C during evacuation of the HIP capsules, and by the large solubility of oxygen in titanium. Hot tensile testing was performed at 750 C on both joined and reference materials subjected to the modified heat treatment. Initially solution treated Udimet 720 and CMSX-4 comprised the reference materials. The testing showed that joints with Ni-PV coatings were almost as strong as Udimet 720 (although with very limited elongation), while the joints with Ti-PVD coatings were weaker.

  12. Multilayer Perceptrons for Classification

    DTIC Science & Technology

    1992-03-01

    retention/ separation rates fu, input to force projection models. The second application concerns the classification of Armor Piercing Incendiary (API...Air Force pilot reten- tion/ separation rates for input to force projection models. The second application concerns the classification of Armor...methodologies for predicting pilot retention/ separation rates for input to personnel inventory projection models were e::plored. Specifically, the multilayer

  13. Modeling multilayer woven fabrics

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Mäkinen, J. P.; Timonen, J.

    2001-07-01

    A numerical algorithm for nonlinear elastic relaxation of a multilayer woven fabric is introduced and tested. The equilibrium solutions are compared with real samples. An excellent result is obtained in spite of two simplifications: Bending stiffness of the fibers and friction between the fibers are both neglected. The numerical simulation is very fast and cost efficient in the search for optimal fabrics.

  14. Magnetic multilayer interface anisotropy

    SciTech Connect

    Pechan, M.J.

    1990-01-01

    Ni/Mo and Ni/V multilayer magnetic anisotropy has been investigated as a function of Ni layer thickness, frequency and temperature. Variable frequency ferromagnetic resonance (FMR) measurements show, for the first time, significant frequency dependence associated with the multilayer magnetic anisotropy. The thickness dependence allows one to extract the interface contribution from the total anisotropy. Temperature dependent FMR (9 GHz) and room temperature magnetization indicate that strain between Ni and the non-magnetic layers is contributing significantly to the source of the interface anisotropy and the state of the interfacial magnetization. In order to examine the interface properties of other transition metal multilayer systems, investigations on Fe/Cu are underway and CoCr/Ag is being proposed. ESR measurements have been reported on Gd substituted YBaCuO superconductors and a novel quasi-equilibrium method has been developed to determine quickly and precisely the transition temperature. During the next project period the P.I. proposes to (1) extend the variable frequency FMR measurements to low temperature, where extremely large interface anisotropies are known to obtain in Ni/Mo and Ni/V and are proposed to exist in Ni/W; (2) obtain accurate dc anisotropies via a novel, variable temperature torque magnetometer currently under construction; (3) expand upon his initial findings in Fe/Cu multilayer investigations; (4) begin anisotropy investigations on Co/Ag and CoCr/Ag multilayers where the easy magnetization direction depends upon the Cr concentration; (4) make and characterize Bi based superconductors according to resistivity, thermal conductivity and thermoelectric power and construct YBaCuO based superconducting loop-gap'' resonators for use in his magnetic resonance work.

  15. Magnetic multilayer interface anisotropy

    SciTech Connect

    Pechan, M.J.

    1991-01-01

    Ni/Mo and Ni/V multilayer magnetic anisotropy has been investigated as a function of Ni layer thickness, frequency and temperature. Variable frequency ferromagnetic resonance (FMR) measurements show, for the first time, significant frequency dependence associated with the multilayer magnetic anisotropy. The thickness dependence allows one to extract the interface contribution from the total anisotropy. Temperature dependant FMR (9 GHz) and room temperature magnetization indicate that strain between Ni and the non-magnetic layers if contributing significantly to the source of the interface anisotropy and the state of the interfacial magnetization. In order to examine the interface properties of other transition metal multilayer systems, investigations on Fe/Cu are underway and CoCr/Ag is being proposed. ESR measurements have been reported on Gd substituted YBaCuO superconductors and a novel quasi-equilibrium method has been developed to determine quickly and precisely the transition temperature. During the next project the P.I. proposes to (1) extend the variable frequency FMR measurements to low temperature, where extremely large interface anisotropies are known to obtain in Ni/Mo and Ni/V and are proposed to exist in Ni/W; (2) obtain accurate dc anisotropies via a novel, variable temperature torque magnetometer currently under construction; (3) expand upon his initial findings in Fe/Cu multilayer investigations; (4) begin anisotropy investigations on Co/Ag and CoCr/Ag multilayers where the easy magnetization direction depends upon the Cr concentration; (4) make and characterize Bi based superconductors according to resistivity, thermal conductivity and thermoelectric power and construct YBaCuO based superconducting loop-gap'' resonators for use in his magnetic resonance work. 2 figs.

  16. Assembly of multilayer films incorporating a viral protein cage architecture.

    PubMed

    Suci, Peter A; Klem, Michael T; Arce, Fernando T; Douglas, Trevor; Young, Mark

    2006-10-10

    Protein cage architectures such as viral capsids, heat shock proteins, ferritins, and DNA-binding proteins are nanoscale modular subunits that can be used to expand the structural and functional range of composite materials. Here, layer-by-layer (LbL) assembly was used to incorporate cowpea chlorotic mottle virus (CCMV) into multilayer films. Three types of multilayer films were prepared. In the first type, ionic interactions were employed to assemble CCMV into triple layers. In the second type, complementary biological interactions (streptavidin/biotin) were used for this purpose. In a third variation of LbL assembly, complementary biological interactions were employed to produce nanotextured films that exhibit in-plane order over a micron scale without the need to adsorb onto a prepatterned template.

  17. Nanoscale Semiconductor Electronics

    DTIC Science & Technology

    2015-02-25

    MONITOR’S REPORT Kirtland AFB, NM 87117-5776 NUMBER(S) AFRL -RV-PS-TR-2014-0202 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release...Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSE/Jesse Mee 1 cy ... AFRL -RV-PS- AFRL -RV-PS- TR-2014-0202 TR-2014-0202 NANOSCALE SEMICONDUCTOR ELECTRONICS Steven R. J. Brueck and Ganesh Balakrishnan University of New

  18. Nanotribology and Nanoscale Friction

    SciTech Connect

    Guo, Yi; Qu, Zhihua; Braiman, Yehuda; Zhang, Zhenyu; Barhen, Jacob

    2008-01-01

    Tribology is the science and technology of contacting solid surfaces in relative motion, including the study of lubricants, lubrication, friction, wear, and bearings. It is estimated that friction and wear cost the U.S. economy 6% of the gross national product (Persson, 2000). For example, 5% of the total energy generated in an automobile engine is lost to frictional resistance. The study of nanoscale friction has a technological impact in reducing energy loss in machines, in microelectromechanical systems (MEMS), and in the development of durable, low-friction surfaces and ultra-thin lubrication films.

  19. Confinement of phonon propagation in laser deposited tungsten/polycarbonate multilayers

    NASA Astrophysics Data System (ADS)

    Döring, Florian; Ulrichs, Henning; Pagel, Sinja; Müller, Markus; Mansurova, Maria; Müller, Matthias; Eberl, Christian; Erichsen, Torben; Huebner, Dennis; Vana, Philipp; Mann, Klaus; Münzenberg, Markus; Krebs, Hans-Ulrich

    2016-09-01

    Nanoscale multilayer thin films of W and PC (Polycarbonate) show, due to the great difference of the components’ characteristics, fascinating properties for a variety of possible applications and provide an interesting research field, but are hard to fabricate with low layer thicknesses. Because of the great acoustic mismatch between the two materials, such nanoscale structures are promising candidates for new phononic materials, where phonon propagation is strongly reduced. In this article we show for the first time that W/PC-multilayers can indeed be grown with high quality by pulsed laser deposition. We analyzed the polymer properties depending on the laser fluence used for deposition, which enabled us to find best experimental conditions for the fabrication of high-acoustic-mismatch W/PC multilayers. The multilayers were analyzed by fs pump-probe spectroscopy showing that phonon dynamics on the ps time-scale can strongly be tailored by structural design. While already periodic multilayers exhibit strong phonon localization, especially aperiodic structures present outstandingly low phonon propagation properties making such 1D-layered W/PC nano-structures interesting for new phononic applications.

  20. Nanoscale subsurface imaging.

    PubMed

    Soliman, Mikhael; Ding, Yi; Tetard, Laurene

    2017-01-31

    The ability to probe structures and functional properties of complex systems at the nanoscale, both at their surface and in their volume, has drawn substantial attention in recent years. Besides detecting heterogeneities, cracks and defects below the surface, more advanced explorations of chemical or electrical properties are of great interest. In this review article, we review some approaches developed to explore heterogeneities below the surface, including recent progress in the different aspects of metrology in optics, electron microscopy, and scanning probe microscopy. We discuss the principle and mechanisms of image formation associated with each technique, including data acquisition, data analysis and modeling for nanoscale structural and functional imaging. We highlight the advances based on atomic force microscopy (AFM). Our discussion first introduces methods providing structural information of the buried structures, such as position in the volume and geometry. Next we present how functional properties including conductivity, capacitance, and composition can be extracted from the modalities available to date and how they could eventually enable tomography reconstructions of systems such as overlay structures in transistors or living systems. Finally we propose a perspective regarding the outstanding challenges and needs to push the field forward.

  1. Nanoscale relaxation oscillator

    DOEpatents

    Zettl, Alexander K.; Regan, Brian C.; Aloni, Shaul

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  2. Microstructural variations in Cu/Nb and Al/Nb nanometallic multilayers

    SciTech Connect

    Polyakov, M. N.; Hodge, A. M.; Courtois-Manara, E.; Wang, D.; Kuebel, C.; Chakravadhanula, K.

    2013-06-17

    Miscible (Al/Nb) and immiscible (Cu/Nb) nanometallic multilayer systems were characterized by means of transmission electron microscopy techniques, primarily by automated crystallographic orientation mapping, which allows for the resolution of crystal structures and orientations at the nanoscale. By using this technique, distinctive Nb orientations in relation to the crystallographic state of the Al and Cu layer structures can be observed. Specifically, the Al and Cu layers were found to consist of amorphous, semi-amorphous, and crystalline regions, which affect the overall multilayer microstructure.

  3. Multilayer-WS{sub 2}:ferroelectric composite for ultrafast tunable metamaterial-induced transparency applications

    SciTech Connect

    Yang, Xiaoyu; Yang, Jinghuan; Zhu, Yu; Yang, Hong; Hu, Xiaoyong Gong, Qihuang

    2015-08-24

    An ultrafast and low-power all-optical tunable metamaterial-induced transparency is realized, using polycrystalline barium titanate doped gold nanoparticles and multilayer tungsten disulfide microsheets as nonlinear optical materials. Large nonlinearity enhancement is obtained associated with quantum confinement effect, local-field effect, and reinforced interaction between light and multilayer tungsten disulfide. Low threshold pump intensity of 20 MW/cm{sup 2} is achieved. An ultrafast response time of 85 ps is maintained because of fast carrier relaxation dynamics in nanoscale crystal grains of polycrystalline barium titanate. This may be useful for the study of integrated photonic devices based on two-dimensional materials.

  4. Rocket Science at the Nanoscale.

    PubMed

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  5. PVD Silicon Carbide as a Thin Film Packaging Technology for Antennas on LCP Substrates for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Stanton, John W.; Ponchak, George E.; Jordan, Jennifer L.; Zorman, Christian A.

    2010-01-01

    This paper describes an effort to develop a thin film packaging technology for microfabricated planar antennas on polymeric substrates based on silicon carbide (SiC) films deposited by physical vapor deposition (PVD). The antennas are coplanar waveguide fed dual frequency folded slot antennas fabricated on liquid crystal polymer (LCP) substrates. The PVD SiC thin films were deposited directly onto the antennas by RF sputtering at room temperature at a chamber pressure of 30 mTorr and a power level of 300 W. The SiC film thickness is 450 nm. The return loss and radiation patterns were measured before and after the SiC-coated antennas were submerged into perchloric acid for 1 hour. No degradation in RF performance or physical integrity of the antenna was observed.

  6. Multilayer Optical Learning Networks

    NASA Astrophysics Data System (ADS)

    Wagner, Kelvin; Psaltis, Demetri

    1987-08-01

    In this paper we present a new approach to learning in a multilayer optical neural network which is based on holographically interconnected nonlinear Fabry-Perot etalons. The network can learn the interconnections that form a distributed representation of a desired pattern transformation operation. The interconnections are formed in an adaptive and self aligning fashion, as volume holographic gratings in photorefractive crystals. Parallel arrays of globally space integrated inner products diffracted by the interconnecting hologram illuminate arrays of nonlinear Fabry-Perot etalons for fast thresholding of the transformed patterns. A phase conjugated reference wave interferes with a backwards propagating error signal to form holographic interference patterns which are time integrated in the volume of the photorefractive crystal in order to slowly modify and learn the appropriate self aligning interconnections. A holographic implementation of a single layer perceptron learning procedure is presented that can be extendept ,to a multilayer learning network through an optical implementation of the backward error propagation (BEP) algorithm.

  7. Development of CVD-W coatings on CuCrZr and graphite substrates with a PVD intermediate layer

    NASA Astrophysics Data System (ADS)

    Song, Jiupeng; Lian, Youyun; Lv, Yanwei; Liu, Junyong; Yu, Yang; Liu, Xiang; Yan, Binyou; Chen, Zhigang; Zhuang, Zhigang; Zhao, Ximeng; Qi, Yang

    2014-12-01

    In order to apply tungsten (W) coatings by chemical vapor deposition (CVD) for repairing or updating the plasma facing components (PFCs) of the first wall and divertor in existing or future tokomaks, where CuCrZr or graphite is the substrate material, an intermediate layer by physical vapor deposition (PVD) has been used to accommodate the interface stress due to the mismatch of thermal expansion or act as a diffusion barrier between the CVD-W coating and the substrate. The prepared CuCrZr/PVD-Cu/CVD-W sample with active cooling has passed thermal fatigue tests by electron beam with an absorbed power of 2.2 MW/m2, 50 s on/50 s off, for 100 cycles. Another graphite/PVD-Si/CVD-W sample without active cooling underwent thermal fatigue testing with an absorbed power density of 4.62 MW/m2, 5 s on/25 s off, for 200 cycles, and no catastrophic failure was found.

  8. The effect of thermal aging on the thermal conductivity of plasma sprayed and EB-PVD thermal barrier coatings

    SciTech Connect

    Dinwiddie, R.B.; Beecher, S.C.; Porter, W.D.; Nagaraj, B.A.

    1996-05-01

    Thermal barrier coatings (TBCs) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBCs is of primary importance. Electron beam-physical vapor deposition (EV-PVD) and air plasma spraying (APS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The density of the APS coatings was controlled by varying the spray parameters. The low density APS yttria-partially stabilized zirconia (yttria-PSZ) coatings yielded a thermal conductivity that is lower than both the high density APS coatings and the EB-PVD coatings. The thermal aging of both fully and partially stabilized zirconia are compared. The thermal conductivity of the coatings permanently increases upon exposure to high temperatures. These increases are attributed to microstructural changes within the coatings. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the EB-PVD coatings are less susceptible to thermal aging effects, results suggest that they typically have a higher thermal conductivity than APS coatings before thermal aging. The increases in thermal conductivity due to thermal aging for plasma sprayed partially stabilized zirconia have been found to be less than for plasma sprayed fully stabilized zirconia coatings.

  9. Microstructural analyses and wear behavior of the cemented carbide tools after laser surface treatment and PVD coating

    NASA Astrophysics Data System (ADS)

    Neves, Davi; Diniz, Anselmo Eduardo; Lima, Milton Sérgio Fernandes

    2013-10-01

    Adhesion is one of the most important characteristics of coating on cutting tools. Poor coating adhesion on the tool favors fragmentation and release of hard abrasive particles between the tool and the workpiece. These particles interact with the surfaces of the tool, accelerating its wear and decreasing tool life. One possible solution is the use of laser texturing prior to coating in order to achieve a desired surface topography with enhanced adhesion properties. In the texturing, a high-frequency short-pulse laser changes surface characteristics, generating resolidified material and selective vaporization. This work evaluated the effectiveness of laser texturing in improving the substrate-coating adhesion of PVD coated cemented carbide tools. To this end, the substrates were textured with a Nd:YAG laser, in four different intensities, and then coated with a PVD TiAlN film. To ascertain the effectiveness of laser texturing, Rockwell C indentation and turning experiments were performed on both textured tools and conventional unlasered tools. The PVD coated laser-textured tool showed better performance in the indentation and turning tests than the standard tools. A comparative evaluation of tool wear mechanisms indicated that texturing did not change the wear mechanisms, but altered their importance to tool wear. The anchoring provided by the higher roughness of the textured surface increased the adhesion of the coating on the substrate, thus increasing tool life. Additionally, the chemical modification of the carbide grains due to the laser heating might be responsible for an enhanced adhesion between coating and substrate.

  10. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces.

    SciTech Connect

    Wang, C.; Chi, M.; Li, D.; Strmcnik, D.; van der Vliet, D.; Wang, G.; Komanicky, V.; Chang, K.-C.; Paulikas, A. P.; Tripkovic, D.; Pearson, J.; More, K. L.; Markovic, N. M.; Stamenkovic, V. R.

    2011-01-01

    Advancement in heterogeneous catalysis relies on the capability of altering material structures at the nanoscale, and that is particularly important for the development of highly active electrocatalysts with uncompromised durability. Here, we report the design and synthesis of a Pt-bimetallic catalyst with multilayered Pt-skin surface, which shows superior electrocatalytic performance for the oxygen reduction reaction (ORR). This novel structure was first established on thin film extended surfaces with tailored composition profiles and then implemented in nanocatalysts by organic solution synthesis. Electrochemical studies for the ORR demonstrated that after prolonged exposure to reaction conditions, the Pt-bimetallic catalyst with multilayered Pt-skin surface exhibited an improvement factor of more than 1 order of magnitude in activity versus conventional Pt catalysts. The substantially enhanced catalytic activity and durability indicate great potential for improving the material properties by fine-tuning of the nanoscale architecture.

  11. Design and Synthesis of Bimetallic Electrocatalyst with Multilayered Pt-Skin Surfaces

    SciTech Connect

    Wang, Chao; Chi, Miaofang; Li, Dongguo; Strmcnik, Dusan; Van der Vliet, Dennis; Wang, Guofeng; Komanicky, Vladimir; Chang, Kee-Chul; Paulikas, Arvydas; Tripkovic, Dusan; Pearson, John; More, Karren Leslie; Markovic, Nenad; Stamenkovic, Vojislav

    2011-01-01

    Advancement in heterogeneous catalysis relies on the capability of altering material structures at the nanoscale, and that is particularly important for the development of highly active electrocatalysts with uncompromised durability. Here, we report the design and synthesis of a Pt-bimetallic catalyst with multilayered Pt-skin surface, which shows superior electrocatalytic performance for the oxygen reduction reaction (ORR). This novel structure was first established on thin film extended surfaces with tailored composition profiles and then implemented in nanocatalysts by organic solution synthesis. Electrochemical studies for the ORR demonstrated that after prolonged exposure to reaction conditions, the Pt-bimetallic catalyst with multilayered Pt-skin surface exhibited an improvement factor of more than 1 order of magnitude in activity versus conventional Pt catalysts. The substantially enhanced catalytic activity and durability indicate great potential for improving the material properties by fine-tuning of the nanoscale architecture.

  12. Effect of Hf Additions to Pt Aluminide Bond Coats on EB-PVD TBC Life

    NASA Technical Reports Server (NTRS)

    Nesbitt, James; Nagaraj, Ben; Williams, Jeffrey

    2000-01-01

    Small Hf additions were incorporated into a Pt aluminide coating during chemical vapor deposition (CVD) on single crystal RENE N5 substrates. Standard yttria-stabilized zirconia top coats were subsequently deposited onto the coated substrates by electron beam-physical vapor deposition (EB-PVD). The coated substrates underwent accelerated thermal cycle testing in a furnace at a temperature in excess of 1121 C (2050 F) (45 minute hot exposure, 15 minute cool to approximately 121 C (250 F)) until the thermal barrier coating (TBC) failed by spallation. Incorporating Hf in the bond coat increased the TBC life by slightly more than three times that of a baseline coating without added Hf. Scanning electron microscopy of the spalled surfaces indicated that the presence of the Hf increased the adherence of the thermally grown alumina to the Pt aluminide bond coat. The presence of oxide pegs growing into the coating from the thermally grown alumina may also partially account for the improved TBC life by creating a near-surface layer with a graded coefficient of thermal expansion.

  13. Low temperature Cu-Cu bonding using copper nanoparticles fabricated by high pressure PVD

    NASA Astrophysics Data System (ADS)

    Wu, Zijian; Cai, Jian; Wang, Qian; Wang, Junqiang

    2017-03-01

    Copper nanoparticles (Cu NPs) fabricated by physical vapor deposition (PVD) were introduced in Cu-Cu bonding as surface modification. The bonding structure with Ti adhesive/barrier layer and Cu substrate layer was fabricated on both surfaces first. Loose structure with Cu NPs was then deposited by magnetron sputtering in a high pressure environment. Solid state Cu-Cu bonding process was accomplished at 200°C for 3min under the pressure of 20MPa. Die shear test was carried out and an average bonding strength of 36.75MPa was achieved. The analysis of fracture surface revealed a high-reliability bonding structure. According to cross-sectional observations, a void-free intermediate Cu layer with thickness around 10nm was obtained. These results demonstrated that a reliable low temperature time-saving Cu-Cu bonding was realized by Cu NPs between the bonding pairs. This novel bonding method might be one of the most attractive techniques in the application of ultra-fine pitch 3D integration.

  14. Thermal Cycling Behavior of Quasi-Columnar YSZ Coatings Deposited by PS-PVD

    NASA Astrophysics Data System (ADS)

    Yang, Jiasheng; Zhao, Huayu; Zhong, Xinghua; Shao, Fang; Liu, Chenguang; Zhuang, Yin; Ni, Jinxing; Tao, Shunyan

    2017-01-01

    Columnar-structured thermal barrier coatings, owing to their high strain tolerance, are expected for their potential possibilities to substantially extend turbine lives and improve engine efficiencies. In this paper, plasma spray-physical vapor deposition (PS-PVD) process was used to deposit yttria partially stabilized zirconia (YSZ) coatings with quasi-columnar structures. Thermal cyclic tests on burner rigs and thermal shock tests by heating and water-quenching method were involved to evaluate the thermal cycling and thermal shock behaviors of such kind of structured thermal barrier coatings (TBCs). Evolution of the microstructures, phase composition, residual stresses and failure behaviors of quasi-columnar YSZ coatings before and after the thermal tests was investigated. The quasi-columnar coating obtained had an average life of around 623 cycles when the spallation area reached about 10% of the total coating surface during burner rig tests with the coating surface temperature of 1250 °C. Failure of the coating is mainly due to the break and pull-out of center columnar segments.

  15. Evaluation of osseous integration of PVD-silver-coated hip prostheses in a canine model.

    PubMed

    Hauschild, Gregor; Hardes, Jendrik; Gosheger, Georg; Stoeppeler, Sandra; Ahrens, Helmut; Blaske, Franziska; Wehe, Christoph; Karst, Uwe; Höll, Steffen

    2015-01-01

    Infection associated with biomaterials used for orthopedic prostheses remains a serious complication in orthopedics, especially tumor surgery. Silver-coating of orthopedic (mega)prostheses proved its efficiency in reducing infections but has been limited to surface areas exposed to soft tissues due to concerns of silver inhibiting osseous integration of cementless stems. To close this gap in the bactericidal capacity of silver-coated orthopedic prostheses extension of the silver-coating on surface areas intended for osseous integration seems to be inevitable. Our study reports about a PVD- (physical-vapor-deposition-) silver-coated cementless stem in a canine model for the first time and showed osseous integration of a silver-coated titanium surface in vivo. Radiological, histological, and biomechanical analysis revealed a stable osseous integration of four of nine stems implanted. Silver trace elemental concentrations in serum did not exceed 1.82 parts per billion (ppb) and can be considered as nontoxic. Changes in liver and kidney functions associated with the silver-coating could be excluded by blood chemistry analysis. This was in accordance with very limited metal displacement from coated surfaces observed by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) 12 months after implantation. In conclusion our results represent a step towards complete bactericidal silver-coating of orthopedic prostheses.

  16. Evaluation of Osseous Integration of PVD-Silver-Coated Hip Prostheses in a Canine Model

    PubMed Central

    Hauschild, Gregor; Hardes, Jendrik; Gosheger, Georg; Blaske, Franziska; Wehe, Christoph; Karst, Uwe; Höll, Steffen

    2015-01-01

    Infection associated with biomaterials used for orthopedic prostheses remains a serious complication in orthopedics, especially tumor surgery. Silver-coating of orthopedic (mega)prostheses proved its efficiency in reducing infections but has been limited to surface areas exposed to soft tissues due to concerns of silver inhibiting osseous integration of cementless stems. To close this gap in the bactericidal capacity of silver-coated orthopedic prostheses extension of the silver-coating on surface areas intended for osseous integration seems to be inevitable. Our study reports about a PVD- (physical-vapor-deposition-) silver-coated cementless stem in a canine model for the first time and showed osseous integration of a silver-coated titanium surface in vivo. Radiological, histological, and biomechanical analysis revealed a stable osseous integration of four of nine stems implanted. Silver trace elemental concentrations in serum did not exceed 1.82 parts per billion (ppb) and can be considered as nontoxic. Changes in liver and kidney functions associated with the silver-coating could be excluded by blood chemistry analysis. This was in accordance with very limited metal displacement from coated surfaces observed by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) 12 months after implantation. In conclusion our results represent a step towards complete bactericidal silver-coating of orthopedic prostheses. PMID:25695057

  17. Nanoscale rotary apparatus formed from tight-fitting 3D DNA components

    PubMed Central

    Ketterer, Philip; Willner, Elena M.; Dietz, Hendrik

    2016-01-01

    We report a nanoscale rotary mechanism that reproduces some of the dynamic properties of biological rotary motors in the absence of an energy source, such as random walks on a circle with dwells at docking sites. Our mechanism is built modularly from tight-fitting components that were self-assembled using multilayer DNA origami. The apparatus has greater structural complexity than previous mechanically interlocked objects and features a well-defined angular degree of freedom without restricting the range of rotation. We studied the dynamics of our mechanism using single-particle experiments analogous to those performed previously with actin-labeled adenosine triphosphate synthases. In our mechanism, rotor mobility, the number of docking sites, and the dwell times at these sites may be controlled through rational design. Our prototype thus realizes a working platform toward creating synthetic nanoscale rotary motors. Our methods will support creating other complex nanoscale mechanisms based on tightly fitting, sterically constrained, but mobile, DNA components. PMID:26989778

  18. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  19. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  20. Friction laws at the nanoscale.

    PubMed

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  1. Nanoscale Electrostatics in Mitosis

    NASA Astrophysics Data System (ADS)

    Gagliardi, L. John; West, Patrick Michael

    2001-04-01

    Primitive biological cells had to divide with very little biology. This work simulates a physicochemical mechanism, based upon nanoscale electrostatics, which explains the anaphase A poleward motion of chromosomes. In the cytoplasmic medium that exists in biological cells, electrostatic fields are subject to strong attenuation by Debye screening, and therefore decrease rapidly over a distance equal to several Debye lengths. However, the existence of microtubules within cells changes the situation completely. Microtubule dimer subunits are electric dipolar structures, and can act as intermediaries that extend the reach of the electrostatic interaction over cellular distances. Experimental studies have shown that intracellular pH rises to a peak at mitosis, and decreases through cytokinesis. This result, in conjunction with the electric dipole nature of microtubule subunits and the Debye screened electrostatic force is sufficient to explain and unify the basic events during mitosis and cytokinesis: (1) assembly of asters, (2) motion of the asters to poles, (3) poleward motion of chromosomes (anaphase A), (4) cell elongation, and (5) cytokinesis. This paper will focus on a simulation of the dynamics if anaphase A motion based on this comprehensive model. The physicochemical mechanisms utilized by primitive cells could provide important clues regarding our understanding of cell division in modern eukaryotic cells.

  2. Capillarity at the nanoscale.

    PubMed

    van Honschoten, Joost W; Brunets, Nataliya; Tas, Niels R

    2010-03-01

    In this critical review we treat the phenomenon of capillarity in nanoscopic confinement, based on application of the Young-Laplace equation. In classical capillarity the curvature of the meniscus is determined by the confining geometry and the macroscopic contact angle. We show that in narrow confinement the influence of the disjoining pressure and the related wetting films have to be considered as they may significantly change the meniscus curvature. Nanochannel based static and dynamic capillarity experiments are reviewed. A typical effect of nanoscale confinement is the appearance of capillarity induced negative pressure. Special attention is paid to elasto-capillarity and electro-capillarity. The presence of electric fields leads to an extra stress term to be added in the Young-Laplace equation. A typical example is the formation of the Taylor cone, essential in the theory of electrospray. Measurements of the filling kinetics of nanochannels with water and aqueous salt solutions are discussed. These experiments can be used to characterize viscosity and apparent viscosity effects of water in nanoscopic confinement. In the final section we show four examples of appearances of capillarity in engineering and in nature (112 references).

  3. Electrostatics at the nanoscale.

    PubMed

    Walker, David A; Kowalczyk, Bartlomiej; de la Cruz, Monica Olvera; Grzybowski, Bartosz A

    2011-04-01

    Electrostatic forces are amongst the most versatile interactions to mediate the assembly of nanostructured materials. Depending on experimental conditions, these forces can be long- or short-ranged, can be either attractive or repulsive, and their directionality can be controlled by the shapes of the charged nano-objects. This Review is intended to serve as a primer for experimentalists curious about the fundamentals of nanoscale electrostatics and for theorists wishing to learn about recent experimental advances in the field. Accordingly, the first portion introduces the theoretical models of electrostatic double layers and derives electrostatic interaction potentials applicable to particles of different sizes and/or shapes and under different experimental conditions. This discussion is followed by the review of the key experimental systems in which electrostatic interactions are operative. Examples include electroactive and "switchable" nanoparticles, mixtures of charged nanoparticles, nanoparticle chains, sheets, coatings, crystals, and crystals-within-crystals. Applications of these and other structures in chemical sensing and amplification are also illustrated.

  4. Wrapped Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  5. Wrapped Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/sq m, or 27 percent of the heat leak of conventional MLI (26.7 W/sq m). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  6. Ultrahard Multilayer Coatings

    SciTech Connect

    Chrzan, D.C.; Dugger, M.; Follstaedt, D.M.; Friedman, Lawrence H.; Friedmann, T.A.; Knapp, J.A.; McCarty, K.F.; Medlin, D.L.; Mirkarimi, P.B.; Missert, N.; Newcomer, P.P.; Sullivan, J.P.; Tallant, D.R.

    1999-05-01

    We have developed a new multilayer a-tC material that is thick stress-free, adherent, low friction, and with hardness and stiffness near that of diamond. The new a-tC material is deposited by J pulsed-laser deposition (PLD) at room temperature, and fully stress-relieved by a short thermal anneal at 600°C. A thick multilayer is built up by repeated deposition and annealing steps. We measured 88 GPa hardness, 1100 GPa Young's modulus, and 0.1 friction coefficient (under high load). Significantly, these results are all well within the range reported for crystalline diamond. In fact, this material, if considered separate from crystalline diamond, is the 2nd hardest material known to man. Stress-free a-tC also has important advantages over thin film diamond; namely, it is smooth, processed at lower temperature, and can be grown on a much broader range of substrates. This breakthrough will enable a host of applications that we are actively pursuing in MEMs, sensors, LIGA, etc.

  7. Optical Characterization of Multilayer Thin Film Cu_xIn_2-xSe_2^*

    NASA Astrophysics Data System (ADS)

    Raffaelle, R. P.; Friedfeld, R.; Mantovani, J. G.

    1996-03-01

    Cu_xIn_2-xSe2 is one of the most promising thin film solar cell materials, due to its ideal optical and electrical properties. We have been electrochemically depositing multilayer structures based on the Cu_xIn_2-xSe2 system. The interest in multilayer structures is due to their proposed use in increasing thin film solar cell efficiency. A comparison of the multilayers to ordinary bulk films is made using optical spectroscopy. The optical band gaps for these nanoscale layered films is determined as a function of their modulation wavelengths and compared to theoretical predictions. * This work was supported by the Southeastern University Research Association in collaboration with Oak Ridge National Laboratory and the Florida Solar Energy Center.

  8. CrCuAgN PVD nanocomposite coatings: Effects of annealing on coating morphology and nanostructure

    NASA Astrophysics Data System (ADS)

    Liu, Xingguang; Iamvasant, Chanon; Liu, Chang; Matthews, Allan; Leyland, Adrian

    2017-01-01

    CrCuAgN PVD nanocomposite coatings were produced using pulsed DC unbalanced magnetron sputtering. This investigation focuses on the effects of post-coat annealing on the surface morphology, phase composition and nanostructure of such coatings. In coatings with nitrogen contents up to 16 at.%, chromium exists as metallic Cr with N in supersaturated solid solution, even after 300 °C and 500 °C post-coat annealing. Annealing at 300 °C did not obviously change the phase composition of both nitrogen-free and nitrogen-containing coatings; however, 500 °C annealing resulted in significant transformation of the nitrogen-containing coatings. The formation of Ag aggregates relates to the (Cu + Ag)/Cr atomic ratio (threshold around 0.2), whereas the formation of Cu aggregates relates to the (Cu + Ag + N)/Cr atomic ratio (threshold around 0.5). The primary annealing-induced changes were reduced solubility of Cu, Ag and N in Cr, and the composition altering from a mixed ultra-fine nanocrystalline and partly amorphous phase constitution to a coarser, but still largely nanocrystalline structure. It was also found that, with sufficient Cu content (>12 at.%), annealing at a moderately high temperature (e.g. 500 °C) leads to transportation of both Cu and Ag (even at relatively low concentrations of Ag, ≤3 at.%) from inside the coating to the coating surface, which resulted in significant reductions in friction coefficient, by over 50% compared to that of the substrate (from 0.31 to 0.14 with a hemispherical diamond indenter, and from 0.83 to 0.40 with an alumina ball counterface, respectively). Results indicate that the addition of both Cu and Ag (in appropriate concentrations) to nitrogen-containing chromium is a viable strategy for the development of 'self-replenishing' silver-containing thin film architectures for temperature-dependent solid lubrication requirements or antimicrobial coating applications.

  9. Relation of thermal conductivity with process induced anisotropic void system in EB-PVD PYSZ thermal barrier coatings.

    SciTech Connect

    Renteria, A. F.; Saruhan, B.; Ilavsky, J.; German Aerospace Center

    2007-01-01

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based ,TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified as open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 1100C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.

  10. Relation of Thermal Conductivity with Process Induced Anisotropic Void Systems in EB-PVD PYSZ Thermal Barrier Coatings

    SciTech Connect

    Renteria, A. Flores; Saruhan-Brings, B.; Ilavsky, J.

    2008-03-03

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified as open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 11000C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.

  11. Ultrasonic NDE of Multilayered Structures

    SciTech Connect

    Quarry, M J; Fisher, K A; Lehman, S K

    2005-02-14

    This project developed ultrasonic nondestructive evaluation techniques based on guided and bulk waves in multilayered structures using arrays. First, a guided wave technique was developed by preferentially exciting dominant modes with energy in the layer of interest via an ultrasonic array. Second, a bulk wave technique uses Fermat's principle of least time as well as wave-based properties to reconstruct array data and image the multilayered structure. The guided wave technique enables the inspection of inaccessible areas of a multilayered structure without disassembling it. Guided waves propagate using the multilayer as a waveguide into the inaccessible areas from an accessible position. Inspecting multi-layered structures with a guided wave relies on exciting modes with sufficient energy in the layer of interest. Multilayered structures are modeled to determine the possible modes and their distribution of energy across the thickness. Suitable modes were determined and excited by designing arrays with the proper element spacing and frequency. Bulk wave imaging algorithms were developed to overcome the difficulties of multiple reflections and refractions at interfaces. Reconstruction algorithms were developed to detect and localize flaws. A bent-ray algorithm incorporates Fermat's principle to correct time delays in the ultrasonic data that result from the difference in wave speeds in each layer and refractions at the interfaces. A planar wave-based algorithm was developed using the Green function for the multilayer structure to enhance focusing on reception for improved imaging.

  12. Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency

    SciTech Connect

    Cerio, Frank

    2013-09-14

    was analyzed and improvements implemented to the Veeco PVD-AlN prototype system to establish a specification and baseline PVD-AlN films on sapphire and in parallel the evaluation of PVD AlN on silicon substrates began. In Phase II of the project a Beta tool based on a scaled-up process module capable of depositing uniform films on batches of 4”or 6” diameter substrates in a production worthy operation was developed and qualified. In Phase III, the means to increase the throughput of the PVD-AlN system was evaluated and focused primarily on minimizing the impact of the substrate heating and cooling times that dominated the overall cycle time.

  13. Magnetic multilayers on nanospheres.

    PubMed

    Albrecht, Manfred; Hu, Guohan; Guhr, Ildico L; Ulbrich, Till C; Boneberg, Johannes; Leiderer, Paul; Schatz, Günter

    2005-03-01

    Thin-film technology is widely implemented in numerous applications. Although flat substrates are commonly used, we report on the advantages of using curved surfaces as a substrate. The curvature induces a lateral film-thickness variation that allows alteration of the properties of the deposited material. Based on this concept, a variety of implementations in materials science can be expected. As an example, a topographic pattern formed of spherical nanoparticles is combined with magnetic multilayer film deposition. Here we show that this combination leads to a new class of magnetic material with a unique combination of remarkable properties: The so-formed nanostructures are monodisperse, magnetically isolated, single-domain, and reveal a uniform magnetic anisotropy with an unexpected switching behaviour induced by their spherical shape. Furthermore, changing the deposition angle with respect to the particle ensemble allows tailoring of the orientation of the magnetic anisotropy, which results in tilted nanostructure material.

  14. Multilayer optical dielectric coating

    DOEpatents

    Emmett, John L.

    1990-01-01

    A highly damage resistant, multilayer, optical reflective coating includes alternating layers of doped and undoped dielectric material. The doping levels are low enough that there are no distinct interfaces between the doped and undoped layers so that the coating has properties nearly identical to the undoped material. The coating is fabricated at high temperature with plasma-assisted chemical vapor deposition techniques to eliminate defects, reduce energy-absorption sites, and maintain proper chemical stoichiometry. A number of differently-doped layer pairs, each layer having a thickness equal to one-quarter of a predetermined wavelength in the material are combined to form a narrowband reflective coating for a predetermined wavelength. Broadband reflectors are made by using a number of narrowband reflectors, each covering a portion of the broadband.

  15. Integrated Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Dye, Scott

    2009-01-01

    Integrated multilayer insulation (IMLI) is being developed as an improved alternative to conventional multilayer insulation (MLI), which is more than 50 years old. A typical conventional MLI blanket comprises between 10 and 120 metallized polymer films separated by polyester nets. MLI is the best thermal- insulation material for use in a vacuum, and is the insulation material of choice for spacecraft and cryogenic systems. However, conventional MLI has several disadvantages: It is difficult or impossible to maintain the desired value of gap distance between the film layers (and consequently, it is difficult or impossible to ensure consistent performance), and fabrication and installation are labor-intensive and difficult. The development of IMLI is intended to overcome these disadvantages to some extent and to offer some additional advantages over conventional MLI. The main difference between IMLI and conventional MLI lies in the method of maintaining the gaps between the film layers. In IMLI, the film layers are separated by what its developers call a micro-molded discrete matrix, which can be loosely characterized as consisting of arrays of highly engineered, small, lightweight, polymer (typically, thermoplastic) frames attached to, and placed between, the film layers. The term "micro-molded" refers to both the smallness of the frames and the fact that they are fabricated in a process that forms precise small features, described below, that are essential to attainment of the desired properties. The term "discrete" refers to the nature of the matrix as consisting of separate frames, in contradistinction to a unitary frame spanning entire volume of an insulation blanket.

  16. Sensing at the nanoscale

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Hierold, Christofer

    2013-11-01

    The merits of nanostructures in sensing may seem obvious, yet playing these attributes to their maximum advantage can be a work of genius. As fast as sensing technology is improving, expectations are growing, with demands for cheaper devices with higher sensitivities and an ever increasing range of functionalities and compatibilities. At the same time tough scientific challenges like low power operation, noise and low selectivity are keeping researchers busy. This special issue on sensing at the nanoscale with guest editor Christofer Hierold from ETH Zurich features some of the latest developments in sensing research pushing at the limits of current capabilities. Cheap and easy fabrication is a top priority. Among the most popular nanomaterials in sensing are ZnO nanowires and in this issue Dario Zappa and colleagues at Brescia University in Italy simplify an already cheap and efficient synthesis method, demonstrating ZnO nanowire fabrication directly onto silicon substrates [1]. Meanwhile Nicolae Barson and colleagues in Germany point out the advantages of flame spray pyrolysis fabrication in a topical review [2] and, maximizing on existing resources, researchers in Denmark and Taiwan report cantilever sensing using a US20 commercial DVD-ROM optical pickup unit as the readout source [3]. The sensor is designed to detect physiological concentrations of soluble urokinase plasminogen activator receptor, a protein associated with inflammation due to HIV, cancer and other infectious diseases. With their extreme properties carbon nanostructures feature prominently in the issue, including the demonstration of a versatile and flexible carbon nanotube strain sensor [4] and a graphene charge sensor with sensitivities of the order of 1.3 × 10-3 e Hz-1/2 [5]. The issue of patterning for sensing devices is also tackled by researchers in the US who demonstrate a novel approach for multicomponent pattering metal/metal oxide nanoparticles on graphene [6]. Changes in electrical

  17. Multilayered Magnetic Gelatin Membrane Scaffolds

    PubMed Central

    Samal, Sangram K.; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L.; Dediu, V. Alek

    2016-01-01

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial–magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  18. Advanced STEM Characterization of Nanoscale Materials

    NASA Astrophysics Data System (ADS)

    Dey, Sanchita

    Nanoscale materials are the key structures in determining the properties of many technologically-important materials. Two such important nanoscale materials for different technological applications are investigated in this dissertation. They are: Fischer-Tropsch (FT) catalysts and irradiated metallic bi-layers. Catalytic activity depends on the structural parameters such as size, shape, and distribution on support. On the other hand, the radiation resistance of the model metallic multi-layers is influenced by the presence of interphase, phase-boundaries, and grain-boundaries. The focus of this dissertation is to use different TEM and STEM techniques to understand the structure of these materials. This dissertation begins with a review of the microscopy techniques used in the experiments. Then, in the next two chapters, literature review followed by results and discussions on the two above-mentioned nano materials are presented. Future research directions are included in the concluding chapter. To obtain three-dimensional morphological information of the FT catalysts during reduced/active state, STEM tomography is used. The oxidized state and reduced state is clarified by using STEM-EELS (in the form of spectrum imaging). We used a special vacuum transfer tomography holder and ex-situ gas assembly for reduction, and the reduction parameters are optimized for complete reduction. It was observed that the particle was reduced with 99.99% H2, and at 400°C for 15 minutes. The tomographic results in before-reduction condition depict that the Co-oxide particles are distributed randomly inside the alumina support. After reduction, the tomogram reveals that metallic Co nucleated and sintered towards the surface of the alumina support. The overall metallic Co distribution shows an outward segregation by subsurface diffusion mechanism. In the study of metallic bi-layer, He-irradiated gold twist grain boundary (AuTGB) was chosen as it is one of the least-studied systems in the

  19. Thermoelectric effects in nanoscale junctions.

    PubMed

    Dubi, Yonatan; Di Ventra, Massimiliano

    2009-01-01

    Despite its intrinsic nonequilibrium origin, thermoelectricity in nanoscale systems is usually described within a static scattering approach which disregards the dynamical interaction with the thermal baths that maintain energy flow. Using the theory of open quantum systems, we show instead that unexpected properties, such as a resonant structure and large sign sensitivity, emerge if the nonequilibrium nature of this problem is considered. Our approach also allows us to define and study a local temperature, which shows hot spots and oscillations along the system according to the coupling of the latter to the electrodes. This demonstrates that Fourier's lawa paradigm of statistical mechanicsis generally violated in nanoscale junctions.

