Sample records for nanoscale phase separation

  1. Stripe-like nanoscale structural phase separation in superconducting BaPb 1-xBi xO 3

    DOE PAGES

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; ...

    2015-09-16

    The phase diagram of BaPb 1-xBi xO 3 exhibits a superconducting “dome” in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare to the Ginzburg-Landau coherence length. Thus, we find that the maximum T c occurs when the superconducting coherence length matches the width of the partiallymore » disordered stripes, implying a connection between the structural phase separation and the shape of the superconducting dome.« less

  2. De-vitrification of nanoscale phase-separated amorphous thin films in the immiscible copper-niobium system

    NASA Astrophysics Data System (ADS)

    Puthucode, A.; Devaraj, A.; Nag, S.; Bose, S.; Ayyub, P.; Kaufman, M. J.; Banerjee, R.

    2014-05-01

    Copper and niobium are mutually immiscible in the solid state and exhibit a large positive enthalpy of mixing in the liquid state. Using vapour quenching via magnetron co-sputter deposition, far-from equilibrium amorphous Cu-Nb films have been deposited which exhibit a nanoscale phase separation. Annealing these amorphous films at low temperatures (~200 °C) initiates crystallization via the nucleation and growth of primary nanocrystals of a face-centred cubic Cu-rich phase separated by the amorphous matrix. Interestingly, subsequent annealing at a higher temperature (>300 °C) leads to the polymorphic nucleation and growth of large spherulitic grains of a body-centred cubic Nb-rich phase within the retained amorphous matrix of the partially crystallized film. This sequential two-stage crystallization process has been investigated in detail by combining transmission electron microscopy [TEM] (including high-resolution TEM) and atom probe tomography studies. These results provide new insights into the crystallization behaviour of such unusual far-from equilibrium phase-separated metallic glasses in immiscible systems.

  3. Nanoscale ferromagnetism in phase-separated manganites

    NASA Astrophysics Data System (ADS)

    Mori, S.; Horibe, Y.; Asaka, T.; Matsui, Y.; Chen, C. H.; Cheong, S. W.

    2007-03-01

    Magnetic domain structures in phase-separated manganites were investigated by low-temperature Lorentz electron microscopy, in order to understand some unusual physical properties such as a colossal magnetoresistance (CMR) effect and a metal-to-insulator transition. In particular, we examined a spatial distribution of the charge/orbital-ordered (CO/OO) insulator state and the ferromagnetic (FM) metallic one in phase-separated manganites; Cr-doped Nd0.5Ca0.5MnO3 and ( La1-xPrx)CaMnO3 with x=0.375, by obtaining both the dark-field images and Lorentz electron microscopic ones. It is found that an unusual coexistence of the CO/OO and FM metallic states below a FM transition temperature in the two compounds. The present experimental results clearly demonstrated the coexisting state of the two distinct ground states in manganites.

  4. Nanoscale pillar arrays for separations

    DOE PAGES

    Kirchner, Teresa; Strickhouser, Rachel; Hatab, Nahla; ...

    2015-04-01

    The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.e. pillar heights are 1-2μm and pillar diameters are typically in the 200- 400nm range. In addition to the intrinsic nanoscale aspects of the systems, it is shown they can be further functionalized with nanoporous layers and traditional stationary phases for chromatography; hence exhibit broad-rangingmore » lab-on-a-chip and point-of-care potential. Because of an inherent high permeability and very small effective mass transfer distance between pillars, chromatographic efficiency can be very high but is enhanced herein by stacking during development and focusing while drying, yielding plate heights in the nm range separated band volumes. Practical separations of fluorescent dyes, fluorescently derivatized amines, and anti-tumor drugs are illustrated.« less

  5. Nanoscale phase change memory materials.

    PubMed

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  6. Nanoscale characteristics of triacylglycerol oils: phase separation and binding energies of two-component oils to crystalline nanoplatelets.

    PubMed

    MacDougall, Colin J; Razul, M Shajahan; Papp-Szabo, Erzsebet; Peyronel, Fernanda; Hanna, Charles B; Marangoni, Alejandro G; Pink, David A

    2012-01-01

    Fats are elastoplastic materials with a defined yield stress and flow behavior and the plasticity of a fat is central to its functionality. This plasticity is given by a complex tribological interplay between a crystalline phase structured as crystalline nanoplatelets (CNPs) and nanoplatelet aggregates and the liquid oil phase. Oil can be trapped within microscopic pores within the fat crystal network by capillary action, but it is believed that a significant amount of oil can be trapped by adsorption onto crystalline surfaces. This, however, remains to be proven. Further, the structural basis for the solid-liquid interaction remains a mystery. In this work, we demonstrate that the triglyceride liquid structure plays a key role in oil binding and that this binding could potentially be modulated by judicious engineering of liquid triglyceride structure. The enhancement of oil binding is central to many current developments in this area since an improvement in the health characteristics of fat and fat-structured food products entails a reduction in the amount of crystalline triacylglycerols (TAGs) and a relative increase in the amount of liquid TAGs. Excessive amounts of unbound, free oil, will lead to losses in functionality of this important food component. Engineering fats for enhanced oil binding capacity is thus central to the design of more healthy food products. To begin to address this, we modelled the interaction of triacylglycerol oils, triolein (OOO), 1,2-olein elaidin (OOE) and 1,2-elaidin olein (EEO) with a model crystalline nanoplatelet composed of tristearin in an undefined polymorphic form. The surface of the CNP in contact with the oil was assumed to be planar. We considered pure OOO and mixtures of OOO + OOE and OOO + EEO with 80% OOO. The last two cases were taken as approximations to high oleic sunflower oil (HOSO). The intent was to investigate whether phase separation on a nanoscale took place. We defined an "oil binding capacity" parameter, B

  7. Electrophoretic Separation of Single Particles Using Nanoscale Thermoplastic Columns.

    PubMed

    Weerakoon-Ratnayake, Kumuditha M; Uba, Franklin I; Oliver-Calixte, Nyoté J; Soper, Steven A

    2016-04-05

    Phenomena associated with microscale electrophoresis separations cannot, in many cases, be applied to the nanoscale. Thus, understanding the electrophoretic characteristics associated with the nanoscale will help formulate relevant strategies that can optimize the performance of separations carried out on columns with at least one dimension below 150 nm. Electric double layer (EDL) overlap, diffusion, and adsorption/desorption properties and/or dielectrophoretic effects giving rise to stick/slip motion are some of the processes that can play a role in determining the efficiency of nanoscale electrophoretic separations. We investigated the performance characteristics of electrophoretic separations carried out in nanoslits fabricated in poly(methyl methacrylate), PMMA, devices. Silver nanoparticles (AgNPs) were used as the model system with tracking of their transport via dark field microscopy and localized surface plasmon resonance. AgNPs capped with citrate groups and the negatively charged PMMA walls (induced by O2 plasma modification of the nanoslit walls) enabled separations that were not apparent when these particles were electrophoresed in microscale columns. The separation of AgNPs based on their size without the need for buffer additives using PMMA nanoslit devices is demonstrated herein. Operational parameters such as the electric field strength, nanoslit dimensions, and buffer composition were evaluated as to their effects on the electrophoretic performance, both in terms of efficiency (plate numbers) and resolution. Electrophoretic separations performed at high electric field strengths (>200 V/cm) resulted in higher plate numbers compared to lower fields due to the absence of stick/slip motion at the higher electric field strengths. Indeed, 60 nm AgNPs could be separated from 100 nm particles in free solution using nanoscale electrophoresis with 100 μm long columns.

  8. The Influence of Fluorination on Nano-Scale Phase Separation and Photovoltaic Performance of Small Molecular/PC71BM Blends

    PubMed Central

    Lu, Zhen; Liu, Wen; Li, Jingjing; Fang, Tao; Li, Wanning; Zhang, Jicheng; Feng, Feng; Li, Wenhua

    2016-01-01

    To investigate the fluorination influence on the photovoltaic performance of small molecular based organic solar cells (OSCs), six small molecules based on 2,1,3-benzothiadiazole (BT), and diketopyrrolopyrrole (DPP) as core and fluorinated phenyl (DFP) and triphenyl amine (TPA) as different terminal units (DFP-BT-DFP, DFP-BT-TPA, TPA-BT-TPA, DFP-DPP-DFP, DFP-DPP-TPA, and TPA-DPP-TPA) were synthesized. With one or two fluorinated phenyl as the end group(s), HOMO level of BT and DPP based small molecular donors were gradually decreased, inducing high open circuit voltage for fluorinated phenyl based OSCs. DFP-BT-TPA and DFP-DPP-TPA based blend films both displayed stronger nano-scale aggregation in comparison to TPA-BT-TPA and TPA-DPP-TPA, respectively, which would also lead to higher hole motilities in devices. Ultimately, improved power conversion efficiency (PCE) of 2.17% and 1.22% was acquired for DFP-BT-TPA and DFP-DPP-TPA based devices, respectively. These results demonstrated that the nano-scale aggregation size of small molecules in photovoltaic devices could be significantly enhanced by introducing a fluorine atom at the donor unit of small molecules, which will provide understanding about the relationship of chemical structure and nano-scale phase separation in OSCs. PMID:28335208

  9. Charge separation at nanoscale interfaces: energy-level alignment including two-quasiparticle interactions.

    PubMed

    Li, Huashan; Lin, Zhibin; Lusk, Mark T; Wu, Zhigang

    2014-10-21

    The universal and fundamental criteria for charge separation at interfaces involving nanoscale materials are investigated. In addition to the single-quasiparticle excitation, all the two-quasiparticle effects including exciton binding, Coulomb stabilization, and exciton transfer are considered, which play critical roles on nanoscale interfaces for optoelectronic applications. We propose a scheme allowing adding these two-quasiparticle interactions on top of the single-quasiparticle energy level alignment for determining and illuminating charge separation at nanoscale interfaces. Employing the many-body perturbation theory based on Green's functions, we quantitatively demonstrate that neglecting or simplifying these crucial two-quasiparticle interactions using less accurate methods is likely to predict qualitatively incorrect charge separation behaviors at nanoscale interfaces where quantum confinement dominates.

  10. Nanoscale tailor-made membranes for precise and rapid molecular sieve separation.

    PubMed

    Wang, Jing; Zhu, Junyong; Zhang, Yatao; Liu, Jindun; Van der Bruggen, Bart

    2017-03-02

    The precise and rapid separation of different molecules from aqueous, organic solutions and gas mixtures is critical to many technologies in the context of resource-saving and sustainable development. The strength of membrane-based technologies is well recognized and they are extensively applied as cost-effective, highly efficient separation techniques. Currently, empirical-based approaches, lacking an accurate nanoscale control, are used to prepare the most advanced membranes. In contrast, nanoscale control renders the membrane molecular specificity (sub-2 nm) necessary for efficient and rapid molecular separation. Therefore, as a growing trend in membrane technology, the field of nanoscale tailor-made membranes is highlighted in this review. An in-depth analysis of the latest advances in tailor-made membranes for precise and rapid molecule sieving is given, along with an outlook to future perspectives of such membranes. Special attention is paid to the established processing strategies, as well as the application of molecular dynamics (MD) simulation in nanoporous membrane design. This review will provide useful guidelines for future research in the development of nanoscale tailor-made membranes with a precise and rapid molecular sieve separation property.

  11. Nanoscale phase separation of antiferromagnetic order and superconductivity in K0.75Fe1.75Se2

    PubMed Central

    Yuan, R. H.; Dong, T.; Song, Y. J.; Zheng, P.; Chen, G. F.; Hu, J. P.; Li, J. Q.; Wang, N. L.

    2012-01-01

    We report an in-plane optical spectroscopy study on the iron-selenide superconductor K0.75Fe1.75Se2. The measurement revealed the development of a sharp reflectance edge below Tc at frequency much smaller than the superconducting energy gap on a relatively incoherent electronic background, a phenomenon which was not seen in any other Fe-based superconductors so far investigated. Furthermore, the feature could be noticeably suppressed and shifted to lower frequency by a moderate magnetic field. Our analysis indicates that this edge structure arises from the development of a Josephson-coupling plasmon in the superconducting condensate. Together with the transmission electron microscopy analysis, our study yields compelling evidence for the presence of nanoscale phase separation between superconductivity and magnetism. The results also enable us to understand various seemingly controversial experimental data probed from different techniques. PMID:22355735

  12. Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites.

    PubMed

    Bischak, Connor G; Hetherington, Craig L; Wu, Hao; Aloni, Shaul; Ogletree, D Frank; Limmer, David T; Ginsberg, Naomi S

    2017-02-08

    The distinct physical properties of hybrid organic-inorganic materials can lead to unexpected nonequilibrium phenomena that are difficult to characterize due to the broad range of length and time scales involved. For instance, mixed halide hybrid perovskites are promising materials for optoelectronics, yet bulk measurements suggest the halides reversibly phase separate upon photoexcitation. By combining nanoscale imaging and multiscale modeling, we find that the nature of halide demixing in these materials is distinct from macroscopic phase separation. We propose that the localized strain induced by a single photoexcited charge interacting with the soft, ionic lattice is sufficient to promote halide phase separation and nucleate a light-stabilized, low-bandgap, ∼8 nm iodide-rich cluster. The limited extent of this polaron is essential to promote demixing because by contrast bulk strain would simply be relaxed. Photoinduced phase separation is therefore a consequence of the unique electromechanical properties of this hybrid class of materials. Exploiting photoinduced phase separation and other nonequilibrium phenomena in hybrid materials more generally could expand applications in sensing, switching, memory, and energy storage.

  13. Accelerated sintering in phase-separating nanostructured alloys

    PubMed Central

    Park, Mansoo; Schuh, Christopher A.

    2015-01-01

    Sintering of powders is a common means of producing bulk materials when melt casting is impossible or does not achieve a desired microstructure, and has long been pursued for nanocrystalline materials in particular. Acceleration of sintering is desirable to lower processing temperatures and times, and thus to limit undesirable microstructure evolution. Here we show that markedly enhanced sintering is possible in some nanocrystalline alloys. In a nanostructured W–Cr alloy, sintering sets on at a very low temperature that is commensurate with phase separation to form a Cr-rich phase with a nanoscale arrangement that supports rapid diffusional transport. The method permits bulk full density specimens with nanoscale grains, produced during a sintering cycle involving no applied stress. We further show that such accelerated sintering can be evoked by design in other nanocrystalline alloys, opening the door to a variety of nanostructured bulk materials processed in arbitrary shapes from powder inputs. PMID:25901420

  14. Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites

    NASA Astrophysics Data System (ADS)

    Bischak, Connor G.; Hetherington, Craig L.; Wu, Hao; Aloni, Shaul; Ogletree, D. Frank; Limmer, David T.; Ginsberg, Naomi S.

    2017-02-01

    Nonequilibrium processes occurring in functional materials can significantly impact device efficiencies and are often difficult to characterize due to the broad range of length and time scales involved. In particular, mixed halide hybrid perovskites are promising for optoelectronics, yet the halides reversibly phase separate when photo-excited, significantly altering device performance. By combining nanoscale imaging and multiscale modeling, we elucidate the mechanism underlying this phenomenon, demonstrating that local strain induced by photo-generated polarons promotes halide phase separation and leads to nucleation of light-stabilized iodide-rich clusters. This effect relies on the unique electromechanical properties of hybrid materials, characteristic of neither their organic nor inorganic constituents alone. Exploiting photo-induced phase separation and other nonequilibrium phenomena in hybrid materials, generally, could enable new opportunities for expanding the functional applications in sensing, photoswitching, optical memory, and energy storage.

  15. Nanoscopy of Phase Separation in InxGa1-xN Alloys.

    PubMed

    Abate, Yohannes; Seidlitz, Daniel; Fali, Alireza; Gamage, Sampath; Babicheva, Viktoriia; Yakovlev, Vladislav S; Stockman, Mark I; Collazo, Ramon; Alden, Dorian; Dietz, Nikolaus

    2016-09-07

    Phase separations in ternary/multinary semiconductor alloys is a major challenge that limits optical and electronic internal device efficiency. We have found ubiquitous local phase separation in In1-xGaxN alloys that persists to nanoscale spatial extent by employing high-resolution nanoimaging technique. We lithographically patterned InN/sapphire substrates with nanolayers of In1-xGaxN down to few atomic layers thick that enabled us to calibrate the near-field infrared response of the semiconductor nanolayers as a function of composition and thickness. We also developed an advanced theoretical approach that considers the full geometry of the probe tip and all the sample and substrate layers. Combining experiment and theory, we identified and quantified phase separation in epitaxially grown individual nanoalloys. We found that the scale of the phase separation varies widely from particle to particle ranging from all Ga- to all In-rich regions and covering everything in between. We have found that between 20 and 25% of particles show some level of Ga-rich phase separation over the entire sample region, which is in qualitative agreement with the known phase diagram of In1-xGaxN system.

  16. Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation

    PubMed Central

    Yoo, Seungmin; Kim, Jung-Hwan; Shin, Myoungsoo; Park, Hyungmin; Kim, Jeong-Hoon; Lee, Sang-Young; Park, Soojin

    2015-01-01

    The rational design and realization of revolutionary porous structures have been long-standing challenges in membrane science. We demonstrate a new class of amphiphilic polystyrene-block-poly(4-vinylpyridine) block copolymer (BCP)–based porous membranes featuring hierarchical multiscale hyperporous structures. The introduction of surface energy–modifying agents and the control of major phase separation parameters (such as nonsolvent polarity and solvent drying time) enable tunable dual-phase separation of BCPs, eventually leading to macro/nanoscale porous structures and chemical functionalities far beyond those accessible with conventional approaches. Application of this BCP membrane to a lithium-ion battery separator affords exceptional improvement in electrochemical performance. The dual-phase separation–driven macro/nanopore construction strategy, owing to its simplicity and tunability, is expected to be readily applicable to a rich variety of membrane fields including molecular separation, water purification, and energy-related devices. PMID:26601212

  17. Visualizing nanoscale phase morphology for understanding photovoltaic performance of PTB7: PC71BM solar cell

    NASA Astrophysics Data System (ADS)

    Supasai, Thidarat; Amornkitbamrung, Vittaya; Thanachayanont, Chanchana; Tang, I.-Ming; Sutthibutpong, Thana; Rujisamphan, Nopporn

    2017-11-01

    Visualizing and controlling the phase separation of the donor and acceptor domains in organic bulk-hetero-junction (BHJ) solar devices made with poly([4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethyl-hexyl)carbon-yl]thieno[3,4-bthiophenediyl]) (PTB7) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) are needed to achieve high power conversion efficiency (PCE). Traditional bright-field (BF) imaging, especially of polymeric materials, produces images of poor contrast when done at the nanoscale level. Clear nanoscale morphologies of the PTB7:PC71BM blends prepared with different 1,8-diiodooctane (DIO) concentrations were seen when using the energy-filtered transmission electron microscopy (EFTEM). The electron energy loss (EELS) spectra of the pure PTB7 and PC71BM samples are centered at 22.7 eV and 24.5 eV, respectively. Using the electrons whose energy losses are in the range of 16-30 eV, detail information of the phase morphology at the nanoscale was obtained. Correlations between the improvement in the photovoltaic performances and the increased electron mobility were seen. These correlations are discussed in terms of the changes (at the nanoscale level) in blending phase morphology when different DIO concentrations are added.

  18. A fracture mechanics study of the phase separating planar electrodes: Phase field modeling and analytical results

    NASA Astrophysics Data System (ADS)

    Haftbaradaran, H.; Maddahian, A.; Mossaiby, F.

    2017-05-01

    It is well known that phase separation could severely intensify mechanical degradation and expedite capacity fading in lithium-ion battery electrodes during electrochemical cycling. Experiments have frequently revealed that such degradation effects could be substantially mitigated via reducing the electrode feature size to the nanoscale. The purpose of this work is to present a fracture mechanics study of the phase separating planar electrodes. To this end, a phase field model is utilized to predict how phase separation affects evolution of the solute distribution and stress profile in a planar electrode. Behavior of the preexisting flaws in the electrode in response to the diffusion induced stresses is then examined via computing the time dependent stress intensity factor arising at the tip of flaws during both the insertion and extraction half-cycles. Further, adopting a sharp-interphase approximation of the system, a critical electrode thickness is derived below which the phase separating electrode becomes flaw tolerant. Numerical results of the phase field model are also compared against analytical predictions of the sharp-interphase model. The results are further discussed with reference to the available experiments in the literature. Finally, some of the limitations of the model are cautioned.

  19. Ferromagnetic domain behavior and phase transition in bilayer manganites investigated at the nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phatak, C.; Petford-Long, A. K.; Zheng, H.

    Understanding the underlying mechanism and phenomenology of colossal magnetoresistance in manganites has largely focused on atomic and nanoscale physics such as double exchange, phase separation, and charge order. Here in this article, we consider a more macroscopic view of manganite materials physics, reporting on the ferromagnetic domain behavior in a bilayer manganite sample with a nominal composition of La 2-2xSr 1+2xMn 2O 7 with x = 0:38, studied using in-situ Lorentz transmission electron microscopy. The role of magnetocrystalline anisotropy on the structure of domain walls was elucidated. On cooling, magnetic domain contrast was seen to appear first at the Curiemore » temperature within the a - b plane. With further reduction in temperature, the change in area fraction of magnetic domains was used to estimate the critical exponent describing the ferromagntic phase transition. Lastly, the ferromagnetic phase transition was accompanied by a distinctive nanoscale granular contrast close to the Curie temperature, which we infer to be related to the presence of ferromagnetic nanoclusters in a paramagnetic matrix, which has not yet been reported in bilayer manganites.« less

  20. Ferromagnetic domain behavior and phase transition in bilayer manganites investigated at the nanoscale

    DOE PAGES

    Phatak, C.; Petford-Long, A. K.; Zheng, H.; ...

    2015-12-14

    Understanding the underlying mechanism and phenomenology of colossal magnetoresistance in manganites has largely focused on atomic and nanoscale physics such as double exchange, phase separation, and charge order. Here in this article, we consider a more macroscopic view of manganite materials physics, reporting on the ferromagnetic domain behavior in a bilayer manganite sample with a nominal composition of La 2-2xSr 1+2xMn 2O 7 with x = 0:38, studied using in-situ Lorentz transmission electron microscopy. The role of magnetocrystalline anisotropy on the structure of domain walls was elucidated. On cooling, magnetic domain contrast was seen to appear first at the Curiemore » temperature within the a - b plane. With further reduction in temperature, the change in area fraction of magnetic domains was used to estimate the critical exponent describing the ferromagntic phase transition. Lastly, the ferromagnetic phase transition was accompanied by a distinctive nanoscale granular contrast close to the Curie temperature, which we infer to be related to the presence of ferromagnetic nanoclusters in a paramagnetic matrix, which has not yet been reported in bilayer manganites.« less

  1. Nanopatterns by phase separation of patterned mixed polymer monolayers

    DOEpatents

    Huber, Dale L; Frischknecht, Amalie

    2014-02-18

    Micron-size and sub-micron-size patterns on a substrate can direct the self-assembly of surface-bonded mixed polymer brushes to create nanoscale patterns in the phase-separated mixed polymer brush. The larger scale features, or patterns, can be defined by a variety of lithographic techniques, as well as other physical and chemical processes including but not limited to etching, grinding, and polishing. The polymer brushes preferably comprise vinyl polymers, such as polystyrene and poly(methyl methacrylate).

  2. Controlled propulsion and separation of helical particles at the nanoscale.

    PubMed

    Alcanzare, Maria Michiko T; Thakore, Vaibhav; Ollila, Santtu T T; Karttunen, Mikko; Ala-Nissila, Tapio

    2017-03-15

    Controlling the motion of nano and microscale objects in a fluid environment is a key factor in designing optimized tiny machines that perform mechanical tasks such as transport of drugs or genetic material in cells, fluid mixing to accelerate chemical reactions, and cargo transport in microfluidic chips. Directed motion is made possible by the coupled translational and rotational motion of asymmetric particles. A current challenge in achieving directed and controlled motion at the nanoscale lies in overcoming random Brownian motion due to thermal fluctuations in the fluid. We use a hybrid lattice-Boltzmann molecular dynamics method with full hydrodynamic interactions and thermal fluctuations to demonstrate that controlled propulsion of individual nanohelices in an aqueous environment is possible. We optimize the propulsion velocity and the efficiency of externally driven nanohelices. We quantify the importance of the thermal effects on the directed motion by calculating the Péclet number for various shapes, number of turns and pitch lengths of the helices. Consistent with the experimental microscale separation of chiral objects, our results indicate that in the presence of thermal fluctuations at Péclet numbers >10, chiral particles follow the direction of propagation according to its handedness and the direction of the applied torque making separation of chiral particles possible at the nanoscale. Our results provide criteria for the design and control of helical machines at the nanoscale.

  3. Nano-scale imaging and spectroscopy of plasmonic systems, thermal near-fields, and phase separation in complex oxides

    NASA Astrophysics Data System (ADS)

    Jones, Andrew C.

    -rods. Strong spatial field variation on lengths scales as short as 20 nm is observed associated with the dipolar and quadrupolar modes of both systems with details sensitively depending on the nanoparticle structure and environment. In light of recent publications predicting distinct spectral characteristics of thermal electromagnetic near-fields, I demonstrate the extension of s-SNOM techniques through the implementation of a heated atomic force microscope (AFM) tip acting as its own intrinsic light source for the characterization of thermal near-fields. Here, I detail the spectrally distinct and orders of magnitude enhanced resonant spectral near-field energy density associated with vibrational, phonon, and phonon-polariton modes. Modeling the thermal light scattering by the AFM, the scattering cross-section for thermal light may be related to the electromagnetic local density of states (EM-LDOS) above a surface. Lastly, the unique capability of s-SNOM techniques to characterize phase separation phenomena in correlated electron systems is discussed. This measurement capability provides new microscopic insight into the underlying mechanisms of the rich phase transition behavior exhibited by these materials. As a specific example, the infrared s-SNOM mapping of the metal-insulator transition and the associated nano-domain formation in individual VO2 micro-crystals subject to substrate stress is presented. Our results have important implications for the interpretation of the investigations of conventional polycrystalline thin films where the mutual interaction of constituent crystallites may affect the nature of phase separation processes.

  4. Highly repeatable nanoscale phase coexistence in vanadium dioxide films

    NASA Astrophysics Data System (ADS)

    Huffman, T. J.; Lahneman, D. J.; Wang, S. L.; Slusar, T.; Kim, Bong-Jun; Kim, Hyun-Tak; Qazilbash, M. M.

    2018-02-01

    It is generally believed that in first-order phase transitions in materials with imperfections, the formation of phase domains must be affected to some extent by stochastic (probabilistic) processes. The stochasticity would lead to unreliable performance in nanoscale devices that have the potential to exploit the transformation of physical properties in a phase transition. Here we show that stochasticity at nanometer length scales is completely suppressed in the thermally driven metal-insulator transition (MIT) in sputtered vanadium dioxide (V O2 ) films. The nucleation and growth of domain patterns of metallic and insulating phases occur in a strikingly reproducible way. The completely deterministic nature of domain formation and growth in films with imperfections is a fundamental and unexpected finding about the kinetics of this material. Moreover, it opens the door for realizing reliable nanoscale devices based on the MIT in V O2 and similar phase-change materials.

  5. Hybrid films with phase-separated domains: A new class of functional materials

    NASA Astrophysics Data System (ADS)

    Kang, Minjee; Leal, Cecilia

    The cell membrane is highly compartmentalized over micro-and nano scale. The compartmentalized domains play an important role in regulating the diffusion and distribution of species within and across the membrane. In this work, we introduced nanoscale heterogeneities into lipid films for the purpose of developing nature-mimicking phase-separated materials. The mixtures of phospholipids and amphiphilic block copolymers self-assemble into supported 1D multi-bilayers. We observed that in each lamella, mixtures of lipid and polymer phase-separate into domains that differ in their composition akin to sub-phases in cholesterol-containing lipid bilayers. Interestingly, we found evidence that like-domains are in registry across multilayers, making phase separation three-dimensional. To exploit such distinctive domain structure for surface-mediated drug delivery, we incorporated pharmaceutical molecules into the films. The drug release study revealed that the presence of domains in hybrid films modifies the diffusion pathways of drugs that become confined within phase-separated domains. A comprehensive domain structure coupled with drug diffusion pathways in films will be presented, offering new perspectives in designing a thin-film matrix system for controlled drug delivery. This work was supported by the National Science Foundation under Grant No. DMR-1554435.

  6. Cuprate phase diagram and the influence of nanoscale inhomogeneities

    NASA Astrophysics Data System (ADS)

    Zaki, N.; Yang, H.-B.; Rameau, J. D.; Johnson, P. D.; Claus, H.; Hinks, D. G.

    2017-11-01

    The phase diagram associated with high-Tc superconductors is complicated by an array of different ground states. The parent material represents an antiferromagnetic insulator but with doping superconductivity becomes possible with transition temperatures previously thought unattainable. The underdoped region of the phase diagram is dominated by the so-called pseudogap phenomena, whereby in the normal state the system mimics superconductivity in its spectral response but does not show the complete loss of resistivity associated with the superconducting state. An understanding of this regime presents one of the great challenges for the field. In the present study we revisit the structure of the phase diagram as determined in photoemission studies. By careful analysis of the role of nanoscale inhomogeneities in the overdoped region, we are able to more carefully separate out the gaps due to the pseudogap phenomena from the gaps due to the superconducting transition. Within a mean-field description, we are thus able to link the magnitude of the doping-dependent pseudogap directly to the Heisenberg exchange interaction term, J ∑sisj , contained in the t -J model. This approach provides a clear indication that the pseudogap is associated with spin singlet formation.

  7. Fractionation of Exosomes and DNA using Size-Based Separation at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Wunsch, Benjamin; Smith, Joshua; Wang, Chao; Gifford, Stacey; Brink, Markus; Bruce, Robert; Solovitzky, Gustavo; Austin, Robert; Astier, Yann

    Exosomes, a key target of ``liquid biopsies'', are nano-vesicles found in nearly all biological fluids. Exosomes are secreted by eukaryotic and prokaryotic cells alike, and contain information about their originating cells, including surface proteins, cytoplasmic proteins, and nucleic acids. One challenge in studying exosome morphology is the difficulty of sorting exosomes by size and surface markers. Common separation techniques for exosomes include ultracentrifugation and ultrafiltration, for preparation of large volume samples, but these techniques often show contamination and significant heterogeneity between preparations. To date, deterministic lateral displacement (DLD) pillar arrays in silicon have proven an efficient technology to sort, separate, and enrich micron-scale particles including human parasites, eukaryotic cells, blood cells, and circulating tumor cells in blood; however, the DLD technology has never been translated to the true nanoscale, where it could function on bio-colloids such as exosomes. We have fabricated nanoscale DLD (nanoDLD) arrays capable of rapidly sorting colloids down to 20 nm in continuous flow, and demonstrated size sorting of individual exosome vesicles and dsDNA polymers, opening the potential for on-chip biomolecule separation and diagnosti

  8. Controlling Microstructure-Transport Interplay in Highly Phase-Separated Perfluorosulfonated Aromatic Multiblock Ionomers via Molecular Architecture Design.

    PubMed

    Nguyen, Huu-Dat; Assumma, Luca; Judeinstein, Patrick; Mercier, Regis; Porcar, Lionel; Jestin, Jacques; Iojoiu, Cristina; Lyonnard, Sandrine

    2017-01-18

    Proton-conducting multiblock polysulfones bearing perfluorosulfonic acid side chains were designed to encode nanoscale phase-separation, well-defined hydrophilic/hydrophobic interfaces, and optimized transport properties. Herein, we show that the superacid side chains yield highly ordered morphologies that can be tailored by best compromising ion-exchange capacity and block lengths. The obtained microstructures were extensively characterized by small-angle neutron scattering (SANS) over an extended range of hydration. Peculiar swelling behaviors were evidenced at two different scales and attributed to the dilution of locally flat polymer particles. We evidence the direct correlation between the quality of interfaces, the topology and connectivity of ionic nanodomains, the block superstructure long-range organization, and the transport properties. In particular, we found that the proton conductivity linearly depends on the microscopic expansion of both ionic and block domains. These findings indicate that neat nanoscale phase-separation and block-induced long-range connectivity can be optimized by designing aromatic ionomers with controlled architectures to improve the performances of polymer electrolyte membranes.

  9. Self-assembly of Nano-rods in Photosensitive Phase Separation

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Kuksenok, Olga; Maresov, Egor; Balazs, Anna

    2012-02-01

    Computer simulations reveal how photo-induced chemical reactions in polymeric mixtures can be exploited to create long-range order in materials whose features range from the sub-micron to the nanoscale. The process is initiated by shining a spatially uniform light on a photosensitive AB binary blend, which thereby undergoes both a reversible chemical reaction and phase separation. When a well-collimated, higher intensity light is rastered over the sample, the system forms defect-free, spatially periodic structures. We now build on this approach by introducing nanorods that have a preferential affinity for one the phases in a binary mixture. By rastering over the sample with the higher intensity light, we can create ordered arrays of rods within periodically ordered materials in essentially one processing step.

  10. Correlative Energy-Dispersive X-Ray Spectroscopic Tomography and Atom Probe Tomography of the Phase Separation in an Alnico 8 Alloy.

    PubMed

    Guo, Wei; Sneed, Brian T; Zhou, Lin; Tang, Wei; Kramer, Matthew J; Cullen, David A; Poplawsky, Jonathan D

    2016-12-01

    Alnico alloys have long been used as strong permanent magnets because of their ferromagnetism and high coercivity. Understanding their structural details allows for better prediction of the resulting magnetic properties. However, quantitative three-dimensional characterization of the phase separation in these alloys is still challenged by the spatial quantification of nanoscale phases. Herein, we apply a dual tomography approach, where correlative scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectroscopic (EDS) tomography and atom probe tomography (APT) are used to investigate the initial phase separation process of an alnico 8 alloy upon non-magnetic annealing. STEM-EDS tomography provides information on the morphology and volume fractions of Fe-Co-rich and Νi-Al-rich phases after spinodal decomposition in addition to quantitative information of the composition of a nanoscale volume. Subsequent analysis of a portion of the same specimen by APT offers quantitative chemical information of each phase at the sub-nanometer scale. Furthermore, APT reveals small, 2-4 nm Fe-rich α 1 phases that are nucleated in the Ni-rich α 2 matrix. From this information, we show that phase separation of the alnico 8 alloy consists of both spinodal decomposition and nucleation and growth processes. The complementary benefits and challenges associated with correlative STEM-EDS and APT are discussed.

  11. Cuprate phase diagram and the influence of nanoscale inhomogeneities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaki, N.; Yang, H. -B.; Rameau, J. D.

    2017-11-01

    The phase diagram associated with high-Tc superconductors is complicated by an array of different ground states. The parent material represents an antiferromagnetic insulator but with doping superconductivity becomes possible with transition temperatures previously thought unattainable. The underdoped region of the phase diagram is dominated by the so-called pseudogap phenomena, whereby in the normal state the system mimics superconductivity in its spectral response but does not show the complete loss of resistivity associated with the superconducting state. An understanding of this regime presents one of the great challenges for the field. In the present study we revisit the structure of themore » phase diagram as determined in photoemission studies. By careful analysis of the role of nanoscale inhomogeneities in the overdoped region, we are able to more carefully separate out the gaps due to the pseudogap phenomena from the gaps due to the superconducting transition. Within a mean-field description, we are thus able to link the magnitude of the doping-dependent pseudogap directly to the Heisenberg exchange interaction term, J Sigma s(i)s(j), contained in the t - J model. This approach provides a clear indication that the pseudogap is associated with spin singlet formation.« less

  12. Cuprate phase diagram and the influence of nanoscale inhomogeneities

    DOE PAGES

    Zaki, Nader; Yang, Hongbo -B.; Rameau, Jon D.; ...

    2017-11-28

    The phase diagram associated with high-T c superconductors is complicated by an array of different ground states. The parent material represents an antiferromagnetic insulator but with doping superconductivity becomes possible with transition temperatures previously thought unattainable. The underdoped region of the phase diagram is dominated by the so-called pseudogap phenomena, whereby in the normal state the system mimics superconductivity in its spectral response but does not show the complete loss of resistivity associated with the superconducting state. An understanding of this regime presents one of the great challenges for the field. In the present study we revisit the structure ofmore » the phase diagram as determined in photoemission studies. By careful analysis of the role of nanoscale inhomogeneities in the overdoped region, we are able to more carefully separate out the gaps due to the pseudogap phenomena from the gaps due to the superconducting transition. Within a mean-field description, we are thus able to link the magnitude of the doping-dependent pseudogap directly to the Heisenberg exchange interaction term, JΣs is j, contained in the t-J model. This approach provides a clear indication that the pseudogap is associated with spin singlet formation.« less

  13. Development of Self-Assembled Nanoscale Templates via Microphase Separation Induced by Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Chu, Elza

    Phase separation in soft matter has been the crucial element in generating hybrid materials, such as polymer blends and mixed polymer brushes. This dissertation discusses two methods of developing self-assembled nanoscale templates via microphase separation induced by polymer brush synthesis. This work introduces a novel soft substrate approach with renewable grafting sites where polyacrylamide is "grafted through" chitosan soft substrates. The mechanism of grafting leads to ordered arrays of filament-like nanostructures spanning the chitosan-air interface. Additionally, the chemical composition of the filaments allows for post-chemical modification to change the physical properties of the filaments, and subsequently tailor surfaces for specific application. Unlike traditional materials, multi-functional or "smart" materials, such as binary polymer brushes (BPB) are capable of spontaneously changing the spatial distribution of functional groups and morphology at the surface upon external stimuli. Although promising in principle, the limited range of available complementary polymers with common non-selective solvents confines the diversity of usable materials and restricts any further advancement in the field. This dissertation also covers the fabrication and characterization of responsive nanoscale polystyrene templates or "mosaic" brushes that are capable of changing interfacial composition upon exposure to varying solvent qualities. Using a "mosaic" brush template is a unique approach that allows the fabrication of strongly immiscible polymer BPB without the need for a common solvent. The synthesis of such BPB is exemplified by two strongly immiscible polymers, i.e. polystyrene (polar) and polyacrylamide (non-polar), where polyacrylamide brush is "graft through" a Si-substrate modified with the polystyrene collapsed "mosaic" brush. The surface exhibits solvent-triggered responses, as well as application potential for anti-biofouling.

  14. Magnetic superlattices and their nanoscale phase transition effects

    PubMed Central

    Cheon, Jinwoo; Park, Jong-Il; Choi, Jin-sil; Jun, Young-wook; Kim, Sehun; Kim, Min Gyu; Kim, Young-Min; Kim, Youn Joong

    2006-01-01

    The systematic assembly of nanoscale constituents into highly ordered superlattices is of significant interest because of the potential of their multifunctionalities and the discovery of new collective properties. However, successful observations of such superlattice-associated nanoscale phenomena are still elusive. Here, we present magnetic superlattices of Co and Fe3O4 nanoparticles with multidimensional symmetry of either AB (NaCl) or AB2 (AlB2). The discovery of significant enhancement (≈25 times) of ferrimagnetism is further revealed by forming previously undescribed superlattices of magnetically soft–hard Fe3O4@CoFe2O4 through the confined geometrical effect of thermally driven intrasuperlattice phase transition between the nanoparticulate components. PMID:16492783

  15. Correlative Energy-Dispersive X-Ray Spectroscopic Tomography and Atom Probe Tomography of the Phase Separation in an Alnico 8 Alloy

    DOE PAGES

    Guo, Wei; Sneed, Brian T.; Zhou, Lin; ...

    2016-12-21

    Alnico alloys have long been used as strong permanent magnets because of their ferromagnetism and high coercivity. Understanding their structural details allows for better prediction of the resulting magnetic properties. However, quantitative three-dimensional characterization of the phase separation in these alloys is still challenged by the spatial quantification of nanoscale phases. Herein, we apply a dual tomography approach, where correlative scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectroscopic (EDS) tomography and atom probe tomography (APT) are used to investigate the initial phase separation process of an alnico 8 alloy upon non-magnetic annealing. STEM-EDS tomography provides information on the morphology andmore » volume fractions of Fe–Co-rich and Νi–Al-rich phases after spinodal decomposition in addition to quantitative information of the composition of a nanoscale volume. Subsequent analysis of a portion of the same specimen by APT offers quantitative chemical information of each phase at the sub-nanometer scale. Furthermore, APT reveals small, 2–4 nm Fe-rich α 1 phases that are nucleated in the Ni-rich α 2 matrix. From this information, we show that phase separation of the alnico 8 alloy consists of both spinodal decomposition and nucleation and growth processes. Lastly, we discuss the complementary benefits and challenges associated with correlative STEM-EDS and APT.« less

  16. Nanoscale Phase-Separated Structure in Core-Shell Nanoparticles of SiO2-Si1-xGexO2 Glass Revealed by Electron Microscopy.

    PubMed

    Kubo, Yugo; Yonezawa, Kazuhiro

    2017-09-05

    SiO 2 -based optical fibers are indispensable components of modern information communication technologies. It has recently become increasingly important to establish a technique for visualizing the nanoscale phase-separated structure inside SiO 2 -GeO 2 glass nanoparticles during the manufacturing of SiO 2 -GeO 2 fibers. This is because the rapidly increasing price of Ge has made it necessary to improve the Ge yield by clarifying the detailed mechanism of Ge diffusion into SiO 2 . However, direct observation of the internal nanostructure of glass particles has been extremely difficult, mainly due to electrostatic charging and the damage induced by electron and X-ray irradiation. In the present study, we used state-of-the-art scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDX) to examine cross-sectional samples of SiO 2 -GeO 2 particles embedded in an epoxy resin, which were fabricated using a broad Ar ion beam and a focused Ga ion beam. These advanced techniques enabled us to observe the internal phase-separated structure of the nanoparticles. We have for the first time clearly determined the SiO 2 -Si 1-x Ge x O 2 core-shell structure of such particles, the element distribution, the degree of crystallinity, and the quantitative chemical composition of microscopic regions, and we discuss the formation mechanism for the observed structure. The proposed imaging protocol is highly promising for studying the internal structure of various core-shell nanoparticles, which affects their catalytic, optical, and electronic properties.

  17. Acoustic Detection of Phase Transitions at the Nanoscale

    DOE PAGES

    Vasudevan, Rama K.; Khassaf, Hamidreza; Cao, Ye; ...

    2016-01-25

    On page 478, N. Bassiri-Gharb and co-workers demonstrate acoustic detection in nanoscale volumes by use of an atomic force microscope tip technique. Elastic changes in volume are measured by detecting changes in resonance of the cantilever. Also, the electric field in this case causes a phase transition, which is modeled by Landau theory.

  18. Electrospun Polymer Blend Nanofibers for Tunable Drug Delivery: The Role of Transformative Phase Separation on Controlling the Release Rate.

    PubMed

    Tipduangta, Pratchaya; Belton, Peter; Fábián, László; Wang, Li Ying; Tang, Huiru; Eddleston, Mark; Qi, Sheng

    2016-01-04

    Electrospun fibrous materials have a wide range of biomedical applications, many of them involving the use of polymers as matrices for incorporation of therapeutic agents. The use of polymer blends improves the tuneability of the physicochemical and mechanical properties of the drug loaded fibers. This also benefits the development of controlled drug release formulations, for which the release rate can be modified by altering the ratio of the polymers in the blend. However, to realize these benefits, a clear understanding of the phase behavior of the processed polymer blend is essential. This study reports an in depth investigation of the impact of the electrospinning process on the phase separation of a model partially miscible polymer blend, PVP K90 and HPMCAS, in comparison to other conventional solvent evaporation based processes including film casting and spin coating. The nanoscale stretching and ultrafast solvent removal of electrospinning lead to an enhanced apparent miscibility between the polymers, with the same blends showing micronscale phase separation when processed using film casting and spin coating. Nanoscale phase separation in electrospun blend fibers was confirmed in the dry state. Rapid, layered, macroscale phase separation of the two polymers occurred during the wetting of the fibers. This led to a biphasic drug release profile from the fibers, with a burst release from PVP-rich phases and a slower, more continuous release from HPMCAS-rich phases. It was noted that the model drug, paracetamol, had more favorable partitioning into the PVP-rich phase, which is likely to be a result of greater hydrogen bonding between PVP and paracetamol. This led to higher drug contents in the PVP-rich phases than the HPMCAS-rich phases. By alternating the proportions of the PVP and HPMCAS, the drug release rate can be modulated.

  19. Self-assembly of amorphous biophotonic nanostructures by phase separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufresne, Eric R.; Noh, Heeso; Saranathan, Vinodkumar

    2009-04-23

    Some of the most vivid colors in the animal kingdom are created not by pigments, but by wavelength-selective scattering of light from nanostructures. Here we investigate quasi-ordered nanostructures of avian feather barbs which produce vivid non-iridescent colors. These {beta}-keratin and air nanostructures are found in two basic morphologies: tortuous channels and amorphous packings of spheres. Each class of nanostructure is isotropic and has a pronounced characteristic length scale of variation in composition. These local structural correlations lead to strong backscattering over a narrow range of optical frequencies and little variation with angle of incidence. Such optical properties play important rolesmore » in social and sexual communication. To be effective, birds need to precisely control the development of these nanoscale structures, yet little is known about how they grow. We hypothesize that multiple lineages of birds have convergently evolved to exploit phase separation and kinetic arrest to self-assemble spongy color-producing nanostructures in feather barbs. Observed avian nanostructures are strikingly similar to those self-assembled during the phase separation of fluid mixtures; the channel and sphere morphologies are characteristic of phase separation by spinodal decomposition and nucleation and growth, respectively. These unstable structures are locked-in by the kinetic arrest of the {beta}-keratin matrix, likely through the entanglement or cross-linking of supermolecular {beta}-keratin fibers. Using the power of self-assembly, birds can robustly realize a diverse range of nanoscopic morphologies with relatively small physical and chemical changes during feather development.« less

  20. Nanoscale heat transfer and phase transformation surrounding intensely heated nanoparticles

    NASA Astrophysics Data System (ADS)

    Sasikumar, Kiran

    Over the last decade there has been significant ongoing research to use nanoparticles for hyperthermia-based destruction of cancer cells. In this regard, the investigation of highly non-equilibrium thermal systems created by ultrafast laser excitation is a particularly challenging and important aspect of nanoscale heat transfer. It has been observed experimentally that noble metal nanoparticles, illuminated by radiation at the plasmon resonance wavelength, can act as localized heat sources at nanometer-length scales. Achieving biological response by delivering heat via nanoscale heat sources has also been demonstrated. However, an understanding of the thermal transport at these scales and associated phase transformations is lacking. A striking observation made in several laser-heating experiments is that embedded metal nanoparticles heated to extreme temperatures may even melt without an associated boiling of the surrounding fluid. This unusual phase stability is not well understood and designing experiments to understand the physics of this phenomenon is a challenging task. In this thesis, we will resort to molecular dynamics (MD) simulations, which offer a powerful tool to investigate this phenomenon, without assumptions underlying continuum-level model formulations. We present the results from a series of steady state and transient non-equilibrium MD simulations performed on an intensely heated nanoparticle immersed in a model liquid. For small nanoparticles (1-10 nm in diameter) we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, we report the existence of a critical nanoparticle size (4 nm in diameter) below which we do not observe formation of vapor even when local fluid temperatures exceed the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain this stability in terms of the

  1. Specific features of the cathodoluminescence spectra of AlInGaN QWs, caused by the influence of phase separation and internal electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsova, Ya. V., E-mail: yana@mail.ioffe.ru; Jmerik, V. N.; Nechaev, D. V.

    2016-07-15

    The specific features of the cathodoluminescence (CL) spectra in AlInGaN heterostructures, caused by the influence of phase separation and internal electric fields, observed at varied CL excitation density, are studied. It is shown that the evolution of the CL spectrum and the variation in the spectral position of emission lines of nanoscale layers with current density in the primary electron beam makes it possible to identify the occurrence of phase separation in the layer and, in the absence of this separation, to estimate the electric-field strength in the active region of the structure.

  2. Electrophoretic-like gating used to control metal-insulator transitions in electronically phase separated manganite wires.

    PubMed

    Guo, Hangwen; Noh, Joo H; Dong, Shuai; Rack, Philip D; Gai, Zheng; Xu, Xiaoshan; Dagotto, Elbio; Shen, Jian; Ward, T Zac

    2013-08-14

    Electronically phase separated manganite wires are found to exhibit controllable metal-insulator transitions under local electric fields. The switching characteristics are shown to be fully reversible, polarity independent, and highly resistant to thermal breakdown caused by repeated cycling. It is further demonstrated that multiple discrete resistive states can be accessed in a single wire. The results conform to a phenomenological model in which the inherent nanoscale insulating and metallic domains are rearranged through electrophoretic-like processes to open and close percolation channels.

  3. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm

    NASA Astrophysics Data System (ADS)

    Austin, Robert; Wunsch, Benjamin; Smith, Joshua; Gifford, Stacey; Wang, Chao; Brink, Markus; Bruce, Robert; Stolovitzky, Gustavo; Astier, Yann

    Deterministic lateral displacement (DLD) pillar arrays are an efficient technology to sort, separate and enrich micrometre-scale particles, which include parasites1, bacteria2, blood cells3 and circulating tumour cells in blood4. However, this technology has not been translated to the true nanoscale, where it could function on biocolloids, such as exosomes. Exosomes, a key target of liquid biopsies, are secreted by cells and contain nucleic acid and protein information about their originating tissue5. One challenge in the study of exosome biology is to sort exosomes by size and surface markers6, 7. We use manufacturable silicon processes to produce nanoscale DLD (nano-DLD) arrays of uniform gap sizes ranging from 25 to 235 nm. We show that at low Péclet (Pe) numbers, at which diffusion and deterministic displacement compete, nano-DLD arrays separate particles between 20 to 110 nm based on size with sharp resolution. Further, we demonstrate the size-based displacement of exosomes, and so open up the potential for on-chip sorting and quantification of these important biocolloids.

  4. Facile approach to the fabrication of a micropattern possessing nanoscale substructure.

    PubMed

    Ji, Qiang; Jiang, Xuesong; Yin, Jie

    2007-12-04

    On the basis of the combined technologies of photolithography and reaction-induced phase separation (RIPS), a facile approach has been successfully developed for the fabrication of a micropattern possessing nanoscale substructure on the thin film surface. This approach involves three steps. In the first step, a thin film was prepared by spin coating from a solution of a commercial random copolymer, polystyrene-r-poly(methyl methacrylate) (PS-r-PMMA) and a commercial crosslinker, trimethylolpropane triacrylate (TMPTA). In the second step, photolithograph was performed with the thin film using a 250 W high-pressure mercury lamp to produce the micropattern. Finally, the resulting micropattern was annealed at 200 degrees C for a certain time, and reaction-induced phase separation occurred. After soaking in chloroform for 4 h, nanoscale substructure was obtained. The whole processes were traced by atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS), and Fourier transform infrared (FTIR) spectroscopy, and the results supported the proposed structure.

  5. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm

    NASA Astrophysics Data System (ADS)

    Wunsch, Benjamin H.; Smith, Joshua T.; Gifford, Stacey M.; Wang, Chao; Brink, Markus; Bruce, Robert L.; Austin, Robert H.; Stolovitzky, Gustavo; Astier, Yann

    2016-11-01

    Deterministic lateral displacement (DLD) pillar arrays are an efficient technology to sort, separate and enrich micrometre-scale particles, which include parasites, bacteria, blood cells and circulating tumour cells in blood. However, this technology has not been translated to the true nanoscale, where it could function on biocolloids, such as exosomes. Exosomes, a key target of 'liquid biopsies', are secreted by cells and contain nucleic acid and protein information about their originating tissue. One challenge in the study of exosome biology is to sort exosomes by size and surface markers. We use manufacturable silicon processes to produce nanoscale DLD (nano-DLD) arrays of uniform gap sizes ranging from 25 to 235 nm. We show that at low Péclet (Pe) numbers, at which diffusion and deterministic displacement compete, nano-DLD arrays separate particles between 20 to 110 nm based on size with sharp resolution. Further, we demonstrate the size-based displacement of exosomes, and so open up the potential for on-chip sorting and quantification of these important biocolloids.

  6. Water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) amorphous solid dispersions: Insights with confocal fluorescence microscopy.

    PubMed

    Saboo, Sugandha; Taylor, Lynne S

    2017-08-30

    The aim of this study was to evaluate the utility of confocal fluorescence microscopy (CFM) to study the water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) (mico-PVPVA) amorphous solid dispersions (ASDs), induced during preparation, upon storage at high relative humidity (RH) and during dissolution. Different fluorescent dyes were added to drug-polymer films and the location of the dyes was evaluated using CFM. Orthogonal techniques, in particular atomic force microscopy (AFM) coupled with nanoscale infrared spectroscopy (AFM-nanoIR), were used to provide additional analysis of the drug-polymer blends. The initial miscibility of mico-PVPVA ASDs prepared under low humidity conditions was confirmed by AFM-nanoIR. CFM enabled rapid identification of drug-rich and polymer-rich phases in phase separated films prepared under high humidity conditions. The identity of drug- and polymer-rich domains was confirmed using AFM-nanoIR imaging and localized IR spectroscopy, together with Lorentz contact resonance (LCR) measurements. The CFM technique was then utilized successfully to further investigate phase separation in mico-PVPVA films exposed to high RH storage and to visualize phase separation dynamics following film immersion in buffer. CFM is thus a promising new approach to study the phase behavior of ASDs, utilizing drug and polymer specific dyes to visualize the evolution of heterogeneity in films exposed to water. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Vapor-liquid phase separator studies

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Lee, J. M.; Kim, Y. I.; Hepler, W. A.; Frederking, T. H. K.

    1983-01-01

    Porous plugs serve as both entropy rejection devices and phase separation components separating the vapor phase on the downstream side from liquid Helium 2 upstream. The liquid upstream is the cryo-reservoir fluid needed for equipment cooling by means of Helium 2, i.e Helium-4 below its lambda temperature in near-saturated states. The topics outlined are characteristic lengths, transport equations and plug results.

  8. Phase-separation induced extraordinary toughening of magnetic hydrogels

    NASA Astrophysics Data System (ADS)

    Tang, Jingda; Li, Chenghai; Li, Haomin; Lv, Zengyao; Sheng, Hao; Lu, Tongqing; Wang, T. J.

    2018-05-01

    Phase separation markedly influences the physical properties of hydrogels. Here, we find that poly (N, N-dimethylacrylamide) (PDMA) hydrogels suffer from phase separation in aqueous sodium hydroxide solutions when the concentration is higher than 2 M. The polymer volume fraction and mechanical properties show an abrupt change around the transition point. We utilize this phase separation mechanism to synthesize tough magnetic PDMA hydrogels with the in-situ precipitation method. For comparison, we also prepared magnetic poly (2-acrylamido-2-methyl-propane sulfonic acid sodium) (PNaAMPS) magnetic hydrogels, where no phase separation occurs. The phase-separated magnetic PDMA hydrogels exhibit an extraordinarily high toughness of ˜1000 J m-2; while non-phase-separated magnetic PNaAMPS hydrogels only show a toughness of ˜1 J m-2, three orders of magnitude lower than that of PDMA hydrogels. This phase separation mechanism may become a new approach to prepare tough magnetic hydrogels and inspire more applications.

  9. Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy

    PubMed Central

    Wang, Le; Wang, Haomin; Wagner, Martin; Yan, Yong; Jakob, Devon S.; Xu, Xiaoji G.

    2017-01-01

    Nondestructive chemical and mechanical measurements of materials with ~10-nm spatial resolution together with topography provide rich information on the compositions and organizations of heterogeneous materials and nanoscale objects. However, multimodal nanoscale correlations are difficult to achieve because of the limitation on spatial resolution of optical microscopy and constraints from instrumental complexities. We report a novel noninvasive spectroscopic scanning probe microscopy method—peak force infrared (PFIR) microscopy—that allows chemical imaging, collection of broadband infrared spectra, and mechanical mapping at a spatial resolution of 10 nm. In our technique, chemical absorption information is directly encoded in the withdraw curve of the peak force tapping cycle after illumination with synchronized infrared laser pulses in a simple apparatus. Nanoscale phase separation in block copolymers and inhomogeneity in CH3NH3PbBr3 perovskite crystals are studied with correlative infrared/mechanical nanoimaging. Furthermore, we show that the PFIR method is sensitive to the presence of surface phonon polaritons in boron nitride nanotubes. PFIR microscopy will provide a powerful analytical tool for explorations at the nanoscale across wide disciplines. PMID:28691096

  10. Preparation of nearly monodisperse nanoscale inorganic pigments.

    PubMed

    Wang, Dingsheng; Liang, Xin; Li, Yadong

    2006-07-17

    Many different important commercial pigments have been synthesized based on the liquid-solid-solution (LSS) phase-transfer and separation process. Transmission electron microscopy (TEM) measurement results show that they are very small in size and have a narrow size distribution. Visible absorption spectra were taken to examine the very pure and brilliant colors of the pigments. They can be well-dispersed in cyclohexane and remain non-agglomerated, even over several months. These nearly monodisperse nanoscale inorganic pigments may have wide applications in many important fields and could bring about new developments in the pigment industry.

  11. Study Of Phase Separation In Glass

    NASA Technical Reports Server (NTRS)

    Neilson, George F.; Weinberg, Michael C.; Smith, Gary L.

    1989-01-01

    Report describes an experimental study of effect of hydroxide content on phase separation in soda/silica glasses. Ordinary and gel glasses melted at 1,565 degree C, and melts stirred periodically. "Wet" glasses produced by passing bubbles of N2 saturated with water through melts; "dry" glasses prepared in similar manner, except N2 dried before passage through melts. Analyses of compositions of glasses performed by atomic-absorption and index-of-refraction measurements. Authors conclude hydroxide speeds up phase separation, regardless of method (gel or ordinary) by which glass prepared. Eventually helps material scientists to find ways to control morphology of phase separation.

  12. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation

    PubMed Central

    He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A. Lindsay

    2016-01-01

    At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands. PMID:27181922

  13. Gas-Liquid Flows and Phase Separation

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    2004-01-01

    Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .

  14. Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells

    NASA Astrophysics Data System (ADS)

    Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel; Sebastian, Abu

    2016-01-01

    In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge2Sb2Te5 nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.

  15. Prediction of Phase Formation in Nanoscale Sn-Ag-Cu Solder Alloy

    NASA Astrophysics Data System (ADS)

    Wu, Min; Lv, Bailin

    2016-01-01

    In a dynamic nonequilibrium process, the effective heat of formation allows the heat of formation to be calculated as a function of concentrations of the reacting atoms. In this work, we used the effective heat of formation rule to predict the formation and size of compound phases in a nanoscale Sn-Ag-Cu lead-free solder. We calculated the formation enthalpy and effective formation enthalpy of compounds in the Sn-Ag, Sn-Cu, and Ag-Cu systems by using the Miedema model and effective heat of formation. Our results show that, considering the surface effect of the nanoparticle, the effective heat of formation rule successfully predicts the phase formation and sizes of Ag3Sn and Cu6Sn5 compounds, which agrees well with experimental data.

  16. Center for Nanoscale Science and Technology

    National Institute of Standards and Technology Data Gateway

    NIST Center for Nanoscale Science and Technology (Program website, free access)   Currently there is no database matching your keyword search, but the NIST Center for Nanoscale Science and Technology website may be of interest. The Center for Nanoscale Science and Technology enables science and industry by providing essential measurement methods, instrumentation, and standards to support all phases of nanotechnology development, from discovery to production.

  17. Reduced Uranium Phases Produced from Anaerobic Reaction with Nanoscale Zerovalent Iron.

    PubMed

    Tsarev, Sergey; Collins, Richard N; Fahy, Adam; Waite, T David

    2016-03-01

    Nanoscale zerovalent iron (nZVI) has shown potential to be an effective remediation agent for uranium-contaminated subsurface environments, however, the nature of the reaction products and their formation kinetics have not been fully elucidated over a range of environmentally relevant conditions. In this study, the oxygen-free reaction of U(VI) with varying quantities of nZVI was examined at pH 7 in the presence of both calcium and carbonate using a combination of X-ray absorption spectroscopy, X-ray diffraction and transmission electron microscopy. It was observed that the structure of the reduced U solid phases was time dependent and largely influenced by the ratio of nZVI to U in the system. At the highest U:Fe molar ratio examined (1:4), nanoscale uraninite (UO2) was predominantly formed within 1 day of reaction. At lower U:Fe molar ratios (1:21), evidence was obtained for the formation of sorbed U(IV) and U(V) surface complexes which slowly transformed to UO2 nanoparticles that were stable for up to 1 year of anaerobic incubation. After 8 days of reaction at the lowest U:Fe molar ratio examined (1:110), sorbed U(IV) was still the major form of U associated with the solid phase. Regardless of the U:Fe molar ratio, the anaerobic corrosion of nZVI resulted in the slow formation of micron-sized fibrous chukanovite (Fe2(OH)2CO3) particles.

  18. Nanoscale thermal transport. II. 2003-2012

    NASA Astrophysics Data System (ADS)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-03-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ˜ 1 nm , the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal

  19. Phase separation of self-propelled ballistic particles

    NASA Astrophysics Data System (ADS)

    Bruss, Isaac R.; Glotzer, Sharon C.

    2018-04-01

    Self-propelled particles phase-separate into coexisting dense and dilute regions above a critical density. The statistical nature of their stochastic motion lends itself to various theories that predict the onset of phase separation. However, these theories are ill-equipped to describe such behavior when noise becomes negligible. To overcome this limitation, we present a predictive model that relies on two density-dependent timescales: τF, the mean time particles spend between collisions; and τC, the mean lifetime of a collision. We show that only when τF<τC do collisions last long enough to develop a growing cluster and initiate phase separation. Using both analytical calculations and active particle simulations, we measure these timescales and determine the critical density for phase separation in both two and three dimensions.

  20. Motility-Induced Phase Separation

    NASA Astrophysics Data System (ADS)

    Cates, Michael E.; Tailleur, Julien

    2015-03-01

    Self-propelled particles include both self-phoretic synthetic colloids and various microorganisms. By continually consuming energy, they bypass the laws of equilibrium thermodynamics. These laws enforce the Boltzmann distribution in thermal equilibrium: The steady state is then independent of kinetic parameters. In contrast, self-propelled particles tend to accumulate where they move more slowly. They may also slow down at high density for either biochemical or steric reasons. This creates positive feedback, which can lead to motility-induced phase separation (MIPS) between dense and dilute fluid phases. At leading order in gradients, a mapping relates variable-speed, self-propelled particles to passive particles with attractions. This deep link to equilibrium phase separation is confirmed by simulations but generally breaks down at higher order in gradients: New effects, with no equilibrium counterpart, then emerge. We give a selective overview of the fast-developing field of MIPS, focusing on theory and simulation but including a brief speculative survey of its experimental implications.

  1. Nanoscale phase engineering of thermal transport with a Josephson heat modulator.

    PubMed

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    2016-03-01

    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  2. Nanoscale phase engineering of thermal transport with a Josephson heat modulator

    NASA Astrophysics Data System (ADS)

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    2016-03-01

    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  3. Phase Separation in Solutions of Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Benedek, George; Wang, Ying; Lomakin, Aleksey; Latypov, Ramil

    2012-02-01

    We report the observation of liquid-liquid phase separation (LLPS) in a solution of humanized monoclonal antibodies, IgG2, and the effects of human serum albumin, a major blood protein, on this phase separation. We find a significant reduction of phase separation temperature in the presence of albumin, and a preferential partitioning of the albumin into the antibody-rich phase. We provide a general thermodynamic analysis of the antibody-albumin mixture phase diagram and relate its features to the magnitude of the effective inter-protein interactions. Our analysis suggests that additives (HSA in this report), which have moderate attraction with antibody molecules, may be used to forestall undesirable protein condensation in antibody solutions. Our findings are relevant to understanding the stability of pharmaceutical solutions of antibodies and the mechanisms of cryoglobulinemia.

  4. Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel

    2016-01-14

    In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current inmore » doped Ge{sub 2}Sb{sub 2}Te{sub 5} nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.« less

  5. Quantitative x-ray phase imaging at the nanoscale by multilayer Laue lenses

    PubMed Central

    Yan, Hanfei; Chu, Yong S.; Maser, Jörg; Nazaretski, Evgeny; Kim, Jungdae; Kang, Hyon Chol; Lombardo, Jeffrey J.; Chiu, Wilson K. S.

    2013-01-01

    For scanning x-ray microscopy, many attempts have been made to image the phase contrast based on a concept of the beam being deflected by a specimen, the so-called differential phase contrast imaging (DPC). Despite the successful demonstration in a number of representative cases at moderate spatial resolutions, these methods suffer from various limitations that preclude applications of DPC for ultra-high spatial resolution imaging, where the emerging wave field from the focusing optic tends to be significantly more complicated. In this work, we propose a highly robust and generic approach based on a Fourier-shift fitting process and demonstrate quantitative phase imaging of a solid oxide fuel cell (SOFC) anode by multilayer Laue lenses (MLLs). The high sensitivity of the phase to structural and compositional variations makes our technique extremely powerful in correlating the electrode performance with its buried nanoscale interfacial structures that may be invisible to the absorption and fluorescence contrasts. PMID:23419650

  6. Strategies towards controlling strain-induced mesoscopic phase separation in manganite thin films

    NASA Astrophysics Data System (ADS)

    Habermeier, H.-U.

    2008-10-01

    Complex oxides represent a class of materials with a plethora of fascinating intrinsic physical functionalities. The intriguing interplay of charge, spin and orbital ordering in these systems superimposed by lattice effects opens a scientifically rewarding playground for both fundamental as well as application oriented research. The existence of nanoscale electronic phase separation in correlated complex oxides is one of the areas in this field whose impact on the current understanding of their physics and potential applications is not yet clear. In this paper this issue is treated from the point of view of complex oxide thin film technology. Commenting on aspects of complex oxide thin film growth gives an insight into the complexity of a reliable thin film technology for these materials. Exploring fundamentals of interfacial strain generation and strain accommodation paves the way to intentionally manipulate thin film properties. Furthermore, examples are given for an extrinsic continuous tuning of intrinsic electronic inhomogeneities in perovskite-type complex oxide thin films.

  7. Binary Colloidal Alloy Test-5: Phase Separation

    NASA Technical Reports Server (NTRS)

    Lynch, Matthew; Weitz, David A.; Lu, Peter J.

    2008-01-01

    The Binary Colloidal Alloy Test - 5: Phase Separation (BCAT-5-PhaseSep) experiment will photograph initially randomized colloidal samples onboard the ISS to determine their resulting structure over time. This allows the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-PhaseSep studies collapse (phase separation rates that impact product shelf-life); in microgravity the physics of collapse is not masked by being reduced to a simple top and bottom phase as it is on Earth.

  8. Separation of aqueous two-phase polymer systems in microgravity

    NASA Technical Reports Server (NTRS)

    Vanalstine, J. M.; Harris, J. M.; Synder, S.; Curreri, P. A.; Bamberger, S. B.; Brooks, D. E.

    1984-01-01

    Phase separation of polymer systems in microgravity is studied in aircraft flights to prepare shuttle experiments. Short duration (20 sec) experiments demonstrate that phase separation proceeds rapidly in low gravity despite appreciable phase viscosities and low liquid interfacial tensions (i.e., 50 cP, 10 micro N/m). Ostwald ripening does not appear to be a satisfactory model for the phase separation mechanism. Polymer coated surfaces are evaluated as a means to localize phases separated in low gravity. Contact angle measurements demonstrate that covalently coupling dextran or PEG to glass drastically alters the 1-g wall wetting behavior of the phases in dextran-PEG two phase systems.

  9. Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires.

    PubMed

    Sutter, Eli; Sutter, Peter

    2008-02-01

    We use transmission electron microscopy observations to establish the parts of the phase diagram of nanometer sized Au-Ge alloy drops at the tips of Ge nanowires (NWs) that determine their temperature-dependent equilibrium composition and, hence, their exchange of semiconductor material with the NWs. We find that the phase diagram of the nanoscale drop deviates significantly from that of the bulk alloy, which explains discrepancies between actual growth results and predictions on the basis of the bulk-phase equilibria. Our findings provide the basis for tailoring vapor-liquid-solid growth to achieve complex one-dimensional materials geometries.

  10. Analysis of nanoscale two-phase flow of argon using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Verma, Abhishek Kumar; Kumar, Rakesh

    2014-12-01

    Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.

  11. Lo/Ld phase coexistence modulation induced by GM1.

    PubMed

    Puff, Nicolas; Watanabe, Chiho; Seigneuret, Michel; Angelova, Miglena I; Staneva, Galya

    2014-08-01

    Lipid rafts are assumed to undergo biologically important size-modulations from nanorafts to microrafts. Due to the complexity of cellular membranes, model systems become important tools, especially for the investigation of the factors affecting "raft-like" Lo domain size and the search for Lo nanodomains as precursors in Lo microdomain formation. Because lipid compositional change is the primary mechanism by which a cell can alter membrane phase behavior, we studied the effect of the ganglioside GM1 concentration on the Lo/Ld lateral phase separation in PC/SM/Chol/GM1 bilayers. GM1 above 1mol % abolishes the formation of the micrometer-scale Lo domains observed in GUVs. However, the apparently homogeneous phase observed in optical microscopy corresponds in fact, within a certain temperature range, to a Lo/Ld lateral phase separation taking place below the optical resolution. This nanoscale phase separation is revealed by fluorescence spectroscopy, including C12NBD-PC self-quenching and Laurdan GP measurements, and is supported by Gaussian spectral decomposition analysis. The temperature of formation of nanoscale Lo phase domains over an Ld phase is determined, and is shifted to higher values when the GM1 content increases. A "morphological" phase diagram could be made, and it displays three regions corresponding respectively to Lo/Ld micrometric phase separation, Lo/Ld nanometric phase separation, and a homogeneous Ld phase. We therefore show that a lipid only-based mechanism is able to control the existence and the sizes of phase-separated membrane domains. GM1 could act on the line tension, "arresting" domain growth and thereby stabilizing Lo nanodomains. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Texas A&M vortex type phase separator

    NASA Astrophysics Data System (ADS)

    Best, Frederick

    2000-01-01

    Phase separation is required for regenerative biological and chemical process systems as well as thermal transport and rejection systems. Liquid and gas management requirements for future spacecraft will demand small, passive systems able to operate over wide ranges of inlet qualities. Conservation and recycling of air and water is a necessary part of the construction and operation of the International Space Station as well as future long duration space missions. Space systems are sensitive to volume, mass, and power. Therefore, it is necessary to develop a method to recycle wastewater with minimal power consumption. Regenerative life support systems currently being investigated require phase separation to separate the liquid from the gas produced. The microgravity phase separator designed and fabricated at Texas A&M University relies on centripetal driven buoyancy forces to form a gas-liquid vortex within a fixed, right-circular cylinder. Two-phase flow is injected tangentially along the inner wall of this cylinder producing a radial acceleration gradient. The gradient produced from the intrinsic momentum of the injected mixture results in a rotating flow that drives the buoyancy process by the production of a hydrostatic pressure gradient. Texas A&M has flown several KC-135 flights with separator. These flights have included scaling studies, stability and transient investigations, and tests for inventory instrumentation. Among the hardware tested have been passive devices for separating mixed vapor/liquid streams into single-phase streams of vapor only and liquid only. .

  13. Nanoscale Phase Stability Reversal During the Nucleation and Growth of Titanium Oxide Minerals

    NASA Astrophysics Data System (ADS)

    Hummmer, D. R.; Heaney, P. J.; Kubicki, J. D.; Kent, P. R.; Post, J. E.

    2008-12-01

    Fine-grained titanium oxide minerals are important in soils, where they affect a variety of geochemical processes. They are also industrially important as catalysts, pigments, food additives, and dielectrics. Recent research has indicated an apparent reversal of thermodynamic stability between TiO2 phases at the nanoscale thought to be caused by an increased contribution of surface energy to the total free energy. Time-resolved X-ray diffraction (XRD) experiments in which titanium oxides crystallize from aqueous TiCl4 solutions confirm that anatase, a metastable phase, is always the first phase to nucleate under our range of initial conditions. Rutile peaks are observed only minutes after the first appearance of anatase, after which anatase abundance slowly decreases while rutile continues to form. Whole pattern refinement of diffraction data reveals that lattice constants of both phases increase throughout the crystallization process. In addition, transmission electron microscope (TEM) observations and kinetic modeling indicate that anatase does not undergo a solid-state transformation to the rutile structure as once thought. Instead, anatase appears to re-dissolve and then feed the growth of already nucleated rutile nanocrystals. Density functional theory (DFT) calculations were employed to model 1, 2, and 3 nm particles of both mineral phases. The total surface energies calculated from these models did yield lower values for anatase than for rutile by 8-13 kJ/mol depending on particle size, indicating that surface free energy is sufficient to account for stability reversal. However, these whole-particle surface energies were much higher than the sum of energies of each particle's constituent crystallographic surfaces. We attribute the excess energy to defects associated with the edges and corners of nanoparticles, which are not present on a 2-D periodic surface. This previously unreported edge and corner energy may play a dominant role in the stability reversal

  14. Formation of porous crystals via viscoelastic phase separation

    NASA Astrophysics Data System (ADS)

    Tsurusawa, Hideyo; Russo, John; Leocmach, Mathieu; Tanaka, Hajime

    2017-10-01

    Viscoelastic phase separation of colloidal suspensions can be interrupted to form gels either by glass transition or by crystallization. With a new confocal microscopy protocol, we follow the entire kinetics of phase separation, from homogeneous phase to different arrested states. For the first time in experiments, our results unveil a novel crystallization pathway to sponge-like porous crystal structures. In the early stages, we show that nucleation requires a structural reorganization of the liquid phase, called stress-driven ageing. Once nucleation starts, we observe that crystallization follows three different routes: direct crystallization of the liquid phase, the Bergeron process, and Ostwald ripening. Nucleation starts inside the reorganized network, but crystals grow past it by direct condensation of the gas phase on their surface, driving liquid evaporation, and producing a network structure different from the original phase separation pattern. We argue that similar crystal-gel states can be formed in monatomic and molecular systems if the liquid phase is slow enough to induce viscoelastic phase separation, but fast enough to prevent immediate vitrification. This provides a novel pathway to form nanoporous crystals of metals and semiconductors without dealloying, which may be important for catalytic, optical, sensing, and filtration applications.

  15. Strain-Driven Nanoscale Phase Competition near the Antipolar-Nonpolar Phase Boundary in Bi0.7La0.3FeO3 Thin Films.

    PubMed

    Dedon, Liv R; Chen, Zuhuang; Gao, Ran; Qi, Yajun; Arenholz, Elke; Martin, Lane W

    2018-05-02

    Complex-oxide materials tuned to be near phase boundaries via chemistry/composition, temperature, pressure, etc. are known to exhibit large susceptibilities. Here, we observe a strain-driven nanoscale phase competition in epitaxially constrained Bi 0.7 La 0.3 FeO 3 thin films near the antipolar-nonpolar phase boundary and explore the evolution of the structural, dielectric, (anti)ferroelectric, and magnetic properties with strain. We find that compressive and tensile strains can stabilize an antipolar PbZrO 3 -like Pbam phase and a nonpolar Pnma orthorhombic phase, respectively. Heterostructures grown with little to no strain exhibit a self-assembled nanoscale mixture of the two orthorhombic phases, wherein the relative fraction of each phase can be modified with film thickness. Subsequent investigation of the dielectric and (anti)ferroelectric properties reveals an electric-field-driven phase transformation from the nonpolar phase to the antipolar phase. X-ray linear dichroism reveals that the antiferromagnetic-spin axes can be effectively modified by the strain-induced phase transition. This evolution of antiferromagnetic-spin axes can be leveraged in exchange coupling between the antiferromagnetic Bi 0.7 La 0.3 FeO 3 and a ferromagnetic Co 0.9 Fe 0.1 layer to tune the ferromagnetic easy axis of the Co 0.9 Fe 0.1 . These results demonstrate that besides chemical alloying, epitaxial strain is an alternative and effective way to modify subtle phase relations and tune physical properties in rare earth-alloyed BiFeO 3 . Furthermore, the observation of antiferroelectric-antiferromagnetic properties in the Pbam Bi 0.7 La 0.3 FeO 3 phase could be of significant scientific interest and great potential in magnetoelectric devices because of its dual antiferroic nature.

  16. Imaging Nanometer Phase Coexistence at Defects During the Insulator-Metal Phase Transformation in VO2 Thin Films by Resonant Soft X-ray Holography.

    PubMed

    Vidas, Luciana; Günther, Christian M; Miller, Timothy A; Pfau, Bastian; Perez-Salinas, Daniel; Martínez, Elías; Schneider, Michael; Gührs, Erik; Gargiani, Pierluigi; Valvidares, Manuel; Marvel, Robert E; Hallman, Kent A; Haglund, Richard F; Eisebitt, Stefan; Wall, Simon

    2018-05-18

    We use resonant soft X-ray holography to image the insulator-metal phase transition in vanadium dioxide with element and polarization specificity and nanometer spatial resolution. We observe that nanoscale inhomogeneity in the film results in spatial-dependent transition pathways between the insulating and metallic states. Additional nanoscale phases form in the vicinity of defects which are not apparent in the initial or final states of the system, which would be missed in area-integrated X-ray absorption measurements. These intermediate phases are vital to understand the phase transition in VO 2 , and our results demonstrate how resonant imaging can be used to understand the electronic properties of phase-separated correlated materials obtained by X-ray absorption.

  17. Chromatographic Separations Using Solid-Phase Extraction Cartridges: Separation of Wine Phenolics

    NASA Astrophysics Data System (ADS)

    Brenneman, Charles A.; Ebeler, Susan E.

    1999-12-01

    We describe a simple laboratory experiment that demonstrates the principles of chromatographic separation using solid-phase extraction columns and red wine. By adjusting pH and mobile phase composition, the wine is separated into three fractions of differing polarity. The content of each fraction can be monitored by UV-vis spectroscopy. When the experiment is combined with experiments involving HPLC or GC separations, students gain a greater appreciation for and understanding of the highly automated instrumental systems currently available. In addition, they learn about the chemistry of polyphenolic compounds, which are present in many foods and beverages and which are receiving much attention for their potentially beneficial health effects.

  18. Phase separation and large deviations of lattice active matter

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen; Klymko, Katherine; Mandal, Dibyendu

    2018-04-01

    Off-lattice active Brownian particles form clusters and undergo phase separation even in the absence of attractions or velocity-alignment mechanisms. Arguments that explain this phenomenon appeal only to the ability of particles to move persistently in a direction that fluctuates, but existing lattice models of hard particles that account for this behavior do not exhibit phase separation. Here we present a lattice model of active matter that exhibits motility-induced phase separation in the absence of velocity alignment. Using direct and rare-event sampling of dynamical trajectories, we show that clustering and phase separation are accompanied by pronounced fluctuations of static and dynamic order parameters. This model provides a complement to off-lattice models for the study of motility-induced phase separation.

  19. A novel mechanical model for phase-separation in debris flows

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.

    2015-04-01

    Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.

  20. Laser-induced phase separation of silicon carbide

    PubMed Central

    Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M.; Im, James S.; Ruoff, Rodney S.; Choi, Sung-Yool; Lee, Keon Jae

    2016-01-01

    Understanding the phase separation mechanism of solid-state binary compounds induced by laser–material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system. PMID:27901015

  1. Superfluid helium 2 liquid-vapor phase separation: Technology assessment

    NASA Technical Reports Server (NTRS)

    Lee, J. M.

    1984-01-01

    A literature survey of helium 2 liquid vapor phase separation is presented. Currently, two types of He 2 phase separators are being investigated: porous, sintered metal plugs and the active phase separator. The permeability K(P) shows consistency in porous plug geometric characterization. Both the heat and mass fluxes increase with K(P). Downstream pressure regulation to adjust for varying heat loads and both temperatures is possible. For large dynamic heat loads, the active phase separator shows a maximum heat rejection rate of up to 2 W and bath temperature stability of 0.1 mK. Porous plug phase separation performance should be investigated for application to SIRTF and, in particular, that plugs of from 10 to the minus ninth square centimeters to 10 to the minus eighth square centimeters in conjunction with downstream pressure regulation be studied.

  2. Low gravity phase separator

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.; Pope, W. L.; Smith, L. (Inventor)

    1977-01-01

    An apparatus is described for phase separating a gas-liquid mixture as might exist in a subcritical cryogenic helium vessel for cooling a superconducting magnet at low gravity such as in planetary orbit, permitting conservation of the liquid and extended service life of the superconducting magnet.

  3. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    systems. In addition, the role of thermodynamic fluctuations on superconducting properties has been extensively studied in the context of nanoparticles and nanowires both experimentally and theoretically. In the past decade, a lot of work has been initiated in the area of interface superconductivity where different techniques have been demonstrated to tune Tc. Although the progress in this field has deepened our understanding of nanoscale superconductors, there are several open and key questions which need to be addressed. Some of these are: (1) can superconductivity be enhanced and Tc increased in nanostructures with respect to the bulk limit and if so, how can it be controlled? (2) What are the theoretical and experimental limits for the enhancement and control of superconductivity? (3) Can the phenomena identified in conventional nanostructures shed light on phenomena in high Tc superconductors and vice versa? (4) How will the new fundamental physics of superconductivity at the nanoscale promote advances in nanotechnology applications and vice versa? The papers in this focus section reflect the advances made in this field, in particular in nanowires and nanofilms, but also attempt to answer some of the key open questions outlined above. The theoretical papers explore unconventional quantum phenomena such as the role of confinement in the dynamics of single Cooper pairs in isolated grains [1] and Fano resonances in superconducting gaps in multi-condensate superconductors near a 2.5 Lifshitz transition [2]. Here a new emerging class of quantum phenomena of fundamental physics appear at the Bose-BCS crossover in multi-condensate superconductors [2]. Nanosize effects can now be manipulated by controlling defects in layered oxides [3]. A new approach is provided by controlling the self-organization of oxygen interstitials in layered copper oxides that show an intrinsic nanoscale phase separation [4]. In this case a non-trivial distribution of superconducting nanograins

  4. Phase Separation of Superconducting Phases in the Penson-Kolb-Hubbard Model

    NASA Astrophysics Data System (ADS)

    Jerzy Kapcia, Konrad; Czart, Wojciech Robert; Ptok, Andrzej

    2016-04-01

    In this paper, we determine the phase diagrams (for T = 0 as well as T > 0) of the Penson-Kolb-Hubbard model for two dimensional square lattice within Hartree-Fock mean-field theory focusing on an investigation of superconducting phases and on a possibility of the occurrence of the phase separation. We obtain that the phase separation, which is a state of coexistence of two different superconducting phases (with s- and η-wave symmetries), occurs in definite ranges of the electron concentration. In addition, increasing temperature can change the symmetry of the superconducting order parameter (from η-wave into s-wave). The system considered exhibits also an interesting multicritical behaviour including bicritical points. The relevance of the results to experiments for real materials is also discussed.

  5. Dual self-organised shear banding behaviours and enhanced ductility in phase separating Zr-based bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Z. Q.; Song, K. K.; Sun, B. A.; Wang, L.; Cui, W. C.; Qin, Y. S.; Han, X. L.; Xue, Q. S.; Peng, C. X.; Sarac, B.; Spieckermann, F.; Kaban, I.; Eckert, J.

    2018-07-01

    The multiplication and interaction of self-organised shear bands often transform to a stick-slip behaviour of a major shear band along the primary shear plane, and ultimately the major shear band becomes runaway and terminates the plasticity of bulk metallic glasses (BMGs). Here, we examined the deformation behaviours of the nanoscale phase-separating Zr65-xCu25Al10Fex (x = 5 and 7.5 at.%) BMGs. The formation of multi-step phase separation, being mainly governed by nucleation and growth, results in the microstructural inhomogeneity on a wide range of length-scales and leads to obviously macroscopic and repeatable ductility. The good deformability can be attributed to two mechanisms for stabilizing shear banding process, i.e. the mutual interaction of multiple shear bands away from the major shear band and the delaying slip-to-failure of dense fine shear bands around the major shear band, both of which show a self-organised criticality yet with different power-law exponents. The two mechanisms could come into effect in the intermediate (stable) and later plastic deformation regime, respectively. Our findings provide a possibility to enhance the shear banding stability over the whole plastic deformation through a proper design of microstructure heterogeneities.

  6. Structurally Stable Attractive Nanoscale Emulsions with Dipole-Dipole Interaction-Driven Interdrop Percolation.

    PubMed

    Shin, Kyounghee; Gong, Gyeonghyeon; Cuadrado, Jonas; Jeon, Serim; Seo, Mintae; Choi, Hong Sung; Hwang, Jae Sung; Lee, Youngbok; Fernandez-Nieves, Alberto; Kim, Jin Woong

    2017-03-28

    This study introduces an extremely stable attractive nanoscale emulsion fluid, in which the amphiphilic block copolymer, poly(ethylene oxide)-block-poly(ϵ-caprolactone) (PEO-b-PCL), is tightly packed with lecithin, thereby forming a mechanically robust thin-film at the oil-water interface. The molecular association of PEO-b-PCL with lecithin is critical for formation of a tighter and denser molecular assembly at the interface, which is systematically confirmed by T 2 relaxation and DSC analyses. Moreover, suspension rheology studies also reflect the interdroplet attractions over a wide volume fraction range of the dispersed oil phase; this results in a percolated network of stable drops that exhibit no signs of coalescence or phase separation. This unique rheological behavior is attributed to the dipolar interaction between the phosphorylcholine groups of lecithin and the methoxy end groups of PEO-b-PCL. Finally, the nanoemulsion system significantly enhances transdermal delivery efficiency due to its favorable attraction to the skin, as well as high diffusivity of the nanoscale emulsion drops. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Experimental study of phase separation in dividing two phase flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian Yong; Yang Zhilin; Xu Jijun

    1996-12-31

    Experimental study of phase separation of air-water two phase bubbly, slug flow in the horizontal T-junction is carried out. The influences of the inlet mass quality X1, mass extraction rate G3/G1, and fraction of extracted liquid QL3/QL1 on phase separation characteristics are analyzed. For the first time, the authors have found and defined pulsating run effect by the visual experiments, which show that under certain conditions, the down stream flow of the T-junction has strangely affected the phase redistribution of the junction, and firstly point out that the downstream geometric condition is very important to the study of phase separationmore » phenomenon of two-phase flow in a T-junction. This kind of phenomenon has many applications in the field of energy, power, petroleum and chemical industries, such as the loss of coolant accident (LOCA) caused by a small break in a horizontal coolant pipe in nuclear reactor, and the flip-flop effect in the natural gas transportation pipeline system, etc.« less

  8. Liquid phase stabilization versus bubble formation at a nanoscale curved interface

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Luo, Tengfei

    2018-03-01

    We investigate the nature of vapor bubble formation near a nanoscale-curved convex liquid-solid interface using two models: an equilibrium Gibbs model for homogenous nucleation, and a nonequilibrium dynamic van der Waals-diffuse-interface model for phase change in an initially cool liquid. Vapor bubble formation is shown to occur for sufficiently large radius of curvature and is suppressed for smaller radii. Solid-fluid interactions are accounted for and it is shown that liquid-vapor interfacial energy, and hence Laplace pressure, has limited influence over bubble formation. The dominant factor is the energetic cost of creating the solid-vapor interface from the existing solid-liquid interface, as demonstrated via both equilibrium and nonequilibrium arguments.

  9. The Role of RNA in Biological Phase Separations.

    PubMed

    Fay, Marta M; Anderson, Paul J

    2018-05-10

    Phase transitions that alter the physical state of ribonucleoprotein particles contribute to the spacial and temporal organization of the densely packed intracellular environment. This allows cells to organize biologically coupled processes as well as respond to environmental stimuli. RNA plays a key role in phase separation events that modulate various aspects of RNA metabolism. Here, we review the role that RNA plays in ribonucleoprotein phase separations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Non-equilibrium phase stabilization versus bubble nucleation at a nanoscale-curved Interface

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Luo, Tengfei

    Using continuum dynamic van der Waals theory in a radial 1D geometry with a Lennard-Jones fluid model, we investigate the nature of vapor bubble nucleation near a heated, nanoscale-curved convex interface. Vapor bubble nucleation and growth are observed for interfaces with sufficiently large radius of curvature while phase stabilization of a superheated fluid layer occurs at interfaces with smaller radius. The hypothesis that the high Laplace pressure required for stable equilibrium of very small bubbles is responsible for phase stability is tested by effectively varying the parameter which controls liquid-vapor surface tension. In doing so, the liquid-vapor surface tension- hence Laplace pressure-is shown to have limited effect on phase stabilization vs. bubble nucleation. However, the strong dependence of nucleation on leading-order momentum transport, i.e. viscous dissipation, near the heated inner surface is demonstrated. We gratefully acknowledge ND Energy for support through the ND Energy Postdoctoral Fellowship program and the Army Research Office, Grant No. W911NF-16-1-0267, managed by Dr. Chakrapani Venanasi.

  11. Experimental investigation of inhomogeneities, nanoscopic phase separation, and magnetism in arc melted Fe-Cu metals with equal atomic ratio of the constituents

    NASA Astrophysics Data System (ADS)

    Hassnain Jaffari, G.; Aftab, M.; Anjum, D. H.; Cha, Dongkyu; Poirier, Gerald; Ismat Shah, S.

    2015-12-01

    Composition gradient and phase separation at the nanoscale have been investigated for arc-melted and solidified with equiatomic Fe-Cu. Diffraction studies revealed that Fe and Cu exhibited phase separation with no trace of any mixing. Microscopy studies revealed that immiscible Fe-Cu form dense bulk nanocomposite. The spatial distribution of Fe and Cu showed existence of two distinct regions, i.e., Fe-rich and Cu-rich regions. Fe-rich regions have Cu precipitates of various sizes and different shapes, with Fe forming meshes or channels greater than 100 nm in size. On the other hand, the matrix of Cu-rich regions formed strips with fine strands of nanosized Fe. Macromagnetic response of the system showed ferromagnetic behavior with a magnetic moment being equal to about 2.13 μB/ Fe atom and a bulk like negligible value of coercivity over the temperature range of 5-300 K. Anisotropy constant has been calculated from various laws of approach to saturation, and its value is extracted to be equal to 1350 J/m3. Inhomogeneous strain within the Cu and Fe crystallites has been calculated for the (unannealed) sample solidified after arc-melting. Annealed sample also exhibited local inhomogeneity with removal of inhomogeneous strain and no appreciable change in magnetic character. However, for the annealed sample phase separated Fe exhibited homogenous strain.

  12. Electron irradiation induced phase separation in a sodium borosilicate glass

    NASA Astrophysics Data System (ADS)

    Sun, K.; Wang, L. M.; Ewing, R. C.; Weber, W. J.

    2004-06-01

    Electron irradiation induced phase separation in a sodium borosilicate glass was studied in situ by analytical electron microscopy. Distinctly separate phases that are rich in boron and silicon formed at electron doses higher than 4.0 × 10 11 Gy during irradiation. The separated phases are still in amorphous states even at a much high dose (2.1 × 10 12 Gy). It indicates that most silicon atoms remain tetrahedrally coordinated in the glass during the entire irradiation period, except some possible reduction to amorphous silicon. The particulate B-rich phase that formed at high dose was identified as amorphous boron that may contain some oxygen. Both ballistic and ionization processes may contribute to the phase separation.

  13. Reverse micelle synthesis of nanoscale metal containing catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni{sub 3}Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less

  14. Reverse micelle synthesis of nanoscale metal containing catalysts. [Nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide nanoscale powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni[sub 3]Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less

  15. Thermocapillary-Induced Phase Separation with Coalescence

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.

    2003-01-01

    Research has been undertaken on interactions of two or more deformable drops (or bubbles) in a viscous fluid and subject to a temperature, gravitational, or flow field. An asymptotic theory for nearly spherical drops shows that small deformations reduce the coalescence and phase separation rates. Boundary-integral simulations for large deformations show that bubbles experience alignment and enhanced coalescence, whereas more viscous drops may break as a result of hydrodynamic interactions. Experiments for buoyancy motion confirm these observations. Simulations of the sedimentation of many drops show clustering phenomena due to deformations, which lead to enhanced phase separation rates, and simulations of sheared emulsions show that deformations cause a reduction in the effective viscosity.

  16. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    PubMed Central

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields. PMID:24093494

  17. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    PubMed

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-04

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  18. Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers.

    PubMed

    Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank

    2013-07-21

    The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

  19. Phase separation and the formation of cellular bodies

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Broedersz, Chase P.; Meir, Yigal; Wingreen, Ned S.

    Cellular bodies in eukaryotic cells spontaneously assemble to form cellular compartments. Among other functions, these bodies carry out essential biochemical reactions. Cellular bodies form micron-sized structures, which, unlike canonical cell organelles, are not surrounded by membranes. A recent in vitro experiment has shown that phase separation of polymers in solution can explain the formation of cellular bodies. We constructed a lattice-polymer model to capture the essential mechanism leading to this phase separation. We used both analytical and numerical tools to predict the phase diagram of a system of two interacting polymers, including the concentration of each polymer type in the condensed and dilute phase.

  20. Recent highlights in electro-driven separations- selected applications of alkylthiol gold nanoparticles in capillary electrophoresis and capillary electro-chromatography.

    PubMed

    Guihen, Elizabeth

    2017-09-01

    To date, alkylthiol gold nanoparticles (AuNPs) have been widely used in electro-chromatographic separation techniques as a viable alternative to traditional stationary phases. This is mainly due to their stability, chemical inertness, ease of functionality, increased phase ratio, ability to form self-assembled monolayers. They also yield versatile stationary phases with highly specific targeted functionalities. At the nanoscale region, the chemical and physical properties of a molecule display different attributes to that of the parent molecules or material, hence these features can be harnessed in electro-driven chromatographic separations. Application areas illustrating the use of AuNPs in separation science continue to grow and expand to cover many different kinds of analysis. The last decade has witnessed a successful trend in miniaturisation of chemical separation systems toward the micro and nanoscale ranges. Nanoparticle-based stationary phases fit well with performing chemical separations on microfluidic and capillary platforms. In this review the theory of the use of alkylthiol gold nanoparticles in electro-chromatographic driven separation methods will be discussed. This will be followed by details of recent and selected applications showing alkylthiol gold nanoparticles in capillary electrophoretic and open-tubular electro-chromatographic separations. This review will focus solely on alkylthiol based gold nanoparticles, therefore other kinds of chemical moieties bonded to gold nanoparticles are outside the scope of this review. Finally the future outlook of this exciting technology will be outlined in some detail in the final section. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Reaction-mediated entropic effect on phase separation in a binary polymer system

    NASA Astrophysics Data System (ADS)

    Sun, Shujun; Guo, Miaocai; Yi, Xiaosu; Zhang, Zuoguang

    2017-10-01

    We present a computer simulation to study the phase separation behavior induced by polymerization in a binary system comprising polymer chains and reactive monomers. We examined the influence of interaction parameter between components and monomer concentration on the reaction-induced phase separation. The simulation results demonstrate that increasing interaction parameter (enthalpic effect) would accelerate phase separation, while entropic effect plays a key role in the process of phase separation. Furthermore, scanning electron microscopy observations illustrate identical morphologies as found in theoretical simulation. This study may enrich our comprehension of phase separation in polymer mixture.

  2. Scaling behavior of nonisothermal phase separation.

    PubMed

    Rüllmann, Max; Alig, Ingo

    2004-04-22

    The phase separation process in a critical mixture of polydimethylsiloxane and polyethylmethylsiloxane (PDMS/PEMS, a system with an upper critical solution temperature) was investigated by time-resolved light scattering during continuous quenches from the one-phase into the two-phase region. Continuous quenches were realized by cooling ramps with different cooling rates kappa. Phase separation kinetics is studied by means of the temporal evolution of the scattering vector qm and the intensity Im at the scattering peak. The curves qm(t) for different cooling rates can be shifted onto a single mastercurve. The curves Im(t) show similar behavior. As shift factors, a characteristic length Lc and a characteristic time tc are introduced. Both characteristic quantities depend on the cooling rate through power laws: Lc approximately kappa(-delta) and tc approximately kappa(-rho). Scaling behavior in isothermal critical demixing is well known. There the temporal evolutions of qm and Im for different quench depths DeltaT can be scaled with the correlation length xi and the interdiffusion coefficient D, both depending on DeltaT through critical power laws. We show in this paper that the cooling rate scaling in nonisothermal demixing is a consequence of the quench depth scaling in the isothermal case. The exponents delta and rho are related to the critical exponents nu and nu* of xi and D, respectively. The structure growth during nonisothermal demixing can be described with a semiempirical model based on the hydrodynamic coarsening mechanism well known in the isothermal case. In very late stages of nonisothermal phase separation a secondary scattering maximum appears. This is due to secondary demixing. We explain the onset of secondary demixing by a competition between interdiffusion and coarsening. (c) 2004 American Institute of Physics

  3. Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riback, Joshua A.; Katanski, Christopher D.; Kear-Scott, Jamie L.

    In eukaryotic cells, diverse stresses trigger coalescence of RNA-binding proteins into stress granules. In vitro, stress-granule-associated proteins can demix to form liquids, hydrogels, and other assemblies lacking fixed stoichiometry. Observing these phenomena has generally required conditions far removed from physiological stresses. We show that poly(A)-binding protein (Pab1 in yeast), a defining marker of stress granules, phase separates and forms hydrogels in vitro upon exposure to physiological stress conditions. Other RNA-binding proteins depend upon low-complexity regions (LCRs) or RNA for phase separation, whereas Pab1’s LCR is not required for demixing, and RNA inhibits it. Based on unique evolutionary patterns, we createmore » LCR mutations, which systematically tune its biophysical properties and Pab1 phase separation in vitro and in vivo. Mutations that impede phase separation reduce organism fitness during prolonged stress. Poly(A)-binding protein thus acts as a physiological stress sensor, exploiting phase separation to precisely mark stress onset, a broadly generalizable mechanism.« less

  4. Organic phototransistors with nanoscale phase-separated polymer/polymer bulk heterojunction layers

    NASA Astrophysics Data System (ADS)

    Hwang, Hyemin; Kim, Hwajeong; Nam, Sungho; Bradley, Donal D. C.; Ha, Chang-Sik; Kim, Youngkyoo

    2011-05-01

    Low-cost detectors for sensing photons at a low light intensity are of crucial importance in modern science. Phototransistors can deliver better signals of low-intensity light by electrical amplification, but conventional inorganic phototransistors have a limitation owing to their high temperature processes in vacuum. In this work, we demonstrate organic phototransistors with polymer/polymer bulk heterojunction blend films (mixtures of p-type and n-type semiconducting polymers), which can be fabricated by inexpensive solution processes at room temperature. The key idea here is to effectively exploit hole charges (from p-type polymer) as major signaling carriers by employing p-type transistor geometry, while the n-type polymer helps efficient charge separation from excitons generated by incoming photons. Results showed that the present organic transistors exhibited proper functions as p-type phototransistors with ~4.3 A W-1 responsivity at a low light intensity (1 µW cm-2), which supports their encouraging potential to replace conventional cooled charge coupled devices (CCD) for low-intensity light detection applications.Low-cost detectors for sensing photons at a low light intensity are of crucial importance in modern science. Phototransistors can deliver better signals of low-intensity light by electrical amplification, but conventional inorganic phototransistors have a limitation owing to their high temperature processes in vacuum. In this work, we demonstrate organic phototransistors with polymer/polymer bulk heterojunction blend films (mixtures of p-type and n-type semiconducting polymers), which can be fabricated by inexpensive solution processes at room temperature. The key idea here is to effectively exploit hole charges (from p-type polymer) as major signaling carriers by employing p-type transistor geometry, while the n-type polymer helps efficient charge separation from excitons generated by incoming photons. Results showed that the present organic

  5. Nanoscale doping of compound semiconductors by solid phase dopant diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Jaehyun, E-mail: jaehyun.ahn@utexas.edu; Koh, Donghyi; Roy, Anupam

    2016-03-21

    Achieving damage-free, uniform, abrupt, ultra-shallow junctions while simultaneously controlling the doping concentration on the nanoscale is an ongoing challenge to the scaling down of electronic device dimensions. Here, we demonstrate a simple method of effectively doping ΙΙΙ-V compound semiconductors, specifically InGaAs, by a solid phase doping source. This method is based on the in-diffusion of oxygen and/or silicon from a deposited non-stoichiometric silicon dioxide (SiO{sub x}) film on InGaAs, which then acts as donors upon activation by annealing. The dopant profile and concentration can be controlled by the deposited film thickness and thermal annealing parameters, giving active carrier concentration ofmore » 1.4 × 10{sup 18 }cm{sup −3}. Our results also indicate that conventional silicon based processes must be carefully reviewed for compound semiconductor device fabrication to prevent unintended doping.« less

  6. Effect of atomic disorder on the magnetic phase separation

    NASA Astrophysics Data System (ADS)

    Groshev, A. G.; Arzhnikov, A. K.

    2018-05-01

    The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical and phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the Anderson–Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.

  7. Dynamics of polymerization induced phase separation in reactive polymer blends

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyung

    Mechanisms and dynamics of phase decomposition following polymerization induced phase separation (PIPS) of reactive polymer blends have been investigated experimentally and theoretically. The phenomenon of PIPS is a non-equilibrium and non-linear dynamic process. The mechanism of PIPS has been thought to be a nucleation and growth (NG) type originally, however, newer results indicate spinodal decomposition (SD). In PIPS, the coexistence curve generally passes through the reaction temperature at off-critical compositions, thus phase separation has to be initiated first in the metastable region where nucleation occurs. When the system farther drifts from the metastable to unstable region, the NG structure transforms to the SD bicontinuous morphology. The crossover behavior of PIPS may be called nucleation initiated spinodal decomposition (NISD). The formation of newer domains between the existing ones is responsible for the early stage of PIPS. Since PIPS is non- equilibrium kinetic process, it would not be surprising to discern either or both structures. The phase separation dynamics of DGEBA/CTBN mixtures having various kinds of curing agents from low reactivity to high reactivity and various amount of curing agents were examined at various reaction temperatures. The phase separation behavior was monitored by a quantity of scattered light intensity experimentally and by a quantity of collective structure factor numerically. Prior to the study of phase separation dynamics, a preliminary investigation on the isothermal cure behavior of the mixtures were executed in order to determine reaction kinetics parameters. The cure behavior followed the overall second order reaction kinetics. Next, based on the knowledge obtained from the phase separation dynamics study of DGEBA/CTBN mixtures, the phase separation dynamics of various composition of DGEBA/R45EPI mixtures having MDA as a curing agent were investigated. The phase separation behavior was quite dependent upon the

  8. Ordering-separation phase transitions in a Co3V alloy

    NASA Astrophysics Data System (ADS)

    Ustinovshchikov, Yu. I.

    2017-01-01

    The microstructure of the Co3V alloy formed by heat treatment at various temperatures is studied by transmission electron microscopy. Two ordering-separation phase transitions are revealed at temperatures of 400-450 and 800°C. At the high-temperature phase separation, the microstructure consists of bcc vanadium particles and an fcc solid solution; at the low-temperature phase separation, the microstructure is cellular. In the ordering range, the microstructure consists of chemical compound Co3V particles chaotically arranged in the solid solution. The structure of the Co3V alloy is shown not to correspond to the structures indicated in the Co-V phase diagram at any temperatures.

  9. Nanoscale nuclear architecture for cancer diagnosis by spatial-domain low-coherence quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Pin; Bista, Rajan K.; Khalbuss, Walid E.; Qiu, Wei; Staton, Kevin D.; Zhang, Lin; Brentnall, Teresa A.; Brand, Randall E.; Liu, Yang

    2011-03-01

    Alterations in nuclear architecture are the hallmark diagnostic characteristic of cancer cells. In this work, we show that the nuclear architectural characteristics quantified by spatial-domain low-coherence quantitative phase microscopy (SL-QPM), is more sensitive for the identification of cancer cells than conventional cytopathology. We demonstrated the importance of nuclear architectural characteristics in both an animal model of intestinal carcinogenesis - APC/Min mouse model and human cytology specimens with colorectal cancer by identifying cancer from cytologically noncancerous appearing cells. The determination of nanoscale nuclear architecture using this simple and practical optical instrument is a significant advance towards cancer diagnosis.

  10. Cross-stacked carbon nanotubes assisted self-separation of free-standing GaN substrates by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan

    2016-06-01

    We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields.

  11. Cross-stacked carbon nanotubes assisted self-separation of free-standing GaN substrates by hydride vapor phase epitaxy.

    PubMed

    Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan

    2016-06-24

    We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields.

  12. Cross-stacked carbon nanotubes assisted self-separation of free-standing GaN substrates by hydride vapor phase epitaxy

    PubMed Central

    Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan

    2016-01-01

    We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields. PMID:27340030

  13. Nanoscale wicking methods and devices

    NASA Technical Reports Server (NTRS)

    Zhou, Jijie (Inventor); Bronikowski, Michael (Inventor); Noca, Flavio (Inventor); Sansom, Elijah B. (Inventor)

    2011-01-01

    A fluid transport method and fluid transport device are disclosed. Nanoscale fibers disposed in a patterned configuration allow transport of a fluid in absence of an external power source. The device may include two or more fluid transport components having different fluid transport efficiencies. The components may be separated by additional fluid transport components, to control fluid flow.

  14. Modeling phase separation in mixtures of intrinsically-disordered proteins

    NASA Astrophysics Data System (ADS)

    Gu, Chad; Zilman, Anton

    Phase separation in a pure or mixed solution of intrinsically-disordered proteins (IDPs) and its role in various biological processes has generated interest from the theoretical biophysics community. Phase separation of IDPs has been implicated in the formation of membrane-less organelles such as nucleoli, as well as in a mechanism of selectivity in transport through the nuclear pore complex. Based on a lattice model of polymers, we study the phase diagram of IDPs in a mixture and describe the selective exclusion of soluble proteins from the dense-phase IDP aggregates. The model captures the essential behaviour of phase separation by a minimal set of coarse-grained parameters, corresponding to the average monomer-monomer and monomer-protein attraction strength, as well as the protein-to-monomer size ratio. Contrary to the intuition that strong monomer-monomer interaction increases exclusion of soluble proteins from the dense IDP aggregates, our model predicts that the concentration of soluble proteins in the aggregate phase as a function of monomer-monomer attraction is non-monotonic. We corroborate the predictions of the lattice model using Langevin dynamics simulations of grafted polymers in planar and cylindrical geometries, mimicking various in-vivo and in-vitro conditions.

  15. Effect of atomic disorder on the magnetic phase separation.

    PubMed

    Groshev, A G; Arzhnikov, A K

    2018-05-10

    The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical [Formula: see text] and [Formula: see text] phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the [Formula: see text] Anderson-Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.

  16. Effect of applied strain on phase separation of Fe-28 at.% Cr alloy: 3D phase-field simulation

    NASA Astrophysics Data System (ADS)

    Zhu, Lihui; Li, Yongsheng; Liu, Chengwei; Chen, Shi; Shi, Shujing; Jin, Shengshun

    2018-04-01

    A quantitative simulation of the separation of the α‧ phase in Fe-28 at.% Cr alloy under the effects of applied strain is performed by utilizing a three-dimensional phase-field model. The elongation of the Cr-enriched α‧ phase becomes obvious with the influence of applied uniaxial strain for the phase separation transforms from spinodal decomposition of 700 K to nucleation and growth of 773 K. The applied strain shows a significant influence on the early stage phase separation, and the influence is enlarged with the elevated temperature. The steady-state coarsening with the mechanism of spinodal decomposition is substantially affected by the applied strain for low-temperature aging, while the influence is reduced as the temperature increases and as the phase separation mechanism changes to nucleation and growth. The peak value of particle size distribution decreases, and the PSD for 773 K becomes more widely influenced by the applied strain. The simulation results of separation of the Cr-enriched α‧ phase with the applied strain provide a further understanding of the strain effect on the phase separation of Fe-Cr alloys from the metastable region to spinodal regions.

  17. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Picotto, G. B.; Koenders, L.; Wilkening, G.

    2009-08-01

    characterization. The papers in the first part report on new or improved instrumentation, details of developments of metrology SFM, improvements to SFM, probes and scanning methods in the direction of nanoscale coordinate measuring machines and true 3D measurements as well as of progress of a 2D encoder based on a regular crystalline lattice. To ensure traceability to the SI unit of length many highly sophisticated instruments are equipped with laser interferometers to measure small displacements in the nanometre range very accurately. Improving these techniques is still a challenge and therefore new interferometric techniques are considered in several papers as well as improved sensors for nanodisplacement measurements or the development of a deep UV microscope for micro- and nanostructures. The tactile measurement of small structures also calls for a better control of forces in the nano- and piconewton range. A nanoforce facility, based on a disk-pendulum with electrostatic stiffness reduction and electrostatic force compensation, is presented for the measurement of small forces. In the second part the contributions are related to calibration and correction strategies and standards such as the development of test objects based on 3D silicon structures, and of samples with irregular surface profiles, and their use for calibration. The shape of the tip and its influence on measurements is still a contentious issue and addressed in several papers: use of nanospheres for tip characterization, a geometrical approach for reconstruction errors by tactile probing. Molecular dynamical calculations, classical as well as ab initio (based on density functional theory), are used to discuss effects of tip-sample relaxation on the topography and to have a better base from which to estimate uncertainties in measurements of small particles or features. Some papers report about measurements of air refractivity fluctuations by phase modulation interferometry, angle-scale traceability by laser

  18. Continuum theory of phase separation kinetics for active Brownian particles.

    PubMed

    Stenhammar, Joakim; Tiribocchi, Adriano; Allen, Rosalind J; Marenduzzo, Davide; Cates, Michael E

    2013-10-04

    Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening dynamics closely resembling that of equilibrium phase separation. Our continuum theory is numerically compared to large-scale direct simulations of ABPs and accurately accounts for domain growth kinetics, domain topologies, and coexistence densities.

  19. Wafer Scale Fabrication of Dense and High Aspect Ratio Sub-50 nm Nanopillars from Phase Separation of Cross-Linkable Polysiloxane/Polystyrene Blend.

    PubMed

    Li, Yang; Hao, Yuli; Huang, Chunyu; Chen, Xingyao; Chen, Xinyu; Cui, Yushuang; Yuan, Changsheng; Qiu, Kai; Ge, Haixiong; Chen, Yanfeng

    2017-04-19

    We demonstrated a simple and effective approach to fabricate dense and high aspect ratio sub-50 nm pillars based on phase separation of a polymer blend composed of a cross-linkable polysiloxane and polystyrene (PS). In order to obtain the phase-separated domains with nanoscale size, a liquid prepolymer of cross-linkable polysiloxane was employed as one moiety for increasing the miscibility of the polymer blend. After phase separation via spin-coating, the dispersed domains of liquid polysiloxane with sub-50 nm size could be solidified by UV exposure. The solidified polysiloxane domains took the role of etching mask for formation of high aspect ratio nanopillars by O 2 reactive ion etching (RIE). The aspect ratio of the nanopillars could be further amplified by introduction of a polymer transfer layer underneath the polymer blend film. The effects of spin speeds, the weight ratio of the polysiloxane/PS blend, and the concentration of polysiloxane/PS blend in toluene on the characters of the nanopillars were investigated. The gold-coated nanopillar arrays exhibited a high Raman scattering enhancement factor in the range of 10 8 -10 9 with high uniformity across over the wafer scale sample. A superhydrophobic surface could be realized by coating a self-assembled monolayers (SAM) of fluoroalkyltrichlorosilane on the nanopillar arrays. Sub-50 nm silicon nanowires (SiNWs) with high aspect ratio of about 1000 were achieved by using the nanopillars as etching mask through a metal-assisted chemical etching process. They showed an ultralow reflectance of approximately 0.1% for wavelengths ranging from 200 to 800 nm.

  20. Images reveal that atmospheric particles can undergo liquid–liquid phase separations

    PubMed Central

    You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah J.; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L.; Zhang, Xiaolu; Weber, Rodney J.; Shilling, John E.; Dabdub, Donald; Martin, Scot T.; Bertram, Allan K.

    2012-01-01

    A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid–liquid phase separation. If liquid–liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid–liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid–liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid–liquid phase separation can result in increased concentrations of gas-phase NO3 and N2O5 due to decreased particle uptake of N2O5. PMID:22847443

  1. Images reveal that atmospheric particles can undergo liquid-liquid phase separations.

    PubMed

    You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah J; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L; Zhang, Xiaolu; Weber, Rodney J; Shilling, John E; Dabdub, Donald; Martin, Scot T; Bertram, Allan K

    2012-08-14

    A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid-liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid-liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid-liquid phase separation can result in increased concentrations of gas-phase NO(3) and N(2)O(5) due to decreased particle uptake of N(2)O(5).

  2. A Temperature-Dependent Phase-Field Model for Phase Separation and Damage

    NASA Astrophysics Data System (ADS)

    Heinemann, Christian; Kraus, Christiane; Rocca, Elisabetta; Rossi, Riccarda

    2017-07-01

    In this paper we study a model for phase separation and damage in thermoviscoelastic materials. The main novelty of the paper consists in the fact that, in contrast with previous works in the literature concerning phase separation and damage processes in elastic media, in our model we encompass thermal processes, nonlinearly coupled with the damage, concentration and displacement evolutions. More particularly, we prove the existence of "entropic weak solutions", resorting to a solvability concept first introduced in Feireisl (Comput Math Appl 53:461-490, 2007) in the framework of Fourier-Navier-Stokes systems and then recently employed in Feireisl et al. (Math Methods Appl Sci 32:1345-1369, 2009) and Rocca and Rossi (Math Models Methods Appl Sci 24:1265-1341, 2014) for the study of PDE systems for phase transition and damage. Our global-in-time existence result is obtained by passing to the limit in a carefully devised time-discretization scheme.

  3. Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites.

    PubMed

    Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon; Brennan, Michael C; Morozov, Yurii V; Manser, Joseph S; Kamat, Prashant V; Schneider, William F; Kuno, Masaru

    2017-08-04

    Mixed halide hybrid perovskites, CH 3 NH 3 Pb(I 1-x Br x ) 3 , represent good candidates for low-cost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material's optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodide-rich phases. It additionally explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.Mixed halide hybrid perovskites possess tunable band gaps, however, under illumination they undergo phase separation. Using spectroscopic measurements and theoretical modelling, Draguta and Sharia et al. quantitatively rationalize the microscopic processes that occur during phase separation.

  4. Re-entrant phase behavior for systems with competition between phase separation and self-assembly

    NASA Astrophysics Data System (ADS)

    Reinhardt, Aleks; Williamson, Alexander J.; Doye, Jonathan P. K.; Carrete, Jesús; Varela, Luis M.; Louis, Ard A.

    2011-03-01

    In patchy particle systems where there is a competition between the self-assembly of finite clusters and liquid-vapor phase separation, re-entrant phase behavior can be observed, with the system passing from a monomeric vapor phase to a region of liquid-vapor phase coexistence and then to a vapor phase of clusters as the temperature is decreased at constant density. Here, we present a classical statistical mechanical approach to the determination of the complete phase diagram of such a system. We model the system as a van der Waals fluid, but one where the monomers can assemble into monodisperse clusters that have no attractive interactions with any of the other species. The resulting phase diagrams show a clear region of re-entrance. However, for the most physically reasonable parameter values of the model, this behavior is restricted to a certain range of density, with phase separation still persisting at high densities.

  5. Research progress on electronic phase separation in low-dimensional perovskite manganite nanostructures

    PubMed Central

    2014-01-01

    Perovskite oxide manganites with a general formula of R1-x AxMnO3 (where R is a trivalent rare-earth element such as La, Pr, Sm, and A is a divalent alkaline-earth element such as Ca, Sr, and Ba) have received much attention due to their unusual electron-transport and magnetic properties, which are indispensable for applications in microelectronic, magnetic, and spintronic devices. Recent advances in the science and technology have resulted in the feature sizes of microelectronic devices based on perovskite manganite oxides down-scaling into nanoscale dimensions. At the nanoscale, low-dimensional perovskite manganite oxide nanostructures display novel physical properties that are different from their bulk and film counterparts. Recently, there is strong experimental evidence to indicate that the low-dimensional perovskite manganite oxide nanostructures are electronically inhomogeneous, consisting of different spatial regions with different electronic orders, a phenomenon that is named as electronic phase separation (EPS). As the geometry sizes of the low-dimensional manganite nanostructures are reduced to the characteristic EPS length scale (typically several tens of nanometers in manganites), the EPS is expected to be strongly modulated, leading to quite dramatic changes in functionality and more emergent phenomena. Therefore, reduced dimensionality opens a door to the new functionalities in perovskite manganite oxides and offers a way to gain new insight into the nature of EPS. During the past few years, much progress has been made in understanding the physical nature of the EPS in low-dimensional perovskite manganite nanostructures both from experimentalists and theorists, which have a profound impact on the oxide nanoelectronics. This nanoreview covers the research progresses of the EPS in low-dimensional perovskite manganite nanostructures such as nanoparticles, nanowires/nanotubes, and nanostructured films and/or patterns. The possible physical origins of the

  6. Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation.

    PubMed

    Imam, Zachary I; Kenyon, Laura E; Carrillo, Adelita; Espinoza, Isai; Nagib, Fatema; Stachowiak, Jeanne C

    2016-04-19

    Lipid rafts are thought to be key organizers of membrane-protein complexes in cells. Many proteins that interact with rafts have bulky polymeric components such as intrinsically disordered protein domains and polysaccharide chains. Therefore, understanding the interaction between membrane domains and membrane-bound polymers provides insights into the roles rafts play in cells. Multiple studies have demonstrated that high concentrations of membrane-bound polymeric domains create significant lateral steric pressure at membrane surfaces. Furthermore, our recent work has shown that lateral steric pressure at membrane surfaces opposes the assembly of membrane domains. Building on these findings, here we report that membrane-bound polymers are potent suppressors of membrane phase separation, which can destabilize lipid domains with substantially greater efficiency than globular domains such as membrane-bound proteins. Specifically, we created giant vesicles with a ternary lipid composition, which separated into coexisting liquid ordered and disordered phases. Lipids with saturated tails and poly(ethylene glycol) (PEG) chains conjugated to their head groups were included at increasing molar concentrations. When these lipids were sparse on the membrane surface they partitioned to the liquid ordered phase. However, as they became more concentrated, the fraction of GUVs that were phase-separated decreased dramatically, ultimately yielding a population of homogeneous membrane vesicles. Experiments and physical modeling using compositions of increasing PEG molecular weight and lipid miscibility phase transition temperature demonstrate that longer polymers are the most efficient suppressors of membrane phase separation when the energetic barrier to lipid mixing is low. In contrast, as the miscibility transition temperature increases, longer polymers are more readily driven out of domains by the increased steric pressure. Therefore, the concentration of shorter polymers required

  7. Pi-Pi contacts are an overlooked protein feature relevant to phase separation.

    PubMed

    Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong; Forman-Kay, Julie Deborah

    2018-02-09

    Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. © 2018, Vernon et al.

  8. Pi-Pi contacts are an overlooked protein feature relevant to phase separation

    PubMed Central

    Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong

    2018-01-01

    Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. PMID:29424691

  9. Nanoscale nuclear architecture for cancer diagnosis beyond pathology via spatial-domain low-coherence quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Pin; Bista, Rajan K.; Khalbuss, Walid E.; Qiu, Wei; Uttam, Shikhar; Staton, Kevin; Zhang, Lin; Brentnall, Teresa A.; Brand, Randall E.; Liu, Yang

    2010-11-01

    Definitive diagnosis of malignancy is often challenging due to limited availability of human cell or tissue samples and morphological similarity with certain benign conditions. Our recently developed novel technology-spatial-domain low-coherence quantitative phase microscopy (SL-QPM)-overcomes the technical difficulties and enables us to obtain quantitative information about cell nuclear architectural characteristics with nanoscale sensitivity. We explore its ability to improve the identification of malignancy, especially in cytopathologically non-cancerous-appearing cells. We perform proof-of-concept experiments with an animal model of colorectal carcinogenesis-APCMin mouse model and human cytology specimens of colorectal cancer. We show the ability of in situ nanoscale nuclear architectural characteristics in identifying cancerous cells, especially in those labeled as ``indeterminate or normal'' by expert cytopathologists. Our approach is based on the quantitative analysis of the cell nucleus on the original cytology slides without additional processing, which can be readily applied in a conventional clinical setting. Our simple and practical optical microscopy technique may lead to the development of novel methods for early detection of cancer.

  10. Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck

    PubMed Central

    Banjade, Sudeep; Wu, Qiong; Mittal, Anuradha; Peeples, William B.; Pappu, Rohit V.; Rosen, Michael K.

    2015-01-01

    The organization of membranes, the cytosol, and the nucleus of eukaryotic cells can be controlled through phase separation of lipids, proteins, and nucleic acids. Collective interactions of multivalent molecules mediated by modular binding domains can induce gelation and phase separation in several cytosolic and membrane-associated systems. The adaptor protein Nck has three SRC-homology 3 (SH3) domains that bind multiple proline-rich segments in the actin regulatory protein neuronal Wiskott-Aldrich syndrome protein (N-WASP) and an SH2 domain that binds to multiple phosphotyrosine sites in the adhesion protein nephrin, leading to phase separation. Here, we show that the 50-residue linker between the first two SH3 domains of Nck enhances phase separation of Nck/N-WASP/nephrin assemblies. Two linear motifs within this element, as well as its overall positively charged character, are important for this effect. The linker increases the driving force for self-assembly of Nck, likely through weak interactions with the second SH3 domain, and this effect appears to promote phase separation. The linker sequence is highly conserved, suggesting that the sequence determinants of the driving forces for phase separation may be generally important to Nck functions. Our studies demonstrate that linker regions between modular domains can contribute to the driving forces for self-assembly and phase separation of multivalent proteins. PMID:26553976

  11. 3D CFD simulation of Multi-phase flow separators

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiying

    2017-10-01

    During the exploitation of natural gas, some water and sands are contained. It will be better to separate water and sands from natural gas to insure favourable transportation and storage. In this study, we use CFD to analyse the effect of multi-phase flow separator, whose detailed geometrical parameters are designed in advanced. VOF model and DPM are used here. From the results of CFD, we can draw a conclusion that separated effect of multi-phase flow achieves better results. No solid and water is carried out from gas outlet. CFD simulation provides an economical and efficient approach to shed more light on details of the flow behaviour.