  20. Fabrication of nanoscale electrostatic lenses

    NASA Astrophysics Data System (ADS)

    Sinno, I.; Sanz-Velasco, A.; Kang, S.; Jansen, H.; Olsson, E.; Enoksson, P.; Svensson, K.

    2010-09-01

    The fabrication of cylindrical multi-element electrostatic lenses at the nanoscale presents a challenge; they are high-aspect-ratio structures that should be rotationally symmetric, well aligned and freestanding, with smooth edges and flat, clean surfaces. In this paper, we present the fabrication results of a non-conventional process, which uses a combination of focused gallium ion-beam milling and hydrofluoric acid vapor etching. This process makes it possible to fabricate nanoscale electrostatic lenses down to 140 nm in aperture diameter and 4.2 µm in column length, with a superior control of the geometry as compared to conventional lithography-based techniques.

  1. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    EPA Science Inventory

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  2. Controlling electronic and magnetic properties of ultra narrow multilayered nanowires

    NASA Astrophysics Data System (ADS)

    Panigrahi, Puspamitra

    Interest in the study of magnetic/non-magnetic multilayered structures took a giant leap since Grunberg and his group established that the interlayer exchange coupling (IEC) is a function of the non-magnetic spacer width. This interest was further fuelled by the discovery of the phenomenal Giant Magnetoresistance (GMR) effect. In fact, in 2007 Albert Fert and Peter Grunberg were awarded the Nobel Prize in Physics for their contribution to the discovery of GMR. GMR is the key property that is being used in the read-head of the present day computer hard drive as it requires a high sensitivity in the detection of magnetic field. The recent increase in demand for device miniaturization encouraged researchers to look for GMR in nanoscale multilayered structures. In this context, one dimensional (1-D) multilayered nanowire structure has shown tremendous promise as a viable candidate for ultra sensitive read head sensors. In fact, the phenomenal giant magnetoresistance (GMR) effect, which is the novel feature of the currently used multilayered thin film, has already been observed in multilayered nanowire systems at ambient temperature. Geometrical confinement of the supper lattice along the 2-dimensions (2-D) to construct the 1-D multilayered nanowire prohibits the minimization of magnetic interaction-offering a rich variety of magnetic properties in nanowire that can be exploited for novel functionality. In addition, introduction of non-magnetic spacer between the magnetic layers presents additional advantage in controlling magnetic properties via tuning the interlayer magnetic interaction. Despite of a large volume of theoretical works devoted towards the understanding of GMR and IEC in super lattice structures, limited theoretical calculations are reported in 1-D multilayered systems. Thus to gauge their potential application in new generation magneto-electronic devices, in this thesis, I have discussed the usage of first principles density functional theory (DFT) in

  3. Multilayer thermal barrier coating systems

    DOEpatents

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  4. Multilayer high performance insulation materials

    NASA Technical Reports Server (NTRS)

    Stuckey, J. M.

    1971-01-01

    A number of tests are required to evaluate both multilayer high performance insulation samples and the materials that comprise them. Some of the techniques and tests being employed for these evaluations and some of the results obtained from thermal conductivity tests, outgassing studies, effect of pressure on layer density tests, hypervelocity impact tests, and a multilayer high performance insulation ambient storage program at the Kennedy Space Center are presented.

  5. Production of composite Si nanoparticles by plasma spraying PVD and CH4 annealing for negative electrodes of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ohta, Ryoshi; Ohta, Yutaro; Tashiro, Toru; Kambara, Makoto

    2015-09-01

    Si is a promising candidate as anode of next generation high density Li ion batteries. This material, however, needs to be nanostructured, nanoparticles and C coating of active material, to cope with huge volume change and associated rapid capacity decay. Si nanoparticles with 20-40 nm have been successfully produced by plasma spraying PVD and also Si-C core-shell composite particles by adding CH4 during processing. The battery performance has been improved with these nanopowders as anode, especially with the C coated Si particles. However, SiC that is inactive in battery reaction forms inevitably at high temperature during plasma spraying PVD and reduces the capacity density. In this work, therefore, post CH4 annealing was attempted to form Si-C nanocomposite particles while suppressing formation of SiC. The primary Si nanoparticles were unchanged in size after annealing and were coated with the finer carbonous particles that formed after CH4 infiltration through pores between nanoparticles. The batteries using annealed powders with C/Si molar ratio of 0.3 have shown two-fold capacity retention increase after 50 cycles with no capacity reduction associated with SiC formation as compared to the powders without C. This work was partly supported by the Funding Program for Next Generation World-Leading Researchers (NEXT Program) of Japan.

  6. Mössbauer and Structural Studies of f.c.c. Fe-Ni-C-based PVD CAE Coatings

    NASA Astrophysics Data System (ADS)

    Nadutov, V. M.; Panarin, V. Ye.; Kosintsev, S. G.; Kramar, O. V.; Svystunov, Ye. O.; Volosevich, P. Yu.

    2008-10-01

    The physical vapor deposition by cathode arc evaporation (PVD CAE) technique in microdrops mode was applied for deposition of austenitic nanocrystalline coatings of the Fe-31.2%Ni-2%Co-0.002%Y and Fe-31.4%Ni-2%Co-0.72%C-0.001%Y alloys on Cu substrate. The Mössbauer spectroscopy, X-ray diffraction analysis, transmission electron microscopy and dilatometry have been used to study the structure, magnetic order and thermal expansion of coatings. The estimated coherently diffracting domains values (CDD) and the TEM data testify that austenitic structure in coatings is dispersed and the presence of carbon intensifies the dispersion process of structural elements. Mössbauer analysis has shown that PVD CAE process results in the decomposition of an austenitic solid solution on microareas enriched both in Ni and Co and in Fe, which leads to the formation of a specific magnetic order characterized by existence of the ferromagnetic low-moment (FM LM) and antiferomagnetic high-moment (AM HM) phases and provides stable Invar properties of a coating at the 110-400 K temperatures.

  7. Investigation of thin layers deposited by two PVD techniques on high speed steel produced by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Jakubéczyová, D.; Hvizdoš, P.; Selecká, M.

    2012-04-01

    This study was intended to investigate the properties and cutting performance with thin layers applied by two PVD techniques. PVD techniques ARC and LARC were used for the deposition of thin coatings onto cutting tools prepared by powder metallurgy. Advanced types of layers - monolayer AlTiCrN and nanocomposite type of nc-AlTiN/Si3N4 layer - were analyzed by standard techniques for surface status and quality assessment - roughness, hardness, layer thickness, chemical composition by GDOES, tribological properties at room and elevated temperature. Durability testing of the cutting tools was carried out according to the standard ISO 3685-1999. The nanocomposite nc-AlTiN/Si3N4 layer achieved lower roughness when compared to monolayer AlTiCrN which leads to the achievement of higher hardness and better layer quality. The HV0.5 hardness values were ∼26 GPa. The results showed a 2-3-times longer durability of the cutting tools in comparison with equivalent uncoated PM and traditional materials. The deposited coatings contributed to the improvement of their durability.

  8. Development and evaluation of two PVD-coated β-titanium orthodontic archwires for fluoride-induced corrosion protection.

    PubMed

    Krishnan, Vinod; Krishnan, Anand; Remya, R; Ravikumar, K K; Nair, S Asha; Shibli, S M A; Varma, H K; Sukumaran, K; Kumar, K Jyothindra

    2011-04-01

    The present research was aimed at developing surface coatings on β titanium orthodontic archwires capable of protection against fluoride-induced corrosion. Cathodic arc physical vapor deposition PVD (CA-PVD) and magnetron sputtering were utilized to deposit thin films of titanium aluminium nitride (TiAlN) and tungsten carbide/carbon (WC/C) coatings on β titanium orthodontic archwires. Uncoated and coated specimens were immersed in a high fluoride ion concentration mouth rinse, following a specially designed cycle simulating daily use. All specimens thus obtained were subjected to critical evaluation of parameters such as electrochemical corrosion behaviour, surface analysis, mechanical testing, microstructure, element release, and toxicology. The results confirm previous research that β titanium archwires undergo a degradation process when in contact with fluoride mouth rinses. The study confirmed the superior nature of the TiAlN coating, evident as many fewer changes in properties after fluoride treatment when compared with the WC/C coating. Thus, coating with TiAlN is recommended in order to reduce the corrosive effects of fluorides on β titanium orthodontic archwires.

  9. Artificial multilayers and nanomagnetic materials

    PubMed Central

    SHINJO, Teruya

    2013-01-01

    The author has been actively engaged in research on nanomagnetic materials for about 50 years. Nanomagnetic materials are comprised of ferromagnetic systems for which the size and shape are controlled on a nanometer scale. Typical examples are ultrafine particles, ultrathin films, multilayered films and nano-patterned films. In this article, the following four areas of the author’s studies are described. (1) Mössbauer spectroscopic studies of nanomagnetic materials and interface magnetism. (2) Preparation and characterization of metallic multilayers with artificial superstructures. (3) Giant magnetoresistance (GMR) effect in magnetic multilayers. (4) Novel properties of nanostructured ferromagnetic thin films (dots and wires). A subject of particular interest in the author’s research was the artificially prepared multilayers consisting of metallic elements. The motivation to initiate the multilayer investigation is described and the physical properties observed in the artificial multilayers are introduced. The author’s research was initially in the field of pure physical science and gradually extended into applied science. His achievements are highly regarded not only from the fundamental point of view but also from the technological viewpoint. PMID:23391605

  10. Capacity and Delay Spread in Multilayer Diffusion-Based Molecular Communication (DBMC) Channel.

    PubMed

    Md Mustam, Saizalmursidi; Syed-Yusof, Sharifah K; Zubair, Suleiman

    2016-10-01

    In nanoscale communication, diffusion-based molecular communication (DBMC) in which information is encoded into molecule patterns by a transmitter nanomachine, has emerged as a promising communication system, particularly for biomedical and healthcare applications. Although, numerous studies have been conducted to evaluate and analyze DBMC systems, investigation on DBMC system through a multilayer channel has received less attention. The aims of this paper are to formulate channel characteristics and to evaluate the performance of multilayer DBMC channel in terms of delay spread and capacity. In this paper, the propagation of molecules over an n- layer channel is assumed to follow the Brownian motion and subjected to Fick's law of diffusion. Fourier transform is used to convert time to frequency domain functions. Besides, the multilayer channel is considered as a linear and deterministic channel. For the performance evaluation, the air-water-blood plasma medium representing the simplified multilayer diffusion model in the respiratory system was chosen. It was found that a high channel capacity can be achieved with wide transmission bandwidth, short transmission distance, and high averaged transmitted power. In addition, the findings showed that channel delay spread increases as both the transmission distance, and the pulse duration increased. By setting the symbol duration greater than the pulse duration or delay spread, an inter-symbol interference problem due to previous molecules transmission can be mitigated. These findings can be used as a guide in the development and fabrication of future artificial nanocommunication and nanonetworks systems involving multilayer transmission medium.

  11. Quantitative Tomography of Organic Photovoltaic Blends at the Nanoscale.

    PubMed

    Pfannmöller, M; Heidari, H; Nanson, L; Lozman, O R; Chrapa, M; Offermans, T; Nisato, G; Bals, S

    2015-10-14

    The success of semiconducting organic materials has enabled green technologies for electronics, lighting, and photovoltaics. However, when blended together, these materials have also raised novel fundamental questions with respect to electronic, optical, and thermodynamic properties. This is particularly important for organic photovoltaic cells based on the bulk heterojunction. Here, the distribution of nanoscale domains plays a crucial role depending on the specific device structure. Hence, correlation of the aforementioned properties requires 3D nanoscale imaging of materials domains, which are embedded in a multilayer device. Such visualization has so far been elusive due to lack of contrast, insufficient signal, or resolution limits. In this Letter, we introduce spectral scanning transmission electron tomography for reconstruction of entire volume plasmon spectra from rod-shaped specimens. We provide 3D structural correlations and compositional mapping at a resolution of approximately 7 nm within advanced organic photovoltaic tandem cells. Novel insights that are obtained from quantitative 3D analyses reveal that efficiency loss upon thermal annealing can be attributed to subtle, fundamental blend properties. These results are invaluable in guiding the design and optimization of future devices in plastic electronics applications and provide an empirical basis for modeling and simulation of organic solar cells.

  12. Nanoscale wicking methods and devices

    NASA Technical Reports Server (NTRS)

    Zhou, Jijie (Inventor); Bronikowski, Michael (Inventor); Noca, Flavio (Inventor); Sansom, Elijah B. (Inventor)

    2011-01-01

    A fluid transport method and fluid transport device are disclosed. Nanoscale fibers disposed in a patterned configuration allow transport of a fluid in absence of an external power source. The device may include two or more fluid transport components having different fluid transport efficiencies. The components may be separated by additional fluid transport components, to control fluid flow.

  13. Multilayer graphene rubber nanocomposites

    NASA Astrophysics Data System (ADS)

    Schartel, Bernhard; Frasca, Daniele; Schulze, Dietmar; Wachtendorf, Volker; Krafft, Bernd; Morys, Michael; Böhning, Martin; Rybak, Thomas

    2016-05-01

    Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m2/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young's modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development.

  14. PVD Cu trench-fill by viscous flow at high temperatures

    NASA Astrophysics Data System (ADS)

    Wu, Zhiyuan

    The scaling of integrated circuits has led to new challenges in Cu interconnect fabrication. It is getting difficult to fill narrow trenches, e.g. 20 nm wide, by Cu electroplating. In this work, a high temperature PVD Cu viscous flow trench fill process was explored to overcome the difficulties of filling narrow and high aspect ratio trenches. We have tested and found TaN and MoN to be good barriers, and Ru a good wetting surface for Cu. The three metals, Ta, Mo and Ru, are thus suitable for use as a thin liner to provide adhesion between the filled Cu and the dielectrics. We have therefore studied and compared Cu viscous flow trench filling on Ru, Mo and Ta liners. Cross-sectional TEM was employed to examine the trench fill profiles under different viscous flow conditions. We have found that a continuous Cu seed deposited at room temperature was essential to allow successful Cu viscous flow. The liner material's effect on Cu seed agglomeration was thus critical. It was shown that viscous flow on a Ru liner with a continuous Cu seed can fill narrow trenches (300 nm wide) at a high aspect ratio (a/r = 5), and produce maximized Cu grain size without post-fill annealing. A thicker Cu seed is required on the Mo liner for a successful viscous fill. However, on a Ta liner, because of poor Cu wetting, it is difficult to maintain a continuous Cu seed coverage at high temperatures, and the viscous fill was unsuccessful. To fill ultra-narrow (≤ 48 nm wide) and high aspect ratio (a/r ≥ 4) trenches, a lower deposition rate was needed. Agglomeration of the whole Cu fill at high temperatures is a key issue, which still remains to be overcome. Computer simulations of the viscous flow trench fill process were carried out, taking into account the effects of incoming flux divergence and Cu seed coverage. Our simulations indicated that a successful viscous trench fill relies on a continuous Cu seed coverage and a high surface mobility. Viscous flow is not sensitive to the

  15. Extracytoplasmic Function (ECF) Sigma Factor Gene Regulation in Pseudomonas syringae: Integrated Molecular and Computational Characterization of PvdS-Regulated Promoters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The extracytoplasmic function (ECF) sigma factor PvdS regulates the expression of genes required for the biosynthesis and transport of pyoverdine, a siderophore that functions in iron acquisition. The production of pyoverdine is a distinctive trait of the fluorescent pseudomonads and the regulation ...

  16. Multilayer ionic polymer transducer

    NASA Astrophysics Data System (ADS)

    Akle, Barbar J.; Leo, Donald J.

    2003-07-01

    A transducer consisting of multiple layers of ionic polymer material is developed for applications in sensing, actuation, and control. The transducer consists of two to four individual layers each approximately 200 microns thick. The transducers are connected in parallel to minimize the electric field requirements for actuation. The tradeoff in deflection and force can be controlled by controlling the mechanical constraint at the interface. Packaging the transducer in an outer coating produces a hard constraint between layers and reduces the deflection with a force that increases linearly with the number of layers. This configuration also increases the bandwidth of the transducer. Removing the outer packaging produces an actuator that maintains the deflection of a single layer but has an increased force output. This is obtained by allowing the layers to slide relative to one another during bending. Experiments on transducers with one to three layers are performed and the results are compared to Newbury"s equivalent circuit model, which was modified to accommodate the multilayer polymers. The modification was performed on four different boundary conditions, two electrical the series and the parallel connection, and two mechanical the zero interfacial friction and the zero slip on the interface. Results demonstrate that the largest obstacle to obtaining good performance is water transport between the individual layers. Water crossover produces a near short circuit electrical condition and produces feedthrough between actuation layers and sensing layers. Electrical feedthrough due to water crossover eliminates the ability to produce a transducer that has combined sensing and actuation properties. Eliminating water crossover through good insulation enables the development of a small (5 mm x 30 mm) transducer that has sensing and actuation bandwidth on the order of 100 Hz.

  17. Unfolding single- and multilayers

    NASA Astrophysics Data System (ADS)

    Llorens, Maria-Gema; Bons, Paul D.; Griera, Albert; Gomez-Rivas, Enrique

    2014-05-01

    When planar structures (e.g. sedimentary layers, veins, dykes, cleavages, etc.) are subjected to deformation, they have about equal chances to be shortened or stretched. The most common shortening and stretching structures are folds and boudinage, respectively. However, boudinage requires additional deformation mechanisms apart from viscous flow, like formation of fractures or strain localization. When folded layers are subjected to extension, they could potentially unfold back to straight layers. Although probably not uncommon, this would be difficult to recognize. Open questions are whether folded layers can unfold, what determines their mechanical behaviour and how we can recognize them in the field. In order to approach these questions, we present a series of numerical experiments that simulate stretching of previously folded single- and multi-layers in simple shear, using the two dimensional numerical modelling platform ELLE, including the finite element module BASIL that calculates viscous deformation. We investigate the parameters that affect a fold train once it rotates into the extensional field. The results show that the unfolding process strongly depends on the viscosity contrast between the layer and matrix (Llorens et al., 2013). Layers do not completely unfold when they experience softening before or during the stretching process or when other neighbouring competent layers prevent them from unfolding. The foliation refraction patterns are the main indicators of unfolded folds. Additionally, intrafolial folds and cusp-like folds adjacent to straight layers, as well as variations in fold amplitudes and limb lengths of irregular folds can also be used as indicators of stretching of a layer after shortening and folding. References: Llorens, M-.G., Bons, P.D., Griera, A. and Gomez-Rivas, E. 2013. When do folds unfold during progressive shear?. Geology, 41, 563-566.

  18. Structural reducibility of multilayer networks

    NASA Astrophysics Data System (ADS)

    de Domenico, Manlio; Nicosia, Vincenzo; Arenas, Alexandre; Latora, Vito

    2015-04-01

    Many complex systems can be represented as networks consisting of distinct types of interactions, which can be categorized as links belonging to different layers. For example, a good description of the full protein-protein interactome requires, for some organisms, up to seven distinct network layers, accounting for different genetic and physical interactions, each containing thousands of protein-protein relationships. A fundamental open question is then how many layers are indeed necessary to accurately represent the structure of a multilayered complex system. Here we introduce a method based on quantum theory to reduce the number of layers to a minimum while maximizing the distinguishability between the multilayer network and the corresponding aggregated graph. We validate our approach on synthetic benchmarks and we show that the number of informative layers in some real multilayer networks of protein-genetic interactions, social, economical and transportation systems can be reduced by up to 75%.

  19. Multilayer adsorption on fractal surfaces.

    PubMed

    Vajda, Péter; Felinger, Attila

    2014-01-10

    Multilayer adsorption is often observed in liquid chromatography. The most frequently employed model for multilayer adsorption is the BET isotherm equation. In this study we introduce an interpretation of multilayer adsorption measured on liquid chromatographic stationary phases based on the fractal theory. The fractal BET isotherm model was successfully used to determine the apparent fractal dimension of the adsorbent surface. The nonlinear fitting of the fractal BET equation gives us the estimation of the adsorption equilibrium constants and the monolayer saturation capacity of the adsorbent as well. In our experiments, aniline and proline were used as test molecules on reversed phase and normal phase columns, respectively. Our results suggest an apparent fractal dimension 2.88-2.99 in the case of reversed phase adsorbents, in the contrast with a bare silica column with a fractal dimension of 2.54.

  20. A novel monolithic LEU foil target based on a PVD manufacturing process for (99)Mo production via fission.

    PubMed

    Hollmer, Tobias; Petry, Winfried

    2016-12-01

    (99)Mo is the most widely used radioactive isotope in nuclear medicine. Its main production route is the fission of uranium. A major challenge for a reliable supply is the conversion from highly enriched uranium (HEU) to low enriched uranium (LEU). A promising candidate to realize this conversion is the cylindrical LEU irradiation target. The target consists of a uranium foil encapsulated between two coaxial aluminum cladding cylinders. This target allows a separate processing of the irradiated uranium foil and the cladding when recovering the (99)Mo. Thereby, both the costs and the volume of highly radioactive liquid waste are significantly reduced compared to conventional targets. The presented manufacturing process is based on the direct coating of the uranium on the inside of the outer cladding cylinder. This process was realized by a cylindrical magnetron enhanced physical vapor deposition (PVD) technique. The method features a highly automated process, a good quality of the resulting uranium foils and a high material utilization.

  1. Low pressure hand made PVD system for high crystalline metal thin film preparation in micro-nanometer scale

    NASA Astrophysics Data System (ADS)

    Rosikhin, Ahmad; Hidayat, Aulia Fikri; Marimpul, Rinaldo; Syuhada, Ibnu; Winata, Toto

    2016-02-01

    High crystalline metal thin film preparation in application both for catalyst substrate or electrode in any electronic devices always to be considered in material functional material research and development. As a substrate catalyst, this metal take a role as guidance for material growth in order to resulted in proper surface structure although at the end it will be removed via etching process. Meanwhile as electrodes, it will dragging charges to be collected inside. This brief discussion will elaborate general fundamental principle of physical vapor deposition (PVD) system for metal thin film preparation in micro-nanometer scale. The influence of thermodynamic parameters and metal characteristic such as melting point and particle size will be elucidated. Physical description of deposition process in the chamber can be simplified by schematic evaporation phenomena which is supported by experimental measurement such as SEM and XRD.

  2. An investigation of PVdF/PVC-based blend electrolytes with EC/PC as plasticizers in lithium battery applications

    NASA Astrophysics Data System (ADS)

    Rajendran, S.; Sivakumar, P.

    2008-03-01

    Solid polymer electrolytes (SPEs) composed of poly(vinylidene fluoride) (PVdF)-poly(vinyl chloride) (PVC) complexed with lithium perchlorate (LiClO 4) as salt and ethylene carbonate (EC)/propylene carbonate (PC) as plasticizers were prepared using solvent-casting technique, with different weight ratios of EC and PC. The amorphicity and complexation behavior of the polymer electrolytes were confirmed using X-ray diffraction (XRD) and FTIR studies. TG/DTA and scanning electron microscope (SEM) studies explained the thermal stability and surface morphology of electrolytes, respectively. The prepared thin films were subjected to AC impedance measurements as a function of temperature ranging from 302 to 373 K. The temperature-dependence conductivity of polymer films seems to obey VTF relation.

  3. Low pressure hand made PVD system for high crystalline metal thin film preparation in micro-nanometer scale

    SciTech Connect

    Rosikhin, Ahmad Hidayat, Aulia Fikri; Marimpul, Rinaldo; Syuhada, Ibnu; Winata, Toto

    2016-02-08

    High crystalline metal thin film preparation in application both for catalyst substrate or electrode in any electronic devices always to be considered in material functional material research and development. As a substrate catalyst, this metal take a role as guidance for material growth in order to resulted in proper surface structure although at the end it will be removed via etching process. Meanwhile as electrodes, it will dragging charges to be collected inside. This brief discussion will elaborate general fundamental principle of physical vapor deposition (PVD) system for metal thin film preparation in micro-nanometer scale. The influence of thermodynamic parameters and metal characteristic such as melting point and particle size will be elucidated. Physical description of deposition process in the chamber can be simplified by schematic evaporation phenomena which is supported by experimental measurement such as SEM and XRD.

  4. Optical antennas as nanoscale resonators.

    PubMed

    Agio, Mario

    2012-02-07

    Recent progress in nanotechnology has enabled us to fabricate sub-wavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing quantum emitters and review the designs that increase the spontaneous emission rate by orders of magnitude from the ultraviolet up to the near-infrared spectral range. To further explore how optical antennas may lead to unprecedented regimes of light-matter interactions, we draw a relationship between metal nanoparticles, radio-wave antennas and optical resonators. Our analysis points out how optical antennas may function as nanoscale resonators and how these may offer unique opportunities with respect to state-of-the-art microcavities.

  5. Systems engineering at the nanoscale

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason J.; Breidenich, Jennifer L.; Wei, Michael C.; Clatterbaughi, Guy V.; Keng, Pei Yuin; Pyun, Jeffrey

    2012-06-01

    Nanomaterials have provided some of the greatest leaps in technology over the past twenty years, but their relatively early stage of maturity presents challenges for their incorporation into engineered systems. Perhaps even more challenging is the fact that the underlying physics at the nanoscale often run counter to our physical intuition. The current state of nanotechnology today includes nanoscale materials and devices developed to function as components of systems, as well as theoretical visions for "nanosystems," which are systems in which all components are based on nanotechnology. Although examples will be given to show that nanomaterials have indeed matured into applications in medical, space, and military systems, no complete nanosystem has yet been realized. This discussion will therefore focus on systems in which nanotechnology plays a central role. Using self-assembled magnetic artificial cilia as an example, we will discuss how systems engineering concepts apply to nanotechnology.

  6. Biosafe Nanoscale Pharmaceutical Adjuvant Materials

    PubMed Central

    Jin, Shubin; Li, Shengliang; Wang, Chongxi; Liu, Juan; Yang, Xiaolong; Wang, Paul C.; Zhang, Xin; Liang, Xing-Jie

    2014-01-01

    Thanks to developments in the field of nanotechnology over the past decades, more and more biosafe nanoscale materials have become available for use as pharmaceutical adjuvants in medical research. Nanomaterials possess unique properties which could be employed to develop drug carriers with longer circulation time, higher loading capacity, better stability in physiological conditions, controlled drug release, and targeted drug delivery. In this review article, we will review recent progress in the application of representative organic, inorganic and hybrid biosafe nanoscale materials in pharmaceutical research, especially focusing on nanomaterial-based novel drug delivery systems. In addition, we briefly discuss the advantages and notable functions that make these nanomaterials suitable for the design of new medicines; the biosafety of each material discussed in this article is also highlighted to provide a comprehensive understanding of their adjuvant attributes. PMID:25429253

  7. The use of low-energy SIMS (LE-SIMS) for nanoscale fuel cell material development

    SciTech Connect

    Morris, R. J. H.; Fearn, Sarah; Perkins, James; Kilner, John; Dowsett, M. G.; Biegalski, Michael D; Rouleau, Christopher M

    2011-01-01

    Low-energy secondary ion mass spectrometry has been used to investigate the matrix structure and interface attributes of a novel Ce0.85Sm0.15O2/CeO2 multilayer fuel cell material. Nanoscale oxide systems have shown enhanced ionic conductivities when produced to form highly oriented epitaxial structures. The Sm-doped CeO2 material system is of particular interest for fuel cell technology because of its inherently high ionic conductivity at low operating temperatures (600-800 C). For this study, a nanometer-scale Ce0.85Sm0.15O2/CeO2 multilayer was grown by pulsed laser deposition. The sample was annealed at 700 C in an oxygen ambience. High-resolution, low-energy depth profiling using Cs revealed some diffusion of the multilayer structure after annealing, along with a possible volume change for the Sm-doped layers. Changes in layer volume will lead to an increase in the mechanical strain and may cause the material to crack. The findings presented here suggest that the Ce0.85Sm0.15O2/CeO2 multilayer structure in its current form may not possess the level of thermal stability required for use within a fuel cell environment.

  8. Cavitation dynamics on the nanoscale

    SciTech Connect

    Kotaidis, Vassilios; Plech, Anton

    2005-11-21

    The ultrafast excitation of gold nanoparticle sols causes a strong nonequilibrium heating of the particle lattice and subsequently of the water shell close to the particle surface. Above a threshold in laser fluence, which is defined by the onset of homogeneous nucleation, nanoscale vapor bubbles develop around the particles, expand and collapse again within the first nanosecond after excitation. We show the existence of cavitation on the nanometer and subnanosecond time scale, described within the framework of continuum thermodynamics.

  9. Cavitation dynamics on the nanoscale

    NASA Astrophysics Data System (ADS)

    Kotaidis, Vassilios; Plech, Anton

    2005-11-01

    The ultrafast excitation of gold nanoparticle sols causes a strong nonequilibrium heating of the particle lattice and subsequently of the water shell close to the particle surface. Above a threshold in laser fluence, which is defined by the onset of homogeneous nucleation, nanoscale vapor bubbles develop around the particles, expand and collapse again within the first nanosecond after excitation. We show the existence of cavitation on the nanometer and subnanosecond time scale, described within the framework of continuum thermodynamics.

  10. Nanoscale deformation mechanisms in bone.

    PubMed

    Gupta, Himadri S; Wagermaier, Wolfgang; Zickler, Gerald A; Raz-Ben Aroush, D; Funari, Sérgio S; Roschger, Paul; Wagner, H Daniel; Fratzl, Peter

    2005-10-01

    Deformation mechanisms in bone matrix at the nanoscale control its exceptional mechanical properties, but the detailed nature of these processes is as yet unknown. In situ tensile testing with synchrotron X-ray scattering allowed us to study directly and quantitatively the deformation mechanisms at the nanometer level. We find that bone deformation is not homogeneous but distributed between a tensile deformation of the fibrils and a shearing in the interfibrillar matrix between them.

  11. Radiation rate enhancement in multilayered photonic and plasmonic nanopillars

    NASA Astrophysics Data System (ADS)

    Lawrence, Nate; Dal Negro, Luca

    2013-03-01

    We have systematically studied arrays of multilayered nanopillars composed of both metal and dielectic materials and shown that they can be used to enhance the radiative properties of active materials through modification of the local density of states (LDOS). Using an extension of the multipolar expansion method in two dimensions, we are able to calculate modifications in the radiation rate of emitters and power radiated to the far field. We show multi-resonant confinement of light to sub-wavelength gap regions inside nanopillars composed of alternating layers of metal and dielectric materials, forming a circular metal-insulator-metal (MIM) device. Sub-wavelength light confinement of 1.55 μm radiation is also demonstrated in purely dielectric nanopillars with reduced optical losses using alternating layers of high and low refractive index materials. In both cases, we find that the LDOS can be strongly increased, modifying the radiative rate and the internal quantum efficiency of emitters. Using top-down electron beam lithography, reactive ion etching and sputtering deposition we have created for the first time high-aspect ratio, light emitting, multilayered nanopillar structures consisting of alternating Si and Er:SiNx layers. Using dark-field scattering and photoluminescence decay spectroscopy we have experimentally characterized the fabricated nanostructures and demonstrated ability to control their radiation properties. These results are important to enable novel Si-based optical cavities and light emitting structures with nanoscale light confinement for optical communications and sensing.

  12. Design of radiation resistant metallic multilayers for advanced nuclear systems

    SciTech Connect

    Zhernenkov, Mikhail E-mail: gills@bnl.gov; Gill, Simerjeet E-mail: gills@bnl.gov; Stanic, Vesna; DiMasi, Elaine; Kisslinger, Kim; Ecker, Lynne; Baldwin, J. Kevin; Misra, Amit; Demkowicz, M. J.

    2014-06-16

    Helium implantation from transmutation reactions is a major cause of embrittlement and dimensional instability of structural components in nuclear energy systems. Development of novel materials with improved radiation resistance, which is of the utmost importance for progress in nuclear energy, requires guidelines to arrive at favorable parameters more efficiently. Here, we present a methodology that can be used for the design of radiation tolerant materials. We used synchrotron X-ray reflectivity to nondestructively study radiation effects at buried interfaces and measure swelling induced by He implantation in Cu/Nb multilayers. The results, supported by transmission electron microscopy, show a direct correlation between reduced swelling in nanoscale multilayers and increased interface area per unit volume, consistent with helium storage in Cu/Nb interfaces in forms that minimize dimensional changes. In addition, for Cu/Nb layers, a linear relationship is demonstrated between the measured depth-dependent swelling and implanted He density from simulations, making the reflectivity technique a powerful tool for heuristic material design.

  13. Magnetotransport and magnetization reversal of electrodeposited multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Tang, Xueti

    2007-12-01

    Electrodeposited magnetic multilayer nanowires are ideal materials to study nanoscale magnetism and the giant magnetoresistance (GMR) in the current-perpendicular-to-plane (CPP) geometry. This is because the diameter of each nanowire is uniform, the surface of the nanowire is smooth, and the thickness of both the magnetic and non-magnetic layers can be varied to either larger or smaller than the spin diffusion length which is an important parameter in magnetotransport study. In addition, the aspect ratio (layer-thickness/diameter) that is related to shape anisotropy can be varied for magnetization reversal study. There has been little understanding in the magnetization reversal mechanism of multilayer nanowires, which is complicated due to the dipolar interactions between magnetic layers in each nanowire and between nanowires. The objective of this work is to study the magnetization reversal mechanism of multilayer nanowires using a vibrating sample magnetometer (VSM), where various dipolar interactions are taken into account. Although multilayer nanowires are ideal for the study of the CPP-GMR effect, there remains technical difficulty in making an electrical contact with individual nanowires for the CPP-GMR measurements. In this work, a point-contact method using a conductive plunger tip was developed in-house, that enabled us to measure the CPP-GMR of selected multilayer nanowires in an array of vertically aligned nanowires in each sample. To examine the CPP-GMR and compare the results with theoretical models, the CPP-GMR data were systematically obtained from samples with various magnetic and non-magnetic layer thicknesses. It was found from VSM measurement that the magnetization reversal mode in electrodeposited CoNi/Cu multilayer nanowires depends on the shape and thickness of the CoNi layers where the mode in rod-shaped thick CoNi layers is different from that in disk-shaped thin CoNi layers. The reversal mode in coherent rotation or curling was determined

  14. Multilayer High-Gradient Insulators

    SciTech Connect

    Harris, J R

    2006-08-16

    Multilayer High-Gradient Insulators are vacuum insulating structures composed of thin, alternating layers of dielectric and metal. They are currently being developed for application to high-current accelerators and related pulsed power systems. This paper describes some of the High-Gradient Insulator research currently being conducted at Lawrence Livermore National Laboratory.

  15. Multilayer Composite Pressure Vessels

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2005-01-01

    A method has been devised to enable the fabrication of lightweight pressure vessels from multilayer composite materials. This method is related to, but not the same as, the method described in gMaking a Metal- Lined Composite-Overwrapped Pressure Vessel h (MFS-31814), NASA Tech Briefs, Vol. 29, No. 3 (March 2005), page 59. The method is flexible in that it poses no major impediment to changes in tank design and is applicable to a wide range of tank sizes. The figure depicts a finished tank fabricated by this method, showing layers added at various stages of the fabrication process. In the first step of the process, a mandrel that defines the size and shape of the interior of the tank is machined from a polyurethane foam or other suitable lightweight tooling material. The mandrel is outfitted with metallic end fittings on a shaft. Each end fitting includes an outer flange that has a small step to accommodate a thin layer of graphite/epoxy or other suitable composite material. The outer surface of the mandrel (but not the fittings) is covered with a suitable release material. The composite material is filament- wound so as to cover the entire surface of the mandrel from the step on one end fitting to the step on the other end fitting. The composite material is then cured in place. The entire workpiece is cut in half in a plane perpendicular to the axis of symmetry at its mid-length point, yielding two composite-material half shells, each containing half of the foam mandrel. The halves of the mandrel are removed from within the composite shells, then the shells are reassembled and bonded together with a belly band of cured composite material. The resulting composite shell becomes a mandrel for the subsequent steps of the fabrication process and remains inside the final tank. The outer surface of the composite shell is covered with a layer of material designed to be impermeable by the pressurized fluid to be contained in the tank. A second step on the outer flange of

  16. Center for Nanoscale Science and Technology

    National Institute of Standards and Technology Data Gateway

    NIST Center for Nanoscale Science and Technology (Program website, free access)   Currently there is no database matching your keyword search, but the NIST Center for Nanoscale Science and Technology website may be of interest. The Center for Nanoscale Science and Technology enables science and industry by providing essential measurement methods, instrumentation, and standards to support all phases of nanotechnology development, from discovery to production.

  17. Multi-layer micro/nanofluid devices with bio-nanovalves

    DOEpatents

    Li, Hao; Ocola, Leonidas E.; Auciello, Orlando H.; Firestone, Millicent A.

    2013-01-01

    A user-friendly multi-layer micro/nanofluidic flow device and micro/nano fabrication process are provided for numerous uses. The multi-layer micro/nanofluidic flow device can comprise: a substrate, such as indium tin oxide coated glass (ITO glass); a conductive layer of ferroelectric material, preferably comprising a PZT layer of lead zirconate titanate (PZT) positioned on the substrate; electrodes connected to the conductive layer; a nanofluidics layer positioned on the conductive layer and defining nanochannels; a microfluidics layer positioned upon the nanofluidics layer and defining microchannels; and biomolecular nanovalves providing bio-nanovalves which are moveable from a closed position to an open position to control fluid flow at a nanoscale.

  18. Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter

    PubMed Central

    Fu, Tao; Peng, Xianghe; Chen, Xiang; Weng, Shayuan; Hu, Ning; Li, Qibin; Wang, Zhongchang

    2016-01-01

    We performed molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter, aimed to investigate the effects of hetero-twin interface and twin thickness on hardness. We found that both twinning partial slip (TPS) and partial slip parallel with twin boundary (PSPTB) can reduce hardness and therefore should not be ignored when evaluating mechanical properties at nanoscale. There is a critical range of twin thickness λ (~25 Å < λ < ~31 Å), in which hardness of the multilayer films is maximized. At a smaller λ, TPSs appear due to the reaction between partial dislocations and twin boundary accounts for the softening-dominated mechanism. We also found that the combination of the lowered strengthening due to confined layer slips and the softening due to TPSs and PSPTBs results in lower hardness at a larger λ. PMID:27767046

  19. Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter

    NASA Astrophysics Data System (ADS)

    Fu, Tao; Peng, Xianghe; Chen, Xiang; Weng, Shayuan; Hu, Ning; Li, Qibin; Wang, Zhongchang

    2016-10-01

    We performed molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter, aimed to investigate the effects of hetero-twin interface and twin thickness on hardness. We found that both twinning partial slip (TPS) and partial slip parallel with twin boundary (PSPTB) can reduce hardness and therefore should not be ignored when evaluating mechanical properties at nanoscale. There is a critical range of twin thickness λ (~25 Å < λ < ~31 Å), in which hardness of the multilayer films is maximized. At a smaller λ, TPSs appear due to the reaction between partial dislocations and twin boundary accounts for the softening-dominated mechanism. We also found that the combination of the lowered strengthening due to confined layer slips and the softening due to TPSs and PSPTBs results in lower hardness at a larger λ.

  20. Charge-dependent transport switching of single molecular ions in a weak polyelectrolyte multilayer.

    PubMed

    Tauzin, Lawrence J; Shuang, Bo; Kisley, Lydia; Mansur, Andrea P; Chen, Jixin; de Leon, Al; Advincula, Rigoberto C; Landes, Christy F

    2014-07-22

    The tunable nature of weak polyelectrolyte multilayers makes them ideal candidates for drug loading and delivery, water filtration, and separations, yet the lateral transport of charged molecules in these systems remains largely unexplored at the single molecule level. We report the direct measurement of the charge-dependent, pH-tunable, multimodal interaction of single charged molecules with a weak polyelectrolyte multilayer thin film, a 10 bilayer film of poly(acrylic acid) and poly(allylamine hydrochloride) PAA/PAH. Using fluorescence microscopy and single-molecule tracking, two modes of interaction were detected: (1) adsorption, characterized by the molecule remaining immobilized in a subresolution region and (2) diffusion trajectories characteristic of hopping (D ∼ 10(-9) cm(2)/s). Radius of gyration evolution analysis and comparison with simulated trajectories confirmed the coexistence of the two transport modes in the same single molecule trajectories. A mechanistic explanation for the probe and condition mediated dynamics is proposed based on a combination of electrostatics and a reversible, pH-induced alteration of the nanoscopic structure of the film. Our results are in good agreement with ensemble studies conducted on similar films, confirm a previously-unobserved hopping mechanism for charged molecules in polyelectrolyte multilayers, and demonstrate that single molecule spectroscopy can offer mechanistic insight into the role of electrostatics and nanoscale tunability of transport in weak polyelectrolyte multilayers.

  1. Minimized thermal conductivity in highly stable thermal barrier W/ZrO2 multilayers

    NASA Astrophysics Data System (ADS)

    Döring, Florian; Major, Anna; Eberl, Christian; Krebs, Hans-Ulrich

    2016-10-01

    Nanoscale thin-film multilayer materials are of great research interest since their large number of interfaces can strongly hinder phonon propagation and lead to a minimized thermal conductivity. When such materials provide a sufficiently small thermal conductivity and feature in addition also a high thermal stability, they would be possible candidates for high-temperature applications such as thermal barrier coatings. For this article, we have used pulsed laser deposition in order to fabricate thin multilayers out of the thermal barrier material ZrO2 in combination with W, which has both a high melting point and high density. Layer thicknesses were designed such that bulk thermal conductivity is governed by the low value of ZrO2, while ultrathin W blocking layers provide a high number of interfaces. By this phonon scattering, reflection and shortening of mean free path lead to a significant reduction in overall thermal conductivity even below the already low value of ZrO2. In addition to this, X-ray reflectivity measurements were taken showing strong Bragg peaks even after annealing such multilayers at 1300 K. Those results identify W/ZrO2 multilayers as desired thermally stable, low-conductivity materials.

  2. Patterning of magnetic thin films and multilayers using nanostructured tantalum gettering templates.

    PubMed

    Qiu, Wenlan; Chang, Long; Lee, Dahye; Dannangoda, Chamath; Martirosyan, Karen; Litvinov, Dmitri

    2015-03-25

    This work demonstrates that a nonmagnetic thin film of cobalt oxide (CoO) sandwiched between Ta seed and capping layers can be effectively reduced to a magnetic cobalt thin film by annealing at 200 °C, whereas CoO does not exhibit ferromagnetic properties at room temperature and is stable at up to ∼400 °C. The CoO reduction is attributed to the thermodynamically driven gettering of oxygen by tantalum, similar to the exothermic reduction-oxidation reaction observed in thermite systems. Similarly, annealing at 200 °C of a nonmagnetic [CoO/Pd]N multilayer thin film sandwiched between Ta seed and Ta capping layers results in the conversion into a magnetic [Co/Pd]N multilayer, a material with perpendicular magnetic anisotropy that is of interest for magnetic data storage applications. A nanopatterning approach is introduced where [CoO/Pd]N multilayers is locally reduced into [Co/Pd]N multilayers to achieve perpendicular magnetic anisotropy nanostructured array. This technique can potentially be adapted to nanoscale patterning of other systems for which thermodynamically favorable combination of oxide and gettering layers can be identified.

  3. Electrochemical properties of multilayer film assembled by layer-by-layer adsorption of redox polymer

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Zheng, Haitao; Liu, Shiyang; Liu, Pu; Zhou, Jingli; Suye, Shin-ichiro

    2009-07-01

    A redox polymer, poly(ethylenimine)ferrocene (PEI-Fc) was prepared by attaching electroactive ferrocene groups to the backbone of a water soluble, biocompatible polyelectrolyte, poly(ethylenimine), and multilayer film composed of polystyrenesulfonate sodium (PSS) and PEI-Fc was prepared by alternate layer-by-layer (LBL) self-assembly adsorption technique based on the electrostatic force between the opposite charges carried by these two polymers. UV-Vis spectra was used to monitor the LBL process, and the thickness and immobilization amount of each layer were characterized by quartz crystal microbalance (QCM), which showed the formation of nano-scale multilayer structure and linear mass increase dependent on the alternate adsorption cycles. The electrochemical properties of the PEI-Fc/PSS multilayer film modified gold electrode were investigated by cyclic voltammetry. It was observed clearly that the electrochemical properties of this multilayer film were strongly dependent on the layer number and the ferrocene content in PEI-Fc. The electrochemical kinetic was analyzed based on a general model for surface process, and the experimental data fitted well with that evaluated from the above model. This redox polymer showed potential for the construction of reagentless biosensor.

  4. Multilayer Lactate Oxidase Shells on Colloidal Carriers as Engines for Nanosensors

    PubMed Central

    Stein, Erich W.

    2015-01-01

    Self-assembly methods are being studied for construction of nanoscale chemical sensors employing coimmobilized enzymes and indicator dyes. This paper describes the assembly of the catalytic enzyme lactate oxidase in multilayer films on colloidal templates via layer-by-layer self-assembly, which is a step toward achieving nanoengineered biosensors. The architecture of the resulting films was characterized using quartz crystal microbalance and zeta potential analysis, and catalytic activity was characterized colorimetrically. The tailored activity of the functional nanofilms was proportional to the number of enzyme layers deposited during assembly, which provides a basis for designing sensors with specific interactions. PMID:15376946

  5. Spin manipulation in nanoscale superconductors.

    PubMed

    Beckmann, D

    2016-04-27

    The interplay of superconductivity and magnetism in nanoscale structures has attracted considerable attention in recent years due to the exciting new physics created by the competition of these antagonistic ordering phenomena, and the prospect of exploiting this competition for superconducting spintronics devices. While much of the attention is focused on spin-polarized supercurrents created by the triplet proximity effect, the recent discovery of long range quasiparticle spin transport in high-field superconductors has rekindled interest in spin-dependent nonequilibrium properties of superconductors. In this review, the experimental situation on nonequilibrium spin injection into superconductors is discussed, and open questions and possible future directions of the field are outlined.

  6. Young's Equation at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Seveno, David; Blake, Terence D.; De Coninck, Joël

    2013-08-01

    In 1805, Thomas Young was the first to propose an equation to predict the value of the equilibrium contact angle of a liquid on a solid. Today, the force exerted by a liquid on a solid, such as a flat plate or fiber, is routinely used to assess this angle. Moreover, it has recently become possible to study wetting at the nanoscale using an atomic force microscope. Here, we report the use of molecular-dynamics simulations to investigate the force distribution along a 15 nm fiber dipped into a liquid meniscus. We find very good agreement between the measured force and that predicted by Young’s equation.

  7. Electronic transport in nanoscale structures

    NASA Astrophysics Data System (ADS)

    Lagerqvist, Johan

    In this dissertation electronic transport in nanoscale structures is discussed. An expression for the shot noise, a fluctuation in current due to the discreteness of charge, is derived directly from the wave functions of a nanoscale system. Investigation of shot noise is of particular interest due to the rich fundamental physics involved. For example, the study of shot noise can provide fundamental insight on the nature of electron transport in a nanoscale junction. We report calculations of the shot noise properties of parallel wires in the regime in which the interwire distance is much smaller than the inelastic mean free path. The validity of quantized transverse momenta in a nanoscale structure and its effect on shot noise is also discussed. We theoretically propose and show the feasibility of a novel protocol for DNA sequencing based on the electronic signature of single-stranded DNA while it translocates through a nanopore. We find that the currents for the bases are sufficiently different to allow for efficient sequencing. Our estimates reveal that sequencing of an entire human genome could be done with very high accuracy in a matter of hours, e.g., orders of magnitude faster than present techniques. We also find that although the overall magnitude of the current may change dramatically with different detection conditions, the intrinsic distinguishability of the bases is not significantly affected by pore size and transverse field strength. Finally, we study the ability of water to screen charges in nanopores by using all-atom molecular dynamics simulations coupled to electrostatic calculations. Due to the short length scales of the nanopore geometry and the large local field gradient of a single ion, the energetics of transporting an ion through the pore is strongly dependent on the microscopic details of the electric field. We show that as long as the pore allows the first hydration shell to stay intact, e.g., ˜6 nearby water molecules, the electric field

  8. Numerical investigations of failure in EB-PVD thermal barrier coating systems

    NASA Astrophysics Data System (ADS)

    Glynn, Michael L.

    Thermal barrier coating (TBC) systems are used in high temperature applications in turbine engines. TBCs are applied on superalloy substrates and are multilayered coatings comprised of a metallic bond coat, a thermally grown oxide (TGO) and a ceramic top coat. They provide thermal protection for the superalloy substrate and are considered to hold the greatest potential for increased operating temperatures. Failure of the TBC system most commonly occurs as a result of large scale buckling and spallation. The buckling is a consequence of many small-scale delaminations that arise in the top coat above local imperfections in the TGO, and durability of the TBC system is governed by a sequence of crack nucleation, propagation and coalescence. The numerical investigations that are employed in this dissertation are used to determine the stress development near the imperfections and are based on microstructural observations and measured material properties of TBC test buttons supplied by GE Aircraft Engines. The test buttons were subject to thermal cycling at GE and cycled to different percentages of TBC life. Numerical simulations of two different types of TBC tests are used to show that the top coat out-of-plane stress increases with a decrease of the substrate radius of curvature and a decrease in the heating rate. An inherent scaling parameter in the TBC system is identified and used to demonstrate that the stress developed in the top coat is governed by the evolution of an imperfection in the TGO. The effect of a martensitic phase transformation in the bond coat, related to a change in bond coat chemistry, is shown to significantly increase the top coat out-of-plane tensile stress. Finally, a subsurface crack is simulated in the top coat and used to determine the influence of the bond coat on failure of the TBC system. While the bond coat inelastic properties are the most important factors in determining the extent of the crack opening displacement, the bond coat

  9. A nanoscale shape memory oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Jinxing; Ke, Xiaoxing; Gou, Gaoyang; Seidel, Jan; Xiang, Bin; Yu, Pu; Liang, Wen-I.; Minor, Andrew M.; Chu, Ying-Hao; van Tendeloo, Gustaaf; Ren, Xiaobing; Ramesh, Ramamoorthy

    2013-11-01

    Stimulus-responsive shape-memory materials have attracted tremendous research interests recently, with much effort focused on improving their mechanical actuation. Driven by the needs of nanoelectromechanical devices, materials with large mechanical strain, particularly at nanoscale level, are therefore desired. Here we report on the discovery of a large shape-memory effect in bismuth ferrite at the nanoscale. A maximum strain of up to ~14% and a large volumetric work density of ~600±90 J cm-3 can be achieved in association with a martensitic-like phase transformation. With a single step, control of the phase transformation by thermal activation or electric field has been reversibly achieved without the assistance of external recovery stress. Although aspects such as hysteresis, microcracking and so on have to be taken into consideration for real devices, the large shape-memory effect in this oxide surpasses most alloys and, therefore, demonstrates itself as an extraordinary material for potential use in state-of-art nanosystems.

  10. Properties of nanoscale metal hydrides.

    PubMed

    Fichtner, Maximilian

    2009-05-20

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption.

  11. Spin Pumping in Ferromagnetic Multilayers

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro; Imamura, Hiroshi

    We present a brief review of our recent study on spin pumping in ferromagnetic multilayers. First, we present theoretical models describing spin pumping induced by ferromagnetic resonance (FMR). Then we apply the spin-pumping theory to FMR in ferromagnetic multilayers and show that the line width of the FMR spectrum depends on the thickness of the ferromagnetic metal layer which is not in resonance. We also show that the penetration depths of transverse spin current in ferromagnetic metals can be determined by analyzing the line width of the FMR spectrum. The obtained penetration depths of the transverse spin current were 3.7 nm for Py, 2.5 nm for CoFe, 12.0 nm for CoFeB, and 1.7 nm for Co, respectively.

  12. Anomalous magnetoresistance in Fibonacci multilayers.

    SciTech Connect

    Machado, L. D.; Bezerra, C. G.; Correa, M. A.; Chesman, C.; Pearson, J. E.; Hoffmann, A.

    2012-01-01

    We theoretically investigated magnetoresistance curves in quasiperiodic magnetic multilayers for two different growth directions, namely, [110] and [100]. We considered identical ferromagnetic layers separated by nonmagnetic layers with two different thicknesses chosen based on the Fibonacci sequence. Using parameters for Fe/Cr multilayers, four terms were included in our description of the magnetic energy: Zeeman, cubic anisotropy, bilinear coupling, and biquadratic coupling. The minimum energy was determined by the gradient method and the equilibrium magnetization directions found were used to calculate magnetoresistance curves. By choosing spacers with a thickness such that biquadratic coupling is stronger than bilinear coupling, unusual behaviors for the magnetoresistance were observed: (i) for the [110] case, there is a different behavior for structures based on even and odd Fibonacci generations, and, more interesting, (ii) for the [100] case, we found magnetic field ranges for which the magnetoresistance increases with magnetic field.

  13. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding

    NASA Astrophysics Data System (ADS)

    Alat, Ece; Motta, Arthur T.; Comstock, Robert J.; Partezana, Jonna M.; Wolfe, Douglas E.

    2016-09-01

    In an attempt to develop an accident-tolerant fuel (ATF) that can delay the deleterious consequences of loss-of-coolant-accidents (LOCA), multilayer coatings were deposited onto ZIRLO® coupon substrates by cathodic arc physical vapor deposition (CA-PVD). Coatings were composed of alternating TiN (top) and Ti1-xAlxN (2-layer, 4-layer, 8-layer and 16-layer) layers. The minimum TiN top coating thickness and coating architecture were optimized for good corrosion and oxidation resistance. Corrosion tests were performed in static pure water at 360 °C and 18.7 MPa for up to 90 days. The optimized coatings showed no spallation/delamination and had a maximum of 6 mg/dm2 weight gain, which is 6 times smaller than that of a control sample of uncoated ZIRLO® which showed a weight gain of 40.2 mg/dm2. The optimized architecture features a ∼1 μm TiN top layer to prevent boehmite phase formation during corrosion and a TiN/TiAlN 8-layer architecture which provides the best corrosion performance.

  14. Casting Of Multilayer Ceramic Tapes

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1991-01-01

    Procedure for casting thin, multilayer ceramic membranes, commonly called tapes, involves centrifugal casting at accelerations of 1,800 to 2,000 times normal gravitational acceleration. Layers of tape cast one at a time on top of any previous layer or layers. Each layer cast from slurry of ground ceramic suspended in mixture of solvents, binders, and other components. Used in capacitors, fuel cells, and electrolytic separation of oxygen from air.

  15. Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4].

    PubMed

    Shalu; Chaurasia, S K; Singh, R K; Chandra, S

    2013-01-24

    PVdF-HFP + IL(1-butyl-3-methylimidazolium tetrafluoroborate; [BMIM][BF(4)]) polymeric gel membranes containing different amounts of ionic liquid have been synthesized and characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared (FTIR), differential scanning calorimetry, thermogravimetric analysis (TGA), and complex impedance spectroscopic techniques. Incorporation of IL in PVdF-HFP polymer changes different physicochemical properties such as melting temperature (T(m)), thermal stability, structural morphology, amorphicity, and ionic transport. It is shown by FTIR, TGA (also first derivative of TGA, "DTGA") that IL partly complexes with the polymer PVdF-HFP and partly remains dispersed in the matrix. The ionic conductivity of polymeric gel membranes has been found to increase with increasing concentration of IL and attains a maximum value of 1.6 × 10(-2) S·cm(-1) for polymer gel membrane containing 90 wt % IL at room temperature. Interestingly, the values of conductivity of membranes with 80 and 90 wt % of IL were higher than that of pure IL (100 wt %). The polymer chain breathing model has been suggested to explain it. The variation of ionic conductivity with temperature of these gel polymeric membranes follows Arrhenius type thermally activated behavior.

  16. Ultra-thin multilayer capacitors.

    SciTech Connect

    Renk, Timothy Jerome; Monson, Todd C.

    2009-06-01

    The fabrication of ultra-thin lanthanum-doped lead zirconium titanate (PLZT) multilayer ceramic capacitors (MLCCs) using a high-power pulsed ion beam was studied. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The goal of this work was to increase the energy density of ceramic capacitors through the formation of a multilayer device with excellent materials properties, dielectric constant, and standoff voltage. For successful device construction, there are a number of challenging requirements including achieving correct stoichiometric and crystallographic composition of the deposited PLZT, as well as the creation of a defect free homogenous film. This report details some success in satisfying these requirements, although 900 C temperatures were necessary for PLZT perovskite phase formation. These temperatures were applied to a previously deposited multi-layer film which was then post-annealed to this temperature. The film exhibited mechanical distress attributable to differences in the coefficient of thermal expansion (CTE) of the various layers. This caused significant defects in the deposited films that led to shorts across devices. A follow-on single layer deposition without post-anneal produced smooth layers with good interface behavior, but without the perovskite phase formation. These issues will need to be addressed in order for ion beam deposited MLCCs to become a viable technology. It is possible that future in-situ heating during deposition may address both the CTE issue, and result in lowered processing temperatures, which in turn could raise the probability of successful MLCC formation.

  17. Multilayer Radar Absorbing Non-Woven Material

    NASA Astrophysics Data System (ADS)

    Dedov, A. V.; Nazarov, V. G.

    2016-06-01

    We study the electrical properties of multilayer radar absorbing materials obtained by adding nonwoven sheets of dielectric fibers with an intermediate layer of electrically conductive carbon fibers. Multilayer materials that absorb electromagnetic radiation in a wide frequency range are obtained by varying the content of the carbon fibers. The carbon-fiber content dependent mechanism of absorption of electromagnetic radiation by sheets and multilayer materials is considered.

  18. Multi-layer seal for electrochemical devices

    DOEpatents

    Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-16

    Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.

  19. Multi-layer seal for electrochemical devices

    DOEpatents

    Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA

    2010-09-14

    Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.

  20. Nanoscale materials for hyperthermal theranostics

    PubMed Central

    Smith, Bennett E.; Roder, Paden B.; Zhou, Xuezhe; Pauzauskie, Peter J.

    2016-01-01

    Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. This mini-review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reduce angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods. PMID:25816102

  1. Nanoscale Engineering of Designer Cellulosomes.

    PubMed

    Gunnoo, Melissabye; Cazade, Pierre-André; Galera-Prat, Albert; Nash, Michael A; Czjzek, Mirjam; Cieplak, Marek; Alvarez, Beatriz; Aguilar, Marina; Karpol, Alon; Gaub, Hermann; Carrión-Vázquez, Mariano; Bayer, Edward A; Thompson, Damien

    2016-07-01

    Biocatalysts showcase the upper limit obtainable for high-speed molecular processing and transformation. Efforts to engineer functionality in synthetic nanostructured materials are guided by the increasing knowledge of evolving architectures, which enable controlled molecular motion and precise molecular recognition. The cellulosome is a biological nanomachine, which, as a fundamental component of the plant-digestion machinery from bacterial cells, has a key potential role in the successful development of environmentally-friendly processes to produce biofuels and fine chemicals from the breakdown of biomass waste. Here, the progress toward so-called "designer cellulosomes", which provide an elegant alternative to enzyme cocktails for lignocellulose breakdown, is reviewed. Particular attention is paid to rational design via computational modeling coupled with nanoscale characterization and engineering tools. Remaining challenges and potential routes to industrial application are put forward.

  2. Nanoscale materials for hyperthermal theranostics

    NASA Astrophysics Data System (ADS)

    Smith, Bennett E.; Roder, Paden B.; Zhou, Xuezhe; Pauzauskie, Peter J.

    2015-04-01

    Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. This mini-review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reduce angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods.

  3. Nanoscale materials for hyperthermal theranostics

    DOE PAGES

    Smith, Bennett E.; Roder, Paden B.; Zhou, Xuezhe; ...

    2015-03-18

    Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. Our mini review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reducemore » angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods.« less

  4. Nanoscale materials for hyperthermal theranostics

    SciTech Connect

    Smith, Bennett E.; Roder, Paden B.; Zhou, Xuezhe; Pauzauskie, Peter J.

    2015-03-18

    Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. Our mini review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reduce angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods.

  5. Nanoscale metal-organic materials.

    PubMed

    Carné, Arnau; Carbonell, Carlos; Imaz, Inhar; Maspoch, Daniel

    2011-01-01

    Metal-organic materials are found to be a fascinating novel class of functional nanomaterials. The limitless combinations between inorganic and organic building blocks enable researchers to synthesize 0- and 1-D metal-organic discrete nanostructures with varied compositions, morphologies and sizes, fabricate 2-D metal-organic thin films and membranes, and even structure them on surfaces at the nanometre length scale. In this tutorial review, the synthetic methodologies for preparing these miniaturized materials as well as their potential properties and future applications are discussed. This review wants to offer a panoramic view of this embryonic class of nanoscale materials that will be of interest to a cross-section of researchers working in chemistry, physics, medicine, nanotechnology, materials chemistry, etc., in the next years.

  6. Optical Spectroscopy at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Hong, Xiaoping

    Recent advances in material science and fabrication techniques enabled development of nanoscale applications and devices with superior performances and high degree of integration. Exotic physics also emerges at nanoscale where confinement of electrons and phonons leads to drastically different behavior from those in the bulk materials. It is therefore rewarding and interesting to investigate and understand material properties at the nanoscale. Optical spectroscopy, one of the most versatile techniques for studying material properties and light-matter interactions, can provide new insights into the nanomaterials. In this thesis, I explore advanced laser spectroscopic techniques to probe a variety of different nanoscale phenomena. A powerful tool in nanoscience and engineering is scanning tunneling microscopy (STM). Its capability in atomic resolution imaging and spectroscopy unveiled the mystical quantum world of atoms and molecules. However identification of molecular species under investigation is one of the limiting functionalities of the STM. To address this need, we take advantage of the molecular `fingerprints' - vibrational spectroscopy, by combining an infrared light sources with scanning tunneling microscopy. In order to map out sharp molecular resonances, an infrared continuous wave broadly tunable optical parametric oscillator was developed with mode-hop free fine tuning capabilities. We then combine this laser with STM by shooting the beam onto the STM substrate with sub-monolayer diamondoids deposition. Thermal expansion of the substrate is detected by the ultrasensitive tunneling current when infrared frequency is tuned across the molecular vibrational range. Molecular vibrational spectroscopy could be obtained by recording the thermal expansion as a function of the excitation wavelength. Another interesting field of the nanoscience is carbon nanotube, an ideal model of one dimensional physics and applications. Due to the small light absorption with

  7. Nanoscale cryptography: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Masoumi, Massoud; Shi, Weidong; Xu, Lei

    2015-11-01

    While most of the electronics industry is dependent on the ever-decreasing size of lithographic transistors, this scaling cannot continue indefinitely. To improve the performance of the integrated circuits, new emerging and paradigms are needed. In recent years, nanoelectronics has become one of the most important and exciting forefront in science and engineering. It shows a great promise for providing us in the near future with many breakthroughs that change the direction of technological advances in a wide range of applications. In this paper, we discuss the contribution that nanotechnology may offer to the evolution of cryptographic hardware and embedded systems and demonstrate how nanoscale devices can be used for constructing security primitives. Using a custom set of design automation tools, it is demonstrated that relative to a conventional 45-nm CMOS system, performance gains can be obtained up to two orders of magnitude reduction in area and up to 50 % improvement in speed.

  8. Nanoscale cryptography: opportunities and challenges.

    PubMed

    Masoumi, Massoud; Shi, Weidong; Xu, Lei

    2015-01-01

    While most of the electronics industry is dependent on the ever-decreasing size of lithographic transistors, this scaling cannot continue indefinitely. To improve the performance of the integrated circuits, new emerging and paradigms are needed. In recent years, nanoelectronics has become one of the most important and exciting forefront in science and engineering. It shows a great promise for providing us in the near future with many breakthroughs that change the direction of technological advances in a wide range of applications. In this paper, we discuss the contribution that nanotechnology may offer to the evolution of cryptographic hardware and embedded systems and demonstrate how nanoscale devices can be used for constructing security primitives. Using a custom set of design automation tools, it is demonstrated that relative to a conventional 45-nm CMOS system, performance gains can be obtained up to two orders of magnitude reduction in area and up to 50 % improvement in speed.

  9. First Principles Modeling of Metal/Ceramic Multilayer Nano-heterostructures.

    SciTech Connect

    Yadav, Satyesh K.; Wang, Jian; Misra, Amit; Liu, Xiang-Yang; Ramprasad, Ramamurthy

    2012-07-31

    Nanoscaled multilayer films composed of metals and ceramics have been explored for their potential applications as ductile, yet strong, materials. It is believed that at the nanoscale, the interfaces between the two materials constituting the multilayer assume an increasingly important role in determining the properties, as they comprise a more significant volume fraction of the multilayer with decreasing layer thickness. In this ab initio work, density functional theory was used to calculate the ideal shear strengths of pure Al, pure TiN, the Al/TiN interfacial region, and Al/TiN multilayers. The ideal shear strength of the Al/TiN interface was found to vary from very low (on the order of the ideal shear strength of Al) to very high (on the order of the ideal shear strength of TiN), depending on whether the TiN at the interface was Ti- or N-terminated, respectively. The results suggest that the shear properties of Al/TiN depend strongly on the chemistry of the interface, Al:N versus Al:Ti terminations. Nevertheless, for the Al/TiN multilayers, the ideal shear strength was limited by shear in the Al layer away from the interface, even when the individual layer thickness is less than a nanometer. Further we found an unusual structural rotation of bulk single-crystal Al under uniaxial compressive strains. It was found that under strains either along the <11-2> or the <111> directions, beyond a critical stress of about 13 GPa, the Al crystal can rotate through shear in the Shockley partial direction (i.e.,<11-2>) on the {l_brace}111{r_brace} plane, in an attempt to relieve internal stresses. This phenomenon reveals a possible mechanism leading to the onset of homogeneous dislocation nucleation in Al under high uniaxial compressions.

  10. Nanoscale inhomogeneity of the Schottky barrier and resistivity in MoS2 multilayers

    NASA Astrophysics Data System (ADS)

    Giannazzo, F.; Fisichella, G.; Piazza, A.; Agnello, S.; Roccaforte, F.

    2015-08-01

    Conductive atomic force microscopy (CAFM) is employed to investigate the current injection from a nanometric contact (a Pt coated tip) to the surface of MoS2 thin films. The analysis of local current-voltage characteristics on a large array of tip positions provides high spatial resolution information on the lateral homogeneity of the tip /MoS2 Schottky barrier ΦB and ideality factor n , and on the local resistivity ρloc of the MoS2 region under the tip. Here, ΦB=300 ±24 meV , n =1.60 ±0.23 , and ρloc=2.99 ±0.68 Ω cm are calculated from the distributions of locally measured values. A linear correlation is found between the ρloc and ΦB values at each tip position, indicating a similar origin of the ρloc and ΦB inhomogeneities. These findings are compared with recent literature results on the role of sulfur vacancy clusters on the MoS2 surface as preferential paths for current injection from metal contacts. Furthermore, their implications on the behavior of MoS2 based transistors are discussed.

  11. Atom Probe Tomography of Nanoscale Electronic Materials

    SciTech Connect

    Larson, David J.; Prosa, Ty J.; Perea, Daniel E.; Inoue, Hidekazu; Mangelinck, D.

    2016-01-01

    Atom probe tomography (APT) is a mass spectrometry based on time-of-flight measurements which also concurrently produces 3D spatial information. The reader is referred to any of the other papers in this volume or to the following references for further information 4–8. The current capabilities of APT, such as detecting a low number of dopant atoms in nanoscale devices or segregation at a nanoparticle interface, make this technique an important component in the nanoscale metrology toolbox. In this manuscript, we review some of the applications of APT to nanoscale electronic materials, including transistors and finFETs, silicide contact microstructures, nanowires, and nanoparticles.

  12. Switchable friction enabled by nanoscale self-assembly on graphene

    DOE PAGES

    Gallagher, Patrick; Lee, Menyoung; Amet, Francois; ...

    2016-02-23

    Graphene monolayers are known to display domains of anisotropic friction with twofold symmetry and anisotropy exceeding 200%. This anisotropy has been thought to originate from periodic nanoscale ripples in the graphene sheet, which enhance puckering around a sliding asperity to a degree determined by the sliding direction. Here we demonstrate that these frictional domains derive not from structural features in the graphene but from self-assembly of environmental adsorbates into a highly regular superlattice of stripes with period 4–6 nm. The stripes and resulting frictional domains appear on monolayer and multilayer graphene on a variety of substrates, as well as onmore » exfoliated flakes of hexagonal boron nitride. We show that the stripe-superlattices can be reproducibly and reversibly manipulated with submicrometre precision using a scanning probe microscope, allowing us to create arbitrary arrangements of frictional domains within a single flake. In conclusion, our results suggest a revised understanding of the anisotropic friction observed on graphene and bulk graphite in terms of adsorbates.« less

  13. Switchable friction enabled by nanoscale self-assembly on graphene

    SciTech Connect

    Gallagher, Patrick; Lee, Menyoung; Amet, Francois; Maksymovych, Petro; Wang, Jun; Wang, Shuopei; Lu, Xiaobo; Zhang, Guangyu; Watanabe, Kenji; Taniguchi, Takashi; Goldhaber-Gordon, David

    2016-02-23

    Graphene monolayers are known to display domains of anisotropic friction with twofold symmetry and anisotropy exceeding 200%. This anisotropy has been thought to originate from periodic nanoscale ripples in the graphene sheet, which enhance puckering around a sliding asperity to a degree determined by the sliding direction. Here we demonstrate that these frictional domains derive not from structural features in the graphene but from self-assembly of environmental adsorbates into a highly regular superlattice of stripes with period 4–6 nm. The stripes and resulting frictional domains appear on monolayer and multilayer graphene on a variety of substrates, as well as on exfoliated flakes of hexagonal boron nitride. We show that the stripe-superlattices can be reproducibly and reversibly manipulated with submicrometre precision using a scanning probe microscope, allowing us to create arbitrary arrangements of frictional domains within a single flake. In conclusion, our results suggest a revised understanding of the anisotropic friction observed on graphene and bulk graphite in terms of adsorbates.

  14. Macro- to Nanoscale Heat and Mass Transfer: The Lagging Behavior

    NASA Astrophysics Data System (ADS)

    Ghazanfarian, Jafar; Shomali, Zahra; Abbassi, Abbas

    2015-07-01

    The classical model of the Fourier's law is known as the most common constitutive relation for thermal transport in various engineering materials. Although the Fourier's law has been widely used in a variety of engineering application areas, there are many exceptional applications in which the Fourier's law is questionable. This paper gathers together such applications. Accordingly, the paper is divided into two parts. The first part reviews the papers pertaining to the fundamental theory of the phase-lagging models and the analytical and numerical solution approaches. The second part wrap ups the various applications of the phase-lagging models including the biological materials, ultra-high-speed laser heating, the problems involving moving media, micro/nanoscale heat transfer, multi-layered materials, the theory of thermoelasticity, heat transfer in the material defects, the diffusion problems we call as the non-Fick models, and some other applications. It is predicted that the interest in the field of phase-lagging heat transport has grown incredibly in recent years because they show good agreement with the experiments across a wide range of length and time scales.

  15. Method of making coherent multilayer crystals

    DOEpatents

    Schuller, Ivan K.; Falco, Charles M.

    1984-01-01

    A new material consisting of a coherent multilayer crystal of two or more elements where each layer is composed of a single element. Each layer may vary in thickness from about 2 .ANG. to 2500 .ANG.. The multilayer crystals are prepared by sputter deposition under conditions which slow the sputtered atoms to near substrate temperatures before they contact the substrate.

  16. Coherent multilayer crystals and method of making

    DOEpatents

    Schuller, I.K.; Falco, C.M.

    1980-10-30

    A new material is described consisting of a coherent multilayer crystal of two or more elements where each layer is composed of a single element. Each layer may vary in thickness from about 2 A to 2500 A. The multilayer crystals are prepared by sputter deposition under conditions which slow the sputtered atoms to near substrate temperatures before they contact the substrate.

  17. Multi-Layer E-Textile Circuits

    NASA Technical Reports Server (NTRS)

    Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory

    2012-01-01

    Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.

  18. Nanoscale Substances on the TSCA Inventory

    EPA Pesticide Factsheets

    This document is to help the regulated community comply with the requirements of the Toxic Substances Control Act (TSCA) Section 5 Premanufacturing Notice (PMN) Program for nanoscale chemical substances.

  19. Figure correction of multilayer coated optics

    DOEpatents

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  20. Multilayer Nanoporous Graphene Membranes for Water Desalination.

    PubMed

    Cohen-Tanugi, David; Lin, Li-Chiang; Grossman, Jeffrey C

    2016-02-10

    While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical molecular dynamic simulations. We show that, while multilayer NPG exhibits similarly promising desalination properties to single-layer membranes, their separation performance can be designed by manipulating various configurational variables in the multilayer case. This work establishes an atomic-level understanding of the effects of additional NPG layers, layer separation, and pore alignment on desalination performance, providing useful guidelines for the design of multilayer NPG membranes.

  1. Structural transitions in nanoscale systems

    NASA Astrophysics Data System (ADS)

    Yoon, Mina

    In this work I investigate three different materials: nanoscale carbon systems, ferrofluid systems, and molecular-electronic devices. In particular, my study is focused on the theoretical understanding of structural changes and the associated electronic, mechanical, and magnetic properties of these materials. To study the equilibrium packing of fullerenes in carbon nanotube peapods optimization techniques were applied. In agreement with experimental measurements, my results for nanotubes containing fullerenes with 60--84 atoms indicate that the axial separation between the fullerenes is smaller than in the bulk crystal. The reduction of the inter-fullerene distance and also the structural relaxation of fullerenes result from a large internal pressure within the peapods. This naturally induced "static" pressure may qualify nanotubes as nanoscale autoclaves for chemical reactions. Combining total energy calculations with a search of phase space, I investigated the microscopic fusion mechanism of C60 fullerenes. I show that the (2+2) cycloaddition reaction, a necessary precursor for fullerene fusion, can be accelerated inside a nanotube. Fusion occurs along the minimum energy path as a finite sequence of Stone-Wales (SW) transformations. A detailed analysis of the transition states shows that Stone-Wales transformations are multi-step processes. I propose a new microscopic mechanism to explain the unusually fast fusion process of carbon nanotubes. The detailed pathway for two adjacent (5, 5) nanotubes to gradually merge into a (10, 10) tube, and the transition states have been identified. The propagation of the fused region is energetically favorable and proceeds in a morphology reminiscent of a Y-junction via a so called zipper mechanism, involving only SW bond rearrangements with low activation barriers. Using density functional theory, the equilibrium structure, stability, and electronic properties of nanostructured, hydrogen terminated diamond fragments have been

  2. Shear piezoelectricity in bone at the nanoscale

    NASA Astrophysics Data System (ADS)

    Minary-Jolandan, Majid; Yu, Min-Feng

    2010-10-01

    Recent demonstration of shear piezoelectricity in an isolated collagen fibril, which is the origin of piezoelectricity in bone, necessitates investigation of shear piezoelectric behavior in bone at the nanoscale. Using high resolution lateral piezoresponse force microcopy (PFM), shear piezoelectricity in a cortical bone sample was studied at the nanoscale. Subfibrillar structure of individual collagen fibrils with a periodicity of 60-70 nm were revealed in PFM map, indicating the direct contribution of collagen fibrils to the shear piezoelectricity of bone.

  3. Characteristics of CrAlSiN + DLC coating deposited by lateral rotating cathode arc PVD and PACVD process

    NASA Astrophysics Data System (ADS)

    Lukaszkowicz, Krzysztof; Sondor, Jozef; Balin, Katarzyna; Kubacki, Jerzy

    2014-09-01

    Coating system composed of CrAlSiN film covered by diamond-like carbon (DLC)-based lubricant, deposited on hot work tool steel substrate was the subject of the research. The CrAlSiN and DLC layers were deposited by PVD lateral rotating ARC-cathodes (LARC) and PACVD technology on the X40CrMoV5-1 respectively. HRTEM investigation shows an amorphous character of DLC layer. It was found that the tested CrAlSiN layer has a nanostructural character with fine crystallites while their average size is less than 10 nm. Based on the XRD pattern of the CrAlSiN, the occurrence of fcc phase was only observed in the coating, the texture direction <3 1 1> is perpendicular to the sample surface. Combined SEM, AES and ToF-SIMS studies confirmed assumed chemical composition and layered structure of the coating. The chemical distribution of the elements inside the layers and at the interfaces was analyzed by SEM and AES methods. It was shown that additional CrN layer is present between substrate and CrAlSiN coating. The atomic concentration of the particular elements of DLC and CrAlSiN layer was calculated from the XPS measurements. In sliding dry friction conditions the friction coefficient for the investigated elements is set in the range between 0.05 and 0.07. The investigated coating reveals high wear resistance. The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate.

  4. Impact on multilayered composite plates

    NASA Technical Reports Server (NTRS)

    Kim, B. S.; Moon, F. C.

    1977-01-01

    Stress wave propagation in a multilayer composite plate due to impact was examined by means of the anisotropic elasticity theory. The plate was modelled as a number of identical anisotropic layers and the approximate plate theory of Mindlin was then applied to each layer to obtain a set of difference-differential equations of motion. Dispersion relations for harmonic waves and correction factors were found. The governing equations were reduced to difference equations via integral transforms. With given impact boundary conditions these equations were solved for an arbitrary number of layers in the plate and the transient propagation of waves was calculated by means of a Fast Fourier Transform algorithm. The multilayered plate problem was extended to examine the effect of damping layers present between two elastic layers. A reduction of the interlaminar normal stress was significant when the thickness of damping layer was increased but the effect was mostly due to the softness of the damping layer. Finally, the problem of a composite plate with a crack on the interlaminar boundary was formulated.

  5. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature

    NASA Astrophysics Data System (ADS)

    Moreau-Luchaire, C.; Moutafis, C.; Reyren, N.; Sampaio, J.; Vaz, C. A. F.; van Horne, N.; Bouzehouane, K.; Garcia, K.; Deranlot, C.; Warnicke, P.; Wohlhüter, P.; George, J.-M.; Weigand, M.; Raabe, J.; Cros, V.; Fert, A.

    2016-05-01

    Facing the ever-growing demand for data storage will most probably require a new paradigm. Nanoscale magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-based multilayered thin films in which the cobalt layer is sandwiched between two heavy metals and so provides additive interfacial Dzyaloshinskii-Moriya interactions (DMIs), which reach a value close to 2 mJ m-2 in the case of the Ir|Co|Pt asymmetric multilayers. Using a magnetization-sensitive scanning X-ray transmission microscopy technique, we imaged small magnetic domains at very low fields in these multilayers. The study of their behaviour in a perpendicular magnetic field allows us to conclude that they are actually magnetic skyrmions stabilized by the large DMI. This discovery of stable sub-100 nm individual skyrmions at room temperature in a technologically relevant material opens the way for device applications in the near future.

  6. Unfolding the damping behavior of multilayer graphene membrane in the low-frequency regime.

    PubMed

    Lahiri, Debrupa; Das, Santanu; Choi, Wonbong; Agarwal, Arvind

    2012-05-22

    The damping behavior of few-layered graphene membrane in the low-frequency regime of mechanical loading is investigated in the present study. Damping of graphene has significant applications in micro/nanoscale devices and macroscale dynamic systems for absorbing shock-generated energies. Damping behavior of graphene is experimentally evaluated, for the first time, by dynamic mechanical analysis at the nanoscale with cyclic mechanical loading in the range 0.1-50 μN applied at a frequency range of 10-250 Hz. This study reveals 260% higher damping on graphene membranes than a silicon surface. The damping shows excellent reproducibility and remains steady even after 100,000 cycles. The damping of multilayer graphene membrane, supported on a Si/SiO(2) substrate, shows a strong dependence on the frequency of cyclic loading. The mechanism governing impressive damping of a graphene membrane is elucidated by structural changes such as ripple formation, ripple wave propagation, and z-axis compression. Damping behavior of a graphene membrane in this low-frequency regime is also found to depend on the number of graphene layers and is explained as the interplay between in-plane sp(2) and out-of-plane van der Waals forces. These findings are important for establishing the potential of graphene for applications in macro- to nanoscale structures that require continuous absorption of shock waves without destruction/failure.

  7. Molecular Photovoltaics in Nanoscale Dimension

    PubMed Central

    Burtman, Vladimir; Zelichonok, Alexander; Pakoulev, Andrei V.

    2011-01-01

    This review focuses on the intrinsic charge transport in organic photovoltaic (PVC) devices and field-effect transistors (SAM-OFETs) fabricated by vapor phase molecular self-assembly (VP-SAM) method. The dynamics of charge transport are determined and used to clarify a transport mechanism. The 1,4,5,8-naphthalene-tetracarboxylic diphenylimide (NTCDI) SAM devices provide a useful tool to study the fundamentals of polaronic transport at organic surfaces and to discuss the performance of organic photovoltaic devices in nanoscale. Time-resolved photovoltaic studies allow us to separate the charge annihilation kinetics in the conductive NTCDI channel from the overall charge kinetic in a SAM-OFET device. It has been demonstrated that tuning of the type of conductivity in NTCDI SAM-OFET devices is possible by changing Si substrate doping. Our study of the polaron charge transfer in organic materials proposes that a cation-radical exchange (redox) mechanism is the major transport mechanism in the studied SAM-PVC devices. The role and contribution of the transport through delocalized states of redox active surface molecular aggregates of NTCDI are exposed and investigated. This example of technological development is used to highlight the significance of future technological development of nanotechnologies and to appreciate a structure-property paradigm in organic nanostructures. PMID:21339983

  8. Charge transport in nanoscale junctions.

    PubMed

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-03

    Understanding the fundamentals of nanoscale charge transfer is pivotal for designing future nano-electronic devices. Such devices could be based on individual or groups of molecular bridges, nanotubes, nanoparticles, biomolecules and other 'active' components, mimicking wire, diode and transistor functions. These have operated in various environments including vacuum, air and condensed matter, in two- or three-electrode configurations, at ultra-low and room temperatures. Interest in charge transport in ultra-small device components has a long history and can be dated back to Aviram and Ratner's letter in 1974 (Chem. Phys. Lett. 29 277-83). So why is there a necessity for a special issue on this subject? The area has reached some degree of maturity, and even subtle geometric effects in the nanojunction and noise features can now be resolved and rationalized based on existing theoretical concepts. One purpose of this special issue is thus to showcase various aspects of nanoscale and single-molecule charge transport from experimental and theoretical perspectives. The main principles have 'crystallized' in our minds, but there is still a long way to go before true single-molecule electronics can be implemented. Major obstacles include the stability of electronic nanojunctions, reliable operation at room temperature, speed of operation and, last but not least, integration into large networks. A gradual transition from traditional silicon-based electronics to devices involving a single (or a few) molecule(s) therefore appears to be more viable from technologic and economic perspectives than a 'quantum leap'. As research in this area progresses, new applications emerge, e.g. with a view to characterizing interfacial charge transfer at the single-molecule level in general. For example, electrochemical experiments with individual enzyme molecules demonstrate that catalytic processes can be studied with nanometre resolution, offering a route towards optimizing biosensors at

  9. Nanoscale pillar arrays for separations

    DOE PAGES

    Kirchner, Teresa; Strickhouser, Rachel; Hatab, Nahla; ...

    2015-04-01

    The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.e. pillar heights are 1-2μm and pillar diameters are typically in the 200- 400nm range. In addition to the intrinsic nanoscale aspects of the systems, it is shown they can be further functionalized with nanoporous layers and traditional stationary phases for chromatography; hence exhibit broad-rangingmore » lab-on-a-chip and point-of-care potential. Because of an inherent high permeability and very small effective mass transfer distance between pillars, chromatographic efficiency can be very high but is enhanced herein by stacking during development and focusing while drying, yielding plate heights in the nm range separated band volumes. Practical separations of fluorescent dyes, fluorescently derivatized amines, and anti-tumor drugs are illustrated.« less

  10. Nanoscale Mixing of Soft Solids

    SciTech Connect

    Choi, Soo-Hyung; Lee, Sangwoo; Soto, Haidy E.; Lodge, Timothy P.; Bates, Frank S.

    2013-03-07

    Assessing the state of mixing on the molecular scale in soft solids is challenging. Concentrated solutions of micelles formed by self-assembly of polystyrene-block-poly(ethylene-alt-propylene) (PS-PEP) diblock copolymers in squalane (C{sub 30}H{sub 62}) adopt a body-centered cubic (bcc) lattice, with glassy PS cores. Utilizing small-angle neutron scattering (SANS) and isotopic labeling ({sup 1}H and {sup 2}H (D) polystyrene blocks) in a contrast-matching solvent (a mixture of squalane and perdeuterated squalane), we demonstrate quantitatively the remarkable fact that a commercial mixer can create completely random mixtures of micelles with either normal, PS(H), or deuterium-labeled, PS(D), cores on a well-defined bcc lattice. The resulting SANS intensity is quantitatively modeled by the form factor of a single spherical core. These results demonstrate both the possibility of achieving complete nanoscale mixing in a soft solid and the use of SANS to quantify the randomness.

  11. Nanoscale pillar arrays for separations

    SciTech Connect

    Kirchner, Teresa; Strickhouser, Rachel; Hatab, Nahla; Charlton, Jennifer; Kravchenko, Ivan I.; Lavrik, Nickolay V.; Sepaniak, Michael J.

    2015-04-01

    The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.e. pillar heights are 1-2μm and pillar diameters are typically in the 200- 400nm range. In addition to the intrinsic nanoscale aspects of the systems, it is shown they can be further functionalized with nanoporous layers and traditional stationary phases for chromatography; hence exhibit broad-ranging lab-on-a-chip and point-of-care potential. Because of an inherent high permeability and very small effective mass transfer distance between pillars, chromatographic efficiency can be very high but is enhanced herein by stacking during development and focusing while drying, yielding plate heights in the nm range separated band volumes. Practical separations of fluorescent dyes, fluorescently derivatized amines, and anti-tumor drugs are illustrated.

  12. Nanoscale pillar arrays for separations.

    PubMed

    Kirchner, Teresa B; Strickhouser, Rachel B; Hatab, Nahla A; Charlton, Jennifer J; Kravchenko, Ivan I; Lavrik, Nickolay V; Sepaniak, Michael J

    2015-05-21

    The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.e. pillar heights are 1-2 μm and pillar diameters are typically in the 200-400 nm range. In addition to the intrinsic nanoscale aspects of the systems, it is shown they can be further functionalized with nanoporous layers and traditional stationary phases for chromatography; hence exhibit broad-ranging lab-on-a-chip and point-of-care potential. Because of an inherent high permeability and very small effective mass transfer distance between pillars, chromatographic efficiency can be very high but is enhanced herein by stacking during development and focusing while drying, yielding plate heights in the nm range separated band volumes. Practical separations of fluorescent dyes, fluorescently derivatized amines, and anti-tumor drugs are illustrated.

  13. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    NASA Astrophysics Data System (ADS)

    Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.