  12. On the phase form of a deformation quantization with separation of variables

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander

    2016-06-01

    Given a star product with separation of variables on a pseudo-Kähler manifold, we obtain a new formal (1, 1)-form from its classifying form and call it the phase form of the star product. The cohomology class of a star product with separation of variables equals the class of its phase form. We show that the phase forms can be arbitrary and they bijectively parametrize the star products with separation of variables. We also describe the action of a change of the formal parameter on a star product with separation of variables, its formal Berezin transform, classifying form, phase form, and canonical trace density.

  13. Prediction of Phase Separation of Immiscible Ga-Tl Alloys

    NASA Astrophysics Data System (ADS)

    Kim, Yunkyum; Kim, Han Gyeol; Kang, Youn-Bae; Kaptay, George; Lee, Joonho

    2017-06-01

    Phase separation temperature of Ga-Tl liquid alloys was investigated using the constrained drop method. With this method, density and surface tension were investigated together. Despite strong repulsive interactions, molar volume showed ideal mixing behavior, whereas surface tension of the alloy was close to that of pure Tl due to preferential adsorption of Tl. Phase separation temperatures and surface tension values obtained with this method were close to the theoretically calculated values using three different thermodynamic models.

  14. Adhesive phase separation at the dentin interface under wet bonding conditions.

    PubMed

    Spencer, Paulette; Wang, Yong

    2002-12-05

    Under in vivo conditions, there is little control over the amount of water left on the tooth and, thus, there is the danger of leaving the dentin surface so wet that the bonding resin undergoes physical separation into hydrophobic and hydrophilic-rich phases. The purpose of this study was to investigate phase separation in 2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane (BisGMA)-based adhesive using molecular microanalysis and to examine the effect of phase separation on the structural characteristics of the hybrid layer. Model BisGMA/HEMA (hydroxyethl methacrylate) mixtures with/without ethanol and commercial BisGMA-based adhesive (Single Bond) were combined with water at concentrations from 0 to 50 vol%. Macrophase separation in the BisGMA/HEMA/water mixtures was detected using cloud point measurements. In parallel with these measurements, the BisGMA/HEMA and adhesive/water mixtures were cast as films and polymerized. Molecular structure was recorded from the distinct features in the phase-separated adhesive using confocal Raman microspectroscopy (CRM). Human dentin specimens treated with Single Bond were analyzed with scanning electron microscopy (SEM) and CRM mapping across the dentin/adhesive interface. The model BisGMA/HEMA mixtures with ethanol and the commercial BisGMA-based adhesive experienced phase separation at approximately 25 vol% water. Raman spectra collected from the phase-separated adhesive indicated that the composition of the particles and surrounding matrix material was primarily BisGMA and HEMA, respectively. Based on SEM analysis, there was substantial porosity at the adhesive interface with dentin. Micro-Raman spectral analysis of the dentin/adhesive interface indicates that the contribution from the BisGMA component decreases by nearly 50% within the first micrometer. The morphologic results in corroboration with the spectroscopic data suggest that as a result of adhesive phase separation the hybrid layer is not an

  15. Phase separation and second-order phase transition in the phenomenological model for a Coulomb-frustrated two-dimensional system

    NASA Astrophysics Data System (ADS)

    Mamin, R. F.; Shaposhnikova, T. S.; Kabanov, V. V.

    2018-03-01

    We have considered the model of the phase transition of the second order for the Coulomb frustrated 2D charged system. The coupling of the order parameter with the charge was considered as the local temperature. We have found that in such a system, an appearance of the phase-separated state is possible. By numerical simulation, we have obtained different types ("stripes," "rings," "snakes") of phase-separated states and determined the parameter ranges for these states. Thus the system undergoes a series of phase transitions when the temperature decreases. First, the system moves from the homogeneous state with a zero order parameter to the phase-separated state with two phases in one of which the order parameter is zero and, in the other, it is nonzero (τ >0 ). Then a first-order transition occurs to another phase-separated state, in which both phases have different and nonzero values of the order parameter (for τ <0 ). Only a further decrease of temperature leads to a transition to a homogeneous ordered state.

  16. Impact of nanostructuring on the magnetic and magnetocaloric properties of microscale phase-separated La 5/8–yPr yCa 3/8MnO₃ manganites

    DOE PAGES

    Bingham, N. S.; Lampen, P.; Phan, M. H.; ...

    2012-08-16

    Bulk manganites of the form La 5/8–yPr yCa 3/8MnO₃ (LPCMO) exhibit a complex phase diagram due to coexisting charge-ordered antiferromagnetic (CO/AFM), charge-disordered paramagnetic (PM), and ferromagnetic (FM) phases. Because phase separation in LPCMO occurs on the microscale, reducing particle size to below this characteristic length is expected to have a strong impact on the magnetic properties of the system. Through a comparative study of the magnetic and magnetocaloric properties of single-crystalline (bulk) and nanocrystalline LPCMO (y=3/8) we show that the AFM, CO, and FM transitions seen in the single crystal can also be observed in the large particle sizes (400more » and 150 nm), while only a single PM to FM transition is found for the small particles (55 nm). Magnetic and magnetocaloric measurements reveal that decreasing particle size affects the balance of competing phases in LPCMO and narrows the range of fields over which PM, FM, and CO phases coexist. The FM volume fraction increases with size reduction, until CO is suppressed below some critical size, ~100 nm. With size reduction, the saturation magnetization and field sensitivity first increase as long-range CO is inhibited, then decrease as surface effects become increasingly important. The trend that the FM phase is stabilized on the nanoscale is contrasted with the stabilization of the charge-disordered PM phase occurring on the microscale, demonstrating that in terms of the characteristic phase separation length, a few microns and several hundred nanometers represent very different regimes in LPCMO.« less

  17. A phase field approach for the fully coupled thermo-electro-mechanical dynamics of nanoscale ferroelectric actuators

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Du, Haoyuan; Wang, Linxiang; Melnik, Roderick

    2018-05-01

    The fully coupled thermo-electro-mechanical properties of nanoscale ferroelectric actuators are investigated by a phase field model. Firstly, the thermal effect is incorporated into the commonly-used phase field model for ferroelectric materials in a thermodynamic consistent way and the governing equation for the temperature field is derived. Afterwards, the modified model is numerically implemented to study a selected prototype of the ferroelectric actuators, where strain associated with electric field-induced non-180° domain switching is employed. The temperature variation and energy flow in the actuation process are presented, which enhances our understanding of the working mechanism of the actuators. Furthermore, the influences of the input voltage frequency and the thermal boundary condition on the temperature variation are demonstrated and carefully discussed in the context of thermal management for real applications.

  18. Spectro-microscopic Characterization of Physical Properties and Phase Separations in Individual Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    OBrien, R. E.; Wang, B.; Neu, A.; Kelly, S. T.; Lundt, N.; Epstein, S. A.; MacMillan, A.; You, Y.; Laskin, A.; Nizkorodov, S.; Bertram, A. K.; Moffet, R.; Gilles, M.

    2013-12-01

    The phase state and liquid-liquid phase separations of ambient and laboratory generated aerosol particles were investigated using (1) scanning transmission x-ray microscopy/near-edge x-ray absorption fine structure spectroscopy (STXM/NEXAFS) coupled to a relative humidity (RH) controlled in-situ chamber and (2) environmental scanning electron microscopy (ESEM). The phase states of the particles were determined from measurements of their size and optical density. A comparison is made between the observed phase states of ambient samples and of laboratory generated aerosols to determine how well laboratory samples represent the phase of ambient samples. In addition, liquid-liquid phase separations in laboratory generated particles were investigated. Preliminary results showing that liquid-liquid phase separations occur at RH's between the deliquescence and efflorescence points and that the organic phase surrounds the inorganic phase will be presented. The STXM/NEXAFS technique provides insight into the degree of mixing at the deliquescence point and the degree of phase separation for particles of atmospherically relevant sizes.

  19. Phase separations in mixtures of a liquid crystal and a nanocolloidal particle.

    PubMed

    Matsuyama, Akihiko

    2009-11-28

    We present a mean field theory to describe phase separations in mixtures of a liquid crystal and a nanocolloidal particle. By taking into account a nematic, a smectic A ordering of the liquid crystal, and a crystalline ordering of the nanoparticle, we calculate the phase diagrams on the temperature-concentration plane. We predict various phase separations, such as a smectic A-crystal phase separation and a smectic A-isotropic-crystal triple point, etc., depending on the interactions between the liquid crystal and the colloidal surface. Inside binodal curves, we find new unstable and metastable regions, which are important in the phase ordering dynamics. We also find a crystalline ordering of the nanoparticles dispersed in a smectic A phase and a nematic phase. The cooperative phenomena between liquid-crystalline ordering and crystalline ordering induce a variety of phase diagrams.

  20. Intrinsic Tunneling in Phase Separated Manganites

    NASA Astrophysics Data System (ADS)

    Singh-Bhalla, G.; Selcuk, S.; Dhakal, T.; Biswas, A.; Hebard, A. F.

    2009-02-01

    We present evidence of direct electron tunneling across intrinsic insulating regions in submicrometer wide bridges of the phase-separated ferromagnet (La,Pr,Ca)MnO3. Upon cooling below the Curie temperature, a predominantly ferromagnetic supercooled state persists where tunneling across the intrinsic tunnel barriers (ITBs) results in metastable, temperature-independent, high-resistance plateaus over a large range of temperatures. Upon application of a magnetic field, our data reveal that the ITBs are extinguished resulting in sharp, colossal, low-field resistance drops. Our results compare well to theoretical predictions of magnetic domain walls coinciding with the intrinsic insulating phase.

  1. Separation of piracetam derivatives on polysaccharide-based chiral stationary phases.

    PubMed

    Kažoka, H; Koliškina, O; Veinberg, G; Vorona, M

    2013-03-15

    High-performance liquid chromatography was used for the enantiomeric separation of two chiral piracetam derivatives. The suitability of six commercially available polysaccharide-based chiral stationary phases (CSPs) under normal phase mode for direct enantioseparation has been investigated. The influence of the CSPs as well the nature and content of an alcoholic modifier in the mobile phase on separation and elution order was studied. It was established that CSP Lux Amylose-2 shows high chiral recognition ability towards 4-phenylsubstituted piracetam derivatives. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Microgravity Passive Phase Separator

    NASA Technical Reports Server (NTRS)

    Paragano, Matthew; Indoe, William; Darmetko, Jeffrey

    2012-01-01

    A new invention disclosure discusses a structure and process for separating gas from liquids in microgravity. The Microgravity Passive Phase Separator consists of two concentric, pleated, woven stainless- steel screens (25-micrometer nominal pore) with an axial inlet, and an annular outlet between both screens (see figure). Water enters at one end of the center screen at high velocity, eventually passing through the inner screen and out through the annular exit. As gas is introduced into the flow stream, the drag force exerted on the bubble pushes it downstream until flow stagnation or until it reaches an equilibrium point between the surface tension holding bubble to the screen and the drag force. Gas bubbles of a given size will form a front that is moved further down the length of the inner screen with increasing velocity. As more bubbles are added, the front location will remain fixed, but additional bubbles will move to the end of the unit, eventually coming to rest in the large cavity between the unit housing and the outer screen (storage area). Owing to the small size of the pores and the hydrophilic nature of the screen material, gas does not pass through the screen and is retained within the unit for emptying during ground processing. If debris is picked up on the screen, the area closest to the inlet will become clogged, so high-velocity flow will persist farther down the length of the center screen, pushing the bubble front further from the inlet of the inner screen. It is desired to keep the velocity high enough so that, for any bubble size, an area of clean screen exists between the bubbles and the debris. The primary benefits of this innovation are the lack of any need for additional power, strip gas, or location for venting the separated gas. As the unit contains no membrane, the transport fluid will not be lost due to evaporation in the process of gas separation. Separation is performed with relatively low pressure drop based on the large surface

  3. Film thickness dependence of phase separation and dewetting behaviors in PMMA/SAN blend films.

    PubMed

    You, Jichun; Liao, Yonggui; Men, Yongfeng; Shi, Tongfei; An, Lijia

    2010-09-21

    Film thickness dependence of complex behaviors coupled by phase separation and dewetting in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on silicon oxide substrate at 175 °C was investigated by grazing incidence ultrasmall-angle X-ray scattering (GIUSAX) and in situ atomic force microscopy (AFM). It was found that the dewetting pathway was under the control of the parameter U(q0)/E, which described the initial amplitude of the surface undulation and original thickness of film, respectively. Furthermore, our results showed that interplay between phase separation and dewetting depended crucially on film thickness. Three mechanisms including dewetting-phase separation/wetting, dewetting/wetting-phase separation, and phase separation/wetting-pseudodewetting were discussed in detail. In conclusion, it is relative rates of phase separation and dewetting that dominate the interplay between them.

  4. Investigating the effects of polymer molecular weight and non-solvent content on the phase separation, surface morphology and hydrophobicity of polyvinyl chloride films

    NASA Astrophysics Data System (ADS)

    Khoryani, Zahra; Seyfi, Javad; Nekoei, Mehdi

    2018-01-01

    The main aim of this research is to study the effects of polymer molecular weight as well as non-solvent concentration on the phase separation, surface morphology and wettability of polyvinyl chloride (PVC) films. Gel permeation chromatography (GPC) results showed that the Mn of the used PVC grades is 6 × 104, 8.7 × 104 and 1.26 × 105 g/mol. It was found that a proper combination of polymer molecular weight and non-solvent content could result in superhydrophobic and self-cleaning behaviors. Scanning electron microscopy (SEM) results demonstrated that addition of ethanol causes the polymer chains to be severely aggregated at the films' surface forming strand-like structures decorated by nano-scale polymer spheres. The polymer molecular weight was found to affect the degree of porosity which is highly influential on the hydrophobicity of the films. The mechanism of phase separation process was also discussed and it was found that the instantaneous demixing is the dominant mechanism once higher contents of non-solvent were used. However, a delayed demixing mechanism was detected when the lower molecular weight PVC has been used which resulted in a pore-less and dense skin layer. Differential scanning calorimetry was also utilized to study the crystallization and glass transition behavior of samples.

  5. Particle separation by phase modulated surface acoustic waves.

    PubMed

    Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L

    2017-09-01

    High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.

  6. Rapid Separation of Copper Phase and Iron-Rich Phase From Copper Slag at Low Temperature in a Super-Gravity Field

    NASA Astrophysics Data System (ADS)

    Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng

    2018-03-01

    A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.

  7. Rapid Separation of Copper Phase and Iron-Rich Phase From Copper Slag at Low Temperature in a Super-Gravity Field

    NASA Astrophysics Data System (ADS)

    Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng

    2018-06-01

    A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.

  8. Wetting and phase separation in soft adhesion

    PubMed Central

    Jensen, Katharine E.; Sarfati, Raphael; Style, Robert W.; Boltyanskiy, Rostislav; Chakrabarti, Aditi; Chaudhury, Manoj K.; Dufresne, Eric R.

    2015-01-01

    In the classic theory of solid adhesion, surface energy drives deformation to increase contact area whereas bulk elasticity opposes it. Recently, solid surface stress has been shown also to play an important role in opposing deformation of soft materials. This suggests that the contact line in soft adhesion should mimic that of a liquid droplet, with a contact angle determined by surface tensions. Consistent with this hypothesis, we observe a contact angle of a soft silicone substrate on rigid silica spheres that depends on the surface functionalization but not the sphere size. However, to satisfy this wetting condition without a divergent elastic stress, the gel phase separates from its solvent near the contact line. This creates a four-phase contact zone with two additional contact lines hidden below the surface of the substrate. Whereas the geometries of these contact lines are independent of the size of the sphere, the volume of the phase-separated region is not, but rather depends on the indentation volume. These results indicate that theories of adhesion of soft gels need to account for both the compressibility of the gel network and a nonzero surface stress between the gel and its solvent. PMID:26553989

  9. Development of a novel amide-silica stationary phase for the reversed-phase HPLC separation of different classes of phytohormones.

    PubMed

    Aral, Hayriye; Aral, Tarık; Ziyadanoğulları, Berrin; Ziyadanoğulları, Recep

    2013-11-15

    A novel amide-bonded silica stationary phase was prepared starting from N-Boc-phenylalanine, cyclohexylamine and spherical silica gel (4 µm, 60 Å). The amide ligand was synthesised with high yield. The resulting amide bonded stationary phase was characterised by SEM, IR and elemental analysis. The resulting selector bearing a polar amide group is used for the reversed-phase chromatography separation of different classes of thirteen phytohormones (plant hormones). The chromatographic behaviours of these analytes on the amide-silica stationary phase were compared with those of RP-C18 column under same conditions. The effects of different separation conditions, such as mobile phase, pH value, flow rate and temperature, on the separation and retention behaviours of the 13 phytohormones in this system were studied. The optimum separation was achieved using reversed-phase HPLC gradient elution with an aqueous mobile phase containing pH=6.85 potassium phosphate buffer (20 mM) and acetonitrile with a 22 °C column temperature. Under these experimental conditions, the 12 phytohormones could be separated and detected at 230 or 270 nm within 26 min. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Phase Separation and Crystallization of Hemoglobin C in Transgenic Mouse and Human Erythrocytes

    PubMed Central

    Canterino, Joseph E.; Galkin, Oleg; Vekilov, Peter G.; Hirsch, Rhoda Elison

    2008-01-01

    Individuals expressing hemoglobin C (β6 Glu→Lys) present red blood cells (RBC) with intraerythrocytic crystals that form when hemoglobin (Hb) is oxygenated. Our earlier in vitro liquid-liquid (L-L) phase separation studies demonstrated that liganded HbC exhibits a stronger net intermolecular attraction with a longer range than liganded HbS or HbA, and that L-L phase separation preceded and enhanced crystallization. We now present evidence for the role of phase separation in HbC crystallization in the RBC, and the role of the RBC membrane as a nucleation center. RBC obtained from both human homozygous HbC patients and transgenic mice expressing only human HbC were studied by bright-field and differential interference contrast video-enhanced microscopy. RBC were exposed to hypertonic NaCl solution (1.5–3%) to induce crystallization within an appropriate experimental time frame. L-L phase separation occurred inside the RBC, which in turn enhanced the formation of intraerythrocytic crystals. RBC L-L phase separation and crystallization comply with the thermodynamic and kinetics laws established through in vitro studies of phase transformations. This is the first report, to the best of our knowledge, to capture a temporal view of intraerythrocytic HbC phase separation, crystal formation, and dissolution. PMID:18621841

  11. Vapor-liquid phase separator permeability results

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1981-01-01

    Continued studies are described in the area of vapor-liquid phase separator work with emphasis on permeabilities of porous sintered plugs (stainless steel, nominal pore size 2 micrometer). The temperature dependence of the permeability has been evaluated in classical fluid using He-4 gas at atmospheric pressure and in He-2 on the basis of a modified, thermosmotic permeability of the normal fluid.

  12. Separation of gas from liquid in a two-phase flow system

    NASA Technical Reports Server (NTRS)

    Hayes, L. G.; Elliott, D. G.

    1973-01-01

    Separation system causes jets which leave two-phase nozzles to impinge on each other, so that liquid from jets tends to coalesce in center of combined jet streams while gas phase is forced to outer periphery. Thus, because liquid coalescence is achieved without resort to separation with solid surfaces, cycle efficiency is improved.

  13. Effect of temperature gradient on liquid-liquid phase separation in a polyolefin blend.

    PubMed

    Jiang, Hua; Dou, Nannan; Fan, Guoqiang; Yang, Zhaohui; Zhang, Xiaohua

    2013-09-28

    We have investigated experimentally the structure formation processes during phase separation via spinodal decomposition above and below the spinodal line in a binary polymer blend system exposed to in-plane stationary thermal gradients using phase contrast optical microscopy and temperature gradient hot stage. Below the spinodal line there is a coupling of concentration fluctuations and thermal gradient imposed by the temperature gradient hot stage. Also under the thermal gradient annealing phase-separated domains grow faster compared with the system under homogeneous temperature annealing on a zero-gradient or a conventional hot stage. We suggest that the in-plane thermal gradient accelerates phase separation through the enhancement in concentration fluctuations in the early and intermediate stages of spinodal decomposition. In a thermal gradient field, the strength of concentration fluctuation close to the critical point (above the spinodal line) is strong enough to induce phase separation even in one-phase regime of the phase diagram. In the presence of a temperature gradient the equilibrium phase diagrams are no longer valid, and the systems with an upper critical solution temperature can be quenched into phase separation by applying the stationary temperature gradient. The in-plane temperature gradient drives enhanced concentration fluctuations in a binary polymer blend system above and below the spinodal line.

  14. Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon

    Mixed halide hybrid perovskites, CH 3NH 3Pb(I 1-xBrx) 3' represent good candidates for lowcost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material’s optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodiderich phases. It additionallymore » explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.« less

  15. Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites

    DOE PAGES

    Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon; ...

    2017-08-04

    Mixed halide hybrid perovskites, CH 3NH 3Pb(I 1-xBrx) 3' represent good candidates for lowcost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material’s optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodiderich phases. It additionallymore » explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.« less

  16. Simulation study on heat conduction of a nanoscale phase-change random access memory cell.

    PubMed

    Kim, Junho; Song, Ki-Bong

    2006-11-01

    We have investigated heat transfer characteristics of a nano-scale phase-change random access memory (PRAM) cell using finite element method (FEM) simulation. Our PRAM cell is based on ternary chalcogenide alloy, Ge2Sb2Te5 (GST), which is used as a recording layer. For contact area of 100 x 100 nm2, simulations of crystallization and amorphization processes were carried out. Physical quantities such as electric conductivity, thermal conductivity, and specific heat were treated as temperature-dependent parameters. Through many simulations, it is concluded that one can reduce set current by decreasing both electric conductivities of amorphous GST and crystalline GST, and in addition to these conditions by decreasing electric conductivity of molten GST one can also reduce reset current significantly.

  17. Polymer-induced phase separation and crystallization in immunoglobulin G solutions.

    PubMed

    Li, Jianguo; Rajagopalan, Raj; Jiang, Jianwen

    2008-05-28

    We study the effects of the size of polymer additives and ionic strength on the phase behavior of a nonglobular protein-immunoglobulin G (IgG)-by using a simple four-site model to mimic the shape of IgG. The interaction potential between the protein molecules consists of a Derjaguin-Landau-Verwey-Overbeek-type colloidal potential and an Asakura-Oosawa depletion potential arising from the addition of polymer. Liquid-liquid equilibria and fluid-solid equilibria are calculated by using the Gibbs ensemble Monte Carlo technique and the Gibbs-Duhem integration (GDI) method, respectively. Absolute Helmholtz energy is also calculated to get an initial coexisting point as required by GDI. The results reveal a nonmonotonic dependence of the critical polymer concentration rho(PEG) (*) (i.e., the minimum polymer concentration needed to induce liquid-liquid phase separation) on the polymer-to-protein size ratio q (equivalently, the range of the polymer-induced depletion interaction potential). We have developed a simple equation for estimating the minimum amount of polymer needed to induce the liquid-liquid phase separation and show that rho(PEG) (*) approximately [q(1+q)(3)]. The results also show that the liquid-liquid phase separation is metastable for low-molecular weight polymers (q=0.2) but stable at large molecular weights (q=1.0), thereby indicating that small sizes of polymer are required for protein crystallization. The simulation results provide practical guidelines for the selection of polymer size and ionic strength for protein phase separation and crystallization.

  18. Role of lipid phase separations and membrane hydration in phospholipid vesicle fusion.

    PubMed

    Hoekstra, D

    1982-06-08

    The relationship between lipid phase separation and fusion of small unilamellar phosphatidylserine-containing vesicles was investigated. The kinetics of phase separation were monitored by following the increase of self-quenching of the fluorescent phospholipid analogue N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine, which occurs when the local concentration of the probe increases upon Ca2+-induced phase separation in phosphatidylserine (PS) bilayers [Hoekstra, D. (1982) Biochemistry 21, 1055-1061]. Fusion was determined by using the resonance energy transfer fusion assay [Struck, D. K., Hoekstra, D., & Pagano, R. E. (1981) Biochemistry 20, 4093-4099], which monitors the mixing of fluorescent lipid donor and acceptor molecules, resulting in an increase in energy transfer efficiency. The results show that in the presence of Ca2+, fusion proceeds much more rapidly (t 1/2 less than 5 s) than the process of phase separation (T 1/2 congruent to 1 min). Mg2+ also induced fusion, albeit at higher concentrations than Ca2+. Mg2+-induced phase separation were not detected, however. Subthreshold concentrations of Ca2+ (0.5 mM) or Mg2+ (2 mM) induced extensive fusion of PS-containing vesicles in poly(ethylene glycol) containing media. This effect did not appear to be a poly(ethylene glycol)-facilitated enhancement of cation binding to the bilayer, and consequently Ca2+-induced phase separation was not observed. The results suggest that macroscopic phase separation may facilitate but does not induced the fusion process and is therefore, not directly involved in the actual fusion mechanism. The fusion experiments performed in the presence of poly(ethylene glycol) suggest that the degree of bilayer dehydration and the creation of "point defects" in the bilayer without rigorous structural rearrangements in the membrane are dominant factors in the initial fusion events.

  19. Separation of multiphosphorylated peptide isomers by hydrophilic interaction chromatography on an aminopropyl phase.

    PubMed

    Singer, David; Kuhlmann, Julia; Muschket, Matthias; Hoffmann, Ralf

    2010-08-01

    The separation of isomeric phosphorylated peptides is challenging and often impossible for multiphosphorylated isomers using chromatographic and capillary electrophoretic methods. In this study we investigated the separation of a set of single-, double-, and triple-phosphorylated peptides (corresponding to the human tau protein) by ion-pair reversed-phase chromatography (IP-RPC) and hydrophilic interaction chromatography (HILIC). In HILIC both hydroxyl and aminopropyl stationary phases were tested with aqueous acetonitrile in order to assess their separation efficiency. The hydroxyl phase separated the phosphopeptides very well from the unphosphorylated analogue, while on the aminopropyl phase even isomeric phosphopeptides attained baseline separation. Thus, up to seven phosphorylated versions of a given tau domain were separated. Furthermore, the low concentration of an acidic ammonium formate buffer allowed an online analysis with electrospray ionization tandem mass spectrometry (ESI-MS/MS) to be conducted, enabling peptide sequencing and identification of phosphorylation sites.

  20. Separating homeologs by phasing in the tetraploid wheat transcriptome.

    PubMed

    Krasileva, Ksenia V; Buffalo, Vince; Bailey, Paul; Pearce, Stephen; Ayling, Sarah; Tabbita, Facundo; Soria, Marcelo; Wang, Shichen; Akhunov, Eduard; Uauy, Cristobal; Dubcovsky, Jorge

    2013-06-25

    The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs. A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96% of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22% relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7% of SNPs analyzed are correctly separated by phasing. Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies.

  1. Quantitative analysis of aqueous phase composition of model dentin adhesives experiencing phase separation

    PubMed Central

    Ye, Qiang; Park, Jonggu; Parthasarathy, Ranganathan; Pamatmat, Francis; Misra, Anil; Laurence, Jennifer S.; Marangos, Orestes; Spencer, Paulette

    2013-01-01

    There have been reports of the sensitivity of our current dentin adhesives to excess moisture, for example, water-blisters in adhesives placed on over-wet surfaces, and phase separation with concomitant limited infiltration of the critical dimethacrylate component into the demineralized dentin matrix. To determine quantitatively the hydrophobic/hydrophilic components in the aqueous phase when exposed to over-wet environments, model adhesives were mixed with 16, 33, and 50 wt % water to yield well-separated phases. Based upon high-performance liquid chromatography coupled with photodiode array detection, it was found that the amounts of hydrophobic BisGMA and hydrophobic initiators are less than 0.1 wt % in the aqueous phase. The amount of these compounds decreased with an increase in the initial water content. The major components of the aqueous phase were hydroxyethyl methacrylate (HEMA) and water, and the HEMA content ranged from 18.3 to 14.7 wt %. Different BisGMA homologues and the relative content of these homologues in the aqueous phase have been identified; however, the amount of crosslinkable BisGMA was minimal and, thus, could not help in the formation of a crosslinked polymer network in the aqueous phase. Without the protection afforded by a strong crosslinked network, the poorly photoreactive compounds of this aqueous phase could be leached easily. These results suggest that adhesive formulations should be designed to include hydrophilic multimethacrylate monomers and water compatible initiators. PMID:22331596

  2. Phase separation of comb polymer nanocomposite melts.

    PubMed

    Xu, Qinzhi; Feng, Yancong; Chen, Lan

    2016-02-07

    In this work, the spinodal phase demixing of branched comb polymer nanocomposite (PNC) melts is systematically investigated using the polymer reference interaction site model (PRISM) theory. To verify the reliability of the present method in characterizing the phase behavior of comb PNCs, the intermolecular correlation functions of the system for nonzero particle volume fractions are compared with our molecular dynamics simulation data. After verifying the model and discussing the structure of the comb PNCs in the dilute nanoparticle limit, the interference among the side chain number, side chain length, nanoparticle-monomer size ratio and attractive interactions between the comb polymer and nanoparticles in spinodal demixing curves is analyzed and discussed in detail. The results predict two kinds of distinct phase separation behaviors. One is called classic fluid phase boundary, which is mediated by the entropic depletion attraction and contact aggregation of nanoparticles at relatively low nanoparticle-monomer attraction strength. The second demixing transition occurs at relatively high attraction strength and involves the formation of an equilibrium physical network phase with local bridging of nanoparticles. The phase boundaries are found to be sensitive to the side chain number, side chain length, nanoparticle-monomer size ratio and attractive interactions. As the side chain length is fixed, the side chain number has a large effect on the phase behavior of comb PNCs; with increasing side chain number, the miscibility window first widens and then shrinks. When the side chain number is lower than a threshold value, the phase boundaries undergo a process from enlarging the miscibility window to narrowing as side chain length increases. Once the side chain number overtakes this threshold value, the phase boundary shifts towards less miscibility. With increasing nanoparticle-monomer size ratio, a crossover of particle size occurs, above which the phase separation

  3. Nanoscale Analysis of a Hierarchical Hybrid Solar Cell in 3D.

    PubMed

    Divitini, Giorgio; Stenzel, Ole; Ghadirzadeh, Ali; Guarnera, Simone; Russo, Valeria; Casari, Carlo S; Bassi, Andrea Li; Petrozza, Annamaria; Di Fonzo, Fabio; Schmidt, Volker; Ducati, Caterina

    2014-05-01

    A quantitative method for the characterization of nanoscale 3D morphology is applied to the investigation of a hybrid solar cell based on a novel hierarchical nanostructured photoanode. A cross section of the solar cell device is prepared by focused ion beam milling in a micropillar geometry, which allows a detailed 3D reconstruction of the titania photoanode by electron tomography. It is found that the hierarchical titania nanostructure facilitates polymer infiltration, thus favoring intermixing of the two semiconducting phases, essential for charge separation. The 3D nanoparticle network is analyzed with tools from stochastic geometry to extract information related to the charge transport in the hierarchical solar cell. In particular, the experimental dataset allows direct visualization of the percolation pathways that contribute to the photocurrent.

  4. Movie of phase separation during physics of colloids in space experiment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Still photographs taken over 16 hours on Nov. 13, 2001, on the International Space Station have been condensed into a few seconds to show the de-mixing -- or phase separation -- process studied by the Experiment on Physics of Colloids in Space. Commanded from the ground, dozens of similar tests have been conducted since the experiment arrived on ISS in 2000. The sample is a mix of polymethylmethacrylate (PMMA or acrylic) colloids, polystyrene polymers and solvents. The circular area in the video is 2 cm (0.8 in.) in diameter. The phase separation process occurs spontaneously after the sample is mechanically mixed. The evolving lighter regions are rich in colloid and have the structure of a liquid. The dark regions are poor in colloids and have the structure of a gas. This behavior carnot be observed on Earth because gravity causes the particles to fall out of solution faster than the phase separation can occur. While similar to a gas-liquid phase transition, the growth rate observed in this test is different from any atomic gas-liquid or liquid-liquid phase transition ever measured experimentally. Ultimately, the sample separates into colloid-poor and colloid-rich areas, just as oil and vinegar separate. The fundamental science of de-mixing in this colloid-polymer sample is the same found in the annealing of metal alloys and plastic polymer blends. Improving the understanding of this process may lead to improving processing of these materials on Earth.

  5. Phase separation during the Experiment on Physics of Colloids in Space

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Still photographs taken over 16 hours on Nov. 13, 2001, on the International Space Station have been condensed into a few seconds to show the de-mixing -- or phase separation -- process studied by the Experiment on Physics of Colloids in Space. Commanded from the ground, dozens of similar tests have been conducted since the experiment arrived on ISS in 2000. The sample is a mix of polymethylmethacrylate (PMMA or acrylic) colloids, polystyrene polymers and solvents. The circular area is 2 cm (0.8 in.) in diameter. The phase separation process occurs spontaneously after the sample is mechanically mixed. The evolving lighter regions are rich in colloid and have the structure of a liquid. The dark regions are poor in colloids and have the structure of a gas. This behavior carnot be observed on Earth because gravity causes the particles to fall out of solution faster than the phase separation can occur. While similar to a gas-liquid phase transition, the growth rate observed in this test is different from any atomic gas-liquid or liquid-liquid phase transition ever measured experimentally. Ultimately, the sample separates into colloid-poor and colloid-rich areas, just as oil and vinegar separate. The fundamental science of de-mixing in this colloid-polymer sample is the same found in the annealing of metal alloys and plastic polymer blends. Improving the understanding of this process may lead to improving processing of these materials on Earth.

  6. Thermal cycling effects on static and dynamic properties of a phase separated manganite

    NASA Astrophysics Data System (ADS)

    Sacanell, J.; Sievers, B.; Quintero, M.; Granja, L.; Ghivelder, L.; Parisi, F.

    2018-06-01

    In this work we address the interplay between two phenomena which are signatures of the out-of-equilibrium state in phase separated manganites: irreversibility against thermal cycling and aging/rejuvenation process. The sample investigated is La0.5Ca0.5MnO3, a prototypical manganite exhibiting phase separation. Two regimes for isothermal relaxation were observed according to the temperature range: for T > 100 K, aging/rejuvenation effects are observed, while for T < 100 K an irreversible aging was found. Our results show that thermal cycles act as a tool to unveil the dynamical behavior of the phase separated state in manganites, revealing the close interplay between static and dynamic properties of phase separated manganites.

  7. Architecture Study on Telemetry Coverage for Immediate Post-Separation Phase

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Lee, Charles H.; Kellogg, Kent H.; Stocklin, Frank J.; Zillig, David J.; Fielhauer, Karl B.

    2008-01-01

    This paper presents the preliminary results of an architecture study that provides continuous telemetry coverage for NASA missions for immediate post-separation phase. This study is a collaboration effort between Jet Propulsion Laboratory (JPL), Goddard Space Flight Center (GSFC), and Applied Physics Laboratory (APL). After launch when the spacecraft separated from the upper stage, the spacecraft typically executes a number of mission-critical operations prior to the deployment of solar panels and the activation of the primary communication subsystem. JPL, GSFC, and APL have similar design principle statements that require continuous coverage of mission-critical telemetry during the immediate post-separation phase. To conform to these design principles, an architecture that consists of a separate spacecraft transmitter and a robust communication network capable of tracking the spacecraft signals is needed.This paper presents the preliminary results of an architecture study that provides continuous telemetry coverage for NASA missions for immediate post-separation phase. This study is a collaboration effort between Jet Propulsion Laboratory (JPL), Goddard Space Flight Center (GSFC), and Applied Physics Laboratory (APL). After launch when the spacecraft separated from the upper stage, the spacecraft typically executes a number of mission-critical operations prior to the deployment of solar panels and the activation of the primary communication subsystem. JPL, GSFC, and APL have similar design principle statements that require continuous coverage of mission-critical telemetry during the immediate post-separation phase. To conform to these design principles, an architecture that consists of a separate spacecraft transmitter and a robust communication network capable of tracking the spacecraft signals is needed. The main results of this study are as follows: 1) At low altitude (< 10000 km) when most post-separation critical operations are executed, Earth-based network

  8. Laser-induced separation of hydrogen isotopes in the liquid phase

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.

    1980-01-01

    Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

  9. Extent and mechanism of phase separation during the extrusion of calcium phosphate pastes.

    PubMed

    O'Neill, Rory; McCarthy, Helen O; Cunningham, Eoin; Montufar, Edgar; Ginebra, Maria-Pau; Wilson, D Ian; Lennon, Alex; Dunne, Nicholas

    2016-02-01

    The aim of this study was to increase understanding of the mechanism and dominant drivers influencing phase separation during ram extrusion of calcium phosphate (CaP) paste for orthopaedic applications. The liquid content of extrudate was determined, and the flow of liquid and powder phases within the syringe barrel during extrusion were observed, subject to various extrusion parameters. Increasing the initial liquid-to-powder mass ratio, LPR, (0.4-0.45), plunger rate (5-20 mm/min), and tapering the barrel exit (45°-90°) significantly reduced the extent of phase separation. Phase separation values ranged from (6.22 ± 0.69 to 18.94 ± 0.69 %). However altering needle geometry had no significant effect on phase separation. From powder tracing and liquid content determination, static zones of powder and a non-uniform liquid distribution was observed within the barrel. Measurements of extrudate and paste LPR within the barrel indicated that extrudate LPR remained constant during extrusion, while LPR of paste within the barrel decreased steadily. These observations indicate the mechanism of phase separation was located within the syringe barrel. Therefore phase separation can be attributed to either; (1) the liquid being forced downstream by an increase in pore pressure as a result of powder consolidation due to the pressure exerted by the plunger or (2) the liquid being drawn from paste within the barrel, due to suction, driven by dilation of the solids matrix at the barrel exit. Differentiating between these two mechanisms is difficult; however results obtained suggest that suction is the dominant phase separation mechanism occurring during extrusion of CaP paste.

  10. A Thermal Diode Based on Nanoscale Thermal Radiation.

    PubMed

    Fiorino, Anthony; Thompson, Dakotah; Zhu, Linxiao; Mittapally, Rohith; Biehs, Svend-Age; Bezencenet, Odile; El-Bondry, Nadia; Bansropun, Shailendra; Ben-Abdallah, Philippe; Meyhofer, Edgar; Reddy, Pramod

    2018-05-23

    In this work we demonstrate thermal rectification at the nanoscale between doped Si and VO 2 surfaces. Specifically, we show that the metal-insulator transition of VO 2 makes it possible to achieve large differences in the heat flow between Si and VO 2 when the direction of the temperature gradient is reversed. We further show that this rectification increases at nanoscale separations, with a maximum rectification coefficient exceeding 50% at ∼140 nm gaps and a temperature difference of 70 K. Our modeling indicates that this high rectification coefficient arises due to broadband enhancement of heat transfer between metallic VO 2 and doped Si surfaces, as compared to narrower-band exchange that occurs when VO 2 is in its insulating state. This work demonstrates the feasibility of accomplishing near-field-based rectification of heat, which is a key component for creating nanoscale radiation-based information processing devices and thermal management approaches.

  11. Analysis of Phase Separation in Czochralski Grown Single Crystal Ilmenite

    NASA Technical Reports Server (NTRS)

    Wilkins, R.; Powell, Kirk St. A.; Loregnard, Kieron R.; Lin, Sy-Chyi; Muthusami, Jayakumar; Zhou, Feng; Pandey, R. K.; Brown, Geoff; Hawley, M. E.

    1998-01-01

    Ilmenite (FeTiOs) is a wide bandgap semiconductor with an energy gap of 2.58 eV. Ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Single crystal ilmenite has been grown from the melt using the Czochralski method. Growth conditions have a profound effect on the microstructure of the samples. Here we present data from a variety of analytical techniques which indicate that some grown crystals exhibit distinct phase separation during growth. This phase separation is apparent for both post-growth annealed and unannealed samples. Under optical microscopy, there appear two distinct areas forming a matrix with an array of dots on order of 5 pm diameter. While appearing bright in the optical micrograph, atomic force microscope (AFM) shows the dots to be shallow pits on the surface. Magnetic force microscope (MFM) shows the dots to be magnetic. Phase identification via electron microprobe analysis (EMPA) indicates two major phases in the unannealed samples and four in the annealed samples, where the dots appear to be almost pure iron. This is consistent with micrographs taken with a scanning probe microscope used in the magnetic force mode. Samples that do not exhibit the phase separation have little or no discernible magnetic structure detectable by the MFM.

  12. Polymerization- and Solvent-Induced Phase Separation in Hydrophilic-rich Dentin Adhesive Mimic

    PubMed Central

    Abedin, Farhana; Ye, Qiang; Good, Holly J; Parthasarathy, Ranganathan; Spencer, Paulette

    2014-01-01

    Current dental resin undergoes phase separation into hydrophobic-rich and hydrophilic-rich phases during infiltration of the over-wet demineralized collagen matrix. Such phase separation undermines the integrity and durability of the bond at the composite/tooth interface. This study marks the first time that the polymerization kinetics of model hydrophilic-rich phase of dental adhesive has been determined. Samples were prepared by adding varying water content to neat resins made from 95 and 99wt% hydroxyethylmethacrylate (HEMA) and 5 and 1wt% (2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl1]-propane (BisGMA) prior to light curing. Viscosity of the formulations decreased with increased water content. The photo-polymerization kinetics study was carried out by time-resolved FTIR spectrum collector. All of the samples exhibited two-stage polymerization behavior which has not been reported previously for dental resin formulation. The lowest secondary rate maxima were observed for water content of 10-30%wt. Differential scanning calorimetry (DSC) showed two glass transition temperatures for the hydrophilic-rich phase of dental adhesive. The DSC results indicate that the heterogeneity within the final polymer structure decreased with increased water content. The results suggest a reaction mechanism involving both polymerization-induced phase separation (PIPs) and solvent-induced phase separation (SIPs) for the model hydrophilic-rich phase of dental resin. PMID:24631658

  13. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy

    NASA Astrophysics Data System (ADS)

    Wang, W. L.; Wu, Y. H.; Li, L. H.; Zhai, W.; Zhang, X. M.; Wei, B.

    2015-11-01

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate.

  14. Separating homeologs by phasing in the tetraploid wheat transcriptome

    PubMed Central

    2013-01-01

    Background The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs. Results A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96% of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22% relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7% of SNPs analyzed are correctly separated by phasing. Conclusions Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies. PMID:23800085

  15. Phase separation kinetics in immiscible liquids

    NASA Technical Reports Server (NTRS)

    Ng, Lee H.; Sadoway, Donald R.

    1987-01-01

    The kinetics of phase separation in the succinonitrile-water system are being investigated. Experiments involve initial physical mixing of the two immiscible liquids at a temperature above the consolute, decreasing the temperature into the miscibility gap, followed by iamging of the resultant microstructure as it evolves with time. Refractive index differences allow documentation of the changing microstructures by noninvasive optical techniques without the need to quench the liquid structures for analysis.

  16. Phase separation kinetics in immiscible liquids

    NASA Technical Reports Server (NTRS)

    Sadoway, D. R.

    1986-01-01

    The kinetics of phase separation in the succinonitrile-water system are being investigated. Experiments involve initial physical mixing of the two immiscible liquids at a temperature above the consolute, decreasing the temperature into the miscibility gap, followed by imaging of the resultant microstructure as it evolves with time. Refractive index differences allow documentation of the changing microstructures by noninvasive optical techniques without the need to quench the liquid structures for analysis.

  17. Nanoscale multiphase phase field approach for stress- and temperature-induced martensitic phase transformations with interfacial stresses at finite strains

    NASA Astrophysics Data System (ADS)

    Basak, Anup; Levitas, Valery I.

    2018-04-01

    A thermodynamically consistent, novel multiphase phase field approach for stress- and temperature-induced martensitic phase transformations at finite strains and with interfacial stresses has been developed. The model considers a single order parameter to describe the austenite↔martensitic transformations, and another N order parameters describing N variants and constrained to a plane in an N-dimensional order parameter space. In the free energy model coexistence of three or more phases at a single material point (multiphase junction), and deviation of each variant-variant transformation path from a straight line have been penalized. Some shortcomings of the existing models are resolved. Three different kinematic models (KMs) for the transformation deformation gradient tensors are assumed: (i) In KM-I the transformation deformation gradient tensor is a linear function of the Bain tensors for the variants. (ii) In KM-II the natural logarithms of the transformation deformation gradient is taken as a linear combination of the natural logarithm of the Bain tensors multiplied with the interpolation functions. (iii) In KM-III it is derived using the twinning equation from the crystallographic theory. The instability criteria for all the phase transformations have been derived for all the kinematic models, and their comparative study is presented. A large strain finite element procedure has been developed and used for studying the evolution of some complex microstructures in nanoscale samples under various loading conditions. Also, the stresses within variant-variant boundaries, the sample size effect, effect of penalizing the triple junctions, and twinned microstructures have been studied. The present approach can be extended for studying grain growth, solidifications, para↔ferro electric transformations, and diffusive phase transformations.

  18. Robust water fat separated dual-echo MRI by phase-sensitive reconstruction.

    PubMed

    Romu, Thobias; Dahlström, Nils; Leinhard, Olof Dahlqvist; Borga, Magnus

    2017-09-01

    The purpose of this work was to develop and evaluate a robust water-fat separation method for T1-weighted symmetric two-point Dixon data. A method for water-fat separation by phase unwrapping of the opposite-phase images by phase-sensitive reconstruction (PSR) is introduced. PSR consists of three steps; (1), identification of clusters of tissue voxels; (2), unwrapping of the phase in each cluster by solving Poisson's equation; and (3), finding the correct sign of each unwrapped opposite-phase cluster, so that the water-fat images are assigned the correct identities. Robustness was evaluated by counting the number of water-fat swap artifacts in a total of 733 image volumes. The method was also compared to commercial software. In the water-fat separated image volumes, the PSR method failed to unwrap the phase of one cluster and misclassified 10. One swap was observed in areas affected by motion and was constricted to the affected area. Twenty swaps were observed surrounding susceptibility artifacts, none of which spread outside the artifact affected regions. The PSR method had fewer swaps when compared to commercial software. The PSR method can robustly produce water-fat separated whole-body images based on symmetric two-echo spoiled gradient echo images, under both ideal conditions and in the presence of common artifacts. Magn Reson Med 78:1208-1216, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Cyclohexylamine additives for enhanced peptide separations in reversed phase liquid chromatography.

    PubMed

    Cole, S R; Dorsey, J G

    1997-01-01

    While the choice of stationary phase, organic modifier, and gradient strength can have significant effects on biomolecule separations, mobile phase additives can also have a significant effect on the chromatographic selectivity, recovery, efficiency and resolution. Given the importance of stationary phase coverage, the beneficial, silanol-masking properties of amines, and the potential for selectivity modification through ion-pair interactions, cyclohexylamine was examined as a mobile phase additive and compared with triethylamine and trifluoroacetic acid. Greatly improved separation was possible when cyclohexylamine was used as compared with phosphate buffer, and cyclohexylamine did not require purification before use, while triethylamine required distillation before 'clean' chromatograms were obtained.

  20. Formation and Maturation of Phase Separated Liquid Droplets by RNA Binding Proteins

    PubMed Central

    Lin, Yuan; Protter, David S. W.; Rosen, Michael K.; Parker, Roy

    2015-01-01

    Eukaryotic cells possess numerous dynamic membrane-less organelles, RNP granules, enriched in RNA and RNA binding proteins containing disordered regions. We demonstrate that the disordered regions of key RNP granule components, and the full-length granule protein hnRNPA1, can phase separate in vitro, producing dynamic liquid droplets. Phase separation is promoted by low salt concentrations or RNA. Over time, the droplets mature to more stable states, as assessed by slowed fluorescence recovery after photobleaching and resistance to salt. Maturation often coincides with formation of fibrous structures. Different disordered domains can co-assemble into phase-separated droplets. These biophysical properties demonstrate a plausible mechanism by which interactions between disordered regions, coupled with RNA binding, could contribute to RNP granule assembly in vivo through promoting phase separation. Progression from dynamic liquids to stable fibers may be regulated to produce cellular structures with diverse physiochemical properties and functions. Misregulation could contribute to diseases involving aberrant RNA granules. PMID:26412307

  1. [Influence of mobile phase composition on chiral separation of organic selenium racemates].

    PubMed

    Han, Xiao-qian; Qi, Bang-feng; Dun, Hui-juan; Zhu, Xin-yi; Na, Peng-jun; Jiang, Sheng-xiang; Chen, Li-ren

    2002-05-01

    The chiral separation of some chiral compounds with similar structure on the cellulose tris (3,5-dimethylphenylcarbamate) chiral stationary phase prepared by us was obtained. Ternary mobile phases influencing chiral recognition were investigated. A mode of interaction between the structural character of samples and chiral stationary phase is discussed. The results indicated that the retention and chiral separation of the analytes had a bigger change with minute addition of alcohols or acetonitrile as modifier in n-hexane/2-propanol (80/20, volume ratio) binary mobile phase.

  2. Integral equation theory study on the phase separation in star polymer nanocomposite melts.

    PubMed

    Zhao, Lei; Li, Yi-Gui; Zhong, Chongli

    2007-10-21

    The polymer reference interaction site model theory is used to investigate phase separation in star polymer nanocomposite melts. Two kinds of spinodal curves were obtained: classic fluid phase boundary for relatively low nanoparticle-monomer attraction strength and network phase boundary for relatively high nanoparticle-monomer attraction strength. The network phase boundaries are much more sensitive with nanoparticle-monomer attraction strength than the fluid phase boundaries. The interference among the arm number, arm length, and nanoparticle-monomer attraction strength was systematically investigated. When the arm lengths are short, the network phase boundary shows a marked shift toward less miscibility with increasing arm number. When the arm lengths are long enough, the network phase boundaries show opposite trends. There exists a crossover arm number value for star polymer nanocomposite melts, below which the network phase separation is consistent with that of chain polymer nanocomposite melts. However, the network phase separation shows qualitatively different behaviors when the arm number is larger than this value.

  3. Phase-separated, epitaxial composite cap layers for electronic device applications and method of making the same

    DOEpatents

    Aytug, Tolga [Knoxville, TN; Paranthaman, Mariappan Parans [Knoxville, TN; Polat, Ozgur [Knoxville, TN

    2012-07-17

    An electronic component that includes a substrate and a phase-separated layer supported on the substrate and a method of forming the same are disclosed. The phase-separated layer includes a first phase comprising lanthanum manganate (LMO) and a second phase selected from a metal oxide (MO), metal nitride (MN), a metal (Me), and combinations thereof. The phase-separated material can be an epitaxial layer and an upper surface of the phase-separated layer can include interfaces between the first phase and the second phase. The phase-separated layer can be supported on a buffer layer comprising a composition selected from the group consisting of IBAD MgO, LMO/IBAD-MgO, homoepi-IBAD MgO and LMO/homoepi-MgO. The electronic component can also include an electronically active layer supported on the phase-separated layer. The electronically active layer can be a superconducting material, a ferroelectric material, a multiferroic material, a magnetic material, a photovoltaic material, an electrical storage material, and a semiconductor material.

  4. Separation of Chloroplast Pigments Using Reverse Phase Chromatography.

    ERIC Educational Resources Information Center

    Reese, R. Neil

    1997-01-01

    Presents a protocol that uses reverse phase chromatography for the separation of chloroplast pigments. Provides a simple and relatively safe procedure for use in teaching laboratories. Discusses pigment extraction, chromatography, results, and advantages of the process. (JRH)

  5. Amide-induced phase separation of hexafluoroisopropanol-water mixtures depending on the hydrophobicity of amides.

    PubMed

    Takamuku, Toshiyuki; Wada, Hiroshi; Kawatoko, Chiemi; Shimomura, Takuya; Kanzaki, Ryo; Takeuchi, Munetaka

    2012-06-21

    Amide-induced phase separation of hexafluoro-2-propanol (HFIP)-water mixtures has been investigated to elucidate solvation properties of the mixtures by means of small-angle neutron scattering (SANS), (1)H and (13)C NMR, and molecular dynamics (MD) simulation. The amides included N-methylformamide (NMF), N-methylacetamide (NMA), and N-methylpropionamide (NMP). The phase diagrams of amide-HFIP-water ternary systems at 298 K showed that phase separation occurs in a closed-loop area of compositions as well as an N,N-dimethylformamide (DMF) system previously reported. The phase separation area becomes wider as the hydrophobicity of amides increases in the order of NMF < NMA < DMF < NMP. Thus, the evolution of HFIP clusters around amides due to the hydrophobic interaction gives rise to phase separation of the mixtures. In contrast, the disruption of HFIP clusters causes the recovery of the homogeneity of the ternary systems. The present results showed that HFIP clusters are evolved with increasing amide content to the lower phase separation concentration in the same mechanism among the four amide systems. However, the disruption of HFIP clusters in the NMP and DMF systems with further increasing amide content to the upper phase separation concentration occurs in a different way from those in the NMF and NMA systems.

  6. Development of a passive phase separator for space and earth applications

    PubMed Central

    Wu, Xiongjun; Loraine, Greg; Hsiao, Chao-Tsung; Chahine, Georges L.

    2018-01-01

    The limited amount of liquids and gases that can be carried to space makes it imperative to recycle and reuse these fluids for extended human operations. During recycling processes gas and liquid phases are often intermixed. In the absence of gravity, separating gases from liquids is challenging due to the absence of buoyancy. This paper describes development of a passive phase separator that is capable of efficiently and reliably separating gas–liquid mixtures of both high and low void fractions in a wide range of flow rates that is applicable to for both space and earth applications. PMID:29628785

  7. A Laterally-Mobile Mixed Polymer/Polyelectrolyte Brush Undergoes a Macroscopic Phase Separation

    NASA Astrophysics Data System (ADS)

    Lee, Hoyoung; Park, Hae-Woong; Tsouris, Vasilios; Choi, Je; Mustafa, Rafid; Lim, Yunho; Meron, Mati; Lin, Binhua; Won, You-Yeon

    2013-03-01

    We studied mixed PEO and PDMAEMA brushes. The question we attempted to answer was: When the chain grafting points are laterally mobile, how will this lateral mobility influence the structure and phase behavior of the mixed brush? Two different model mixed PEO/PDMAEMA brush systems were prepared: a mobile mixed brush by spreading a mixture of two diblock copolymers, PEO-PnBA and PDMAEMA-PnBA, onto the air-water interface, and an inseparable mixed brush using a PEO-PnBA-PDMAEMA triblock copolymer having respective brush molecular weights matched to those of the diblock copolymers. These two systems were investigated by surface pressure-area isotherm, X-ray reflectivity and AFM imaging measurements. The results suggest that the mobile mixed brush undergoes a lateral macroscopic phase separation at high chain grafting densities, whereas the inseparable system is only microscopically phase separated under comparable brush density conditions. We also conducted an SCF analysis of the phase behavior of the mixed brush system. This analysis further supported the experimental findings. The macroscopic phase separation observed in the mobile system is in contrast to the microphase separation behavior commonly observed in two-dimensional laterally-mobile small molecule mixtures.

  8. Stability and Oil Migration of Oil-in-Water Emulsions Emulsified by Phase-Separating Biopolymer Mixtures.

    PubMed

    Yang, Nan; Mao, Peng; Lv, Ruihe; Zhang, Ke; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O

    2016-08-01

    Oil-in-water (O/W) emulsions with varying concentration of oil phase, medium-chain triglyceride (MCT), were prepared using phase-separating gum arabic (GA)/sugar beet pectin (SBP) mixture as an emulsifier. Stability of the emulsions including emulsion phase separation, droplet size change, and oil migration were investigated by means of visual observation, droplet size analysis, oil partition analysis, backscattering of light, and interfacial tension measurement. It was found that in the emulsions prepared with 4.0% GA/1.0% SBP, when the concentration of MCT was greater than 2.0%, emulsion phase separation was not observed and the emulsions were stable with droplet size unchanged during storage. This result proves the emulsification ability of phase-separating biopolymer mixtures and their potential usage as emulsifiers to prepare O/W emulsion. However, when the concentration of MCT was equal or less than 2.0%, emulsion phase separation occurred after preparation resulting in an upper SBP-rich phase and a lower GA-rich phase. The droplet size increased in the upper phase whereas decreased slightly in the lower phase with time, compared to the freshly prepared emulsions. During storage, the oil droplets exhibited a complex migration process: first moving to the SBP-rich phase, then to the GA-rich phase and finally gathering at the interface between the two phases. The mechanisms of the emulsion stability and oil migration in the phase-separated emulsions were discussed. © 2016 Institute of Food Technologists®

  9. Phase-Separated Polyaniline/Graphene Composite Electrodes for High-Rate Electrochemical Supercapacitors.

    PubMed

    Wu, Jifeng; Zhang, Qin'e; Zhou, An'an; Huang, Zhifeng; Bai, Hua; Li, Lei

    2016-12-01

    Polyaniline/graphene hydrogel composites with a macroscopically phase-separated structure are prepared. The composites show high specific capacitance and excellent rate performance. Further investigation demonstrates that polyaniline inside the graphene hydrogel has low rate performance, thus a phase-separated structure, in which polyaniline is mainly outside the graphene hydrogel matrix, can enhance the rate performance of the composites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Evolutionary Calculations of Phase Separation in Crystallizing White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Montgomery, M. H.; Klumpe, E. W.; Winget, D. E.; Wood, M. A.

    1999-11-01

    We present an exploration of the significance of carbon/oxygen phase separation in white dwarf stars in the context of self-consistent evolutionary calculations. Because phase separation can potentially increase the calculated ages of the oldest white dwarfs, it can affect the age of the Galactic disk as derived from the downturn in the white dwarf luminosity function. We find that the largest possible increase in ages due to phase separation is ~1.5 Gyr, with a most likely value of approximately 0.6 Gyr, depending on the parameters of our white dwarf models. The most important factors influencing the size of this delay are the total stellar mass, the initial composition profile, and the phase diagram assumed for crystallization. We find a maximum age delay in models with masses of ~0.6 Msolar, which is near the peak in the observed white dwarf mass distribution. In addition, we note that the prescription that we have adopted for the mixing during crystallization provides an upper bound for the efficiency of this process, and hence a maximum for the age delays. More realistic treatments of the mixing process may reduce the size of this effect. We find that varying the opacities (via the metallicity) has little effect on the calculated age delays. In the context of Galactic evolution, age estimates for the oldest Galactic globular clusters range from 11.5 to 16 Gyr and depend on a variety of parameters. In addition, a 4-6 Gyr delay is expected between the formation of the globular clusters and the formation of the Galactic thin disk, while the observed white dwarf luminosity function gives an age estimate for the thin disk of 9.5+1.1-0.8 Gyr, without including the effect of phase separation. Using the above numbers, we see that phase separation could add between 0 and 3 Gyr to the white dwarf ages and still be consistent with the overall picture of Galaxy formation. Our calculated maximum value of <~1.5 Gyr fits within these bounds, as does our best-guess value of

  11. Magnetic Interactions at the Nanoscale in Trilayer Titanates

    NASA Astrophysics Data System (ADS)

    Cao, Yanwei; Yang, Zhenzhong; Kareev, M.; Liu, Xiaoran; Meyers, D.; Middey, S.; Choudhury, D.; Shafer, P.; Guo, Jiandong; Freeland, J. W.; Arenholz, E.; Gu, Lin; Chakhalian, J.

    2016-02-01

    We report on the phase diagram of competing magnetic interactions at the nanoscale in engineered ultrathin trilayer heterostructures of LaTiO3 /SrTiO3/YTiO3 , in which the interfacial inversion symmetry is explicitly broken. Combined atomic layer resolved scanning transmission electron microscopy with electron energy loss spectroscopy and electrical transport have confirmed the formation of a spatially separated two-dimensional electron liquid and high density two-dimensional localized magnetic moments at the LaTiO3 /SrTiO3 and SrTiO3 /YTiO3 interfaces, respectively. Resonant soft x-ray linear dichroism spectroscopy has demonstrated the presence of orbital polarization of the conductive LaTiO3 /SrTiO3 and localized SrTiO3 /YTiO3 electrons. Our results provide a route with prospects for exploring new magnetic interfaces, designing a tunable two-dimensional d -electron Kondo lattice, and potential spin Hall applications.

  12. Magnetic Interactions at the Nanoscale in Trilayer Titanates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yanwei; Yang, Zhenzhong; Kareev, M.