    2012-11-01

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test

  14. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    SciTech Connect

    Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.

    2012-11-06

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test

  15. Coordination chemistry of verdazyl radicals: group 12 metal (Zn, Cd, Hg) complexes of 1,4,5,6-tetrahydro-2,4-dimethyl-6-(2 pyridiyl)-1,2,4,5-tetrazin -3(2H)-one (pvdH3) and 1,5-dimethyl-3-(2 pyridil)-6-oxoverdazyl (pvd).

    PubMed

    Brook, D J; Fornell, S; Stevens, J E; Noll, B; Koch, T H; Eisfeld, W

    2000-02-07

    Ferricyanide oxidation of 1,4,5,6-tetrahydro-2,4-dimethyl-6-(2'-pyridyl)-1,2,4,5-tetrazin-3(2H)-one (pvdH3) produces the stable chelating free radical 1,5-dimethyl-3-(2'-pyridyl)-6-oxoverdazyl (pvd) as an orange solid. Combination of group 12 metal halides with the ligand pvdH3 in acetonitrile results in precipitation of metal complexes. The mercuric chloride complex crystallizes in the monoclinic space group P2(1/c) with unit cell dimensions a = 8.5768(8) A, b = 19.1718(17) A, c = 8.5956(8) A, beta = 90.405 degrees, and V = 1413.4(2) A3. The mercuric ion is tricoordinate with a distorted trigonal planar geometry. Cadmium iodide and zinc chloride induce ring opening of the tetrazine resulting in pentacoordinate complexes of a hydrazone ligand. The cadmium iodide complex crystallizes in the triclinic space group P1 with cell dimensions a = 7.7184(8) A, b = 8.0240(9) A, c = 13.348(2) A, alpha = 97.876(4) degrees, beta = 95.594(6) degrees, gamma = 107.304(6) degrees, and V = 773.40(21) A3. Oxidation of all three metal complexes produces verdazyl radicals. Metal coordination is indicated by small changes in the EPR spectrum and by changes in the UV-visible spectrum, in particular the changes in the position of bands in the visible region. The metal halide-pvd complexes can also be synthesized by direct combination of metal halides with the free radical.

  16. The pvc Gene Cluster of Pseudomonas aeruginosa: Role in Synthesis of the Pyoverdine Chromophore and Regulation by PtxR and PvdS

    PubMed Central

    Stintzi, Alain; Johnson, Zaiga; Stonehouse, Martin; Ochsner, Urs; Meyer, Jean-Marie; Vasil, Michael L.; Poole, Keith

    1999-01-01

    A putative operon of four genes implicated in the synthesis of the chromophore moiety of the Pseudomonas aeruginosa siderophore pyoverdine, dubbed pvcABCD (where pvc stands for pyoverdine chromophore), was cloned and sequenced. Mutational inactivation of the pvc genes abrogated pyoverdine biosynthesis, consistent with their involvement in the biosynthesis of this siderophore. pvcABCD expression was negatively regulated by iron and positively regulated by both PvdS, the alternate sigma factor required for pyoverdine biosynthesis, and PtxR, a LysR family activator previously implicated in exotoxin A regulation. PMID:10383985

  17. Multilayer Patterning of High Resolution Intrinsically Stretchable Electronics

    PubMed Central

    Tybrandt, Klas; Stauffer, Flurin; Vörös, Janos

    2016-01-01

    Stretchable electronics can bridge the gap between hard planar electronic circuits and the curved, soft and elastic objects of nature. This has led to applications like conformal displays, electronic skin and soft neuroprosthetics. A remaining challenge, however, is to match the dimensions of the interfaced systems, as all require feature sizes well below 100 μm. Intrinsically stretchable nanocomposites are attractive in this context as the mechanical deformations occur on the nanoscale, although methods for patterning high performance materials have been lacking. Here we address these issues by reporting on a multilayer additive patterning approach for high resolution fabrication of stretchable electronic devices. The method yields highly conductive 30 μm tracks with similar performance to their macroscopic counterparts. Further, we demonstrate a three layer micropatterned stretchable electroluminescent display with pixel sizes down to 70 μm. These presented findings pave the way towards future developments of high definition displays, electronic skins and dense multielectrode arrays. PMID:27157804

  18. NV magnetic imaging of topological spin patterns in magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Casola, Francesco; Dovzhenko, Yuliya; Zhou, Xu; Warner, Marc; Schlotter, Sarah; Beach, Geoffrey; Walsworth, Ronald; Yacoby, Amir

    2015-05-01

    Scanning diamond microscopes with an atom-like nitrogen-vacancy (NV) color center near the probe tip have recently emerged as a leading tool for the study of nanoscale magnetism in a broad range of systems. We report on the development of a new approach for positiong a single NV centre at a few nanometres from the sample of interest. This is achieved by fabricating our magnetic device at the top of a polished quartz fiber, whose distance from a diamond nanopillar containing NV centers is then controlled via an atomic force microscope feedback. We employ this method for the investigation of thin ferromagnetic Co/Pt multilayers, where interfacial spin-orbit coupling is expected to stabilize complex topologically protected spin textures. The few-nanometers real-space extension of an isolated skyrmion structure in thin magnetic films makes its detection via standard spectroscopic techniques challenging, suggesting how NV magnetometry can be a unique candidate for the study of novel mesoscopic magnetism.

  19. All-3 d Electron-Hole Bilayers in CrN /MgO (111 ) Multilayers for Thermoelectric Applications

    NASA Astrophysics Data System (ADS)

    Botana, Antia S.; Pardo, Victor; Pickett, Warren E.

    2017-02-01

    CrN /MgO (111 ) multilayers modeled via ab initio calculations give rise to nanoscale, scalable, spatially separated two-dimensional electron and hole gases, each confined to its own CrN interface. Because of the Cr 3 d3 configuration, both electron and hole gases are based on correlated transition-metal layers involving bands of 3 d character. Transport calculations predict each subsystem will have a large thermopower, on the order of 250 μ V /K at room temperature. These heterostructures combine a large thermoelectric efficiency with scalable nanoscale conducting sheets; for example, operating at a temperature difference of 50 K, 40 bilayers could produce a 1-V voltage with a film thickness of 100 nm.

  20. High performance multilayered nano-crystalline silicon/silicon-oxide light-emitting diodes on glass substrates

    NASA Astrophysics Data System (ADS)

    Darbari, S.; Shahmohammadi, M.; Mortazavi, M.; Mohajerzadeh, S.; Abdi, Y.; Robertson, M.; Morrison, T.

    2011-09-01

    A low-temperature hydrogenation-assisted sequential deposition and crystallization technique is reported for the preparation of nano-scale silicon quantum dots suitable for light-emitting applications. Radio-frequency plasma-enhanced deposition was used to realize multiple layers of nano-crystalline silicon while reactive ion etching was employed to create nano-scale features. The physical characteristics of the films prepared using different plasma conditions were investigated using scanning electron microscopy, transmission electron microscopy, room temperature photoluminescence and infrared spectroscopy. The formation of multilayered structures improved the photon-emission properties as observed by photoluminescence and a thin layer of silicon oxy-nitride was then used for electrical isolation between adjacent silicon layers. The preparation of light-emitting diodes directly on glass substrates has been demonstrated and the electroluminescence spectrum has been measured.

  1. Magnetic-plasmonic multilayered nanorods

    NASA Astrophysics Data System (ADS)

    Thumthan, Orathai

    Multilayered nanorods which consist of alternating magnetic layers separated by Au layers combine two distinctive properties, magnetic properties and surface plasmonic resonance (SPR) properties into one nano-entity. Their magnetic properties are tunable by changing the layer thickness, varying from single domain to superparamagnetic state. Superparamagnetic is a key requirement for magnetic nanoparticles for bioapplications. Superparamagnetic nanoparticles exhibit high magnetic moments at low applied magnetic field while retain no magnetic moments when magnetic field is removed preventing them from aggregation due to magnetic attraction. Au layers in the nanorods provide anchorage sites for functional group attachment. Also, Au nanodisks exhibit SPR properties. The SPR peak can be tuned from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. In this research, there are three types of multilayered nanorod have been fabricated: Au/NiFe nanorods, Au/Fe nanorods, and Au/Co nanorods. These magnetic nanorods were fabricated by templated electrodeposition into the channels in Anodic Aluminum Oxide (AAO) membrane. The setup for AAO fabrication was developed as a part of this research. Our fabricated AAO membrane has channels with a diameter ranging from 40nm to 80 nm and a thickness of 10um to 12um. Magnetic properties of nanorods such as saturation field, saturation moment, coercivity and remanence are able to manipulate through their shape anisotropy. The magnetization will be easier in long axis rather than short axis of particle. In addition, Au nanodisks in the nanorod structure are not only serving as anchorage sites for functional groups but also provide SPR properties. Under irradiation of light Au nanodisks strongly absorb light at SPR frequency which ranging from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. The SPR tunability of nanorods in near

  2. Attosecond physics at the nanoscale.

    PubMed

    Ciappina, M F; Pérez-Hernández, J A; Landsman, A S; Okell, W A; Zherebtsov, S; Förg, B; Schötz, J; Seiffert, L; Fennel, T; Shaaran, T; Zimmermann, T; Chacón, A; Guichard, R; Zaïr, A; Tisch, J W G; Marangos, J P; Witting, T; Braun, A; Maier, S A; Roso, L; Krüger, M; Hommelhoff, P; Kling, M F; Krausz, F; Lewenstein, M

    2017-01-06

    Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond  =  1 as  =  10(-18) s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is  ∼152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the

  3. Multilayer composites and manufacture of same

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi

    2006-02-07

    The present invention is directed towards a process of depositing multilayer thin films, disk-shaped targets for deposition of multilayer thin films by a pulsed laser or pulsed electron beam deposition process, where the disk-shaped targets include at least two segments with differing compositions, and a multilayer thin film structure having alternating layers of a first composition and a second composition, a pair of the alternating layers defining a bi-layer wherein the thin film structure includes at least 20 bi-layers per micron of thin film such that an individual bi-layer has a thickness of less than about 100 nanometers.

  4. Effect of oxide barrier height in spin dependent tunneling in MTJ of FeO-MgO multilayer structure

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, M.; Nemade, H.; Bandyopadhyay, D.

    2016-10-01

    We study the spin dependent tunneling current properties through oxide multilayers in a magnetic tunnel junction (MTJ). For this purpose, nonequilibrium Green's function approach along-with the density-functional theory have been applied. We employed three structural models of FeO-MgO-FeO multi-layer with three different width of FeO and MgO layer. An atomistic model is considered to describe the effect of oxide multilayers of different heights. Spin dependent study for tunneling reveals that the parallel spin shows higher tunneling current whereas anti-parallel spin conducts very less. Further, the lowest tunneling current is obtained for the case where the FeO and MgO each has 3 atomic layers of height whereas the tunneling current is highest in 4 atomic layers of FeO/1 atomic layers of MgO/4 atomic layers of MgO multilayer structure. Importantly, when the MgO or FeO layers are increased or decreased from this level, the tunneling current decreases significantly. The study reveals that the layer height in the tunneling domain can be important factor for tuning and adjusting tunneling current in the nanoscale regime of oxide layer thickness.

  5. Correlation between the optical performance of TiO2-Ag-TiO2 multilayers and the interface roughness between the layers

    NASA Astrophysics Data System (ADS)

    von Blanckenhagen, Bernhard; Tonova, Diana

    2005-09-01

    Ag-dielectric multilayers are widely used in the production of heat reflecting filters, induced transmission filters, beam splitters, etc. The performance of such coatings in the visible part of the spectrum is sometimes strongly influenced by a plasmon absorption in the Ag-layer or a surface plasmon absorption in the Ag-dielectric interfaces. The strength of the plasmon absorption is very sensitive to the layer structure, the light polarization and the angle of incidence. As a result, the target specifications for reflection and transmission are not reached easily. We investigate PVD-deposited TiO2-Ag-TiO2 multilayers by means of optical reflection and transmission and Grazing Incidence X-ray Reflectometry (GIXR). The GIXR-method yields the individual layers thicknesses and the interface roughness. Some of the coatings have a broad absorption peak between 500 and 400nm that cannot be modeled using the bulk dielectric function of Ag. The magnitude of the absorption peak is correlated with the measured roughness of the TiO2-Ag interfaces. The analysis of the results shows the critical parameters for the deposition process.

  6. Nanoscale optimization of quantum dot solar sells

    NASA Astrophysics Data System (ADS)

    Li, Yanshu; Sergeev, Andrei; Vagidov, Nizami; Mitin, Vladimir; Sablon, Kimberly; State Univ of NY-Buffalo Team; Army Research Laboratory Team

    2015-03-01

    Quantum dots (QDs) offer possibilities for nanoscale control of photoelectron processes via engineering the band structure and potential profile. Nanoscale potential profile (potential barriers) and nanoscale band engineering (AlGaAs atomically thin barriers) effectively suppress the photoelectron capture to QDs. QDs also increase conversion efficiency of the above-bandgap photons due to extraction of electrons from QDs via Coulomb interaction with hot electrons that excited by high-energy photons. To study the effects of the band structure engineering and nanoscale potential barriers on the photovoltaic performance we fabricated 3- μm base GaAs devices with various InAs quantum dot media and selective doping. All quantum dot devices show improvement in conversion efficiency compared with the reference cell. Quantum efficiency measurements allow us to associate the spectral characteristics of photoresponse enhancement with nanoscale structure of QD media. The dark current analysis provides valuable information about recombination in QD solar cells. The two-diode model well fit the scope of data and recovers the measured open circuit voltage.

  7. Process for making a multilayer interconnect system

    NASA Technical Reports Server (NTRS)

    Zachry, Clyde L. (Inventor); Niedzwiecke, Andrew J. (Inventor)

    1976-01-01

    A process for making an interconnect system for a multilayer circuit pattern. The interconnect system is formed having minimized through-hole space consumption so as to be suitable for high density, closely meshed circuit patterns.

  8. Fabrication of wedged multilayer Laue lenses

    SciTech Connect

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack. This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.

  9. Fabrication of wedged multilayer Laue lenses

    DOE PAGES

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; ...

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more » This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less

  10. Lithium ion conducting PVA:PVdF polymer electrolytes doped with nano SiO2 and TiO2 filler

    NASA Astrophysics Data System (ADS)

    Hema, M.; Tamilselvi, P.

    2016-09-01

    The effect of nano SiO2 and TiO2 fillers on the thermal, mechanical and electrochemical properties of PVA:PVdF:LiCF3SO3 have been investigated by three optimized systems of SPE (80PVA:20PVdF:15LiCF3SO3), CPE-I (SPE:8SiO2) and CPE-II (SPE:4TiO2). From the TGA curve least weight loss has been observed for CPE-II indicating high thermal stability compared to other systems. Stress-strain curve of the prepared samples confirm the enhancement of tensile strength in CPE-II compared to CPE-I and SPE. Conductivity studies show that addition of TiO2 filler slightly enhances ionic conductivity 3.7×10-3 S cm-1 compared to filler free system at 303 K. Dielectric plots have been analyzed and CPE-II possesses higher dielectric constant compared to CPE-I and filler free system. Temperature dependence of modulus plots has been studied for highest conductivity possessing sample. Wider electrochemical stability has been obtained for nano-composite polymer electrolytes. The results conclude that the prepared CPE-II shows the best performance and it will be well suited for lithium ion batteries.

  11. Interaction of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide with an electrospun PVdF membrane: Temperature dependence of the concentration of the anion conformers.

    PubMed

    Vitucci, F M; Palumbo, O; Trequattrini, F; Brubach, J-B; Roy, P; Meschini, I; Croce, F; Paolone, A

    2015-09-07

    We measured the temperature dependence of the infrared absorption spectrum of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PY R14-TFSI) between 160 and 330 K, through all the phase transitions presented by this compound. The comparison of the experimental spectra with the calculated vibration modes of different conformers of the ions composing the ionic liquid allowed to detect the presence of both conformers of TFSI in the liquid, supercooled, and glass phases, while only the trans-conformer is retained in both solid phases. When the ionic liquid swells a polyvinylidenefluoride (PVdF) electrospun membrane, the cis-rotamer is detected in all phases, since the interaction between the polymer and the ionic liquid inhibits the complete transformation of TFSI into the trans-conformer in the solid phases. Computational results confirm that in the presence of a PVdF chain, cis-TFSI becomes the lowest energy conformer. Therefore, the interaction with the polymer alters the physical properties of the ionic liquid.

  12. Interaction of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide with an electrospun PVdF membrane: Temperature dependence of the concentration of the anion conformers

    NASA Astrophysics Data System (ADS)

    Vitucci, F. M.; Palumbo, O.; Trequattrini, F.; Brubach, J.-B.; Roy, P.; Meschini, I.; Croce, F.; Paolone, A.

    2015-09-01

    We measured the temperature dependence of the infrared absorption spectrum of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PY R14-TFSI) between 160 and 330 K, through all the phase transitions presented by this compound. The comparison of the experimental spectra with the calculated vibration modes of different conformers of the ions composing the ionic liquid allowed to detect the presence of both conformers of TFSI in the liquid, supercooled, and glass phases, while only the trans-conformer is retained in both solid phases. When the ionic liquid swells a polyvinylidenefluoride (PVdF) electrospun membrane, the cis-rotamer is detected in all phases, since the interaction between the polymer and the ionic liquid inhibits the complete transformation of TFSI into the trans-conformer in the solid phases. Computational results confirm that in the presence of a PVdF chain, cis-TFSI becomes the lowest energy conformer. Therefore, the interaction with the polymer alters the physical properties of the ionic liquid.

  13. GEP-based method to formulate adhesion strength and hardness of Nb PVD coated on Ti-6Al-7Nb aimed at developing mixed oxide nanotubular arrays.

    PubMed

    Rafieerad, A R; Bushroa, A R; Nasiri-Tabrizi, B; Fallahpour, A; Vadivelu, J; Musa, S N; Kaboli, S H A

    2016-08-01

    PVD process as a thin film coating method is highly applicable for both metallic and ceramic materials, which is faced with the necessity of choosing the correct parameters to achieve optimal results. In the present study, a GEP-based model for the first time was proposed as a safe and accurate method to predict the adhesion strength and hardness of the Nb PVD coated aimed at growing the mixed oxide nanotubular arrays on Ti67. Here, the training and testing analysis were executed for both adhesion strength and hardness. The optimum parameter combination for the scratch adhesion strength and micro hardness was determined by the maximum mean S/N ratio, which was 350W, 20 sccm, and a DC bias of 90V. Results showed that the values calculated in the training and testing in GEP model were very close to the actual experiments designed by Taguchi. The as-sputtered Nb coating with highest adhesion strength and microhardness was electrochemically anodized at 20V for 4h. From the FESEM images and EDS results of the annealed sample, a thick layer of bone-like apatite was formed on the sample surface after soaking in SBF for 10 days, which can be connected to the development of a highly ordered nanotube arrays. This novel approach provides an outline for the future design of nanostructured coatings for a wide range of applications.

  14. Nanoscale switch for vortex polarization mediated by Bloch core formation in magnetic hybrid systems.

    PubMed

    Wohlhüter, Phillip; Bryan, Matthew Thomas; Warnicke, Peter; Gliga, Sebastian; Stevenson, Stephanie Elizabeth; Heldt, Georg; Saharan, Lalita; Suszka, Anna Kinga; Moutafis, Christoforos; Chopdekar, Rajesh Vilas; Raabe, Jörg; Thomson, Thomas; Hrkac, Gino; Heyderman, Laura Jane

    2015-08-04

    Vortices are fundamental magnetic topological structures characterized by a curling magnetization around a highly stable nanometric core. The control of the polarization of this core and its gyration is key to the utilization of vortices in technological applications. So far polarization control has been achieved in single-material structures using magnetic fields, spin-polarized currents or spin waves. Here we demonstrate local control of the vortex core orientation in hybrid structures where the vortex in an in-plane Permalloy film coexists with out-of-plane maze domains in a Co/Pd multilayer. The vortex core reverses its polarization on crossing a maze domain boundary. This reversal is mediated by a pair of magnetic singularities, known as Bloch points, and leads to the transient formation of a three-dimensional magnetization structure: a Bloch core. The interaction between vortex and domain wall thus acts as a nanoscale switch for the vortex core polarization.

  15. Nanoscale switch for vortex polarization mediated by Bloch core formation in magnetic hybrid systems

    NASA Astrophysics Data System (ADS)

    Wohlhüter, Phillip; Bryan, Matthew Thomas; Warnicke, Peter; Gliga, Sebastian; Stevenson, Stephanie Elizabeth; Heldt, Georg; Saharan, Lalita; Suszka, Anna Kinga; Moutafis, Christoforos; Chopdekar, Rajesh Vilas; Raabe, Jörg; Thomson, Thomas; Hrkac, Gino; Heyderman, Laura Jane

    2015-08-01

    Vortices are fundamental magnetic topological structures characterized by a curling magnetization around a highly stable nanometric core. The control of the polarization of this core and its gyration is key to the utilization of vortices in technological applications. So far polarization control has been achieved in single-material structures using magnetic fields, spin-polarized currents or spin waves. Here we demonstrate local control of the vortex core orientation in hybrid structures where the vortex in an in-plane Permalloy film coexists with out-of-plane maze domains in a Co/Pd multilayer. The vortex core reverses its polarization on crossing a maze domain boundary. This reversal is mediated by a pair of magnetic singularities, known as Bloch points, and leads to the transient formation of a three-dimensional magnetization structure: a Bloch core. The interaction between vortex and domain wall thus acts as a nanoscale switch for the vortex core polarization.

  16. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-02-01

    We developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray’s superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it.

  17. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    PubMed Central

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-01-01

    We developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray’s superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it. PMID:26846188

  18. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE PAGES

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; ...

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  19. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    SciTech Connect

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian K.; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it.

  20. Nanoscale calibration of n-type ZnO staircase structures by scanning capacitance microscopy

    NASA Astrophysics Data System (ADS)

    Wang, L.; Laurent, J.; Chauveau, J. M.; Sallet, V.; Jomard, F.; Brémond, G.

    2015-11-01

    Cross-sectional scanning capacitance microscopy (SCM) was performed on n-type ZnO multi-layer structures homoepitaxially grown by molecular beam epitaxy method. Highly contrasted SCM signals were obtained between the ZnO layers with different Ga densities. Through comparison with dopant depth profiles from secondary ion mass spectroscopy measurement, it is demonstrated that SCM is able to distinguish carrier concentrations at all levels of the samples (from 2 × 1017 cm-3 to 3 × 1020 cm-3). The good agreement of the results from the two techniques indicates that SCM can be a useful tool for two dimensional carrier profiling at nanoscale for ZnO nanostructure development. As an example, residual carrier concentration inside the non-intentionally doped buffer layer was estimated to be around 2 × 1016 cm-3 through calibration analysis.

  1. Bench-scale synthesis of nanoscale materials

    NASA Technical Reports Server (NTRS)

    Buehler, M. F.; Darab, J. G.; Matson, D. W.; Linehan, J. C.

    1994-01-01

    A novel flow-through hydrothermal method used to synthesize nanoscale powders is introduced by Pacific Northwest Laboratory. The process, Rapid Thermal Decomposition of precursors in Solution (RTDS), uniquely combines high-pressure and high-temperature conditions to rapidly form nanoscale particles. The RTDS process was initially demonstrated on a laboratory scale and was subsequently scaled up to accommodate production rates attractive to industry. The process is able to produce a wide variety of metal oxides and oxyhydroxides. The powders are characterized by scanning and transmission electron microscopic methods, surface-area measurements, and x-ray diffraction. Typical crystallite sizes are less than 20 nanometers, with BET surface areas ranging from 100 to 400 sq m/g. A description of the RTDS process is presented along with powder characterization results. In addition, data on the sintering of nanoscale ZrO2 produced by RTDS are included.

  2. Nanoscale assemblies and their biomedical applications

    PubMed Central

    Doll, Tais A. P. F.; Raman, Senthilkumar; Dey, Raja; Burkhard, Peter

    2013-01-01

    Nanoscale assemblies are a unique class of materials, which can be synthesized from inorganic, polymeric or biological building blocks. The multitude of applications of this class of materials ranges from solar and electrical to uses in food, cosmetics and medicine. In this review, we initially highlight characteristic features of polymeric nanoscale assemblies as well as those built from biological units (lipids, nucleic acids and proteins). We give special consideration to protein nanoassemblies found in nature such as ferritin protein cages, bacterial microcompartments and vaults found in eukaryotic cells and designed protein nanoassemblies, such as peptide nanofibres and peptide nanotubes. Next, we focus on biomedical applications of these nanoscale assemblies, such as cell targeting, drug delivery, bioimaging and vaccine development. In the vaccine development section, we report in more detail the use of virus-like particles and self-assembling polypeptide nanoparticles as new vaccine delivery platforms. PMID:23303217

  3. Multilayer Thin Film Sensors for Damage Diagnostics

    NASA Astrophysics Data System (ADS)

    Protasov, A. G.; Gordienko, Y. G.; Zasimchuk, E. E.

    2006-03-01

    The new innovative approach to damage diagnostics within the production and maintenance/servicing procedures in industry is proposed. It is based on the real-time multiscale monitoring of the smart-designed multilayer thin film sensors of fatigue damage with the standard electrical input/output interfaces which can be connected to the embedded and on-board computers. The multilayer thin film sensors supply information about the actual unpredictable deformation damage, actual fatigue life, strain localization places, damage spreading, etc.

  4. [Hygienic evaluation of multilayer carbon nanotubes].

    PubMed

    Haliullin, T O; Zalyalov, R R; Shvedova, A A; Tkachov, A G

    2015-01-01

    The authors demonstrate that traditional methods evaluating work conditions on contemporary innovative enterprises producing nanomaterials assess these conditions as harmless and safe. At the same time, special investigation methods enable to reveal new hazards for workers' health: the study results prove that workers engaged into multilayer carbon nanotubes production are exposed to multilayer carbon nanotubes aerosols in concentrations exceeding internationally acceptable levels of 1 μg/ml (NIOSH)--that can harm the workers' health.

  5. Ordered organic-organic multilayer growth

    DOEpatents

    Forrest, Stephen R.; Lunt, Richard R.

    2016-04-05

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  6. Ordered organic-organic multilayer growth

    DOEpatents

    Forrest, Stephen R; Lunt, Richard R

    2015-01-13

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  7. Laterally graded multilayer double-monochromator.

    SciTech Connect

    Als-Nielsen, J.; Erdmann, J.; Gaarde, P.; Krasnicki, S.; Liu, C.; Macrander, A. T.; Maj, J.; Mancini, D.

    1999-09-01

    The authors describe a tunable multilayer monochromator with an adjustable bandpass to be used for reflectivity and grazing incidence diffraction studies on surfaces at energies near 10 keV. Multilayers have a bandpass typically 100 times larger than the Si(111) reflection, and by using multilayers an experimenter can significantly increase data collection rates over those available with a Si monochromator. The transmission through 1 and 2 laterally graded multilayer (LGML) reflections was recorded versus photon energy. The identical LGMLs were comprised of 60 bilayers of W and C on 100 x 25 x 3 mm float glass with a bilayer spacing varying from 35 to 60 {angstrom}. The average gradient was 0.27 {angstrom}/mm along the long dimension. The rms deviation of the data for the bilayer spacing from a linear fit was 0.36 {angstrom}. Data were obtained for a nondispersive ({+-}) double-multilayer arrangement. The relative bandpass width (FWHM) when the two multilayers exposed the same bilayer spacing was measured to be 2.2% with a transmission of 78.7 {+-} 1.6%. This value is consistent with the transmission of 88.9% that they also measured for a single LGML at HASYLAB beamline D4. The bandpass was tunable in the range 1.1% to 2.2%.

  8. Metallurgical phases and their magnetism at the interface of nanoscale MgB2/Fe layered structures.

    PubMed

    Sahoo, B; Keune, W; Kuncser, V; Becker, H-W; Röhlsberger, R

    2011-11-30

    We report on the characterization of metallurgical phases and their magnetism at the interfaces of nanoscale MgB(2)/Fe layered structures. MgB(2)/(57)Fe multilayers with varying layer thicknesses were prepared by vacuum deposition and investigated, before and after annealing by electrical resistance measurements, x-ray diffraction and (57)Fe conversion-electron Mössbauer spectroscopy (CEMS) down to 5 K. Interfacial Fe-B phases, such as Fe(2)B, were identified by CEMS. A superparamagnetic-to-ferromagnetic transition is observed with increasing (57)Fe film thickness. Ultrahigh vacuum annealing at 500 °C of the multilayers leads to strong diffusion of Fe atoms into the boundary regions of the MgB(2) layers. MgB(2) in the as-grown multilayers is non-superconducting. Structural disorder and the effect of Fe interdiffusion contribute to the suppression of superconductivity in the MgB(2) films of all the as-grown multilayers and the thinner annealed multilayers. However, an annealed MgB(2)/(57)Fe/MgB(2) trilayer with thicker (500 Å) MgB(2) layers is observed to be superconducting with an onset temperature of 25 K. At 5 K, the annealed trilayer can be conceived as being strongly chemically modulated, consisting of two partially Fe-doped superconducting MgB(2) layers separated by an interdiffused weakly magnetic Fe-B interlayer, which is characterized by a low hyperfine magnetic field B(hf) of ∼11 T. This chemically modulated layer structure of the trilayer after annealing was verified by Rutherford backscattering.

  9. Metallurgical phases and their magnetism at the interface of nanoscale MgB2/Fe layered structures

    NASA Astrophysics Data System (ADS)

    Sahoo, B.; Keune, W.; Kuncser, V.; Becker, H.-W.; Röhlsberger, R.

    2011-11-01

    We report on the characterization of metallurgical phases and their magnetism at the interfaces of nanoscale MgB2/Fe layered structures. MgB2/57Fe multilayers with varying layer thicknesses were prepared by vacuum deposition and investigated, before and after annealing by electrical resistance measurements, x-ray diffraction and 57Fe conversion-electron Mössbauer spectroscopy (CEMS) down to 5 K. Interfacial Fe-B phases, such as Fe2B, were identified by CEMS. A superparamagnetic-to-ferromagnetic transition is observed with increasing 57Fe film thickness. Ultrahigh vacuum annealing at 500 °C of the multilayers leads to strong diffusion of Fe atoms into the boundary regions of the MgB2 layers. MgB2 in the as-grown multilayers is non-superconducting. Structural disorder and the effect of Fe interdiffusion contribute to the suppression of superconductivity in the MgB2 films of all the as-grown multilayers and the thinner annealed multilayers. However, an annealed MgB2/57Fe/MgB2 trilayer with thicker (500 Å) MgB2 layers is observed to be superconducting with an onset temperature of 25 K. At 5 K, the annealed trilayer can be conceived as being strongly chemically modulated, consisting of two partially Fe-doped superconducting MgB2 layers separated by an interdiffused weakly magnetic Fe-B interlayer, which is characterized by a low hyperfine magnetic field Bhf of ˜11 T. This chemically modulated layer structure of the trilayer after annealing was verified by Rutherford backscattering.

  10. High-performance planar nanoscale dielectric capacitors

    NASA Astrophysics Data System (ADS)

    Özçelik, V. Ongun; Ciraci, S.

    2015-05-01

    We propose a model for planar nanoscale dielectric capacitors consisting of a single layer, insulating hexagonal boron nitride (BN) stripe placed between two metallic graphene stripes, all forming commensurately a single atomic plane. First-principles density functional calculations on these nanoscale capacitors for different levels of charging and different widths of graphene-BN stripes mark high gravimetric capacitance values, which are comparable to those of supercapacitors made from other carbon-based materials. Present nanocapacitor models allow the fabrication of series, parallel, and mixed combinations which offer potential applications in two-dimensional flexible nanoelectronics, energy storage, and heat-pressure sensing systems.

  11. Nanoscale chirality in metal and semiconductor nanoparticles.

    PubMed

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  12. Nanoscale chirality in metal and semiconductor nanoparticles

    PubMed Central

    Thomas, K. George

    2016-01-01

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided. PMID:27752651

  13. Functionalising surfaces at the nanoscale using plasma technology.

    PubMed

    Moore, R

    2009-01-01

    Plasma technology offers a highly effective toolbox for nanoscale surface engineering of materials. The potential variety of nanoscale features and new properties that can be achieved are reviewed here.

  14. Structural analysis of multilayer metal nitride films CrN/MoN using electron backscatter diffraction (EBSD)

    NASA Astrophysics Data System (ADS)

    Postolnyi, Bogdan; Bondar, Oleksandr; Opielak, Marek; Rogalski, Przemysław; Araújo, João. Pedro

    2016-12-01

    The electron backscatter diffraction (EBSD) analysis method was used for studying structure and properties of multilayer nitride CrN/MoN coatings fabricated by cathode arc physical vapour deposition (Arc-PVD). Samples were deposited on steel substrate with different single layer thickness from tens nanometers to 1 micron and with total thickness of coatings up to 8-13 μm. Colour grains mapping, grain size distribution profiles, pole figures and texture analyses were the main research instruments. Studying of obtained coatings was performed on specially prepared polished cross-section samples. The dependence between single layer thickness and grain size of materials, which is also changing through depth profile of the coating, was observed. In addition, it was possible to study phase composition, prevailing crystals orientation, dominant texture and grains growth. Studying of grains size, as well as other indicated parameters, is a very important task because it gives an information about grains interfaces volume, which causes changes in mechanical properties of material. Obtained results were cross-checked by X-ray diffraction analysis (XRD) where it was possible.

  15. Technologies for manufacturing of high angular resolution multilayer coated optics for the New Hard X-ray Mission

    NASA Astrophysics Data System (ADS)

    Orlandi, A.; Basso, S.; Borghi, G.; Binda, R.; Citterio, O.; Grisoni, G.; Kools, J.; Marioni, F.; Missaglia, N.; Negri, B.; Negri, R.; Pareschi, G.; Raimondi, L.; Ritucci, A.; Salmaso, B.; Sironi, G.; Spiga, D.; Subranni, R.; Tagliaferri, G.; Valsecchi, G.; Vernani, D.

    2011-05-01

    In the frame of the technology development to be used for the Optical Payload of next future X-ray missions (such as e.g. New Hard X-ray Mission-ASI), a new set of manufacturing techniques were finalized by Media Lario Technologies (MLT), in collaboration with the Italian Space Agency (ASI) and the Brera Astronomical Observatory (INAF/OAB). The set of new technologies includes master manufacturing machines and processes, electroforming method, a vertical optical bench and metrology machines to support manufacturing and integration of mirrors. A magnetron sputtering PVD machine was upgraded and a Pt/C development study has been performed on the basis of the W/Si results obtained in the first phase of the study. New manufacturing technologies for highly accurate masters were developed and tested by mean of two full-size masters together with several dummies. A number of ultrathin Nickel-Cobalt focusing mirrors were manufactured via galvanic replication process from the masters and coated with Pt/C multilayer. Tests on substrate material, roughness and shape of the shell together with analysis on specimens were performed. Tests with AFM and XRR supported the development of the Pt/C multilayer which is the enabling technology for focusing high energy X-Rays. Several mirror shells were integrated into two demonstrator modules to assess the whole manufacturing process up to optical payload integration. The summary of the results from manufacturing and testing of specimens and mirror shells is reported in this paper together with a description of the technologies now available at MLT.

  16. Atomistic Design and Simulations of Nanoscale Machines and Assembly

    NASA Technical Reports Server (NTRS)

    Goddard, William A., III; Cagin, Tahir; Walch, Stephen P.

    2000-01-01

    Over the three years of this project, we made significant progress on critical theoretical and computational issues in nanoscale science and technology, particularly in:(1) Fullerenes and nanotubes, (2) Characterization of surfaces of diamond and silicon for NEMS applications, (3) Nanoscale machine and assemblies, (4) Organic nanostructures and dendrimers, (5) Nanoscale confinement and nanotribology, (6) Dynamic response of nanoscale structures nanowires (metals, tubes, fullerenes), (7) Thermal transport in nanostructures.

  17. Wear behaviour of wear-resistant adaptive nano-multilayered Ti-Al-Mo-N coatings

    NASA Astrophysics Data System (ADS)

    Sergevnin, V. S.; Blinkov, I. V.; Volkhonskii, A. O.; Belov, D. S.; Kuznetsov, D. V.; Gorshenkov, M. V.; Skryleva, E. A.

    2016-12-01

    Coating samples in the Ti-Al-Mo-N system were obtained by arc-PVD method at variable bias voltage Ub applied to the substrate, and the partial pressure of nitrogen P(N2) used as a reaction gas. The deposited coatings were characterized by a nanocrystalline structure with an average grain size of 30-40 nm and multilayered architecture with alternating layers of (Ti,Al)N nitride and Mo-containing phases with a thickness comparable to the grain size. Coatings of (Ti,Al)N-Mo-Mo2N and (Ti,Al)N-Mo2N compositions were obtained by changing deposition parameters. The obtained coatings had hardness of 40 GPa and the relative plastic deformation under microindentation up to 60%. (Ti,Al)N-Mo2N coatings demonstrated better physicomechanical characteristics, showing high resistance to crack formation and destruction through the plastic deformation mechanism without brittle fracturing, unlike (Ti,Al)N-Mo-Mo2N. The friction coefficient of the study coatings (against Al2O3 balls under dry condition using a pin-on-disc method) reached the values of 0.35 and 0.5 at 20 °C and 500 °C respectively, without noticeable wear within this temperature range. These tribological properties were achieved by forming MoO3 acting as a solid lubricant. At higher temperatures the deterioration in the tribological properties is due to the high rate of MoO3 sublimation from friction surfaces.

  18. Multilayer heterostructures and their manufacture

    DOEpatents

    Hammond, Scott R; Reese, Matthew; Rupert, Benjamin; Miedaner, Alexander; Curtis, Clavin; Olson, Dana; Ginley, David S

    2015-11-04

    A method of synthesizing multilayer heterostructures including an inorganic oxide layer residing on a solid substrate is described. Exemplary embodiments include producing an inorganic oxide layer on a solid substrate by a liquid coating process under relatively mild conditions. The relatively mild conditions include temperatures below 225.degree. C. and pressures above 9.4 mb. In an exemplary embodiment, a solution of diethyl aluminum ethoxide in anhydrous diglyme is applied to a flexible solid substrate by slot-die coating at ambient atmospheric pressure, and the diglyme removed by evaporation. An AlO.sub.x layer is formed by subjecting material remaining on the solid substrate to a relatively mild oven temperature of approximately 150.degree. C. The resulting AlO.sub.x layer exhibits relatively high light transmittance and relatively low vapor transmission rates for water. An exemplary embodiment of a flexible solid substrate is polyethylene napthalate (PEN). The PEN is not substantially adversely affected by exposure to 150.degree. C

  19. Multilayer Piezoelectric Stack Actuator Characterization

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  20. Supplemental multilayer insulation research facility

    NASA Astrophysics Data System (ADS)

    Dempsey, P. J.; Stochl, R. J.

    1995-07-01

    The Supplemental Multilayer Insulation Research Facility (SMIRF) provides a small scale test bed for conducting cryogenic experiments in a vacuum environment. The facility vacuum system is capable of simulating a Space Shuttle launch pressure profile as well as providing a steady space vacuum environment of 1.3 x 10(exp -4) Newton/sq meter (1 x 10(exp -6) torr). Warm side boundary temperatures can be maintained constant between 111 K (200 R) and 361 K (650 R) using a temperature controlled shroud. The shroud can also simulate a typical lunar day-night temperature profile. The test hardware consists of a cryogenic calorimeter supported by the lid of the vacuum chamber. A 0.45 cu meter (120 gallon) vacuum jacketed storage/supply tank is available for conditioning the cryogen prior to use in the calorimeter. The facility was initially designed to evaluate the thermal performance of insulation systems for long-term storage in space. The facility has recently been used to evaluate the performance of various new insulation systems for LH2 and LN2 ground storage dewars.

  1. Supplemental multilayer insulation research facility

    SciTech Connect

    Dempsey, P.J.; Stochl, R.J.

    1996-12-31

    The Supplemental Multilayer Insulation Research Facility (SMIRF) provides a small scale test bed for conducting cryogenic experiments in a vacuum environment. The facility vacuum system is capable of simulating a Space Shuttle launch pressure profile as well as providing a steady space vacuum environment of 1.3{times}10{sup -4} N/m{sup 2}(1 x 10{sup -6} torr). Warm side boundary temperatures can be maintained constant between 111 K(200 R) and 361 K(650 R) using a temperature controlled shroud. The shroud can also simulate a typical lunar day-night temperature profile. The test hardware consists of a cryogenic calorimeter supported by the lid of the vacuum chamber. A 0.45 m{sup 3} (120 gal) vacuum jacketed storage/supply tank is available for conditioning the cryogen prior to use in the calorimeter. The facility was initially designed to evaluate the thermal performance of insulation systems for long-term storage in space. The facility has recently been used to evaluate the performance of various new insulation systems for LH{sub 2} and LN{sub 2} ground storage dewars.

  2. Multilayer piezoelectric stack actuator characterization

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-03-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180°C to +200°C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  3. Supplemental multilayer insulation research facility

    NASA Technical Reports Server (NTRS)

    Dempsey, P. J.; Stochl, R. J.

    1995-01-01

    The Supplemental Multilayer Insulation Research Facility (SMIRF) provides a small scale test bed for conducting cryogenic experiments in a vacuum environment. The facility vacuum system is capable of simulating a Space Shuttle launch pressure profile as well as providing a steady space vacuum environment of 1.3 x 10(exp -4) Newton/sq meter (1 x 10(exp -6) torr). Warm side boundary temperatures can be maintained constant between 111 K (200 R) and 361 K (650 R) using a temperature controlled shroud. The shroud can also simulate a typical lunar day-night temperature profile. The test hardware consists of a cryogenic calorimeter supported by the lid of the vacuum chamber. A 0.45 cu meter (120 gallon) vacuum jacketed storage/supply tank is available for conditioning the cryogen prior to use in the calorimeter. The facility was initially designed to evaluate the thermal performance of insulation systems for long-term storage in space. The facility has recently been used to evaluate the performance of various new insulation systems for LH2 and LN2 ground storage dewars.

  4. Preface: Friction at the nanoscale

    NASA Astrophysics Data System (ADS)

    Fusc, Claudio; Smith, Roger; Urbakh, Michael; Vanossi, Andrea

    2008-09-01

    Interfacial friction is one of the oldest problems in physics and chemistry, and certainly one of the most important from a practical point of view. Everyday operations on a broad range of scales, from nanometer and up, depend upon the smooth and satisfactory functioning of countless tribological systems. Friction imposes serious constraints and limitations on the performance and lifetime of micro-machines and, undoubtedly, will impose even more severe constraints on the emerging technology of nano-machines. Standard lubrication techniques used for large objects are expected to be less effective in the nano-world. Novel methods for control and manipulation are therefore needed. What has been missing is a molecular level understanding of processes occurring between and close to interacting surfaces to help understand, and later manipulate friction. Friction is intimately related to both adhesion and wear, and all three require an understanding of highly non-equilibrium processes occurring at the molecular level to determine what happens at the macroscopic level. Due to its practical importance and the relevance to basic scientific questions there has been major increase in activity in the study of interfacial friction on the microscopic level during the last decade. Intriguing structural and dynamical features have been observed experimentally. These observations have motivated theoretical efforts, both numerical and analytical. This special issue focusses primarily on discussion of microscopic mechanisms of friction and adhesion at the nanoscale level. The contributions cover many important aspects of frictional behaviour, including the origin of stick-slip motion, the dependence of measured forces on the material properties, effects of thermal fluctuations, surface roughness and instabilities in boundary lubricants on both static and kinetic friction. An important problem that has been raised in this issue, and which has still to be resolved, concerns the

  5. MoRu/Be multilayers for extreme ultraviolet applications

    DOEpatents

    Bajt, Sasa C.; Wall, Mark A.

    2001-01-01

    High reflectance, low intrinsic roughness and low stress multilayer systems for extreme ultraviolet (EUV) lithography comprise amorphous layers MoRu and crystalline Be layers. Reflectance greater than 70% has been demonstrated for MoRu/Be multilayers with 50 bilayer pairs. Optical throughput of MoRu/Be multilayers can be 30-40% higher than that of Mo/Be multilayer coatings. The throughput can be improved using a diffusion barrier to make sharper interfaces. A capping layer on the top surface of the multilayer improves the long-term reflectance and EUV radiation stability of the multilayer by forming a very thin native oxide that is water resistant.

  6. Dynamic structural disorder in supported nanoscale catalysts

    NASA Astrophysics Data System (ADS)

    Rehr, J. J.; Vila, F. D.

    2014-04-01

    We investigate the origin and physical effects of "dynamic structural disorder" (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  7. Direct temperature mapping of nanoscale plasmonic devices.

    PubMed

    Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2014-02-12

    Side by side with the great advantages of plasmonics in nanoscale light confinement, the inevitable ohmic loss results in significant joule heating in plasmonic devices. Therefore, understanding optical-induced heat generation and heat transport in integrated on-chip plasmonic devices is of major importance. Specifically, there is a need for in situ visualization of electromagnetic induced thermal energy distribution with high spatial resolution. This paper studies the heat distribution in silicon plasmonic nanotips. Light is coupled to the plasmonic nanotips from a silicon nanowaveguide that is integrated with the tip on chip. Heat is generated by light absorption in the metal surrounding the silicon nanotip. The steady-state thermal distribution is studied numerically and measured experimentally using the approach of scanning thermal microscopy. It is shown that following the nanoscale heat generation by a 10 mW light source within a silicon photonic waveguide the temperature in the region of the nanotip is increased by ∼ 15 °C compared with the ambient temperature. Furthermore, we also perform a numerical study of the dynamics of the heat transport. Given the nanoscale dimensions of the structure, significant heating is expected to occur within the time frame of picoseconds. The capability of measuring temperature distribution of plasmonic structures at the nanoscale is shown to be a powerful tool and may be used in future applications related to thermal plasmonic applications such as control heating of liquids, thermal photovoltaic, nanochemistry, medicine, heat-assisted magnetic memories, and nanolithography.

  8. Nanoscale spectroscopy and imaging of hemoglobin.

    PubMed

    Kennedy, Eamonn; Yarrow, Fiona; Rice, James H

    2011-09-01

    Sub diffraction limited infrared absorption imaging of hemoglobin was performed by coupling IR optics with an atomic force microscope. Comparisons between the AFM topography and IR absorption images of micron sized hemoglobin features are presented, along with nanoscale IR spectroscopic analysis of the metalloprotein.

  9. Traceable nanoscale measurement at NML-SIRIM

    SciTech Connect

    Dahlan, Ahmad M.; Abdul Hapip, A. I.

    2012-06-29

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  10. Powdered Hexagonal Boron Nitride Reducing Nanoscale Wear

    NASA Astrophysics Data System (ADS)

    Chkhartishvili, L.; Matcharashvili, T.; Esiava, R.; Tsagareishvili, O.; Gabunia, D.; Margiev, B.; Gachechiladze, A.

    2013-05-01

    A morphology model is suggested for nano-powdered hexagonal boron nitride that can serve as an effective solid additive to liquid lubricants. It allows to estimate the specific surface, that is a hard-to-measure parameter, based on average size of powder particles. The model can be used also to control nanoscale wear processes.

  11. Adsorption Kinetics in Nanoscale Porous Coordination Polymers

    SciTech Connect

    Nune, Satish K.; Thallapally, Praveen K.; McGrail, Benard Peter; Annapureddy, Harsha V. R.; Dang, Liem X.; Mei, Donghai; Karri, Naveen; Alvine, Kyle J.; Olszta, Matthew J.; Arey, Bruce W.; Dohnalkova, Alice

    2015-10-07

    Nanoscale porous coordination polymers were synthesized using simple wet chemical method. The effect of various polymer surfactants on colloidal stability and shape selectivity was investigated. Our results suggest that the nanoparticles exhibited significantly improved adsorption kinetics compared to bulk crystals due to decreased diffusion path lengths and preferred crystal plane interaction.

  12. Fats, Oils, & Colors of a Nanoscale Material

    ERIC Educational Resources Information Center

    Lisensky, George C.; Horoszewski, Dana; Gentry, Kenneth L.; Zenner, Greta M.; Crone, Wendy C .

    2006-01-01

    Phase changes and intermolecular forces are important physical science concepts but are not always easy to present in an active learning format. This article presents several interactive activities in which students plot the melting points of some fatty acids and explore the effect that the nanoscale size and shape of molecules have on the…

  13. Benchtop Nanoscale Patterning Using Soft Lithography

    ERIC Educational Resources Information Center

    Meenakshi, Viswanathan; Babayan, Yelizaveta; Odom, Teri W.

    2007-01-01

    This paper outlines several benchtop nanoscale patterning experiments that can be incorporated into undergraduate laboratories or advanced high school chemistry curricula. The experiments, supplemented by an online video lab manual, are based on soft lithographic techniques such as replica molding, micro-molding in capillaries, and micro-contact…

  14. Dynamic structural disorder in supported nanoscale catalysts

    SciTech Connect

    Rehr, J. J.; Vila, F. D.

    2014-04-07

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  15. Nanoscale precipitation in hot rolled sheet steel

    NASA Astrophysics Data System (ADS)

    Sun, Jun

    Some newer hot rolled high strength low alloy (HSLA) steels with a single phase ferrite matrix have obtained substantial strengthening from nanoscale precipitation. These HSLA are reported to have a good combination of strength, ductility and hole-expansion ability. In the current work, Gleeble ® 3500 torsion testing was employed to simulate the hot rolling process with varying run-out table cooling rates and coiling temperatures on five microalloyed steels with additions of Ti, Nb, Mo, Cr and V, to investigate the effects of microalloy additions and processing conditions on microstructures as well as mechanical properties. Subsized tensile specimens obtained from as-twisted torsion samples were used to evaluate mechanical properties. The precipitation states of the five steels with different processing conditions were characterized using extraction replica TEM. Comparison of microstructures and mechanical properties was discussed. Characterization of the microstructure via light optical microscopy showed the matrix microstructure was mainly influenced by coiling temperature, which indicates that the transformation from austenite to ferrite occurred during the coiling period. A higher Ti content was shown to reduce the second constituent fractions. Investigation of carbon extraction replica specimens via TEM revealed the presence of nanoscale precipitation. Extensive nanoscale precipitation was observed in most of the specimens having a polygonal ferrite matrix, while in the granular bainite/ferrite microstructure at lower temperatures, fewer microalloy carbides were present. The specimens with polygonal ferrite had similar or higher yield strength than the specimens with granular bainite microstructure, which suggests the effectiveness of precipitation strengthening from extensive nanoscale precipitates. In the Nb-Mo steel, more significant strengthening due to grain refinement was evident. Yield strength values were less than reported for JFE's "NANOHITEN

  16. Elastic properties of suspended multilayer WSe2

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Koutsos, Vasileios; Cheung, Rebecca

    2016-01-01

    We report the experimental determination of the elastic properties of suspended multilayer WSe2, a promising two-dimensional (2D) semiconducting material combined with high optical quality. The suspended WSe2 membranes have been fabricated by mechanical exfoliation of bulk WSe2 and transfer of the exfoliated multilayer WSe2 flakes onto SiO2/Si substrates pre-patterned with hole arrays. Then, indentation experiments have been performed on these membranes with an atomic force microscope. The results show that the 2D elastic modulus of the multilayer WSe2 membranes increases linearly while the prestress decreases linearly as the number of layers increases. The interlayer interaction in WSe2 has been observed to be strong enough to prevent the interlayer sliding during the indentation experiments. The Young's modulus of multilayer WSe2 (167.3 ± 6.7 GPa) is statistically independent of the thickness of the membranes, whose value is about two thirds of other most investigated 2D semiconducting transition metal dichalcogenides, namely, MoS2 and WS2. Moreover, the multilayer WSe2 can endure ˜12.4 GPa stress and ˜7.3% strain without fracture or mechanical degradation. The 2D WSe2 can be an attractive semiconducting material for application in flexible optoelectronic devices and nano-electromechanical systems.

  17. Disease Localization in Multilayer Networks

    NASA Astrophysics Data System (ADS)

    de Arruda, Guilherme Ferraz; Cozzo, Emanuele; Peixoto, Tiago P.; Rodrigues, Francisco A.; Moreno, Yamir

    2017-01-01

    We present a continuous formulation of epidemic spreading on multilayer networks using a tensorial representation, extending the models of monoplex networks to this context. We derive analytical expressions for the epidemic threshold of the susceptible-infected-susceptible (SIS) and susceptible-infected-recovered dynamics, as well as upper and lower bounds for the disease prevalence in the steady state for the SIS scenario. Using the quasistationary state method, we numerically show the existence of disease localization and the emergence of two or more susceptibility peaks, which are characterized analytically and numerically through the inverse participation ratio. At variance with what is observed in single-layer networks, we show that disease localization takes place on the layers and not on the nodes of a given layer. Furthermore, when mapping the critical dynamics to an eigenvalue problem, we observe a characteristic transition in the eigenvalue spectra of the supra-contact tensor as a function of the ratio of two spreading rates: If the rate at which the disease spreads within a layer is comparable to the spreading rate across layers, the individual spectra of each layer merge with the coupling between layers. Finally, we report on an interesting phenomenon, the barrier effect; i.e., for a three-layer configuration, when the layer with the lowest eigenvalue is located at the center of the line, it can effectively act as a barrier to the disease. The formalism introduced here provides a unifying mathematical approach to disease contagion in multiplex systems, opening new possibilities for the study of spreading processes.

  18. PREFACE: Nanoscale science and technology

    NASA Astrophysics Data System (ADS)

    Bellucci, Stefano

    2008-11-01

    , nanopowders) were discussed. Ab initio simulations on the atomic and electronic structure of single-walled BN nanotubes and nanoarches were illustrated by Yu F Zhukovskii. M B Muradov talked about nanoparticles of cadmium selenide and cadmium sulfide, which yield one of the perspective materials for application to solar cell elements, high-speed computing systems, catalyses and biomarkers in medicine. In the presentation, the process of transformation of nanoparticles cadmium of sulfide to nanoparticles of cadmium selenide by an ionic exchange from solutions of electrolytes was considered. The size of particles was controlled by the quantity of growth cycles. After manufacturing, the structures were investigated by atomic force microscope (AFM). Structures CdS:polymer transformed into CdSe:polymer with the help of ion-exchange. For the realization of the process of ionic exchange, solutions were prepared containing bivalent ions of selenium as follows: NaBH4 and Se in a weight parity 2:1 added in water 4NaBH4+2Se+7H2O→2NaHSe+Na2B4O7+14H2 In the prepared solution nanostructures CdS:polymer were immersed. Time of endurance was 2 h. After an ionic exchange the obtained structures were investigated by means of EDAX on a chemical composition. Results of analyses have shown that atoms of sulfur are completely replaced by selenium. The band gap of nanoparticles in comparison with initial samples is displaced in the long-wave area. It is connected with the fact that the width of the band gap of bulk crystals CdSe (1.74 eV) is smaller than the band gap of CdS (2.42 eV). Optical microscopy with spatial resolution beyond the diffraction limit obtained by using near field techniques was the subject of S Prato's talk. Scanning near field optical microscopy (SNOM) has developed into a powerful tool to investigate local optical properties that depend on heterogeneity of materials at nanoscale and to study nanoenvironment of biosystems. Crucial topics in SNOM are: force sensitivity and

  19. Preparation and characterization on nano-hybrid composite solid polymer electrolyte of PVdF-HFP /MG49-ZrO{sub 2} for battery application

    SciTech Connect

    Lee, T. K.; Ahmad, A.; Hasyareeda, N.

    2014-09-03

    Initial study on nano composite polymer electrolyte of PVdF-HFP/MG49-ZrO{sub 2} has been done. The zirconium was synthesis via in-situ sol-gel method in a dissolved polymer blends. The effects of different concentrations of zirconium and pH values have been investigated on nano composite polymer (NCP). Analysis impedance show that only at 6 wt. % of zirconium for all pH values show a semi-circle arc which have lowest value of bulk resistance. No ionic conductivity value is obtain due to the absent of ion charge carriers. Analysis of XRD revealed that crystallinity phase of the nano composite polymer was affect by different pH values. However, no significant changes have been observed in IR bands. This could well indicate that different pH medium did not affect the chemical bonding in the structure.

  20. Investigation of multilayer magnetic domain lattice file

    NASA Technical Reports Server (NTRS)

    Torok, E. J.; Kamin, M.; Tolman, C. H.

    1980-01-01

    The feasibility of the self structured multilayered bubble domain memory as a mass memory medium for satellite applications is examined. Theoretical considerations of multilayer bubble supporting materials are presented, in addition to the experimental evaluation of current accessed circuitry for various memory functions. The design, fabrication, and test of four device designs is described, and a recommended memory storage area configuration is presented. Memory functions which were demonstrated include the current accessed propagation of bubble domains and stripe domains, pinning of stripe domain ends, generation of single and double bubbles, generation of arrays of coexisting strip and bubble domains in a single garnet layer, and demonstration of different values of the strip out field for single and double bubbles indicating adequate margins for data detection. All functions necessary to develop a multilayer self structured bubble memory device were demonstrated in individual experiments.

  1. Multilayer ferroelectret-based energy harvesting insole

    NASA Astrophysics Data System (ADS)

    Luo, Z.; Zhu, D.; Beeby, S. P.

    2015-12-01

    This paper reports a flexible energy harvesting insole made of multilayer ferroelectrets, and demonstrates that this insole can power a wireless signal transmission. We have previously studied the energy harvesting characteristics of single and 10-layer ferroelectrets under compressive forces with quantified amplitudes and frequencies. In this work, we fabricate a flexible insole using multilayer ferroelectrets, and increase the number of layers from 10 up to 80, then use this insole to harvest energy from footsteps. We use this insole to power a commercial ZigBee wireless transmitter, and successfully demonstrate that an 8-bit data transmission can be solely powered by the energy harvested from this insole for every 3 to 4 footsteps. It confirms the anticipation from our previous work that the multilayer ferroelectrets are capable of powering the start-up and transmission of a low-power chipset, and shows a potential of using this energy harvesting insole in wearable applications.

  2. Femtosecond damage threshold of multilayer metal films

    NASA Astrophysics Data System (ADS)

    Ibrahim, Wael M. G.; Elsayed-Ali, Hani E.; Shinn, Michelle D.; Bonner, Carl E.

    2003-05-01

    With the availability of terawatt laser systems with subpicosecond pulses, laser damage to optical components has become the limiting factor for further increases in the output peak power. Evaluation of different material structures in accordance to their suitability for high-power laser systems is essential. Multi-shot damage experiments, using 110 fs laser pulses at 800 nm, on polycrystalline single layer gold films and multi-layer (gold-vanadium, and gold-titanium) films were conducted. The laser incident fluence was varied, in both cases, from 0.1 to 0.6 J/cm2. No evidence of surface damage was apparent in the gold sample up to a fluence of 0.3 J/cm2. The multilayer sample experienced the onset of surface damage at the lowest fluence value used of 0.1 J/cm2. Damage results are in contrast with the time resolved ultrafast thermoreflectivity measurements that revealed a reduction of the thermoreflectivity signal for the multilayer films. This decrease in the thermoreflectivity signal signifies a reduction in the surface electron temperature that should translate in a lower lattice temperature at the later stage. Hence, one should expect a higher damage threshold for the multilayer samples. Comparison of the experimental results with the predictions of the Two-Temperature Model (TTM) is presented. The damage threshold of the single layer gold film corresponds to the melting threshold predicted by the model. In contrast to the single layer gold film, the multi-layer sample damaged at almost one third the damage threshold predicted by the TTM model. Possible damage mechanisms leading to the early onset of damage for the multilayer films are discussed.

  3. Dynamic effects of magnetic multilayer interlayer coupling

    SciTech Connect

    Pechan, M.J.; Xu, J. . Dept. of Physics); Kelly, D.M.; Schuller, I.K. . Dept. of Physics)

    1993-11-01

    Coupling between magnetic layers in multilayer samples gives rise to dynamic effects which are manifest as anomalous modes in ferromagnetic resonance (FMR) spectra. According to the model presented, antiferromagnetic (ferromagnetic) coupling would produce such modes on the high (low) field side of the uniform FMR mode. Anomalous modes, observed in Fe/Cu and Fe/Cr multilayer samples, are analyzed to obtain coupling constants as a function of nonmagnetic layer thickness. The modes are shown to arise from 180 out-of-phase interlayer magnetization precession. The coupling is observed to be antiferromagnetic in all samples and to be an order of magnitude greater in the Cr system than in the Cu.

  4. Piezoelectric multilayer actuator life test.

    PubMed

    Sherrit, Stewart; Bao, Xiaoqi; Jones, Christopher M; Aldrich, Jack B; Blodget, Chad J; Moore, James D; Carson, John W; Goullioud, Renaud

    2011-04-01

    Potential NASA optical missions such as the Space Interferometer Mission require actuators for precision positioning to accuracies of the order of nanometers. Commercially available multilayer piezoelectric stack actuators are being considered for driving these precision mirror positioning mechanisms. These mechanisms have potential mission operational requirements that exceed 5 years for one mission life. To test the feasibility of using these commercial actuators for these applications and to determine their reliability and the redundancy requirements, a life test study was undertaken. The nominal actuator requirements for the most critical actuators on the Space Interferometry Mission (SIM) in terms of number of cycles was estimated from the Modulation Optics Mechanism (MOM) and Pathlength control Optics Mechanism (POM) and these requirements were used to define the study. At a nominal drive frequency of 250 Hz, one mission life is calculated to be 40 billion cycles. In this study, a set of commercial PZT stacks configured in a potential flight actuator configuration (pre-stressed to 18 MPa and bonded in flexures) were tested for up to 100 billion cycles. Each test flexure allowed for two sets of primary and redundant stacks to be mechanically connected in series. The tests were controlled using an automated software control and data acquisition system that set up the test parameters and monitored the waveform of the stack electrical current and voltage. The samples were driven between 0 and 20 V at 2000 Hz to accelerate the life test and mimic the voltage amplitude that is expected to be applied to the stacks during operation. During the life test, 10 primary stacks were driven and 10 redundant stacks, mechanically in series with the driven stacks, were open-circuited. The stroke determined from a strain gauge, the temperature and humidity in the chamber, and the temperature of each individual stack were recorded. Other properties of the stacks, including the

  5. Systematic modification of the rheological properties of colloidal suspensions with polyelectrolyte multilayers.

    PubMed

    Hess, Andreas; Pretzl, Melanie; Heymann, Lutz; Fery, Andreas; Aksel, Nuri

    2011-09-01

    Tailoring rheological properties of colloidal suspensions with the adsorption of polyelectrolyte multilayers (PEMs) is based on the idea of controlling macroscopic mechanical properties by modifying the particle surface in a reproducible and well-understood manner. With layer-by-layer self-assembly, monodisperse polystyrene particles are coated with up to ten layers of the oppositely charged strong polyelectrolytes: poly(diallyl dimethyl ammonium chloride) and poly(styrene sulfonate). The conformation of the adsorbed polyelectrolyte is controlled by the ionic strength of the used aqueous polyelectrolyte solution. For 1M NaCl solution, a brushlike adsorption of the polyelectrolyte is expected. The ability of PEMs to serve on a nanoscale level as surface modifiers and influence macroscopic rheological properties like viscoelasticity, yield stress, and shear banding is discussed. The mechanical behavior of these suspensions is qualitatively described by the theory of Derjaguin-Landau-Verwey-Overbeek with short-range repulsion and long-range attraction. A scaling rule is proposed which distinguishes between the precusor and the multilayer regime.

  6. Structure and vibrational dynamics of interfacial Sn layers in Sn/Si multilayers

    NASA Astrophysics Data System (ADS)

    Cuenya, B. Roldan; Keune, W.; Sturhahn, W.; Toellner, T. S.; Hu, M. Y.

    2001-12-01

    The structure and vibrational dynamics of room-temperature-grown nanoscale Sn/amorphous (a-)Si multilayers have been studied by x-ray diffraction, Raman scattering, 119Sn Mössbauer spectroscopy, and 119Sn nuclear-resonant inelastic x-ray scattering (NRIXS) of synchrotron radiation. With increasing Sn-layer thickness, the formation of β-Sn was observed, except at the Sn/Si interfaces, where a 10-Å-thick metastable pure amorphous-α-Sn-like layer remains stabilized. By means of NRIXS we have measured the Sn-projected vibrational density of states (VDOS) in these multilayers (in particular, at the interfaces), and in 500-Å-thick epitaxial α-Sn films on InSb(001) as a reference. Further, the Sn-specific Lamb-Mössbauer factor (f factor), mean kinetic energy per atom, mean atomic force constant, and vibrational entropy per atom were obtained. The VDOS of the amorphous-α-Sn-like interface layer is observed to be distinctly different from that of (bulk) α-Sn and β-Sn, and its prominent vibrational energies are found to scale with those of amorphous Ge and Si. The observed small difference in vibrational entropy (ΔS/kB=+0.17+/-0.05 per atom) between α-Sn and interfacial amorphous-α-like Sn does not account for the stability of the latter phase.

  7. Nanoscale segregation at a metal surface

    NASA Astrophysics Data System (ADS)

    Igata, N.

    1996-03-01

    The properties of a surface are fundamentally controlled by the chemical composition of the nanoscale surface layer. Therefore nanoscale segregation at the surface is one of the most important problems in surface science and technology. The chemical analysis of the surface layer and the study of segregation have been developed by various methods, but mainly by AES and TOFAP since 0957-4484/7/1/003/img1. Surface segregation under irradiation is also an urgent problem to be solved and the same methods have been applied. In this paper, the results from TOFAP for segregation both under thermal equilibrium and under irradiation are introduced. As for theoretical aspects, both thermal segregation and segregation under irradiation are interpreted by atomistic theory.

  8. Trapping atoms using nanoscale quantum vacuum forces.

    PubMed

    Chang, D E; Sinha, K; Taylor, J M; Kimble, H J

    2014-07-10

    Quantum vacuum forces dictate the interaction between individual atoms and dielectric surfaces at nanoscale distances. For example, their large strengths typically overwhelm externally applied forces, which makes it challenging to controllably interface cold atoms with nearby nanophotonic systems. Here we theoretically show that it is possible to tailor the vacuum forces themselves to provide strong trapping potentials. Our proposed trapping scheme takes advantage of the attractive ground-state potential and adiabatic dressing with an excited state whose potential is engineered to be resonantly enhanced and repulsive. This procedure yields a strong metastable trap, with the fraction of excited-state population scaling inversely with the quality factor of the resonance of the dielectric structure. We analyse realistic limitations to the trap lifetime and discuss possible applications that might emerge from the large trap depths and nanoscale confinement.

  9. Programmed assembly of nanoscale structures using peptoids.

    SciTech Connect

    Ren, Jianhua; Russell, Scott; Morishetti, Kiran; Robinson, David B.; Zuckermann, Ronald N.; Buffleben, George M.; Hjelm, Rex P.; Kent, Michael Stuart

    2011-02-01

    Sequence-specific polymers are the basis of the most promising approaches to bottom-up programmed assembly of nanoscale materials. Examples include artificial peptides and nucleic acids. Another class is oligo(N-functional glycine)s, also known as peptoids, which permit greater sidegroup diversity and conformational control, and can be easier to synthesize and purify. We have developed a set of peptoids that can be used to make inorganic nanoparticles more compatible with biological sequence-specific polymers so that they can be incorporated into nucleic acid or other biologically based nanostructures. Peptoids offer degrees of modularity, versatility, and predictability that equal or exceed other sequence-specific polymers, allowing for rational design of oligomers for a specific purpose. This degree of control will be essential to the development of arbitrarily designed nanoscale structures.

  10. Light-driven nanoscale plasmonic motors

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Zentgraf, Thomas; Liu, Yongmin; Bartal, Guy; Zhang, Xiang

    2010-08-01

    When Sir William Crookes developed a four-vaned radiometer, also known as the light-mill, in 1873, it was believed that this device confirmed the existence of linear momentum carried by photons, as predicted by Maxwell's equations. Although Reynolds later proved that the torque on the radiometer was caused by thermal transpiration, researchers continued to search for ways to take advantage of the momentum of photons and to use it for generating rotational forces. The ability to provide rotational force at the nanoscale could open up a range of applications in physics, biology and chemistry, including DNA unfolding and sequencing and nanoelectromechanical systems. Here, we demonstrate a nanoscale plasmonic structure that can, when illuminated with linearly polarized light, generate a rotational force that is capable of rotating a silica microdisk that is 4,000 times larger in volume. Furthermore, we can control the rotation velocity and direction by varying the wavelength of the incident light to excite different plasmonic modes.

  11. Nanoscale Surface Modification of Layered Materials

    NASA Astrophysics Data System (ADS)

    O'Shea, Aaron

    2011-11-01

    A scanning electron microscope can magnify a sample many times greater than a standard microscope, down to nanoscale dimensions. It can also be used to form patterns on the surfaces of certain materials, a technique used to create microchips. We have developed a technique that simplifies and expedites this process using an unmodified scanning electron microscope. Using this technique, we are able to alter the surface chemistry in a controlled pattern on a special class of materials called transition metal dichalcogenides. These materials have many useful applications: industrial lubricants; high strength nanocomposites; advanced solar cells; and next generation electronics. Altering the surface chemistry of these materials at the nanoscale results in unusual quantum behavior, which is useful in nanotechnology.

  12. Controlling carrier dynamics at the nanoscale

    NASA Astrophysics Data System (ADS)

    Cánovas, Enrique; Bonn, Mischa

    2016-10-01

    This Special issue is motivated by the occasion of the International Conference on Charge Carrier Dynamics at the Nanoscale (CCDNano), held in Santiago de Compostela (Spain) in September 2015. As chairs for the CCDNano meeting, we aimed at bringing together experts from different scientific fields in order to trigger interdisciplinary discussions and collaborations; the ultimate goal of the conference was to serve as a platform to advance and help unifying methodologies and theories from different research sub-fields. We also aimed at a deeper understanding of charge dynamics to contribute to the development of improved or novel nanostructured devices. This special issue keeps that spirit, and intends to provide an overview of ongoing research efforts regarding charge carrier dynamics at the nanoscale.

  13. Anomalous electrical conductivity of nanoscale colloidal suspensions.

    PubMed

    Chakraborty, Suman; Padhy, Sourav

    2008-10-28

    The electrical conductivity of colloidal suspensions containing nanoscale conducting particles is nontrivially related to the particle volume fraction and the electrical double layer thickness. Classical electrochemical models, however, tend to grossly overpredict the pertinent effective electrical conductivity values, as compared to those obtained under experimental conditions. We attempt to address this discrepancy by appealing to the complex interconnection between the aggregation kinetics of the nanoscale particles and the electrodynamics within the double layer. In particular, we model the consequent alterations in the effective electrophoretic mobility values of the suspension by addressing the fundamentals of agglomeration-deagglomeration mechanisms through the pertinent variations in the effective particulate dimensions, solid fractions, as well as the equivalent suspension viscosity. The consequent alterations in the electrical conductivity values provide a substantially improved prediction of the corresponding experimental findings and explain the apparent anomalous behavior predicted by the classical theoretical postulates.

  14. Nanoscale Deformation and Toughening Mechanisms of Nacre

    DTIC Science & Technology

    2011-03-31

    graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale ): Number of graduating undergraduates funded by a DoD funded Center of Excellence grant...design principle down to atomic scale with a purpose to fight against foreign attacks, which has opened up a new opportunity to unravel the...deformation mechanism of unique mechanical performance at the atomic scale . Technology Transfer 1 Nanoscale Deformation and Toughening Mechanisms of Nacre

  15. A new relaxation mechanism in nanoscale films

    NASA Astrophysics Data System (ADS)

    Ovid'ko, I. A.; Sheinerman, A. G.

    2007-02-01

    A new mechanism of stress relaxation in heteroepitaxial films of nanoscale thickness is suggested and theoretically described. The mechanism represents nucleation of a 'non-crystallographic' partial dislocation (at the film-substrate interface) whose Burgers vector magnitude continuously grows during the nucleation process. It is shown that the new mechanism effectively competes with the standard nucleation of a perfect misfit dislocation at the free surface of the film and its further glide towards the film-substrate interface.

  16. Nanoscale Science, Engineering and Technology Research Directions

    SciTech Connect

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  17. DOE - BES Nanoscale Science Research Centers (NSRCs)

    SciTech Connect

    Beecher, Cathy Jo

    2016-11-14

    These are slides from a powerpoint shown to guests during tours of Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory. It shows the five DOE-BES nanoscale science research centers (NSRCs), which are located at different national laboratories throughout the country. Then it goes into detail specifically about the Center for Integrated Nanotechnologies at LANL, including statistics on its user community and CINT's New Mexico industrial users.

  18. Nanoscale molecularly imprinted polymers and method thereof

    DOEpatents

    Hart, Bradley R.; Talley, Chad E.

    2008-06-10

    Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.

  19. Nanoscale thermal transport. II. 2003–2012

    SciTech Connect

    Cahill, David G. Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-03-15

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ∼1 nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and

  20. Nanoscale thermal transport. II. 2003-2012

    NASA Astrophysics Data System (ADS)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-03-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ˜ 1 nm , the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal

  1. Mesoscale metallic pyramids with nanoscale tips.

    PubMed

    Henzie, Joel; Kwak, Eun-Soo; Odom, Teri W

    2005-07-01

    We report a simple procedure that can generate free-standing mesoscale metallic pyramids composed of one or more materials and having nanoscale tips (radii of curvature of less than 2 nm). Mesoscale holes (100-300 nm) in a chromium film are used as an etch mask to fabricate pyramidal pits and then as a deposition mask to form the metallic pyramids. We have fabricated two- and three-layered pyramids with control over their materials and chemical functionality.

  2. Combined single cell AFM manipulation and TIRFM for probing the molecular stability of multilayer fibrinogen matrices

    PubMed Central

    Christenson, W.; Yermolenko, I.; Plochberger, B.; Camacho-Alanis, F.; Ros, A.; Ugarova, T.P.; Ros, R.

    2014-01-01

    Adsorption of fibrinogen on various surfaces produces a nanoscale multilayer matrix, which strongly reduces the adhesion of platelets and leukocytes with implications for hemostasis and blood compatibility of biomaterials. The nonadhesive properties of fibrinogen matrices are based on their extensibility, ensuing the inability to transduce strong mechanical forces via cellular integrins and resulting in weak intracellular signaling. In addition, reduced cell adhesion may arise from the weaker associations between fibrinogen molecules in the superficial layers of the matrix. Such reduced stability would allow integrins to pull fibrinogen molecules out of the matrix with comparable or smaller forces than required to break integrin–fibrinogen bonds. To examine this possibility, we developed a method based on the combination of total internal reflection fluorescence microscopy, single cell manipulation with an atomic force microscope and microcontact printing to study the transfer of fibrinogen molecules out of a matrix onto cells. We calculated the average fluorescence intensities per pixel for wild-type HEK 293 (HEK WT) and HEK 293 cells expressing leukocyte integrin Mac-1 (HEK Mac-1) before and after contact with multilayered matrices of fluorescently labeled fibrinogen. For contact times of 500 s, HEK Mac-1 cells show a median increase of 57% of the fluorescence intensity compared to 6% for HEKWT cells. The results suggest that the integrin Mac-1-fibrinogen interactions are stronger than the intermolecular fibrinogen interactions in the superficial layer of the matrix. The low mechanical stability of the multilayer fibrinogen surface may contribute to the reduced cell adhesive properties of fibrinogen-coated substrates. We anticipate that the described method can be applied to various cell types to examine their integrin-mediated adhesion to the extracellular matrices with a variable protein composition. PMID:24239757

  3. Mapping photovoltaic performance with nanoscale resolution

    SciTech Connect

    Kutes, Yasemin; Aguirre, Brandon A.; Bosse, James L.; Cruz-Campa, Jose L.; Zubia, David; Huey, Bryan D.

    2015-10-16

    Photo-conductive AFM spectroscopy (‘pcAFMs’) is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit current, open circuit voltage, maximum power, or fill factor. The method is demonstrated with a stack of 21 images acquired during in situ illumination of micropatterned polycrystalline CdTe/CdS, providing more than 42,000 I/V curves spatially separated by ~5 nm. For these CdTe/CdS microcells, the calculated photoconduction ranges from 0 to 700 picoSiemens (pS) upon illumination with ~1.6 suns, depending on location and biasing conditions. Mean short circuit currents of 2 pA, maximum powers of 0.5 pW, and fill factors of 30% are determined. The mean voltage at which the detected photocurrent is zero is determined to be 0.7 V. Significantly, enhancements and reductions in these more commonly macroscopic PV performance metrics are observed to correlate with certain grains and grain boundaries, and are confirmed to be independent of topography. Furthermore, these results demonstrate the benefits of nanoscale resolved PV functional measurements, reiterate the importance of microstructural control down to the nanoscale for 'PV devices, and provide a widely applicable new approach for directly investigating PV materials.

  4. Mapping photovoltaic performance with nanoscale resolution

    DOE PAGES

    Kutes, Yasemin; Aguirre, Brandon A.; Bosse, James L.; ...

    2015-10-16

    Photo-conductive AFM spectroscopy (‘pcAFMs’) is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit current, open circuit voltage, maximum power, or fill factor. The method is demonstrated with a stack of 21 images acquired during in situ illumination of micropatterned polycrystalline CdTe/CdS, providing more than 42,000 I/V curves spatially separated by ~5 nm. For these CdTe/CdS microcells, the calculated photoconduction ranges from 0 to 700 picoSiemens (pS) upon illumination with ~1.6 suns, depending on location and biasing conditions. Mean short circuit currents of 2 pA, maximummore » powers of 0.5 pW, and fill factors of 30% are determined. The mean voltage at which the detected photocurrent is zero is determined to be 0.7 V. Significantly, enhancements and reductions in these more commonly macroscopic PV performance metrics are observed to correlate with certain grains and grain boundaries, and are confirmed to be independent of topography. Furthermore, these results demonstrate the benefits of nanoscale resolved PV functional measurements, reiterate the importance of microstructural control down to the nanoscale for 'PV devices, and provide a widely applicable new approach for directly investigating PV materials.« less

  5. Static electric field enhancement in nanoscale structures

    NASA Astrophysics Data System (ADS)

    Lepetit, Bruno; Lemoine, Didier; Márquez-Mijares, Maykel

    2016-08-01

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  6. Multilayers of oppositely charged SiO2 nanoparticles: effect of surface charge on multilayer assembly.

    PubMed

    Lee, Daeyeon; Gemici, Zekeriyya; Rubner, Michael F; Cohen, Robert E

    2007-08-14

    The growth behavior of all-silica nanoparticle multilayer thin films assembled via layer-by-layer deposition of oppositely charged SiO2 nanoparticles was studied as a function of assembly conditions. Amine-functionalized SiO2 nanoparticles were assembled into multilayers through the use of three different sizes of negatively charged SiO2 nanoparticles. The assembly pH of the nanoparticle suspensions needed to achieve maximum growth for each system was found to be different. However, the surface charge /z/ of the negatively charged silica nanoparticles at the optimal assembly pH was approximately the same, indicating the importance of this parameter in determining the growth behavior of all-nanoparticle multilayers. When /z/ of the negatively charged nanoparticles lies between 0.6z(0) and 1.2z(0) (where z(0) is the pH-independent value of the zeta-potential of the positively charged nanoparticles used in this study), the multilayers show maximum growth for each system. The effect of particle size on the film structure was also investigated. Although nanoparticle size significantly influenced the average bilayer thickness of the multilayers, the porosity and refractive index of multilayers made from nanoparticles of different sizes varied by a small amount. For example, the porosity of the different multilayer systems ranged from 42 to 49%. This study further demonstrates that one-component all-nanoparticle multilayers can be assembled successfully by depositing nanoparticles of the same material but with opposite surface charge.

  7. Multilayer optics for femtosecond-diffractometry

    NASA Astrophysics Data System (ADS)

    Wiesmann, J.; Hertlein, F.; Michaelsen, C.

    2009-08-01

    X-ray sources according to the principle of the "free electron laser" (FEL), will in future, be able to provide bright radiation with pulses in the femtosecond range. Even nowadays, home-lab X-ray sources with very short pulses in the sub-picosecond range are already available for lab experiments. These laser-based sources need different kinds of optics to direct the emitted X-rays onto the samples. On the one hand, the optics should transfer as much flux as possible and on the other hand, the brilliance and timestructure of the source should not be reduced too much. These requirements are fulfilled with 2-dimensional beam shaping multilayer optics. Their design, production and their influence on the shape of the X-ray beam will be explained in this contribution. The optics consist of bent substrates with shape tolerances below 100 nm, upon which multilayers are deposited with single layer thicknesses in the nanometer range and up to several hundreds of pairs of layers. Furthermore, these multilayers were designed with lateral thickness gradients within +/- 1% deviation of the ideal shape. This means that a deposition precision in the picometer range is required. We use magnetron sputtering methods for deposition, optical profilometry in order to characterize the shape of the optics and X-ray reflectometry to characterize the multilayers.

  8. Coherent multilayer crystals and method of making

    DOEpatents

    Schuller, Ivan K.; Falco, Charles M.

    1984-01-01

    A new material consisting of a multilayer crystalline structure which is coherent perpendicular to the layers and where each layer is composed of a single crystalline element. The individual layers may vary from 2.ANG. to 100.ANG. or more in thickness.

  9. Coherent multilayer crystals and method of making

    DOEpatents

    Schuller, I.K.; Falco, C.M.

    A new material consisting of a multilayer crystalline structure is described which is coherent perpendicular to the layers and where each layer is composed of a single crystallilne element. The individual layers may vary from 2A to 100A or more in thickness.

  10. Multilayer Film Assembly of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Meyyappan, M.; Han, Jie; Arnold, J. (Technical Monitor)

    2000-01-01

    An approach to assemble multilayers of carbon nanotubes on a substrate is presented. Chemical vapor deposition using a transition metal catalyst formulation is used to grow the nanotubes. Results show a bilayer assembly of nanotubes each with a different density of tubes.

  11. Spin wave resonance and relaxation in microwave magnetic multilayer structures and devices

    NASA Astrophysics Data System (ADS)

    Wu, Cheng

    The continuous and increasing demand for higher frequency magnetic microwave structures triggered a tremendous development in the field of magnetization dynamics over the past decade. In order to develop smaller and faster devices, more efforts are required to achieve a better understanding of the complex magnetization precessional dynamics, the magnetization anisotropy, and the sources of spin scattering at the nanoscale. This thesis presents measurements of magnetic precession and relaxation dynamics in multilayer ferromagnetic films of CoFe/PtMn/CoFe in both frequency and time domain. First, we conducted the ferromagnetic resonance (FMR) measurements for samples with the ferromagnetic CoFe layer thicknesses varying from 10 A to 500 A. The magnetic anisotropic parameters were determined by rotating the field aligned axis with respect to the spectral field in the configurations of both in-plane and out-of-plane. Moreover, we identified a high-order standing spin wave in our spectra and found a "critical angle" in the multilayer samples. We included an effective surface anisotropy field to describe our results. This allows us to determine the exchange interaction stiffness in the CoFe layers. Next, we performed pump-probe Magneto-Optical Kerr Effect experiments in the multilayer films. Three precession modes were observed in the Voigt geometry. The modes are assigned to the exchange-dominated spin wave excitations and the non-homogeneous dipole mode. We developed a comprehensive model of the magnetic eigenmodes and their coupling to light to gain accurate values of the exchange, bulk and surface anisotropy constants. The results are consistent with those from the FMR measurements. Finally, the measured resonance linewidths of CoFe/PtMn/CoFe films were analyzed by the thickness dependence of the CoFe layers. We discussed the contribution of the Gilbert damping, two magnon scattering, as well as surface and interface to the FMR linewidth and concluded the two magnon

  12. Nanoscale mechanics of ductile interphases in solid solution directionally solidified eutectic composites

    NASA Astrophysics Data System (ADS)

    Alem, Nasim

    Ceramic matrix composites are known for their low density, high strength and high stiffness, but lower fracture toughness compared to metal matrix composites. The addition of a reinforcing agent within the matrix can increase the toughness of the composite via many strain energy absorption mechanisms such as plastic deformation. This dissertation attempts to shed light on the competing deformation and fracture mechanisms in ductile/brittle nanoscale lamellar systems where the conventional deformation mechanisms may not apply. NixCo1-xO/ZrO2 Directionally Solidified Eutectic (DSE) composite series has been chosen as a model system for this study. In the first part of this dissertation, it is demonstrated that formation of a novel metal-ceramic multi-layered structure is feasible via reduction of NixCo1-xO/ZrO2 composite as a result of the interfaces forming an electrochemical cell in a reducing atmosphere at high temperatures. The second part of the thesis is dedicated in understanding the correlative deformation and fracture mechanisms in the reduced NixCo1-x O/ZrO2 model system with a nanoscale Ni(Co) confined interphase. These investigations were inspired by a novel observation that there is striking dissimilarity in the interfacial fracture behavior of the reduced Ni xCo1-xO/ZrO2 composite compared to that of the fully oxidized NixCo1-xO/ZrO2 system. A multitude of conventional and analytical electron microscopy techniques are utilized to investigate the role of the size scale, chemistry of this model system on the strain energy absorption upon deformation. FIB TEM lift-off technique is further employed to investigate the crack tip interactions with the nanoscale confined interphases in this model system. To study the role of size scale, the nanoscale deformation mechanism within the metallic interphase is investigated across 50-300 nm thickness range for the confined Ni(Co) interphase. The role of chemistry on the small scale deformation mechanisms in this

  13. Design and development of multilayer vascular graft

    NASA Astrophysics Data System (ADS)

    Madhavan, Krishna

    2011-07-01

    Vascular graft is a widely-used medical device for the treatment of vascular diseases such as atherosclerosis and aneurysm as well as for the use of vascular access and pediatric shunt, which are major causes of mortality and morbidity in this world. Dysfunction of vascular grafts often occurs, particularly for grafts with diameter less than 6mm, and is associated with the design of graft materials. Mechanical strength, compliance, permeability, endothelialization and availability are issues of most concern for vascular graft materials. To address these issues, we have designed a biodegradable, compliant graft made of hybrid multilayer by combining an intimal equivalent, electrospun heparin-impregnated poly-epsilon-caprolactone nanofibers, with a medial equivalent, a crosslinked collagen-chitosan-based gel scaffold. The intimal equivalent is designed to build mechanical strength and stability suitable for in vivo grafting and to prevent thrombosis. The medial equivalent is designed to serve as a scaffold for the activity of the smooth muscle cells important for vascular healing and regeneration. Our results have shown that genipin is a biocompatible crosslinker to enhance the mechanical properties of collagen-chitosan based scaffolds, and the degradation time and the activity of smooth muscle cells in the scaffold can be modulated by the crosslinking degree. For vascular grafting and regeneration in vivo, an important design parameter of the hybrid multilayer is the interface adhesion between the intimal and medial equivalents. With diametrically opposite affinities to water, delamination of the two layers occurs. Physical or chemical modification techniques were thus used to enhance the adhesion. Microscopic examination and graft-relevant functional characterizations have been performed to evaluate these techniques. Results from characterization of microstructure and functional properties, including burst strength, compliance, water permeability and suture

  14. Dustiness of Fine and Nanoscale Powders

    PubMed Central

    Evans, Douglas E.; Baron, Paul A.