    2016-02-17

    We report on the phase diagram of competing magnetic interactions at the nanoscale in engineered ultrathin trilayer heterostructures of LaTiO3/SrTiO3/YTiO3, in which the interfacial inversion symmetry is explicitly broken. Combined atomic layer resolved scanning transmission electron microscopy with electron energy loss spectroscopy and electrical transport have confirmed the formation of a spatially separated two-dimensional electron liquid and high density two-dimensional localized magnetic moments at the LaTiO3/SrTiO3 and SrTiO3/YTiO3 interfaces, respectively. Resonant soft x-ray linear dichroism spectroscopy has demonstrated the presence of orbital polarization of the conductive LaTiO3/SrTiO3 and localized SrTiO3/YTiO3 electrons. Our results provide a route with prospects for exploringmore » new magnetic interfaces, designing a tunable two-dimensional d-electron Kondo lattice, and potential spin Hall applications.« less

  13. Phase separation of electrons strongly coupled with phonons in cuprates and manganites

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sasha

    2009-03-01

    Recent advanced Monte Carlo simulations have not found superconductivity and phase separation in the Hubbard model with on-site repulsive electron-electron correlations. I argue that microscopic phase separations in cuprate superconductors and colossal magnetoresistance (CMR) manganites originate from a strong electron-phonon interaction (EPI) combined with unavoidable disorder. Attractive electron correlations, caused by an almost unretarded EPI, are sufficient to overcome the direct inter-site Coulomb repulsion in these charge-transfer Mott-Hubbard insulators, so that low energy physics is that of small polarons and small bipolarons. They form clusters localized by disorder below the mobility edge, but propagate as the Bloch states above the mobility edge. I identify the Froehlich EPI as the most essential for pairing and phase separation in superconducting layered cuprates. The pairing of oxygen holes into heavy bipolarons in the paramagnetic phase (current-carrier density collapse (CCDC)) explains also CMR and high and low-resistance phase coexistence near the ferromagnetic transition of doped manganites.

  14. Nanoscale Analysis of a Hierarchical Hybrid Solar Cell in 3D

    PubMed Central

    Divitini, Giorgio; Stenzel, Ole; Ghadirzadeh, Ali; Guarnera, Simone; Russo, Valeria; Casari, Carlo S; Bassi, Andrea Li; Petrozza, Annamaria; Di Fonzo, Fabio; Schmidt, Volker; Ducati, Caterina

    2014-01-01

    A quantitative method for the characterization of nanoscale 3D morphology is applied to the investigation of a hybrid solar cell based on a novel hierarchical nanostructured photoanode. A cross section of the solar cell device is prepared by focused ion beam milling in a micropillar geometry, which allows a detailed 3D reconstruction of the titania photoanode by electron tomography. It is found that the hierarchical titania nanostructure facilitates polymer infiltration, thus favoring intermixing of the two semiconducting phases, essential for charge separation. The 3D nanoparticle network is analyzed with tools from stochastic geometry to extract information related to the charge transport in the hierarchical solar cell. In particular, the experimental dataset allows direct visualization of the percolation pathways that contribute to the photocurrent. PMID:25834481

  15. Kinetics of phase separation and coarsening in dilute surfactant pentaethylene glycol monododecyl ether solutions

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Kubo, Y.; Yokoyama, Y.; Toda, A.; Taguchi, K.; Kajioka, H.

    2011-12-01

    We investigated the phase separation phenomena in dilute surfactant pentaethylene glycol monodedecyl ether (C12E5) solutions focusing on the growth law of separated domains. The solutions confined between two glass plates were found to exhibit the phase inversion, characteristic of the viscoelastic phase separation; the majority phase (water-rich phase) nucleated as droplets and the minority phase (micelle-rich phase) formed a network temporarily, then they collapsed into an usual sea-island pattern where minority phase formed islands. We found from the real-space microscopic imaging that the dynamic scaling hypothesis did not hold throughout the coarsening process. The power law growth of the domains with the exponent close to 1/3 was observed even though the coarsening was induced mainly by hydrodynamic flow, which was explained by Darcy's law of laminar flow.

  16. Device for two-dimensional gas-phase separation and characterization of ion mixtures

    DOEpatents

    Tang, Keqi [Richland, WA; Shvartsburg, Alexandre A [Richland, WA; Smith, Richard D [Richland, WA

    2006-12-12

    The present invention relates to a device for separation and characterization of gas-phase ions. The device incorporates an ion source, a field asymmetric waveform ion mobility spectrometry (FAIMS) analyzer, an ion mobility spectrometry (IMS) drift tube, and an ion detector. In one aspect of the invention, FAIMS operating voltages are electrically floated on top of the IMS drift voltage. In the other aspect, the FAIMS/IMS interface is implemented employing an electrodynamic ion funnel, including in particular an hourglass ion funnel. The present invention improves the efficiency (peak capacity) and sensitivity of gas-phase separations; the online FAIMS/IMS coupling creates a fundamentally novel two-dimensional gas-phase separation technology with high peak capacity, specificity, and exceptional throughput.

  17. Phase separated microstructure and dynamics of polyurethane elastomers under strain

    NASA Astrophysics Data System (ADS)

    Iacob, Ciprian; Padsalgikar, Ajay; Runt, James

    The molecular mobility of polyurethane elastomers is of the utmost importance in establishing physical properties for uses ranging from automotive tires and shoe soles to more sophisticated aerospace and biomedical applications. In many of these applications, chain dynamics as well as mechanical properties under external stresses/strains are critical for determining ultimate performance. In order to develop a more complete understanding of their mechanical response, we explored the effect of uniaxial strain on the phase separated microstructure and molecular dynamics of the elastomers. We utilize X-ray scattering to investigate soft segment and hard domain orientation, and broadband dielectric spectroscopy for interrogation of the dynamics. Uniaxial deformation is found to significantly perturb the phase-separated microstructure and chain orientation, and results in a considerable slowing down of the dynamics of the elastomers. Attenuated total reflectance Fourier transform infrared spectroscopy measurements of the polyurethanes under uniaxial deformation are also employed and the results are quantitatively correlated with mechanical tensile tests and the degree of phase separation from small-angle X-ray scattering measurements.

  18. The role of phase separation for self-organized surface pattern formation by ion beam erosion and metal atom co-deposition

    NASA Astrophysics Data System (ADS)

    Hofsäss, H.; Zhang, K.; Pape, A.; Bobes, O.; Brötzmann, M.

    2013-05-01

    We investigate the ripple pattern formation on Si surfaces at room temperature during normal incidence ion beam erosion under simultaneous deposition of different metallic co-deposited surfactant atoms. The co-deposition of small amounts of metallic atoms, in particular Fe and Mo, is known to have a tremendous impact on the evolution of nanoscale surface patterns on Si. In previous work on ion erosion of Si during co-deposition of Fe atoms, we proposed that chemical interactions between Fe and Si atoms of the steady-state mixed Fe x Si surface layer formed during ion beam erosion is a dominant driving force for self-organized pattern formation. In particular, we provided experimental evidence for the formation of amorphous iron disilicide. To confirm and generalize such chemical effects on the pattern formation, in particular the tendency for phase separation, we have now irradiated Si surfaces with normal incidence 5 keV Xe ions under simultaneous gracing incidence co-deposition of Fe, Ni, Cu, Mo, W, Pt, and Au surfactant atoms. The selected metals in the two groups (Fe, Ni, Cu) and (W, Pt, Au) are very similar regarding their collision cascade behavior, but strongly differ regarding their tendency to silicide formation. We find pronounced ripple pattern formation only for those co deposited metals (Fe, Mo, Ni, W, and Pt), which are prone to the formation of mono and disilicides. In contrast, for Cu and Au co-deposition the surface remains very flat, even after irradiation at high ion fluence. Because of the very different behavior of Cu compared to Fe, Ni and Au compared to W, Pt, phase separation toward amorphous metal silicide phases is seen as the relevant process for the pattern formation on Si in the case of Fe, Mo, Ni, W, and Pt co-deposition.

  19. Suppression of turbulent energy cascade due to phase separation in homogenous binary mixture fluid

    NASA Astrophysics Data System (ADS)

    Takagi, Youhei; Okamoto, Sachiya

    2015-11-01

    When a multi-component fluid mixture becomes themophysically unstable state by quenching from well-melting condition, phase separation due to spinodal decomposition occurs, and a self-organized structure is formed. During phase separation, free energy is consumed for the structure formation. In our previous report, the phase separation in homogenous turbulence was numerically simulated and the coarsening process of phase separation was discussed. In this study, we extended our numerical model to a high Schmidt number fluid corresponding to actual polymer solution. The governing equations were continuity, Navier-Stokes, and Chan-Hiliard equations as same as our previous report. The flow filed was an isotropic homogenous turbulence, and the dimensionless parameters in the Chan-Hilliard equation were estimated based on the thermophysical condition of binary mixture. From the numerical results, it was found that turbulent energy cascade was drastically suppressed in the inertial subrange by phase separation for the high Schmidt number flow. By using the identification of turbulent and phase separation structure, we discussed the relation between total energy balance and the structures formation processes. This study is financially supported by the Grand-in-Aid for Young Scientists (B) (No. T26820045) from the Ministry of Education, Cul-ture, Sports, Science and Technology of Japan.

  20. Phase separation in living micellar networks

    NASA Astrophysics Data System (ADS)

    Cristobal, G.; Rouch, J.; Curély, J.; Panizza, P.

    We present a lattice model based on two n→0 spin vectors, capable of treating the thermodynamics of living networks in micellar solutions at any surfactant concentration. We establish an isomorphism between the coupling constants in the two spin vector Hamiltonian and the surfactant energies involved in the micellar situation. Solving this Hamiltonian in the mean-field approximation allows one to calculate osmotic pressure, aggregation number, free end and cross-link densities at any surfactant concentration. We derive a phase diagram, including changes in topology such as the transition between spheres and rods and between saturated and unsaturated networks. A phase separation can be found between a saturated network and a dilute solution composed of long flexible micelles or a saturated network and a solution of spherical micelles.

  1. Microstructure Evolution and Related Magnetic Properties of Cu-Zr-Al-Gd Phase-Separating Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo

    2018-04-01

    We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.

  2. Microstructure Evolution and Related Magnetic Properties of Cu-Zr-Al-Gd Phase-Separating Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo

    2018-06-01

    We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.

  3. Cell separations and the demixing of aqueous two phase polymer solutions in microgravity

    NASA Technical Reports Server (NTRS)

    Brooks, Donald E.; Bamberger, Stephan; Harris, J. M.; Van Alstine, James M.

    1991-01-01

    Partition in phase separated aqueous polymer solutions is a cell separation procedure thought to be adversely influenced by gravity. In preparation for performing cell partitioning experiments in space, and to provide general information concerning the demixing of immiscible liquids in low gravity, a series of phase separated aqueous polymer solutions have been flown on two shuttle flights. Fluorocarbon oil and water emulsions were also flown on the second flight. The aqueous polymer emulsions, which in one g demix largely by sedimentation and convection due to the density differences between the phases, demixed more slowly than on the ground and the final disposition of the phases was determined by the wetting of the container wall by the phases. The demixing behavior and kinetics were influenced by the phase volume ratio, physical properties of the systems and chamber wall interaction. The average domain size increased linearly with time as the systems demixed.

  4. Phase separation and emergent structures in an active nematic fluid.

    PubMed

    Putzig, Elias; Baskaran, Aparna

    2014-10-01

    We consider a phenomenological continuum theory for an active nematic fluid and show that there exists a universal, model-independent instability which renders the homogeneous nematic state unstable to order fluctuations. Using numerical and analytic tools we show that, in the vicinity of a critical point, this instability leads to a phase-separated state in which the ordered regions form bands in which the direction of nematic order is perpendicular to the direction of the density gradient. We argue that the underlying mechanism that leads to this phase separation is a universal feature of active fluids of different symmetries.

  5. Morphological Simulation of Phase Separation Coupled Oscillation Shear and Varying Temperature Fields

    NASA Astrophysics Data System (ADS)

    Wang, Heping; Li, Xiaoguang; Lin, Kejun; Geng, Xingguo

    2018-05-01

    This paper explores the effect of the shear frequency and Prandtl number ( Pr) on the procedure and pattern formation of phase separation in symmetric and asymmetric systems. For the symmetric system, the periodic shear significantly prolongs the spinodal decomposition stage and enlarges the separated domain in domain growth stage. By adjusting the Pr and shear frequency, the number and orientation of separated steady layer structures can be controlled during domain stretch stage. The numerical results indicate that the increase in Pr and decrease in the shear frequency can significantly increase in the layer number of the lamellar structure, which relates to the decrease in domain size. Furthermore, the lamellar orientation parallel to the shear direction is altered into that perpendicular to the shear direction by further increasing the shear frequency, and also similar results for larger systems. For asymmetric system, the quantitative analysis shows that the decrease in the shear frequency enlarges the size of separated minority phases. These numerical results provide guidance for setting the optimum condition for the phase separation under periodic shear and slow cooling.

  6. Kinetics of motility-induced phase separation and swim pressure

    NASA Astrophysics Data System (ADS)

    Patch, Adam; Yllanes, David; Marchetti, M. Cristina

    Active Brownian particles (ABPs) represent a minimal model of active matter consisting of self-propelled spheres with purely repulsive interactions and rotational noise. We correlate the time evolution of the mean pressure towards its steady state value with the kinetics of motility-induced phase separation. For parameter values corresponding to phase separated steady states, we identify two dynamical regimes. The pressure grows monotonically in time during the initial regime of rapid cluster formation, overshooting its steady state value and then quickly relaxing to it, and remains constant during the subsequent slower period of cluster coalescence and coarsening. The overshoot is a distinctive feature of active systems. NSF-DMR-1305184, NSF-DGE-1068780, ACI-1341006, FIS2015-65078-C02, BIFI-ZCAM.

  7. Dynamical phase separation using a microfluidic device: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Aymard, Benjamin; Vaes, Urbain; Radhakrishnan, Anand; Pradas, Marc; Gavriilidis, Asterios; Kalliadasis, Serafim; Complex Multiscale Systems Team

    2017-11-01

    We study the dynamical phase separation of a binary fluid by a microfluidic device both from the experimental and from the modeling points of view. The experimental device consists of a main channel (600 μm wide) leading into an array of 276 trapezoidal capillaries of 5 μm width arranged on both sides and separating the lateral channels from the main channel. Due to geometrical effects as well as wetting properties of the substrate, and under well chosen pressure boundary conditions, a multiphase flow introduced into the main channel gets separated at the capillaries. Understanding this dynamics via modeling and numerical simulation is a crucial step in designing future efficient micro-separators. We propose a diffuse-interface model, based on the classical Cahn-Hilliard-Navier-Stokes system, with a new nonlinear mobility and new wetting boundary conditions. We also propose a novel numerical method using a finite-element approach, together with an adaptive mesh refinement strategy. The complex geometry is captured using the same computer-aided design files as the ones adopted in the fabrication of the actual device. Numerical simulations reveal a very good qualitative agreement between model and experiments, demonstrating also a clear separation of phases.

  8. Phase separation in artificial vesicles driven by light and curvature

    NASA Astrophysics Data System (ADS)

    Rinaldin, Melissa; Pomp, Wim; Schmidt, Thomas; Giomi, Luca; Kraft, Daniela; Physics of Life Processes Team; Soft; Bio Mechanics Collaboration; Self-Assembly in Soft Matter Systems Collaboration

    The role of phase-demixing in living cells, leading to the lipid-raft hypothesis, has been extensively studied. Lipid domains of higher lipid chain order are proposed to regulate protein spatial organization. Giant Unilamellar Vesicles provide an artificial model to study phase separation. So far temperature was used to initiate the process. Here we introduce a new methodology based on the induction of phase separation by light. To this aim, the composition of the lipid membrane is varied by photo-oxidation of lipids. The control of the process gained by using light allowed us to observe vesicle shape fluctuations during phase-demixing. The presence of fluctuations near the critical mixing point resembles features of a critical process. We quantitatively analyze these fluctuations using a 2d elastic model, from which we can estimate the material parameters such as bending rigidity and surface tension, demonstrating the non-equilibrium critical behaviour. Finally, I will describe recent attempts toward tuning the membrane composition by controlling the vesicle curvature.

  9. Space cryogenics components based on the thermomechanical effect - Vapor-liquid phase separation

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1989-01-01

    Applications of the thermomechanical effect has been qualified including incorporation in large-scale space systems in the area of vapor-liquid phase separation (VLPS). The theory of the porous-plug phase separator is developed for the limit of a high thermal impedance of the solid-state grains. Extensions of the theory of nonlinear turbulent flow are presented based on experimental results.

  10. Ternary Phase-Separation Investigation of Sol-Gel Derived Silica from Ethyl Silicate 40

    PubMed Central

    Wang, Shengnan; Wang, David K.; Smart, Simon; Diniz da Costa, João C.

    2015-01-01

    A ternary phase-separation investigation of the ethyl silicate 40 (ES40) sol-gel process was conducted using ethanol and water as the solvent and hydrolysing agent, respectively. This oligomeric silica precursor underwent various degrees of phase separation behaviour in solution during the sol-gel reactions as a function of temperature and H2O/Si ratios. The solution composition within the immiscible region of the ES40 phase-separated system shows that the hydrolysis and condensation reactions decreased with decreasing reaction temperature. A mesoporous structure was obtained at low temperature due to weak drying forces from slow solvent evaporation on one hand and formation of unreacted ES40 cages in the other, which reduced network shrinkage and produced larger pores. This was attributed to the concentration of the reactive sites around the phase-separated interface, which enhanced the condensation and crosslinking. Contrary to dense silica structures obtained from sol-gel reactions in the miscible region, higher microporosity was produced via a phase-separated sol-gel system by using high H2O/Si ratios. This tailoring process facilitated further condensation reactions and crosslinking of silica chains, which coupled with stiffening of the network, made it more resistant to compression and densification. PMID:26411484

  11. Stress reduction in phase-separated, cross-linked networks: influence of phase structure and kinetics of reaction

    PubMed Central

    Szczepanski, Caroline R.; Stansbury, Jeffrey W.

    2014-01-01

    A mechanism for polymerization shrinkage and stress reduction was developed for heterogeneous networks formed via ambient, photo-initiated polymerization-induced phase separation (PIPS). The material system used consists of a bulk homopolymer matrix of triethylene glycol dimethacrylate (TEGDMA) modified with one of three non-reactive, linear prepolymers (poly-methyl, ethyl and butyl methacrylate). At higher prepolymer loading levels (10–20 wt%) an enhanced reduction in both shrinkage and polymerization stress is observed. The onset of gelation in these materials is delayed to a higher degree of methacrylate conversion (~15–25%), providing more time for phase structure evolution by thermodynamically driven monomer diffusion between immiscible phases prior to network macro-gelation. The resulting phase structure was probed by introducing a fluorescently tagged prepolymer into the matrix. The phase structure evolves from a dispersion of prepolymer at low loading levels to a fully co-continuous heterogeneous network at higher loadings. The bulk modulus in phase separated networks is equivalent or greater than that of poly(TEGDMA), despite a reduced polymerization rate and cross-link density in the prepolymer-rich domains. PMID:25418999

  12. Detection and Identification: Instrumentation and Calibration for Air/Liquid/Surface-borne Nanoscale Particles

    NASA Astrophysics Data System (ADS)

    Ling, Tsz Yan; Zuo, Zhili; Pui, David Y. H.

    2013-04-01

    Nanoscale particles can be found in the air-borne, liquid-borne and surface-borne dispersed phases. Measurement techniques for nanoscale particles in all three dispersed phases are needed for the environmental, health and safety studies of nanomaterials. We present our studies on connecting the nanoparticle measurements in different phases to enhance the characterization capability. Microscopy analysis for particle morphology can be performed by depositing air-borne or liquid-borne nanoparticles on surfaces. Detection limit and measurement resolution of the liquid-borne nanoparticles can be enhanced by aerosolizing them and taking advantage of the well-developed air-borne particle analyzers. Sampling electrically classified air-borne virus particles with a gelatin filter provides higher collection efficiency than a liquid impinger.

  13. Formation of ion clusters in the phase separated structures of neutral-charged polymer blends

    NASA Astrophysics Data System (ADS)

    Kwon, Ha-Kyung; Olvera de La Cruz, Monica

    2015-03-01

    Polyelectrolyte blends, consisting of at least one charged species, are promising candidate materials for fuel cell membranes, for their mechanical stability and high selectivity for proton conduction. The phase behavior of the blends is important to understand, as this can significantly affect the performance of the device. The phase behavior is controlled by χN, the Flory-Huggins parameter multiplied by the number of mers, as well as the electrostatic interactions between the charged backbone and the counterions. It has recently been shown that local ionic correlations, incorporated via liquid state (LS) theory, enhance phase separation of the blend, even in the absence of polymer interactions. In this study, we show phase diagrams of neutral-charged polymer blends including ionic correlations via LS theory. In addition to enhanced phase separation at low χN, the blends show liquid-liquid phase separation at high electrostatic interaction strengths. Above the critical strength, the charged polymer phase separates into ion-rich and ion-poor regions, resulting in the formation of ion clusters within the charged polymer phase. This can be shown by the appearance of multiple spinodal and critical points, indicating the coexistence of several charge separated phases. This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).

  14. The effect of protein on phase separation in giant unilamellar lipid vesicles.

    NASA Astrophysics Data System (ADS)

    Hutchison, J. B.; Weis, R. M.; Dinsmore, A. D.

    2009-03-01

    We explore the coarsening and out of plane curvature (budding) of domains in lipid bilayer vesicles composed of DOPC (unsaturated), PSM (saturated), and cholesterol. Green fluorescent protein (GFP) was added to the membrane in controlled amounts by binding to the Ni-chelating lipid, Ni-DOGS. Vesicles with diameters between 10 and 50 microns were prepared via a standard electroformation procedure. As a sample is lowered through temperature Tmix, a previously homogeneous vesicle phase separates into two fluid phases with distinct compositions. Phase-separated domains have a line tension (energy/length) at the boundary with the major phase which competes with bending energy and lateral tension to determine the overall configuration of the vesicle. Domain budding and coarsening were observed and recorded using both bright field and fluorescence microscopy during temperature scans and with varying concentrations of GFP. The addition of a model protein into our system allows for a broader understanding of the effect of protein, which are ubiquitous in cell membranes, on phase separation, budding, and coarsening.

  15. An atom probe perspective on phase separation and precipitation in duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Garfinkel, David A.; Tucker, Julie D.; Haley, Daniel; Young, George A.; Poplawsky, Jonathan D.

    2016-06-01

    Three-dimensional chemical imaging of Fe-Cr alloys showing Fe-rich (α)/Cr-rich (α‧) phase separation is reported using atom probe tomography techniques. The extent of phase separation, i.e., amplitude and wavelength, has been quantitatively assessed using the Langer-Bar-on-Miller, proximity histogram, and autocorrelation function methods for two separate Fe-Cr alloys, designated 2101 and 2205. Although the 2101 alloy possesses a larger wavelength and amplitude after annealing at 427 °C for 100-10 000 h, it exhibits a lower hardness than the 2205 alloy. In addition to this phase separation, ultra-fine Ni-Mn-Si-Cu-rich G-phase precipitates form at the α/α‧ interfaces in both alloys. For the 2101 alloy, Cu clusters act to form a nucleus, around which a Ni-Mn-Si shell develops during the precipitation process. For the 2205 alloy, the Ni and Cu atoms enrich simultaneously and no core-shell chemical distribution was found. This segregation phenomenon may arise from the exact Ni/Cu ratio inside the ferrite. After annealing for 10 000 h, the number density of the G-phase within the 2205 alloy was found to be roughly one order of magnitude higher than in the 2101 alloy. The G-phase precipitates have an additional deleterious effect on the thermal embrittlement, as evaluated by the Ashby-Orowan equation, which explains the discrepancy between the hardness and the rate of phase separation with respect to annealing time (Gladman T 1999 Mater. Sci. Tech. Ser. 15 30-36). ).

  16. An atom probe perspective on phase separation and precipitation in duplex stainless steels

    DOE PAGES

    Garfinkel, David A.; Tucker, Julie D.; Haley, Daniel A.; ...

    2016-05-16

    Here, three-dimensional chemical imaging of Fe–Cr alloys showing Fe-rich (α)/Cr-rich (α') phase separation is reported using atom probe tomography techniques. The extent of phase separation, i.e., amplitude and wavelength, has been quantitatively assessed using the Langer-Bar-on-Miller, proximity histogram, and autocorrelation function methods for two separate Fe–Cr alloys, designated 2101 and 2205. Although the 2101 alloy possesses a larger wavelength and amplitude after annealing at 427 °C for 100–10 000 h, it exhibits a lower hardness than the 2205 alloy. In addition to this phase separation, ultra-fine Ni–Mn–Si–Cu-rich G-phase precipitates form at the α/α' interfaces in both alloys. For the 2101more » alloy, Cu clusters act to form a nucleus, around which a Ni–Mn–Si shell develops during the precipitation process. For the 2205 alloy, the Ni and Cu atoms enrich simultaneously and no core–shell chemical distribution was found. This segregation phenomenon may arise from the exact Ni/Cu ratio inside the ferrite. After annealing for 10 000 h, the number density of the G-phase within the 2205 alloy was found to be roughly one order of magnitude higher than in the 2101 alloy. The G-phase precipitates have an additional deleterious effect on the thermal embrittlement, as evaluated by the Ashby–Orowan equation, which explains the discrepancy between the hardness and the rate of phase separation with respect to annealing time (Gladman T 1999 Mater. Sci. Tech. Ser. 15 30–36).« less

  17. Nanoscale and Microscale Iron Emulsions for Treating DNAPL

    NASA Technical Reports Server (NTRS)

    Geiger, Cherie L.

    2002-01-01

    This study demonstrated the feasibility of using emulsified nanoscale and microscale iron particles to enhance dehalogenation of (Dense Non-Aqueous Phase Liquid) DNAPL free-phase. The emulsified system consisted of a surfactant-stabilized, biodegradable oil-in-water emulsion with nanoscale or microscale iron particles contained within the emulsion droplets. It was demonstrated that DNAPLs, such as trichloroethene (TCE), diffuse through the oil membrane of the emulsion particle whereupon they reach an aqueous interior and the surface of an iron particle where dehalogenation takes place. The hydrocarbon reaction by-products of the dehalogenation reaction, primarily ethene (no chlorinated products detected), diffuse out of the emulsion droplet. This study also demonstrated that an iron-emulsion system could be delivered in-situ to the DNAPL pool in a soil matrix by using a simulated push well technique. Iron emulsions degraded pure TCE at a rate comparable to the degradation of dissolved phase TCE by iron particles, while pure iron had a very low degradation rate for free-phase TCE. The iron-emulsion systems can be injected into a sand matrix where they become immobilized and are not moved by flowing water. It has been documented that surfactant micelles possess the ability to pull pooled TCE into emulsion droplets where degradation of TCE takes place.

  18. Fats, Oils, & Colors of a Nanoscale Material

    ERIC Educational Resources Information Center

    Lisensky, George C.; Horoszewski, Dana; Gentry, Kenneth L.; Zenner, Greta M.; Crone, Wendy C .

    2006-01-01

    Phase changes and intermolecular forces are important physical science concepts but are not always easy to present in an active learning format. This article presents several interactive activities in which students plot the melting points of some fatty acids and explore the effect that the nanoscale size and shape of molecules have on the…

  19. Macroscopic phase separation in high-temperature superconductors

    PubMed Central

    Wen, Hai-Hu

    2000-01-01

    High-temperature superconductivity is recovered by introducing extra holes to the Cu-O planes, which initially are insulating with antiferromagnetism. In this paper I present data to show the macroscopic electronic phase separation that is caused by either mobile doping or electronic instability in the overdoped region. My results clearly demonstrate that the electronic inhomogeneity is probably a general feature of high-temperature superconductors. PMID:11027323

  20. Phase separation in the t-J model. [in theory of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Emery, V. J.; Lin, H. Q.; Kivelson, S. A.

    1990-01-01

    A detailed understanding of the motion of 'holes' in an antiferromagnet is of fundamental importance for the theory of high-temperature superconductors. It is shown here that, for the t-J model, dilute holes in an antiferromagnet are unstable against phase separation into a hole-rich and a no-hole phase. When the spin-exchange interaction J exceeds a critical value Jc, the hole-rich phase has no electrons. It is proposed that, for J slightly less than Jc, the hole-rich phase is a low-density superfluid of electron pairs. Phase separation in related models is briefly discussed.

  1. The rheology and phase separation kinetics of mixed-matrix membrane dopes

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kayode Olaseni

    Mixed-matrix hollow fiber membranes are being developed to offer more efficient gas separations applications than what the current technologies allow. Mixed-matrix membranes (MMMs) are membranes in which molecular sieves incorporated in a polymer matrix enhance separation of gas mixtures based on the molecular size difference and/or adsorption properties of the component gases in the molecular sieve. The major challenges encountered in the efficient development of MMMs are associated with some of the paradigm shifts involved in their processing, as compared to pure polymer membranes. For instance, mixed-matrix hollow fiber membranes are prepared by a dry-wet jet spinning method. Efficient large scale processing of hollow fibers by this method requires knowledge of two key process variables: the rheology and kinetics of phase separation of the MMM dopes. Predicting the rheological properties of MMM dopes is not trivial; the presence of particles significantly affects neat polymer membrane dopes. Therefore, the need exists to characterize and develop predictive capabilities for the rheology of MMM dopes. Furthermore, the kinetics of phase separation of polymer solutions is not well understood. In the case of MMM dopes, the kinetics of phase separation are further complicated by the presence of porous particles in a polymer solution. Thus, studies on the phase separation kinetics of polymer solutions and suspensions of zeolite particles in polymer solutions are essential. Therefore, this research thesis aims to study the rheology and phase separation kinetics of mixed-matrix membrane dopes. In our research efforts to develop predictive models for the shear rheology of suspensions of zeolite particles in polymer solutions, it was found that MFI zeolite suspensions have relative viscosities that dramatically exceed the Krieger-Dougherty predictions for hard sphere suspensions. Our investigations showed that the major origin of this discrepancy is the selective

  2. Therapeutic Antibody Engineering To Improve Viscosity and Phase Separation Guided by Crystal Structure.

    PubMed

    Chow, Chi-Kin; Allan, Barrett W; Chai, Qing; Atwell, Shane; Lu, Jirong

    2016-03-07

    Antibodies at high concentrations often reveal unanticipated biophysical properties suboptimal for therapeutic development. The purpose of this work was to explore the use of point mutations based on crystal structure information to improve antibody physical properties such as viscosity and phase separation (LLPS) at high concentrations. An IgG4 monoclonal antibody (Mab4) that exhibited high viscosity and phase separation at high concentration was used as a model system. Guided by the crystal structure, four CDR point mutants were made to evaluate the role of hydrophobic and charge interactions on solution behavior. Surprisingly and unpredictably, two of the charge mutants, R33G and N35E, showed a reduction in viscosity and a lower propensity to form LLPS at high concentration compared to the wild-type (WT), while a third charge mutant S28K showed an increased propensity to form LLPS compared to the WT. A fourth mutant, F102H, had reduced hydrophobicity, but unchanged viscosity and phase separation behavior. We further evaluated the correlation of various biophysical measurements including second virial coefficient (A2), interaction parameter (kD), weight-average molecular weight (WAMW), and hydrodynamic diameters (DH), at relatively low protein concentration (4 to 15 mg/mL) to physical properties, such as viscosity and liquid-liquid phase separation (LLPS), at high concentration. Surprisingly, kD measured using dynamic light scattering (DLS) at low antibody concentration correlated better with viscosity and phase separation than did A2 for Mab4. Our results suggest that the high viscosity and phase separation observed at high concentration for Mab4 are mainly driven by charge and not hydrophobicity.

  3. Vertical phase separation in bulk heterojunction solar cells formed by in situ polymerization of fulleride

    PubMed Central

    Zhang, Lipei; Xing, Xing; Zheng, Lingling; Chen, Zhijian; Xiao, Lixin; Qu, Bo; Gong, Qihuang

    2014-01-01

    Vertical phase separation of the donor and the acceptor in organic bulk heterojunction solar cells is crucial to improve the exciton dissociation and charge transport efficiencies. This is because whilst the exciton diffusion length is limited, the organic film must be thick enough to absorb sufficient light. However, it is still a challenge to control the phase separation of a binary blend in a bulk heterojunction device architecture. Here we report the realization of vertical phase separation induced by in situ photo-polymerization of the acrylate-based fulleride. The power conversion efficiency of the devices with vertical phase separation increased by 20%. By optimising the device architecture, the power conversion efficiency of the single junction device reached 8.47%. We believe that in situ photo-polymerization of acrylate-based fulleride is a universal and controllable way to realise vertical phase separation in organic blends. PMID:24861168

  4. Engineering multiple topological phases in nanoscale Van der Waals heterostructures: realisation of α-antimonene

    NASA Astrophysics Data System (ADS)

    Märkl, T.; Kowalczyk, P. J.; Le Ster, M.; Mahajan, I. V.; Pirie, H.; Ahmed, Z.; Bian, G.; Wang, X.; Chiang, T.-C.; Brown, S. A.

    2018-01-01

    Van der Waals heterostructures have recently been identified as providing many opportunities to create new two-dimensional materials, and in particular to produce materials with topologically-interesting states. Here we show that it is possible to create such heterostructures with multiple topological phases in a single nanoscale island. We discuss their growth within the framework of diffusion-limited aggregation, the formation of moiré patterns due to the differing crystallographies of the materials comprising the heterostructure, and the potential to engineer both the electronic structure as well as local variations of topological order. In particular we show that it is possible to build islands which include both the hexagonal β- and rectangular α-forms of antimonene, on top of the topological insulator α-bismuthene. This is the first experimental realisation of α-antimonene, and we show that it is a topologically non-trivial material in the quantum spin Hall class.

  5. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications.

    PubMed

    Aral, Tarık; Aral, Hayriye; Ziyadanoğulları, Berrin; Ziyadanoğulları, Recep

    2015-01-01

    A novel mixed-mode stationary phase was synthesised starting from N-Boc-glutamine, aniline and spherical silica gel (4 µm, 60 Å). The prepared stationary phase was characterized by IR and elemental analysis. The new stationary phase bears an embedded amide group into phenyl ring, highly polar a terminal amide group and non-polar groups (phenyl and alkyl groups). At first, this new mixed-mode stationary phase was used for HILIC separation of four nucleotides and five nucleosides. The effects of different separation conditions, such as pH value, mobile phase and temperature, on the separation process were investigated. The optimum separation for nucleotides was achieved using HILIC isocratic elution with aqueous mobile phase and acetonitrile with 20°C column temperature. Under these conditions, the four nucleotides could be separated and detected at 265 nm within 14 min. Five nucleosides were separated under HILIC isocratic elution with aqueous mobile phase containing pH=3.25 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and detected at 265 nm within 14 min. Chromatographic parameters as retention factor, selectivity, theoretical plate number and peak asymmetry factor were calculated for the effect of temperature and water content in mobile phase on the separation process. The new column was also tested for nucleotides and nucleosides mixture and six analytes were separated in 10min. The chromatographic behaviours of these polar analytes on the new mixed-model stationary phase were compared with those of HILIC columns under similar conditions. Further, phytohormones and phenolic compounds were separated in order to see influence of the new stationary phase in reverse phase conditions. Eleven plant phytohormones were separated within 13 min using RP-HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and detected at 230 or 278 nm. The best separation

  6. Electronic Phase Separation in Iron Selenide (Li,Fe)OHFeSe Superconductor System

    NASA Astrophysics Data System (ADS)

    Mao, Yiyuan; Li, Jun; Huan, Yulong; Yuan, Jie; Li, Zi-an; Chai, Ke; Ma, Mingwei; Ni, Shunli; Tian, Jinpeng; Liu, Shaobo; Zhou, Huaxue; Zhou, Fang; Li, Jianqi; Zhang, Guangming; Jin, Kui; Dong, Xiaoli; Zhao, Zhongxian

    2018-05-01

    The phenomenon of phase separation into antiferromagnetic (AFM) and superconducting (SC) or normal-state regions has great implication for the origin of high-temperature (high-Tc) superconductivity. However, the occurrence of an intrinsic antiferromagnetism above the Tc of (Li, Fe)OHFeSe superconductor is questioned. Here we report a systematic study on a series of (Li, Fe)OHFeSe single crystal samples with Tc up to ~41 K. We observe an evident drop in the static magnetization at Tafm ~125 K, in some of the SC (Tc < ~38 K, cell parameter c < ~9.27 {\\AA}) and non-SC samples. We verify that this AFM signal is intrinsic to (Li, Fe)OHFeSe. Thus, our observations indicate mesoscopic-to-macroscopic coexistence of an AFM state with the normal (below Tafm) or SC (below Tc) state in (Li, Fe)OHFeSe. We explain such coexistence by electronic phase separation, similar to that in high-Tc cuprates and iron arsenides. However, such an AFM signal can be absent in some other samples of (Li, Fe)OHFeSe, particularly it is never observed in the SC samples of Tc > ~38 K, owing to a spatial scale of the phase separation too small for the macroscopic magnetic probe. For this case, we propose a microscopic electronic phase separation. It is suggested that the microscopic static phase separation reaches vanishing point in high-Tc (Li, Fe)OHFeSe, by the occurrence of two-dimensional AFM spin fluctuations below nearly the same temperature as Tafm reported previously for a (Li, Fe)OHFeSe (Tc ~42 K) single crystal. A complete phase diagram is thus established. Our study provides key information of the underlying physics for high-Tc superconductivity.

  7. Fluid Phase Separation (FPS) experiment for flight on a space shuttle Get Away Special (GAS) canister

    NASA Technical Reports Server (NTRS)

    Peters, Bruce; Wingo, Dennis; Bower, Mark; Amborski, Robert; Blount, Laura; Daniel, Alan; Hagood, Bob; Handley, James; Hediger, Donald; Jimmerson, Lisa

    1990-01-01

    The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid which will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on the Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS-42. The design and the production of a fluid phase separation experiment for rapid implementation at low cost is presented.

  8. Ribbon phase in a phase-separated lyotropic lamellar-sponge mixture under shear flow

    NASA Astrophysics Data System (ADS)

    Cristobal, G.; Rouch, J.; Panizza, P.; Narayanan, T.

    2001-07-01

    We report the effect of shear flow on a phase-separated system composed of lyotropic lamellar (Lα) and sponge (L3) phases in a mixture of brine, surfactant, and cosurfactant. Optical microscopy, small-angle light, and x-ray scattering measurements are consistent with the existence of a steady state made of multilamellar ribbonlike structures aligned in the flow direction. At high shear rates, these ribbonlike structures become unstable and break up into monodisperse droplets resulting in a shear-thickening transition.

  9. Linear solvation energy relationships in normal phase chromatography based on gradient separations.

    PubMed

    Wu, Di; Lucy, Charles A

    2017-09-22

    Coupling the modified Soczewiñski model and one gradient run, a gradient method was developed to build a linear solvation energy relationship (LSER) for normal phase chromatography. The gradient method was tested on dinitroanilinopropyl (DNAP) and silica columns with hexane/dichloromethane (DCM) mobile phases. LSER models built based on the gradient separation agree with those derived from a series of isocratic separations. Both models have similar LSER coefficients and comparable goodness of fit, but the LSER model based on gradient separation required fewer trial and error experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mapping photovoltaic performance with nanoscale resolution

    DOE PAGES

    Kutes, Yasemin; Aguirre, Brandon A.; Bosse, James L.; ...

    2015-10-16

    Photo-conductive AFM spectroscopy (‘pcAFMs’) is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit current, open circuit voltage, maximum power, or fill factor. The method is demonstrated with a stack of 21 images acquired during in situ illumination of micropatterned polycrystalline CdTe/CdS, providing more than 42,000 I/V curves spatially separated by ~5 nm. For these CdTe/CdS microcells, the calculated photoconduction ranges from 0 to 700 picoSiemens (pS) upon illumination with ~1.6 suns, depending on location and biasing conditions. Mean short circuit currents of 2 pA, maximummore » powers of 0.5 pW, and fill factors of 30% are determined. The mean voltage at which the detected photocurrent is zero is determined to be 0.7 V. Significantly, enhancements and reductions in these more commonly macroscopic PV performance metrics are observed to correlate with certain grains and grain boundaries, and are confirmed to be independent of topography. Furthermore, these results demonstrate the benefits of nanoscale resolved PV functional measurements, reiterate the importance of microstructural control down to the nanoscale for 'PV devices, and provide a widely applicable new approach for directly investigating PV materials.« less

  11. Synthetic oligonucleotide separations by mixed-mode reversed-phase/weak anion-exchange liquid chromatography.

    PubMed

    Zimmermann, Aleksandra; Greco, Roberto; Walker, Isabel; Horak, Jeannie; Cavazzini, Alberto; Lämmerhofer, Michael

    2014-08-08

    Synthetic oligonucleotides gain increasing importance in new therapeutic concepts and as probes in biological sciences. If pharmaceutical-grade purities are required, chromatographic purification using ion-pair reversed-phase chromatography is commonly carried out. However, separation selectivity for structurally closely related impurities is often insufficient, especially at high sample loads. In this study, a "mixed-mode" reversed-phase/weak anion exchanger stationary phase has been investigated as an alternative tool for chromatographic separation of synthetic oligonucleotides with minor sequence variations. The employed mixed-mode phase shows great flexibility in method development. It has been run in various gradient elution modes, viz. one, two or three parameter (mixed) gradients (altering buffer pH, buffer concentration, and organic modifier) to find optimal elution conditions and gain further insight into retention mechanisms. Compared to ion-pair reversed-phase and mere anion-exchange separation, enhanced selectivities were observed with the mixed-mode phase for 20-23 nucleotide (nt) long oligonucleotides with similar sequences. Oligonucleotides differing by 1, 2 or 3 nucleotides in length could be readily resolved and separation factors for single nucleotide replacements declined in the order Cytosine (C)/Guanine (G)>Adenine (A)/Guanine∼Guanine/Thymine (T)>Adenine/Cytosine∼Cytosine/Thymine>Adenine/Thymine. Selectivities were larger when the modification was at the 3' terminal-end, declined when it was in the middle of the sequence and was smallest when it was located at the 5' terminus. Due to the lower surface area of the 200Å pore size mixed-mode stationary phase compared to the corresponding 100Å material, lower retention times with equal selectivities under milder elution conditions were achievable. Considering high sample loading capacities of the mixed-mode anion-exchanger phase, it should have great potential for chromatographic

  12. Molecular Photovoltaics in Nanoscale Dimension

    PubMed Central

    Burtman, Vladimir; Zelichonok, Alexander; Pakoulev, Andrei V.

    2011-01-01

    This review focuses on the intrinsic charge transport in organic photovoltaic (PVC) devices and field-effect transistors (SAM-OFETs) fabricated by vapor phase molecular self-assembly (VP-SAM) method. The dynamics of charge transport are determined and used to clarify a transport mechanism. The 1,4,5,8-naphthalene-tetracarboxylic diphenylimide (NTCDI) SAM devices provide a useful tool to study the fundamentals of polaronic transport at organic surfaces and to discuss the performance of organic photovoltaic devices in nanoscale. Time-resolved photovoltaic studies allow us to separate the charge annihilation kinetics in the conductive NTCDI channel from the overall charge kinetic in a SAM-OFET device. It has been demonstrated that tuning of the type of conductivity in NTCDI SAM-OFET devices is possible by changing Si substrate doping. Our study of the polaron charge transfer in organic materials proposes that a cation-radical exchange (redox) mechanism is the major transport mechanism in the studied SAM-PVC devices. The role and contribution of the transport through delocalized states of redox active surface molecular aggregates of NTCDI are exposed and investigated. This example of technological development is used to highlight the significance of future technological development of nanotechnologies and to appreciate a structure-property paradigm in organic nanostructures. PMID:21339983

  13. A Preliminary Assessment of Phase Separator Ground-Based and Reduced-Gravity Testing for ALS Systems

    NASA Technical Reports Server (NTRS)

    Hall, Nancy Rabel

    2006-01-01

    A viewgraph presentation of phase separator ground-based and reduced-gravity testing for Advanced Life Support (ALS) systems is shown. The topics include: 1) Multiphase Flow Technology Program; 2) Types of Separators; 3) MOBI Phase Separators; 4) Experiment set-up; and 5) Preliminary comparison/results.

  14. Carrier-separating demodulation of phase shifting self-mixing interferometry

    NASA Astrophysics Data System (ADS)

    Tao, Yufeng; Wang, Ming; Xia, Wei

    2017-03-01

    A carrier separating method associated with noise-elimination had been introduced into a sinusoidal phase-shifting self-mixing interferometer. The conventional sinusoidal phase shifting self-mixing interferometry was developed into a more competitive instrument with high computing efficiency and nanometer accuracy of λ / 100 in dynamical vibration measurement. The high slew rate electro-optic modulator induced a sinusoidal phase carrier with ultralow insertion loss in this paper. In order to extract phase-shift quickly and precisely, this paper employed the carrier-separating to directly generate quadrature signals without complicated frequency domain transforms. Moreover, most noises were evaluated and suppressed by a noise-elimination technology synthesizing empirical mode decomposition with wavelet transform. The overall laser system was described and inherent advantages such as high computational efficiency and decreased nonlinear errors of the established system were demonstrated. The experiment implemented on a high precision PZT (positioning accuracy was better than 1 nm) and compared with laser Doppler velocity meter. The good agreement of two instruments shown that the short-term resolution had improved from 10 nm to 1.5 nm in dynamic vibration measurement with reduced time expense. This was useful in precision measurement to improve the SMI with same sampling rate. The proposed signal processing was performed in pure time-domain requiring no preprocessing electronic circuits.

  15. Evaluation of comprehensive multidimensional separations using reversed-phase, reversed-phase liquid chromatography/mass spectrometry for shotgun proteomics.

    PubMed

    Nakamura, Tatsuji; Kuromitsu, Junro; Oda, Yoshiya

    2008-03-01

    Two-dimensional liquid-chromatographic (LC) separation followed by mass spectrometric (MS) analysis was examined for the identification of peptides in complex mixtures as an alternative to widely used two-dimensional gel electrophoresis followed by MS analysis for use in proteomics. The present method involves the off-line coupling of a narrow-bore, polymer-based, reversed-phase column using an acetonitrile gradient in an alkaline mobile phase in the first dimension with octadecylsilanized silica (ODS)-based nano-LC/MS in the second dimension. After the first separation, successive fractions were acidified and dried off-line, then loaded on the second dimension column. Both columns separate peptides according to hydrophobicity under different pH conditions, but more peptides were identified than with the conventional technique for shotgun proteomics, that is, the combination of a strong cation exchange column with an ODS column, and the system was robust because no salts were included in the mobile phases. The suitability of the method for proteomics measurements was evaluated.

  16. Competing phases, phase separation, and coexistence in the extended one-dimensional bosonic Hubbard model

    DOE PAGES

    Batrouni, G. G.; Rousseau, V. G.; Scalettar, R. T.; ...

    2014-11-17

    Here, we study the phase diagram of the one-dimensional bosonic Hubbard model with contact (U) and near neighbor (V ) interactions focusing on the gapped Haldane insulating (HI) phase which is characterized by an exotic nonlocal order parameter. The parameter regime (U, V and μ) where this phase exists and how it competes with other phases such as the supersolid (SS) phase, is incompletely understood. We use the Stochastic Green Function quantum Monte Carlo algorithm as well as the density matrix renormalization group to map out the phase diagram. The HI exists only at = 1, the SS phase existsmore » for a very wide range of parameters (including commensurate fillings) and displays power law decay in the one body Green function were our main conclusions. Additionally, we show that at fixed integer density, the system exhibits phase separation in the (U, V ) plane.« less

  17. Hygroscopic and phase separation properties of ammonium sulfate/organics/water ternary solutions

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Proud, S. R.; Seppalainen, S. S.; Cziczo, D. J.

    2015-08-01

    Atmospheric aerosol particles are often partially or completely composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. Field measurements have shown that atmospheric aerosols are not typically pure inorganic salt, instead, they often also contain organic species. There is ample evidence from laboratory studies that suggests that mixed particles exist in a phase-separated state, with an aqueous inorganic core and organic shell. Although phase separation has not been measured in situ, there is no reason it would not also take place in the atmosphere. Here, we investigate the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR (Fourier transform infrared) spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O : C ratios, including 1,4-butanediol, glycerol, 1,2,6-hexanetriol, 1,2-hexanediol, and 1,5-pentanediol have been investigated. Those constituents correspond to materials found in the atmosphere in great abundance and, therefore, particles prepared in this study should mimic atmospheric mixed-phase aerosol particles. Some results of this study tend to be in agreement with previous microscopy experiments, but others, such as phase separation properties of 1,2,6-hexanetriol, do not agree with previous work. Because the particles studied in this experiment are of a smaller size than those used in microscopy studies, the discrepancies found could be a size-related effect.

  18. Relation between secondary doping and phase separation in PEDOT:PSS films

    NASA Astrophysics Data System (ADS)

    Donoval, Martin; Micjan, Michal; Novota, Miroslav; Nevrela, Juraj; Kovacova, Sona; Pavuk, Milan; Juhasz, Peter; Jagelka, Martin; Kovac, Jaroslav; Jakabovic, Jan; Cigan, Marek; Weis, Martin

    2017-02-01

    Conductive copolymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative to transparent conductive oxides because of its flexibility, transparency, and low-cost production. Four different secondary dopants, namely N,N-dimethylformamide, ethyleneglycol, sorbitol, and dimethyl sulfoxide, have been used to improve the conductivity. The relation between the structure changes and conductivity enhancement is studied in detail. Atomic force microscopy study of the thin film surface reveals the phase separation of PEDOT and PSS. We demonstrate that secondary doping induces the phase separation as well as the conductivity enhancement.

  19. Sodium triflate decreases interaggregate repulsion and induces phase separation in cationic micelles.

    PubMed

    Lima, Filipe S; Cuccovia, Iolanda M; Buchner, Richard; Antunes, Filipe E; Lindman, Björn; Miguel, Maria G; Horinek, Dominik; Chaimovich, Hernan

    2015-03-10

    Dodecyltrimethylammonium triflate (DTATf) micelles possess lower degree of counterion dissociation (α), lower hydration, and higher packing of monomers than other micelles of similar structure. Addition of sodium triflate ([NaTf] > 0.05 M) to DTATf solutions promotes phase separation. This phenomenon is commonly observed in oppositely charged surfactant mixtures, but it is rare for ionic surfactants and relatively simple counterions. While the properties of DTATf have already been reported, the driving forces for the observed phase separation with added salt remain unclear. Thus, we propose an interpretation for the observed phase separation in cationic surfactant solutions. Addition of up to 0.03 M NaTf to micellar DTATf solutions led to a limited increase of the aggregation number, to interface dehydration, and to a progressive decrease in α. The viscosity of DTATf solutions of higher concentration ([DTATf] ≥ 0.06 M) reached a maximum with increasing [NaTf], though the aggregation number slightly increased, and no shape change occurred. We hypothesize that this maximum results from a decrease in interaggregate repulsion, as a consequence of increased ion binding. This reduction in micellar repulsion without simultaneous infinite micellar growth is, probably, the major driving force for phase separation at higher [NaTf].

  20. Electrical Characterization of Critical Phase Change Conditions in Nanoscale Ge2Sb2Te5 Pillars

    NASA Astrophysics Data System (ADS)

    Ozatay, Ozhan; Stipe, Barry; Katine, Jordan; Terris, Bruce

    2008-03-01

    Following the original work of Ovshinsky on disordered semiconductors that exhibit ovonic threshold switching (OTS) there has been substantial interest in the electronic reversible switching properties of chalcogenides^1. The current induced phase transitions between polycrystalline and amorphous states in these materials offer orders of magnitude changes in the conductance which makes them an ideal candidate for non-volatile data storage applications. In this work we investigate the scaling of critical programming conditions required to observe such transitions between highly resistive (disordered) and highly conductive (ordered) states by constructing a resistance map with various pulse widths and amplitudes under different cooling conditions (as a function of pulse trailing edge). We study the evolution of critical phase change conditions as a function of contact size (50nm-1μm) and shape (circle-square-rectangle). We compare the resulting switching behaviour with the predictions of a finite-element model of the electro-thermal physics to analyze the nature of the switching dynamics at the nanoscale. ^1 S-H. Lee, Y. Jung, R. Agarwal, Nature Nanotechnology; doi:10:1038/nnano.2007.291

  1. Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2017-07-03

    We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.

  2. Numerical study of gravity effects on phase separation in a swirl chamber.

    PubMed

    Hsiao, Chao-Tsung; Ma, Jingsen; Chahine, Georges L

    2016-01-01

    The effects of gravity on a phase separator are studied numerically using an Eulerian/Lagrangian two-phase flow approach. The separator utilizes high intensity swirl to separate bubbles from the liquid. The two-phase flow enters tangentially a cylindrical swirl chamber and rotate around the cylinder axis. On earth, as the bubbles are captured by the vortex formed inside the swirl chamber due to the centripetal force, they also experience the buoyancy force due to gravity. In a reduced or zero gravity environment buoyancy is reduced or inexistent and capture of the bubbles by the vortex is modified. The present numerical simulations enable study of the relative importance of the acceleration of gravity on the bubble capture by the swirl flow in the separator. In absence of gravity, the bubbles get stratified depending on their sizes, with the larger bubbles entering the core region earlier than the smaller ones. However, in presence of gravity, stratification is more complex as the two acceleration fields - due to gravity and to rotation - compete or combine during the bubble capture.

  3. Exploring the dynamics of phase separation in colloid-polymer mixtures with long range attraction.

    PubMed

    Sabin, Juan; Bailey, Arthur E; Frisken, Barbara J

    2016-06-28

    We have studied the kinetics of phase separation and gel formation in a low-dispersity colloid - non-adsorbing polymer system with long range attraction using small-angle light scattering. This system exhibits two-phase and three-phase coexistence of gas, liquid and crystal phases when the strength of attraction is between 2 and 4kBT and gel phases when the strength of attraction is increased. For those samples that undergo macroscopic phase separation, whether to gas-crystal, gas-liquid or gas-liquid-crystal coexistence, we observe dynamic scaling of the structure factor and growth of a characteristic length scale that behaves as expected for phase separation in fluids. In samples that gel, the power law associated with the growth of the dominant length scale is not equal to 1/3, but appears to depend mainly on the strength of attraction, decreasing from 1/3 for samples near the coexistence region to 1/27 at 8kBT, over a wide range of colloid and polymer concentrations.

  4. Phase separation in solutions of monoclonal antibodies and the effect of human serum albumin

    PubMed Central

    Wang, Ying; Lomakin, Aleksey; Latypov, Ramil F.; Benedek, George B.

    2011-01-01

    We report the observation of liquid-liquid phase separation in a solution of human monoclonal antibody, IgG2, and the effects of human serum albumin, a major blood protein, on this phase separation. We find a significant reduction of phase separation temperature in the presence of albumin, and a preferential partitioning of the albumin into the antibody-rich phase. We provide a general thermodynamic analysis of the antibody-albumin mixture phase diagram and relate its features to the magnitude of the effective interprotein interactions. Our analysis suggests that additives (HSA in this report), which have moderate attraction with antibody molecules, may be used to forestall undesirable proetin condensation in antibody solutions. Our findings are relevant to understanding the stability of pharmaceutical solutions of antibodies and the mechanisms of cryoglobulinemia. PMID:21921237

  5. Microscopic origin of the magnetoelectronic phase separation in Sr-doped LaCoO3

    NASA Astrophysics Data System (ADS)

    Németh, Zoltán; Szabó, András; Knížek, Karel; Sikora, Marcin; Chernikov, Roman; Sas, Norbert; Bogdán, Csilla; Nagy, Dénes Lajos; Vankó, György

    2013-07-01

    The nanoscopic magnetoelectronic phase separation in doped La1-xSrxCoO3 perovskites was studied with local probes. The phase separation is directly observed by Mössbauer spectroscopy in the studied doping range of 0.05 ≤ x ≤ 0.25 both at room temperature and in the low-temperature magnetic phase. Extended with current synchrotron-based x-ray spectroscopies, these data help to characterize the volume as well as the local electric and magnetic properties of the distinct phases. A simple model based on a random distribution of the doping Sr ions describes well both the evolution of the separated phases and the variation of the Co spin state. The experiments suggest that Sr doping initiates small droplets and a high degree of doping-driven cobalt spin-state transition, while the Sr-free second phase vanishes rapidly with increasing Sr content.

  6. The Two-Phase Flow Separator Experiment Breadboard Model: Reduced Gravity Aircraft Results

    NASA Technical Reports Server (NTRS)

    Rame, E; Sharp, L. M.; Chahine, G.; Kamotani, Y.; Gotti, D.; Owens, J.; Gilkey, K.; Pham, N.

    2015-01-01

    Life support systems in space depend on the ability to effectively separate gas from liquid. Passive cyclonic phase separators use the centripetal acceleration of a rotating gas-liquid mixture to carry out phase separation. The gas migrates to the center, while gas-free liquid may be withdrawn from one of the end plates. We have designed, constructed and tested a breadboard that accommodates the test sections of two independent principal investigators and satisfies their respective requirements, including flow rates, pressure and video diagnostics. The breadboard was flown in the NASA low-gravity airplane in order to test the system performance and design under reduced gravity conditions.

  7. Growth and Morphology of Phase Separating Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Hegseth, John; Beysens, Daniel; Perrot, Francoise; Nikolayev, Vadim; Garrabos, Yves

    1996-01-01

    The scientific objective is to study the relation between the morphology and the growth kinetics of domains during phase separation. We know from previous experiments performed near the critical point of pure fluids and binary liquids that there are two simple growth laws at late times. The 'fast' growth appears when the volumes of the phases are nearly equal and the droplet pattern is interconnected. In this case the size of the droplets grows linearly in time. The 'slow' growth appears when the pattern of droplets embedded in the majority phase is disconnected. In this case the size of the droplets increases in proportion to time to the power 1/3. The volume fraction of the minority phase is a good candidate to determine this change of behavior. All previous attempts to vary the volume fraction in a single experimental cell have failed because of the extreme experimental difficulties.

  8. Phase separation of bio-oil produced by co-pyrolysis of corn cobs and polypropylene

    NASA Astrophysics Data System (ADS)

    Supramono, D.; Julianto; Haqqyana; Setiadi, H.; Nasikin, M.

    2017-11-01

    In co-pyrolysis of biomass-plastics, bio-oil produced contains both oxygenated and non-oxygenated compounds. High oxygen composition is responsible for instability and low heating value of bio-oil and high acid content for corrosiveness. Aims of the present work are to evaluate possibilities of achieving phase separation between oxygenated and non-oxygenated compounds in bio-oil using a proposed stirred tank reactor and to achieve synergistic effects on bio-oil yield and non-oxygenated compound layer yield. Separation of bio-oil into two layers, i.e. that containing oxygenated compounds (polar phase) and non-oxygenated compounds (non-polar phase) is important to obtain pure non-polar phase ready for the next processing of hydrogenation and used directly as bio-fuel. There has been no research work on co-pyrolysis of biomass-plastic considering possibility of phase separation of bio-oil. The present work is proposing a stirred tank reactor for co-pyrolysis with nitrogen injection, which is capable of tailoring co-pyrolysis conditions leading to low viscosity and viscosity asymmetry, which induce phase separation between polar phase and non-polar phase. The proposed reactor is capable of generating synergistic effect on bio-oil and non-polar yields as the composition of PP in feed is more than 25% weight in which non-polar layers contain only alkanes, alkenes, cycloalkanes and cycloalkenes.

  9. Visualizing Earth's Core-Mantle Interactions using Nanoscale X-ray Tomography

    NASA Astrophysics Data System (ADS)

    Mao, W. L.; Wang, J.; Yang, W.; Hayter, J.; Pianetta, P.; Zhang, L.; Fei, Y.; Mao, H.; Hustoft, J. W.; Kohlstedt, D. L.

    2010-12-01

    Early-stage, core-mantle differentiation and core formation represent a pivotal geological event which defined the major geochemical signatures. However current hypotheses of the potential mechanism for core-mantle separation and interaction need more experimental input which has been awaiting technological breakthroughs. Nanoscale x-ray computed tomography (nanoXCT) within a laser-heated diamond anvil cell has exciting potential as a powerful 3D petrographic probe for non-destructive, nanoscale (<40nm) resolution of multiple minerals and amorphous phases (including melts) which are synthesized under the high pressure-temperature conditions found deep within the Earth and planetary interiors. Results from high pressure-temperature experiments which illustrate the potential for this technique will be presented. By extending measurements of the texture, shape, porosity, tortuosity, dihedral angle, and other characteristics of molten Fe-rich alloys in relation to silicates and oxides, along with the fracture systems of rocks under deformation by high pressure-temperature conditions, potential mechanisms of core formation can be tested. NanoXCT can also be used to investigate grain shape, intergrowth, orientation, and foliation -- as well as mineral chemistry and crystallography at core-mantle boundary conditions -- to understand whether shape-preferred orientation is a primary source of the observed seismic anisotropy in Earth’s D” layer and to determine the textures and shapes of the melt pockets and channels which would form putative partial melt which may exist in ultralow velocity zones.

  10. Mapping nanoscale effects of localized noise-source activities on photoconductive charge transports in polymer-blend films.