    2013-01-01

    Dustiness may be defined as the propensity of a powder to form airborne dust by a prescribed mechanical stimulus; dustiness testing is typically intended to replicate mechanisms of dust generation encountered in workplaces. A novel dustiness testing device, developed for pharmaceutical application, was evaluated in the dustiness investigation of 27 fine and nanoscale powders. The device efficiently dispersed small (mg) quantities of a wide variety of fine and nanoscale powders, into a small sampling chamber. Measurements consisted of gravimetrically determined total and respirable dustiness. The following materials were studied: single and multiwalled carbon nanotubes, carbon nanofibers, and carbon blacks; fumed oxides of titanium, aluminum, silicon, and cerium; metallic nanoparticles (nickel, cobalt, manganese, and silver) silicon carbide, Arizona road dust; nanoclays; and lithium titanate. Both the total and respirable dustiness spanned two orders of magnitude (0.3–37.9% and 0.1–31.8% of the predispersed test powders, respectively). For many powders, a significant respirable dustiness was observed. For most powders studied, the respirable dustiness accounted for approximately one-third of the total dustiness. It is believed that this relationship holds for many fine and nanoscale test powders (i.e. those primarily selected for this study), but may not hold for coarse powders. Neither total nor respirable dustiness was found to be correlated with BET surface area, therefore dustiness is not determined by primary particle size. For a subset of test powders, aerodynamic particle size distributions by number were measured (with an electrical low-pressure impactor and an aerodynamic particle sizer). Particle size modes ranged from approximately 300nm to several micrometers, but no modes below 100nm, were observed. It is therefore unlikely that these materials would exhibit a substantial sub-100nm particle contribution in a workplace. PMID:23065675

  15. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOEpatents

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  16. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOEpatents

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  17. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOEpatents

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2015-07-14

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  18. Synthesis, dynamics and photophysics of nanoscale systems

    NASA Astrophysics Data System (ADS)

    Mirkovic, Tihana

    The emerging field of nanotechnology, which spans diverse areas such as nanoelectronics, medicine, chemical and pharmaceutical industries, biotechnology and computation, focuses on the development of devices whose improved performance is based on the utilization of self-assembled nanoscale components exhibiting unique properties owing to their miniaturized dimensions. The first phase in the conception of such multifunctional devices based on integrated technologies requires the study of basic principles behind the functional mechanism of nanoscale components, which could originate from individual nanoobjects or result as a collective behaviour of miniaturized unit structures. The comprehensive studies presented in this thesis encompass the mechanical, dynamical and photophysical aspects of three nanoscale systems. A newly developed europium sulfide nanocrystalline material is introduced. Advances in synthetic methods allowed for shape control of surface-functionalized EuS nanocrystals and the fabrication of multifunctional EuS-CdSe hybrid particles, whose unique structural and optical properties hold promise as useful attributes of integrated materials in developing technologies. A comprehensive study based on a new class of multifunctional nanomaterials, derived from the basic unit of barcoded metal nanorods is presented. Their chemical composition affords them the ability to undergo autonomous motion in the presence of a suitable fuel. The nature of their chemically powered self-propulsion locomotion was investigated, and plausible mechanisms for various motility modes were presented. Furthermore functionalization of striped metallic nanorods has been realized through the incorporation of chemically controlled flexible hinges displaying bendable properties. The structural aspect of the light harvesting machinery of a photosynthetic cryptophyte alga, Rhodomonas CS24, and the mobility of the antenna protein, PE545, in vivo were investigated. Information obtained

  19. Parallel optical nanolithography using nanoscale bowtie apertures

    NASA Astrophysics Data System (ADS)

    Uppuluri, Sreemanth M. V.

    Over the past two decades various branches of science and engineering have developed techniques for producing nanoscopic light sources for different applications such as imaging, detection and fabrication. These areas include near-field scanning optical microscopy (NSOM), surface-enhanced Raman scattering and detection (SERS), plasmonics and so on. In particular nanolithography techniques have been developed to produce feature sizes in the sub-100 nm length scales. These processes include variations of standard photolithography process to achieve high resolution, optical fiber-based near-field lithography, surface plasmon assisted nanolithography, interference optical lithography and so on. This work presents a study of the viability of using nanoscale bowtie apertures for nanolithography. Bowtie apertures exhibit a unique property of supporting a propagating TE10 mode at wavelengths of light in the visible and near-UV regimes. The energy of this mode is concentrated in the gap region of the aperture and thus these apertures have the potential to produce high intensity nanoscale light spots that can be used for nano-patterning applications. We demonstrate this capability of nanoscale bowtie apertures by patterning photoresist to obtain resolution less than 100 nm. Initially we present the results from static lithography experiments and show that the ridge apertures of different shapes -- C, H and bowtie produce holes in the photoresist of dimensions around 50-60 nm. Subsequently we address the issues involved in using these apertures for nano directwriting. We show that chromium thin-films offer a viable solution to produce high quality metal films of surface roughness less than 1 nm over an area of 25 mum2. This is indeed important to achieve intimate contact between the apertures and the photoresist surface. We also explain ways to decrease friction between the mask and photoresist surfaces during nano direct-writing. In addition, to decrease the contact force

  20. Nanoscale Semiconductor Devices as New Biomaterials

    PubMed Central

    Zimmerman, John; Parameswaran, Ramya; Tian, Bozhi

    2016-01-01

    Research on nanoscale semiconductor devices will elicit a novel understanding of biological systems. First, we discuss why it is necessary to build interfaces between cells and semiconductor nanoelectronics. Second, we describe some recent molecular biophysics studies with nanowire field effect transistor sensors. Third, we present the use of nanowire transistors as electrical recording devices that can be integrated into synthetic tissues and targeted intra- or extracellularly to study single cells. Lastly, we discuss future directions and challenges in further developing this area of research, which will advance biology and medicine. PMID:27213041

  1. Enhanced fluid flow through nanoscale carbon pipes.

    PubMed

    Whitby, Max; Cagnon, Laurent; Thanou, Maya; Quirke, Nick

    2008-09-01

    Recent experimental and theoretical studies demonstrate that pressure driven flow of fluids through nanoscale ( d < 10 nm) carbon pores occurs 4 to 5 orders of magnitude faster than predicted by extrapolation from conventional theory. Here, we report experimental results for flow of water, ethanol, and decane through carbon nanopipes with larger inner diameters (43 +/- 3 nm) than previously investigated. We find enhanced transport up to 45 times theoretical predictions. In contrast to previous work, in our systems, decane flows faster than water. These nanopipes were composed of amorphous carbon deposited from ethylene vapor in alumina templates using a single step fabrication process.

  2. Nanoscale investigation of organic - inorganic halide perovskites

    NASA Astrophysics Data System (ADS)

    Cacovich, S.; Divitini, G.; Vrućinić, M.; Sadhanala, A.; Friend, R. H.; Sirringhaus, H.; Deschler, F.; Ducati, C.

    2015-10-01

    Over the last few years organic - inorganic halide perovskite-based solar cells have exhibited a rapid evolution, reaching certified power conversion efficiencies now surpassing 20%. Nevertheless the understanding of the optical and electronic properties of such systems on the nanoscale is still an open problem. In this work we investigate two model perovskite systems (based on iodine - CH3NH3PbI3 and bromine - CH3NH3PbBr3), analysing the local elemental composition and crystallinity and identifying chemical inhomogeneities.

  3. Nanoscale deicing by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Xiao, Senbo; He, Jianying; Zhang, Zhiliang

    2016-07-01

    Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice adhesion strength by an aqueous water layer, and provide atomistic details that support previous experimental studies. Our results contribute quantitative comparison of nanoscale adhesion strength of ice on hydrophobic and hydrophilic surfaces, and supply for the first time theoretical references for understanding the mechanics at the atomistic origins of macroscale ice adhesion.Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice

  4. Size-Dependent Accuracy of Nanoscale Thermometers.

    PubMed

    Alicki, Robert; Leitner, David M

    2015-07-23

    The accuracy of two classes of nanoscale thermometers is estimated in terms of size and system-dependent properties using the spin-boson model. We consider solid state thermometers, where the energy splitting is tuned by thermal properties of the material, and fluorescent organic thermometers, in which the fluorescence intensity depends on the thermal population of conformational states of the thermometer. The results of the theoretical model compare well with the accuracy reported for several nanothermometers that have been used to measure local temperature inside living cells.

  5. Visualizing viral assemblies in a nanoscale biosphere.

    PubMed

    Gilmore, Brian L; Showalter, Shannon P; Dukes, Madeline J; Tanner, Justin R; Demmert, Andrew C; McDonald, Sarah M; Kelly, Deborah F

    2013-01-21

    We present a novel microfluidic platform to examine biological assemblies at high-resolution. We have engineered a functionalized chamber that serves as a "nanoscale biosphere" to capture and maintain rotavirus double-layered particles (DLPs) in a liquid environment. The chamber can be inserted into the column of a transmission electron microscope while being completely isolated from the vacuum system. This configuration allowed us to determine the structure of biological complexes at nanometer-resolution within a self-contained vessel. Images of DLPs were used to calculate the first 3D view of macromolecules in solution. We refer to this new fluidic visualization technology as in situ molecular microscopy.

  6. Defect-tolerant extreme ultraviolet nanoscale printing.

    PubMed

    Urbanski, L; Isoyan, A; Stein, A; Rocca, J J; Menoni, C S; Marconi, M C

    2012-09-01

    We present a defect-free lithography method for printing periodic features with nanoscale resolution using coherent extreme ultraviolet light. This technique is based on the self-imaging effect known as the Talbot effect, which is produced when coherent light is diffracted by a periodic mask. We present a numerical simulation and an experimental verification of the method with a compact extreme ultraviolet laser. Furthermore, we explore the extent of defect tolerance by testing masks with different defect layouts. The experimental results are in good agreement with theoretical calculations.

  7. Nanoscale heat flux between nanoporous materials.

    PubMed

    Biehs, S-A; Ben-Abdallah, P; Rosa, F S S; Joulain, K; Greffet, J-J

    2011-09-12

    By combining stochastic electrodynamics and the Maxwell-Garnett description for effective media we study the radiative heat transfer between two nanoporous materials. We show that the heat flux can be significantly enhanced by air inclusions, which we explain by: (a) the presence of additional surface waves that give rise to supplementary channels for heat transfer throughout the gap, (b) an increase in the contribution given by the ordinary surface waves at resonance, (c) and the appearance of frustrated modes over a broad spectral range. We generalize the known expression for the nanoscale heat flux for anisotropic metamaterials.

  8. Nanoscale Sensing with Nitrogen Vacancy Centers

    NASA Astrophysics Data System (ADS)

    Urbach, Elana; Lovchinsky, Igor; Sushkov, Alex; Park, Hongkun; Lukin, Mikhail

    2015-05-01

    In the last several decades Magnetic resonance imaging (MRI) has emerged as a powerful tool in science and technology. Conventional MRI technology, however, relies on measuring magnetic fields from a large (macroscopic) number of molecules, for example tissues in specific areas of the brain. Extending these techniques to the nanoscale could enable revolutionary advances in the physical, biological and medical sciences. Here we report on recent progress in using Nitrogen-Vacancy (NV) centers in diamond to detect small numbers of nuclear spins in biological molecules. In particular, we have demonstrated detection of single proteins attached to the diamond surface.

  9. Energy band alignment at the nanoscale

    NASA Astrophysics Data System (ADS)

    Deuermeier, Jonas; Fortunato, Elvira; Martins, Rodrigo; Klein, Andreas

    2017-01-01

    The energy band alignments at interfaces often determine the electrical functionality of a device. Along with the size reduction into the nanoscale, functional coatings become thinner than a nanometer. With the traditional analysis of the energy band alignment by in situ photoelectron spectroscopy, a critical film thickness is needed to determine the valence band offset. By making use of the Auger parameter, it becomes possible to determine the energy band alignment to coatings, which are only a few Ångström thin. This is demonstrated with experimental data of Cu2O on different kinds of substrate materials.

  10. Nanoscale Semiconductor Devices as New Biomaterials.

    PubMed

    Zimmerman, John; Parameswaran, Ramya; Tian, Bozhi

    2014-05-01

    Research on nanoscale semiconductor devices will elicit a novel understanding of biological systems. First, we discuss why it is necessary to build interfaces between cells and semiconductor nanoelectronics. Second, we describe some recent molecular biophysics studies with nanowire field effect transistor sensors. Third, we present the use of nanowire transistors as electrical recording devices that can be integrated into synthetic tissues and targeted intra- or extracellularly to study single cells. Lastly, we discuss future directions and challenges in further developing this area of research, which will advance biology and medicine.

  11. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).

    PubMed

    Böke, Frederik; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido; Fischer, Horst

    2016-07-20

    Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous

  12. Nanoscale Assemblies of Small Molecules Control the Fate of Cells.

    PubMed

    Shi, Junfeng; Xu, Bing

    2015-10-01

    Being driven by non-covalent interactions, the formation of functional assemblies (or aggregates) of small molecules at nanoscale is a more common process in water than one would think. While most efforts on self-assembly in cellular environment concentrate on the assemblies of proteins (e.g., microtubules or amyloid fibers), nanoscale assemblies of small molecules are emerging functional entities that exhibit important biological function in cellular environments. This review describes the increasing efforts on the exploration of nanoscale assemblies of small molecules that largely originate from the serendipitous observations in research fields other than nanoscience and technology. Specifically, we describe that nanoscale assemblies of small molecules exhibit unique biological functions in extracellular and intracellular environment, thus inducing various cellular responses, like causing cell death or promoting cell proliferation. We first survey certain common feature of nanoscale molecular assemblies, then discuss several specific examples, such as, nanoscale assemblies of small peptides accumulated in the cells for selectively inhibiting cancer cells via promiscuous interactions with proteins, and nanoscale assemblies of a glycoconjugate for promoting the proliferation of stem cells or for suppressing immune responses. Subsequently, we emphasize the spatiotemporal control of nanoscale assemblies for controlling the cell fate, particularly illustrate a paradigm-shifting approach-enzyme-instructed self-assembly (EISA), that is, the integration of enzymatic reaction and self-assembly-for generating nanoscale assemblies from innocuous monomers for selectively inhibiting cancer cells. Moreover, we introduce a convenient assay for proteomic study of the proteins that interact with nanoscale assemblies of small molecules in cellular environment. Furthermore, we introduce the use of ligand-receptor interaction to catalyze the formation of nanoscale assemblies. By

  13. Method to adjust multilayer film stress induced deformation of optics

    DOEpatents

    Spiller, Eberhard A.; Mirkarimi, Paul B.; Montcalm, Claude; Bajt, Sasa; Folta, James A.

    2000-01-01

    Stress compensating systems that reduces/compensates stress in a multilayer without loss in reflectivity, while reducing total film thickness compared to the earlier buffer-layer approach. The stress free multilayer systems contain multilayer systems with two different material combinations of opposite stress, where both systems give good reflectivity at the design wavelengths. The main advantage of the multilayer system design is that stress reduction does not require the deposition of any additional layers, as in the buffer layer approach. If the optical performance of the two systems at the design wavelength differ, the system with the poorer performance is deposited first, and then the system with better performance last, thus forming the top of the multilayer system. The components for the stress reducing layer are chosen among materials that have opposite stress to that of the preferred multilayer reflecting stack and simultaneously have optical constants that allow one to get good reflectivity at the design wavelength. For a wavelength of 13.4 nm, the wavelength presently used for extreme ultraviolet (EUV) lithography, Si and Be have practically the same optical constants, but the Mo/Si multilayer has opposite stress than the Mo/Be multilayer. Multilayer systems of these materials have practically identical reflectivity curves. For example, stress free multilayers can be formed on a substrate using Mo/Be multilayers in the bottom of the stack and Mo/Si multilayers at the top of the stack, with the switch-over point selected to obtain zero stress. In this multilayer system, the switch-over point is at about the half point of the total thickness of the stack, and for the Mo/Be--Mo/Si system, there may be 25 deposition periods Mo/Be to 20 deposition periods Mo/Si.

  14. Multi-layer waste containment barrier

    SciTech Connect

    Smith, Ann Marie; Gardner, Bradley M.; Nickelson, David F.

    1999-01-01

    An apparatus for constructing an underground containment barrier for containing an in-situ portion of earth. The apparatus includes an excavating device for simultaneously (i) excavating earthen material from beside the in-situ portion of earth without removing the in-situ portion and thereby forming an open side trench defined by opposing earthen sidewalls, and (ii) excavating earthen material from beneath the in-situ portion of earth without removing the in-situ portion and thereby forming a generally horizontal underground trench beneath the in-situ portion defined by opposing earthen sidewalls. The apparatus further includes a barrier-forming device attached to the excavating device for simultaneously forming a side barrier within the open trench and a generally horizontal, multi-layer barrier within the generally horizontal trench. The multi-layer barrier includes at least a first layer and a second layer.

  15. Anaplastic ependymoma with ependymoblastic multilayered rosettes.

    PubMed

    Nobusawa, Sumihito; Suzuki, Aya; Nagaishi, Masaya; Isoda, Koji; Ikota, Hayato; Yokoo, Hideaki; Hirato, Junko; Nakazato, Yoichi

    2013-11-01

    Anaplastic ependymoma, World Health Organization grade III, is a malignant glioma with ependymal differentiation characterized by high mitotic activity often accompanied by microvascular proliferation and necrosis, where, generally, much fewer ependymal rosettes are found than in ependymoma, World Health Organization grade II. Ependymal rosettes, forming a single layer of tumor cells, differ from ependymoblastic multilayered rosettes, which are characteristic histologic features of ependymoblastoma, a variant of central nervous system primitive neuroectodermal tumor. Here, we report an autopsy case involving a 24-year-old woman with a frontal lobe tumor, which showed the aggregation of true rosettes with multilayering of tumor cells resembling the ependymoblastoma histology. Molecular and cytogenetic analyses revealed the absence of 19q13.42 amplification, a specific molecular hallmark of ependymoblastoma and embryonal tumor with abundant neuropil and true rosettes, supporting the diagnosis of anaplastic ependymoma.

  16. Random walk centrality in interconnected multilayer networks

    NASA Astrophysics Data System (ADS)

    Solé-Ribalta, Albert; De Domenico, Manlio; Gómez, Sergio; Arenas, Alex

    2016-06-01

    Real-world complex systems exhibit multiple levels of relationships. In many cases they require to be modeled as interconnected multilayer networks, characterizing interactions of several types simultaneously. It is of crucial importance in many fields, from economics to biology and from urban planning to social sciences, to identify the most (or the less) influent nodes in a network using centrality measures. However, defining the centrality of actors in interconnected complex networks is not trivial. In this paper, we rely on the tensorial formalism recently proposed to characterize and investigate this kind of complex topologies, and extend two well known random walk centrality measures, the random walk betweenness and closeness centrality, to interconnected multilayer networks. For each of the measures we provide analytical expressions that completely agree with numerically results.

  17. Solar absorption in thick and multilayered glazings

    SciTech Connect

    Powles, Rebecca; Curcija, Dragan; Kohler, Christian

    2002-02-01

    Thick and multilayered glazings generally have a nonuniform distribution of absorbed solar radiation which is not taken into account by current methods for calculating the center of glass solar gain and thermal performance of glazing systems. This paper presents a more accurate method for calculating the distribution of absorbed solar radiation inside thick and multilayered glazings and demonstrates that this can result in a small but significant difference in steady-state temperature profile and Solar Heat Gain Coefficient for some types of glazing systems when compared to the results of current methods. This indicates that a more detailed approach to calculating the distribution of absorbed solar radiation inside glazings and resulting thermal performance may be justified for certain applications.

  18. Optical performance of LPP multilayer collector mirrors

    NASA Astrophysics Data System (ADS)

    Feigl, Torsten; Perske, Marco; Pauer, Hagen; Fiedler, Tobias; Yulin, Sergiy; Trost, Marcus; Schröder, Sven; Duparré, Angela; Kaiser, Norbert; Tünnermann, Andreas; Böwering, Norbert R.; Ershov, Alex I.; Hoffmann, Kay; La Fontaine, Bruno; Cummings, Kevin D.

    2012-03-01

    The usable power and the collector optics lifetime of high-power extreme ultraviolet light sources at 13.5 nm are considered as the major challenges in the transitioning of EUV lithography from the current pre-production phase to high volume manufacturing. We give a detailed performance summary of the large ellipsoidal multilayer collector mirrors used in Cymer's laser-produced plasma extreme ultraviolet light sources. In this paper we present the optical performance - reflectance and wavelength - of the multilayer-coated ellipsoidal collectors as well as a novel approach for the roughness characterization of large EUV mirror optics based on light scattering measurements at 442 nm. We also describe the optical performance and characteristics during operation of the light source and the substantial increase of collector lifetime by the implementation of new coating designs.

  19. Tunable bands in biased multilayer epitaxial graphene.

    PubMed

    Williams, Michael D; Samarakoon, Duminda K; Hess, Dennis W; Wang, Xiao-Qian

    2012-04-28

    We have studied the electronic characteristics of multilayer epitaxial graphene under a perpendicularly applied electric bias. Ultraviolet photoemission spectroscopy measurements reveal that there is notable variation of the electronic density-of-states in valence bands near the Fermi level. Evolution of the electronic structure of graphite and rotational-stacked multilayer epitaxial graphene as a function of the applied electric bias is investigated using first-principles density-functional theory including interlayer van der Waals interactions. The experimental and theoretical results demonstrate that the tailoring of electronic band structure correlates with the interlayer coupling tuned by the applied bias. The implications of controllable electronic structure of rotationally fault-stacked epitaxial graphene grown on the C-face of SiC for future device applications are discussed.

  20. Progress on electrocaloric multilayer ceramic capacitor development

    NASA Astrophysics Data System (ADS)

    Hirose, Sakyo; Usui, Tomoyasu; Crossley, Sam; Nair, Bhasi; Ando, Akira; Moya, Xavier; Mathur, Neil D.

    2016-06-01

    A multilayer capacitor comprising 19 layers of 38 μm-thick 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 has elsewhere been shown to display electrocaloric temperature changes of 2.2 K due to field changes of 24 V μm-1, near ˜100 °C. Here we demonstrate temperature changes of 1.2 K in an equivalent device with 2.6 times the thermal mass, i.e., 49 layers that could tolerate 10.3 V μm-1. Breakdown was compromised by the increased number of layers, and occurred at 10.5 V μm-1 near the edge of a near-surface inner electrode. Further optimization is required to improve the breakdown strength of large electrocaloric multilayer capacitors for cooling applications.

  1. Magnetic nanodiscs fabricated from multilayered nanowires.

    PubMed

    Min, Ji Hyun; Cho, Ji Ung; An, Boo Hyun; Choi, Daniel S; Kimlr, Young Keun

    2014-10-01

    We report a simple, high throughput synthesis method of producing magnetic nanodiscs, in which the diameter and thickness are easily controlled. This method consists of two steps: (1) Electrodeposition for growing multilayered nanowires and (2) Selective etching of sacrificial layers. The electrodeposition step results in a bundle of multilayered nanowires. The nanowires consist of alternating layers of magnetic (e.g., Co) and sacrificial materials (e.g., Cu) inside the nanometer-sized pores of an anodized aluminum oxide (AAO) template. The diameter of each layer is determined by pore size, while the thickness is controlled by electrodeposition time. The selective wet etching step removes sacrificial layers, leaving the magnetic nanodiscs. Through this process, the magnetic nanodiscs are fabricated with aspect ratios ranging from 0.25 to 2.0.

  2. Multilayer self-structured bubble memories

    NASA Technical Reports Server (NTRS)

    Kamin, M.; Krawczak, J. A.; Lins, S. J.; Torok, E. J.; Stermer, R. L., Jr.

    1979-01-01

    Research work on multilayer self-structured bubble memories is at an early stage. The coupling of bubbles to stripes is investigated theoretically and experimentally and shown to be adequate for propagation. Propagation of stripes is demonstrated both by current access and field access techniques. These propagation techniques are of prime interest because they can eliminate most photographic features from the storage area. Multilayer films offer great promise for higher-capacity higher-density memories in which most of the photolithography has been eliminated and the minimum feature size of much of the remaining has been increased. Furthermore, stripe propagation can be carried out with current access, providing a significant reduction in packaging cost and power consumption over field access devices.

  3. Thermite at the Nano-Scale

    NASA Astrophysics Data System (ADS)

    Mily, Edward Joseph, Jr.

    Physical vapor deposition of thin film thermites allow for a clean avenue for probing fundamental properties of nanoenergetic materials that prove difficult for traditional powder processing. Precise control over diffusion dimensions, microstructure, and total amount of material are able to be realized with this fabrication technique and the testing of such materials provide valuable insight into how oxidation occurs. This thesis provides several examples of how existing PVD techniques can be coupled with thermite constituents to further the energetic community's understanding of how oxidation occurs in the solid state with the variation of geometric and chemical alterations. The goal of these investigations was to elucidate which material properties and mechanisms drive exothermic activity. The thermite thin films of Al/CuO, Zr/CuO, and Mg/Cuo with varied reducing metal constituents were tested under slow heating conditions. The trend of the metal variation demonstrated the importance of terminal oxide diffusion properties in either impeding or enhancing oxygen exchange. When the reducing metal forms a terminal oxide with limited oxygen diffusivity, exothermicity requires elevated activation energies to commence self-sustaining reaction. In addition to the effects of chemical variation, bilayer thicknesses were varied and found to decrease exothermic peak temperatures similar to the trends found in intermetallic thin film energetics and powder energetic materials. The thin film thermites were also subjected to extreme initiation methods via laser driven flyer plate impact ignition and high heating rate heat treatment (105 K/s). General insight into nano thermite behavior at environments characteristic of applications was sought, and similar trends discovered among slow vs rapid testing. Decreasing reaction dimensions yielded higher reactivity and diffusion barrier properties role in impacting exothermic behavior persist to into the microsecond regime. Ultimately

  4. Semiconductor Laser With Multilayer Dielectric Reflector

    NASA Technical Reports Server (NTRS)

    Lang, Robert J.

    1991-01-01

    Multilayer dielectric reflector included in proposed surface-emitting, distributed-feedback, grating semiconductor laser (e.g., a GaAlAs device). Contributes to efficiency and output power of laser by reducing amount of light entering substrate, where wasted by absorption. Index of refraction in reflector sublayers alternates between higher and lower value. Higher value less than effective index of refraction of waveguide layer.

  5. Multilayer structure formation via homophily and homeostasis

    NASA Astrophysics Data System (ADS)

    Makarov, Vladimir V.; Koronovskii, Alexey A.; Maksimenko, Vladimir A.; Khramova, Marina V.; Hramov, Alexander E.; Pavlov, Alexey N.; Moskalenko, Olga I.; Buldú, Javier M.; Boccaletti, Stefano

    2016-03-01

    The competition of homophily and homeostasis mechanisms taking place in the multilayer network where several layers of connection topologies are simultaneously present as well as the interaction between layers is considered. We have shown that the competition of homophily and homeostasis leads in such networks to the formation of synchronous patterns within the different layers of the network, which may be both the distinct and identical.

  6. Response time for multilayered platinum resistance thermometers

    NASA Technical Reports Server (NTRS)

    Pandey, D. K.; Ash, R. L.

    1985-01-01

    Response time constants for several multilayered temperature transducers were determined numerically by using Martin Marietta's MITAS software package which is available at NASA Langley Research Center. Present results were found in close agreement with the solutions reported in the literature, thus, the capability of MITAS was justified. On the basis of experiences gained, the MITAS is recommended for use in predicting the response time constants of sensors by an in-situ technique.

  7. A continuum model of a multilayer nanosheet

    NASA Astrophysics Data System (ADS)

    Morozov, N. F.; Tovstik, P. E.; Tovstik, T. P.

    2016-11-01

    A continuum model for describing the bending and free vibrations of a crystalline graphite sheet consisting of graphene layers is proposed. Graphene is modeled by a two-dimensional layer having a finite rigidity under extension and bending. The interval between graphene layers through which their Van-der-Waals interaction occurs is modeled by a fictitious layer with relatively low rigidity. In the solution, formulas describing the bending of a multilayer sheet with alternating rigid and soft layers are used.

  8. Piezoresistive Transduction in Multilayer Polycrystalline Silicon Resonators

    DTIC Science & Technology

    2009-10-01

    semiconductor CMOS foundry processes,6 and as such, is amenable to integration with minimal process disruption. A further advantage of this approach is...poly- crystalline silicon CMOS foundry processes, opening up the possibility of directly integrating MEMS devices and trans- ducers with CMOS . This... Fab - rication was performed at the Cornell Nanoscale Science and Technology Facility, and certain measurements were per- formed at the Cornell Center

  9. Evolutionary games on multilayer networks: a colloquium

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Wang, Lin; Szolnoki, Attila; Perc, Matjaž

    2015-05-01

    Networks form the backbone of many complex systems, ranging from the Internet to human societies. Accordingly, not only is the range of our interactions limited and thus best described and modeled by networks, it is also a fact that the networks that are an integral part of such models are often interdependent or even interconnected. Networks of networks or multilayer networks are therefore a more apt description of social systems. This colloquium is devoted to evolutionary games on multilayer networks, and in particular to the evolution of cooperation as one of the main pillars of modern human societies. We first give an overview of the most significant conceptual differences between single-layer and multilayer networks, and we provide basic definitions and a classification of the most commonly used terms. Subsequently, we review fascinating and counterintuitive evolutionary outcomes that emerge due to different types of interdependencies between otherwise independent populations. The focus is on coupling through the utilities of players, through the flow of information, as well as through the popularity of different strategies on different network layers. The colloquium highlights the importance of pattern formation and collective behavior for the promotion of cooperation under adverse conditions, as well as the synergies between network science and evolutionary game theory.

  10. Physical Properties of PC-PMMA Multilayers

    NASA Astrophysics Data System (ADS)

    Rahman, Arifur; Baer, Eric; Chipara, Alin Cristian; Vajtai, Robert; Ajayan, Pullickel M.; Hinthorne, James; Elamin, Ibrahim; Chipara, Mircea; Eric Baer Collaboration; Pullickel Ajayan Collaboration; Mircea Chipara Collaboration

    2015-03-01

    Multilayers of polycarbonate (PC) and polymethylmethacrylate (PMMA) have been obtained by the layer multiplying coextrusion method. Each sample (1024 layers, of equal thickness, with individual thickness between 10 and 200 nm) has been investigated at room temperature by Wide Angle X-Ray Scattering (WAXS) using a Bruker Discovery 8 spectrometer (Cu K α radiation), Raman spectroscopy (Bruker Senterra confocal Raman spectrometer operating at 785 nm), FTIR spectroscopy (Tensor 27 Bruker), and UV-Vis spectroscopy. Further details about the glass transition temperature in these samples have been obtained by Dynamical Mechanical Analysis, DMA, (TA Instruments Q800) at various frequencies in the range 1 to 100 Hz. Isothermal Differential Scanning Calorimetry, DSC, (TA Instruments Q200) was used to investigate the effect of the thickness of the polymeric film on the crystallization processes. Non-isothermal DSC measurements aimed at the identification and location of the main phase transitions (glass, crystallization, and melting) occurring in these multilayers. The effects of confinement on the phase transitions occurring in these multilayers are discussed in detail.

  11. Subwavelength resolution from multilayered structure (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cheng, Bo Han; Jen, Yi-Jun; Liu, Wei-Chih; Lin, Shan-wen; Lan, Yung-Chiang; Tsai, Din Ping

    2016-10-01

    Breaking optical diffraction limit is one of the most important issues needed to be overcome for the demand of high-density optoelectronic components. Here, a multilayered structure which consists of alternating semiconductor and dielectric layers for breaking optical diffraction limitation at THz frequency region are proposed and analyzed. We numerically demonstrate that such multilayered structure not only can act as a hyperbolic metamaterial but also a birefringence material via the control of the external temperature (or magnetic field). A practical approach is provided to control all the diffraction signals toward a specific direction by using transfer matrix method and effective medium theory. Numerical calculations and computer simulation (based on finite element method, FEM) are carried out, which agree well with each other. The temperature (or magnetic field) parameter can be tuned to create an effective material with nearly flat isofrequency feature to transfer (project) all the k-space signals excited from the object to be resolved to the image plane. Furthermore, this multilayered structure can resolve subwavelength structures at various incident THz light sources simultaneously. In addition, the resolution power for a fixed operating frequency also can be tuned by only changing the magnitude of external magnetic field. Such a device provides a practical route for multi-functional material, photolithography and real-time super-resolution image.

  12. Automation Enhancement of Multilayer Laue Lenses

    SciTech Connect

    Lauer K. R.; Conley R.

    2010-12-01

    X-ray optics fabrication at Brookhaven National Laboratory has been facilitated by a new, state of the art magnetron sputtering physical deposition system. With its nine magnetron sputtering cathodes and substrate carrier that moves on a linear rail via a UHV brushless linear servo motor, the system is capable of accurately depositing the many thousands of layers necessary for multilayer Laue lenses. I have engineered a versatile and automated control program from scratch for the base system and many subsystems. Its main features include a custom scripting language, a fully customizable graphical user interface, wireless and remote control, and a terminal-based interface. This control system has already been successfully used in the creation of many types of x-ray optics, including several thousand layer multilayer Laue lenses.Before reaching the point at which a deposition can be run, stencil-like masks for the sputtering cathodes must be created to ensure the proper distribution of sputtered atoms. Quality of multilayer Laue lenses can also be difficult to measure, given the size of the thin film layers. I employ my knowledge of software and algorithms to further ease these previously painstaking processes with custom programs. Additionally, I will give an overview of an x-ray optic simulator package I helped develop during the summer of 2010. In the interest of keeping my software free and open, I have worked mostly with the multiplatform Python and the PyQt application framework, utilizing C and C++ where necessary.

  13. Resonant Raman spectroscopy of twisted multilayer graphene

    NASA Astrophysics Data System (ADS)

    Wu, Jiang-Bin; Zhang, Xin; Ijäs, Mari; Han, Wen-Peng; Qiao, Xiao-Fen; Li, Xiao-Li; Jiang, De-Sheng; Ferrari, Andrea C.; Tan, Ping-Heng

    2014-11-01

    Graphene and other two-dimensional crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientation have different optical and electronic properties. Probing and understanding the interface coupling is thus of primary importance for fundamental science and applications. Here we study twisted multilayer graphene flakes with multi-wavelength Raman spectroscopy. We find a significant intensity enhancement of the interlayer coupling modes (C peaks) due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. The interlayer coupling results in a Davydov splitting of the C peak in systems consisting of two equivalent graphene multilayers. This allows us to directly quantify the interlayer interaction, which is much smaller compared with Bernal-stacked interfaces. This paves the way to the use of Raman spectroscopy to uncover the interface coupling of two-dimensional hybrids and heterostructures.

  14. Multilayer network decoding versatility and trust

    NASA Astrophysics Data System (ADS)

    Sarkar, Camellia; Yadav, Alok; Jalan, Sarika

    2016-01-01

    In the recent years, the multilayer networks have increasingly been realized as a more realistic framework to understand emergent physical phenomena in complex real-world systems. We analyze massive time-varying social data drawn from the largest film industry of the world under a multilayer network framework. The framework enables us to evaluate the versatility of actors, which turns out to be an intrinsic property of lead actors. Versatility in dimers suggests that working with different types of nodes are more beneficial than with similar ones. However, the triangles yield a different relation between type of co-actor and the success of lead nodes indicating the importance of higher-order motifs in understanding the properties of the underlying system. Furthermore, despite the degree-degree correlations of entire networks being neutral, multilayering picks up different values of correlation indicating positive connotations like trust, in the recent years. The analysis of weak ties of the industry uncovers nodes from a lower-degree regime being important in linking Bollywood clusters. The framework and the tools used herein may be used for unraveling the complexity of other real-world systems.

  15. Heat Transfer in High Temperature Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Miller, Steve D.; Cunnington, George R.

    2007-01-01

    High temperature multilayer insulations have been investigated as an effective component of thermal-protection systems for atmospheric re-entry of reusable launch vehicles. Heat transfer in multilayer insulations consisting of thin, gold-coated, ceramic reflective foils and Saffil(TradeMark) fibrous insulation spacers was studied both numerically and experimentally. A finite volume numerical thermal model using combined conduction (gaseous and solid) and radiation in porous media was developed. A two-flux model with anisotropic scattering was used for radiation heat transfer in the fibrous insulation spacers between the reflective foils. The thermal model was validated by comparison with effective thermal conductivity measurements in an apparatus based on ASTM standard C201. Measurements were performed at environmental pressures in the range from 1x10(exp -4) to 760 torr over the temperature range from 300 to 1300 K. Four multilayer samples with nominal densities of 48 kg/cu m were tested. The first sample was 13.3 mm thick and had four evenly spaced reflective foils. The other three samples were 26.6 mm thick and utilized either one, two, or four reflective foils, located near the hot boundary with nominal foil spacing of 1.7 mm. The validated thermal model was then used to study relevant design parameters, such as reflective foil spacing and location in the stack-up and coating of one or both sides of foils.

  16. Polyelectrolyte multilayers: An odyssey through interdisciplinary science

    NASA Astrophysics Data System (ADS)

    Jaber, Jad A.

    This dissertation provides an overview of a self assembled multilayer technique based on the alternating deposition of oppositely charged polyelectrolytes onto charged solid supports. The basic principles and methodologies governing this technique are laid down, and new strategies are built upon the latter, in an effort to develop innovative technologies that would be beneficial for making new products or improving the quality of existing ones. Fundamental studies to characterize the water content, efficiency of ion-pairing, differential strength of electrostatic interactions, topology, and viscoelastic properties of polyelectrolyte multilayers, PEMUs, are illustrated and conducted. In addition, polyelectrolyte multilayers that are stimulus responsive, or support active and controlled bio-motor protein interactions are described. Attenuated total reflectance Fourier transform infrared, (ATR), spectroscopy was used to compare the extent of swelling and doping within PAH/PSS and PDADMA/PSS polyelectrolyte multilayers. Unlike PDADMA/PSS, whose water content depended on the solution ionic strength, PAH/PSS was resistant to swelling by salt. It was stable up to 4.0 M sodium chloride, with 6 water molecules per ion-pair. Using the infrared active perchlorate sodium salt, the amount of residual persistent extrinsic sites in both PDADMA/PSS and PAH/PSS was determined to be 3% and 6%, respectively. The free energy of association between the polymer segments, in the presence of sodium perchlorate, was in the order of 4.5 kJ mol-1 and -9.5 kJ mol-1 for PDADMA/PSS and PAH/PSS correspondingly. Thus, indicating the relatively strong electrostatic association between the polymer segments in a PAH/PSS relative to PDADMA/PSS multilayer. Adjusting the pH of the solution in contact with the PAH/PSS multilayer to 11.5 resulted in a first order discontinuous dissociation of the Pol+Pol- bonds. Techniques used to study the mechanical properties of single muscle fiber were adapted to

  17. Technique for etching monolayer and multilayer materials

    DOEpatents

    Bouet, Nathalie C. D.; Conley, Raymond P.; Divan, Ralu; Macrander, Albert

    2015-10-06

    A process is disclosed for sectioning by etching of monolayers and multilayers using an RIE technique with fluorine-based chemistry. In one embodiment, the process uses Reactive Ion Etching (RIE) alone or in combination with Inductively Coupled Plasma (ICP) using fluorine-based chemistry alone and using sufficient power to provide high ion energy to increase the etching rate and to obtain deeper anisotropic etching. In a second embodiment, a process is provided for sectioning of WSi.sub.2/Si multilayers using RIE in combination with ICP using a combination of fluorine-based and chlorine-based chemistries and using RF power and ICP power. According to the second embodiment, a high level of vertical anisotropy is achieved by a ratio of three gases; namely, CHF.sub.3, Cl.sub.2, and O.sub.2 with RF and ICP. Additionally, in conjunction with the second embodiment, a passivation layer can be formed on the surface of the multilayer which aids in anisotropic profile generation.

  18. Convex lens-induced nanoscale templating

    PubMed Central

    Berard, Daniel J.; Michaud, François; Mahshid, Sara; Ahamed, Mohammed Jalal; McFaul, Christopher M. J.; Leith, Jason S.; Bérubé, Pierre; Sladek, Rob; Reisner, Walter; Leslie, Sabrina R.

    2014-01-01

    We demonstrate a new platform, convex lens-induced nanoscale templating (CLINT), for dynamic manipulation and trapping of single DNA molecules. In the CLINT technique, the curved surface of a convex lens is used to deform a flexible coverslip above a substrate containing embedded nanotopography, creating a nanoscale gap that can be adjusted during an experiment to confine molecules within the embedded nanostructures. Critically, CLINT has the capability of transforming a macroscale flow cell into a nanofluidic device without the need for permanent direct bonding, thus simplifying sample loading, providing greater accessibility of the surface for functionalization, and enabling dynamic manipulation of confinement during device operation. Moreover, as DNA molecules present in the gap are driven into the embedded topography from above, CLINT eliminates the need for the high pressures or electric fields required to load DNA into direct-bonded nanofluidic devices. To demonstrate the versatility of CLINT, we confine DNA to nanogroove and nanopit structures, demonstrating DNA nanochannel-based stretching, denaturation mapping, and partitioning/trapping of single molecules in multiple embedded cavities. In particular, using ionic strengths that are in line with typical biological buffers, we have successfully extended DNA in sub–30-nm nanochannels, achieving high stretching (90%) that is in good agreement with Odijk deflection theory, and we have mapped genomic features using denaturation analysis. PMID:25092333

  19. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. This report is a starting point to determine what is known and what needs to be known about selected nanomaterials as part of a process to identify and prioritize research to inform future assessments of the potential ecological and health implications of these materials. Two specific applications of nanoscale titanium dioxide (nano-TiO2) are considered: (1) as an agent for removing arsenic from drinking water; and (2) as an active ingredient in topical sunscreen. These case studies are organized around a comprehensive environmental assessment (CEA) framework that combines a product life cycle perspective with the risk assessment paradigm. They are intended to help identify what may need to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. These “case studies” do not represent completed or even preliminary assessments, nor are they intended to serve as a basis for risk management decisions in the near term on these specific uses of nano TiO2. Rather, the intent is to use this document in developing the scientific and technical information needed for future assessment efforts.

  20. Superresolution imaging of nanoscale chromosome contacts

    PubMed Central

    Wang, Yejun; Ratna, Prasuna; Shivashankar, G. V.

    2017-01-01

    Co-expression of a specific group of genes requires physical associations among these genes, which form functional chromosomal contacts. While DNA fluorescence in situ hybridization (FISH) pinpoints the localization of genes within the 3D nuclear architecture, direct evidence of physical chromosomal contacts is still lacking. Here, we report a method for the direct visualization of transcription-dependent chromosomal contacts formed in two distinct mechanical states of cells. We prepared open chromatin spreads from isolated nuclei, ensuring 2D rendering of chromosome organization. Superresolution imaging of these chromatin spreads resolved the nanoscale organization of genome contacts. We optimized our imaging method using chromatin spreads from serum+/− cells. We then showed direct visualization of functional gene clusters targeted by YAP (Yes-associated protein) and SRF (Serum response factor) transcription factors. In addition, we showed the association of NF-κB bound gene clusters induced by TNF-α addition. Furthermore, EpiTect ChIP qPCR results showed that these nanoscale clusters were enriched with corresponding transcription factors. Taken together, our method provides a robust platform to directly visualize and study specific genome-wide chromosomal contacts. PMID:28186153

  1. Visualizing copper assisted graphene growth in nanoscale

    PubMed Central

    Rosmi, Mohamad Saufi; Yusop, Mohd Zamri; Kalita, Golap; Yaakob, Yazid; Takahashi, Chisato; Tanemura, Masaki

    2014-01-01

    Control synthesis of high quality large-area graphene on transition metals (TMs) by chemical vapor deposition (CVD) is the most fascinating approach for practical device applications. Interaction of carbon atoms and TMs is quite critical to obtain graphene with precise layer number, crystal size and structure. Here, we reveal a solid phase reaction process to achieve Cu assisted graphene growth in nanoscale by in-situ transmission electron microscope (TEM). Significant structural transformation of amorphous carbon nanofiber (CNF) coated with Cu is observed with an applied potential in a two probe system. The coated Cu particle recrystallize and agglomerate toward the cathode with applied potential due to joule heating and large thermal gradient. Consequently, the amorphous carbon start crystallizing and forming sp2 hybridized carbon to form graphene sheet from the tip of Cu surface. We observed structural deformation and breaking of the graphene nanoribbon with a higher applied potential, attributing to saturated current flow and induced Joule heating. The observed graphene formation in nanoscale by the in-situ TEM process can be significant to understand carbon atoms and Cu interaction. PMID:25523645

  2. Directed Nanoscale Assembly of Graphene Based Materials

    NASA Astrophysics Data System (ADS)

    Kim, Sang Ouk

    Graphene based materials, including fullerene, carbon nanotubes and graphene, are two-dimensional polymeric materials consisting of sp2 hybrid carbons. Those carbon materials have attracted enormous research attention for their outstanding material properties along with molecular scale dimension. The optimized utilization of those materials in various application fields inevitably requires the subtle controllability of their structures and properties. In this presentation, our research achievements associated to directed nanoscale assembly of B- or N-doped graphene based materials will be introduced. Graphene based materials can be efficiently processed into various three-dimensional structures via self-assembly principles. Those carbon assembled structures with extremely large surface and high electro-conductivity are potentially useful for energy and environmental applications. Aqueous dispersion of graphene oxide shows liquid crystalline phase, whose spontaneous molecular ordering is useful for display or fiber spinning. Along with the structure control by directed nanoscale assembly, substitutional doping of graphene based materials with B- or N- can be attained via various chemical treatment methods. The resultant chemically modified carbon materials with tunable workfunction, charge carrier density and enhanced surface activity could be employed for various nanomaterials and nanodevices for improved functionalities and performances.

  3. Channeling technique to make nanoscale ion beams

    NASA Astrophysics Data System (ADS)

    Biryukov, V. M.; Bellucci, S.; Guidi, V.

    2005-04-01

    Particle channeling in a bent crystal lattice has led to an efficient instrument for beam steering at accelerators [Biryukov et al., Crystal Channeling and its Application at High Energy Accelerators, Springer, Berlin, 1997], demonstrated from MeV to TeV energies. In particular, crystal focusing of high-energy protons to micron size has been demonstrated at IHEP with the results well in match with Lindhard (critical angle) prediction. Channeling in crystal microstructures has been proposed as a unique source of a microbeam of high-energy particles [Bellucci et al., Phys. Rev. ST Accel. Beams 6 (2003) 033502]. Channeling in nanostructures (single-wall and multi-wall nanotubes) offers the opportunities to produce ion beams on nanoscale. Particles channeled in a nanotube (with typical diameter of about 1 nm) are trapped in two dimensions and can be steered (deflected, focused) with the efficiency similar to that of crystal channeling or better. This technique has been a subject of computer simulations, with experimental efforts under way in several high-energy labs, including IHEP. We present the theoretical outlook for making channeling-based nanoscale ion beams and report the experience with crystal-focused microscale proton beams.

  4. Nanoscale Fluid Mechanics and Energy Conversion

    SciTech Connect

    Chen, X; Xu, BX; Liu, L

    2014-05-29

    Under nanoconfinement, fluid molecules and ions exhibit radically different configurations, properties, and energetics from those of their bulk counterparts. These unique characteristics of nanoconfined fluids, along with the unconventional interactions with solids at the nanoscale, have provided many opportunities for engineering innovation. With properly designed nanoconfinement, several nanofluidic systems have been devised in our group in the past several years to achieve energy conversion functions with high efficiencies. This review is dedicated to elucidating the unique characteristics of nanofluidics, introducing several novel nanofluidic systems combining nanoporous materials with functional fluids, and to unveiling their working mechanisms. In all these systems, the ultra-large surface area available in nanoporous materials provides an ideal platform for seamlessly interfacing with nanoconfined fluids, and efficiently converting energy between the mechanical, thermal, and electrical forms. These systems have been demonstrated to have great potentials for applications including energy dissipation/absorption, energy trapping, actuation, and energy harvesting. Their efficiencies can be further enhanced by designing efforts based upon improved understanding of nanofluidics, which represents an important addition to classical fluid mechanics. Through the few systems exemplified in this review, the emerging research field of nanoscale fluid mechanics may promote more exciting nanofluidic phenomena and mechanisms, with increasing applications by encompassing aspects of mechanics, materials, physics, chemistry, biology, etc.

  5. Towards nanoscale composite particles of dual complexity.

    PubMed

    Wagner, Claudia Simone; Shehata, Samuel; Henzler, Katja; Yuan, Jiayin; Wittemann, Alexander

    2011-03-01

    The fabrication of heteroaggregates comprising inorganic and organic nanoparticles of different sizes is reported. Control over the assembly of nanoscale functional building units is of great significance to many practical applications. Joining together different spherical nanoparticles in a defined manner allows control over the shape of the composites. If two types of constituents are chosen that differ in size, the surfaces of the composites exhibit two specific radii of curvature, yielding aggregates of dual surface roughness. Moreover, if the constituents consist of different materials, the resulting heteroaggregates feature both compositional and interfacial anisotropy, offering unprecedented perspectives for custom-tailored colloids. This study describes a two-step approach towards such designer particles. At first, amine-modified polystyrene particles with 154 nm diameter were assembled into clusters of well-defined configurations. Onto these, oppositely charged inorganic particles with diameters of only a few nanometres were deposited by direct uptake from solution, resulting in numerous functional entities all over the surface of the polymer clusters. Despite the fact that oppositely charged constituents are brought together, charge reversal by uptake of nanoparticles allows for stable suspensions of heterocomposites. Hence, the possibility to assemble particles into nanoscale heterocomposites with full control over shape, composition, and surface roughness is demonstrated.

  6. Superresolution imaging of nanoscale chromosome contacts.

    PubMed

    Wang, Yejun; Ratna, Prasuna; Shivashankar, G V

    2017-02-10

    Co-expression of a specific group of genes requires physical associations among these genes, which form functional chromosomal contacts. While DNA fluorescence in situ hybridization (FISH) pinpoints the localization of genes within the 3D nuclear architecture, direct evidence of physical chromosomal contacts is still lacking. Here, we report a method for the direct visualization of transcription-dependent chromosomal contacts formed in two distinct mechanical states of cells. We prepared open chromatin spreads from isolated nuclei, ensuring 2D rendering of chromosome organization. Superresolution imaging of these chromatin spreads resolved the nanoscale organization of genome contacts. We optimized our imaging method using chromatin spreads from serum+/- cells. We then showed direct visualization of functional gene clusters targeted by YAP (Yes-associated protein) and SRF (Serum response factor) transcription factors. In addition, we showed the association of NF-κB bound gene clusters induced by TNF-α addition. Furthermore, EpiTect ChIP qPCR results showed that these nanoscale clusters were enriched with corresponding transcription factors. Taken together, our method provides a robust platform to directly visualize and study specific genome-wide chromosomal contacts.

  7. Probing Nanoscale Thermal Transport in Surfactant Solutions

    PubMed Central

    Cao, Fangyu; Liu, Ying; Xu, Jiajun; He, Yadong; Hammouda, B.; Qiao, Rui; Yang, Bao

    2015-01-01

    Surfactant solutions typically feature tunable nanoscale, internal structures. Although rarely utilized, they can be a powerful platform for probing thermal transport in nanoscale domains and across interfaces with nanometer-size radius. Here, we examine the structure and thermal transport in solution of AOT (Dioctyl sodium sulfosuccinate) in n-octane liquids using small-angle neutron scattering, thermal conductivity measurements, and molecular dynamics simulations. We report the first experimental observation of a minimum thermal conductivity occurring at the critical micelle concentration (CMC): the thermal conductivity of the surfactant solution decreases as AOT is added till the onset of micellization but increases as more AOT is added. The decrease of thermal conductivity with AOT loading in solutions in which AOT molecules are dispersed as monomers suggests that even the interfaces between individual oleophobic headgroup of AOT molecules and their surrounding non-polar octane molecules can hinder heat transfer. The increase of thermal conductivity with AOT loading after the onset of micellization indicates that the thermal transport in the core of AOT micelles and across the surfactant-oil interfaces, both of which span only a few nanometers, are efficient. PMID:26534840

  8. Nanomaterial Case Study: Nanoscale Silver in Disinfectant ...

    EPA Pesticide Factsheets

    EPA announced the release of the final report, Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray. This report represents a case study of engineered nanoscale silver (nano-Ag), focusing on the specific example of nano-Ag as possibly used in disinfectant sprays. This case study is organized around the comprehensive environmental assessment (CEA) framework, which structures available information pertaining to the product life cycle, environmental transport and fate, exposure-dose in receptors (i.e., humans, ecological populations, and the environment), and potential impacts in these receptors. The document does not draw conclusions about potential risks. Instead, it is intended to be used as part of a process to identify what is known and unknown about nano-Ag in a selected application. In turn, the external review draft of the document provided a starting point to identify and prioritize possible research directions to support future assessments of nanomaterials. The information presented in the case study and the questions raised in this document are a foundation for a process to determine priorities among various research topics and directions. After that process has been completed, a final chapter will be added to this document to summarize highlights from preceding chapters and the major research issues that have emerged.

  9. Synthesis and properties of nanoscale titanium boride

    NASA Astrophysics Data System (ADS)

    Efimova, K. A.; Galevskiy, G. V.; Rudneva, V. V.

    2015-09-01

    This work reports the scientific and technological grounds for plasma synthesis of titanium diboride, including thermodynamic and kinetic conditions of boride formation when titanium and titanium dioxide are interacting with products resulting from boron gasification in the nitrogen - hydrogen plasma flow, and two variations of its behavior using the powder mixtures: titanium - boron and titanium dioxide - boron. To study these technology variations, the mathematical models were derived, describing the relation between element contents in the synthesized products of titanium and free boron and basic parameters. The probable mechanism proposed for forming titanium diboride according to a "vapour - melt - crystal" pattern was examined, covering condensation of titanium vapour in the form of aerosol, boriding of nanoscale melt droplets by boron hydrides and crystallization of titanium - boron melt. The comprehensive physical - chemical certification of titanium diboride was carried out, including the study of its crystal structure, phase and chemical composition, dispersion, morphology and particle oxidation. Technological application prospects for use of titanium diboride nanoscale powder as constituent element in the wettable coating for carbon cathodes having excellent physical and mechanical performance and protective properties.

  10. Structure of nanoscale gas bubbles in metals

    SciTech Connect

    Caro, A. Schwen, D.; Martinez, E.

    2013-11-18

    A usual way to estimate the amount of gas in a bubble inside a metal is to assume thermodynamic equilibrium, i.e., the gas pressure P equals the capillarity force 2γ/R, with γ the surface energy of the host material and R the bubble radius; under this condition there is no driving force for vacancies to be emitted or absorbed by the bubble. In contrast to the common assumption that pressure inside a gas or fluid bubble is constant, we show that at the nanoscale this picture is no longer valid. P and density can no longer be defined as global quantities determined by an equation of state (EOS), but they become functions of position because the bubble develops a core-shell structure. We focus on He in Fe and solve the problem using both continuum mechanics and empirical potentials to find a quantitative measure of this effect. We point to the need of redefining an EOS for nanoscale gas bubbles in metals, which can be obtained via an average pressure inside the bubble. The resulting EOS, which is now size dependent, gives pressures that differ by a factor of two or more from the original EOS for bubble diameters of 1 nm and below.

  11. Method to determine thermal profiles of nanoscale circuitry

    DOEpatents

    Zettl, Alexander K; Begtrup, Gavi E

    2013-04-30

    A platform that can measure the thermal profiles of devices with nanoscale resolution has been developed. The system measures the local temperature by using an array of nanoscale thermometers. This process can be observed in real time using a high resolution imagining technique such as electron microscopy. The platform can operate at extremely high temperatures.

  12. Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy

    ERIC Educational Resources Information Center

    Bogle, Stephanie Nicole

    2009-01-01

    Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…

  13. Bumpy, Sticky, and Shaky: Nanoscale Science and the Curriculum

    ERIC Educational Resources Information Center

    Taylor, Amy; Jones, Gail; Pearl, Thomas P.

    2008-01-01

    Nanoscience, or the study of the world at the size of a billionth of a meter, has the potential to help students see how all of the sciences are related. Behavior of materials at the nanoscale differs from materials at the macroscale. This article introduces three nanoscale properties and how they relate to various science domains. Three…

  14. Fabrication of Nanoscale Circuits on Inkjet-Printing Patterned Substrates.

    PubMed

    Chen, Shuoran; Su, Meng; Zhang, Cong; Gao, Meng; Bao, Bin; Yang, Qiang; Su, Bin; Song, Yanlin

    2015-07-08

    Nanoscale circuits are fabricated by assembling different conducting materials (e.g., metal nanoparticles, metal nano-wires, graphene, carbon nanotubes, and conducting polymers) on inkjet-printing patterned substrates. This non-litho-graphy strategy opens a new avenue for integrating conducting building blocks into nanoscale devices in a cost-efficient manner.

  15. Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray (Final Report)

    EPA Science Inventory

    EPA announced the release of the final report, Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray. This report represents a case study of engineered nanoscale silver (nano-Ag), focusing on the specific example of nano-Ag as possibly used in disinfectant spr...

  16. Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray (Final Report)

    EPA Science Inventory

    Cover of the <span class=Nanoscale Silver Final report"> This final report presents a case study of engineered nanoscale silver (nano-Ag), focusing on...

  17. 76 FR 41178 - Pesticides; Policies Concerning Products Containing Nanoscale Materials; Opportunity for Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... obtaining information about what nanoscale materials are present in registered pesticide products. This... comment on several possible approaches for obtaining information about what nanoscale materials...

  18. Normal incidence multilayer mirrors for extreme ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Stern, R. A.; Haisch, B. M.; Joki, E. G.; Catura, R. C.

    1984-01-01

    Sputtered multilayer coatings allow the use of normal incidence optics in the extreme ultraviolet (EUV) region below 500 A. Multilayer mirrors can be tailored to provide images at strong EUV lines in the sun and stars, in many cases making more efficient use of the telescope aperture than grazing incidence optics. Alternatively, the bandpass can be broadened at the expense of peak effective area, by varying the multilayer structure over the mirror surface. Such mirrors can also serve as optical elements in spectrographs for investigation of specific emission and absorption line complexes, and are self-filtering in that they reject nearby geocoronal and cosmic resonance line backgrounds. Current efforts at the Lockheed Palo Alto Research Laboratory in the design, fabrication, and testing of EUV multilayer mirrors are discussed. This program includes the design and fabrication of normal incidence EUV multilayer mirrors, and the deposition of multilayers on lacquer-coated substrates.

  19. ECR plasma-assisted PVD deposition of α-Fe thin film on melt-spun Nd-Fe-B alloys

    NASA Astrophysics Data System (ADS)

    Fedorchenko, V. D.; Bovda, A. M.; Bovda, V. A.; Chen, C. H.; Chebotarev, V. V.; Garkusha, I. E.; Liu, S.; Medvedev, A. V.; Tereshin, V. I.

    2008-03-01

    The paper deals with plasma-assisted PVD of α-Fe thin film onto the melt-spun Nd-Fe-B-Co ribbons. The parameters of the plasma created by a planar rectangular ECR plasma source with a multipolar magnetic field and a double-slot antenna were as follows: electron density up to 1×1010 cm-3, electron temperature ˜22 eV, the current density of ion flow to grounded disk-substrate was equal to ˜0.5 mA/cm2 at the gas flow of 1 sccm, the microwave power was up to 300W. After degreasing and ultrasonic washing of Nd-Fe-B-Co ribbons, follow by ion etching, the deposition process was realized at a pulsed voltage bias of -1000 V with frequency 100 Hz, total current on the target 240 mA, current density 2.9 mA/cm2. The deposition rate of 0.0083 μm/min was achieved. The process continued for 2 hour. It was found that the magnetic melt-spun ribbons were homogeneously coated with the α-Fe film having a typical thickness of 1 μm.

  20. Synthesis and characterization of electrospun PVdF-HFP/silane-functionalized ZrO2 hybrid nanofiber electrolyte with enhanced optical and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Puguan, John Marc C.; Chung, Wook-Jin; Kim, Hern

    2016-12-01

    A facile method to produce a hybrid of organic-inorganic nanofiber electrolyte via electrospinning is hereby presented. The incorporation of functionalized zirconium oxide (ZrO2) nanoparticles into poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and complexed with lithium trifluoromethanesulfonate (LiCF3SO3) provided an enhanced optical transmissivity and ionic conductivity. The dependence of the nanofiber's morphology, optical and electrochemical properties on the various ZrO2 loading was studied. Results show that while nanofiller content was increased, the diameter of the nanofibers was reduced. The improved bulk ionic conductivity of the nanofiber electrolyte was at 1.96 × 10-5 S cm-1. Owing to the enhanced dispersibility of the 3-(trimethoxysilyl)propyl methacrylate (MPS) functionalized ZrO2, the optical transmissivity of the nanofiber electrolyte was improved significantly. This new nanofiber composite electrolyte membrane with further development has the potential to be next generation electrolyte for energy efficient windows like electrochromic devices.

  1. Dimensional stability and electrochemical behaviour of ZrO2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors

    PubMed Central

    Solarajan, Arun Kumar; Murugadoss, Vignesh; Angaiah, Subramania

    2017-01-01

    Different weight percentages of ZrO2 (0, 3, 5, 7 and 10 wt%) incorporated electrospun PVDF-HFP nanocomposite polymer membranes (esCPMs) were prepared by electrospinning technique. They were activated by soaking in 1 M LiPF6 containing 1:1 volume ratio of EC : DMC (ethylene carbonate:dimethyl carbonate) to get electrospun nanocomposite polymer membrane electrolytes (esCPMEs). The influence of ZrO2 on the physical, mechanical and electrochemical properties of esCPM was studied in detail. Finally, coin type Li-ion capacitor cell was assembled using LiCo0.2Mn1.8O4 as the cathode, Activated carbon as the anode and the esCPME containing 7 wt% of ZrO2 as the separator, which delivered a discharge capacitance of 182.5 Fg−1 at the current density of 1Ag−1 and retained 92% of its initial discharge capacitance even after 2,000 cycles. It revealed that the electrospun PVdF-HFP/ZrO2 based nanocomposite membrane electrolyte could be used as a good candidate for high performance Li-ion capacitors.

  2. Reactive Functionalized Multilayer Polymers in Coextrusion Process

    NASA Astrophysics Data System (ADS)

    Lamnawar, Khalid; Maazouz, Abderrahim

    2007-04-01

    Coextrusion technologies are commonly used to produce multilayered composite sheets or films with a large range of applications. The contrast of rheological properties between layers can lead to interfacial instabilities during flow. Important theoretical and experimental advances have been made during the last decades on the stability of compatible and incompatible polymers using a mechanical approach. The present study deals with the influence of this affinity on interfacial instabilities for functionalized incompatible polymers between the neighboring layers. Polyamide (PA6)/Polyethylene-grafted (GMA) or pure PE were studied with different viscosity and elasticity ratios. We have experimentally confirmed, in this case, that the weak disturbance can be predicted by considering an interphase of non-zero thickness (corresponding to interdiffusion/reaction zone) instead of a purely geometrical interface between the two reactive layers. As a first step, rheological behavior of multilayer coextruded cast films was investigated to probe: (i) the competition between polymer/polymer interdiffusion and the interfacial reaction and (ii) the influence of the interphase. The contribution of this one effect has been studied along with the increase of the number of layers. The results show that the variation in dynamic modulus of the multilayer system reflects both diffusion and chemical reaction. Finally, and in order to quantify the contribution of the effect of the interface/interphase with a specific interfacial area, an expression was developed to take into account the interphase triggered between the neighboring layers and allowed us to estimate its thickness at a specific welding time and shear rate. As the second step, we formulate an experimental strategy to optimize the process by listing the different parameters controlling the stability of the reactive multilayer flows. The plastic films of two, three and five layers were coextruded in symmetrical and asymmetrical

  3. Co/Pd Multilayer Based Recording Layers for Perpendicular Media

    DTIC Science & Technology

    2001-04-01

    composition material. EELS revealed that the intergranular material is a CoPd alloy with substantially lesser density than the material that makes the body...plain-view TEM images of Co/Pd multilayer films oil Ta and ITO buffer layers. performance of the media that utilizes such multilayers as recording layers...multilayer filn grown on a Ta buffer is demonstrated in Fig.3 where mostly collective magnetization reversal takes place at essentially the same external field

  4. Neutron diffraction studies of thin film multilayer structures

    SciTech Connect

    Majkrzak, C.F.

    1985-01-01

    The application of neutron diffraction methods to the study of the microscopic chemical and magnetic structures of thin film multilayers is reviewed. Multilayer diffraction phenomena are described in general and in particular for the case in which one of the materials of a bilayer is ferromagnetic and the neutron beam polarized. Recent neutron diffraction measurements performed on some interesting multilayer systems are discussed. 70 refs., 5 figs.

  5. High temperature stability multilayers for EUV condenser optics

    SciTech Connect

    Bajt, S; Stearns, D G

    2005-05-03

    We investigate the thermal stability of Mo/SiC multilayer coatings at elevated temperatures. Transmission electron microscopy and x-ray diffraction studies show that upon annealing a thermally-induced structural relaxation occurs that transforms the polycrystalline Mo and amorphous SiC layers in as-deposited multilayers into amorphous Mo-Si-C alloy and crystalline SiC, respectively. After this relaxation process is complete the multilayer is stable at temperatures up to 400 C.

  6. Etched-multilayer phase shifting masks for EUV lithography

    DOEpatents

    Chapman, Henry N.; Taylor, John S.

    2005-04-05

    A method is disclosed for the implementation of phase shifting masks for EUV lithography. The method involves directly etching material away from the multilayer coating of the mask, to cause a refractive phase shift in the mask. By etching into the multilayer (for example, by reactive ion etching), rather than depositing extra material on the top of the multilayer, there will be minimal absorption loss associated with the phase shift.

  7. The growth and applications of silicides for nanoscale devices

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Chen; Chen, Yu; Huang, Yu

    2012-02-01

    Metal silicides have been used in silicon technology as contacts to achieve high device performance and desired device functions. The growth and applications of silicide materials have recently attracted increasing interest for nanoscale device applications. Nanoscale silicide materials have been demonstrated with various synthetic approaches. Solid state reaction wherein high quality silicides form through diffusion of metal atoms into silicon nano-templates and the subsequent phase transformation caught significant attention for the fabrication of nanoscale Si devices. Very interestingly, studies on the diffusion and phase transformation processes at the nanoscale have indicated possible deviations from the bulk and the thin film system. Here we present a review of fabrication, growth kinetics, electronic properties and device applications of nanoscale silicides formed through solid state reaction.Metal silicides have been used in silicon technology as contacts to achieve high device performance and desired device functions. The growth and applications of silicide materials have recently attracted increasing interest for nanoscale device applications. Nanoscale silicide materials have been demonstrated with various synthetic approaches. Solid state reaction wherein high quality silicides form through diffusion of metal atoms into silicon nano-templates and the subsequent phase transformation caught significant attention for the fabrication of nanoscale Si devices. Very interestingly, studies on the diffusion and phase transformation processes at the nanoscale have indicated possible deviations from the bulk and the thin film system. Here we present a review of fabrication, growth kinetics, electronic properties and device applications of nanoscale silicides formed through solid state reaction. This article was submitted as part of a collection highlighting papers on the `Recent Advances in Semiconductor Nanowires Research' from ICMAT 2011.

  8. CPP magnetoresistance of magnetic multilayers: A critical review

    NASA Astrophysics Data System (ADS)

    Bass, Jack

    2016-06-01

    We present a comprehensive, critical review of data and analysis of Giant (G) Magnetoresistance (MR) with Current-flow Perpendicular-to-the-layer-Planes (CPP-MR) of magnetic multilayers [F/N]n (n=number of repeats) composed of alternating nanoscale layers of ferromagnetic (F) and non-magnetic (N) metals, or of spin-valves that allow control of anti-parallel (AP) and parallel (P) orientations of the magnetic moments of adjacent F-layers. GMR, a large change in resistance when an applied magnetic field changes the moment ordering of adjacent F-layers from AP to P, was discovered in 1988 in the geometry with Current flow in the layer-Planes (CIP). The CPP-MR has two advantages over the CIP-MR: (1) relatively simple two-current series-resistor (2CSR) and more general Valet-Fert (VF) models allow more direct access to the underlying physics; and (2) it is usually larger, which should be advantageous for devices. When the first CPP-MR data were published in 1991, it was not clear whether electronic transport in GMR multilayers is completely diffusive or at least partly ballistic. It was not known whether the properties of layers and interfaces would vary with layer thickness or number. It was not known whether the CPP-MR would be dominated by scattering within the F-metals or at the F/N interfaces. Nothing was known about: (1) spin-flipping within F-metals, characterized by a spin-diffusion length, lsfF; (2) interface specific resistances (AR=area A times resistance R) for N1/N2 interfaces; (3) interface specific resistances and interface spin-dependent scattering asymmetry at F/N and F1/F2 interfaces; and (4) spin-flipping at F/N, F1/F2 and N1/N2 interfaces. Knowledge of spin-dependent scattering asymmetries in F-metals and F-alloys, and of spin-flipping in N-metals and N-alloys, was limited. Since 1991, CPP-MR measurements have quantified the scattering and spin-flipping parameters that determine GMR for a wide range of F- and N-metals and alloys and of F/N pairs. This

  9. The first example of multilayer films with thermochromic properties

    NASA Astrophysics Data System (ADS)

    Jiang, Min; Wang, Enbo; Xu, Lin; Kang, Zhenhui; Lian, Suoyuan

    2004-04-01

    A novel thermochromic multilayer film containing polyoxometalate cluster K 12.5Na 1.5[NaP 5W 30O 110] has been fabricated by layer-by-layer self-assembly method. In case of the multilayer film, the color changes gradually from yellowish to blue when it is subjected to temperatures between 120°C and 180°C for a period of time, and the multilayer film could be bleached in air at room temperature to recover its initial state. The novel thermochromic multilayer may be of practical benefit in the development of thermosensors, which would represent promising materials for future applications.

  10. Electrochemically controlled stiffness of multilayers for manipulation of cell adhesion.

    PubMed

    Sun, Yi-xin; Ren, Ke-feng; Wang, Jin-lei; Chang, Guo-xun; Ji, Jian

    2013-06-12

    Stimuli-responsive thin films attract considerable attention in different fields. Herein, an electrochemical redox multilayers with tunable stiffness is constructed through the layer-by-layer self-assembly method. The redox ferrocene modified poly(ethylenimine) play an essential role to induce multilayers' swelling/shrinking under an electrochemical stimulus, resulting reversible change of elastic modulus of the multilayers. The adhesion of fibroblast cells can be thus controlled from well spreading to round shape. Such soft multilayers with electrochemically controlled stiffness could have potentials for cell-based applications.

  11. Fine tuning of activity for nanoscale catalysts.

    SciTech Connect

    Strmcnik, D.; van derVliet, D.; Lucas, C.; Karapetrov, G.; Markovic, N.; Stamenkovic, V.; Materials Science Division

    2008-01-01

    similar levels of catalytic enhancement have been established for corresponding nanoscale materials. In addition to electronic properties we have found how catalytic activity could be affected by the arrangement of surface defects on nanoscale surfaces. Ability to control surface and near surface catalyst properties enables fine tuning of catalytic activity and stability of nanoscale surfaces.

  12. 76 FR 64313 - Multilayered Wood Flooring From the People's Republic of China: Final Affirmative Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... International Trade Administration Multilayered Wood Flooring From the People's Republic of China: Final... countervailable subsidies are being provided to producers and exporters of multilayered wood flooring (``wood... since our Preliminary Determination. See Multilayered Wood Flooring From the People's Republic of...

  13. 76 FR 92 - Multilayered Wood Flooring From the People's Republic of China: Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... International Trade Administration Multilayered Wood Flooring From the People's Republic of China: Postponement..., 2010, the Department of Commerce (``the Department'') initiated an investigation of multilayered wood flooring from the People's Republic of China (``PRC''). See Multilayered Wood Flooring From the...

  14. Characterization Of Multi-layered Fish Scales (Atractosteus spatula) Using Nanoindentation, X-ray CT, FTIR, and SEM

    PubMed Central

    Allison, Paul G.; Rodriguez, Rogie I.; Moser, Robert D.; Williams, Brett A.; Poda, Aimee R.; Seiter, Jennifer M.; Lafferty, Brandon J.; Kennedy, Alan J.; Chandler, Mei Q.

    2014-01-01

    The hierarchical architecture of protective biological materials such as mineralized fish scales, gastropod shells, ram’s horn, antlers, and turtle shells provides unique design principles with potentials for guiding the design of protective materials and systems in the future. Understanding the structure-property relationships for these material systems at the microscale and nanoscale where failure initiates is essential. Currently, experimental techniques such as nanoindentation, X-ray CT, and SEM provide researchers with a way to correlate the mechanical behavior with hierarchical microstructures of these material systems1-6. However, a well-defined standard procedure for specimen preparation of mineralized biomaterials is not currently available. In this study, the methods for probing spatially correlated chemical, structural, and mechanical properties of the multilayered scale of A. spatula using nanoindentation, FTIR, SEM, with energy-dispersive X-ray (EDX) microanalysis, and X-ray CT are presented. PMID:25046233

  15. Nanoscale magnetic heat pumps and engines

    NASA Astrophysics Data System (ADS)

    Bauer, Gerrit E. W.; Bretzel, Stefan; Brataas, Arne; Tserkovnyak, Yaroslav

    2010-01-01

    We present the linear-response matrix for a sliding domain wall in a rotatable magnetic nanowire, which is driven out of equilibrium by temperature and voltage bias, mechanical torque, and magnetic field. An expression for heat-current-induced domain-wall motion is derived. Application of Onsager’s reciprocity relation leads to a unified description of the Barnett and Einstein-de Haas effects as well as spin-dependent thermoelectric properties. We envisage various heat pumps and engines, such as coolers driven by magnetic fields or mechanical rotation as well as nanoscale motors that convert temperature gradients into useful work. All parameters (with the exception of mechanical friction) can be computed microscopically by the scattering theory of transport.

  16. Plasmonically enhanced photoluminescence of nanoscale semiconductors

    NASA Astrophysics Data System (ADS)

    Abraham, Gabrielle; Tejerina, Alejandro; Churchill, Hugh; Bajwa, Pooja; Heyes, Collin; Herzog, Joseph B.

    2016-03-01

    Recent work has shown that plasmonic structures enhance the emitted light of nanoscale semiconductor materials, such as the photoluminescence of colloidal quantum dots (QDs) and MoS2 2D materials. This project will compare the photoluminescence of CdSe colloidal quantum dots and MoS2. A variety of studies will be performed such as photobleaching effects, how photoluminescence relates to lifetime of sample, and polarization studies. In addition, this project will further the understanding of plasmonically enhanced photoluminescence between these semiconductor nanostructures and metal nanostructures. Initial studies will drop cast colloidal metal nanospheres onto quantum dots and MoS2, while future work will fabricate gold structures with electron beam lithography.

  17. Nanoscale defect detection by heterodyne interferometry

    SciTech Connect

    Lin Haoshan; Li Yuhe; Wang Dongsheng; Tong Xiaolei; Liu Mei

    2009-03-10

    We construct an instrument that facilitates the measurement of nanoscale defects. It is based on heterodyne interferometry with phase measurement that utilizes a polarizing beam splitter to form a measuring signal and an oscillating cantilever tip that acts as a scanning probe to get the measurement values of sample topography. The dependence of the tip displacement on the variation of tip-sample distance and the comb scanning of the sample topography are investigated by experiments. The results prove that the tip displacement increases and is enough to be discriminated in various positions where the sample is approached. The system has been successfully utilized to measure the defect characterization by measuring the pitch of the standard sample. The results also show that the heterodyne system has good repeatability, a large measurement range, and high accuracy, with a measurement stability of 0.5 nm.

  18. Exploring Carbon Nanotubes for Nanoscale Devices

    NASA Technical Reports Server (NTRS)

    Han, Jie; Dai; Anantram; Jaffe; Saini, Subhash (Technical Monitor)

    1998-01-01

    Carbon nanotubes (CNTs) are shown to promise great opportunities in nanoelectronic devices and nanoelectromechanical systems (NEMS) because of their inherent nanoscale sizes, intrinsic electric conductivities, and seamless hexagonal network architectures. I present our collaborative work with Stanford on exploring CNTs for nanodevices in this talk. The electrical property measurements suggest that metallic tubes are quantum wires. Furthermore, two and three terminal CNT junctions have been observed experimentally. We have proposed and studied CNT-based molecular switches and logic devices for future digital electronics. We also have studied CNTs based NEMS inclusing gears, cantilevers, and scanning probe microscopy tips. We investigate both chemistry and physics based aspects of the CNT NEMS. Our results suggest that CNT have ideal stiffness, vibrational frequencies, Q-factors, geometry-dependent electric conductivities, and the highest chemical and mechanical stabilities for the NEMS. The use of CNT SPM tips for nanolithography is presented for demonstration of the advantages of the CNT NEMS.

  19. Detecting nanoscale vibrations as signature of life.

    PubMed

    Kasas, Sandor; Ruggeri, Francesco Simone; Benadiba, Carine; Maillard, Caroline; Stupar, Petar; Tournu, Hélène; Dietler, Giovanni; Longo, Giovanni

    2015-01-13

    The existence of life in extreme conditions, in particular in extraterrestrial environments, is certainly one of the most intriguing scientific questions of our time. In this report, we demonstrate the use of an innovative nanoscale motion sensor in life-searching experiments in Earth-bound and interplanetary missions. This technique exploits the sensitivity of nanomechanical oscillators to transduce the small fluctuations that characterize living systems. The intensity of such movements is an indication of the viability of living specimens and conveys information related to their metabolic activity. Here, we show that the nanomotion detector can assess the viability of a vast range of biological specimens and that it could be the perfect complement to conventional chemical life-detection assays. Indeed, by combining chemical and dynamical measurements, we could achieve an unprecedented depth in the characterization of life in extreme and extraterrestrial environments.

  20. Li + ion diffusion in nanoscale alumina coatings

    NASA Astrophysics Data System (ADS)

    Johannes, Michelle; Bernstein, Noam

    Nanoscale coatings of alumina are used to stabilize surfaces for a variety of technologies. Diffusion of ions through these coatings is of primary importance: in some cases, diffusion is unwanted (e.g. corrosion) and in others (e.g. electrode materials), it is necessary. In this work DFT and AIMD calculations are used to investigate Li+ ion diffusion through a nano-layer of alumina, examining the phase (alpha, gamma, and amorphous), ion concentration, and electron count dependence. We look at the role of the surface itself in promoting diffusion. One of our main findings is that as the number of ions or charge increases, the diffusivity rises. We show how our data can explain electrochemical data from coated LiCoO2 cathodes and may point toward better and more efficient coatings for stabilizing electrodes.

  1. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum.

  2. Apparatus for producing nanoscale ceramic powders

    DOEpatents

    Helble, Joseph J.; Moniz, Gary A.; Morse, Theodore F.

    1995-09-05

    An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

  3. Apparatus for producing nanoscale ceramic powders

    DOEpatents

    Helble, Joseph J.; Moniz, Gary A.; Morse, Theodore F.

    1997-02-04

    An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

  4. Wireless communication system via nanoscale plasmonic antennas.

    PubMed

    Merlo, Juan M; Nesbitt, Nathan T; Calm, Yitzi M; Rose, Aaron H; D'Imperio, Luke; Yang, Chaobin; Naughton, Jeffrey R; Burns, Michael J; Kempa, Krzysztof; Naughton, Michael J

    2016-08-24

    Present on-chip optical communication technology uses near-infrared light, but visible wavelengths would allow system miniaturization and higher energy confinement. Towards this end, we report a nanoscale wireless communication system that operates at visible wavelengths via in-plane information transmission. Here, plasmonic antenna radiation mediates a three-step conversion process (surface plasmon → photon → surface plasmon) with in-plane efficiency (plasmon → plasmon) of 38% for antenna separation 4λ0 (with λ0 the free-space excitation wavelength). Information transmission is demonstrated at bandwidths in the Hz and MHz ranges. This work opens the possibility of optical conveyance of information using plasmonic antennas for on-chip communication technology.

  5. Wireless communication system via nanoscale plasmonic antennas

    PubMed Central

    Merlo, Juan M.; Nesbitt, Nathan T.; Calm, Yitzi M.; Rose, Aaron H.; D’Imperio, Luke; Yang, Chaobin; Naughton, Jeffrey R.; Burns, Michael J.; Kempa, Krzysztof; Naughton, Michael J.

    2016-01-01

    Present on-chip optical communication technology uses near-infrared light, but visible wavelengths would allow system miniaturization and higher energy confinement. Towards this end, we report a nanoscale wireless communication system that operates at visible wavelengths via in-plane information transmission. Here, plasmonic antenna radiation mediates a three-step conversion process (surface plasmon → photon → surface plasmon) with in-plane efficiency (plasmon → plasmon) of 38% for antenna separation 4λ0 (with λ0 the free-space excitation wavelength). Information transmission is demonstrated at bandwidths in the Hz and MHz ranges. This work opens the possibility of optical conveyance of information using plasmonic antennas for on-chip communication technology. PMID:27555451

  6. Design and analysis of nanoscale bioassemblies.

    PubMed

    Clark, Jarrod; Singer, Elizabeth M; Korns, Darlynn R; Smith, Steven S

    2004-06-01

    Bionanotechnology is an emerging field in nanotechnology. In general, it uses concepts from chemistry, biochemistry, and molecular biology to identify components and processes for the construction of self-assembling materials and devices. Distant goals of the science of bionanotechnology range from developing programmable nanoscale devices that can sample or alter their environments to developing assemblies capable of Darwinian evolution. At the heart of these approaches is the concept of the production of supramolecular assemblies (SMAs; also known as supramolecular aggregates) by programmed self-assembly in an aqueous medium. Ordered arrays, planar and closed-shell tilings, dynamic machines, and switches have been designed and constructed by using DNA-DNA, protein-protein, and protein-nucleic acid biospecificities. We review the designs and the analytical techniques that have been employed in the production of SMAs that do not occur in nature.

  7. Nanoscale temperature mapping in operating microelectronic devices

    DOE PAGES

    Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; ...

    2015-02-05

    We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with amore » statistical precision of 3 kelvin/hertz₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.« less

  8. Nanoscale characterization of engineered cementitious composites (ECC)

    SciTech Connect

    Sakulich, Aaron Richard Li, Victor C.

    2011-02-15

    Engineered cementitious composites (ECC) are ultra-ductile fiber-reinforced cementitious composites. The nanoscale chemical and mechanical properties of three ECC formulae (one standard formula, and two containing nanomaterial additives) were studied using nanoindentation, electron microscopy, and energy dispersive spectroscopy. Nanoindentation results highlight the difference in modulus between bulk matrix ({approx} 30 GPa) and matrix/fiber interfacial transition zones as well as between matrix and unreacted fly ash ({approx} 20 GPa). The addition of carbon black or carbon nanotubes produced little variation in moduli when compared to standard M45-ECC. The indents were observed by electron microscopy; no trace of the carbon black particles could be found, but nanotubes, including nanotubes bridging cracks, were easily located in ultrafine cracks near PVA fibers. Elemental analysis failed to show a correlation between modulus and chemical composition, implying that factors such as porosity have more of an effect on mechanical properties than elemental composition.

  9. Nanoscale pillar hypersonic surface phononic crystals

    NASA Astrophysics Data System (ADS)

    Yudistira, D.; Boes, A.; Graczykowski, B.; Alzina, F.; Yeo, L. Y.; Sotomayor Torres, C. M.; Mitchell, A.

    2016-09-01

    We report on nanoscale pillar-based hypersonic phononic crystals in single crystal Z-cut lithium niobate. The phononic crystal is formed by a two-dimensional periodic array of nearly cylindrical nanopillars 240 nm in diameter and 225 nm in height, arranged in a triangular lattice with a 300-nm lattice constant. The nanopillars are fabricated by the recently introduced nanodomain engineering via laser irradiation of patterned chrome followed by wet etching. Numerical simulations and direct measurements using Brillouin light scattering confirm the simultaneous existence of nonradiative complete surface phononic band gaps. The band gaps are found below the sound line at hypersonic frequencies in the range 2-7 GHz, formed from local resonances and Bragg scattering. These hypersonic structures are realized directly in the piezoelectric material lithium niobate enabling phonon manipulation at significantly higher frequencies than previously possible with this platform, opening new opportunities for many applications in plasmonic, optomechanic, microfluidic, and thermal engineering.

  10. Nanoscale characterization of crystallinity in DSA® coating

    NASA Astrophysics Data System (ADS)

    Malmgren, C.; Hummelgård, M.; Bäckström, J.; Cornell, A.; Olin, H.

    2008-03-01

    Dimensionally Stable Anodes (DSA®) are used for industrial production of e.g. chlorine and chlorate. It is known that the superior electrocatalytical properties of DSA® is due to the large effective area of the porous coating. However, this knowledge is mainly found from in situ electrochemical measurements. Here, we used ex situ methods, AFM, TEM and gas porosimetry, for characterization at the nanoscale. The DSA® coating was found to consist of mono-crystalline grains with a size of 20-30 nm and with pores of about 10 nm in diameter. Using a simple geometrical model an effective area was calculated. For a typical coating thickness, an increase of about 1000 times in the effective surface area was found, which is consistent with in situ estimations. These results suggest that the dominating source of surface enlargement is due to nano-crystallinity.

  11. Optical vortex beam generator at nanoscale level

    NASA Astrophysics Data System (ADS)

    Garoli, Denis; Zilio, Pierfrancesco; Gorodetski, Yuri; Tantussi, Francesco; de Angelis, Francesco

    2016-07-01

    Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based on a metal-insulator-metal holey plasmonic vortex lens. Our plasmonic element is shown to convert impinging circularly polarized light to an orbital angular momentum state capable of propagating to the far-field. Moreover, the emerging OAM can be externally adjusted by switching the handedness of the incident light polarization. The device has a radius of few micrometers and the OAM beam is generated from subwavelength aperture. The fabrication of integrated arrays of PVLs and the possible simultaneous emission of multiple optical vortices provide an easy way to the large-scale integration of optical vortex emitters for wide-ranging applications.

  12. Magnetic switching of nanoscale antidot lattices

    PubMed Central

    Gräfe, Joachim; Lebecki, Kristof M; Skripnik, Maxim; Haering, Felix; Schütz, Gisela; Ziemann, Paul; Goering, Eberhard; Nowak, Ulrich

    2016-01-01

    Summary We investigate the rich magnetic switching properties of nanoscale antidot lattices in the 200 nm regime. In-plane magnetized Fe, Co, and Permalloy (Py) as well as out-of-plane magnetized GdFe antidot films are prepared by a modified nanosphere lithography allowing for non-close packed voids in a magnetic film. We present a magnetometry protocol based on magneto-optical Kerr microscopy elucidating the switching modes using first-order reversal curves. The combination of various magnetometry and magnetic microscopy techniques as well as micromagnetic simulations delivers a thorough understanding of the switching modes. While part of the investigations has been published before, we summarize these results and add significant new insights in the magnetism of exchange-coupled antidot lattices. PMID:27335762

  13. Nanoscale Characterization with Laser Picosecond Acoustics

    NASA Astrophysics Data System (ADS)

    Wright, Oliver B.