    PubMed

    Shekhar, Shashank; Cho, Duckhyung; Cho, Dong-Guk; Yang, Myungjae; Hong, Seunghun

    2018-05-18

    We develolped a method to directly image the nanoscale effects of localized noise-source activities on photoconducting charge transports in domain structures of phase-separated polymer-blend films of Poly(9,9-di-n-octylfluorenyl-2,7-diyl) and Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). For the imaging, current and noise maps of the polymer-blend were recorded using a conducting nanoprobe in contact with the surface, enabling the conductivity (σ) and noise-source density (N T ) mappings under an external stimulus. The blend-films exhibited the phase-separation between the constituent polymers at domains level. Within a domain, high σ (low N T ) and low σ (high N T ) regions were observed, which could be associated with the ordered and disordered regions of a domain. In the N T maps, we observed that noise-sources strongly affected the conduction mechanism, resulting in a scaling behavior of σ ∝ [Formula: see text] in both ordered and disordered regions. When a blend film was under an influence of an external stimulus such as a high bias or an illumination, an increase in the σ was observed, but that also resulted in increases in the N T as a trade-off. Interestingly, the Δσ versus ΔN T plot exhibited an unusual scaling behavior of Δσ ∝ [Formula: see text] which is attributed to the de-trapping of carriers from deep traps by the external stimuli. In addition, we found that an external stimulus increased the conductivity at the interfaces without significantly increasing their N T , which can be the origin of the superior performances of polymer-blend based devices. These results provide valuable insight about the effects of noise-sources on nanoscale optoelectronic properties in polymer-blend films, which can be an important guideline for improving devices based on polymer-blend.

  11. Mapping nanoscale effects of localized noise-source activities on photoconductive charge transports in polymer-blend films

    NASA Astrophysics Data System (ADS)

    Shekhar, Shashank; Cho, Duckhyung; Cho, Dong-Guk; Yang, Myungjae; Hong, Seunghun

    2018-05-01

    We develolped a method to directly image the nanoscale effects of localized noise-source activities on photoconducting charge transports in domain structures of phase-separated polymer-blend films of Poly(9,9-di-n-octylfluorenyl-2,7-diyl) and Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). For the imaging, current and noise maps of the polymer-blend were recorded using a conducting nanoprobe in contact with the surface, enabling the conductivity (σ) and noise-source density (N T) mappings under an external stimulus. The blend-films exhibited the phase-separation between the constituent polymers at domains level. Within a domain, high σ (low N T) and low σ (high N T) regions were observed, which could be associated with the ordered and disordered regions of a domain. In the N T maps, we observed that noise-sources strongly affected the conduction mechanism, resulting in a scaling behavior of σ ∝ {{N}{{T}}}-0.5 in both ordered and disordered regions. When a blend film was under an influence of an external stimulus such as a high bias or an illumination, an increase in the σ was observed, but that also resulted in increases in the N T as a trade-off. Interestingly, the Δσ versus ΔN T plot exhibited an unusual scaling behavior of Δσ ∝ {{Δ }}{{N}{{T}}}0.5, which is attributed to the de-trapping of carriers from deep traps by the external stimuli. In addition, we found that an external stimulus increased the conductivity at the interfaces without significantly increasing their N T, which can be the origin of the superior performances of polymer-blend based devices. These results provide valuable insight about the effects of noise-sources on nanoscale optoelectronic properties in polymer-blend films, which can be an important guideline for improving devices based on polymer-blend.

  12. Modification of linear prepolymers to tailor heterogeneous network formation through photo-initiated Polymerization-Induced Phase Separation

    PubMed Central

    Szczepanski, Caroline R.; Stansbury, Jeffrey W.

    2015-01-01

    Polymerization-induced phase separation (PIPS) was studied in ambient photopolymerizations of triethylene glycol dimethacrylate (TEGDMA) modified by poly(methyl methacrylate) (PMMA). The molecular weight of PMMA and the rate of network formation (through incident UV-irradiation) were varied to influence both the promotion of phase separation through increases in overall free energy, as well as the extent to which phase development occurs during polymerization through diffusion prior to network gelation. The overall free energy of the polymerizing system increases with PMMA molecular weight, such that PIPS is promoted thermodynamically at low loading levels (5 wt%) of a higher molecular weight PMMA (120 kDa), while a higher loading level (20 wt%) is needed to induce PIPS with lower PMMA molecular weight (11 kDa), and phase separation was not promoted at any loading level tested of the lowest molecular weight PMMA (1 kDa). Due to these differences in overall free energy, systems modified by PMMA (11 kDa) underwent phase separation via Nucleation and Growth, and systems modified by PMMA (120 kDa), followed the Spinodal Decomposition mechanism. Despite differences in phase structure, all materials form a continuous phase rich in TEGDMA homopolymer. At high irradiation intensity (Io=20mW/cm2), the rate of network formation prohibited significant phase separation, even when thermodynamically preferred. A staged curing approach, which utilizes low intensity irradiation (Io=300µW/cm2) for the first ~50% of reaction to allow phase separation via diffusion, followed by a high intensity flood-cure to achieve a high degree of conversion, was employed to form phase-separated networks with reduced polymerization stress yet equivalent final conversion and modulus. PMID:26190865

  13. Architecture Study on Telemetry Coverage for Immediate Post-Separation Phase

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Lee, Charles; Kellogg, Kent; Stocklin, Frank; Zillig, David; Fielhauer, Karl

    2008-01-01

    This document is the viewgraphs that accompanies a paper that presents the preliminary results of an architecture study that provides continuous telemetry coverage for NASA missions for immediate post-separation phase. After launch when the spacecraft separated from the upper stage, the spacecraft typically executes a number of mission-critical operations prior to the deployment of solar panels and the activation of the primary communication subsystem. JPL, GSFC, and APL have similar design principle statements that require continuous coverage of mission-critical telemetry during the immediate post-separation phase. To conform to these design principles, an architecture that consists of a separate spacecraft transmitter and a robust communication network capable of tracking the spacecraft signals is needed. The main results of this study are as follows: 1) At low altitude (< 10000 km) when most post-separation critical operations are executed, Earth-based network (e.g. Deep Space Network (DSN)) can only provide limited coverage, whereas space-based network (e.g. Space Network (SN)) can provide continuous coverage. 2) Commercial-off-the-shelf SN compatible transmitters are available for small satellite applications. In this paper we present the detailed coverage analysis of Earth-based and Space-based networks. We identify the key functional and performance requirements of the architecture, and describe the proposed selection criteria of the spacecraft transmitter. We conclude the paper with a proposed forward plan.

  14. Advanced flight hardware for organic separations using aqueous two-phase partitioning

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Weber, John T.

    1996-03-01

    Separation of cells and cell components is the limiting factor in many biomedical research and pharmaceutical development processes. Aqueous Two-Phase Partitioning (ATPP) is a unique separation technique which allows purification and classification of biological materials. SHOT has employed the ATPP process in separation equipment developed for both space and ground applications. Initial equipment development and research focused on the ORganic SEParation (ORSEP) space flight experiments that were performed on suborbital rockets and the shuttle. ADvanced SEParations (ADSEP) technology was developed as the next generation of ORSEP equipment through a NASA Small Business Innovation Research (SBIR) contract. Under the SBIR contract, a marketing study was conducted, indicating a growing commercial market exists among biotechnology firms for ADSEP equipment and associated flight research and development services. SHOT is preparing to begin manufacturing and marketing laboratory versions of the ADSEP hardware for the ground-based market. In addition, through a self-financed SBIR Phase III effort, SHOT is fabricating and integrating the ADSEP flight hardware for a commercially-driven SPACEHAB 04 experiment that will be the initial step in marketing space separations services. The ADSEP ground-based and microgravity research is expected to play a vital role in developing important new biomedical and pharmaceutical products.

  15. Enantiomeric separation of type I and type II pyrethroid insecticides with different chiral stationary phases by reversed-phase high-performance liquid chromatography.

    PubMed

    Zhang, Ping; Yu, Qian; He, Xiulong; Qian, Kun; Xiao, Wei; Xu, Zhifeng; Li, Tian; He, Lin

    2018-04-01

    The enantiomeric separation of type I (bifenthrin, BF) and type II (lambda-cyhalothrin, LCT) pyrethroid insecticides on Lux Cellulose-1, Lux Cellulose-3, and Chiralpak IC chiral columns was investigated by reversed-phase high-performance liquid chromatography. Methanol/water or acetonitrile/water was used as mobile phase at a flow rate of 0.8 mL/min. The effects of chiral stationary phase, mobile phase composition, column temperature, and thermodynamic parameters on enantiomer separation were carefully studied. Bifenthrin got a partial separation on Lux Cellulose-1 column and baseline separation on Lux Cellulose-3 column, while LCT enantiomers could be completely separated on both Lux Cellulose-1 and Lux Cellulose-3 columns. Chiralpak IC provided no separation ability for both BF and LCT. Retention factor (k) and selectivity factor (α) decreased with the column temperature increasing from 10°C to 40°C for both BF and LCT enantiomers. Thermodynamic parameters including ∆H and ∆S were also calculated, and the maximum R s were not always obtained at lowest temperature. Furthermore, the quantitative analysis methods for BF and LCT enantiomers in soil and water were also established. Such results provide a new approach for pyrethroid separation under reversed-phase condition and contribute to environmental risk assessment of pyrethroids at enantiomer level. © 2017 Wiley Periodicals, Inc.

  16. Recent progress of chiral stationary phases for separation of enantiomers in gas chromatography.

    PubMed

    Xie, Sheng-Ming; Yuan, Li-Ming

    2017-01-01

    Chromatography techniques based on chiral stationary phases are widely used for the separation of enantiomers. In particular, gas chromatography has developed rapidly in recent years due to its merits such as fast analysis speed, lower consumption of stationary phases and analytes, higher column efficiency, making it a better choice for chiral separation in diverse industries. This article summarizes recent progress of novel chiral stationary phases based on cyclofructan derivatives and chiral porous materials including chiral metal-organic frameworks, chiral porous organic frameworks, chiral inorganic mesoporous materials, and chiral porous organic cages in gas chromatography, covering original research papers published since 2010. The chiral recognition properties and mechanisms of separation toward enantiomers are also introduced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cu(Ir1 - xCrx)2S4: a model system for studying nanoscale phase coexistence at the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Božin, E. S.; Knox, K. R.; Juhás, P.; Hor, Y. S.; Mitchell, J. F.; Billinge, S. J. L.

    2014-02-01

    Increasingly, nanoscale phase coexistence and hidden broken symmetry states are being found in the vicinity of metal-insulator transitions (MIT), for example, in high temperature superconductors, heavy fermion and colossal magnetoresistive materials, but their importance and possible role in the MIT and related emergent behaviors is not understood. Despite their ubiquity, they are hard to study because they produce weak diffuse signals in most measurements. Here we propose Cu(Ir1 - xCrx)2S4 as a model system, where robust local structural signals lead to key new insights. We demonstrate a hitherto unobserved coexistence of an Ir4+ charge-localized dimer phase and Cr-ferromagnetism. The resulting phase diagram that takes into account the short range dimer order is highly reminiscent of a generic MIT phase diagram similar to the cuprates. We suggest that the presence of quenched strain from dopant ions acts as an arbiter deciding between the competing ground states.

  18. Kinetics of motility-induced phase separation and swim pressure

    NASA Astrophysics Data System (ADS)

    Patch, Adam; Yllanes, David; Marchetti, M. Cristina

    2017-01-01

    Active Brownian particles (ABPs) represent a minimal model of active matter consisting of self-propelled spheres with purely repulsive interactions and rotational noise. Here we examine the pressure of ABPs in two dimensions in both closed boxes and systems with periodic boundary conditions and show that its nonmonotonic behavior with density is a general property of ABPs and is not the result of finite-size effects. We correlate the time evolution of the mean pressure towards its steady-state value with the kinetics of motility-induced phase separation. For parameter values corresponding to phase-separated steady states, we identify two dynamical regimes. The pressure grows monotonically in time during the initial regime of rapid cluster formation, overshooting its steady-state value and then quickly relaxing to it, and remains constant during the subsequent slower period of cluster coalescence and coarsening. The overshoot is a distinctive feature of active systems.

  19. Control over phase separation and nucleation using a laser-tweezing potential

    NASA Astrophysics Data System (ADS)

    Walton, Finlay; Wynne, Klaas

    2018-05-01

    Control over the nucleation of new phases is highly desirable but elusive. Even though there is a long history of crystallization engineering by varying physicochemical parameters, controlling which polymorph crystallizes or whether a molecule crystallizes or forms an amorphous precipitate is still a poorly understood practice. Although there are now numerous examples of control using laser-induced nucleation, the absence of physical understanding is preventing progress. Here we show that the proximity of a liquid-liquid critical point or the corresponding binodal line can be used by a laser-tweezing potential to induce concentration gradients. A simple theoretical model shows that the stored electromagnetic energy of the laser beam produces a free-energy potential that forces phase separation or triggers the nucleation of a new phase. Experiments in a liquid mixture using a low-power laser diode confirm the effect. Phase separation and nucleation using a laser-tweezing potential explains the physics behind non-photochemical laser-induced nucleation and suggests new ways of manipulating matter.

  20. Copolymer-grafted silica phase from a cation-anion monomer pair for enhanced separation in reversed-phase liquid chromatography.

    PubMed

    Mallik, Abul K; Qiu, Hongdeng; Takafuji, Makoto; Ihara, Hirotaka

    2014-05-01

    This work reports a new imidazolium and L-alanine derived copolymer-grafted silica stationary phase for ready separation of complex isomers using high-performance liquid chromatography (HPLC). For this purpose, 1-allyl-3-octadecylimidazolium bromide ([AyImC18]Br) and N-acryloyl-L-alanine sodium salt ([AAL]Na) ionic liquids (IL) monomers were synthesized. Subsequently, the bromide counteranion was exchanged with the 2-(acrylamido)propanoate organic counteranion by reacting the [AyImC18]Br with excess [AAL]Na in water. The obtained IL cation-anion monomer pair was then copolymerized on mercaptopropyl-modified silica (Sil-MPS) via a surface-initiated radical chain-transfer reaction. The selective retention behaviors of polycyclic aromatic hydrocarbons (PAHs), including some positional isomers, steroids, and nucleobases were investigated using the newly obtained Sil-poly(ImC18-AAL), and octadecyl silylated silica (ODS) was used as the reference column. Interesting results were obtained for the separation of PAHs, steroids, and nucleobases with the new organic phase. The results showed that the Sil-poly(ImC18-AAL) presented multiple noncovalent interactions, including hydrophobic, π-π, carbonyl-π, and ion-dipole interactions for the separation of PAHs and dipolar compounds. Only pure water was sufficient as the mobile phase for the separation of the nucleobases. Ten nucleosides and bases were separated, using only water as the mobile phase, within a very short time using the Sil-poly(ImC18-AAL), which is otherwise difficult to achieve using conventional hydrophobic columns such as ODS. The combination of electrostatic and hydrophobic interactions are important for the effective separation of such basic compounds without the use of any organic additive as the eluent on the Sil-poly(ImC18-AAL) column.

  1. Magneto-electronic phase separation in doped cobaltites

    NASA Astrophysics Data System (ADS)

    He, Chunyong

    This thesis work mainly focuses on magneto-electronic phase separation (MEPS), an effect where chemically homogeneous materials display inhomogeneous magnetic and electronic properties. A model system La1-xSrxCoO3 (LSCO) is chosen for the study of MEPS. The doping evolution of MEPS in LSCO single crystals is extensively studied through complementary experimental techniques including heat capacity, small angle neutron scattering, magnetometry, and transport. It is found that there exists a finite doping range over which MEPS occurs. The doping range determined from different experimental techniques is found to be in good agreement. Also, this same doping range is reproduced by statistical simulations incorporating local compositional fluctuations. The excellent agreement between experimental data and statistical simulations leads to the conclusion that the MEPS in LSCO is driven solely by inevitable local compositional fluctuations at nanoscopic length scales. Such a conclusion indicates that nanoscopic MEPS is doping fluctuation-driven rather than electronically-driven in LSCO. The effect of microscopic magneto-electronic phase separation on electrical transport in LSCO is also examined. It is demonstrated (i) that the T = 0 metal-insulator transition can be understood within double exchange-modified percolation framework, and, (ii) that the onset of a phase-pure low T ferromagnetic state at high x has a profound effect on the high T transport. In addition, a new origin for finite spin Co ions in LaCoO3 is revealed via a Schottky Anomaly in the heat capacity, which was not previously known. Such a discovery casts a new understanding of the spin state at low temperature. Via small-angle neutron scattering and d.c. susceptibility, it is revealed that short-range ordered FM clusters exist below a well-defined temperature (T*) in highly doped LSCO. It is demonstrated that the characteristics of this clustered state appear quite unlike those of a Griffiths phase

  2. Magnetic filtration of phase separating ferrofluids: From basic concepts to microfluidic device

    NASA Astrophysics Data System (ADS)

    Kuzhir, P.; Magnet, C.; Ezzaier, H.; Zubarev, A.; Bossis, G.

    2017-06-01

    In this work, we briefly review magnetic separation of ferrofluids composed of large magnetic particles (60 nm of the average size) possessing an induced dipole moment. Such ferrofluids exhibit field-induced phase separation at relatively low particle concentrations (∼0.8 vol%) and magnetic fields (∼10 kA/m). Particle aggregates appearing during the phase separation are extracted from the suspending fluid by magnetic field gradients much easier than individual nanoparticles in the absence of phase separation. Nanoparticle capture by a single magnetized microbead and by multi-collector systems (packed bed of spheres and micro-pillar array) has been studied both experimentally and theoretically. Under flow and magnetic fields, the particle capture efficiency Λ decreases with an increasing Mason number for all considered geometries. This decrease may become stronger for aggregated magnetic particles (Λ ∝Ma-1.7) than for individual ones (Λ ∝Ma-1) if the shear fields are strong enough to provoke aggregate rupture. These results can be useful for development of new magneto-microfluidic immunoassays based on magnetic nanoparticles offering a much better sensitivity as compared to presently used magnetic microbeads.

  3. Effects of Swirler Shape on Two-Phase Swirling Flow in a Steam Separator

    NASA Astrophysics Data System (ADS)

    Kataoka, Hironobu; Shinkai, Yusuke; Tomiyama, Akio

    Experiments on two-phase swirling flow in a separator are carried out using several swirlers having different vane angles, different hub diameters and different number of vanes to seek a way for improving steam separators of uprated boiling water reactors. Ratios of the separated liquid flow rate to the total liquid flow rate, flow patterns, liquid film thicknesses and pressure drops are measured to examine the effects of swirler shape on air-water two-phase swirling annular flows in a one-fifth scale model of the separator. As a result, the following conclusions are obtained for the tested swirlers: (1) swirler shape scarcely affects the pressure drop in the barrel of the separator, (2) decreasing the vane angle is an effective way for reducing the pressure drop in the diffuser of the separator, and (3) the film thickness at the inlet of the pick-off-ring of the separator is not sensitive to swirler shape, which explains the reason why the separator performance does not depend on swirler shape.

  4. Hydrodynamic effects on phase separation morphologies in evaporating thin films of polymer solutions

    NASA Astrophysics Data System (ADS)

    Zoumpouli, Garyfalia A.; Yiantsios, Stergios G.

    2016-08-01

    We examine effects of hydrodynamics on phase separation morphologies developed during drying of thin films containing a volatile solvent and two dissolved polymers. Cahn-Hilliard and Flory-Huggins theories are used to describe the free energy of the phase separating systems. The thin films, considered as Newtonian fluids, flow in response to Korteweg stresses arising due to concentration non-uniformities that develop during solvent evaporation. Numerical simulations are employed to investigate the effects of a Peclet number, defined in terms of system physical properties, as well as the effects of parameters characterizing the speed of evaporation and preferential wetting of the solutes at the gas interface. For systems exhibiting preferential wetting, diffusion alone is known to favor lamellar configurations for the separated phases in the dried film. However, a mechanism of hydrodynamic instability of a short length scale is revealed, which beyond a threshold Peclet number may deform and break the lamellae. The critical Peclet number tends to decrease as the evaporation rate increases and to increase with the tendency of the polymers to selectively wet the gas interface. As the Peclet number increases, the instability moves closer to the gas interface and induces the formation of a lateral segregation template that guides the subsequent evolution of the phase separation process. On the other hand, for systems with no preferential wetting or any other property asymmetries between the two polymers, diffusion alone favors the formation of laterally separated configurations. In this case, concentration perturbation modes that lead to enhanced Korteweg stresses may be favored for sufficiently large Peclet numbers. For such modes, a second mechanism is revealed, which is similar to the solutocapillary Marangoni instability observed in evaporating solutions when interfacial tension increases with the concentration of the non-volatile component. This mechanism may lead

  5. Nano-phase separation and structural ordering in silica-rich mixed network former glasses.

    PubMed

    Liu, Hao; Youngman, Randall E; Kapoor, Saurabh; Jensen, Lars R; Smedskjaer, Morten M; Yue, Yuanzheng

    2018-06-13

    We investigate the structure, phase separation, glass transition, and crystallization in a mixed network former glass series, i.e., B2O3-Al2O3-SiO2-P2O5 glasses with varying SiO2/B2O3 molar ratio. All the studied glasses exhibit two separate glassy phases: droplet phase (G1) with the size of 50-100 nm and matrix phase (G2), corresponding to a lower calorimetric glass transition temperature (Tg1) and a higher one (Tg2), respectively. Both Tg values decrease linearly with the substitution of B2O3 for SiO2, but the magnitude of the decrease is larger for Tg1. Based on nuclear magnetic resonance and Raman spectroscopy results, we infer that the G1 phase is rich in boroxol rings, while the G2 phase mainly involves the B-O-Si network. Both phases contain BPO4- and AlPO4-like units. Ordered domains occur in G2 upon isothermal and dynamic heating, driven by the structural heterogeneity in the as-prepared glasses. The structural ordering lowers the activation energy of crystal growth, thus promoting partial crystallization of G2. These findings are useful for understanding glass formation and phase separation in mixed network former oxide systems, and for tailoring their properties.

  6. Development of the Two Phase Flow Separator Experiment for a Reduced Gravity Aircraft Flight

    NASA Technical Reports Server (NTRS)

    Golliher, Eric; Gotti, Daniel; Owens, Jay; Gilkey, Kelly; Pham, Nang; Stehno, Philip

    2016-01-01

    The recent hardware development and testing of a reduced gravity aircraft flight experiment has provided valuable insights for the future design of the Two Phase Flow Separator Experiment (TPFSE). The TPFSE is scheduled to fly within the Fluids Integration Rack (FIR) aboard the International Space Station (ISS) in 2020. The TPFSE studies the operational limits of gas and liquid separation of passive cyclonic separators. A passive cyclonic separator utilizes only the inertia of the incoming flow to accomplish the liquid-gas separation. Efficient phase separation is critical for environmental control and life support systems, such as recovery of clean water from bioreactors, for long duration human spaceflight missions. The final low gravity aircraft flight took place in December 2015 aboard NASA's C9 airplane.

  7. Facile fabrication of multilayer separators for lithium-ion battery via multilayer coextrusion and thermal induced phase separation

    NASA Astrophysics Data System (ADS)

    Li, Yajie; Pu, Hongting

    2018-04-01

    Polypropylene (PP)/polyethylene (PE) multilayer separators with cellular-like submicron pore structure for lithium-ion battery are efficiently fabricated by the combination of multilayer coextrusion (MC) and thermal induced phase separation (TIPS). The as-prepared separators, referred to as MC-TIPS PP/PE, not only show efficacious thermal shutdown function and wider shutdown temperature window, but also exhibit higher thermal stability than the commercial separator with trilayer construction of PP and PE (Celgard® 2325). The dimensional shrinkage of MC-TIPS PP/PE can be negligible until 160 °C. In addition, compared to the commercial separator, MC-TIPS PP/PE exhibits higher porosity and electrolyte uptake, leading to higher ionic conductivity and better battery performances. The above-mentioned fascinating characteristics with the convenient preparation process make MC-TIPS PP/PE a promising candidate for the application as high performance lithium-ion battery separators.

  8. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency

    DOE PAGES

    Hoogeboom-Pot, Kathleen M.; Hernandez-Charpak, Jorge N.; Gu, Xiaokun; ...

    2015-03-23

    Understanding thermal transport from nanoscale heat sources is important for a fundamental description of energy flow in materials, as well as for many technological applications including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics, and nanoparticle-mediated thermal therapies. Thermal transport at the nanoscale is fundamentally different from that at the macroscale and is determined by the distribution of carrier mean free paths and energy dispersion in a material, the length scales of the heat sources, and the distance over which heat is transported. Past work has shown that Fourier’s law for heat conduction dramatically overpredicts the rate ofmore » heat dissipation from heat sources with dimensions smaller than the mean free path of the dominant heat-carrying phonons. In this work, we uncover a new regime of nanoscale thermal transport that dominates when the separation between nanoscale heat sources is small compared with the dominant phonon mean free paths. Surprisingly, the interaction of phonons originating from neighboring heat sources enables more efficient diffusive-like heat dissipation, even from nanoscale heat sources much smaller than the dominant phonon mean free paths. This finding suggests that thermal management in nanoscale systems including integrated circuits might not be as challenging as previously projected. In conclusion, we demonstrate a unique capability to extract differential conductivity as a function of phonon mean free path in materials, allowing the first (to our knowledge) experimental validation of predictions from the recently developed first-principles calculations.« less

  9. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency

    NASA Astrophysics Data System (ADS)

    Hoogeboom-Pot, Kathleen M.; Hernandez-Charpak, Jorge N.; Gu, Xiaokun; Frazer, Travis D.; Anderson, Erik H.; Chao, Weilun; Falcone, Roger W.; Yang, Ronggui; Murnane, Margaret M.; Kapteyn, Henry C.; Nardi, Damiano

    2015-04-01

    Understanding thermal transport from nanoscale heat sources is important for a fundamental description of energy flow in materials, as well as for many technological applications including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics, and nanoparticle-mediated thermal therapies. Thermal transport at the nanoscale is fundamentally different from that at the macroscale and is determined by the distribution of carrier mean free paths and energy dispersion in a material, the length scales of the heat sources, and the distance over which heat is transported. Past work has shown that Fourier's law for heat conduction dramatically overpredicts the rate of heat dissipation from heat sources with dimensions smaller than the mean free path of the dominant heat-carrying phonons. In this work, we uncover a new regime of nanoscale thermal transport that dominates when the separation between nanoscale heat sources is small compared with the dominant phonon mean free paths. Surprisingly, the interaction of phonons originating from neighboring heat sources enables more efficient diffusive-like heat dissipation, even from nanoscale heat sources much smaller than the dominant phonon mean free paths. This finding suggests that thermal management in nanoscale systems including integrated circuits might not be as challenging as previously projected. Finally, we demonstrate a unique capability to extract differential conductivity as a function of phonon mean free path in materials, allowing the first (to our knowledge) experimental validation of predictions from the recently developed first-principles calculations.

  10. Hygroscopic and phase separation properties of ammonium sulfate/organic/water ternary solutions

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Proud, S. R.; Seppalainen, S. S.; Cziczo, D. J.

    2015-03-01

    Atmospheric aerosol particles are often partially or completely composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. Deliquescence and efflorescence of simple inorganic salt particles have been investigated by a variety of methods, such as IR spectroscopy, tandem mobility analysis and electrodynamic balance. Field measurements have shown that atmospheric aerosols are not typically pure inorganic salt, instead they often also contain organic species. There is ample evidence from laboratory studies that suggests that mixed particles exist in a phase-separated state, with an aqueous inorganic core and organic shell. Although phase separation has not been measured in situ, there is no reason it would not also take place in the atmosphere. Many recent studies have focused on microscopy techniques that require deposition of the aerosol on a glass slide, possibly changing its surface properties. Here, we investigate the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O : C ratios, including 1,4-butanediol, glycerol, 1,2,6-hexanetriol, 1,2-hexanediol, and 1,5-pentanediol have been investigated. Those constituents correspond to materials found in the atmosphere in great abundance, and therefore, particles prepared in this study should mimic atmospheric mixed phase aerosol particles. The results of this study tend to be in agreement with previous microscopy experiments, with several key differences, which possibly reveal a size-dependent effect on phase separation in organic/inorganic aerosol particles.

  11. Rationale for two phase polymer system microgravity separation experiments

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.; Bamberger, S. B.; Harris, J. M.; Vanalstine, J.

    1984-01-01

    The two-phase systems that result when aqueous solutions of dextran and poly(ethylene glycol) are mixed at concentrations above a few percent are discussed. They provide useful media for the partition and isolation of macromolecules and cell subpopulations. By manipulating their composition, separations based on a variety of molecular and surface properties are achieved, including membrane hydrophobic properties, cell surface charge, and membrane antigenicity. Work on the mechanism of cell partition shows there is a randomizing, nonthermal energy present which reduces separation resolution. This stochastic energy is probably associated with hydrodynamic interactions present during separation. Because such factors should be markedly reduced in microgravity, a series of shuttle experiments to indicate approaches to increasing the resolution of the procedure are planned.

  12. Thermal vacancies and phase separation in bcc mixtures of helium-3 and helium-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraass, Benedick Andrew

    1980-01-01

    Thermal vacancy concentrations in crystals of 3He- 4He mixtures have been determined. A new x-ray diffractometer-position sensitive detector system is used to make measurements of the absolute lattice parameter of the helium crystals with an accuracy of 300 ppM, and measurements of changes in lattice parameters to better than 60 ppM. The phase separation of the concentrated 3He- 4He mixtures has been studied in detail with the x-ray measurements. Vacancy concentrations in crystals with 99%, 51%, 28%, 12%, and 0% 3He have been determined. Phase separation has been studied in mixed crystals with concentrations of 51%, 28%, and 12% 3Hemore » and melting pressures between 3.0 and 6.1 MPa. The phase separation temperatures determined in this work are in general agreement with previous work. The pressure dependence of T c, the phase separation temperature for a 50% mixture, is found to be linear: dT c/dP = -34 mdeg/MPa. The x-ray measurements are used to make several comments on the low temperature phase diagram of the helium mixtures.« less

  13. Pharmaceutical Perspective on Opalescence and Liquid-Liquid Phase Separation in Protein Solutions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2016-05-02

    Opalescence in protein solutions reduces aesthetic appeal of a formulation and can be an indicator of the presence of aggregates or precursor to phase separation in solution signifying reduced product stability. Liquid-liquid phase separation of a protein solution into a protein-rich and a protein-poor phase has been well-documented for globular proteins and recently observed for monoclonal antibody solutions, resulting in physical instability of the formulation. The present review discusses opalescence and liquid-liquid phase separation (LLPS) for therapeutic protein formulations. A brief discussion on theoretical concepts based on thermodynamics, kinetics, and light scattering is presented. This review also discusses theoretical concepts behind intense light scattering in the vicinity of the critical point termed as "critical opalescence". Both opalescence and LLPS are affected by the formulation factors including pH, ionic strength, protein concentration, temperature, and excipients. Literature reports for the effect of these formulation factors on attractive protein-protein interactions in solution as assessed by the second virial coefficient (B2) and the cloud-point temperature (Tcloud) measurements are also presented. The review also highlights pharmaceutical implications of LLPS in protein solutions.

  14. Correlated lateral phase separations in stacks of lipid membranes

    NASA Astrophysics Data System (ADS)

    Hoshino, Takuma; Komura, Shigeyuki; Andelman, David

    2015-12-01

    Motivated by the experimental study of Tayebi et al. [Nat. Mater. 11, 1074 (2012)] on phase separation of stacked multi-component lipid bilayers, we propose a model composed of stacked two-dimensional Ising spins. We study both its static and dynamical features using Monte Carlo simulations with Kawasaki spin exchange dynamics that conserves the order parameter. We show that at thermodynamical equilibrium, due to strong inter-layer correlations, the system forms a continuous columnar structure for any finite interaction across adjacent layers. Furthermore, the phase separation shows a faster dynamics as the inter-layer interaction is increased. This temporal behavior is mainly due to an effective deeper temperature quench because of the larger value of the critical temperature, Tc, for larger inter-layer interaction. When the temperature ratio, T/Tc, is kept fixed, the temporal growth exponent does not increase and even slightly decreases as a function of the increased inter-layer interaction.

  15. Chemical-Reaction-Controlled Phase Separated Drops: Formation, Size Selection, and Coarsening

    NASA Astrophysics Data System (ADS)

    Wurtz, Jean David; Lee, Chiu Fan

    2018-02-01

    Phase separation under nonequilibrium conditions is exploited by biological cells to organize their cytoplasm but remains poorly understood as a physical phenomenon. Here, we study a ternary fluid model in which phase-separating molecules can be converted into soluble molecules, and vice versa, via chemical reactions. We elucidate using analytical and simulation methods how drop size, formation, and coarsening can be controlled by the chemical reaction rates, and categorize the qualitative behavior of the system into distinct regimes. Ostwald ripening arrest occurs above critical reaction rates, demonstrating that this transition belongs entirely to the nonequilibrium regime. Our model is a minimal representation of the cell cytoplasm.

  16. The mechanical properties of phase separated protein droplets

    NASA Astrophysics Data System (ADS)

    Jawerth, Louise; Ijavi, Mahdiye; Patel, Avinash; Saha, Shambaditya; Jülicher, Frank; Hyman, Anthony

    In vivo, numerous proteins associate into liquid compartments by de-mixing from the surrounding solution, similar to oil molecules in water. Many of these proteins and their corresponding liquid compartments play a crucial role in important biological processes, for instance germ line specification in C. elegans or in neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS). However, despite their importance, very little is known about the physical properties of the resulting droplets as well as the physical mechanisms that control their phase separation from solution. To gain a deeper understanding of these aspects, we study a few such proteins in vitro. When these proteins are purified and added to a physiological buffer, they phase separate into droplets ranging in size from a few to tens of microns with liquid-like behavior similar to their physiological counterparts. By attaching small beads to the surface of the droplets, we can deform the droplets by manipulating the beads directly using optical tweezers. By measuring the force required to deform the droplets we determine their surface tension, elasticity and viscosity as well as the frequency response of these properties. We also measure these properties using passive micro-rheology.

  17. Evaluation of phase separator number in hydrodesulfurization (HDS) unit

    NASA Astrophysics Data System (ADS)

    Jayanti, A. D.; Indarto, A.

    2016-11-01

    The removal process of acid gases such as H2S in natural gas processing industry is required in order to meet sales gas specification. Hydrodesulfurization (HDS)is one of the processes in the refinery that is dedicated to reduce sulphur.InHDS unit, phase separator plays important role to remove H2S from hydrocarbons, operated at a certain pressure and temperature. Optimization of the number of separator performed on the system is then evaluated to understand the performance and economics. From the evaluation, it shows that all systems were able to meet the specifications of H2S in the desired product. However, one separator system resulted the highest capital and operational costs. The process of H2S removal with two separator systems showed the best performance in terms of both energy efficiency with the lowest capital and operating cost. The two separator system is then recommended as a reference in the HDS unit to process the removal of H2S from natural gas.

  18. Investigation of phase separated polyimide blend films containing boron nitride using FTIR imaging

    NASA Astrophysics Data System (ADS)

    Chae, Boknam; Hong, Deok Gi; Jung, Young Mee; Won, Jong Chan; Lee, Seung Woo

    2018-04-01

    Immiscible aromatic polyimide (PI) blend films and a PI blend film incorporated with thermally conductive boron nitride (BN) were prepared, and their phase separation behaviors were examined by optical microscopy and FTIR imaging. The 2,2‧-bis(trifluoromethyl)benzidine (TFMB)-containing and 4,4‧-thiodianiline (TDA)-containing aromatic PI blend films and a PI blend/BN composite film show two clearly separated regions; one region is the TFMB-rich phase, and the other region is the TDA-rich phase. The introduction of BN induces morphological changes in the immiscible aromatic PI blend film without altering the composition of either domain. In particular, the BN is selectively incorporated into the TDA-rich phase in this study.

  19. Hydrogen isotope systematics of phase separation in submarine hydrothermal systems: Experimental calibration and theoretical models

    USGS Publications Warehouse

    Berndt, M.E.; Seal, R.R.; Shanks, Wayne C.; Seyfried, W.E.

    1996-01-01

    Hydrogen isotope fractionation factors were measured for coexisting brines and vapors formed by phase separation of NaCl/H2O fluids at temperatures ranging from 399-450??C and pressures from 277-397 bars. It was found that brines are depleted in D compared to coexisting vapors at all conditions studied. The magnitude of hydrogen isotope fractionation is dependent on the relative amounts of Cl in the two phases and can be empirically correlated to pressure using the following relationship: 1000 ln ??(vap-brine) = 2.54(??0.83) + 2.87(??0.69) x log (??P), where ??(vap-brine) is the fractionation factor and ??P is a pressure term representing distance from the critical curve in the NaCl/H2O system. The effect of phase separation on hydrogen isotope distribution in subseafloor hydrothermal systems depends on a number of factors, including whether phase separation is induced by heating at depth or by decompression of hydrothermal fluids ascending to the seafloor. Phase separation in most subseafloor systems appears to be a simple process driven by heating of seawater to conditions within the two-phase region, followed by segregation and entrainment of brine or vapor into a seawater dominated system. Resulting vent fluids exhibit large ranges in Cl concentration with no measurable effect on ??D. Possible exceptions to this include hydrothermal fluids venting at Axial and 9??N on the East Pacific Rise. High ??D values of low Cl fluids venting at Axial are consistent with phase separation taking place at relatively shallow levels in the oceanic crust while negative ??D values in some low Cl fluids venting at 9??N suggest involvement of a magmatic fluid component or phase separation of D-depleted brines derived during previous hydrothermal activity.

  20. Process boundaries of irreversible scCO2 -assisted phase separation in biphasic whole-cell biocatalysis.

    PubMed

    Brandenbusch, Christoph; Glonke, Sebastian; Collins, Jonathan; Hoffrogge, Raimund; Grunwald, Klaudia; Bühler, Bruno; Schmid, Andreas; Sadowski, Gabriele

    2015-11-01

    The formation of stable emulsions in biphasic biotransformations catalyzed by microbial cells turned out to be a major hurdle for industrial implementation. Recently, a cost-effective and efficient downstream processing approach, using supercritical carbon dioxide (scCO2 ) for both irreversible emulsion destabilization (enabling complete phase separation within minutes of emulsion treatment) and product purification via extraction has been proposed by Brandenbusch et al. (2010). One of the key factors for a further development and scale-up of the approach is the understanding of the mechanism underlying scCO2 -assisted phase separation. A systematic approach was applied within this work to investigate the various factors influencing phase separation during scCO2 treatment (that is pressure, exposure of the cells to CO2 , and changes of cell surface properties). It was shown that cell toxification and cell disrupture are not responsible for emulsion destabilization. Proteins from the aqueous phase partially adsorb to cells present at the aqueous-organic interface, causing hydrophobic cell surface characteristics, and thus contribute to emulsion stabilization. By investigating the change in cell-surface hydrophobicity of these cells during CO2 treatment, it was found that a combination of catastrophic phase inversion and desorption of proteins from the cell surface is responsible for irreversible scCO2 mediated phase separation. These findings are essential for the definition of process windows for scCO2 -assisted phase separation in biphasic whole-cell biocatalysis. © 2015 Wiley Periodicals, Inc.

  1. Simulations of irradiated-enhanced segregation and phase separation in Fe–Cu–Mn alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Boyan; Hu, Shenyang; Li, Chengliang

    2017-06-13

    For reactor pressure vessel steels, the addition of Cu, Mn, and Ni has a positive effect on mechanical, corrosion and radiation resistance properties. However, experiments show that radiation-enhanced segregation and/or phase separation is one of important material property degradation processes. In this work, we developed a model integrating rate theory and phase-field approaches to investigate the effect of irradiation on solute segregation and phase separation. The rate theory is used to describe the accumulation and clustering of radiation defects while the phase-field approach describes the effect of radiation defects on phase stability and microstructure evolution. The Fe-Cu-Mn ternary alloy ismore » taken as a model system. The free energies used in the phase-field model are from CALPHAD. Spatial dependent radiation damage from atomistic simulations is introduced into the simulation cell for a given radiation dose rate. The radiation effect on segregation and phase separation is taken into account through the defect concentration dependence of solute mobility. With the model the effect of temperatures and radiation rates on Cu and Mn segregation and Cu-rich phase nucleation are systematically investigated. The segregation and nucleation mechanisms are analyzed. The simulations demonstrated that the nucleus of Cu precipitates has a core-shell composition profile, i.e., Cu rich at center and Mn rich at the interface, in good agreement with the theoretical calculation as well as experimental observations.« less

  2. Simulations of irradiated-enhanced segregation and phase separation in Fe-Cu-Mn alloys

    NASA Astrophysics Data System (ADS)

    Li, Boyan; Hu, Shenyang; Li, Chengliang; Li, Qiulin; Chen, Jun; Shu, Guogang; Henager, Chuck, Jr.; Weng, Yuqing; Xu, Ben; Liu, Wei

    2017-09-01

    For reactor pressure vessel steels, the addition of Cu, Mn, and Ni has a positive effect on their mechanical, corrosion and radiation resistance properties. However, experiments show that radiation-enhanced segregation and/or phase separation is one of the important material property degradation processes. In this work, we develop a model integrating rate theory and phase-field approaches to investigate the effect of irradiation on solute segregation and phase separation. The rate theory is used to describe the accumulation and clustering of radiation defects, while the phase-field approach describes the effect of radiation defects on phase stability and microstructure evolution. The Fe-Cu-Mn ternary alloy is taken as a model system. The free energies used in the phase-field model are from CALPHAD. Spatial dependent radiation damage from atomistic simulations is introduced into the simulation cell for a given radiation dose rate. The radiation effect on segregation and phase separation is taken into account through the defect concentration dependence of solute mobility. Using the model, the effect of temperature and radiation rates on Cu and Mn segregation and Cu-rich phase nucleation were systematically investigated. The segregation and nucleation mechanisms were analyzed. The simulations demonstrate that the nucleus of Cu precipitates has a core-shell composition profile, i.e. Cu-rich at the center and Mn-rich at the interface, in good agreement with theoretical calculations as well as experimental observations.

  3. Precipitation phase separation schemes in the Naqu River basin, eastern Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Liu, Shaohua; Yan, Denghua; Qin, Tianling; Weng, Baisha; Lu, Yajing; Dong, Guoqiang; Gong, Boya

    2018-01-01

    Precipitation phase has a profound influence on the hydrological processes in the Naqu River basin, eastern Tibetan plateau. However, there are only six meteorological stations with precipitation phase (rainfall/snowfall/sleet) before 1979 within and around the basin. In order to separate snowfall from precipitation, a new separation scheme with S-shaped curve of snowfall proportion as an exponential function of daily mean temperature was developed. The determinations of critical temperatures in the single/two temperature threshold (STT/TTT2) methods were explored accordingly, and the temperature corresponding to the 50 % snowfall proportion (SP50 temperature) is an efficiently critical temperature for the STT, and two critical temperatures in TTT2 can be determined based on the exponential function and SP50 temperature. Then, different separation schemes were evaluated in separating snowfall from precipitation in the Naqu River basin. The results show that the S-shaped curve methods outperform other separation schemes. Although the STT and TTT2 slightly underestimate and overestimate the snowfall when the temperature is higher and colder than SP50 temperature respectively, the monthly and annual separation snowfalls are generally consistent with the observed snowfalls. On the whole, S-shaped curve methods, STT, and TTT2 perform well in separating snowfall from precipitation with the Pearson correlation coefficient of annual separation snowfall above 0.8 and provide possible approaches to separate the snowfall from precipitation for hydrological modelling.

  4. Fabrication of PVDF-based blend membrane with a thin hydrophilic deposition layer and a network structure supporting layer via the thermally induced phase separation followed by non-solvent induced phase separation process

    NASA Astrophysics Data System (ADS)

    Wu, Zhiguo; Cui, Zhenyu; Li, Tianyu; Qin, Shuhao; He, Benqiao; Han, Na; Li, Jianxin

    2017-10-01

    A simple strategy of thermally induced phase separation followed by non-solvent induced phase separation (TIPS-NIPS) is reported to fabricate poly (vinylidene fluoride) (PVDF)-based blend membrane. The dissolved poly (styrene-co-maleic anhydride) (SMA) in diluent prevents the crystallization of PVDF during the cooling process and deposites on the established PVDF matrix in the later extraction. Compared with traditional coating technique, this one-step TIPS-NIPS method can not only fabricate a supporting layer with an interconnected network structure even via solid-liquid phase separation of TIPS, but also form a uniform SMA skin layer approximately as thin as 200 nm via surface deposition of NIPS. Besides the better hydrophilicity, what's interesting is that the BSA rejection ratio increases from 48% to 94% with the increase of SMA, which indicates that the separation performance has improved. This strategy can be conveniently extended to the creation of firmly thin layer, surface functionalization and structure controllability of the membrane.

  5. Effect of the Hartmann number on phase separation controlled by magnetic field for binary mixture system with large component ratio

    NASA Astrophysics Data System (ADS)

    Heping, Wang; Xiaoguang, Li; Duyang, Zang; Rui, Hu; Xingguo, Geng

    2017-11-01

    This paper presents an exploration for phase separation in a magnetic field using a coupled lattice Boltzmann method (LBM) with magnetohydrodynamics (MHD). The left vertical wall was kept at a constant magnetic field. Simulations were conducted by the strong magnetic field to enhance phase separation and increase the size of separated phases. The focus was on the effect of magnetic intensity by defining the Hartmann number (Ha) on the phase separation properties. The numerical investigation was carried out for different governing parameters, namely Ha and the component ratio of the mixed liquid. The effective morphological evolutions of phase separation in different magnetic fields were demonstrated. The patterns showed that the slant elliptical phases were created by increasing Ha, due to the formation and increase of magnetic torque and force. The dataset was rearranged for growth kinetics of magnetic phase separation in a plot by spherically averaged structure factor and the ratio of separated phases and total system. The results indicate that the increase in Ha can increase the average size of separated phases and accelerate the spinodal decomposition and domain growth stages. Specially for the larger component ratio of mixed phases, the separation degree was also significantly improved by increasing magnetic intensity. These numerical results provide guidance for setting the optimum condition for the phase separation induced by magnetic field.

  6. Ion concentration in micro and nanoscale electrospray emitters.

    PubMed

    Yuill, Elizabeth M; Baker, Lane A

    2018-06-01

    Solution-phase ion transport during electrospray has been characterized for nanopipettes, or glass capillaries pulled to nanoscale tip dimensions, and micron-sized electrospray ionization emitters. Direct visualization of charged fluorophores during the electrospray process is used to evaluate impacts of emitter size, ionic strength, analyte size, and pressure-driven flow on heterogeneous ion transport during electrospray. Mass spectrometric measurements of positively- and negatively-charged proteins were taken for micron-sized and nanopipette emitters under low ionic strength conditions to further illustrate a discrepancy in solution-driven transport of charged analytes. A fundamental understanding of analyte electromigration during electrospray, which is not always considered, is expected to provide control over selective analyte depletion and enrichment, and can be harnessed for sample cleanup. Graphical abstract Fluorescence micrographs of ion migration in nanoscale pipettes while solution is electrosprayed.

  7. Organization out of disorder: liquid-liquid phase separation in plants.

    PubMed

    Cuevas-Velazquez, Cesar L; Dinneny, José R

    2018-05-30

    Membraneless compartments are formed from the dynamic physical association of proteins and RNAs through liquid-liquid phase separation, and have recently emerged as an exciting new mechanism to explain the dynamic organization of biochemical processes in the cell. In this review, we provide an overview of the current knowledge of the process of phase separation in plants and other eukaryotes. We discuss specific examples of liquid-like membraneless compartments found in green plants, their composition, and the intriguing prevalence of proteins with intrinsically disordered domains. Finally, we speculate on the function of disordered proteins in regulating the formation of membraneless compartments and how their conformational flexibility may be important for molecular memory and for sensing perturbations in the physicochemical environment of the cell, particularly important processes in sessile organisms. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Lower critical solution temperature (LCST) phase separation of glycol ethers for forward osmotic control.

    PubMed

    Nakayama, Daichi; Mok, Yeongbong; Noh, Minwoo; Park, Jeongseon; Kang, Sunyoung; Lee, Yan

    2014-03-21

    Lower critical solution temperature (LCST) phase transition of glycol ether (GE)-water mixtures induces an abrupt change in osmotic pressure driven by a mild temperature change. The temperature-controlled osmotic change was applied for the forward osmosis (FO) desalination. Among three GEs evaluated, di(ethylene glycol) n-hexyl ether (DEH) was selected as a potential FO draw solute. A DEH-water mixture with a high osmotic pressure could draw fresh water from a high-salt feed solution such as seawater through a semipermeable membrane at around 10 °C. The water-drawn DEH-water mixture was phase-separated into a water-rich phase and a DEH-rich phase at around 30 °C. The water-rich phase with a much reduced osmotic pressure released water into a low-salt solution, and the DEH-rich phase was recovered into the initial DEH-water mixture. The phase separation behaviour, the residual GE concentration in the water-rich phase, the osmotic pressure of the DEH-water mixture, and the osmotic flux between the DEH-water mixture and salt solutions were carefully analysed for FO desalination. The liquid-liquid phase separation of the GE-water mixture driven by the mild temperature change between 10 °C and 30 °C is very attractive for the development of an ideal draw solute for future practical FO desalination.

  9. Fine mist versus large droplets in phase separated manganites

    NASA Astrophysics Data System (ADS)

    Khomskii, D.; Khomskii, L.

    2003-02-01

    The properties of phase-separated systems, e.g., manganites close to a first-order phase transition between charge-ordered insulator and ferromagnetic metal, are usually described by percolation picture. We argue that the correlated occupation of metallic sites leads to the preferential formation of larger metallic clusters, and their size distribution depends on the thermal history. This can explain several puzzling effects in manganites, such as the often observed inverse, or “overshot” hysteresis, and the recently discovered thermal cycling effect. Thus in treating this and similar systems in percolation picture, not only the total concentration of metallic phase, but also the distribution of metallic clusters by shape and size may significantly influence the properties of the system and has to be taken into account.

  10. Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers.

    PubMed

    Siddique, Radwanul H; Donie, Yidenekachew J; Gomard, Guillaume; Yalamanchili, Sisir; Merdzhanova, Tsvetelina; Lemmer, Uli; Hölscher, Hendrik

    2017-10-01

    The wings of the black butterfly, Pachliopta aristolochiae , are covered by micro- and nanostructured scales that harvest sunlight over a wide spectral and angular range. Considering that these properties are particularly attractive for photovoltaic applications, we analyze the contribution of these micro- and nanostructures, focusing on the structural disorder observed in the wing scales. In addition to microspectroscopy experiments, we conduct three-dimensional optical simulations of the exact scale structure. On the basis of these results, we design nanostructured thin photovoltaic absorbers of disordered nanoholes, which combine efficient light in-coupling and light-trapping properties together with a high angular robustness. Finally, inspired by the phase separation mechanism of self-assembled biophotonic nanostructures, we fabricate these bioinspired absorbers using a scalable, self-assembly patterning technique based on the phase separation of binary polymer mixture. The nanopatterned absorbers achieve a relative integrated absorption increase of 90% at a normal incident angle of light to as high as 200% at large incident angles, demonstrating the potential of black butterfly structures for light-harvesting purposes in thin-film solar cells.

  11. Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers

    PubMed Central

    Siddique, Radwanul H.; Donie, Yidenekachew J.; Gomard, Guillaume; Yalamanchili, Sisir; Merdzhanova, Tsvetelina; Lemmer, Uli; Hölscher, Hendrik

    2017-01-01

    The wings of the black butterfly, Pachliopta aristolochiae, are covered by micro- and nanostructured scales that harvest sunlight over a wide spectral and angular range. Considering that these properties are particularly attractive for photovoltaic applications, we analyze the contribution of these micro- and nanostructures, focusing on the structural disorder observed in the wing scales. In addition to microspectroscopy experiments, we conduct three-dimensional optical simulations of the exact scale structure. On the basis of these results, we design nanostructured thin photovoltaic absorbers of disordered nanoholes, which combine efficient light in-coupling and light-trapping properties together with a high angular robustness. Finally, inspired by the phase separation mechanism of self-assembled biophotonic nanostructures, we fabricate these bioinspired absorbers using a scalable, self-assembly patterning technique based on the phase separation of binary polymer mixture. The nanopatterned absorbers achieve a relative integrated absorption increase of 90% at a normal incident angle of light to as high as 200% at large incident angles, demonstrating the potential of black butterfly structures for light-harvesting purposes in thin-film solar cells. PMID:29057320

  12. Phase separation and the formation of the pyrenoid, a carbon-fixing organelle

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Freeman Rosenzweig, Elizabeth; Mackinder, Luke; Jonikas, Martin; Wingreen, Ned S.

    In the chloroplasts of most algae, the carbon-fixing enzyme Rubisco is concentrated in a non-membrane-bound structure called the pyrenoid, which enables more efficient carbon capture than that of most land plants. In contrast to the long-held assumptions of the field, the pyrenoid matrix is not a solid crystal, but behaves as a phase-separated, liquid-like organelle. In this system, the linker protein EPYC1 is thought to form multivalent specific bonds with Rubisco, and the formation of the pyrenoid occurs via the phase separation of these two associating proteins. Through analytical and numerical studies, we determine a phase diagram for this system. We also show how the length of the linker protein can affect the formation and dissolution of the pyrenoid in an unexpected manner. This new view of the pyrenoid matrix provides important insights into the structure, regulation, and inheritance of pyrenoid. More broadly, our findings give insights into fundamental principles of the architecture and inheritance of liquid-phase organelles.

  13. RNA buffers the phase separation behavior of prion-like RNA binding proteins.

    PubMed

    Maharana, Shovamayee; Wang, Jie; Papadopoulos, Dimitrios K; Richter, Doris; Pozniakovsky, Andrey; Poser, Ina; Bickle, Marc; Rizk, Sandra; Guillén-Boixet, Jordina; Franzmann, Titus M; Jahnel, Marcus; Marrone, Lara; Chang, Young-Tae; Sterneckert, Jared; Tomancak, Pavel; Hyman, Anthony A; Alberti, Simon

    2018-05-25

    Prion-like RNA binding proteins (RBPs) such as TDP43 and FUS are largely soluble in the nucleus but form solid pathological aggregates when mislocalized to the cytoplasm. What keeps these proteins soluble in the nucleus and promotes aggregation in the cytoplasm is still unknown. We report here that RNA critically regulates the phase behavior of prion-like RBPs. Low RNA/protein ratios promote phase separation into liquid droplets, whereas high ratios prevent droplet formation in vitro. Reduction of nuclear RNA levels or genetic ablation of RNA binding causes excessive phase separation and the formation of cytotoxic solid-like assemblies in cells. We propose that the nucleus is a buffered system in which high RNA concentrations keep RBPs soluble. Changes in RNA levels or RNA binding abilities of RBPs cause aberrant phase transitions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Nanoscale characterization of 1D Sn-3.5Ag nanosolders and their application into nanowelding at the nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Zhang, Junwei; Lan, Qianqian; Ma, Hongbin; Qu, Ke; Inkson, Beverley J.; Mellors, Nigel J.; Xue, Desheng; Peng, Yong

    2014-10-01

    One-dimensional Sn-3.5Ag alloy nanosolders have been successfully fabricated by a dc electrodeposition technique into nanoporous templates, and their soldering quality has been demonstrated in nanoscale electrical welding for the first time, which indicates that they can easily form remarkably reliable conductive joints. The electrical measurement shows that individual 1D Sn-3.5Ag nanosolders have a resistivity of 28.9 μΩ·cm. The morphology, crystal structure and chemistry of these nanosolders have been characterized at the nanoscale. It is found that individual 1D Sn-3.5Ag alloy nanosolders have a continuous morphology and smooth surface. XPS confirms the presence of tin and silver with a mass ratio of 96.54:3.46, and EDX elemental mappings clearly reveal that the Sn and Ag elements have a uniform distribution. Coveragent beam electron diffractions verify that the crystal phases of individual 1D Sn-3.5Ag alloy nanosolders consist of matrix β-Sn and the intermetallic compound Ag3Sn. The reflow experiments reveal that the eutectic composition of the 1D Sn-Ag alloy nanowire is shifted to the Sn rich corner. This work may contribute one of the most important tin-based alloy nanosolders for future nanoscale welding techniques, which are believed to have broad applications in nanotechnology and the future nano-industry.

  15. The Development of Novel Nanomaterials for Separation Science

    NASA Astrophysics Data System (ADS)

    Zewe, Joseph William

    Separation efficiency is inversely proportional to the diameter of the particles of the stationary phase. Accordingly, a major aim of current separations research is focused on the reduction of both the diameter and particle-to-particle size variation of sorbent materials utilized as stationary phases. Herein, novel methods for the fabrication and application of various nanoscale stationary phases are described. Electrospinning is a simple and cost-effective method of generating nanofibers; here both polymeric and carbon electrospun nanofibers are applied as sorbent materials. Carbon nanofibers are of particular interest; graphite and glassy carbon are widely utilized in separation science due to their chemical and mechanical stability and unique selectivity. Electrospun carbon nanofibers have proven to be ideal for use as an extractive phase for solid phase microextraction (SPME) and have been successfully coupled to both gas and liquid chromatography. The high surface area nanofibrous mat provides extraction efficiencies for both polar and nonpolar compounds that range from 2-8 times greater than those attainable using currently available commercial SPME fibers. The electrospun nanofibrous SPME phases proved to be very stable when immersed in a range of solvents, demonstrating increased stability relative to conventional liquid SPME coatings. The chemical and mechanical stability of the electrospun carbon nanofiber SPME phases expands the range of compounds that are applicable to SPME while extending the lifetime of the SPME fibers. Molecularly imprinted (MI) electrospun polymeric and carbon nanofibers were also generated using the template molecule dibutyl butyl phosphonate (DBBP), a surrogate for chemical warfare agents. Nicotine was also used as a template molecule. The MI-nanofibers imprinted with DBBP were applied as an adsorbent for SPME. The MI-SPME fibers preferentially adsorbed the DBBP template molecule relative to the non-imprinted SPME fibers

  16. [Separation and determination of eight plant hormones by reversed-phase high performance liquid chromatography].

    PubMed

    Fang, N; Hou, S; Shao, X; He, Y; Zhao, G

    1998-09-01

    In this paper, reversed-phase high performance liquid chromatographic technique was used for the separation and determination of eight plant hormones. Methanol-water-acetic acid system was chosen as the mobile phase. The effects of different separation conditions, such as the methanol and acetic acid concentrations in mobile phase, on the retention behaviours of eight plant hormones in this system were studied. The general trends in retention behaviours could be correlated to the methanol concentration in mobile phase. The experimental results showed that the optimum separation was achieved with following gradient elution condition: 0-3 minutes, 70% (water percentage in mobile phase), 3-13 minutes, 70%-20%, 13-48 minutes, 20%. Benzene was added to be as the internal standard. Under this experimental condition, the eight plant hormones could be separated completely and detected quantitatively at 260 nm within 16 minutes. The calibration curves for the eight compounds gave linearity over a wide range. The correlation coefficients of each components were r(ZT) = 0.9971, r(GAs) = 0.9999, r(K) = 0.9997, r(BA) = 0.9995, r(IAA) = 0.9998, r(IPA) = 0.9982, r(IBA) = 0.9995 and r(NAA) = 0.9995. The method is rapid, simple and efficient. It is a suitable method for the accurate determination of gibberellic acid (GA) and alpha-naphthaleneacetic acid (alpha-NAA) in products for agricultural use.

  17. Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed thatmore » both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.« less

  18. Vacancy-mediated fcc/bcc phase separation in Fe1 -xNix ultrathin films

    NASA Astrophysics Data System (ADS)

    Menteş, T. O.; Stojić, N.; Vescovo, E.; Ablett, J. M.; Niño, M. A.; Locatelli, A.

    2016-08-01

    The phase separation occurring in Fe-Ni thin films near the Invar composition is studied by using high-resolution spectromicroscopy techniques and density functional theory calculations. Annealed at temperatures around 300 ∘C ,Fe0.70Ni0.30 films on W(110) break into micron-sized bcc and fcc domains with compositions in agreement with the bulk Fe-Ni phase diagram. Ni is found to be the diffusing species in forming the chemical heterogeneity. The experimentally determined energy barrier of 1.59 ±0.09 eV is identified as the vacancy formation energy via density functional theory calculations. Thus, the principal role of the surface in the phase separation process is attributed to vacancy creation without interstitials.

  19. Observations of liquid-liquid phase separation in several types of secondary organic materials free of inorganic salts

    NASA Astrophysics Data System (ADS)

    Song, M.; Liu, P.; Martin, S. T.; Bertram, A. K.; Ham, S.

    2016-12-01

    Particles consisting of secondary organic materials (SOMs) are ubiquitous in the atmosphere. In order to predict the role of these particles in climate, visibility, and atmospheric chemistry, knowledge of the phase states of the particles is required. However, the phase states of the SOMs are still poorly understood. Herein we focused on liquid-liquid phase separation in different types of SOM particles free of inorganic salts produced by the ozonolysis of β-caryophyllene, ozonolysis of limonene, photo-oxidation of isoprene, and photo-oxidation of toluene. Liquid-liquid phase separation was investigated using optical microscopy and SOM particle mass concentrations ranging from 15 µg·m-3 to 7000 µg·m-3. During humidity cycles, liquid-liquid phase separation was observed in β-caryophyllene-derived SOM and limonene-derived SOM particles while no liquid-liquid phase separation was observed in isoprene-derived SOM and toluene-derived SOM particles. Results from the studies will be presented.

  20. Bio-Organic Nanotechnology: Using Proteins and Synthetic Polymers for Nanoscale Devices

    NASA Technical Reports Server (NTRS)

    Molnar, Linda K.; Xu, Ting; Trent, Jonathan D.; Russell, Thomas P.

    2003-01-01

    While the ability of proteins to self-assemble makes them powerful tools in nanotechnology, in biological systems protein-based structures ultimately depend on the context in which they form. We combine the self-assembling properties of synthetic diblock copolymers and proteins to construct intricately ordered, three-dimensional polymer protein structures with the ultimate goal of forming nano-scale devices. This hybrid approach takes advantage of the capabilities of organic polymer chemistry to build ordered structures and the capabilities of genetic engineering to create proteins that are selective for inorganic or organic substrates. Here, microphase-separated block copolymers coupled with genetically engineered heat shock proteins are used to produce nano-scale patterning that maximizes the potential for both increased structural complexity and integrity.

  1. Cluster formation and phase separation in heteronuclear Janus dumbbells

    NASA Astrophysics Data System (ADS)

    Munaò, G.; O'Toole, P.; Hudson, T. S.; Costa, D.; Caccamo, C.; Sciortino, F.; Giacometti, A.

    2015-06-01

    We have recently investigated the phase behavior of model colloidal dumbbells constituted by two identical tangent hard spheres, with the first being surrounded by an attractive square-well interaction (Janus dumbbells, Munaó et al 2014 Soft Matter 10 5269). Here we extend our previous analysis by introducing in the model the size asymmetry of the hard-core diameters and study the enriched phase scenario thereby obtained. By employing standard Monte Carlo simulations we show that in such ‘heteronuclear Janus dumbbells’ a larger hard-sphere site promotes the formation of clusters, whereas in the opposite condition a gas-liquid phase separation takes place, with a narrow interval of intermediate asymmetries wherein the two phase behaviors may compete. In addition, some peculiar geometrical arrangements, such as lamellæ, are observed only around the perfectly symmetric case. A qualitative agreement is found with recent experimental results, where it is shown that the roughness of molecular surfaces in heterogeneous dimers leads to the formation of colloidal micelles.

  2. Effects of ammonium sulfate and sodium chloride concentration on PEG/protein liquid-liquid phase separation.

    PubMed

    Dumetz, André C; Lewus, Rachael A; Lenhoff, Abraham M; Kaler, Eric W

    2008-09-16

    When added to protein solutions, poly(ethylene glycol) (PEG) creates an effective attraction between protein molecules due to depletion forces. This effect has been widely used to crystallize proteins, and PEG is among the most successful crystallization agents in current use. However, PEG is almost always used in combination with a salt at either low or relatively high concentrations. Here the effects of sodium chloride and ammonium sulfate concentration on PEG 8000/ovalbumin liquid-liquid (L-L) phase separation are investigated. At low salt the L-L phase separation occurs at decreasing protein concentration with increasing salt concentration, presumably due to repulsive electrostatic interactions between proteins. At high salt concentration, the behavior depends on the nature of the salt. Sodium chloride has little effect on the L-L phase separation, but ammonium sulfate decreases the protein concentration at which the L-L phase separation occurs. This trend is attributed to the effects of critical fluctuations on depletion forces. The implications of these results for designing solution conditions optimal for protein crystallization are discussed.

  3. Rocket Science at the Nanoscale.

    PubMed

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  4. Modeling of Stiffness and Strength of Bone at Nanoscale.

    PubMed

    Abueidda, Diab W; Sabet, Fereshteh A; Jasiuk, Iwona M

    2017-05-01

    Two distinct geometrical models of bone at the nanoscale (collagen fibril and mineral platelets) are analyzed computationally. In the first model (model I), minerals are periodically distributed in a staggered manner in a collagen matrix while in the second model (model II), minerals form continuous layers outside the collagen fibril. Elastic modulus and strength of bone at the nanoscale, represented by these two models under longitudinal tensile loading, are studied using a finite element (FE) software abaqus. The analysis employs a traction-separation law (cohesive surface modeling) at various interfaces in the models to account for interfacial delaminations. Plane stress, plane strain, and axisymmetric versions of the two models are considered. Model II is found to have a higher stiffness than model I for all cases. For strength, the two models alternate the superiority of performance depending on the inputs and assumptions used. For model II, the axisymmetric case gives higher results than the plane stress and plane strain cases while an opposite trend is observed for model I. For axisymmetric case, model II shows greater strength and stiffness compared to model I. The collagen-mineral arrangement of bone at nanoscale forms a basic building block of bone. Thus, knowledge of its mechanical properties is of high scientific and clinical interests.

  5. Elongated phase separation domains in spin-cast polymer blend thin films characterized using a panoramic image.

    PubMed

    Zhang, Hong; Okamura, Yosuke

    2018-02-14

    Polymer thin films with micro/nano-structures can be prepared by a solvent evaporation induced phase separation process via spin-casting a polymer blend, where the elongated phase separation domains are always inevitable. The striation defect, as a thickness nonunifomity in spin-cast films, is generally coexistent with the elongated domains. Herein, the morphologies of polymer blend thin films are recorded from the spin-cast center to the edge in a panoramic view. The elongated domains are inclined to appear at the ridge regions of striations with increasing radial distance and align radially, exhibiting a coupling between the phase separation morphology and the striation defect that may exist. We demonstrate that the formation of elongated domains is not attributed to shape deformation, but is accomplished in situ. A possible model to describe the initiation and evolution of the polymer blend phase separation morphology during spin-casting is proposed.

  6. Separation of Iron Phase and P-Bearing Slag Phase from Gaseous-Reduced, High-Phosphorous Oolitic Iron Ore at 1473 K (1200 °C) by Super Gravity

    NASA Astrophysics Data System (ADS)

    Gao, Jintao; Zhong, Yiwei; Guo, Lei; Guo, Zhancheng

    2016-04-01

    In situ observation on the morphology evolution and phosphorous migration of gaseous-reduced, high-phosphorous oolitic iron ore during the melting process was carried out with a high-temperature confocal scanning laser microscope. The results showed that 1473 K (1200 °C) was a critical temperature at which the gangue minerals started to form into the slag phase while the iron grains remained in a solid state; in addition, the phosphorus remained in the slag phase. Since the separation of iron grains and P-bearing slag was not achieved at the low temperature under the conventional conditions, separate experiments of the iron phase and the P-bearing slag phase from gaseous-reduced, high-phosphorous oolitic iron ore at 1473 K (1200 °C) by super gravity were carried out in this study. Based on the iron-slag separation by super gravity, phosphorus was removed effectively from the iron phase at the temperature below the melting point of iron. Iron grains moved along the super-gravity direction, joined, and concentrated as the iron phase on the filter, whereas the slag phase containing apatite crystals broke through the barriers of the iron grains and went through the filter. Consequently, increasing the gravity coefficient was definitely beneficial for the separation of the P-bearing slag phase from the iron phase. With the gravity coefficient of G = 1200, the mass fractions of separated slag and iron phases were close to their respective theoretical values, and the mass fraction of MFe in the separated iron phase was up to 98.09 wt pct and that of P was decreased to 0.083 wt pct. The recovery of MFe in the iron phase and that of P in the slag phase were up to 99.19 and 95.83 pct, respectively.

  7. Tubing modifications for countercurrent chromatography (CCC): Stationary phase retention and separation efficiency.

    PubMed

    Englert, Michael; Vetter, Walter

    2015-07-16

    Countercurrent chromatography (CCC) is a separation technique in which two immiscible liquid phases are used for the preparative purification of synthetic and natural products. In CCC the number of repetitive mixing and de-mixing processes, the retention of the stationary phase and the mass transfer between the liquid phases are significant parameters that influence the resolution and separation efficiency. Limited mass transfer is the main reason for peak broadening and a low number of theoretical plates along with impaired peak resolution in CCC. Hence, technical improvements with regard to column design and tubing modifications is an important aspect to enhance mixing and mass transfer. In this study we constructed a crimping tool which allowed us to make reproducible, semi-automated modifications of conventional round-shaped tubing. Six crimped tubing modifications were prepared, mounted onto multilayer coils which were subsequently installed in the CCC system. The stationary phase retention of the tubing modifications were compared to the conventional system with unmodified tubing in a hydrophobic, an intermediate and a hydrophilic two-phase solvent system. Generally, the tubing modifications provided higher capabilities to retain the stationary phase depending on the solvent system and flow rates. In the intermediate solvent system the separation efficiency was evaluated with a mixture of six alkyl p-hydroxybenzoates. The peak resolution could be increased up to 50% with one of the tubing modifications compared to the unmodified tubing. Using the most convincing tubing modification at fixed values for the stationary phase retention, a reasonable comparison to the unmodified tubing was achieved. The peak width could be reduced up to 49% and a strong positive impact at increased flow rates regarding peak resolution and theoretical plate number was observed compared to unmodified tubing. It could be concluded that the tubing modification enhanced the interphase

  8. Computer simulation of phase separation under a double temperature quench.

    PubMed

    Podariu, Iulia; Chakrabarti, Amitabha

    2007-04-21

    The authors numerically study a two-step quench process in an asymmetric binary mixture. The mixture is first quenched to an unstable state in the two-phase region. After a large phase-separated structure is formed, the authors again quench the system deeper. The second quench induces the formation of small secondary droplets inside the large domains created by the first quench. The authors characterize this secondary droplet growth in terms of the temperature of the first quench as well as the depth of the second one.

  9. Green chromatography separation of analytes of greatly differing properties using a polyethylene glycol stationary phase and a low-toxic water-based mobile phase.

    PubMed

    Šatínský, Dalibor; Brabcová, Ivana; Maroušková, Alena; Chocholouš, Petr; Solich, Petr

    2013-07-01

    A simple, rapid, and environmentally friendly HPLC method was developed and validated for the separation of four compounds (4-aminophenol, caffeine, paracetamol, and propyphenazone) with different chemical properties. A "green" mobile phase, employing water as the major eluent, was proposed and applied to the separation of analytes with different polarity on polyethylene glycol (PEG) stationary phase. The chromatography separation of all compounds and internal standard benzoic acid was performed using isocratic elution with a low-toxicity mobile phase consisting of 0.04% (v/v) triethylamine and water. HPLC separation was carried out using a PEG reversed-phase stationary phase Supelco Discovery HS PEG column (15 × 4 mm; particle size 3 μm) at a temperature of 30 °C and flow rate at 1.0 mL min(-1). The UV detector was set at 210 nm. In this study, a PEG stationary phase was shown to be suitable for the efficient isocratic separation of compounds that differ widely in hydrophobicity and acid-base properties, particularly 4-aminophenol (log P, 0.30), caffeine (log P, -0.25), and propyphenazone (log P, 2.27). A polar PEG stationary phase provided specific selectivity which allowed traditional chromatographic problems related to the separation of analytes with different polarities to be solved. The retention properties of the group of structurally similar substances (aromatic amines, phenolic compounds, and xanthine derivatives) were tested with different mobile phases. The proposed green chromatography method was successfully applied to the analysis of active substances and one degradation impurity (4-aminophenol) in commercial preparation. Under the optimum chromatographic conditions, standard calibration was carried out with good linearity correlation coefficients for all compounds in the range (0.99914-0.99997, n = 6) between the peak areas and concentration of compounds. Recovery of the sample preparation was in the range 100 ± 5% for all compounds

  10. Heterogeneous ice nucleation on phase-separated organic-sulfate particles: effect of liquid vs. glassy coatings

    NASA Astrophysics Data System (ADS)

    Schill, G. P.; Tolbert, M. A.

    2013-05-01

    Atmospheric ice nucleation on aerosol particles relevant to cirrus clouds remains one of the least understood processes in the atmosphere. Upper tropospheric aerosols as well as sub-visible cirrus residues are known to be enhanced in both sulfates and organics. The hygroscopic phase transitions of organic-sulfate particles can have an impact on both the cirrus cloud formation mechanism and resulting cloud microphysical properties. In addition to deliquescence and efflorescence, organic-sulfate particles are known to undergo another phase transition known as liquid-liquid phase separation. The ice nucleation properties of particles that have undergone liquid-liquid phase separation are unknown. Here, Raman microscopy coupled with an environmental cell was used to study the low temperature deliquescence, efflorescence, and liquid-liquid phase separation behavior of 2 : 1 mixtures of organic polyols (1,2,6-hexanetriol and 1 : 1 1,2,6-hexanetriol + 2,2,6,6-tetrakis(hydroxymethyl)cyclohexanol) and ammonium sulfate from 240-265 K. Further, the ice nucleation efficiency of these organic-sulfate systems after liquid-liquid phase separation and efflorescence was investigated from 210-235 K. Raman mapping and volume-geometry analysis indicate that these particles contain solid ammonium sulfate cores fully engulfed in organic shells. For the ice nucleation experiments, we find that if the organic coatings are liquid, water vapor diffuses through the shell and ice nucleates on the ammonium sulfate core. In this case, the coatings minimally affect the ice nucleation efficiency of ammonium sulfate. In contrast, if the coatings become semi-solid or glassy, ice instead nucleates on the organic shell. Consistent with recent findings that glasses can be efficient ice nuclei, the phase-separated particles are nearly as efficient at ice nucleation as pure crystalline ammonium sulfate.

  11. Heterogeneous ice nucleation on phase-separated organic-sulfate particles: effect of liquid vs. glassy coatings

    NASA Astrophysics Data System (ADS)

    Schill, G. P.; Tolbert, M. A.

    2012-12-01

    Atmospheric ice nucleation on aerosol particles relevant to cirrus clouds remains one of the least understood processes in the atmosphere. Upper tropospheric aerosols as well as sub-visible cirrus residues are known to be enhanced in both sulfates and organics. The hygroscopic phase transitions of organic-sulfate particles can have an impact on both the cirrus cloud formation mechanism and resulting cloud microphysical properties. In addition to deliquescence and efflorescence, organic-sulfate particles are known to undergo another phase transition known as liquid-liquid phase separation. The ice nucleation properties of particles that have undergone liquid-liquid phase separation are unknown. Here, Raman microscopy coupled with an environmental cell was used to study the low temperature deliquescence, efflorescence, and liquid-liquid phase separation behavior of 2:1 mixtures of organic polyols (1,2,6-hexanetriol, and 1:1 1,2,6-hexanetriol +2,2,6,6-tetrakis(hydroxymethyl)cycohexanol) and ammonium sulfate from 240-265 K. Further, the ice nucleation efficiency of these organic-sulfate systems after liquid-liquid phase separation and efflorescence was investigated from 210-235 K. Raman mapping and volume-geometry analysis indicates that these particles contain solid ammonium sulfate cores fully engulfed in organic shells. For the ice nucleation experiments, we find that if the organic coatings are liquid, water vapor diffuses through the shell and ice nucleates on the ammonium sulfate core. In this case, the coatings minimally affect the ice nucleation efficiency of ammonium sulfate. In contrast, if the coatings become semi-solid or glassy, ice instead nucleates on the organic shell. Consistent with recent findings that glasses can be efficient ice nuclei, the phase separated particles are nearly as efficient at ice nucleation as pure crystalline ammonium sulfate.

  12. HPLC SEPARATION OF CHIRAL ORGANOPHOSPHORUS PESTICIDES ON POLYSACCHARIDE CHIRAL STATIONARY PHASES

    EPA Science Inventory

    High-performance liquid chromatographic separation of the individual enantiomers of 12 organophosphorus pesticides (OPs) were obtained on polysaccharide chiral HPLC columns using an alkane-alcohol mobile phase. The OP pesticides were crotoxyphos, dialifor, dyfonate, fenamiphos, ...

  13. Nanoscale magnetic characterization of tunneling magnetoresistance spin valve head by electron holography.

    PubMed

    Park, Hyun Soon; Hirata, Kei; Yanagisawa, Keiichi; Ishida, Yoichi; Matsuda, Tsuyoshi; Shindo, Daisuke; Tonomura, Akira

    2012-12-07

    Nanostructured magnetic materials play an important role in increasing miniaturized devices. For the studies of their magnetic properties and behaviors, nanoscale imaging of magnetic field is indispensible. Here, using electron holography, the magnetization distribution of a TMR spin valve head of commercial design is investigated without and with a magnetic field applied. Characterized is the magnetic flux distribution in complex hetero-nanostructures by averaging the phase images and separating their component magnetic vectors and electric potentials. The magnetic flux densities of the NiFe (shield and 5 nm-free layers) and the CoPt (20 nm-bias layer) are estimated to be 1.0 T and 0.9 T, respectively. The changes in the magnetization distribution of the shield, bias, and free layers are visualized in situ for an applied field of 14 kOe. This study demonstrates the promise of electron holography for characterizing the magnetic properties of hetero-interfaces, nanostructures, and catalysts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Multimodal Responses of Self-Organized Circuitry in Electronically Phase Separated Materials

    DOE PAGES

    Herklotz, Andreas; Guo, Hangwen; Wong, Anthony T.; ...

    2016-07-13

    When confining an electronically phase we separated manganite film to the scale of its coexisting self-organized metallic and these insulating domains allows resistor-capacitor circuit-like responses while providing both electroresistive and magnetoresistive switching functionality.

  15. Phase separation and long-wavelength charge instabilities in spin-orbit coupled systems

    NASA Astrophysics Data System (ADS)

    Seibold, G.; Bucheli, D.; Caprara, S.; Grilli, M.

    2015-01-01

    We investigate a two-dimensional electron model with Rashba spin-orbit interaction where the coupling constant g=g(n) depends on the electronic density. It is shown that this dependence may drive the system unstable towards a long-wavelength charge density wave (CDW) where the associated second-order instability occurs in close vicinity to global phase separation. For very low electron densities the CDW instability is nesting-induced and the modulation follows the Fermi momentum kF. At higher density the instability criterion becomes independent of kF and the system may become unstable in a broad momentum range. Finally, upon filling the upper spin-orbit split band, finite momentum instabilities disappear in favor of phase separation alone. We discuss our results with regard to the inhomogeneous phases observed at the LaAlO3/SrTiO3 or LaTiO3/SrTiO3 interfaces.

  16. Nanoscale Ionic Liquids

    DTIC Science & Technology

    2006-11-01

    Technical Report 11 December 2005 - 30 November 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanoscale Ionic Liquids 5b. GRANT NUMBER FA9550-06-1-0012...Title: Nanoscale Ionic Liquids Principal Investigator: Emmanuel P. Giannelis Address: Materials Science and Engineering, Bard Hall, Cornell University...based fluids exhibit high ionic conductivity. The NFs are typically synthesized by grafting a charged, oligomeric corona onto the nanoparticle cores

  17. Example of a Fluid-Phase Change Examined with MD Simulation: Evaporative Cooling of a Nanoscale Droplet.

    PubMed

    Ao, Takashi; Matsumoto, Mitsuhiro

    2017-10-24

    We carried out a series of molecular dynamics simulations in order to examine the evaporative cooling of a nanoscale droplet of a Lennard-Jones liquid. After thermally equilibrating a droplet at a temperature T ini /T t ≃ 1.2 (T t is the triple-point temperature), we started the evaporation into vacuum by removing vaporized particles and monitoring the change in droplet size and the temperature inside. As free evaporation proceeds, the droplet reaches a deep supercooled liquid state of T/T t ≃ 0.7. The temperature was found to be uniform in spite of the fast evaporative cooling on the surface. The time evolution of the evaporating droplet properties was satisfactorily explained with a simple one-dimensional phase-change model. After a sufficiently long run, the supercooled droplet was crystallized into a polycrystalline fcc structure. The crystallization is a stochastic nucleation process. The time and the temperature of inception were evaluated over 42 samples, which indicate the existence of a stability limit.

  18. Coexisting nanoscale inverse spinel and rock salt crystallographic phases in NiCo2O4 epitaxial thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Sharona, H.; Loukya, B.; Bhat, U.; Sahu, R.; Vishal, B.; Silwal, P.; Gupta, A.; Datta, R.

    2017-12-01

    The origin of alternating wavy dark-bright stripe-like contrast in strain contrast transmission electron microscopy images of NiCo2O4 (NCO) epitaxial thin films grown by pulsed laser deposition has been investigated. The nanoscale stripe-like pattern is determined to be associated with coexisting rock salt (RS) and inverse spinel crystal phases. The presence of two different phases, not addressed in previous reports, is experimentally confirmed by both electron diffraction and high resolution transmission electron microscopy imaging. First principles based calculations, together with compressive strain present in the films, support the formation of such coexisting crystallographic phases in NCO. Similar microstructural patterns and RS structure are not observed in epitaxial films of two other oxides of the spinel family, namely, NiFe2O4 and CoFe2O4. A correlation between the coexisting structures and the macroscopic physical properties of NCO is discussed.

  19. Solvent annealing induced phase separation and dewetting in PMMA∕SAN blend film: film thickness and solvent dependence.

    PubMed

    You, Jichun; Zhang, Shuangshuang; Huang, Gang; Shi, Tongfei; Li, Yongjin

    2013-06-28

    The competition between "dewetting" and "phase separation" behaviors in polymer blend films attracts significant attention in the last decade. The simultaneous phase separation and dewetting in PMMA∕SAN [poly(methyl methacrylate) and poly(styrene-ran-acrylonitrile)] blend ultrathin films upon solvent annealing have been observed for the first time in our previous work. In this work, film thickness and annealing solvent dependence of phase behaviors in this system has been investigated using atomic force microscopy and grazing incidence small-angle X-ray scattering (GISAXS). On one hand, both vertical phase separation and dewetting take place upon selective solvent vapor annealing, leading to the formation of droplet∕mimic-film structures with various sizes (depending on original film thickness). On the other hand, the whole blend film dewets the substrate and produces dispersed droplets on the silicon oxide upon common solvent annealing. GISAXS results demonstrate the phase separation in the big dewetted droplets resulted from the thicker film (39.8 nm). In contrast, no period structure is detected in small droplets from the thinner film (5.1 nm and 9.7 nm). This investigation indicates that dewetting and phase separation in PMMA∕SAN blend film upon solvent annealing depend crucially on the film thickness and the atmosphere during annealing.

  20. Separation of granulocytes from whole blood by leukoadhesion, phase 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Capillary glass tubes are investigated for the separation and retrieval of large quantities of viable granulocytes and monocytes from whole blood on a continuous basis from a single donor. This effort represented the feasibility demonstration of a three phase program for development of a capillary tube cell separation device. The activity included the analysis and parametric laboratory testing with subscale models required to design a prototype device. Capillary tubes 40 cm long with a nominal 0.030 cm internal diameter yielded the highest total process efficiency. Recovery efficiencies as high as 89% of the adhering cell population were obtained. Granulocyte phagocytosis of latex particles indicated approximately 90% viability. Monocytes recovered from the separation column retained their capability to stimulate human bone marrow colony growth, as demonstrated in an in vitro cell culture assay.

  1. Nanoscale mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seol, Daehee; Seo, Hosung; Kim, Yunseok, E-mail: yunseokkim@skku.edu

    Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant phases of ionic and piezoelectric phases, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic phase, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric phase, i.e., piezoresponse. These results could provide additional information on the EM properties, including the electrochemical strain at nanoscale.

  2. Droplets and the three-phase contact line at the nano-scale. Statics and dynamics

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Sibley, David; Savva, Nikos; Kalliadasis, Serafim

    2014-11-01

    Understanding the behaviour of the solid-liquid-vapour contact line at the scale of several tens of molecular diameters is important in wetting hydrodynamics with applications in micro- and nano-fluidics, including the design of lab-on-a-chip devices and surfaces with specific wetting properties. Due to the fluid inhomogeneity at the nano-scale, the application of continuum-mechanical approaches is limited, and a natural way to remedy this is to seek descriptions accounting for the non-local molecular-level interactions. Density Functional Theory (DFT) for fluids offers a statistical-mechanical framework based on expressing the free energy of the fluid-solid pair as a functional of the spatially varying fluid density. DFT allows us to investigate small drops deposited on planar substrates whilst keeping track of the microscopic structural details of the fluid. Starting from a model of intermolecular forces, we systematically obtain interfaces, surface tensions, and the microscopic contact angle. Using a dynamic extension of equilibrium DFT, we investigate the diffusion-driven evolution of the three-phase contact line to gain insight into the dynamic behaviour of the microscopic contact angle, which is still under debate.

  3. Friction laws at the nanoscale.

    PubMed

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  4. Renormalization-group study of superfluidity and phase separation of helium mixtures immersed in a nonrandom aerogel

    NASA Astrophysics Data System (ADS)

    Lopatnikova, Anna; Nihat Berker, A.

    1997-02-01

    Superfluidity and phase separation in 3-4He mixtures immersed in a jungle-gym (nonrandom) aerogel are studied by renormalization-group theory. Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low 4He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena and trends with respect to aerogel concentration are explained by the connectivity and tenuousness of a jungle-gym aerogel.

  5. Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases.

    PubMed

    Khater, Syame; Lozac'h, Marie-Anne; Adam, Isabelle; Francotte, Eric; West, Caroline

    2016-10-07

    Analysis and production of enantiomerically pure compounds is a major topic of interest when active pharmaceutical ingredients are concerned. Enantioselective chromatography has become a favourite both at the analytical and preparative scales. High-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are dominating the scene and are often seen as complementary techniques. Nowadays, for economic and ecologic reasons, SFC may be preferred over normal-phase HPLC (NPLC) as it allows significant reductions in solvent consumption. However, the transfer of NPLC methods to SFC is not always straightforward. In this study, we compare the retention of achiral molecules and separation of enantiomers under supercritical fluid (carbon dioxide with ethanol or isopropanol) and liquid normal-phase (heptane with ethanol or isopropanol) elution modes with polysaccharide stationary phases in order to explore the differences between the retention and enantioseparation properties between the two modes. Chemometric methods (namely quantitative structure-retention relationships and discriminant analysis) are employed to compare the results obtained on a large set of analytes (171 achiral probes and 97 racemates) and gain some understanding on the retention and separation mechanisms. The results indicate that, contrary to popular belief, carbon dioxide - solvent SFC mobile phases are often weaker eluents than liquid mobile phases. It appears that SFC and NPLC elution modes provide different retention mechanisms. While some enantioseparations are unaffected, facilitating the transfer between the two elution modes, other enantioseparations may be drastically different due to different types and strength of interactions contributing to enantioselectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Rapid variations in fluid chemistry constrain hydrothermal phase separation at the Main Endeavour Field

    NASA Astrophysics Data System (ADS)