    2007-11-01

    Nanophotonics—the manipulation of light with nanomaterials—is a booming subject, its success owing to the host of nanoscale fabrication techniques now at our disposal. However, for the characterization of such nanomaterials it is expedient to turn to other types of waves with a wavelength commensurate with the nanostructure in question. One such choice is acoustic waves of nanometre wavelength. The aim of this article is to provide an introduction to laser picosecond acoustics, a means by which gigahertz-terahertz ultrasonic waves can be generated and detected by ultrashort light pulses. This method can therefore be used to characterize materials with nanometre spatial resolution. In this article we review the theoretical background for opaque single-layer thin film isotropic samples with reference to key experiments. Solids including metals and semiconductors are discussed, although liquids and, conceivably, gases, are not excluded.

  14. Control of friction at the nanoscale

    DOEpatents

    Barhen, Jacob; Braiman, Yehuda Y.; Protopopescu, Vladimir

    2010-04-06

    Methods and apparatus are described for control of friction at the nanoscale. A method of controlling frictional dynamics of a plurality of particles using non-Lipschitzian control includes determining an attribute of the plurality of particles; calculating an attribute deviation by subtracting the attribute of the plurality of particles from a target attribute; calculating a non-Lipschitzian feedback control term by raising the attribute deviation to a fractionary power .xi.=(2m+1)/(2n+1) where n=1, 2, 3 . . . and m=0, 1, 2, 3 . . . , with m strictly less than n and then multiplying by a control amplitude; and imposing the non-Lipschitzian feedback control term globally on each of the plurality of particles; imposing causes a subsequent magnitude of the attribute deviation to be reduced.

  15. Nanoscale decomposition of Nb-Ru-O

    NASA Astrophysics Data System (ADS)

    Music, Denis; Geyer, Richard W.; Chen, Yen-Ting

    2016-11-01

    A correlative theoretical and experimental methodology has been employed to explore the decomposition of amorphous Nb-Ru-O at elevated temperatures. Density functional theory based molecular dynamics simulations reveal that amorphous Nb-Ru-O is structurally modified within 10 ps at 800 K giving rise to an increase in the planar metal - oxygen and metal - metal population and hence formation of large clusters, which signifies atomic segregation. The driving force for this atomic segregation process is 0.5 eV/atom. This is validated by diffraction experiments and transmission electron microscopy of sputter-synthesized Nb-Ru-O thin films. Room temperature samples are amorphous, while at 800 K nanoscale rutile RuO2 grains, self-organized in an amorphous Nb-O matrix, are observed, which is consistent with our theoretical predictions. This amorphous/crystalline interplay may be of importance for next generation of thermoelectric devices.

  16. Transmission of torque at the nanoscale

    NASA Astrophysics Data System (ADS)

    Williams, Ian; Oğuz, Erdal C.; Speck, Thomas; Bartlett, Paul; Löwen, Hartmut; Royall, C. Patrick

    2016-01-01

    In macroscopic mechanical devices, torque is transmitted through gearwheels and clutches. In the construction of devices at the nanoscale, torque and its transmission through soft materials will be a key component. However, this regime is dominated by thermal fluctuations leading to dissipation. Here we demonstrate the principle of torque transmission for a disc-like colloidal assembly exhibiting clutch-like behaviour, driven by 27 particles in optical traps. These are translated on a circular path to form a rotating boundary that transmits torque to additional particles confined to the interior. We investigate this transmission and find that it is determined by solid-like or fluid-like behaviour of the device and a stick-slip mechanism reminiscent of macroscopic gearwheels slipping. The transmission behaviour is predominantly governed by the rotation rate of the boundary and the density of the confined system. We determine the efficiency of our device and thus optimize conditions to maximize power output.

  17. Nanoscale temperature mapping in operating microelectronic devices

    SciTech Connect

    Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; Dhall, Rohan; Cronin, Stephen B.; Aloni, Shaul; Regan, B. C.

    2015-02-05

    We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with a statistical precision of 3 kelvin/hertz₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.

  18. Nanoscale control of phonon excitations in graphene

    PubMed Central

    Kim, Hyo Won; Ko, Wonhee; Ku, JiYeon; Jeon, Insu; Kim, Donggyu; Kwon, Hyeokshin; Oh, Youngtek; Ryu, Seunghwa; Kuk, Young; Hwang, Sung Woo; Suh, Hwansoo

    2015-01-01

    Phonons, which are collective excitations in a lattice of atoms or molecules, play a major role in determining various physical properties of condensed matter, such as thermal and electrical conductivities. In particular, phonons in graphene interact strongly with electrons; however, unlike in usual metals, these interactions between phonons and massless Dirac fermions appear to mirror the rather complicated physics of those between light and relativistic electrons. Therefore, a fundamental understanding of the underlying physics through systematic studies of phonon interactions and excitations in graphene is crucial for realising graphene-based devices. In this study, we demonstrate that the local phonon properties of graphene can be controlled at the nanoscale by tuning the interaction strength between graphene and an underlying Pt substrate. Using scanning probe methods, we determine that the reduced interaction due to embedded Ar atoms facilitates electron–phonon excitations, further influencing phonon-assisted inelastic electron tunnelling. PMID:26109454

  19. Wireless communication system via nanoscale plasmonic antennas

    NASA Astrophysics Data System (ADS)

    Merlo, Juan M.; Nesbitt, Nathan T.; Calm, Yitzi M.; Rose, Aaron H.; D'Imperio, Luke; Yang, Chaobin; Naughton, Jeffrey R.; Burns, Michael J.; Kempa, Krzysztof; Naughton, Michael J.

    2016-08-01

    Present on-chip optical communication technology uses near-infrared light, but visible wavelengths would allow system miniaturization and higher energy confinement. Towards this end, we report a nanoscale wireless communication system that operates at visible wavelengths via in-plane information transmission. Here, plasmonic antenna radiation mediates a three-step conversion process (surface plasmon → photon → surface plasmon) with in-plane efficiency (plasmon → plasmon) of 38% for antenna separation 4λ0 (with λ0 the free-space excitation wavelength). Information transmission is demonstrated at bandwidths in the Hz and MHz ranges. This work opens the possibility of optical conveyance of information using plasmonic antennas for on-chip communication technology.

  20. Self-healing at the nanoscale.

    PubMed

    Amendola, Vincenzo; Meneghetti, Moreno

    2009-10-01

    The design of self-healing materials is a very important but challenging topic in nanotechnology. Self-healing strategies, also inspired by natural processes, allow the fabrication of auto-repairing systems, and in recent years, materials engineering at the nanoscale has allowed further advances in this emerging field. In this mini review, we recall some interesting self-healing systems found in natural processes and others created by man-made activity with special emphasis on the role played in this field by nanostructures. Finally, the self-healing of gold nanoparticles during laser irradiation is considered in more detail since it is a rare example of a functional nanomaterial with self-repairing properties.

  1. Magnetic resonances in nano-scale metamaterials

    NASA Astrophysics Data System (ADS)

    Hao, Zhao; Liddle, Alex; Martin, Michael

    2006-03-01

    We have designed, fabricated, and optically measured several different kinds of nano-scale metamaterials. We make use e-beam nano-lithography technology at LBNL's Center for X-Ray Optics for fabricating these structures on extremely thin SiN substrates so that they are close to free-standing. Optical properties were measured as a function of incidence angle and polarization. We directly observe a strong magnetic resonance consistent with a negative magnetic permeability in our samples at mid- and near-IR optical frequencies. We will discuss the results in comparison with detailed simulations, and will discuss the electric dipole or quadrupole resonances observed in the samples. Finally, we will report on our progress towards constructing a fully negative index of refraction meta-material.

  2. Nanoscale solid-state quantum computing

    NASA Astrophysics Data System (ADS)

    Ardavan, A.; Austwick, M.; Benjamin, S.C.; Briggs, G.A.D.; Dennis, T.J.S.; Ferguson, A.; Hasko, D.G.; Kanai, M.; Khlobystov, A.N.; Lovett, B.W.; Morley, G.W.; Oliver, R.A.; Pettifor, D.G.; Porfyrakis, K.; Reina, J.H.; Rice, J.H.; Smith, J.D.; Taylor, R.A.; Williams, D.A.; Adelmann, C.; Mariette, H.; Hamers, R.J.

    2003-07-01

    Most experts agree that it is too early to say how quantum computers will eventually be built, and several nanoscale solid-state schemes are being implemented in a range of materials. Nanofabricated quantum dots can be made in designer configurations, with established technology for controlling interactions and for reading out results. Epitaxial quantum dots can be grown in vertical arrays in semiconductors, and ultrafast optical techniques are available for controlling and measuring their excitations. Single-walled carbon nanotubes can be used for molecular self-assembly of endohedral fullerenes, which can embody quantum information in the electron spin. The challenges of individual addressing in such tiny structures could rapidly become intractable with increasing numbers of qubits, but these schemes are amenable to global addressing methods for computation.

  3. Exploring Nanoscale Electrical Properties of CuO-Graphene Based Hybrid Interfaced Memory Device by Conductive Atomic Force Microscopy.

    PubMed

    Singh, Bharti; Mehta, B R; Varandani, Deepak; Savu, Andreea Veronica; Brugger, Juergen

    2016-04-01

    The phenomenon of resistive switching is based on nanoscale changes in the electrical properties of the interface. In the present study, conductive atomic force microscope based nanoscale measurements of copper oxide (CuO-multilayer graphene (MLG) hybrid interface based devices have been carried out to understand changes in the electrical properties during resistive switching of the Ti-CuO/MLG-Cu memory cells having different dimensions fabricated on the same substrate using stencil lithography technique. The dependence of resistive switching characteristics in LRS and HRS and current level of the conductive filaments (CF) on the electrode area have been studied. As the device dimension is reduced, the filamentary contribution is enhanced in comparison to the background contribution, resulting in'an increase in the current density ratio between LRS and HRS. It is also observed that as the device dimension is decreased from 150 to 25 µm, the filament size decreases from 95 nm to 20 nm, respectively, which causes a decrease in the reset current and reset voltage. The results of the nanoscale CAFM measurements have shown a good correlation with the switching parameters obtained by the macroscale pad I-V measurements, thereby, suggesting the origin of resistive switching is due to the formation and rupture of an entity called filament, whose dimension is in nanorange. It is observed that changes in the electrical properties of the overall interface layer along with changes in the electrical conductivity of these filaments contribute towards resistive switching phenomenon. This study suggests that a significant reduction of reset current can be achieved by decreasing the memory device dimensions.

  4. Stochastic behavior of nanoscale dielectric wall buckling

    PubMed Central

    Friedman, Lawrence H.; Levin, Igor; Cook, Robert F.

    2016-01-01

    The random buckling patterns of nanoscale dielectric walls are analyzed using a nonlinear multi-scale stochastic method that combines experimental measurements with simulations. The dielectric walls, approximately 200 nm tall and 20 nm wide, consist of compliant, low dielectric constant (low-k) fins capped with stiff, compressively stressed TiN lines that provide the driving force for buckling. The deflections of the buckled lines exhibit sinusoidal pseudoperiodicity with amplitude fluctuation and phase decorrelation arising from stochastic variations in wall geometry, properties, and stress state at length scales shorter than the characteristic deflection wavelength of about 1000 nm. The buckling patterns are analyzed and modeled at two length scales: a longer scale (up to 5000 nm) that treats randomness as a longer-scale measurable quantity, and a shorter-scale (down to 20 nm) that treats buckling as a deterministic phenomenon. Statistical simulation is used to join the two length scales. Through this approach, the buckling model is validated and material properties and stress states are inferred. In particular, the stress state of TiN lines in three different systems is determined, along with the elastic moduli of low-k fins and the amplitudes of the small-scale random fluctuations in wall properties—all in the as-processed state. The important case of stochastic effects giving rise to buckling in a deterministically sub-critical buckling state is demonstrated. The nonlinear multiscale stochastic analysis provides guidance for design of low-k structures with acceptable buckling behavior and serves as a template for how randomness that is common to nanoscale phenomena might be measured and analyzed in other contexts. PMID:27330220

  5. Stochastic behavior of nanoscale dielectric wall buckling.

    PubMed

    Friedman, Lawrence H; Levin, Igor; Cook, Robert F

    2016-03-01

    The random buckling patterns of nanoscale dielectric walls are analyzed using a nonlinear multi-scale stochastic method that combines experimental measurements with simulations. The dielectric walls, approximately 200 nm tall and 20 nm wide, consist of compliant, low dielectric constant (low-k) fins capped with stiff, compressively stressed TiN lines that provide the driving force for buckling. The deflections of the buckled lines exhibit sinusoidal pseudoperiodicity with amplitude fluctuation and phase decorrelation arising from stochastic variations in wall geometry, properties, and stress state at length scales shorter than the characteristic deflection wavelength of about 1000 nm. The buckling patterns are analyzed and modeled at two length scales: a longer scale (up to 5000 nm) that treats randomness as a longer-scale measurable quantity, and a shorter-scale (down to 20 nm) that treats buckling as a deterministic phenomenon. Statistical simulation is used to join the two length scales. Through this approach, the buckling model is validated and material properties and stress states are inferred. In particular, the stress state of TiN lines in three different systems is determined, along with the elastic moduli of low-k fins and the amplitudes of the small-scale random fluctuations in wall properties-all in the as-processed state. The important case of stochastic effects giving rise to buckling in a deterministically sub-critical buckling state is demonstrated. The nonlinear multiscale stochastic analysis provides guidance for design of low-k structures with acceptable buckling behavior and serves as a template for how randomness that is common to nanoscale phenomena might be measured and analyzed in other contexts.

  6. Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide.

    PubMed

    Shen, Boxuan; Linko, Veikko; Dietz, Hendrik; Toppari, J Jussi

    2015-01-01

    DNA origami is a widely used method for fabrication of custom-shaped nanostructures. However, to utilize such structures, one needs to controllably position them on nanoscale. Here we demonstrate how different types of 3D scaffolded multilayer origamis can be accurately anchored to lithographically fabricated nanoelectrodes on a silicon dioxide substrate by DEP. Straight brick-like origami structures, constructed both in square (SQL) and honeycomb lattices, as well as curved "C"-shaped and angular "L"-shaped origamis were trapped with nanoscale precision and single-structure accuracy. We show that the positioning and immobilization of all these structures can be realized with or without thiol-linkers. In general, structural deformations of the origami during the DEP trapping are highly dependent on the shape and the construction of the structure. The SQL brick turned out to be the most robust structure under the high DEP forces, and accordingly, its single-structure trapping yield was also highest. In addition, the electrical conductivity of single immobilized plain brick-like structures was characterized. The electrical measurements revealed that the conductivity is negligible (insulating behavior). However, we observed that the trapping process of the SQL brick equipped with thiol-linkers tended to induce an etched "nanocanyon" in the silicon dioxide substrate. The nanocanyon was formed exactly between the electrodes, that is, at the location of the DEP-trapped origami. The results show that the demonstrated DEP-trapping technique can be readily exploited in assembling and arranging complex multilayered origami geometries. In addition, DNA origamis could be utilized in DEP-assisted deformation of the substrates onto which they are attached.

  7. Characterization and Adhesion in Cu/Ru/SiO2/Si Multilayer Nano-scale Structure for Cu Metallization

    NASA Astrophysics Data System (ADS)

    Chawla, N.; Venkatesh, S. H.; Singh, D. R. P.; Alford, T. L.

    2013-04-01

    In this study, we have characterized the microstructure, resistivity, and dynamic deformation behavior of Cu/Ru/SiO2 and Cu/SiO2 samples under scratch loading conditions. Cu/Ru/SiO2 samples showed higher elastic recovery and hardness when compared to the Cu/SiO2 samples. In the case of Cu/Ru/SiO2 samples, Ru acts as a glue layer between the Cu and the SiO2 substrate providing both strength and toughness against dynamic loading. Hence, the critical load for delamination is higher for Cu/Ru/SiO2 samples compared to Cu/SiO2 samples. Our results show that Cu/Ru/SiO2 thin films present significant potential to be used in Cu metallization.

  8. Polyelectrolyte multilayer-assisted fabrication of non-periodic silicon nanocolumn substrates for cellular interface applications

    NASA Astrophysics Data System (ADS)

    Lee, Seyeong; Kim, Dongyoon; Kim, Seong-Min; Kim, Jeong-Ah; Kim, Taesoo; Kim, Dong-Yu; Yoon, Myung-Han

    2015-08-01

    Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc.Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical

  9. Electromechanical transduction in multilayer ionic transducers

    NASA Astrophysics Data System (ADS)

    Akle, Barbar; Leo, Donald J.

    2004-10-01

    A transducer consisting of multiple layers of ionic polymer material is developed for applications in sensing, actuation and control. A multilayer transducer is fabricated by layering individual transducers on top of one another. Each multilayer transducer consists of two to four individual layers each approximately 200 µm thick. The electrical characteristics of the transducers can be varied by connecting the layers in either a parallel arrangement or a series arrangement. The tradeoff in deflection and force is obtained by controlling the mechanical constraint at the interface. Packaging the transducer in an outer coating produces a hard constraint between layers and reduces the deflection with a force that increases linearly with the number of layers. This configuration also increases the bandwidth of the transducer. Removing the outer packaging produces an actuator that maintains the deflection of a single layer with an increased force output. This is obtained by allowing the layers to slide relative to one another during bending. Experiments on transducers with one to three layers are performed and the results are compared to an equivalent circuit model which was modified to accommodate multilayer transducers. The modification is performed on four different boundary conditions: two electrical, the series and the parallel connection, and two mechanical, the zero interfacial friction and the zero slip on the interface. Expressions for blocked force, free deflection, and electrical impedance of the transducer are developed in terms of fundamental material parameters, transducer geometry, and the number of individual layers. The trends in the transducer response are validated using experiments on transducers with multiple polymer layers.

  10. Tactile display with dielectric multilayer elastomer actuatorsq

    NASA Astrophysics Data System (ADS)

    Matysek, Marc; Lotz, Peter; Schlaak, Helmut F.

    2009-03-01

    Tactile perception is the human sensation of surface textures through the vibrations generated by stroking a finger over the surface. The skin responds to several distributed physical quantities. Perhaps the most important are high-frequency vibrations, pressure distributions (static shape) and thermal properties. The integration of tactile displays in man-machine interfaces promises a more intuitive handling. For this reason many tactile displays are developed using different technologies. We present several state-of-the-art tactile displays based on different types of dielectric elastomer actuators to clarify the advantages of our matrix display based on multilayer technology. Using this technology perpendicular and hexagonal arrays of actuator elements (tactile stimulators) can be integrated into a PDMS substrate. Element diameters down to 1 mm allow stimuli at the range of the human two-point-discrimination threshold. Driving the elements by column and row addressing enables various stimulation patterns with a reduced number of feeding lines. The transient analysis determines charging times of the capacitive actuators depending on actuator geometry and material parameters. This is very important to ensure an adequate dynamic characteristic of the actuators to stimulate the human skin by vibrations. The suitability of multilayer dielectric elastomer actuators for actuation in tactile displays has been determined. Beside the realization of a static tactile display - where multilayer DEA are integrated as drives for movable contact pins - we focus on the direct use of DEA as a vibrotactile display. Finally, we present the scenario and achieved results of a recognition threshold test. Even relative low voltages in the range of 800 V generate vibrations with 100% recognition ratio within the group of participants. Furthermore, the frequency dependent characteristic of the determined recognition threshold confirms with established literature.

  11. Effect of RGD-functionalization and stiffness modulation of polyelectrolyte multilayer films on muscle cell differentiation

    PubMed Central

    Gribova, Varvara; Gauthier-Rouvière, Cécile; Albigès-Rizo, Corinne; Auzely-Velty, Rachel; Picart, Catherine

    2014-01-01

    Skeletal muscle tissue engineering holds promise for the replacement of muscle due to an injury and for the treatment of muscle diseases. Although RGD substrates have been widely explored in tissue engineering, there is no study aimed at investigating the combined effects of RGD nanoscale presentation and matrix stiffness on myogenesis. In the present work, we use polyelectrolyte multilayer films made of poly(L-lysine) (PLL) and poly(L-glutamic) acid (PGA) as substrates of tunable stiffness that can be functionalized by a RGD adhesive peptide to investigate important events in myogenesis, including adhesion, migration, proliferation and differentiation. C2C12 myoblasts were used as cellular models. RGD presentation on soft films and increased film stiffness could both induce cell adhesion, but integrins involved in adhesion were different in case of soft and stiff films. Moreover, soft films with RGD peptide appeared to be the most appropriate substrate for myogenic differentiation while the stiff PLL/PGA films significantly induced cell migration, proliferation and inhibited myogenic differentiation. The ROCK kinase was found to be involved in myoblast response to the different films. Indeed, its inhibition was sufficient to rescue the differentiation on stiff films, but no significant changes were observed on stiff films with the RGD peptide. These results suggest that different signaling pathways may be activated depending on mechanical and biochemical properties of the multilayer films. This study emphasizes the superior advantage of the soft PLL/PGA films presenting the RGD peptide in terms of myogenic differentiation. This soft RGD-presenting film may be further used as coating of various polymeric scaffolds for muscle tissue engineering. PMID:23261924

  12. Domain walls in antiferromagnetically coupled multilayer films.

    PubMed

    Hellwig, Olav; Berger, Andreas; Fullerton, Eric E

    2003-11-07

    We report experimentally observed magnetic domain-wall structures in antiferromagnetically coupled multilayer films with perpendicular anisotropy. Our studies reveal a first-order phase transition from domain walls with no net moment to domain walls with ferromagnetic cores. The transition originates from the competition between dipolar and exchange energies, which we tune by means of layer thickness. Although observed in a synthetic antiferromagnetic system, such domain-wall structures may be expected to occur in A-type antiferromagnets with anisotropic exchange coupling.

  13. Static and dynamic properties of Fibonacci multilayers

    NASA Astrophysics Data System (ADS)

    Machado, L. D.; Bezerra, C. G.; Correa, M. A.; Chesman, C.; Pearson, J. E.; Hoffmann, A.

    2013-05-01

    We theoretically investigate static and dynamic properties of quasiperiodic magnetic multilayers. We considered identical ferromagnetic layers separated by non-magnetic spacers with two different thicknesses chosen based on the Fibonacci sequence. Using parameters for Fe/Cr, the minimum energy was determined and the equilibrium magnetization directions found were used to calculate magnetoresistance curves. Regarding dynamic behavior, ferromagnetic resonance (FMR) curves were calculated using an approximation known from the literature. Our numerical results illustrate the effects of quasiperiodicity on the static and dynamic properties of these structures.

  14. Magnetic properties of Fe/Zr multilayers

    SciTech Connect

    Dubowik, J.; Stobiecki, F.; Szymanski, B.

    1994-03-01

    Measurements of ferromagnetic resonance (FMR), magnetic moment, and torque curves have been made for three series of Fe/Zr multilayers (MLs) with thickness ratio of Fe to Zr sublayers equal to 2:1, 1:1, and 1:2, respectively. The authors show that Fe/Zr MLs readily yield to amorphization by a solid-state reaction (SSR) during the deposition process. Nevertheless, the resulting structure may be regarded as inhomogeneous one; there still exist some ferromagnetic phases that they relate to the Fe atoms in various surroundings.

  15. Multilayer Microstrip Slot And Dipole Array Antenna

    NASA Technical Reports Server (NTRS)

    Tulintseff, Ann N.

    1994-01-01

    Multilayer antenna structure contains interleaved linear subarrays of microstrip dipole and slot radiating antenna elements to provide compact, dual-band antenna. Structure also contains associated microstrip transmission lines, plus high-power amplifiers for transmission and low-noise amplifiers for reception. Overall function is to transmit in horizontal polarization at frequency of 29.634 GHz and receive in vertical polarization at 19.914 GHz, in direction 44 degrees from broadside to antenna. Antenna structure is part of apparatus described in "Steerable K/Ka-band Antenna for Land-Mobile Satellite Applications," NPO-18772.

  16. Manufacture and analysis of multilayer woven preforms

    SciTech Connect

    Bannister, M.K.; Herszberg, I.; Coman, F.; Raper, H.; Curiskis, J.

    1994-12-31

    Multilayer woven preforms were manufactured from high-tenacity, continuous multifilament polyester yarn and HTA carbon yarn. Orthogonal fiber architectures were constructed with a variety of binder thread configurations and yarn densities. The effect of the binder thread arrangement upon the as-woven preform architecture was examined. The preforms were then consolidated using liquid moulding techniques and the effect of the consolidation pressure upon the fiber architecture was investigated. Modeling of the preform architecture in its as-woven state is progressing and preliminary results are presented in this paper.

  17. Observation of magnetic multilayers by electron holography.

    PubMed

    Tanji, T; Hasebe, S; Nakagami, Y; Yamamoto, K; Ichihashi, M

    2004-02-01

    Magnetic structures of Co/Cu multilayers in cross section are observed by two kinds of electron holography: a Fourier method and a phase-shifting method, which is introduced briefly. The Fourier method can easily reconstruct wave functions and is applied to many specimens, whereas the phase-shifting method requires longer time for processing, but has a higher spatial resolution that permits us to discuss fine structures. Magnetization vectors in Co layers aligning parallel and separating into two blocks with antiparallel alignment are observed. Magnetic blurring on the boundary between Co and Cu in the reconstructed phase images is larger than the estimated atomic roughness.

  18. Fractional statistical theory of finite multilayer adsorption

    NASA Astrophysics Data System (ADS)

    Takara, E. A.; Quiroga, E.; Matoz-Fernandez, D. A.; Ochoa, N. A.; Ramirez-Pastor, A. J.

    2016-01-01

    In the present paper, finite multilayer adsorption is described as a fractional statistics problem, based on Haldane's statistics. In this scheme, the Helmholtz free energy and its derivatives are written in terms of a parameter g, which relates to the configuration of the molecules in the adsorbed state. For values of g ranging between 0 and 1 the formalism is used to model experimental data of bovine serum albumin (BSA) adsorbed onto an ion exchange resin for different values of pH and temperature. Excellent agreement between theory and experiments was found.

  19. Thin film photovoltaic device with multilayer substrate

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1984-01-01

    A thin film photovoltaic device which utilizes at least one compound semiconductor layer chosen from Groups IIB and VA of the Periodic Table is formed on a multilayer substrate The substrate includes a lowermost support layer on which all of the other layers of the device are formed. Additionally, an uppermost carbide or silicon layer is adjacent to the semiconductor layer. Below the carbide or silicon layer is a metal layer of high conductivity and expansion coefficient equal to or slightly greater than that of the semiconductor layer.

  20. Oscillating magnetocaloric effect of a multilayer graphene

    SciTech Connect

    Alisultanov, Z. Z.; Paixão, L. S.; Reis, M. S.

    2014-12-08

    The oscillating magnetocaloric effect of a multilayer graphene in Bernal and rhombohedral stacking is investigated to extend the previous knowledge of the effect on a single layer graphene. We started from results of a tight-binding model and obtained analytical expressions for the thermodynamic potential and for the entropy change. The last exhibits the same dependence on field and temperature observed for other diamagnetic systems; it oscillates with the inverse magnetic field and presents a maximum value at a given temperature. The amplitude of the oscillating entropy change decreases with the number of layers and the stacking sequence rules the magnetocaloric properties of the system.

  1. Optics and multilayer coatings for EUVL systems

    SciTech Connect

    Soufli, R; Bajt, S; Hudyma, R M; Taylor, J S

    2008-03-21

    EUV lithography (EUVL) employs illumination wavelengths around 13.5 nm, and in many aspects it is considered an extension of optical lithography, which is used for the high-volume manufacturing (HVM) of today's microprocessors. The EUV wavelength of illumination dictates the use of reflective optical elements (mirrors) as opposed to the refractive lenses used in conventional lithographic systems. Thus, EUVL tools are based on all-reflective concepts: they use multilayer (ML) coated optics for their illumination and projection systems, and they have a ML-coated reflective mask.

  2. Oscillating magnetocaloric effect of a multilayer graphene

    NASA Astrophysics Data System (ADS)

    Alisultanov, Z. Z.; Paixão, L. S.; Reis, M. S.

    2014-12-01

    The oscillating magnetocaloric effect of a multilayer graphene in Bernal and rhombohedral stacking is investigated to extend the previous knowledge of the effect on a single layer graphene. We started from results of a tight-binding model and obtained analytical expressions for the thermodynamic potential and for the entropy change. The last exhibits the same dependence on field and temperature observed for other diamagnetic systems; it oscillates with the inverse magnetic field and presents a maximum value at a given temperature. The amplitude of the oscillating entropy change decreases with the number of layers and the stacking sequence rules the magnetocaloric properties of the system.

  3. Multilayer insulation considerations for large propellant tanks

    NASA Astrophysics Data System (ADS)

    Nast, T. C.; Frank, D. J.; Feller, J.

    2014-11-01

    Multilayer insulation (MLI) systems for cryogenic instrument Dewars have demonstrated very high thermal performance in ground and orbit. Ground tests of insulation systems on propellant storage size tanks have shown performance and repeatability issues. This paper presents a summary of studies for National Aeronautics and Space Administration (NASA) focused on MLI systems on the larger Tankage. The sensitivity of boil off to MLI thermal conductivity is presented. The effect of compressions, assembly joints and MLI parameters are presented. A novel large tank simulator approach for MLI testing is presented along with recommendations for maturation of the MLI technology.

  4. Ultrathin self-assembled polyelectrolyte multilayer membranes

    NASA Astrophysics Data System (ADS)

    Tieke, B.; van Ackern, F.; Krasemann, L.; Toutianoush, A.

    The paper is concerned with ultrathin membranes prepared upon alternating layer-by-layer adsorption of cationic and anionic polyelectrolytes on a porous substructure. The formation of the polyelectrolyte multilayer membranes is characterised and the transport of gases, liquid mixtures and ions across the membranes is studied. In particular, the use of the membranes for alcohol/water separation under pervaporation conditions, and for the separation of mono- and divalent ions is described. It is demonstrated that upon a suitable choice of polyelectrolytes and substructures, and a careful optimisation of preparation and operation conditions, membranes can be tailored exhibiting an excellent separation capability.

  5. Charge transport in nanoscale vertical organic semiconductor pillar devices

    PubMed Central

    Wilbers, Janine G. E.; Xu, Bojian; Bobbert, Peter A.; de Jong, Michel P.; van der Wiel, Wilfred G.

    2017-01-01

    We report charge transport measurements in nanoscale vertical pillar structures incorporating ultrathin layers of the organic semiconductor poly(3-hexylthiophene) (P3HT). P3HT layers with thickness down to 5 nm are gently top-contacted using wedging transfer, yielding highly reproducible, robust nanoscale junctions carrying high current densities (up to 106 A/m2). Current-voltage data modeling demonstrates excellent hole injection. This work opens up the pathway towards nanoscale, ultrashort-channel organic transistors for high-frequency and high-current-density operation. PMID:28117371

  6. Nanoscale calibration of n-type ZnO staircase structures by scanning capacitance microscopy

    SciTech Connect

    Wang, L. Laurent, J.; Brémond, G.; Chauveau, J. M.; Sallet, V.; Jomard, F.

    2015-11-09

    Cross-sectional scanning capacitance microscopy (SCM) was performed on n-type ZnO multi-layer structures homoepitaxially grown by molecular beam epitaxy method. Highly contrasted SCM signals were obtained between the ZnO layers with different Ga densities. Through comparison with dopant depth profiles from secondary ion mass spectroscopy measurement, it is demonstrated that SCM is able to distinguish carrier concentrations at all levels of the samples (from 2 × 10{sup 17 }cm{sup −3} to 3 × 10{sup 20 }cm{sup −3}). The good agreement of the results from the two techniques indicates that SCM can be a useful tool for two dimensional carrier profiling at nanoscale for ZnO nanostructure development. As an example, residual carrier concentration inside the non-intentionally doped buffer layer was estimated to be around 2 × 10{sup 16 }cm{sup −3} through calibration analysis.

  7. Broadband angular selectivity of light at the nanoscale: Progress, applications, and outlook

    SciTech Connect

    Shen, Yichen Joannopoulos, John D.; Soljačić, Marin; Hsu, Chia Wei; Yeng, Yi Xiang

    2016-03-15

    Humankind has long endeavored to control the propagation direction of light. Since time immemorial, shades, lenses, and mirrors have been used to control the flow of light. In modern society, with the rapid development of nanotechnology, the control of light is moving toward devices at micrometer and even nanometer scales. At such scales, traditional devices based on geometrical optics reach their fundamental diffraction limits and cease to work. Nano-photonics, on the other hand, has attracted wide attention from researchers, especially in the last decade, due to its ability to manipulate light at the nanoscale. This review focuses on the nano-photonics systems that aim to select light based on its propagation direction. In the first half of this review, we survey the literature and the current state of the art focused on enabling optical broadband angular selectivity. The mechanisms we review can be classified into three main categories: (i) microscale geometrical optics, (ii) multilayer birefringent materials, and (iii) Brewster modes in plasmonic systems, photonic crystals, and metamaterials. In the second half, we present two categories of potential applications for broadband angularly selective systems. The first category aims at enhancing the efficiency of solar energy harvesting, through photovoltaic process or solar thermal process. The second category aims at enhancing light extracting efficiency and detection sensitivity. Finally, we discuss the most prominent challenges in broadband angular selectivity and some prospects on how to solve these challenges.

  8. Nonlinear geometric scaling of coercivity in a three-dimensional nanoscale analog of spin ice

    NASA Astrophysics Data System (ADS)

    Shishkin, I. S.; Mistonov, A. A.; Dubitskiy, I. S.; Grigoryeva, N. A.; Menzel, D.; Grigoriev, S. V.

    2016-08-01

    Magnetization hysteresis loops of a three-dimensional nanoscale analog of spin ice based on the nickel inverse opal-like structure (IOLS) have been studied at room temperature. The samples are produced by filling nickel into the voids of artificial opal-like films. The spin ice behavior is induced by tetrahedral elements within the IOLS, which have the same arrangement of magnetic moments as a spin ice. The thickness of the films vary from a two-dimensional, i.e., single-layered, antidot array to a three-dimensional, i.e., multilayered, structure. The coercive force, the saturation, and the irreversibility field have been measured in dependence of the thickness of the IOLS for in-plane and out-of-plane applied fields. The irreversibility and saturation fields change abruptly from the antidot array to the three-dimensional IOLS and remain constant upon further increase of the number of layers n . The coercive force Hc seems to increase logarithmically with increasing n as Hc=Hc 0+α ln(n +1 ) . The logarithmic law implies the avalanchelike remagnetization of anisotropic structural elements connecting tetrahedral and cubic nodes in the IOLS. We conclude that the "ice rule" is the base of mechanism regulating this process.

  9. Accelerating Nanoscale Research with Neutron Total Scattering: Linking Structure and Function in Finite Materials

    NASA Astrophysics Data System (ADS)

    Page, Katharine

    2012-10-01

    h -abstract-pard In contrast to bulk materials, nanomaterials and nanoparticles, comprised of a few hundred to tens of thousands of atoms, require every atom's position to be located in order to understand their structure-property relationships. New behavior can arise with a constricted, expanded, or distorted lattice, variation in surface termination structure, ligand capping or stabilization, or with the increasingly diverse set of shapes and architectures appearing in nanoscience literature today: tubes, pyramids, stars, core-shell and matrix-confined particles, multilayer films, etc. Pair distribution function (PDF) analysis, based on spallation neutron or synchrotron x-ray total scattering data, has emerged as a very promising characterization method for nanomaterials in recent years. Total scattering methods provide information about every pair of atoms probed in a diffraction experiment and thus contain an unexploited wealth of information for finite systems. In this contribution we will present our work establishing the influence of particle size and shape on the nature and correlation of local atomic dipoles in finite ferroelectric systems. We also review current data-driven modeling capabilities and outline the need for evolution of robust computational tools to follow other complex nanoscale phenomena with scattering data. pard-/abstract-

  10. Extraordinary sensitivity of nanoscale infrared spectroscopy demonstrated on Graphene and thin SiO2

    NASA Astrophysics Data System (ADS)

    Andreev, Greg; Fei, Z.; Bao, W.; Zhao, Z.; Lau, C. N.; Zhang, L. M.; Fogler, M.; Dominguez, G.; Thiemens, M.; Keilmann, F.; Basov, D.

    2011-03-01

    Infrared Spectroscopy is a powerful tool for characterizing materials by their vibrational mode fingerprint and/or electron conductivity. Its application to nanoscale resolved studies is highly desirable but remained challenging mainly for two reasons: a suitable source of intense, broadband infrared illumination was not widely available and the spatial resolution of conventional microscopes was limited by diffraction. We have resolved both issues by utilizing tunable External Cavity Quantum Cascade Lasers (EC-QCLs) as an intense illumination source for a scattering Scanning Near Field Optical Microscope (s-SNOM), capable of 10nm spatial resolution. With this combination of EC-QCLs + s-SNOM we demonstrate 10nm resolution imaging and spectroscopy of extremely thin materials: Silicon oxide layers (SiO) as thin as 2nm and even single atomic layers of Carbon (Graphene). The spectra register contrasts for volumes as small as 20x20x1 nm 3= 400 yoktoliters of SiO2 , and about 70 yl of Graphene over a broad spectral range: 1065 - 2250cm-1 . We explain the origins of this extraordinary sensitivity with an improved theoretical framework for calculating the near field response of a multilayer system.

  11. Nanoscale measurement of apparent slip velocity near a moving contact line

    NASA Astrophysics Data System (ADS)

    Park, Joonsik; Breuer, Kenneth; Brown University Team

    2016-11-01

    We report the nanoscale flow measurements within tens of microns from a moving contact line on hydrophobic substrates. A moving contact line was generated using a liquid bridge instability induced by retreating syringe. Contact line speeds ranging from 0.15 to 3 mm/s were recorded. The motions of tracer nanoparticles were measured using two independent experimental techniques: multi-layer flood illumination and Total Internal Reflection Fluorescence Microscopy. The flow field was derived using a novel probabilistic particle tracking velocimetry, which allows the accurate estimation of the rapidly changing flow field near a contact line without bias due to binning or fitting. The results confirm that for distances larger than a few microns from the contact line, the velocity field scales with the instantaneous contact line speed and agrees well with the corner flow solution predicted by the biharmonic equation. A significant slip velocity is shown to exist close to the contact line, decaying rapidly within a few microns. The authors gratefully acknowledge the National Science Foundation, Grants CBET 0854148 and CBET 106614, for the support of this research.

  12. Effect of nano-scale characteristics of graphene on electrochemical performance of activated carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Jasni, M. R. M.; Deraman, M.; Suleman, M.; Hamdan, E.; Sazali, N. E. S.; Nor, N. S. M.; Shamsudin, S. A.

    2016-02-01

    Graphene with its typical nano-scale characteristic properties has been widely used as an additive in activated carbon electrodes in order to enhance the performance of the electrodes for their use in high performance supercapacitors. Activated carbon monoliths (ACMs) electrodes have been prepared by carbonization and activation of green monoliths (GMs) of pre-carbonized fibers of oil palm empty fruit bunches or self-adhesive carbon grains (SACGs) and SACGs added with 6 wt% of KOH-treated multi-layer graphene. ACMs electrodes have been assembled in symmetrical supercapacitor cells that employed aqueous KOH electrolyte (6 M). The cells have been tested with cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge discharge methods to investigate the effect of graphene addition on the specific capacitance (Csp), specific energy (E), specific power (P), equivalent series resistance (ESR) and response time (τo) of the supercapacitor cells. The results show that the addition of graphene in the GMs change the values of Csp, Emax, Pmax, ESR and τo from (61-96) F/g, 2 Wh/kg, 104 W/kg, 2.6 Ω and 38 s, to the respective values of (110-124) F/g, 3 Wh/kg, 156 W/kg, 3.4 Ω and 63 s. This study demonstrates that the graphene addition in the GMs has a significant effect on the electrochemical behavior of the electrodes.

  13. 76 FR 76435 - Multilayered Wood Flooring From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... COMMISSION Multilayered Wood Flooring From China Determinations On the basis of the record \\1\\ developed in... China of multilayered wood flooring, provided for in subheadings 4409.10, 4409.29, 4412.31, 4412.32... orders on imports of this product from China. Background The Commission instituted these...

  14. 75 FR 79019 - Multilayered Wood Flooring From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... COMMISSION Multilayered Wood Flooring From China Determinations On the basis of the record \\1\\ developed in... reason of imports from China of multilayered wood flooring, provided for in subheadings 4409.10, 4409.29... than fair value (LTFV) and subsidized by the Government of China. \\1\\ The record is defined in Sec....

  15. Cure cycle evaluation for multilayer printed wiring boards

    SciTech Connect

    Lula, J.W.

    1980-06-01

    The cure cycle for multilayer printed wiring boards (PWBs) made from general-puspore, fire-retardant epoxy/glass (GF) material has been evaluated for the optimum delamination resistance at soldering temperatures. The results that, for the epoxy resin system used to manufacture multilayer PWBs at Bendix Kansas City, a wide range of cure cycle variations has a minimal effect on delamination resistance.

  16. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 1. MODEL FORMULATION

    EPA Science Inventory

    A multilayer biochemical dry deposition model has been developed based on the NOAA Multilayer Model (MLM) to study gaseous exchanges between the soil, plants, and the atmosphere. Most of the parameterizations and submodels have been updated or replaced. The numerical integration ...

  17. Prediction of pressure during evacuation of multilayer insulation.

    NASA Technical Reports Server (NTRS)

    Glassford, A. P. M.

    1972-01-01

    Description of an improved analytical procedure for predicting the pressure time history during evacuation of multilayer-insulation thermal-protection systems. To evaluate the performance of the proposed analysis and to demonstrate its usefulness as a design tool, a comparison is presented of the experimentally measured and predicted evacuation pressure histories for a laboratory-scale model multilayer insulation blanket.

  18. Multi-layer laminate structure and manufacturing method

    DOEpatents

    Keenihan, James R.; Cleereman, Robert J.; Eurich, Gerald; Graham, Andrew T.; Langmaid, Joe A.

    2013-01-29

    The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.

  19. Multi-layer laminate structure and manufacturing method

    DOEpatents

    Keenihan, James R [Midland, MI; Cleereman, Robert J [Midland, MI; Eurich, Gerald [Merrill, MI; Graham, Andrew T [Midland, MI; Langmaid, Joe A [Caro, MI

    2012-04-24

    The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.

  20. Film stress studies and the multilayer laue lens project.

    SciTech Connect

    Liu, C.; Conley, R.; Macrander, A. T.; X-Ray Science Division

    2006-01-01

    A Multilayer Laue Lens (MLL) is a new type of linear zone plate, made by sectioning a planar depth-graded multilayer and used in Laue transmission diffraction geometry, for nanometer-scale focusing of hard x-rays. To produce an MLL, a depth-graded multilayer consisting of thousands of layers with a total thickness of tens of microns is needed. Additionally, the multilayer wafer has to be sectioned and polished to a thickness of {approx}10 to 25 microns to yield a diffracting grating to focus x-rays. The multilayers must have both low stress and good adhesion to survive the subsequent cutting and polishing processes, as well as sharp interfaces and accurate layer placement. Several partial MLLs using WSi{sub 2}/Si multilayers with precise zone-plate structures have been successfully fabricated. A W/Si multilayer with the same structure, however, cracked and peeled off from the Si substrate after it was grown. Here we report results of our film stress studies of dc magnetron-sputtered WSi{sub 2}, W, and Mo thin films and WSi{sub 2}/Si, W/Si, and Mo/Si multilayers grown on Si(100) substrates. The stress measurements were carried out using a stylus profiler to measure the curvatures of 2-inch-diameter, 0.5-mm-thick Si(100) wafers before and after each coating. The physical origins of the stress and material properties of these systems will be discussed.