    Love, Brooke; Lilley, Marvin; Butterfield, David; Olson, Eric; Larson, Benjamin

    2017-02-01

    Previous work at the Main Endeavour Field (MEF) has shown that chloride concentration in high-temperature vent fluids has not exceeded 510 mmol/kg (94% of seawater), which is consistent with brine condensation and loss at depth, followed by upward flow of a vapor phase toward the seafloor. Magmatic and seismic events have been shown to affect fluid temperature and composition and these effects help narrow the possibilities for sub-surface processes. However, chloride-temperature data alone are insufficient to determine details of phase separation in the upflow zone. Here we use variation in chloride and gas content in a set of fluid samples collected over several days from one sulfide chimney structure in the MEF to constrain processes of mixing and phase separation. The combination of gas (primarily magmatic CO2 and seawater-derived Ar) and chloride data, indicate that neither variation in the amount of brine lost, nor mixing of the vapor phase produced at depth with variable quantities of (i) brine or (ii) altered gas rich seawater that has not undergone phase separation, can explain the co-variation of gas and chloride content. The gas-chloride data require additional phase separation of the ascending vapor-like fluid. Mixing and gas partitioning calculations show that near-critical temperature and pressure conditions can produce the fluid compositions observed at Sully vent as a vapor-liquid conjugate pair or as vapor-liquid pair with some remixing, and that the gas partition coefficients implied agree with theoretically predicted values.Plain Language SummaryWhen the chemistry of fluids from deep sea hot springs changes over a short time span, it allows us to narrow down the conditions and processes that created those fluids. This gives us a better idea what is happening under the seafloor where the water is interacting with hot rocks and minerals, boiling, and taking on the character it will have when it emerges at</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800025209','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800025209"><span>Vapors-liquid <span class="hlt">phase</span> <span class="hlt">separator</span>. [infrared telescope heat sink</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.</p> <p>1980-01-01</p> <p>The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid <span class="hlt">phase</span> <span class="hlt">separators</span> for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25218062','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25218062"><span>Current-induced transition from particle-by-particle to concurrent intercalation in <span class="hlt">phase-separating</span> battery electrodes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R; Smith, Raymond B; Bartelt, Norman C; Sugar, Joshua D; Fenton, Kyle R; Cogswell, Daniel A; Kilcoyne, A L David; Tyliszczak, Tolek; Bazant, Martin Z; Chueh, William C</p> <p>2014-12-01</p> <p>Many battery electrodes contain ensembles of nanoparticles that <span class="hlt">phase-separate</span> on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the <span class="hlt">phase-separating</span> electrode lithium iron phosphate (LiFePO4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our <span class="hlt">phase</span>-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other <span class="hlt">phase-separating</span> battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of <span class="hlt">phase-separating</span> battery electrodes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1238610-dynamic-evolution-liquidliquid-phase-separation-during-continuous-cooling','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1238610-dynamic-evolution-liquidliquid-phase-separation-during-continuous-cooling"><span>Dynamic evolution of liquid–liquid <span class="hlt">phase</span> <span class="hlt">separation</span> during continuous cooling</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Imhoff, Seth D.; Gibbs, Paul J.; Katz, Martha R.; ...</p> <p>2015-01-06</p> <p>Solidification from a multiphase fluid involves many unknown quantities due to the difficulty of predicting the impact of fluid flow on chemical partitioning. Real-time x-ray radiography was used to observe liquid-liquid <span class="hlt">phase</span> <span class="hlt">separation</span> in Al 90In 10 prior to solidification. Quantitative image analysis was used to measure the motion and population characteristics of the dispersed indium-rich liquid <span class="hlt">phase</span> during cooling. Here we determine that the droplet growth characteristics resemble well known steady-state coarsening laws with likely enhancement by concurrent growth due to supersaturation. Simplistic views of droplet motion are found to be insufficient until late in the reaction due tomore » a hydrodynamic instability caused by the large density difference between the dispersed and matrix liquid <span class="hlt">phases</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900034867&hterms=cell+separation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcell%2Bseparation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900034867&hterms=cell+separation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcell%2Bseparation"><span>Cell <span class="hlt">separation</span> in immunoaffinity partition in aqueous polymer two-<span class="hlt">phase</span> systems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton</p> <p>1989-01-01</p> <p>Two methods for immunoaffinity partitioning are described. One technique involves the covalent coupling of poly (ethylene glycol) (PEG) to immunoglobulin G antibody preparations. In the second method PEG-modified Protein A is used to complex with cells and unmodified antibody. The effects of PEG molecular weight, the degree of modification, and varying <span class="hlt">phase</span> system composition on antibody activity and its affinity for the upper <span class="hlt">phase</span> are studied. It is observed that both methods resulted in effective cell <span class="hlt">separation</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97s5404F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97s5404F"><span>Thermodynamics of <span class="hlt">phase-separating</span> nanoalloys: Single particles and particle assemblies</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fèvre, Mathieu; Le Bouar, Yann; Finel, Alphonse</p> <p>2018-05-01</p> <p>The aim of this paper is to investigate the consequences of finite-size effects on the thermodynamics of nanoparticle assemblies and isolated particles. We consider a binary <span class="hlt">phase-separating</span> alloy with a negligible atomic size mismatch, and equilibrium states are computed using off-lattice Monte Carlo simulations in several thermodynamic ensembles. First, a semi-grand-canonical ensemble is used to describe infinite assemblies of particles with the same size. When decreasing the particle size, we obtain a significant decrease of the solid/liquid transition temperatures as well as a growing asymmetry of the solid-state miscibility gap related to surface segregation effects. Second, a canonical ensemble is used to analyze the thermodynamic equilibrium of finite monodisperse particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly may split into two subassemblies of identical particles. Moreover, if the overall average canonical concentration belongs to a discrete spectrum, the subassembly concentrations are equal to the semi-grand-canonical equilibrium ones. We also show that the equilibrium of a particle assembly with a prescribed size distribution combines a size effect and the fact that a given particle size assembly can adopt two configurations. Finally, we have considered the thermodynamics of an isolated particle to analyze whether a <span class="hlt">phase</span> <span class="hlt">separation</span> can be defined within a particle. When studying rather large nanoparticles, we found that the region in which a two-<span class="hlt">phase</span> domain can be identified inside a particle is well below the bulk <span class="hlt">phase</span> diagram, but the concentration of the homogeneous core remains very close to the bulk solubility limit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29677515','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29677515"><span>FUS <span class="hlt">Phase</span> <span class="hlt">Separation</span> Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π Interactions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qamar, Seema; Wang, GuoZhen; Randle, Suzanne J; Ruggeri, Francesco Simone; Varela, Juan A; Lin, Julie Qiaojin; Phillips, Emma C; Miyashita, Akinori; Williams, Declan; Ströhl, Florian; Meadows, William; Ferry, Rodylyn; Dardov, Victoria J; Tartaglia, Gian G; Farrer, Lindsay A; Kaminski Schierle, Gabriele S; Kaminski, Clemens F; Holt, Christine E; Fraser, Paul E; Schmitt-Ulms, Gerold; Klenerman, David; Knowles, Tuomas; Vendruscolo, Michele; St George-Hyslop, Peter</p> <p>2018-04-19</p> <p>Reversible <span class="hlt">phase</span> <span class="hlt">separation</span> underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to <span class="hlt">phase</span> <span class="hlt">separation</span>. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes <span class="hlt">phase</span> <span class="hlt">separation</span> and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular β-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing <span class="hlt">phase</span> <span class="hlt">separation</span> and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1051455-improvement-glass-forming-ability-phase-separation-cu-ti-rich','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1051455-improvement-glass-forming-ability-phase-separation-cu-ti-rich"><span>Improvement of glass-forming ability and <span class="hlt">phase</span> <span class="hlt">separation</span> in Cu Ti-rich</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Park, E S; Chang, H J; Kim, D H</p> <p>2010-01-01</p> <p>Present study reports improvement of glass-forming ability (GFA) and <span class="hlt">phase</span> <span class="hlt">separation</span> in Cu Ti-rich Cu Ti Zr Ni Si bulk metallic glasses (BMGs) by tailoring the constituent elements. The MA of metalloid element, Sn having relatively large negative enthalpy of mixing can lead to improve GFA (up to 8mm in diameter) as well as thermal stability (up toTx = 48K) by optimizing the substitution element. And the addition of elements having relatively large positive enthalpy of mixing (partial substitution of Zr or Ti with Y) can lead to the liquid state <span class="hlt">phase</span> <span class="hlt">separation</span> in Cu Ti Sn Zr Ni Simore » BMG, although the addition lead to drastic deterioration of the GFA.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28603980','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28603980"><span>Sericin Promotes Fibroin Silk I Stabilization Across a <span class="hlt">Phase-Separation</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kwak, Hyo Won; Ju, Ji Eun; Shin, Munju; Holland, Chris; Lee, Ki Hoon</p> <p>2017-08-14</p> <p>Natural silk spinning offers several advantages over the synthetic fiber spinning, although the underlying mechanisms of this process are yet to be fully elucidated. Silkworm silks, specifically B. mori, comprise two main proteins: fibroin, which forms the fiber, and sericin, a coextruded coating that acts as a matrix in the resulting nonwoven composite cocoon. To date, most studies have focused on fibroin's self-assembly and gelation, with the influence of sericin during spinning receiving little to no attention. This study investigates sericin's effects on the self-assembly of fibroin via their natural <span class="hlt">phase-separation</span>. Through changes in sample opacity, FTIR, and XRD, we report that increasing sericin concentration retards the time to gelation and β-sheet formation of fibroin, causing it to adopt a Silk I conformation. Such findings have important implications for both the natural silk spinning process and any future industrial applications, suggesting that sericin may be able to induce long-range conformational and stability control in silk fibroin, while being in a <span class="hlt">separate</span> <span class="hlt">phase</span>, a factor that would facilitate long-term storage or silk feedstocks.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..MARQ47007L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..MARQ47007L"><span><span class="hlt">Phase</span> <span class="hlt">separation</span> like dynamics during Myxococcus xanthus fruiting body formation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Guannan; Thutupalli, Shashi; Wigbers, Manon; Shaevitz, Joshua</p> <p>2015-03-01</p> <p>Collective motion exists in many living organisms as an advantageous strategy to help the entire group with predation, forage, and survival. However, the principles of self-organization underlying such collective motions remain unclear. During various developmental stages of the soil-dwelling bacterium, Myxococcus xanthus, different types of collective motions are observed. In particular, when starved, M. xanthus cells eventually aggregate together to form 3-dimensional structures (fruiting bodies), inside which cells sporulate in response to the stress. We study the fruiting body formation process as an out of equilibrium <span class="hlt">phase</span> <span class="hlt">separation</span> process. As local cell density increases, the dynamics of the aggregation M. xanthus cells switch from a spatio-temporally random process, resembling nucleation and growth, to an emergent pattern formation process similar to a spinodal decomposition. By employing high-resolution microscopy and a video analysis system, we are able to track the motion of single cells within motile collective groups, while <span class="hlt">separately</span> tuning local cell density, cell velocity and reversal frequency, probing the multi-dimensional <span class="hlt">phase</span> space of M. xanthus development.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhDT.......148L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhDT.......148L"><span><span class="hlt">Nanoscale</span> octahedral molecular sieves: Syntheses, characterization, and applications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Jia</p> <p></p> <p>The major part of this research consists of studies on novel synthesis methods, characterization, and catalytic applications of <span class="hlt">nanoscale</span> manganese oxide octahedral molecular sieves. The second part involves studies of new applications of bulk porous molecular sieve and layered materials (MSLM), zeolites, and inorganic powder materials for diminishing wound bleeding. Manganese oxide octahedral molecular sieves (OMS) are very important microporous materials. They have been used widely as bulk materials in catalysis, <span class="hlt">separations</span>, chemical sensors, and batteries, due to their unique tunnel structures and useful properties. Novel methods have been developed to synthesize novel <span class="hlt">nanoscale</span> octahedral molecular sieve manganese oxides (OMS) and metal-substituted OMS materials in order to modify their physical and chemical properties and to improve their catalytic applications. Different synthetic routes were investigated to find better, faster, and cheaper pathways to produce <span class="hlt">nanoscale</span> or metal-substituted OMS materials. In the synthetic study of nanosize OMS materials, a combination of sol-gel synthesis and hydrothermal reaction was used to prepare pure crystalline nanofibrous todorokite-type (OMS-1) and cryptomelane-typed (OMS-2) manganese oxides using four alkali cations (Li+, K+, Na +, Rb+) and NH4+ cations. In the synthesis study of <span class="hlt">nanoscale</span> and metal-substituted OMS materials, a combination of sol-gel synthesis and solid-state reaction was used to prepare transition metal-substituted OMS-2 nanorods, nanoneedles, and nanowires. Preparative parameters of syntheses, such as cation templates, heating temperature and time, were investigated in these syntheses of OMS-1 and OMS-2 materials. The catalytic activities of the novel synthetic <span class="hlt">nanoscale</span> OMS materials has been evaluated on green oxidation of alcohols and toluene and were found to be much higher than their correspondent bulk materials. New applications of bulk manganese oxide molecular sieve and layered materials</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDF14010H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDF14010H"><span>Isolation of <span class="hlt">nanoscale</span> exosomes using viscoelastic effect</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Guoqing; Liu, Chao</p> <p>2017-11-01</p> <p>Exosomes, molecular cargos secreted by almost all mammalian cells, are considered as promising biomarkers to identify many diseases including cancers. However, the small size of exosomes (30-200 nm) poses serious challenges on their isolation from the complex media containing a variety of extracellular vesicles (EVs) of different sizes, especially in small sample volumes. Here we develop a viscoelasticity-based microfluidic system to directly <span class="hlt">separate</span> exosomes from cell culture media or serum in a continuous, size-dependent, and label-free manner. Using a small amount of biocompatible polymer as the additive into the media to control the viscoelastic forces exerted on EVs, we are able to achieve a high <span class="hlt">separation</span> purity (>90%) and recovery (>80%) of exosomes. The size cutoff in viscoelasticity-based microfluidics can be easily controlled using different PEO concentrations. Based on this size-dependent viscoelastic <span class="hlt">separation</span> strategy, we envision the handling of diverse <span class="hlt">nanoscale</span> objects, such as gold nanoparticles, DNA origami structures, and quantum dots. This work was supported financially by National Natural Science Foundation of China (11572334, 91543125).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21304517','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21304517"><span>Electronic <span class="hlt">phase</span> <span class="hlt">separation</span> at the LaAlO₃/SrTiO₃ interface.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ariando; Wang, X; Baskaran, G; Liu, Z Q; Huijben, J; Yi, J B; Annadi, A; Barman, A Roy; Rusydi, A; Dhar, S; Feng, Y P; Ding, J; Hilgenkamp, H; Venkatesan, T</p> <p>2011-02-08</p> <p>There are many electronic and magnetic properties exhibited by complex oxides. Electronic <span class="hlt">phase</span> <span class="hlt">separation</span> (EPS) is one of those, the presence of which can be linked to exotic behaviours, such as colossal magnetoresistance, metal-insulator transition and high-temperature superconductivity. A variety of new and unusual electronic <span class="hlt">phases</span> at the interfaces between complex oxides, in particular between two non-magnetic insulators LaAlO(3) and SrTiO(3), have stimulated the oxide community. However, no EPS has been observed in this system despite a theoretical prediction. Here, we report an EPS state at the LaAlO(3)/SrTiO(3) interface, where the interface charges are <span class="hlt">separated</span> into regions of a quasi-two-dimensional electron gas, a ferromagnetic <span class="hlt">phase</span>, which persists above room temperature, and a (superconductor like) diamagnetic/paramagnetic <span class="hlt">phase</span> below 60 K. The EPS is due to the selective occupancy (in the form of 2D-nanoscopic metallic droplets) of interface sub-bands of the nearly degenerate Ti orbital in the SrTiO(3). The observation of this EPS demonstrates the electronic and magnetic phenomena that can emerge at the interface between complex oxides mediated by the Ti orbital.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=structure+AND+lipids&id=EJ758884','ERIC'); return false;" href="https://eric.ed.gov/?q=structure+AND+lipids&id=EJ758884"><span>Use of Solid <span class="hlt">Phase</span> Extraction in the Biochemistry Laboratory to <span class="hlt">Separate</span> Different Lipids</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Flurkey, William H.</p> <p>2005-01-01</p> <p>Solid-<span class="hlt">phase</span> extraction (SPE) was used to demonstrate how various lipids and lipid classes could be <span class="hlt">separated</span> in a biochemistry laboratory setting. Three different SPE methods were chosen on their ability to <span class="hlt">separate</span> a lipid mixture, consisting of a combination of a either a fatty acid, a triacylglycerol, a mono- or diacylglycerol, phospholipid,…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JChPh.130t4905G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JChPh.130t4905G"><span>Polymer depletion-driven cluster aggregation and initial <span class="hlt">phase</span> <span class="hlt">separation</span> in charged nanosized colloids</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gögelein, Christoph; Nägele, Gerhard; Buitenhuis, Johan; Tuinier, Remco; Dhont, Jan K. G.</p> <p>2009-05-01</p> <p>We study polymer depletion-driven cluster aggregation and initial <span class="hlt">phase</span> <span class="hlt">separation</span> in aqueous dispersions of charge-stabilized silica spheres, where the ionic strength and polymer (dextran) concentration are systematically varied, using dynamic light scattering and visual observation. Without polymers and for increasing salt and colloid content, the dispersions become increasingly unstable against irreversible cluster formation. By adding nonadsorbing polymers, a depletion-driven attraction is induced, which lowers the stabilizing Coulomb barrier and enhances the cluster growth rate. The initial growth rate increases with increasing polymer concentration and decreases with increasing polymer molar mass. These observations can be quantitatively understood by an irreversible dimer formation theory based on the classical Derjaguin, Landau, Verwey, and Overbeek pair potential, with the depletion attraction modeled by the Asakura-Oosawa-Vrij potential. At low colloid concentration, we observe an exponential cluster growth rate for all polymer concentrations considered, indicating a reaction-limited aggregation mechanism. At sufficiently high polymer and colloid concentrations, and lower salt content, a gas-liquidlike demixing is observed initially. Later on, the system <span class="hlt">separates</span> into a gel and fluidlike <span class="hlt">phase</span>. The experimental time-dependent state diagram is compared to the theoretical equilibrium <span class="hlt">phase</span> diagram obtained from a generalized free-volume theory and is discussed in terms of an initial reversible <span class="hlt">phase</span> <span class="hlt">separation</span> process in combination with irreversible aggregation at later times.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19485479','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19485479"><span>Polymer depletion-driven cluster aggregation and initial <span class="hlt">phase</span> <span class="hlt">separation</span> in charged nanosized colloids.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gögelein, Christoph; Nägele, Gerhard; Buitenhuis, Johan; Tuinier, Remco; Dhont, Jan K G</p> <p>2009-05-28</p> <p>We study polymer depletion-driven cluster aggregation and initial <span class="hlt">phase</span> <span class="hlt">separation</span> in aqueous dispersions of charge-stabilized silica spheres, where the ionic strength and polymer (dextran) concentration are systematically varied, using dynamic light scattering and visual observation. Without polymers and for increasing salt and colloid content, the dispersions become increasingly unstable against irreversible cluster formation. By adding nonadsorbing polymers, a depletion-driven attraction is induced, which lowers the stabilizing Coulomb barrier and enhances the cluster growth rate. The initial growth rate increases with increasing polymer concentration and decreases with increasing polymer molar mass. These observations can be quantitatively understood by an irreversible dimer formation theory based on the classical Derjaguin, Landau, Verwey, and Overbeek pair potential, with the depletion attraction modeled by the Asakura-Oosawa-Vrij potential. At low colloid concentration, we observe an exponential cluster growth rate for all polymer concentrations considered, indicating a reaction-limited aggregation mechanism. At sufficiently high polymer and colloid concentrations, and lower salt content, a gas-liquidlike demixing is observed initially. Later on, the system <span class="hlt">separates</span> into a gel and fluidlike <span class="hlt">phase</span>. The experimental time-dependent state diagram is compared to the theoretical equilibrium <span class="hlt">phase</span> diagram obtained from a generalized free-volume theory and is discussed in terms of an initial reversible <span class="hlt">phase</span> <span class="hlt">separation</span> process in combination with irreversible aggregation at later times.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1265661-phase-separation-lean-grade-duplex-stainless-steel','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1265661-phase-separation-lean-grade-duplex-stainless-steel"><span><span class="hlt">Phase</span> <span class="hlt">Separation</span> in Lean Grade Duplex Stainless Steel 2101</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Garfinkel, D.; Poplawsky, Jonathan D.; Guo, Wei; ...</p> <p>2015-08-19</p> <p>The use of duplex stainless steels (DSS) in nuclear power generation systems is limited by thermal instability that leads to embrittlement in the temperature range of 204°C - 538°C. New lean grade alloys, such as 2101, offer the potential to mitigate these effects. Thermal embrittlement was quantified through impact toughness and hardness testing on samples of alloy 2101 after aging at 427°C for various durations (1-10,000 hours). Additionally, atom probe tomography (APT) was utilized in order to observe the kinetics of α-α’ <span class="hlt">separation</span> and G-<span class="hlt">phase</span> formation. Mechanical testing and APT data for two other DSS alloys, 2003 and 2205 weremore » used as a reference to 2101. The results show that alloy 2101 exhibits superior performance compared to the standard grade DSS alloy, 2205, but inferior to the lean grade alloy, 2003, in mechanical testing. APT data demonstrates that the degree of α-α’ <span class="hlt">separation</span> found in alloy 2101 closely resembles that of 2205, and greatly exceeds 2003. Additionally, contrary to what was observed in 2003, 2101 demonstrated G-<span class="hlt">phase</span> like precipitates after long aging times, though precipitates were not as abundant as was observed in 2205.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1420263','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1420263"><span><span class="hlt">Nanoscale</span> perspective: Materials designs and understandings in lithium metal anodes</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lin, Dingchang; Liu, Yayuan; Pei, Allen</p> <p></p> <p>Li metal chemistry is a promising alternative with a much higher energy density than that of state-of-the-art Li-ion counterparts. However, significant challenges including safety issues and poor cyclability have severely impeded Li metal technology from becoming viable. In recent years, nanotechnologies have become increasingly important in materials design and fabrication for Li metal anodes, contributing to major progress in the field. In this review, we first introduce the main achievements in Li metal battery systems fulfilled by nanotechnologies, particularly regarding Li metal anode design and protection, ultrastrong <span class="hlt">separator</span> engineering, safety monitoring, and smart functions. Next, we introduce recent studies onmore » <span class="hlt">nanoscale</span> Li nucleation/deposition. Lastly, we discuss possible future research directions. We hope this review delivers an overall picture of the role of <span class="hlt">nanoscale</span> approaches in the recent progress of Li metal battery technology and inspires more research in the future.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1420263-nanoscale-perspective-materials-designs-understandings-lithium-metal-anodes','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1420263-nanoscale-perspective-materials-designs-understandings-lithium-metal-anodes"><span><span class="hlt">Nanoscale</span> perspective: Materials designs and understandings in lithium metal anodes</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Lin, Dingchang; Liu, Yayuan; Pei, Allen; ...</p> <p>2017-05-19</p> <p>Li metal chemistry is a promising alternative with a much higher energy density than that of state-of-the-art Li-ion counterparts. However, significant challenges including safety issues and poor cyclability have severely impeded Li metal technology from becoming viable. In recent years, nanotechnologies have become increasingly important in materials design and fabrication for Li metal anodes, contributing to major progress in the field. In this review, we first introduce the main achievements in Li metal battery systems fulfilled by nanotechnologies, particularly regarding Li metal anode design and protection, ultrastrong <span class="hlt">separator</span> engineering, safety monitoring, and smart functions. Next, we introduce recent studies onmore » <span class="hlt">nanoscale</span> Li nucleation/deposition. Lastly, we discuss possible future research directions. We hope this review delivers an overall picture of the role of <span class="hlt">nanoscale</span> approaches in the recent progress of Li metal battery technology and inspires more research in the future.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25227572','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25227572"><span>Anisotropic imprint of amorphization and <span class="hlt">phase</span> <span class="hlt">separation</span> in manganite thin films via laser interference irradiation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ding, Junfeng; Lin, Zhipeng; Wu, Jianchun; Dong, Zhili; Wu, Tom</p> <p>2015-02-04</p> <p>Materials with mesoscopic structural and electronic <span class="hlt">phase</span> <span class="hlt">separation</span>, either inherent from synthesis or created via external means, are known to exhibit functionalities absent in the homogeneous counterparts. One of the most notable examples is the colossal magnetoresistance discovered in mixed-valence manganites, where the coexistence of nano- to micrometer-sized <span class="hlt">phase-separated</span> domains dictates the magnetotransport. However, it remains challenging to pattern and process such materials into predesigned structures and devices. In this work, a direct laser interference irradiation (LII) method is employed to produce periodic stripes in thin films of a prototypical <span class="hlt">phase-separated</span> manganite Pr0.65 (Ca0.75 Sr0.25 )0.35 MnO3 (PCSMO). LII induces selective structural amorphization within the crystalline PCSMO matrix, forming arrays with dimensions commensurate with the laser wavelength. Furthermore, because the length scale of LII modification is compatible to that of <span class="hlt">phase</span> <span class="hlt">separation</span> in PCSMO, three orders of magnitude of increase in magnetoresistance and significant in-plane transport anisotropy are observed in treated PCSMO thin films. Our results show that LII is a rapid, cost-effective and contamination-free technique to tailor and improve the physical properties of manganite thin films, and it is promising to be generalized to other functional materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/450392-renormalization-group-study-superfluidity-phase-separation-helium-mixtures-immersed-nonrandom-aerogel','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/450392-renormalization-group-study-superfluidity-phase-separation-helium-mixtures-immersed-nonrandom-aerogel"><span>Renormalization-group study of superfluidity and <span class="hlt">phase</span> <span class="hlt">separation</span> of helium mixtures immersed in a nonrandom aerogel</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lopatnikova, A.; Berker, A.N.</p> <p>1997-02-01</p> <p>Superfluidity and <span class="hlt">phase</span> <span class="hlt">separation</span> in {sup 3}He-{sup 4}He mixtures immersed in a jungle-gym (nonrandom) aerogel are studied by renormalization-group theory. <span class="hlt">Phase</span> diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low {sup 4}He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid <span class="hlt">phase</span> <span class="hlt">separation</span>, terminating at an isolated critical point, is found entirely within the superfluid <span class="hlt">phase</span>. These phenomena and trends with respect to aerogel concentration are explained by the connectivity and tenuousness of a jungle-gym aerogel. {copyright} {ital 1997} {ital The American Physical Society}</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhyA..322...38P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhyA..322...38P"><span>Formation of structural steady states in lamellar/sponge <span class="hlt">phase-separating</span> fluids under shear flow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panizza, P.; Courbin, L.; Cristobal, G.; Rouch, J.; Narayanan, T.</p> <p>2003-05-01</p> <p>We investigate the effect of shear flow on a lamellar-sponge <span class="hlt">phase-separating</span> fluid when subjected to shear flow. We show the existence of two different steady states (droplets and ribbons structures) whose nature does not depend on the way to reach the two-<span class="hlt">phase</span> unstable region of the <span class="hlt">phase</span> diagram (temperature quench or stirring). The transition between ribbons and droplets is shear thickening and its nature strongly depends on what dynamical variable is imposed. If the stress is fixed, flow visualization shows the existence of shear bands at the transition, characteristic of coexistence in the cell between ribbons and droplets. In this shear-banding region, the viscosity oscillates. When the shear rate is fixed, no shear bands are observed. Instead, the transition exhibits a hysteretic behavior leading to a structural bi-stability of the <span class="hlt">phase-separating</span> fluid under flow.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5262379','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5262379"><span>Spatial patterning of P granules by RNA-induced <span class="hlt">phase</span> <span class="hlt">separation</span> of the intrinsically-disordered protein MEG-3</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Smith, Jarrett; Calidas, Deepika; Schmidt, Helen; Lu, Tu; Rasoloson, Dominique; Seydoux, Geraldine</p> <p>2016-01-01</p> <p>RNA granules are non-membrane bound cellular compartments that contain RNA and RNA binding proteins. The molecular mechanisms that regulate the spatial distribution of RNA granules in cells are poorly understood. During polarization of the C. elegans zygote, germline RNA granules, called P granules, assemble preferentially in the posterior cytoplasm. We present evidence that P granule asymmetry depends on RNA-induced <span class="hlt">phase</span> <span class="hlt">separation</span> of the granule scaffold MEG-3. MEG-3 is an intrinsically disordered protein that binds and <span class="hlt">phase</span> <span class="hlt">separates</span> with RNA in vitro. In vivo, MEG-3 forms a posterior-rich concentration gradient that is anti-correlated with a gradient in the RNA-binding protein MEX-5. MEX-5 is necessary and sufficient to suppress MEG-3 granule formation in vivo, and suppresses RNA-induced MEG-3 <span class="hlt">phase</span> <span class="hlt">separation</span> in vitro. Our findings suggest that MEX-5 interferes with MEG-3’s access to RNA, thus locally suppressing MEG-3 <span class="hlt">phase</span> <span class="hlt">separation</span> to drive P granule asymmetry. Regulated access to RNA, combined with RNA-induced <span class="hlt">phase</span> <span class="hlt">separation</span> of key scaffolding proteins, may be a general mechanism for controlling the formation of RNA granules in space and time. DOI: http://dx.doi.org/10.7554/eLife.21337.001 PMID:27914198</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27790840','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27790840"><span>Recent advances in liquid-<span class="hlt">phase</span> <span class="hlt">separations</span> for clinical metabolomics.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kohler, Isabelle; Giera, Martin</p> <p>2017-01-01</p> <p>Over the last decades, several technological improvements have been achieved in liquid-based <span class="hlt">separation</span> techniques, notably, with the advent of fully porous sub-2 μm particles and superficially porous sub-3 μm particles, the comeback of supercritical fluid chromatography, and the development of alternative chromatographic modes such as hydrophilic interaction chromatography. Combined with mass spectrometry, these techniques have demonstrated their added value, substantially increasing <span class="hlt">separation</span> efficiency, selectivity, and speed of analysis. These benefits are essential in modern clinical metabolomics typically involving the study of large-scale sample cohorts and the analysis of thousands of metabolites showing extensive differences in physicochemical properties. This review presents a brief overview of the recent developments in liquid-<span class="hlt">phase</span> <span class="hlt">separation</span> sciences in the context of clinical metabolomics, focusing on increased throughput as well as metabolite coverage. Relevant metabolomics applications highlighting the benefits of ultra-high performance liquid chromatography, core-shell technology, high-temperature liquid chromatography, capillary electrophoresis, supercritical fluid chromatography, and hydrophilic interaction chromatography are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97a4505F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97a4505F"><span>Direct visualization of <span class="hlt">phase</span> <span class="hlt">separation</span> between superconducting and nematic domains in Co-doped CaFe2As2 close to a first-order <span class="hlt">phase</span> transition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fente, Antón; Correa-Orellana, Alexandre; Böhmer, Anna E.; Kreyssig, Andreas; Ran, S.; Bud'ko, Sergey L.; Canfield, Paul C.; Mompean, Federico J.; García-Hernández, Mar; Munuera, Carmen; Guillamón, Isabel; Suderow, Hermann</p> <p>2018-01-01</p> <p>We show that biaxial strain induces alternating tetragonal superconducting and orthorhombic nematic domains in Co-substituted CaFe2As2 . We use atomic force, magnetic force, and scanning tunneling microscopy to identify the domains and characterize their properties, finding in particular that tetragonal superconducting domains are very elongated, more than several tens of micrometers long and about 30 nm wide; have the same Tc as unstrained samples; and hold vortices in a magnetic field. Thus, biaxial strain produces a <span class="hlt">phase-separated</span> state, where each <span class="hlt">phase</span> is equivalent to what is found on either side of the first-order <span class="hlt">phase</span> transition between antiferromagnetic orthorhombic and superconducting tetragonal <span class="hlt">phases</span> found in unstrained samples when changing Co concentration. Having such alternating superconducting domains <span class="hlt">separated</span> by normal conducting domains with sizes of the order of the coherence length opens opportunities to build Josephson junction networks or vortex pinning arrays and suggests that first-order quantum <span class="hlt">phase</span> transitions lead to nanometric-size <span class="hlt">phase</span> <span class="hlt">separation</span> under the influence of strain.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmEn.178..286W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmEn.178..286W"><span>Liquid-liquid <span class="hlt">phase</span> <span class="hlt">separation</span> in internally mixed magnesium sulfate/glutaric acid particles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Feng-Min; Wang, Xiao-Wei; Jing, Bo; Zhang, Yun-Hong; Ge, Mao-Fa</p> <p>2018-04-01</p> <p>The confocal Raman microscopy is utilized to investigate the liquid-liquid <span class="hlt">phase</span> <span class="hlt">separation</span> (LLPS) of mixed magnesium sulfate/glutaric acid (MgSO4/GA) droplets deposited on a hydrophobic polytetrafluoroethylene (PTFE) substrate and a hydrophilic quartz substrate. Raman spectra collected from different regions of the mixed droplets provide detailed information of component distributions for MgSO4 and GA. During the dehydration process, the MgSO4/GA mixed particles show the initial liquid-liquid <span class="hlt">phase</span> <span class="hlt">separation</span> between 85% and 80% relative humidity (RH) on both the hydrophobic and hydrophilic substrates. For the droplets deposited on the two substrates, the inner <span class="hlt">phase</span> of droplets is dominated by aqueous MgSO4, which is surrounded by a rich GA organic layer due to the surface tension effects. In addition, the crystallization of GA could be observed in the organic aqueous <span class="hlt">phase</span> while it is inhibited in the inner MgSO4 <span class="hlt">phase</span> due to the effects of gel formation of MgSO4 at low RH. The Raman spectra reveal that with decreasing RH the morphology of the mixed droplet evolves from a uniform droplet to the structure of LLPS with the GA crystallizing in the outer layer and MgSO4 gel formed in the inner <span class="hlt">phase</span>. These findings contribute to the further understanding of the role of interactions between inorganic salts and organic acids on the morphological evolution and environmental effects of atmospheric aerosols under ambient RH conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1337834-nanoscale-mapping-electromechanical-response-ionic-conductive-ceramics-piezoelectric-inclusions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1337834-nanoscale-mapping-electromechanical-response-ionic-conductive-ceramics-piezoelectric-inclusions"><span><span class="hlt">Nanoscale</span> mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Seol, Daehee; Seo, Hosung; Jesse, Stephen; ...</p> <p>2015-08-19</p> <p>Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant <span class="hlt">phases</span> of ionic and piezoelectric <span class="hlt">phases</span>, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic <span class="hlt">phase</span>, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric <span class="hlt">phase</span>, i.e., piezoresponse. Finally, these results could provide additional information on the EM properties, including the electrochemical strain at <span class="hlt">nanoscale</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1337834','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1337834"><span><span class="hlt">Nanoscale</span> mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Seol, Daehee; Seo, Hosung; Jesse, Stephen</p> <p></p> <p>Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant <span class="hlt">phases</span> of ionic and piezoelectric <span class="hlt">phases</span>, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic <span class="hlt">phase</span>, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric <span class="hlt">phase</span>, i.e., piezoresponse. Finally, these results could provide additional information on the EM properties, including the electrochemical strain at <span class="hlt">nanoscale</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28068097','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28068097"><span>Characterization of <span class="hlt">Phase</span> <span class="hlt">Separation</span> Propensity for Amorphous Spray Dried Dispersions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McNamara, Daniel; Yin, Shawn; Pan, Duohai; Crull, George; Timmins, Peter; Vig, Balvinder</p> <p>2017-02-06</p> <p>A generalized screening approach, applying isothermal calorimetry at 37 °C 100% RH, to formulations of spray dried dispersions (SDDs) for two active pharmaceutical ingredients (APIs) (BMS-903452 and BMS-986034) is demonstrated. APIs 452 and 034, with similar chemotypes, were synthesized and promoted during development for oral dosing. Both APIs were formulated as SDDs for animal exposure studies using the polymer hydroxypropylmethlycellulose acetyl succinate M grade (HPMCAS-M). 452 formulated at 30% (wt/wt %) was an extremely robust SDD that was able to withstand 40 °C 75% RH open storage conditions for 6 months with no physical evidence of crystallization or loss of dissolution performance. Though 034 was a chemical analogue with similar physical chemical properties to 452, a physically stable SDD of 034 could not be formulated in HPMCAS-M at any of the drug loads attempted. This study was used to develop experience with specific physical characterization laboratory techniques to evaluate the physical stability of SDDs and to characterize the propensity of SDDs to <span class="hlt">phase</span> <span class="hlt">separate</span> and possibly crystallize. The screening strategy adopted was to stress the formulated SDDs with a temperature humidity screen, within the calorimeter, and to apply orthogonal analytical techniques to gain a more informed understanding of why these SDDs formulated with HPMCAS-M demonstrated such different physical stability. Isothermal calorimetry (thermal activity monitor, TAM) was employed as a primary stress screen wherein the SDD formulations were monitored for 3 days at 37 °C 100% RH for signs of <span class="hlt">phase</span> <span class="hlt">separation</span> and possible crystallization of API. Powder X-ray diffraction (pXRD), modulated differential scanning calorimetry (mDSC), Fourier transform infrared spectroscopy (FTIR), and solid state nuclear magnetic resonance (ssNMR) were all used to examine formulated SDDs and neat amorphous drug. 452 SDDs formulated at 30% (wt/wt %) or less did not show <span class="hlt">phase</span> <span class="hlt">separation</span> behavior upon</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24919675','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24919675"><span>Tube radial distribution phenomenon with a two-<span class="hlt">phase</span> <span class="hlt">separation</span> solution of a fluorocarbon and hydrocarbon organic solvent mixture in a capillary tube and metal compounds <span class="hlt">separation</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kitaguchi, Koichi; Hanamura, Naoya; Murata, Masaharu; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko</p> <p>2014-01-01</p> <p>A fluorocarbon and hydrocarbon organic solvent mixture is known as a temperature-induced <span class="hlt">phase-separation</span> solution. When a mixed solution of tetradecafluorohexane as a fluorocarbon organic solvent and hexane as a hydrocarbon organic solvent (e.g., 71:29 volume ratio) was delivered in a capillary tube that was controlled at 10°C, the tube radial distribution phenomenon (TRDP) of the solvents was clearly observed through fluorescence images of the dye, perylene, dissolved in the mixed solution. The homogeneous mixed solution (single <span class="hlt">phase</span>) changed to a heterogeneous solution (two <span class="hlt">phases</span>) with inner tetradecafluorohexane and outer hexane <span class="hlt">phases</span> in the tube under laminar flow conditions, generating the dynamic liquid-liquid interface. We also tried to apply TRDP to a <span class="hlt">separation</span> technique for metal compounds. A model analyte mixture, copper(II) and hematin, was <span class="hlt">separated</span> through the capillary tube, and detected with a chemiluminescence detector in this order within 4 min.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhyE...80..191L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhyE...80..191L"><span>An evaluation method for <span class="hlt">nanoscale</span> wrinkle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Y. P.; Wang, C. G.; Zhang, L. M.; Tan, H. F.</p> <p>2016-06-01</p> <p>In this paper, a spectrum-based wrinkling analysis method via two-dimensional Fourier transformation is proposed aiming to solve the difficulty of <span class="hlt">nanoscale</span> wrinkle evaluation. It evaluates the wrinkle characteristics including wrinkling wavelength and direction simply using a single wrinkling image. Based on this method, the evaluation results of <span class="hlt">nanoscale</span> wrinkle characteristics show agreement with the open experimental results within an error of 6%. It is also verified to be appropriate for the macro wrinkle evaluation without scale limitations. The spectrum-based wrinkling analysis is an effective method for <span class="hlt">nanoscale</span> evaluation, which contributes to reveal the mechanism of <span class="hlt">nanoscale</span> wrinkling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20549664','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20549664"><span><span class="hlt">Separation</span> and purification of hydrolyzable tannin from Geranium wilfordii Maxim by reversed-<span class="hlt">phase</span> and normal-<span class="hlt">phase</span> high-speed counter-current chromatography.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Dan; Su, Zhiguo; Wang, Changhai; Gu, Ming; Xing, Siliang</p> <p>2010-08-01</p> <p>Three hydrolyzable tannins, geraniin, corilagin and gallic acid, main active components of Geranium wilfordii Maxim, have been <span class="hlt">separated</span> and purified in one-step by both reversed-<span class="hlt">phase</span> and normal-<span class="hlt">phase</span> high-speed counter-current chromatography. Gallic acid, corilagin and geraniin were purified from 70% aqueous acetone extract of G. wilfordii Maxim with solvent system n-hexane-ethyl acetate-methanol-acetic acid-water (1:10:0.2:0.2:20) by reversed-<span class="hlt">phase</span> high-speed counter-current chromatography at purities of 94.2, 91.0 and 91.3%, at yields of 89.3, 82.9 and 91.7%, respectively. Gallic acid, corilagin and geraniin were purified with solvent system n-hexane-ethyl acetate-methanol-acetic acid-water (0.2:10:2:1:5) by normal-<span class="hlt">phase</span> high-speed counter-current chromatography at purities of 85.9, 92.2 and 87.6%, at yields of 87.4, 94.6 and 94.3%, respectively. It was successful for both reversed-<span class="hlt">phase</span> and normal-<span class="hlt">phase</span> high-speed counter-current chromatography to <span class="hlt">separate</span> high-polarity of low-molecular-weight substances.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23822250','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23822250"><span>TES buffer-induced <span class="hlt">phase</span> <span class="hlt">separation</span> of aqueous solutions of several water-miscible organic solvents at 298.15 K: <span class="hlt">phase</span> diagrams and molecular dynamic simulations.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Taha, Mohamed; Lee, Ming-Jer</p> <p>2013-06-28</p> <p>Water and the organic solvents tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone are completely miscible in all proportions at room temperature. Here, we present new buffering-out <span class="hlt">phase</span> <span class="hlt">separation</span> systems that the above mentioned organic aqueous solutions can be induced to form two liquid <span class="hlt">phases</span> in the presence of a biological buffer 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES). The lower liquid <span class="hlt">phase</span> is rich in water and buffer, and the upper <span class="hlt">phase</span> is organic rich. This observation has both practical and mechanistic interests. The <span class="hlt">phase</span> diagrams of these systems were constructed by experimental measurements at ambient conditions. Molecular dynamic (MD) simulations were performed for TES + water + THF system to understand the interactions between TES, water, and organic solvent at molecular level. Several composition-sets for this system, beyond and inside the liquid-liquid <span class="hlt">phase</span>-splitting region, have been simulated. Interestingly, the MD simulation for compositions inside the <span class="hlt">phase</span> <span class="hlt">separation</span> region showed that THF molecules are forced out from the water network to start forming a new liquid <span class="hlt">phase</span>. The hydrogen-bonds, hydrogen-bonds lifetimes, hydrogen-bond energies, radial distribution functions, coordination numbers, the electrostatic interactions, and the van der Waals interactions between the different pairs have been calculated. Additionally, MD simulations for TES + water + tert-butanol∕acetonitrile∕acetone <span class="hlt">phase</span> <span class="hlt">separation</span> systems were simulated. The results from MD simulations provide an explanation for the buffering-out phenomena observed in [TES + water + organic solvent] systems by a mechanism controlled by the competitive interactions of the buffer and the organic solvent with water. The molecular mechanism reported here is helpful for designing new benign <span class="hlt">separation</span> materials.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28462706','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28462706"><span>Endocytosis of <span class="hlt">Nanoscale</span> Systems for Cancer Treatments.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Kai; Li, Xue; Zhu, Hongyan; Gong, Qiyong; Luo, Kui</p> <p>2017-04-28</p> <p>Advances of <span class="hlt">nanoscale</span> systems for cancer treatment have been involved in enabling highly regulated site-specific localization to sub cellular organelles hidden beneath cell membranes. Thus far, the cellular entry of these <span class="hlt">nanoscale</span> systems has been not fully understood. Endocytosisis a form of active transport in which cell transports elected extracellular molecules (such as proteins, viruses, micro-organisms and <span class="hlt">nanoscale</span> systems) are allowed into cell interiors by engulfing them in an energy-dependent process. This process appears at the plasma membrane surface and contains internalization of the cell membrane as well as the membrane proteins and lipids of cell. There are multiform pathways of endocytosis for <span class="hlt">nanoscale</span> systems. Further comprehension for the mechanisms of endocytosis is achieved with a combination of efficient genetic manipulations, cell dynamic imaging, and chemical endocytosis inhibitors. This review provides an account of various endocytic pathways, itemizes current methods to study endocytosis of <span class="hlt">nanoscale</span> systems, discusses some factors associated with cellular uptake for <span class="hlt">nanoscale</span> systems and introduces the trafficking behavior for <span class="hlt">nanoscale</span> systems with active targeting. An insight into the endocytosis mechanism is urgent and significant for developing safe and efficient <span class="hlt">nanoscale</span> systems for cancer diagnosis and therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19007480','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19007480"><span>The chiral <span class="hlt">separation</span> of triazole pesticides enantiomers by amylose-tris (3,5-dimethylphenylcarbamate) chiral stationary <span class="hlt">phase</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Peng; Liu, Donghui; Jiang, Shuren; Xu, Yangguang; Zhou, Zhiqiang</p> <p>2008-10-01</p> <p>The amylose-tris(3,5-dimethylphenylcarbamate) chiral stationary <span class="hlt">phase</span> was synthesized and used to <span class="hlt">separate</span> the enantiomers of triazole pesticides by high-performance liquid chromatography. The mobile <span class="hlt">phase</span> was n-hexane-isopropanol applying a flow rate of 1.0 mL/min. Six triazole pesticides were enantioselectively <span class="hlt">separated</span>. Myclobutanil, paclobutrazol, tebuconazole, and uniconazole obtained complete <span class="hlt">separation</span> with the resolution factors of 5.73, 2.99, 1.72, and 2.07, respectively, and imazalil and diniconazole obtained partial <span class="hlt">separation</span> with the resolution factors of 0.79 and 0.77 under the optimized conditions. The effect of the content of isopropanol as well as column temperature on the <span class="hlt">separation</span> was investigated. A circular dichroism detector was used to identify the enantiomers and determine the elution orders. The results showed the low temperature was good for the chiral <span class="hlt">separation</span> except for diniconazole. The thermodynamic parameters calculated based on linear Van't Hoff plots showed the chiral <span class="hlt">separations</span> were controlled by enthalpy.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1335132-dynamics-crowding-induced-mixing-phase-separated-lipid-bilayers','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1335132-dynamics-crowding-induced-mixing-phase-separated-lipid-bilayers"><span>Dynamics of crowding-induced mixing in <span class="hlt">phase</span> <span class="hlt">separated</span> lipid bilayers</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zeno, Wade F.; Johnson, Kaitlin E.; Sasaki, Darryl Y.; ...</p> <p>2016-10-10</p> <p>We use fluorescence microscopy to examine the dynamics of the crowding-induced mixing transition of liquid ordered (L o)–liquid disordered (L d) <span class="hlt">phase</span> <span class="hlt">separated</span> lipid bilayers when the following particles of increasing size bind to either the L o or L d <span class="hlt">phase</span>: Ubiquitin, green fluorescent protein (GFP), and nanolipoprotein particles (NLPs) of two diameters. These proteinaceous particles contained histidine-tags, which were <span class="hlt">phase</span> targeted by binding to iminodiacetic acid (IDA) head groups, via a Cu 2+ chelating mechanism, of lipids that specifically partition into either the Lo <span class="hlt">phase</span> or Ld <span class="hlt">phase</span>. The degree of steric pressure was controlled by varying themore » size of the bound particle (10–240 kDa) and the amount of binding sites present (i.e., DPIDA concentrations of 9 and 12 mol%) in the supported lipid multibilayer platform used here. We develop a mass transfer-based diffusional model to analyze the observed L o <span class="hlt">phase</span> domain dissolution that, along with visual observations and activation energy calculations, provides insight into the sequence of events in crowding-induced mixing. Furthermore, our results suggest that the degree of steric pressure and target <span class="hlt">phase</span> influence not only the efficacy of steric-pressure induced mixing, but the rate and controlling mechanism for which it occurs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28676653','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28676653"><span>Diffraction <span class="hlt">phase</span> microscopy imaging and multi-physics modeling of the <span class="hlt">nanoscale</span> thermal expansion of a suspended resistor.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Xiaozhen; Lu, Tianjian; Yu, Xin; Jin, Jian-Ming; Goddard, Lynford L</p> <p>2017-07-04</p> <p>We studied the <span class="hlt">nanoscale</span> thermal expansion of a suspended resistor both theoretically and experimentally and obtained consistent results. In the theoretical analysis, we used a three-dimensional coupled electrical-thermal-mechanical simulation and obtained the temperature and displacement field of the suspended resistor under a direct current (DC) input voltage. In the experiment, we recorded a sequence of images of the axial thermal expansion of the central bridge region of the suspended resistor at a rate of 1.8 frames/s by using epi-illumination diffraction <span class="hlt">phase</span> microscopy (epi-DPM). This method accurately measured nanometer level relative height changes of the resistor in a temporally and spatially resolved manner. Upon application of a 2 V step in voltage, the resistor exhibited a steady-state increase in resistance of 1.14 Ω and in relative height of 3.5 nm, which agreed reasonably well with the predicted values of 1.08 Ω and 4.4 nm, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988PhDT.......165M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988PhDT.......165M"><span>Investigation of Dispersed and Dispersed Annular (rivulet or Thin Film) Flow <span class="hlt">Phase</span> <span class="hlt">Separation</span> in Tees.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCreery, Glenn Ernest</p> <p></p> <p>An experimental and analytical investigation of dispersed and dispersed-annular (rivulet or thin film) flow <span class="hlt">phase</span> <span class="hlt">separation</span> in tees has been successfully completed. The research was directed at, but is not specific to, determining flow conditions, following a loss of coolant accident, in the large rectangular passageways leading to vacuum buildings in the containment envelope of some CANDU nuclear reactors. The primary objectives of the research were to: (1) obtain experimental data to help formulate and test mechanistic analytical models of <span class="hlt">phase</span> <span class="hlt">separation</span>, and (2) develop the analytical models in computer programs which predict <span class="hlt">phase</span> <span class="hlt">separation</span> from upstream flow and pressure conditions and downstream and side branch pressure boundary conditions. To meet these objectives an air-water experimental apparatus was constructed, and consists of large air blowers attached to a long rectangular duct leading to a tee in the horizontal plane. A variety of phenomena was investigated including, for comparison with computer predictions, air streamlines and eddy boundary geometry, drop size spectra, macroscopic mass balances, liquid rivulet pathlines, and trajectories of drops of known size and velocity. Four <span class="hlt">separate</span> computer programs were developed to analyze <span class="hlt">phase</span> <span class="hlt">separation</span>. Three of the programs are used sequentially to calculate dispersed mist <span class="hlt">phase</span> <span class="hlt">separation</span> in a tee. The fourth is used to calculate rivulet or thin film pathlines. Macroscopic mass balances are calculated from a summation of mass balances for drops with representative sizes (and masses) spaced across the drop size spectrum. The programs are tested against experimental data, and accurately predict gas flow fields, drop trajectories, rivulet pathlines and macroscopic mass balances. In addition to development of the computer programs, analysis was performed to specify the scaling of dispersed mist and rivulet or thin film flow, to investigate pressure losses in tees, and the inter-relationship of loss</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3481168','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3481168"><span>A new approach to network heterogeneity: Polymerization Induced <span class="hlt">Phase</span> <span class="hlt">Separation</span> in photo-initiated, free-radical methacrylic systems</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Szczepanski, Caroline R.; Pfeifer, Carmem S.; Stansbury, Jeffrey W.</p> <p>2012-01-01</p> <p>Non-reactive, thermoplastic prepolymers (poly- methyl, ethyl and butyl methacrylate) were added to a model homopolymer matrix composed of triethylene glycol dimethacrylate (TEGDMA) to form heterogeneous networks via polymerization induced <span class="hlt">phase</span> <span class="hlt">separation</span> (PIPS). PIPS creates networks with distinct <span class="hlt">phase</span> structure that can partially compensate for volumetric shrinkage during polymerization through localized internal volume expansion. This investigation utilizes purely photo-initiated, free-radical systems, broadening the scope of applications for PIPS since these processing conditions have not been studied previously. The introduction of prepolymer into TEGDMA monomer resulted in stable, homogeneous monomer formulations, most of which underwent PIPS upon photo-irradiation, creating heterogeneous networks. During polymerization the presence of prepolymer enhanced autoacceleration, allowing for a more extensive ambient cure of the material. <span class="hlt">Phase</span> <span class="hlt">separation</span>, as characterized by dynamic changes in sample turbidity, was monitored simultaneously with monomer conversion and either preceded or was coincident with network gelation. Dynamic mechanical analysis shows a broadening of the tan delta peak and secondary peak formation, characteristic of <span class="hlt">phase-separated</span> materials, indicating one <span class="hlt">phase</span> rich in prepolymer and another depleted form upon <span class="hlt">phase</span> <span class="hlt">separation</span>. In certain cases, PIPS leads to an enhanced physical reduction of volumetric shrinkage, which is attractive for many applications including dental composite materials. PMID:23109733</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25644988','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25644988"><span><span class="hlt">Nanoscale</span> assembly of lanthanum silica with dense and porous interfacial structures.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ballinger, Benjamin; Motuzas, Julius; Miller, Christopher R; Smart, Simon; Diniz da Costa, João C</p> <p>2015-02-03</p> <p>This work reports on the <span class="hlt">nanoscale</span> assembly of hybrid lanthanum oxide and silica structures, which form patterns of interfacial dense and porous networks. It was found that increasing the molar ratio of lanthanum nitrate to tetraethyl orthosilicate (TEOS) in an acid catalysed sol-gel process alters the expected microporous metal oxide silica structure to a predominantly mesoporous structure above a critical lanthanum concentration. This change manifests itself by the formation of a lanthanum silicate <span class="hlt">phase</span>, which results from the reaction of lanthanum oxide nanoparticles with the silica matrix. This process converts the microporous silica into the denser silicate <span class="hlt">phase</span>. Above a lanthanum to silica ratio of 0.15, the combination of growth and microporous silica consumption results in the formation of <span class="hlt">nanoscale</span> hybrid lanthanum oxides, with the inter-nano-domain spacing forming mesoporous volume. As the size of these nano-domains increases with concentration, so does the mesoporous volume. The absence of lanthanum hydroxide (La(OH)3) suggests the formation of La2O3 surrounded by lanthanum silicate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28706626','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28706626"><span>History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at <span class="hlt">nanoscale</span> interfaces.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Yan; Wang, Dengchao; Kvetny, Maksim M; Brown, Warren; Liu, Juan; Wang, Gangli</p> <p>2015-01-01</p> <p>The dynamics of ion transport at nanostructured substrate-solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane <span class="hlt">separation</span>, nanofluidics and fundamental nanoelectrochemistry. Further advancements in these applications require a fundamental understanding of ion transport at <span class="hlt">nanoscale</span> interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at <span class="hlt">nanoscale</span> interfaces in current-potential ( I - V ) measurements and theoretical analyses. First, a unique non-zero I - V cross-point and pinched I - V curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Second, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or <span class="hlt">separation</span> is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of <span class="hlt">nanoscale</span> energy conversion in supercapacitor type charging-discharging, as well as chemical and electrical energy conversion. The analysis of the emerging current-potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, <span class="hlt">separation</span> and sensing applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1265884-history-dependent-ion-transport-through-conical-nanopipettes-implications-energy-conversion-dynamics-nanoscale-interfaces','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1265884-history-dependent-ion-transport-through-conical-nanopipettes-implications-energy-conversion-dynamics-nanoscale-interfaces"><span>History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at <span class="hlt">nanoscale</span> interfaces</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; ...</p> <p>2014-08-20</p> <p>The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane <span class="hlt">separation</span>, nanofluidics and fundamental nanoelectrochemistry. Advancements in these applications require a fundamental understanding of ion transport at <span class="hlt">nanoscale</span> interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at <span class="hlt">nanoscale</span> interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–Vmore » curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Moreoever, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or <span class="hlt">separation</span> is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of <span class="hlt">nanoscale</span> energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. Our analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, <span class="hlt">separation</span> and sensing applications.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29932899','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29932899"><span>Functional Domains of NEAT1 Architectural lncRNA Induce Paraspeckle Assembly through <span class="hlt">Phase</span> <span class="hlt">Separation</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yamazaki, Tomohiro; Souquere, Sylvie; Chujo, Takeshi; Kobelke, Simon; Chong, Yee Seng; Fox, Archa H; Bond, Charles S; Nakagawa, Shinichi; Pierron, Gerard; Hirose, Tetsuro</p> <p>2018-06-21</p> <p>A class of long noncoding RNAs (lncRNAs) has architectural functions in nuclear body construction; however, specific RNA domains dictating their architectural functions remain uninvestigated. Here, we identified the domains of the architectural NEAT1 lncRNA that construct paraspeckles. Systematic deletion of NEAT1 portions using CRISPR/Cas9 in haploid cells revealed modular domains of NEAT1 important for RNA stability, isoform switching, and paraspeckle assembly. The middle domain, containing functionally redundant subdomains, was responsible for paraspeckle assembly. Artificial tethering of the NONO protein to a NEAT1_2 mutant lacking the functional subdomains rescued paraspeckle assembly, and this required the NOPS dimerization domain of NONO. Paraspeckles exhibit <span class="hlt">phase-separated</span> properties including susceptibility to 1,6-hexanediol treatment. RNA fragments of the NEAT1_2 subdomains preferentially bound NONO/SFPQ, leading to <span class="hlt">phase-separated</span> aggregates in vitro. Thus, we demonstrate that the enrichment of NONO dimers on the redundant NEAT1_2 subdomains initiates construction of <span class="hlt">phase-separated</span> paraspeckles, providing mechanistic insights into lncRNA-based nuclear body formation. Copyright © 2018 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhDT........91H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhDT........91H"><span>Carbide derived carbon from MAX-<span class="hlt">phases</span> and their <span class="hlt">separation</span> applications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoffman, Elizabeth N.</p> <p></p> <p>Improved sorbents with increased selectivity and permeability are needed to meet growing energy and environmental needs. New forms of carbon based sorbents have been discovered recently, including carbons produced by etching metals from metal carbides, known as carbide derived carbons (CDCs). A common method for the synthesis of CDC is by chlorination at elevated temperatures. The goal of this work is to synthesize CDC from ternary carbides and to explore the links between the initial carbide chemistry and structure with the resulting CDCs properties, including porosity. CDC was produced from MAX-<span class="hlt">phase</span> carbides, in particular Ti3SiC 2, Ti3AlC2, Ti2AlC, and Ta2AlC. Additionally, CDC was produced from Ta-based binary carbides, TaC and Ta 2C, and one carbo-nitride Ti2AlC0.5N0.5. The CDC structure was characterized using XRD, Raman microspectroscopy, and HRTEM. Porosity characterization was performed using sorption analysis with both Ar and N2 as adsorbates. It was determined the microporosity of CDC is related to the density of the initial carbide. The layered structure of the MAX-<span class="hlt">phase</span> carbides lent toward the formation of larger mesopores within the resulting CDCs, while the amount of mesopores was dependent on the chemistry of the carbide. Furthermore, CDC produced from carbides with extremely high theoretical porosity resulted in small specific surface areas due to a collapse of the carbon structure. To expand the potential applications for CDC beyond powder and bulk forms, CDC membranes were produced from a thin film of TiC deposited by magnetron sputtering onto porous ceramic substrates. The TiC thin film was subsequently chlorinated to produce a bilayer membrane with CDC as the active layer. Both gases and liquids are capable of passing the membrane. The membrane <span class="hlt">separates</span> based on selective adsorption, rather than a size <span class="hlt">separation</span> molecular sieving effect. Two applications for CDC produced from MAX-<span class="hlt">phases</span> were investigated: protein adsorption and gas</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999PhDT.......306B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999PhDT.......306B"><span>Formation of anisotropic hollow-fiber membranes via thermally induced <span class="hlt">phase</span> <span class="hlt">separation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Batarseh, Melanie Turkett</p> <p></p> <p>The goal of this research project was to study the formation of anisotropic hollow fiber membranes via thermally induced <span class="hlt">phase</span> <span class="hlt">separation</span> (TIPS). This objective included developing a fundamental knowledge of the factors that contribute to anisotropy and studying how anisotropy can be controlled via operational parameters in hollow fiber spinning. The objective was met by creating a model to simulate the mass and heat transfer in the fiber wall during spinning and by experimentally varying spinning parameters and observing the affect on the membrane microstructure. The TIPS membrane formation process consists of forming a homogeneous solution of polymer and diluent and extruding the solution through a spinneret to form a hollow fiber. The fiber is cooled in an air gap followed by a quench bath, which results in <span class="hlt">phase</span> <span class="hlt">separation</span> of the solution into a diluent-rich <span class="hlt">phase</span> dispersed in a continuous polymer-rich liquid <span class="hlt">phase</span>. The diluent-rich domains grow in size until the polymer-rich <span class="hlt">phase</span> crystallizes. Then the diluent is removed, and the spaces left behind become the pores of the microporous membrane. Therefore, the size of the diluent-rich domains when the polymer solidifies is related to the size of the pores in the finished membrane. Increasing the polymer concentration of the homogeneous solution or increasing the cooling rate of the <span class="hlt">phase</span> <span class="hlt">separated</span> solution decreases the domain size, and thus decreases pore size. An anisotropic membrane, which has a gradation of pore size from small pores at the feed-side to large pores at the permeate-side, can be formed by creating a concentration gradient or a cooling rate gradient across the membrane. In hollow fiber spinning, a concentration gradient can be created by allowing diluent to evaporate from the outside wall of the fiber in the air gap, and a cooling rate gradient can be created by quenching the fiber in a liquid bath. The spinning model calculates concentration and temperature profiles across the hollow fiber</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26345444','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26345444"><span>Comparison of analytical protein <span class="hlt">separation</span> characteristics for three amine-based capillary-channeled polymer (C-CP) stationary <span class="hlt">phases</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Liuwei; Marcus, R Kenneth</p> <p>2016-02-01</p> <p>Capillary-channeled polymer (C-CP) fiber stationary <span class="hlt">phases</span> are finding utility in the realms of protein analytics as well as downstream processing. We have recently described the modification of poly(ethylene terephthalate) (PET) C-CP fibers to affect amine-rich <span class="hlt">phases</span> for the weak anion-exchange (WAX) <span class="hlt">separation</span> of proteins. Polyethylenimine (PEI) is covalently coupled to the PET surface, with subsequent cross-linking imparted by treatment with 1,4-butanediol diglycidyl ether (BUDGE). These modifications yield vastly improved dynamic binding capacities over the unmodified fibers. We have also previously employed native (unmodified) nylon 6 C-CP fibers as weak anion/cation-exchange (mixed-mode) and hydrophobic interaction chromatography (HIC) <span class="hlt">phases</span> for protein <span class="hlt">separations</span>. Polyamide, nylon 6, consists of amide groups along the polymer backbone, with primary amines and carboxylic acid end groups. The analytical <span class="hlt">separation</span> characteristics of these three amine-based C-CP fiber <span class="hlt">phases</span> are compared here. Each of the C-CP fiber columns in this study was shown to be able to <span class="hlt">separate</span> a bovine serum albumin/hemoglobin/lysozyme mixture at high mobile <span class="hlt">phase</span> linear velocity (∼70 mm s(-1)) but with different elution characteristics. These differences reflect the types of protein-surface interactions that are occurring, based on the active group composition of the fiber surfaces. This study provides important fundamental understanding for the development of surface-modified C-CP fiber columns for protein <span class="hlt">separation</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1340684-tailoring-nanoscale-morphology-polymer-fullerene-blends-using-electrostatic-field','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1340684-tailoring-nanoscale-morphology-polymer-fullerene-blends-using-electrostatic-field"><span>Tailoring <span class="hlt">nanoscale</span> morphology of polymer: Fullerene blends using electrostatic field</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Elshobaki, Moneim; Gebhardt, Ryan; Carr, John; ...</p> <p>2016-12-05</p> <p>In this paper, to tailor the <span class="hlt">nanoscale</span> <span class="hlt">phase</span> <span class="hlt">separation</span> in polymer/fullerene blends, we study the effect of electrostatic field (E-field) on the solidification of poly(3-hexylthiophene-2, 5-diyl) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PC 60BM) bulk heterojunction (BHJ). In addition to untreated sample (control); wet P3HT:PC 60BM thin films were exposed to E-field of Van de Graaff (VDG) generator at three different directions – horizontal (H), tilted (T) and vertical (V) – relative to the plane of the substrate. Surface and bulk characterizations of field-treated BHJs affirm that fullerene molecules can easily penetrate the spaghetti-like P3HT and move up and down following themore » E-field. E-field treatment yields thin films with large P3HT- and PCBM-rich domains acting as continuous pathways for efficient charge <span class="hlt">separation</span>, transport, and collection. We improve; (1) the hole mobility values up to 19.4 × 10 -4 ± 1.6 × 10 -4 cm 2 V -1 s -1 (117% higher than the control), and (2) power conversion efficient (PCE) of conventional and inverted OPVs recording 2.58 ± 0.02% and 4.1 ± 0.4%. This E-field approach can serve as a new morphology-tuning technique, which is generally applicable to other polymer-fullerene systems.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9376717','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9376717"><span>Direct HPLC <span class="hlt">separation</span> of beta-aminoester enantiomers on totally synthetic chiral stationary <span class="hlt">phases</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gasparrini, F; D'Acquarica, I; Villani, C; Cimarelli, C; Palmieri, G</p> <p>1997-01-01</p> <p>The direct <span class="hlt">separation</span> of beta-aminoester enantiomers by HPLC on synthetic chiral stationary <span class="hlt">phases</span> based on a pi-acidic derivative of trans 1,2-diaminocyclohexane as selector is described. The application of different columns containing the stationary <span class="hlt">phase</span> with opposite configurations and in the racemic form to the determination of enantiomeric excess in chemically impure samples is demonstrated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A53S..05E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A53S..05E"><span>pH Variance in Aerosols Undergoing Liquid-Liquid <span class="hlt">Phase</span> <span class="hlt">Separation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eddingsaas, N. C.; Dallemagne, M.; Huang, X.</p> <p>2014-12-01</p> <p>The water content of aerosols is largely governed by relative humidity (RH). As the relative humidity decreases, and thus the water content of aerosols, a number of processes occur including the shrinking of aerosols, the increase in concentration of components, and potentially the formation of liquid liquid <span class="hlt">phase</span> <span class="hlt">separation</span> (llps) due to the salting out of inorganic salts. The most ubiquitous salt in atmospheric aerosols is ammonium sulfate which results in many aerosols to be at least mildly acidic. However, during llps, the pH of the different <span class="hlt">phases</span> is not necessarily the same. Many reactions that take place within atmospheric aerosols are acid catalyzed so a better understanding of the pH of the individual <span class="hlt">phases</span> as well as the interface between the <span class="hlt">phases</span> is important to understanding aerosol processing and aging. Through the use of pH sensitive dyes and confocal microscopy we have directly measured the pH of micron sized model aerosols during high RH where the aerosols are in a single <span class="hlt">phase</span>, at intermediate while the aerosols are in llps, and low RH where the aerosols consist of one liquid <span class="hlt">phase</span> and one solid <span class="hlt">phase</span>. We will discuss the variation in RH during these different <span class="hlt">phase</span> states in the presence and absence of excess sulfuric acid. We will also discuss how this variation in pH affects aging of aerosols.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28039812','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28039812"><span>Fast non-aqueous reversed-<span class="hlt">phase</span> liquid chromatography <span class="hlt">separation</span> of triacylglycerol regioisomers with isocratic mobile <span class="hlt">phase</span>. Application to different oils and fats.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tamba Sompila, Arnaud W G; Héron, Sylvie; Hmida, Dorra; Tchapla, Alain</p> <p>2017-01-15</p> <p>The distribution of fatty acid species at the sn-1/3 position or the sn-2 position of triacylglycerols (TAGs) in natural fats and oils affects their physical and nutritional properties. In fats and oils, determining the presence of one or two regioisomers and the identification of structure, where they do have one, as well as their <span class="hlt">separation</span>, became a problem of fundamental importance to solve. A variety of instrumental technics has been proposed, such as MS, chromatography-MS or pure chromatography. A number of studies deal with the optimization of the <span class="hlt">separation</span>, but very often, they are expensive in time. In the present study, in order to decrease the analysis time while maintaining good chromatographic <span class="hlt">separation</span>, we tested different monomeric and polymeric stationary <span class="hlt">phases</span> and different chromatographic conditions (mobile <span class="hlt">phase</span> composition and analysis temperature) using Non-Aqueous Reversed <span class="hlt">Phase</span> Liquid Chromatography (NARP-LC). It was demonstrated that mixed polymeric stationary bonded silica with accessible terminal hydroxyl groups leads to very good <span class="hlt">separation</span> for the pairs of TAGs regioisomers constituted by two saturated and one unsaturated fatty acid (with double bond number: from 1 to 6). A Nucleodur C18 ISIS percolated by isocratic mobile <span class="hlt">phase</span> (acetonitrile/2-propanol) at 18°C leads to their <span class="hlt">separations</span> in less than 15min. The difference of retention times between two regioisomers XYX and XXY are large enough to confirm, as application, the presence of POP, SOP, SOS and PLP and no PPO, SPO, SSO and PPL in Theobroma cacao butter. In the same way, this study respectively shows the presence of SOS, SOP and no SSO, PSO in Butyrospermum parkii butter, POP, SOP, SOS and no PPO, PSO and SSO in Carapa oil and finally POP and no PPO in Pistacia Lentiscus oil. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A54C..09Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A54C..09Z"><span>Investigating hygroscopic behavior and <span class="hlt">phase</span> <span class="hlt">separation</span> of organic/inorganic mixed <span class="hlt">phase</span> aerosol particles with FTIR spectroscopy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zawadowicz, M. A.; Cziczo, D. J.</p> <p>2013-12-01</p> <p>Atmospheric aerosol particles can be composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have very well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. For example, the deliquescence relative humidity of pure ammonium sulfate is about 80% and its efflorescence point is about 35%. This behavior of ammonium sulfate is important to atmospheric chemistry because some reactions, such as the hydrolysis of nitrogen pentoxide, occur on aqueous but not crystalline surfaces. Deliquescence and efflorescence of simple inorganic salt particles have been investigated by a variety of methods, such as IR spectroscopy, tandem mobility analysis and electrodynamic balance. Field measurements have shown that atmospheric aerosol are not typically a single inorganic salt, instead they often contain organic as well as inorganic species. Mixed inorganic/organic aerosol particles, while abundant in the atmosphere, have not been studied as extensively. Many recent studies have focused on microscopy techniques that require deposition of the aerosol on a glass slide, possibly changing its surface properties. This project investigates the deliquescence and efflorescence points, <span class="hlt">phase</span> <span class="hlt">separation</span> and ability to exchange gas-<span class="hlt">phase</span> components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O:C ratios, including glycerol, 1,2,6-hexanetriol, 1,4-butanediol and 1,5-pentanediol have been investigated. This project aims to study gas-<span class="hlt">phase</span> exchange in these aerosol systems to determine if exchange is impacted when <span class="hlt">phase</span> <span class="hlt">separation</span> occurs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910008809','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910008809"><span>Fluid <span class="hlt">Phase</span> <span class="hlt">Separation</span> (FPS) experiment for flight on the shuttle in a Get Away Special (GAS) canister: Design and fabrication</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1990-01-01</p> <p>The <span class="hlt">separation</span> of fluid <span class="hlt">phases</span> in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid <span class="hlt">phase</span> <span class="hlt">separation</span> experiment will demonstrate a proof of concept for the <span class="hlt">separation</span> technique and add to the knowledge base of material behavior. The <span class="hlt">phase</span> <span class="hlt">separation</span> experiment will contain a premixed fluid that will be exposed to a microgravity environment. After the <span class="hlt">phase</span> <span class="hlt">separation</span> of the compound has occurred, small samples of each of the species will be taken for analysis on Earth. By correlating the time of <span class="hlt">separation</span> and the temperature history of the fluid, it will be possible to characterize the process. The <span class="hlt">phase</span> <span class="hlt">separation</span> experiment is totally self-contained, with three levels of containment on all fluids, and provides all necessary electrical power and control. The controller regulates the temperature of the fluid and controls data logging and sampling. An astronaut-activated switch will initiate the experiment and an unmaskable interrupt is provided for shutdown. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS 42 in April 1991. Presented here are the design and the production of a fluid <span class="hlt">phase</span> <span class="hlt">separation</span> experiment for rapid implementation at low cost.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25314443','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25314443"><span>Hydrodynamic suppression of <span class="hlt">phase</span> <span class="hlt">separation</span> in active suspensions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Matas-Navarro, Ricard; Golestanian, Ramin; Liverpool, Tanniemola B; Fielding, Suzanne M</p> <p>2014-09-01</p> <p>We simulate with hydrodynamics a suspension of active disks squirming through a Newtonian fluid. We explore numerically the full range of squirmer area fractions from dilute to close packed and show that "motility induced <span class="hlt">phase</span> <span class="hlt">separation</span>," which was recently proposed to arise generically in active matter, and which has been seen in simulations of active Brownian disks, is strongly suppressed by hydrodynamic interactions. We give an argument for why this should be the case and support it with counterpart simulations of active Brownian disks in a parameter regime that provides a closer counterpart to hydrodynamic suspensions than in previous studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25167424','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25167424"><span>Three-dimensional coherent x-ray diffraction imaging of molten iron in mantle olivine at <span class="hlt">nanoscale</span> resolution.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Huaidong; Xu, Rui; Chen, Chien-Chun; Yang, Wenge; Fan, Jiadong; Tao, Xutang; Song, Changyong; Kohmura, Yoshiki; Xiao, Tiqiao; Wang, Yong; Fei, Yingwei; Ishikawa, Tetsuya; Mao, Wendy L; Miao, Jianwei</p> <p>2013-05-17</p> <p>We report quantitative 3D coherent x-ray diffraction imaging of a molten Fe-rich alloy and crystalline olivine sample, synthesized at 6 GPa and 1800 °C, with <span class="hlt">nanoscale</span> resolution. The 3D mass density map is determined and the 3D distribution of the Fe-rich and Fe-S <span class="hlt">phases</span> in the olivine-Fe-S sample is observed. Our results indicate that the Fe-rich melt exhibits varied 3D shapes and sizes in the olivine matrix. This work has potential for not only improving our understanding of the complex interactions between Fe-rich core-forming melts and mantle silicate <span class="hlt">phases</span> but also paves the way for quantitative 3D imaging of materials at <span class="hlt">nanoscale</span> resolution under extreme pressures and temperatures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29772340','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29772340"><span>Effects of temperature and solvent condition on <span class="hlt">phase</span> <span class="hlt">separation</span> induced molecular fractionation of gum arabic/hyaluronan aqueous mixtures.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Bing; Han, Lingyu; Gao, Zhiming; Zhang, Ke; Al-Assaf, Saphwan; Nishinari, Katsuyoshi; Phillips, Glyn O; Yang, Jixin; Fang, Yapeng</p> <p>2018-05-14</p> <p>Effects of temperature and solvent condition on <span class="hlt">phase</span> <span class="hlt">separation</span>-induced molecular fractionation of gum arabic/hyaluronan (GA/HA) mixed solutions were investigated. Two gum arabic samples (EM10 and STD) with different molecular weights and polydispersity indices were used. <span class="hlt">Phase</span> diagrams, including cloud and binodal curves, were established by visual observation and GPC-RI methods. The molecular parameters of control and fractionated GA, from upper and bottom <span class="hlt">phases</span>, were measured by GPC-MALLS. Fractionation of GA increased the content of arabinogalactan-protein complex (AGP) from ca. 11% to 18% in STD/HA system and 28% to 55% in EM10/HA system. The <span class="hlt">phase</span> <span class="hlt">separation</span>-induced molecular fractionation was further studied as a function of temperature and solvent condition (varying ionic strength and ethanol content). Increasing salt concentration (from 0.5 to 5 mol/L) greatly reduced the extent of <span class="hlt">phase</span> <span class="hlt">separation</span>-induced fractionation. This effect may be ascribed to changes in the degree of ionization and shielding of the acid groups. Increasing temperature (from 4 °C to 80 °C) also exerted a significant influence on <span class="hlt">phase</span> <span class="hlt">separation</span>-induced fractionation. The best temperature for GA/HA mixture system was 40 °C while higher temperature negatively affected the fractionation due to denaturation and possibly degradation in mixed solutions. Increasing the ethanol content up to 30% showed almost no effect on the <span class="hlt">phase</span> <span class="hlt">separation</span> induced fractionation. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ANSNN...9a5009Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ANSNN...9a5009Y"><span>Conducting polymer networks synthesized by photopolymerization-induced <span class="hlt">phase</span> <span class="hlt">separation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamashita, Yuki; Komori, Kana; Murata, Tasuku; Nakanishi, Hideyuki; Norisuye, Tomohisa; Yamao, Takeshi; Tran-Cong-Miyata, Qui</p> <p>2018-03-01</p> <p>Polymer mixtures composed of double networks of a polystyrene derivative (PSAF) and poly(methyl methacrylate) (PMMA) were alternatively synthesized by using ultraviolet (UV) and visible (Vis) light. The PSAF networks were generated by UV irradiation to photodimerize the anthracene (A) moieties labeled on the PSAF chains, whereas PMMA networks were produced by photopolymerization of methyl methacrylate (MMA) monomer and the cross-link reaction using ethylene glycol dimethacrylate (EGDMA) under Vis light irradiation. It was found that <span class="hlt">phase</span> <span class="hlt">separation</span> process of these networks can be independently induced and promptly controlled by using UV and Vis light. The characteristic length scale distribution of the resulting co-continuous morphology can be well regulated by the UV and Vis light intensity. In order to confirm and utilize the connectivity of the bicontinuous morphology observed by confocal microscopy, a very small amount, 0.1 wt%, of multi-walled carbon nanotubes (MWCNTs) was introduced into the mixture and the current-voltage (I-V) relationship was subsequently examined. Preliminary data show that MWCNTs are preferentially dispersed in the PSAF-rich continuous domains and the whole mixture became electrically conducting, confirming the connectivity of the observed bi-continuous morphology. The experimental data obtained in this study reveal a promising method to design various scaffolds for conducting soft matter taking advantages of photopolymerization-induced <span class="hlt">phase</span> <span class="hlt">separation</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27498928','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27498928"><span>Understanding the mechanism of LCST <span class="hlt">phase</span> <span class="hlt">separation</span> of mixed ionic liquids in water by MD simulations.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Yuling; Wang, Huiyong; Pei, Yuanchao; Liu, Zhiping; Wang, Jianji</p> <p>2016-08-17</p> <p>Recently, it has been found experimentally that two different amino acid ionic liquids (ILs) can be mixed to show unique lowest critical solution temperature (LCST) <span class="hlt">phase</span> <span class="hlt">separation</span> in water. However, little is known about the mechanism of <span class="hlt">phase</span> <span class="hlt">separation</span> in these IL/water mixtures at the molecular level. In this work, five kinds of amino acid ILs were chosen to study the mechanism of LCST-type <span class="hlt">phase</span> <span class="hlt">separation</span> by molecular dynamics (MD) simulations. Toward this end, a series of all-atom MD simulations were carried out on the ternary mixtures consisting of two different ILs and water at different temperatures. The various interaction energies and radial distribution functions (RDFs) were calculated and analyzed for these mixed systems. It was found that for amino acid ILs, the -NH2 or -COOH group of one anion could have a hydrogen bonding interaction with the -COO(-) group of another anion. With the increase of temperature, this kind of hydrogen bonding interaction between anions was strengthened and then the anion-H2O electrostatic interaction was weakened, which led to the LCST-type <span class="hlt">phase</span> <span class="hlt">separation</span> of the mixed ILs in water. In addition, a series of MD simulations for [P6668]1[Lys]n[Asp]1-n/H2O systems were also performed to study the effect of the mixing ratio of ILs on <span class="hlt">phase</span> <span class="hlt">separation</span>. It was also noted that the experimental critical composition corresponding to the lowest critical solution temperature was well predicted from the total electrostatic interaction energies as a function of mole fraction of [P6668][Lys] in these systems. The conclusions drawn from this study may provide new insight into the LCST-type <span class="hlt">phase</span> behavior of ILs in water, and motivate further studies on practical applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025943','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025943"><span>Extraordinary <span class="hlt">phase</span> <span class="hlt">separation</span> and segregation in vent fluids from the southern East Pacific Rise</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Von Damm, Karen L.; Lilley, M.D.; Shanks, Wayne C.; Brockington, M.; Bray, A.M.; O'Grady, K. M.; Olson, E.; Graham, A.; Proskurowski, G.</p> <p>2003-01-01</p> <p>The discovery of Brandon vent on the southern East Pacific Rise is providing new insights into the controls on midocean ridge hydrothermal vent fluid chemistry. The physical conditions at the time ofsampling (287 bar and 405??C) place the Brandon fluids very close to the critical point of seawater (298 bar and 407??C). This permits in situ study of the effects of near criticalphenomena, which are interpreted to be the primary cause of enhanced transition metal transport in these fluids. Of the five orifices on Brandon sampled, three were venting fluids with less than seawater chlorinity, and two were venting fluids with greater than seawater chlorinity. The liquid <span class="hlt">phase</span> orifices contain 1.6-1.9 times the chloride content of the vapors. Most other elements, excluding the gases, have this same ratio demonstrating the conservative nature of <span class="hlt">phase</span> <span class="hlt">separation</span> and the lack of subsequent water-rock interaction. The vapor and liquid <span class="hlt">phases</span> vent at the same time from orifices within meters of each other on the Brandon structure. Variations in fluid compositions occur on a time scale of minutes. Our interpretation is that <span class="hlt">phase</span> <span class="hlt">separation</span> and segregation must be occurring 'real time' within the sulfide structure itself. Fluids from Brandon therefore provide an unique opportunity to understand in situ <span class="hlt">phase</span> <span class="hlt">separation</span> without the overprinting of continued water-rock interaction with the oceanic crust, as well as critical phenomena. ?? 2002 Elsevier Science B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999RScI...70.4582Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999RScI...70.4582Y"><span>Operation of a <span class="hlt">separated</span>-type x-ray interferometer for <span class="hlt">phase</span>-contrast x-ray imaging</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoneyama, Akio; Momose, Atsushi; Seya, Eiichi; Hirano, Keiichi; Takeda, Tohoru; Itai, Yuji</p> <p>1999-12-01</p> <p>Aiming at large-area <span class="hlt">phase</span>-contrast x-ray imaging, a <span class="hlt">separated</span>-type x-ray interferometer system was designed and developed to produce 25×20 mm interference patterns. The skew-symmetric optical system was adopted because of the feasibility of alignment. The rotation between the <span class="hlt">separated</span> crystal blocks was controlled within a drift of 0.06 nrad using a feedback positioning system. This interferometer generated a 25×15 mm interference pattern with 0.07 nm synchrotron x-rays. A slice of a rabbit's kidney was observed, and its tubular structure could be revealed in a measured <span class="hlt">phase</span> map.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27082856','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27082856"><span>Variation in pH of Model Secondary Organic Aerosol during Liquid-Liquid <span class="hlt">Phase</span> <span class="hlt">Separation</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dallemagne, Magda A; Huang, Xiau Ya; Eddingsaas, Nathan C</p> <p>2016-05-12</p> <p>The majority of atmospheric aerosols consist of both organic and inorganic components. At intermediate relative humidity (RH), atmospheric aerosol can undergo liquid-liquid <span class="hlt">phase</span> <span class="hlt">separation</span> (LLPS) in which the organic and inorganic fractions segregate from each other. We have extended the study of LLPS to the effect that <span class="hlt">phase</span> <span class="hlt">separation</span> has on the pH of the overall aerosols and the pH of the individual <span class="hlt">phases</span>. Using confocal microscopy and pH sensitive dyes, the pH of internally mixed model aerosols consisting of polyethylene glycol 400 and ammonium sulfate as well as the pH of the organic fraction during LLPS have been directly measured. During LLPS, the pH of the organic fraction was observed to increase to 4.2 ± 0.2 from 3.8 ± 0.1 under high RH when the aerosol was internally mixed. In addition, the high spatial resolution of the confocal microscope allowed us to characterize the composition of each of the <span class="hlt">phases</span>, and we have observed that during LLPS the organic shell still contains large quantities of water and should be characterized as an aqueous organic-rich <span class="hlt">phase</span> rather than simply an organic <span class="hlt">phase</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22694325','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22694325"><span><span class="hlt">Nanoscale</span> elastic modulus variation in loaded polymeric micelle reactors.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Solmaz, Alim; Aytun, Taner; Deuschle, Julia K; Ow-Yang, Cleva W</p> <p>2012-07-17</p> <p>Tapping mode atomic force microscopy (TM-AFM) enables mapping of chemical composition at the <span class="hlt">nanoscale</span> by taking advantage of the variation in <span class="hlt">phase</span> angle shift arising from an embedded second <span class="hlt">phase</span>. We demonstrate that <span class="hlt">phase</span> contrast can be attributed to the variation in elastic modulus during the imaging of zinc acetate (ZnAc)-loaded reverse polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock co-polymer micelles less than 100 nm in diameter. Three sample configurations were characterized: (i) a 31.6 μm thick polystyrene (PS) support film for eliminating the substrate contribution, (ii) an unfilled PS-b-P2VP micelle supported by the same PS film, and (iii) a ZnAc-loaded PS-b-P2VP micelle supported by the same PS film. Force-indentation (F-I) curves were measured over unloaded micelles on the PS film and over loaded micelles on the PS film, using standard tapping mode probes of three different spring constants, the same cantilevers used for imaging of the samples before and after loading. For calibration of the tip geometry, nanoindentation was performed on the bare PS film. The resulting elastic modulus values extracted by applying the Hertz model were 8.26 ± 3.43 GPa over the loaded micelles and 4.17 ± 1.65 GPa over the unloaded micelles, confirming that <span class="hlt">phase</span> contrast images of a monolayer of loaded micelles represent maps of the <span class="hlt">nanoscale</span> chemical and mechanical variation. By calibrating the tip geometry indirectly using a known soft material, we are able to use the same standard tapping mode cantilevers for both imaging and indentation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97l5421B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97l5421B"><span>Fluid-sensitive <span class="hlt">nanoscale</span> switching with quantum levitation controlled by α -Sn/β -Sn <span class="hlt">phase</span> transition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boström, Mathias; Dou, Maofeng; Malyi, Oleksandr I.; Parashar, Prachi; Parsons, Drew F.; Brevik, Iver; Persson, Clas</p> <p>2018-03-01</p> <p>We analyze the Lifshitz pressure between silica and tin <span class="hlt">separated</span> by a liquid mixture of bromobenzene and chlorobenzene. We show that the <span class="hlt">phase</span> transition from semimetallic α -Sn to metallic β -Sn can switch Lifshitz forces from repulsive to attractive. This effect is caused by the difference in dielectric functions of α -Sn and β -Sn , giving both attractive and repulsive contributions to the total Lifshitz pressure in different frequency regions controlled by the composition of the intervening liquid mixture. In this way, one may be able to produce <span class="hlt">phase</span>-transition-controlled quantum levitation in a liquid medium.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1417992-direct-visualization-phase-separation-between-superconducting-nematic-domains-co-doped-cafe2as2-close-first-order-phase-transition','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1417992-direct-visualization-phase-separation-between-superconducting-nematic-domains-co-doped-cafe2as2-close-first-order-phase-transition"><span>Direct visualization of <span class="hlt">phase</span> <span class="hlt">separation</span> between superconducting and nematic domains in Co-doped CaFe 2 As 2 close to a first-order <span class="hlt">phase</span> transition</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Fente, Antón; Correa-Orellana, Alexandre; Böhmer, Anna E.; ...</p> <p>2018-01-09</p> <p>We show that biaxial strain induces alternating tetragonal superconducting and orthorhombic nematic domains in Co substituted CaFe 2As 2. We use Atomic Force, Magnetic Force and Scanning Tunneling Microscopy (AFM, MFM and STM) to identify the domains and characterize their properties, nding in particular that tetragonal superconducting domains are very elongated, more than several tens of μm long and about 30 nm wide, have the same Tc than unstrained samples and hold vortices in a magnetic eld. Thus, biaxial strain produces a <span class="hlt">phase</span> <span class="hlt">separated</span> state, where each <span class="hlt">phase</span> is equivalent to what is found at either side of the rstmore » order <span class="hlt">phase</span> transition between antiferromagnetic orthorhombic and superconducting tetragonal <span class="hlt">phases</span> found in unstrained samples when changing Co concentration. Having such alternating superconducting domains <span class="hlt">separated</span> by normal conducting domains with sizes of order of the coherence length opens opportunities to build Josephson junction networks or vortex pinning arrays and suggests that first order quantum <span class="hlt">phase</span> transitions lead to nanometric size <span class="hlt">phase</span> <span class="hlt">separation</span> under the influence of strain.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26716336','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26716336"><span>Effect of Iron Oxide and <span class="hlt">Phase</span> <span class="hlt">Separation</span> on the Color of Blue Jun Ware Glaze.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Fen; Yang, Changan; Zhu, Jianfeng; Lin, Ying</p> <p>2015-09-01</p> <p>Based on the traditional Jun ware glaze, the imitated Jun ware glazes were prepared by adding iron oxide and introducing <span class="hlt">phase</span> <span class="hlt">separation</span> agent apatite through four-angle-method. The effect of iron oxide contents, <span class="hlt">phase</span> <span class="hlt">separation</span> and the firing temperature on the color of Jun ware glazes were investigated by a neutral atmosphere experiment, optical microscope and scanning electronic microscope. The results showed that the colorant, mainly Fe2O3, contributed to the Jun ware glaze blue and cyan colors of Jun ware glaze. The light scatter caused by the small droplets in <span class="hlt">phase</span> <span class="hlt">separation</span> structure only influenced the shade of the glaze color, intensify or weaken the color, and thus made the glaze perfect and elegant opal visual effects, but was not the origin of general blue or cyan colors of Jun ware glaze. In addition, the firing temperature and the basic glaze composition affected the glaze colors to some extent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NJPh...20d5008W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NJPh...20d5008W"><span>Stress granule formation via ATP depletion-triggered <span class="hlt">phase</span> <span class="hlt">separation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wurtz, Jean David; Lee, Chiu Fan</p> <p>2018-04-01</p> <p>Stress granules (SG) are droplets of proteins and RNA that form in the cell cytoplasm during stress conditions. We consider minimal models of stress granule formation based on the mechanism of <span class="hlt">phase</span> <span class="hlt">separation</span> regulated by ATP-driven chemical reactions. Motivated by experimental observations, we identify a minimal model of SG formation triggered by ATP depletion. Our analysis indicates that ATP is continuously hydrolysed to deter SG formation under normal conditions, and we provide specific predictions that can be tested experimentally.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11870750','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11870750"><span>Use of vancomycin silica stationary <span class="hlt">phase</span> in packed capillary electrochromatography: III. enantiomeric <span class="hlt">separation</span> of basic compounds with the polar organic mobile <span class="hlt">phase</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fanali, Salvatore; Catarcini, Paolo; Quaglia, Maria Giovanna</p> <p>2002-02-01</p> <p>The <span class="hlt">separation</span> of basic compounds into their enantiomers was achieved using capillary electrochromatography in 50 or 75 microm inner diameter (ID) fused-silica capillaries packed with silica a stationary <span class="hlt">phase</span> derivatized with vancomycin and mobile <span class="hlt">phases</span> composed of mixtures of polar organic solvents containing 13 mM ammonium acetate. Enantiomer resolution, electroosmotic flow, and the number of theoretical plates were strongly influenced by the type and concentration of the organic solvent. Mobile <span class="hlt">phases</span> composed of 13 mM ammonium acetate dissolved in mixtures of acetonitrile/methanol, ethanol, n-propanol, or isopropanol were tested and the highest enantioresolutions were achieved using the first mobile <span class="hlt">phase</span>, allowing the <span class="hlt">separation</span> of almost all investigated enantiomers (9 from 11 basic compounds). The use of capillaries with different ID (50 and 75 microm ID) packed with the same chiral stationary <span class="hlt">phase</span> revealed that a higher number of theoretical plates and higher enantioresolution was achieved with the tube with lowest ID.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21645703','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21645703"><span>Integration of carboxyl modified magnetic particles and aqueous two-<span class="hlt">phase</span> extraction for selective <span class="hlt">separation</span> of proteins.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gai, Qingqing; Qu, Feng; Zhang, Tao; Zhang, Yukui</p> <p>2011-07-15</p> <p>Both of the magnetic particle adsorption and aqueous two-<span class="hlt">phase</span> extraction (ATPE) were simple, fast and low-cost method for protein <span class="hlt">separation</span>. Selective proteins adsorption by carboxyl modified magnetic particles was investigated according to protein isoelectric point, solution pH and ionic strength. Aqueous two-<span class="hlt">phase</span> system of PEG/sulphate exhibited selective <span class="hlt">separation</span> and extraction for proteins before and after magnetic adsorption. The two combination ways, magnetic adsorption followed by ATPE and ATPE followed by magnetic adsorption, for the <span class="hlt">separation</span> of proteins mixture of lysozyme, bovine serum albumin, trypsin, cytochrome C and myloglobin were discussed and compared. The way of magnetic adsorption followed by ATPE was also applied to human serum <span class="hlt">separation</span>. Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22310769-measuring-local-volume-fraction-long-wavelength-correlations-fractionation-phase-separating-polydisperse-fluid','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22310769-measuring-local-volume-fraction-long-wavelength-correlations-fractionation-phase-separating-polydisperse-fluid"><span>Measuring local volume fraction, long-wavelength correlations, and fractionation in a <span class="hlt">phase-separating</span> polydisperse fluid</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Williamson, J. J., E-mail: johnjosephwilliamson@gmail.com; Evans, R. M. L.</p> <p></p> <p>We dynamically simulate fractionation (partitioning of particle species) during spinodal gas-liquid <span class="hlt">separation</span> of a size-polydisperse colloid, using polydispersity up to ∼40% and a skewed parent size distribution. We introduce a novel coarse-grained Voronoi method to minimise size bias in measuring local volume fraction, along with a variety of spatial correlation functions which detect fractionation without requiring a clear distinction between the <span class="hlt">phases</span>. These can be applied whether or not a system is <span class="hlt">phase</span> <span class="hlt">separated</span>, to determine structural correlations in particle size, and generalise easily to other kinds of polydispersity (charge, shape, etc.). We measure fractionation in both mean size andmore » polydispersity between the <span class="hlt">phases</span>, its direction differing between model interaction potentials which are identical in the monodisperse case. These qualitative features are predicted by a perturbative theory requiring only a monodisperse reference as input. The results show that intricate fractionation takes place almost from the start of <span class="hlt">phase</span> <span class="hlt">separation</span>, so can play a role even in nonequilibrium arrested states. The methods for characterisation of inhomogeneous polydisperse systems could in principle be applied to experiment as well as modelling.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997APS..MAR.B1505L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997APS..MAR.B1505L"><span>Renormalization-Group Theory Study of Superfluidity and <span class="hlt">Phase</span> <span class="hlt">Separation</span> of Helium Mixtures Immersed in Jungle-Gym Aerogel</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lopatnikova, Anna; Berker, A. Nihat</p> <p>1997-03-01</p> <p>Superfluidity and <span class="hlt">phase</span> <span class="hlt">separation</span> in ^3He-^4He mixtures immersed in jungle-gym (non-random) aerogel are studied by renormalization-group theory.(Phys. Rev. B, in press (1996)) <span class="hlt">Phase</span> diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low ^4He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid <span class="hlt">phase</span> <span class="hlt">separation</span>, terminating at an isolated critical point, is found entirely within the superfluid <span class="hlt">phase</span>. These phenomena, and trends with respect to aerogel concentration, are explained by the connectivity and tenuousness of jungle-gym aerogel.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPS...310...61A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPS...310...61A"><span>Three-dimensional <span class="hlt">phase</span> segregation of micro-porous layers for fuel cells by <span class="hlt">nano-scale</span> X-ray computed tomography</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andisheh-Tadbir, Mehdi; Orfino, Francesco P.; Kjeang, Erik</p> <p>2016-04-01</p> <p>Modern hydrogen powered polymer electrolyte fuel cells (PEFCs) utilize a micro-porous layer (MPL) consisting of carbon nanoparticles and polytetrafluoroethylene (PTFE) to enhance the transport phenomena and performance while reducing cost. However, the underlying mechanisms are not yet completely understood due to a lack of information about the detailed MPL structure and properties. In the present work, the 3D <span class="hlt">phase</span> segregated nanostructure of an MPL is revealed for the first time through the development of a customized, non-destructive procedure for monochromatic <span class="hlt">nano-scale</span> X-ray computed tomography visualization. Utilizing this technique, it is discovered that PTFE is situated in conglomerated regions distributed randomly within connected domains of carbon particles; hence, it is concluded that PTFE acts as a binder for the carbon particles and provides structural support for the MPL. Exposed PTFE surfaces are also observed that will aid the desired hydrophobicity of the material. Additionally, the present approach uniquely enables <span class="hlt">phase</span> segregated calculation of effective transport properties, as reported herein, which is particularly important for accurate estimation of electrical and thermal conductivity. Overall, the new imaging technique and associated findings may contribute to further performance improvements and cost reduction in support of fuel cell commercialization for clean energy applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28218829','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28218829"><span>Kinetics of Polymer-Fullerene <span class="hlt">Phase</span> <span class="hlt">Separation</span> during Solvent Annealing Studied by Table-Top X-ray Scattering.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vegso, Karol; Siffalovic, Peter; Jergel, Matej; Nadazdy, Peter; Nadazdy, Vojtech; Majkova, Eva</p> <p>2017-03-08</p> <p>Solvent annealing is an efficient way of <span class="hlt">phase</span> <span class="hlt">separation</span> in polymer-fullerene blends to optimize bulk heterojunction morphology of active layer in polymer solar cells. To track the process in real time across all relevant stages of solvent evaporation, laboratory-based in situ small- and wide-angle X-ray scattering measurements were applied simultaneously to a model P3HT:PCBM blend dissolved in dichlorobenzene. The PCBM molecule agglomeration starts at ∼7 wt % concentration of solid content of the blend in solvent. Although PCBM agglomeration is slowed-down at ∼10 wt % of solid content, the rate constant of <span class="hlt">phase</span> <span class="hlt">separation</span> is not changed, suggesting agglomeration and reordering of P3HT molecular chains. Having the longest duration, this stage most affects BHJ morphology. <span class="hlt">Phase</span> <span class="hlt">separation</span> is accelerated rapidly at concentration of ∼25 wt %, having the same rate constant as the growth of P3HT crystals. P3HT crystallization is driving force for <span class="hlt">phase</span> <span class="hlt">separation</span> at final stages before a complete solvent evaporation, having no visible temporal overlap with PCBM agglomeration. For the first time, such a study was done in laboratory demonstrating potential of the latest generation table-top high-brilliance X-ray source as a viable alternative before more sophisticated X-ray scattering experiments at synchrotron facilities are performed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SPIE.7712E..31A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SPIE.7712E..31A"><span><span class="hlt">Nanoscale</span> plasmonic waveguides for filtering and demultiplexing devices</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akjouj, A.; Noual, A.; Pennec, Y.; Bjafari-Rouhani, B.</p> <p>2010-05-01</p> <p>Numerical simulations, based on a FDTD (finite-difference-time-domain) method, of infrared light propagation for add/drop filtering in two-dimensional (2D) Ag-SiO2-Ag resonators are reported to design 2D Y-bent plasmonic waveguides with possible applications in telecommunication WDM (wavelength demultiplexing). First, we study optical transmission and reflection of a <span class="hlt">nanoscale</span> SiO2 waveguide coupled to a nanocavity of the same insulator located either inside or on the side of a linear waveguide sandwiched between Ag. According to the inside or outside positioning of the nanocavity with respect to the waveguide, the transmission spectrum displays peaks or dips, respectively, which occur at the same central frequency. A fundamental study of the possible cavity modes in the near-infrared frequency band is also given. These filtering properties are then exploited to propose a <span class="hlt">nanoscale</span> demultiplexer based on a Y-shaped plasmonic waveguide for <span class="hlt">separation</span> of two different wavelengths, in selection or rejection, from an input broadband signal around 1550 nm. We detail coupling of the 2D add/drop Y connector to two cavities inserted on each of its branches.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26551593','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26551593"><span>Creating Drug Solubilization Compartments via <span class="hlt">Phase</span> <span class="hlt">Separation</span> in Multicomponent Buccal Patches Prepared by Direct Hot Melt Extrusion-Injection Molding.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alhijjaj, Muqdad; Bouman, Jacob; Wellner, Nikolaus; Belton, Peter; Qi, Sheng</p> <p>2015-12-07</p> <p>Creating in situ <span class="hlt">phase</span> <span class="hlt">separation</span> in solid dispersion based formulations to allow enhanced functionality of the dosage form, such as improving dissolution of poorly soluble model drug as well as being mucoadhesive, can significantly maximize the in vitro and in vivo performance of the dosage form. This formulation strategy can benefit a wide range of solid dosage forms for oral and alternative routes of delivery. This study using buccal patches as an example created <span class="hlt">separated</span> <span class="hlt">phases</span> in situ of the buccal patches by selecting the excipients with different miscibility with each other and the model drug. The quaternary dispersion based buccal patches containing PEG, PEO, Tween 80, and felodipine were prepared by direct hot melt extrusion-injection molding (HME-IM). The partial miscibility between Tween 80 and semicrystalline PEG-PEO led to the <span class="hlt">phase</span> <span class="hlt">separation</span> after extrusion. The Tween <span class="hlt">phases</span> acted as drug solubilization compartments, and the PEG-PEO <span class="hlt">phase</span> had the primary function of providing mucoadhesion and carrier controlled dissolution. As felodipine was preferably solubilized in the amorphous regions of PEG-PEO, the high crystallinity of PEG-PEO resulted in an overall low drug solubilizing capacity. Tween 80 was added to improve the solubilization capacity of the system as the model drug showed good solubility in Tween. Increasing the drug loading led to the supersaturation of drug in Tween compartments and crystalline drug dispersed in PEG-PEO <span class="hlt">phases</span>. The spatial distribution of these <span class="hlt">phase-separated</span> compartments was mapped using X-ray micro-CT, which revealed that the domain size and heterogeneity of the <span class="hlt">phase</span> <span class="hlt">separation</span> increased with increasing the drug loading. The outcome of this study provides new insights into the applicability of in situ formed <span class="hlt">phase</span> <span class="hlt">separation</span> as a formulation strategy for the delivery of poorly soluble drugs and demonstrated the basic principle of excipient selection for such technology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19122854','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19122854"><span><span class="hlt">Nanoscale</span> potentiometry.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bakker, Eric; Pretsch, Ernö</p> <p>2008-01-01</p> <p>Potentiometric sensors share unique characteristics that set them apart from other electrochemical sensors. Potentiometric nanoelectrodes have been reported and successfully used for many decades, and we review these developments. Current research chiefly focuses on <span class="hlt">nanoscale</span> films at the outer or the inner side of the membrane, with outer layers for increasing biocompatibility, expanding the sensor response, or improving the limit of detection (LOD). Inner layers are mainly used for stabilizing the response and eliminating inner aqueous contacts or undesired <span class="hlt">nanoscale</span> layers of water. We also discuss the ultimate detectability of ions with such sensors and the power of coupling the ultra-low LODs of ion-selective electrodes with nanoparticle labels to give attractive bioassays that can compete with state-of-the-art electrochemical detection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAP...121b3906D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAP...121b3906D"><span>Coherent Fe-rich <span class="hlt">nano-scale</span> perovskite oxide <span class="hlt">phase</span> in epitaxial Sr2FeMoO6 films grown on cubic and scandate substrates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deniz, Hakan; Preziosi, Daniele; Alexe, Marin; Hesse, Dietrich</p> <p>2017-01-01</p> <p>We report the growth of high-quality epitaxial Sr2FeMoO6 (SFMO) thin films on various unconventional oxide substrates, such as TbScO3, DyScO3, and Sr2Al0.3Ga0.7TaO6 (SAGT) as well as on the most commonly used one, SrTiO3 (STO), by pulsed laser deposition. The films were found to contain a foreign <span class="hlt">nano-scale</span> <span class="hlt">phase</span> coherently embedded inside the SFMO film matrix. Through energy dispersive X-ray spectroscopy and scanning transmission electron microscopy, we identified the foreign <span class="hlt">phase</span> to be Sr2-xFe1+yMo1-yO6, an off-stoichiometric derivative of the SFMO compound with Fe rich content (y ≈ 0.6) and a fairly identical crystal structure to SFMO. The films on STO and SAGT exhibited very good magnetic properties with high Curie temperature values. All the samples have fairly good conducting behavior albeit the presence of a foreign <span class="hlt">phase</span>. Despite the relatively large number of items of the foreign <span class="hlt">phase</span>, there is no significant deterioration in the properties of the SFMO films. We discuss in detail how magneto-transport properties are affected by the foreign <span class="hlt">phase</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JPCM...26T4108Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JPCM...26T4108Q"><span>Aggregation in complex triacylglycerol oils: coarse-grained models, nanophase <span class="hlt">separation</span>, and predicted x-ray intensities</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Quinn, Bonnie; Peyronel, Fernanda; Gordon, Tyler; Marangoni, Alejandro; Hanna, Charles B.; Pink, David A.</p> <p>2014-11-01</p> <p>Triacylglycerols (TAGs) are biologically important molecules which form crystalline nanoplatelets (CNPs) and, ultimately, fat crystal networks in edible oils. Characterizing the self-assembled hierarchies of these networks is important to understanding their functionality and oil binding capacity. We have modelled CNPs in multicomponent oils and studied their aggregation. The oil comprises (a) a liquid componentt, and (b) components which <span class="hlt">phase</span> <span class="hlt">separately</span> on a <span class="hlt">nano-scale</span> (nano-<span class="hlt">phase</span> <span class="hlt">separation</span>) to coat the surfaces of the CNPs impenetrably, either isotropically or anisotropically, with either liquid-like coatings or crystallites, forming a coating of thickness Δ. We modelled three cases: (i) liquid-liquid nano-<span class="hlt">phase</span> <span class="hlt">separation</span>, (ii) solid-liquid nano-<span class="hlt">phase</span> <span class="hlt">separation</span>, with CNPs coated isotropically, and (iii) CNPs coated anisotropically. The models were applied to mixes of tristearin and triolein with fully hydrogenated canola oil, shea butter with high oleic sunflower oil, and cotton seed oil. We performed Monte Carlo simulations, computed structure functions and concluded: (1) three regimes arose: (a) thin coating regime, Δ \\lt 0.0701 u (b) transition regime, 0.0701 u≤slant Δ ≤slant 0.0916 u and (c) thick coating regime, Δ \\gt 0.0916 u . (arbitrary units, u) (2) The thin coating regime exhibits 1D TAGwoods, which aggregate, via DLCA/RLCA, into fractal structures which are uniformly distributed in space. (3) In the thick coating regime, for an isotropic coating, TAGwoods are not formed and coated CNPs will not aggregate but will be uniformly distributed in space. For anisotropic coating, TAGwoods can be formed and might form 1D strings but will not form DLCA/RLCA clusters. (4) The regimes are, approximately: thin coating, 0\\lt Δ \\lt 7.0 \\text{nm} transition regime, 7.0\\ltΔ \\lt 9.2 \\text{nm} and thick coating, Δ \\gt 9.2 \\text{nm} (5) The minimum minority TAG concentration required to undergo nano-<span class="hlt">phase</span> <span class="hlt">separation</span> is, approximately, 0.29% (thin</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25347720','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25347720"><span>Aggregation in complex triacylglycerol oils: coarse-grained models, nanophase <span class="hlt">separation</span>, and predicted x-ray intensities.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Quinn, Bonnie; Peyronel, Fernanda; Gordon, Tyler; Marangoni, Alejandro; Hanna, Charles B; Pink, David A</p> <p>2014-11-19</p> <p>Triacylglycerols (TAGs) are biologically important molecules which form crystalline nanoplatelets (CNPs) and, ultimately, fat crystal networks in edible oils. Characterizing the self-assembled hierarchies of these networks is important to understanding their functionality and oil binding capacity. We have modelled CNPs in multicomponent oils and studied their aggregation. The oil comprises (a) a liquid component, and (b) components which <span class="hlt">phase</span> <span class="hlt">separately</span> on a <span class="hlt">nano-scale</span> (nano-<span class="hlt">phase</span> <span class="hlt">separation</span>) to coat the surfaces of the CNPs impenetrably, either isotropically or anisotropically, with either liquid-like coatings or crystallites, forming a coating of thickness ?. We modelled three cases: (i) liquid?liquid nano-<span class="hlt">phase</span> <span class="hlt">separation</span>, (ii) solid?liquid nano-<span class="hlt">phase</span> <span class="hlt">separation</span>, with CNPs coated isotropically, and (iii) CNPs coated anisotropically. The models were applied to mixes of tristearin and triolein with fully hydrogenated canola oil, shea butter with high oleic sunflower oil, and cotton seed oil. We performed Monte Carlo simulations, computed structure functions and concluded: (1) three regimes arose: (a) thin coating regime, Δ < 0.0701 u (b) transition regime, 0.0701 u ≤ Δ ≤ 0.0916 u and (c) thick coating regime, Δ > 0.0916 u. (arbitrary units, u) (2) The thin coating regime exhibits 1D TAGwoods, which aggregate, via DLCA/RLCA, into fractal structures which are uniformly distributed in space. (3) In the thick coating regime, for an isotropic coating, TAGwoods are not formed and coated CNPs will not aggregate but will be uniformly distributed in space. For anisotropic coating, TAGwoods can be formed and might form 1D strings but will not form DLCA/RLCA clusters. (4) The regimes are, approximately: thin coating, 0 < Δ < 7.0 nm transition regime, 7.0 < Δ < 9.2 nm and thick coating, Δ > 9.2 nm (5) The minimum minority TAG concentration required to undergo nano-<span class="hlt">phase</span> <span class="hlt">separation</span> is, approximately, 0.29% (thin coatings) and 0.94% (thick coatings). Minority</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Nanos...7.9868B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Nanos...7.9868B"><span><span class="hlt">Phase</span> stability in <span class="hlt">nanoscale</span> material systems: extension from bulk <span class="hlt">phase</span> diagrams</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bajaj, Saurabh; Haverty, Michael G.; Arróyave, Raymundo; Goddard Frsc, William A., III; Shankar, Sadasivan</p> <p>2015-05-01</p> <p><span class="hlt">Phase</span> diagrams of multi-component systems are critical for the development and engineering of material alloys for all technological applications. At nano dimensions, surfaces (and interfaces) play a significant role in changing equilibrium thermodynamics and <span class="hlt">phase</span> stability. In this work, it is shown that these surfaces at small dimensions affect the relative equilibrium thermodynamics of the different <span class="hlt">phases</span>. The CALPHAD approach for material surfaces (also termed ``nano-CALPHAD'') is employed to investigate these changes in three binary systems by calculating their <span class="hlt">phase</span> diagrams at nano dimensions and comparing them with their bulk counterparts. The surface energy contribution, which is the dominant factor in causing these changes, is evaluated using the spherical particle approximation. It is first validated with the Au-Si system for which experimental data on <span class="hlt">phase</span> stability of spherical nano-sized particles is available, and then extended to calculate <span class="hlt">phase</span> diagrams of similarly sized particles of Ge-Si and Al-Cu. Additionally, the surface energies of the associated compounds are calculated using DFT, and integrated into the thermodynamic model of the respective binary systems. In this work we found changes in miscibilities, reaction compositions of about 5 at%, and solubility temperatures ranging from 100-200 K for particles of sizes 5 nm, indicating the importance of <span class="hlt">phase</span> equilibrium analysis at nano dimensions.<span class="hlt">Phase</span> diagrams of multi-component systems are critical for the development and engineering of material alloys for all technological applications. At nano dimensions, surfaces (and interfaces) play a significant role in changing equilibrium thermodynamics and <span class="hlt">phase</span> stability. In this work, it is shown that these surfaces at small dimensions affect the relative equilibrium thermodynamics of the different <span class="hlt">phases</span>. The CALPHAD approach for material surfaces (also termed ``nano-CALPHAD'') is employed to investigate these changes in three binary systems by</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhD...50p5401L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhD...50p5401L"><span>Continuously <span class="hlt">phase</span>-modulated standing surface acoustic waves for <span class="hlt">separation</span> of particles and cells in microfluidic channels containing multiple pressure nodes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Junseok; Rhyou, Chanryeol; Kang, Byungjun; Lee, Hyungsuk</p> <p>2017-04-01</p> <p>This paper describes continuously <span class="hlt">phase</span>-modulated standing surface acoustic waves (CPM-SSAW) and its application for particle <span class="hlt">separation</span> in multiple pressure nodes. A linear change of <span class="hlt">phase</span> in CPM-SSAW applies a force to particles whose magnitude depends on their size and contrast factors. During continuous <span class="hlt">phase</span> modulation, we demonstrate that particles with a target dimension are translated in the direction of moving pressure nodes, whereas smaller particles show oscillatory movements. The rate of <span class="hlt">phase</span> modulation is optimized for <span class="hlt">separation</span> of target particles from the relationship between mean particle velocity and period of oscillation. The developed technique is applied to <span class="hlt">separate</span> particles of a target dimension from the particle mixture. Furthermore, we also demonstrate human keratinocyte cells can be <span class="hlt">separated</span> in the cell and bead mixture. The <span class="hlt">separation</span> technique is incorporated with a microfluidic channel spanning multiple pressure nodes, which is advantageous over <span class="hlt">separation</span> in a single pressure node in terms of throughput.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5737219','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5737219"><span>Enrichment of dynamic chromosomal crosslinks drive <span class="hlt">phase</span> <span class="hlt">separation</span> of the nucleolus</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hult, Caitlin; Adalsteinsson, David; Vasquez, Paula A.; Lawrimore, Josh; Bennett, Maggie; York, Alyssa; Cook, Diana; Yeh, Elaine; Forest, Mark Gregory</p> <p>2017-01-01</p> <p>Abstract Regions of highly repetitive DNA, such as those found in the nucleolus, show a self-organization that is marked by spatial segregation and frequent self-interaction. The mechanisms that underlie the sequestration of these sub-domains are largely unknown. Using a stochastic, bead-spring representation of chromatin in budding yeast, we find enrichment of protein-mediated, dynamic chromosomal cross-links recapitulates the segregation, morphology and self-interaction of the nucleolus. Rates and enrichment of dynamic crosslinking have profound consequences on domain morphology. Our model demonstrates the nucleolus is <span class="hlt">phase</span> <span class="hlt">separated</span> from other chromatin in the nucleus and predicts that multiple rDNA loci will form a single nucleolus independent of their location within the genome. Fluorescent labeling of budding yeast nucleoli with CDC14-GFP revealed that a split rDNA locus indeed forms a single nucleolus. We propose that nuclear sub-domains, such as the nucleolus, result from <span class="hlt">phase</span> <span class="hlt">separations</span> within the nucleus, which are driven by the enrichment of protein-mediated, dynamic chromosomal crosslinks. PMID:28977453</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28977453','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28977453"><span>Enrichment of dynamic chromosomal crosslinks drive <span class="hlt">phase</span> <span class="hlt">separation</span> of the nucleolus.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hult, Caitlin; Adalsteinsson, David; Vasquez, Paula A; Lawrimore, Josh; Bennett, Maggie; York, Alyssa; Cook, Diana; Yeh, Elaine; Forest, Mark Gregory; Bloom, Kerry</p> <p>2017-11-02</p> <p>Regions of highly repetitive DNA, such as those found in the nucleolus, show a self-organization that is marked by spatial segregation and frequent self-interaction. The mechanisms that underlie the sequestration of these sub-domains are largely unknown. Using a stochastic, bead-spring representation of chromatin in budding yeast, we find enrichment of protein-mediated, dynamic chromosomal cross-links recapitulates the segregation, morphology and self-interaction of the nucleolus. Rates and enrichment of dynamic crosslinking have profound consequences on domain morphology. Our model demonstrates the nucleolus is <span class="hlt">phase</span> <span class="hlt">separated</span> from other chromatin in the nucleus and predicts that multiple rDNA loci will form a single nucleolus independent of their location within the genome. Fluorescent labeling of budding yeast nucleoli with CDC14-GFP revealed that a split rDNA locus indeed forms a single nucleolus. We propose that nuclear sub-domains, such as the nucleolus, result from <span class="hlt">phase</span> <span class="hlt">separations</span> within the nucleus, which are driven by the enrichment of protein-mediated, dynamic chromosomal crosslinks. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4507211','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4507211"><span><span class="hlt">Nanoscale</span> β-nuclear magnetic resonance depth imaging of topological insulators</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Koumoulis, Dimitrios; Morris, Gerald D.; He, Liang; Kou, Xufeng; King, Danny; Wang, Dong; Hossain, Masrur D.; Wang, Kang L.; Fiete, Gregory A.; Kanatzidis, Mercouri G.; Bouchard, Louis-S.</p> <p>2015-01-01</p> <p>Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the <span class="hlt">nanoscale</span> and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological <span class="hlt">phases</span> of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein, we present a noninvasive depth-profiling technique based on β-detected NMR (β-NMR) spectroscopy of radioactive 8Li+ ions that can provide “one-dimensional imaging” in films of fixed thickness and generates <span class="hlt">nanoscale</span> views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the 8Li nuclear resonance near the surface and 10-nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological nontrivial characteristics that affect the electron–nuclear hyperfine field, the metallic shift, and magnetic order. These <span class="hlt">nanoscale</span> variations in β-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials. PMID:26124141</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvA..97c3804V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvA..97c3804V"><span>Classical emergence of intrinsic spin-orbit interaction of light at the <span class="hlt">nanoscale</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vázquez-Lozano, J. Enrique; Martínez, Alejandro</p> <p>2018-03-01</p> <p>Traditionally, in macroscopic geometrical optics intrinsic polarization and spatial degrees of freedom of light can be treated independently. However, at the subwavelength scale these properties appear to be coupled together, giving rise to the spin-orbit interaction (SOI) of light. In this work we address theoretically the classical emergence of the optical SOI at the <span class="hlt">nanoscale</span>. By means of a full-vector analysis involving spherical vector waves we show that the spin-orbit factorizability condition, accounting for the mutual influence between the amplitude (spin) and <span class="hlt">phase</span> (orbit), is fulfilled only in the far-field limit. On the other side, in the near-field region, an additional relative <span class="hlt">phase</span> introduces an extra term that hinders the factorization and reveals an intricate dynamical behavior according to the SOI regime. As a result, we find a suitable theoretical framework able to capture analytically the main features of intrinsic SOI of light. Besides allowing for a better understanding into the mechanism leading to its classical emergence at the <span class="hlt">nanoscale</span>, our approach may be useful to design experimental setups that enhance the response of SOI-based effects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1351946','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1351946"><span>Managing Zirconium Chemistry and <span class="hlt">Phase</span> Compatibility in Combined Process <span class="hlt">Separations</span> for Minor Actinide Partitioning</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wall, Nathalie; Nash, Ken; Martin, Leigh</p> <p></p> <p>In response to the NEUP Program Supporting Fuel Cycle R&D <span class="hlt">Separations</span> and Waste Forms call DEFOA- 0000799, this report describes the results of an R&D project focusing on streamlining <span class="hlt">separation</span> processes for advanced fuel cycles. An example of such a process relevant to the U.S. DOE FCR&D program would be one combining the functions of the TRUEX process for partitioning of lanthanides and minor actinides from PUREX(UREX) raffinates with that of the TALSPEAK process for <span class="hlt">separating</span> transplutonium actinides from fission product lanthanides. A fully-developed PUREX(UREX)/TRUEX/TALSPEAK suite would generate actinides as product(s) for reuse (or transmutation) and fission products as waste.more » As standalone, consecutive unit-operations, TRUEX and TALSPEAK employ different extractant solutions (solvating (CMPO, octyl(phenyl)-N,Ndiisobutylcarbamoylmethylphosphine oxide) vs. cation exchanging (HDEHP, di-2(ethyl)hexylphosphoric acid) extractants), and distinct aqueous <span class="hlt">phases</span> (2-4 M HNO 3 vs. concentrated pH 3.5 carboxylic acid buffers containing actinide selective chelating agents). The <span class="hlt">separate</span> processes may also operate with different <span class="hlt">phase</span> transfer kinetic constraints. Experience teaches (and it has been demonstrated at the lab scale) that, with proper control, multiple process <span class="hlt">separation</span> systems can operate successfully. However, it is also recognized that considerable economies of scale could be achieved if multiple operations could be merged into a single process based on a combined extractant solvent. The task of accountability of nuclear materials through the process(es) also becomes more robust with fewer steps, providing that the processes can be accurately modeled. Work is underway in the U.S. and Europe on developing several new options for combined processes (TRUSPEAK, ALSEP, SANEX, GANEX, ExAm are examples). There are unique challenges associated with the operation of such processes, some relating to organic <span class="hlt">phase</span> chemistry, others arising from the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1172270-enhancement-local-piezoresponse-polymer-ferroelectrics-via-nanoscale-control-microstructure','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1172270-enhancement-local-piezoresponse-polymer-ferroelectrics-via-nanoscale-control-microstructure"><span>Enhancement of Local Piezoresponse in Polymer Ferroelectrics via <span class="hlt">Nanoscale</span> Control of Microstructure</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Choi, Yoon-Young; Sharma, Pankaj; Phatak, Charudatta; ...</p> <p>2015-02-01</p> <p>Polymer ferroelectrics are flexible and lightweight electromechanical materials that are widely studied due to their potential application as sensors, actuators, and energy harvesters. However, one of the biggest challenges is their low piezoelectric coefficient. Here, we report a mechanical annealing effect based on local pressure induced by a <span class="hlt">nanoscale</span> tip that enhances the local piezoresponse. This process can control the <span class="hlt">nanoscale</span> material properties over a microscale area at room temperature. We attribute this improvement to the formation and growth of beta-<span class="hlt">phase</span> extended chain crystals via sliding diffusion and crystal alignment along the scan axis under high mechanical stress. We believemore » that this technique can be useful for local enhancement of piezoresponse in ferroelectric polymer thin films.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PMag...93.4440L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PMag...93.4440L"><span>Broadening and shifting of Bragg reflections of <span class="hlt">nanoscale</span>-microtwinned LT-Ni3Sn2</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leineweber, Andreas; Krumeich, Frank</p> <p>2013-12-01</p> <p>The effect of <span class="hlt">nanoscale</span> microtwinning of long-range ordered domains in LT-Ni3Sn2 on its diffraction behaviour was studied by X-ray powder diffraction and electron microscopy. LT-Ni3Sn2 exhibits a Ni2In/NiAs-type structure with a superstructure breaking the symmetry relative to the hexagonal high-temperature (HT) to the orthorhombic low-temperature (LT) <span class="hlt">phase</span>, implying three different twin-domain orientations. The microstructure was generated by annealing HT-Ni3Sn2 considerably below the order-disorder transition temperature, establishing the LT <span class="hlt">phase</span> avoiding too much domain coarsening. High-resolution electron microscopy reveals domain sizes of 100-200 Å compatible with the Scherrer broadening of the superstructure reflections recorded by X-ray diffraction. Whereas the orthorhombic symmetry of the LT <span class="hlt">phase</span> leads in powder-diffraction patterns from coarse-domain size material to splitting of the fundamental reflections, this splitting does not occur for the LT-Ni3Sn2 with <span class="hlt">nanoscale</span> domains. Instead, a (pseudo)hexagonal indexing is possible giving hexagonal lattice parameters, which are, however, incompatible with the positions of the superstructure reflections. This can be attributed to interference between X-rays scattered by the differently oriented, truly orthorhombic domains leading to merging of the fundamental reflections. These show pronounced anisotropic microstrain-like broadening, where the integral breadths ? on the reciprocal d-spacing scale of a series of higher order reflection increase in a non-linear fashion with upward curvature with the reciprocal d-spacings ? of these reflections. Such a type of unusual microstrain broadening appears to be typical for microstructures which are inhomogeneous on the <span class="hlt">nanoscale</span>, and in which the structural inhomogeneities lead to small <span class="hlt">phase</span> shifts of the scattered radiation from different locations (e.g. domains).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MPLB...3250021W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MPLB...3250021W"><span>Anisotropic properties of <span class="hlt">phase</span> <span class="hlt">separation</span> in two-component dipolar Bose-Einstein condensates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Wei; Li, Jinbin</p> <p>2018-03-01</p> <p>Using Crank-Nicolson method, we calculate ground state wave functions of two-component dipolar Bose-Einstein condensates (BECs) and show that, due to dipole-dipole interaction (DDI), the condensate mixture displays anisotropic <span class="hlt">phase</span> <span class="hlt">separation</span>. The effects of DDI, inter-component s-wave scattering, strength of trap potential and particle numbers on the density profiles are investigated. Three types of two-component profiles are present, first cigar, along z-axis and concentric torus, second pancake (or blood cell), in xy-plane, and two non-uniform ellipsoid, <span class="hlt">separated</span> by the pancake and third two dumbbell shapes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MRE.....5d6508Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MRE.....5d6508Z"><span>Liquid-liquid <span class="hlt">phase</span> <span class="hlt">separation</span> and core-shell structure of ternary Al-In-Sn immiscible alloys</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Degang; Bo, Lin; Wang, Lin; Li, Shanshan</p> <p>2018-04-01</p> <p>In this study, the liquid-liquid <span class="hlt">phase</span> <span class="hlt">separation</span> of four kinds of ternary immiscible Al-In-Sn melts was investigated with resistivity and thermodynamics method. The nonlinear changes in ρ-T and DSC curves of Al-In-Sn immiscible alloys above monotectic reaction temperature revealed the occurrence of liquid-liquid <span class="hlt">phase</span> <span class="hlt">separation</span> of Al-In-Sn melts. The monotectic temperature, liquid <span class="hlt">phase</span> <span class="hlt">separation</span> temperature and immiscible gap of ternary Al-In-Sn alloys were lower than those of binary Al-In alloy. With the Al content decreasing, the immiscible gap of Al-In-Sn alloy decreased. The composition of Al80In10Sn10, Al70In15Sn15, Al60In20Sn20 and Al50In25Sn25 was located in the immiscible zone of Al-In-Sn system. Due to the differences of Stokes effect, Marangoni convection and immiscible gap, the solidification morphology of four kinds of Al-In-Sn monotectic alloy was different. The core–shell structure of Al-In-Sn monotectic alloy can form within a certain range of composition.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=152423&Lab=NERL&keyword=biosensors&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=152423&Lab=NERL&keyword=biosensors&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span><span class="hlt">NANOSCALE</span> BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>This powerpoint presentation presented information on <span class="hlt">nanoscale</span> biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; <span class="hlt">nanoscale</span> LEDs in biosensors; nano...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22415964-dynamical-mean-field-theory-weakly-non-linear-analysis-phase-separation-active-brownian-particles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22415964-dynamical-mean-field-theory-weakly-non-linear-analysis-phase-separation-active-brownian-particles"><span>Dynamical mean-field theory and weakly non-linear analysis for the <span class="hlt">phase</span> <span class="hlt">separation</span> of active Brownian particles</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Speck, Thomas; Menzel, Andreas M.; Bialké, Julian</p> <p>2015-06-14</p> <p>Recently, we have derived an effective Cahn-Hilliard equation for the <span class="hlt">phase</span> <span class="hlt">separation</span> dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active <span class="hlt">phase</span> <span class="hlt">separation</span> ontomore » that of passive fluids with attractive interactions through a global effective free energy (motility-induced <span class="hlt">phase</span> transition). Particular attention is paid to the square-gradient term necessary for the <span class="hlt">phase</span> <span class="hlt">separation</span> kinetics. We finally discuss results from numerical simulations corroborating the analytical results.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2744420','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2744420"><span>Control of gel swelling and <span class="hlt">phase</span> <span class="hlt">separation</span> of weakly charged thermoreversible gels by salt addition</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Solis, Francisco J.; Vernon, Brent</p> <p>2009-01-01</p> <p>Doping of thermoreversible polymer gels with charged monomers provides a way to control <span class="hlt">phase</span> <span class="hlt">separation</span> and gelation conditions by coupling the properties of the gel with a tunable ionic environment. We analyze the dependence of the gelation and <span class="hlt">phase</span> <span class="hlt">separation</span> conditions on the amount of salt present using a mean field model of weakly charged associative polymers. The ions and co-ions present are explicitly considered at the mean field level, and we determine their concentrations in the different equilibrium <span class="hlt">phases</span> when the system undergoes <span class="hlt">phase</span> <span class="hlt">separation</span>. For weak polymer charge, the entropic contributions of the ions to the free energy of the system play a central role in the determination of the location of <span class="hlt">phase</span> equilibrium. In the simplest case, when the associative interaction responsible for gel formation is independent of the electrostatic interaction, the addition of salt changes the polymer equilibrium concentrations and indirectly changes the measurable swelling of the gel. We construct <span class="hlt">phase</span> diagrams of these systems showing the location of the coexistence region, the gel-sol boundary and the location of the tie-lines. We determine the swelling of the gel within the co-existence region. Our main result is that the description of the effect of the salt on the properties of the weakly charged gel can be described through an extra contribution to the effective immiscibility parameter χ proportional to the square of the doping degree f2 and to the inverse square of the added salt concentration s−2. PMID:19759854</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26717817','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26717817"><span>Utilization of deep eutectic solvents as novel mobile <span class="hlt">phase</span> additives for improving the <span class="hlt">separation</span> of bioactive quaternary alkaloids.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tan, Ting; Zhang, Mingliang; Wan, Yiqun; Qiu, Hongdeng</p> <p>2016-01-01</p> <p>Deep eutectic solvents (DESs) were used as novel mobile <span class="hlt">phase</span> additives to improve chromatographic <span class="hlt">separation</span> of four quaternary alkaloids including coptisine chloride, sanguinarine, berberine chloride and chelerythrine on a C18 column. DESs as a new class of ionic liquids are renewably sourced, environmentally benign, low cost and easy to prepare. Seven DESs were obtained by mixing different hydrogen acceptors and hydrogen-bond donors. The effects of organic solvents, the concentration of DESs, the types of DESs and the pH values of the buffer solution on the <span class="hlt">separation</span> of the analytes were investigated. The composition of acetonitrile and 1.0% deep eutectic solvents aqueous solution (pH 3.3, adjusted with hydrochloric acid) in a 32:68 (v/v) ratio was used as optimized mobile <span class="hlt">phase</span>, with which four quaternary alkaloids were well <span class="hlt">separated</span>. When a small amount of DESs was added in the mobile <span class="hlt">phase</span> for the <span class="hlt">separation</span> of alkaloids on the C18 column, noticeable improvements were distinctly observed such as decreasing peak tailing and improving resolution. The <span class="hlt">separation</span> mechanism mediated by DESs as mobile <span class="hlt">phase</span> additives can be attributed to combined effect of both hydrogen acceptors and hydrogen-bond donors. For example, choline chloride can effectively cover the residual silanols on silica surface and ethylene glycol can reduce the retention time of analytes. The proposed method has been applied to determine BerbC in Lanqin Chinese herbal oral solution and BerbC tablet. Utilization of DESs in mobile <span class="hlt">phase</span> can efficiently improve <span class="hlt">separation</span> and selectivity of analytes from complex samples. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22358178','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22358178"><span>Confocal ultrafast pump-probe spectroscopy: a new technique to explore <span class="hlt">nanoscale</span> composites.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Virgili, Tersilla; Grancini, Giulia; Molotokaite, Egle; Suarez-Lopez, Inma; Rajendran, Sai Kiran; Liscio, Andrea; Palermo, Vincenzo; Lanzani, Guglielmo; Polli, Dario; Cerullo, Giulio</p> <p>2012-04-07</p> <p>This article is devoted to the exploration of the benefits of a new ultrafast confocal pump-probe technique, able to study the photophysics of different structured materials with <span class="hlt">nanoscale</span> resolution. This tool offers many advantages over standard stationary microscopy techniques because it directly interrogates excited state dynamics in molecules, providing access to both radiative and non-radiative deactivation processes at a local scale. In this paper we present a few different examples of its application to organic semiconductor systems. The first two are focussed on the study of the photophysics of <span class="hlt">phase-separated</span> polymer blends: (i) a blue-emitting polyfluorene (PFO) in an inert matrix of PMMA and (ii) an electron donor polythiophene (P3HT) mixed with an electron acceptor fullerene derivative (PCBM). The experimental results on these samples demonstrate the capability of the technique to unveil peculiar interfacial dynamics at the border region between <span class="hlt">phase</span>-segregated domains, which would be otherwise averaged out using conventional pump-probe spectroscopy. The third example is the study of the photophysics of isolated mesoscopic crystals of the PCBM molecule. Our ultrafast microscope could evidence the presence of two distinctive regions within the crystals. In particular, we could pinpoint for the first time areas within the crystals showing photobleaching/stimulated emission signals from a charge-transfer state. This journal is © The Royal Society of Chemistry 2012</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1348208-manipulating-electronic-phase-separation-strongly-correlated-oxides-ordered-array-antidots','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1348208-manipulating-electronic-phase-separation-strongly-correlated-oxides-ordered-array-antidots"><span>Manipulating electronic <span class="hlt">phase</span> <span class="hlt">separation</span> in strongly correlated oxides with an ordered array of antidots</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhang, Kai; Du, Kai; Liu, Hao; ...</p> <p>2015-07-20</p> <p>The interesting transport and magnetic properties in manganites depend sensitively on the nucleation and growth of electronic <span class="hlt">phase-separated</span> domains. In this paper, by fabricating antidot arrays in La 0.325Pr 0.3Ca 0.375MnO 3 (LPCMO) epitaxial thin films, we create ordered arrays of micrometer-sized ferromagnetic metallic (FMM) rings in the LPCMO films that lead to dramatically increased metal–insulator transition temperatures and reduced resistances. The FMM rings emerge from the edges of the antidots where the lattice symmetry is broken. Based on our Monte Carlo simulation, these FMM rings assist the nucleation and growth of FMM <span class="hlt">phase</span> domains increasing the metal–insulator transition withmore » decreasing temperature or increasing magnetic field. Finally, this study points to a way in which electronic <span class="hlt">phase</span> <span class="hlt">separation</span> in manganites can be artificially controlled without changing chemical composition or applying external field.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21815608','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21815608"><span>Evolved <span class="hlt">phase</span> <span class="hlt">separation</span> toward balanced charge transport and high efficiency in polymer solar cells.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fan, Haijun; Zhang, Maojie; Guo, Xia; Li, Yongfang; Zhan, Xiaowei</p> <p>2011-09-01</p> <p>Understanding effect of morphology on charge carrier transport within polymer/fullerene bulk heterojunction is necessary to develop high-performance polymer solar cells. In this work, we synthesized a new benzodithiophene-based polymer with good self-organization behavior as well as favorable morphology evolution of its blend films with PC(71)BM under improved processing conditions. Charge carrier transport behavior of blend films was characterized by space charge limited current method. Evolved blend film morphology by controlling blend composition and additive content gradually reaches an optimized state, featured with <span class="hlt">nanoscale</span> fibrilla polymer <span class="hlt">phase</span> in moderate size and balanced mobility ratio close to 1:1 for hole and electron. This optimized morphology toward more balanced charge carrier transport accounts for the best power conversion efficiency of 3.2%, measured under simulated AM 1.5 solar irradiation 100 mW/cm(2), through enhancing short circuit current and reducing geminate recombination loss.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22404189','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22404189"><span>Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic <span class="hlt">separation</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gu, Zhi-Yuan; Yang, Cheng-Xiong; Chang, Na; Yan, Xiu-Ping</p> <p>2012-05-15</p> <p>In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal-organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured <span class="hlt">nanoscale</span> cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic <span class="hlt">separation</span>. MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-<span class="hlt">phase</span> extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-<span class="hlt">phase</span> extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-<span class="hlt">phase</span> microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-<span class="hlt">phase</span> microextraction of volatile benzene homologues with large enhancement factors and wide linearity. Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary <span class="hlt">phases</span> to fabricate MOF</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28731086','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28731086"><span>Microfluidic and nanofluidic <span class="hlt">phase</span> behaviour characterization for industrial CO2, oil and gas.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bao, Bo; Riordon, Jason; Mostowfi, Farshid; Sinton, David</p> <p>2017-08-08</p> <p>Microfluidic systems that leverage unique micro-scale phenomena have been developed to provide rapid, accurate and robust analysis, predominantly for biomedical applications. These attributes, in addition to the ability to access high temperatures and pressures, have motivated recent expanded applications in <span class="hlt">phase</span> measurements relevant to industrial CO 2 , oil and gas applications. We here present a comprehensive review of this exciting new field, <span class="hlt">separating</span> microfluidic and nanofluidic approaches. Microfluidics is practical, and provides similar <span class="hlt">phase</span> properties analysis to established bulk methods with advantages in speed, control and sample size. Nanofluidic <span class="hlt">phase</span> behaviour can deviate from bulk measurements, which is of particular relevance to emerging unconventional oil and gas production from nanoporous shale. In short, microfluidics offers a practical, compelling replacement of current bulk <span class="hlt">phase</span> measurement systems, whereas nanofluidics is not practical, but uniquely provides insight into <span class="hlt">phase</span> change phenomena at <span class="hlt">nanoscales</span>. Challenges, trends and opportunities for <span class="hlt">phase</span> measurements at both scales are highlighted.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23479497','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23479497"><span>Shrink-induced sorting using integrated <span class="hlt">nanoscale</span> magnetic traps.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nawarathna, Dharmakeerthi; Norouzi, Nazila; McLane, Jolie; Sharma, Himanshu; Sharac, Nicholas; Grant, Ted; Chen, Aaron; Strayer, Scott; Ragan, Regina; Khine, Michelle</p> <p>2013-02-11</p> <p>We present a plastic microfluidic device with integrated <span class="hlt">nanoscale</span> magnetic traps (NSMTs) that <span class="hlt">separates</span> magnetic from non-magnetic beads with high purity and throughput, and unprecedented enrichments. Numerical simulations indicate significantly higher localized magnetic field gradients than previously reported. We demonstrated >20 000-fold enrichment for 0.001% magnetic bead mixtures. Since we achieve high purity at all flow-rates tested, this is a robust, rapid, portable, and simple solution to sort target species from small volumes amenable for point-of-care applications. We used the NSMT in a 96 well format to extract DNA from small sample volumes for quantitative polymerase chain reaction (qPCR).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvL.116b6804S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvL.116b6804S"><span><span class="hlt">Phase</span> <span class="hlt">Separation</span> from Electron Confinement at Oxide Interfaces</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scopigno, N.; Bucheli, D.; Caprara, S.; Biscaras, J.; Bergeal, N.; Lesueur, J.; Grilli, M.</p> <p>2016-01-01</p> <p>Oxide heterostructures are of great interest for both fundamental and applicative reasons. In particular, the two-dimensional electron gas at the LaAlO3/SrTiO3 or LaTiO3/SrTiO3 interfaces displays many different properties and functionalities. However, there are clear experimental indications that the interface electronic state is strongly inhomogeneous and therefore it is crucial to investigate possible intrinsic mechanisms underlying this inhomogeneity. Here, the electrostatic potential confining the electron gas at the interface is calculated self-consistently, finding that such confinement may induce <span class="hlt">phase</span> <span class="hlt">separation</span>, to avoid a thermodynamically unstable state with a negative compressibility. This provides a robust mechanism for the inhomogeneous character of these interfaces.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EL....11966001O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EL....11966001O"><span>A review of molecular <span class="hlt">phase</span> <span class="hlt">separation</span> in binary self-assembled monolayers of thiols on gold surfaces</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ong, Quy; Nianias, Nikolaos; Stellacci, Francesco</p> <p>2017-09-01</p> <p>Binary self-assembled monolayers (SAMs) on gold surfaces have been known to undergo molecular <span class="hlt">phase</span> <span class="hlt">separation</span> to various degrees and have been subject to both experimental and theoretical studies. On gold nanoparticles in particular, binary SAMs ligand shells display intriguing morphologies. Consequently, unexpected behaviors of the nanoparticles with respect to their biological, chemical, and interfacial properties have been observed. It is critical that the <span class="hlt">phase</span> <span class="hlt">separation</span> of binary SAMs be understood at both molecular and macroscopic level to create, and then manipulate, the useful properties of the functionalized surfaces. We look into the current understanding of molecular <span class="hlt">phase</span> <span class="hlt">separation</span> of binary SAMs on gold surfaces, represented by Au(111) flat surfaces and Au nanoparticles, from both theoretical and experimental aspects. We point out shortcomings and describe several research strategies that will address them in the future. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Pule Pileni.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27943588','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27943588"><span><span class="hlt">Separation</span> of phenolic acids from sugarcane rind by online solid-<span class="hlt">phase</span> extraction with high-speed counter-current chromatography.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun</p> <p>2017-02-01</p> <p>Sugarcane rind contains some functional phenolic acids. The <span class="hlt">separation</span> of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-<span class="hlt">phase</span> extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids <span class="hlt">separation</span> from sugarcane rind. The conditions of online solid-<span class="hlt">phase</span> extraction with HSCCC involving solvent system, flow rate of mobile <span class="hlt">phase</span> as well as saturated extent of absorption of solid-<span class="hlt">phase</span> extraction were optimized to improve extraction efficiency and reduce <span class="hlt">separation</span> time. The <span class="hlt">separation</span> of phenolic acids was performed with a two-<span class="hlt">phase</span> solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-<span class="hlt">phase</span> extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25349417','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25349417"><span>Multiple patterns of polymer gels in microspheres due to the interplay among <span class="hlt">phase</span> <span class="hlt">separation</span>, wetting, and gelation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yanagisawa, Miho; Nigorikawa, Shinpei; Sakaue, Takahiro; Fujiwara, Kei; Tokita, Masayuki</p> <p>2014-11-11</p> <p>We report the spontaneous patterning of polymer microgels by confining a polymer blend within microspheres. A poly(ethylene glycol) (PEG) and gelatin solution was confined inside water-in-oil (W/O) microdroplets coated with a layer of zwitterionic lipids: dioleoylphosphatidylethanolamine (PE) and dioleoylphosphatidylcholine (PC). The droplet confinement affected the kinetics of the <span class="hlt">phase</span> <span class="hlt">separation</span>, wetting, and gelation after a temperature quench, which determined the final microgel pattern. The gelatin-rich <span class="hlt">phase</span> completely wetted to the PE membrane and formed a hollow microcapsule as a stable state in the PE droplets. Gelation during <span class="hlt">phase</span> <span class="hlt">separation</span> varied the relation between the droplet size and thickness of the capsule wall. In the case of the PC droplets, <span class="hlt">phase</span> <span class="hlt">separation</span> was completed only for the smaller droplets, wherein the microgel partially wetted the PC membrane and had a hemisphere shape. In addition, the temperature decrease below the gelation point increased the interfacial tension between the PEG/gelatin <span class="hlt">phases</span> and triggered a dewetting transition. Interestingly, the accompanying shape deformation to minimize the interfacial area was only observed for the smaller PC droplets. The critical size decreased as the gelatin concentration increased, indicating the role of the gel elasticity as an inhibitor of the deformation. Furthermore, variously patterned microgels with spherically asymmetric shapes, such as discs and stars, were produced as kinetically trapped states by regulating the incubation time, polymer composition, and droplet size. These findings demonstrate a way to regulate the complex shapes of microgels using the interplay among <span class="hlt">phase</span> <span class="hlt">separation</span>, wetting, and gelation of confined polymer blends in microdroplets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17430588','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17430588"><span>Can visco-elastic <span class="hlt">phase</span> <span class="hlt">separation</span>, macromolecular crowding and colloidal physics explain nuclear organisation?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Iborra, Francisco J</p> <p>2007-04-12</p> <p>The cell nucleus is highly compartmentalized with well-defined domains, it is not well understood how this nuclear order is maintained. Many scientists are fascinated by the different set of structures observed in the nucleus to attribute functions to them. In order to distinguish functional compartments from non-functional aggregates, I believe is important to investigate the biophysical nature of nuclear organisation. The various nuclear compartments can be divided broadly as chromatin or protein and/or RNA based, and they have very different dynamic properties. The chromatin compartment displays a slow, constrained diffusional motion. On the other hand, the protein/RNA compartment is very dynamic. Physical systems with dynamical asymmetry go to viscoelastic <span class="hlt">phase</span> <span class="hlt">separation</span>. This <span class="hlt">phase</span> <span class="hlt">separation</span> phenomenon leads to the formation of a long-lived interaction network of slow components (chromatin) scattered within domains rich in fast components (protein/RNA). Moreover, the nucleus is packed with macromolecules in the order of 300 mg/ml. This high concentration of macromolecules produces volume exclusion effects that enhance attractive interactions between macromolecules, known as macromolecular crowding, which favours the formation of compartments. In this paper I hypothesise that nuclear compartmentalization can be explained by viscoelastic <span class="hlt">phase</span> <span class="hlt">separation</span> of the dynamically different nuclear components, in combination with macromolecular crowding and the properties of colloidal particles. I demonstrate that nuclear structure can satisfy the predictions of this hypothesis. I discuss the functional implications of this phenomenon.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26691639','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26691639"><span><span class="hlt">Nanoscale</span> Inhomogeneous Superconductivity in Fe(Te1-xSex) Probed by Nanostructure Transport.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yue, Chunlei; Hu, Jin; Liu, Xue; Sanchez, Ana M; Mao, Zhiqiang; Wei, Jiang</p> <p>2016-01-26</p> <p>Among iron-based superconductors, the layered iron chalcogenide Fe(Te1-xSex) is structurally the simplest and has attracted considerable attention. It has been speculated from bulk studies that <span class="hlt">nanoscale</span> inhomogeneous superconductivity may inherently exist in this system. However, this has not been directly observed from <span class="hlt">nanoscale</span> transport measurements. In this work, through simple micromechanical exfoliation and high-precision low-energy ion milling thinning, we prepared Fe(Te0.5Se0.5) nanoflakes with various thicknesses and systematically studied the correlation between the thickness and superconducting <span class="hlt">phase</span> transition. Our result revealed a systematic thickness-dependent evolution of superconducting transition. When the thickness of the Fe(Te0.5Se0.5) flake is reduced to less than the characteristic inhomogeneity length (around 12 nm), both the superconducting current path and the metallicity of the normal state in Fe(Te0.5Se0.5) atomic sheets are suppressed. This observation provides the first transport evidence for the <span class="hlt">nanoscale</span> inhomogeneous nature of superconductivity in Fe(Te1-xSex).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27908140','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27908140"><span>Sequence control of <span class="hlt">phase</span> <span class="hlt">separation</span> and dewetting in PS/PVME blend thin films by changing molecular weight of PS.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xia, Tian; Qin, Yaping; Huang, Yajiang; Huang, Ting; Xu, Jianhui; Li, Youbing</p> <p>2016-11-28</p> <p>The morphology evolution mechanism of polystyrene (PS)/poly (vinyl methyl ether) (PVME) blend thin films with different PS molecular weights (M w ) was studied. It was found that the morphology evolution was closely related to the molecular weight asymmetry between PS and PVME. In the film where M w (PS) ≈ M w (PVME), dewetting happened at the interface between the bottom layer and substrate after SD <span class="hlt">phase</span> <span class="hlt">separation</span>. While in the film where M w (PS) > M w (PVME), dewetting happened at the interface between the middle PS/PVME blend layer and bottom PVME layer near the substrate prior to <span class="hlt">phase</span> <span class="hlt">separation</span>. The different sequences of <span class="hlt">phase</span> <span class="hlt">separation</span> and dewetting and different interface for dewetting occurrence were studied by regarding the competitive effects of viscoelasticity contrast between polymer components and preferential wetting between PVME and the substrate. The viscoelastic nature of the PS component played a crucial role in the sequence of <span class="hlt">phase</span> <span class="hlt">separation</span> and dewetting.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23586696','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23586696"><span>Additive-free size-controlled synthesis of gold square nanoplates using photochemical reaction in dynamic <span class="hlt">phase-separating</span> media.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kajimoto, Shinji; Shirasawa, Daisuke; Horimoto, Noriko Nishizawa; Fukumura, Hiroshi</p> <p>2013-05-14</p> <p>Ultrafast <span class="hlt">phase</span> <span class="hlt">separation</span> of water and 2-butoxyethanol mixture was induced by nanosecond IR laser pulse irradiation. After a certain delay time, a UV laser pulse was introduced to induce photoreduction of aurate ions, which led to the formation of gold nanoparticles in dynamic <span class="hlt">phase-separating</span> media. The structure and size of the nanoparticles varied depending on the delay time between the IR and UV pulses. For a delay time of 5 and 6 μs, gold square plates having edge lengths of 150 and 100 nm were selectively obtained, respectively. With a delay time of 3 μs, on the other hand, the size of the square plates varied widely from 100 nm to a few micrometers. The size of the gold square plates was also varied by varying the total irradiation time of the IR and UV pulses. The size distribution of the square plates obtained under different conditions suggests that the growth process of the square plates was affected by the size of the nanophases during <span class="hlt">phase</span> <span class="hlt">separation</span>. Electron diffraction patterns of the synthesized square plates showed that the square plates were highly crystalline with a Au(100) surface. These results showed that the nanophases formed during laser-induced <span class="hlt">phase</span> <span class="hlt">separation</span> can provide detergent-free reaction fields for size-controlled nanomaterial synthesis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27650633','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27650633"><span>Two-<span class="hlt">phase</span> anaerobic digestion of vegetable market waste fraction of municipal solid waste and development of improved technology for <span class="hlt">phase</span> <span class="hlt">separation</span> in two-<span class="hlt">phase</span> reactor.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Majhi, Bijoy Kumar; Jash, Tushar</p> <p>2016-12-01</p> <p>Biogas production from vegetable market waste (VMW) fraction of municipal solid waste (MSW) by two-<span class="hlt">phase</span> anaerobic digestion system should be preferred over the single-stage reactors. This is because VMW undergoes rapid acidification leading to accumulation of volatile fatty acids and consequent low pH resulting in frequent failure of digesters. The weakest part in the two-<span class="hlt">phase</span> anaerobic reactors was the techniques applied for solid-liquid <span class="hlt">phase</span> <span class="hlt">separation</span> of digestate in the first reactor where solubilization, hydrolysis and acidogenesis of solid organic waste occur. In this study, a two-<span class="hlt">phase</span> reactor which consisted of a solid-<span class="hlt">phase</span> reactor and a methane reactor was designed, built and operated with VMW fraction of Indian MSW. A robust type filter, which is unique in its implementation method, was developed and incorporated in the solid-<span class="hlt">phase</span> reactor to <span class="hlt">separate</span> the process liquid produced in the first reactor. Experiments were carried out to assess the long term performance of the two-<span class="hlt">phase</span> reactor with respect to biogas production, volatile solids reduction, pH and number of occurrence of clogging in the filtering system or choking in the process liquid transfer line. The system performed well and was operated successfully without the occurrence of clogging or any other disruptions throughout. Biogas production of 0.86-0.889m 3 kg -1 VS, at OLR of 1.11-1.585kgm -3 d -1 , were obtained from vegetable market waste, which were higher than the results reported for similar substrates digested in two-<span class="hlt">phase</span> reactors. The VS reduction was 82-86%. The two-<span class="hlt">phase</span> anaerobic digestion system was demonstrated to be stable and suitable for the treatment of VMW fraction of MSW for energy generation. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MRE.....4k5028R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MRE.....4k5028R"><span><span class="hlt">Nanoscale</span> chemical mapping of laser-solubilized silk</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ryu, Meguya; Kobayashi, Hanae; Balčytis, Armandas; Wang, Xuewen; Vongsvivut, Jitraporn; Li, Jingliang; Urayama, Norio; Mizeikis, Vygantas; Tobin, Mark; Juodkazis, Saulius; Morikawa, Junko</p> <p>2017-11-01</p> <p>A water soluble amorphous form of silk was made by ultra-short laser pulse irradiation and detected by <span class="hlt">nanoscale</span> IR mapping. An optical absorption-induced <span class="hlt">nanoscale</span> surface expansion was probed to yield the spectral response of silk at IR molecular fingerprinting wavelengths with a high  ˜ 20 nm spatial resolution defined by the tip of the probe. Silk microtomed sections of 1-5 μm in thickness were prepared for <span class="hlt">nanoscale</span> spectroscopy and a laser was used to induce amorphisation. Comparison of silk absorbance measurements carried out by table-top and synchrotron Fourier transform IR spectroscopy proved that chemical imaging obtained at high spatial resolution and specificity (able to discriminate between amorphous and crystalline silk) is reliably achieved by <span class="hlt">nanoscale</span> IR. Differences in absorbance and spectral line-shapes of the bands are related to the different sensitivity of the applied methods to real and imaginary parts of permittivity. A <span class="hlt">nanoscale</span> material characterization by combining synchrotron IR radiation and nano-IR is discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhDT.......283M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhDT.......283M"><span>Synthesis, dynamics and photophysics of <span class="hlt">nanoscale</span> systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mirkovic, Tihana</p> <p></p> <p>The emerging field of nanotechnology, which spans diverse areas such as nanoelectronics, medicine, chemical and pharmaceutical industries, biotechnology and computation, focuses on the development of devices whose improved performance is based on the utilization of self-assembled <span class="hlt">nanoscale</span> components exhibiting unique properties owing to their miniaturized dimensions. The first <span class="hlt">phase</span> in the conception of such multifunctional devices based on integrated technologies requires the study of basic principles behind the functional mechanism of <span class="hlt">nanoscale</span> components, which could originate from individual nanoobjects or result as a collective behaviour of miniaturized unit structures. The comprehensive studies presented in this thesis encompass the mechanical, dynamical and photophysical aspects of three <span class="hlt">nanoscale</span> systems. A newly developed europium sulfide nanocrystalline material is introduced. Advances in synthetic methods allowed for shape control of surface-functionalized EuS nanocrystals and the fabrication of multifunctional EuS-CdSe hybrid particles, whose unique structural and optical properties hold promise as useful attributes of integrated materials in developing technologies. A comprehensive study based on a new class of multifunctional nanomaterials, derived from the basic unit of barcoded metal nanorods is presented. Their chemical composition affords them the ability to undergo autonomous motion in the presence of a suitable fuel. The nature of their chemically powered self-propulsion locomotion was investigated, and plausible mechanisms for various motility modes were presented. Furthermore functionalization of striped metallic nanorods has been realized through the incorporation of chemically controlled flexible hinges displaying bendable properties. The structural aspect of the light harvesting machinery of a photosynthetic cryptophyte alga, Rhodomonas CS24, and the mobility of the antenna protein, PE545, in vivo were investigated. Information obtained</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29089498','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29089498"><span>Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced <span class="hlt">phase</span> <span class="hlt">separation</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Haase, Martin F; Jeon, Harim; Hough, Noah; Kim, Jong Hak; Stebe, Kathleen J; Lee, Daeyeon</p> <p>2017-11-01</p> <p>The decoration of porous membranes with a dense layer of nanoparticles imparts useful functionality and can enhance membrane <span class="hlt">separation</span> and anti-fouling properties. However, manufacturing of nanoparticle-coated membranes requires multiple steps and tedious processing. Here, we introduce a facile single-step method in which bicontinuous interfacially jammed emulsions are used to form nanoparticle-functionalized hollow fiber membranes. The resulting nanocomposite membranes prepared via solvent transfer-induced <span class="hlt">phase</span> <span class="hlt">separation</span> and photopolymerization have exceptionally high nanoparticle loadings (up to 50 wt% silica nanoparticles) and feature densely packed nanoparticles uniformly distributed over the entire membrane surfaces. These structurally well-defined, asymmetric membranes facilitate control over membrane flux and selectivity, enable the formation of stimuli responsive hydrogel nanocomposite membranes, and can be easily modified to introduce antifouling features. This approach forms a foundation for the formation of advanced nanocomposite membranes comprising diverse building blocks with potential applications in water treatment, industrial <span class="hlt">separations</span> and as catalytic membrane reactors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29251366','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29251366"><span>Liquid chromatographic <span class="hlt">separation</span> and thermodynamic investigation of lorcaserin hydrochloride enantiomers on immobilized amylose-based chiral stationary <span class="hlt">phase</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wani, Dattatraya V; Rane, Vipul P; Mokale, Santosh N</p> <p>2018-03-01</p> <p>A novel liquid chromatographic method was developed for enantiomeric <span class="hlt">separation</span> of lorcaserin hydrochloride on Chiralpak IA column containing chiral stationary <span class="hlt">phase</span> immobilized with amylose tris (3.5-dimethylphenylcarbamate) as chiral selector. Baseline <span class="hlt">separation</span> with resolution greater than 4 was achieved using mobile <span class="hlt">phase</span> containing mixture of n-hexane/ethanol/methanol/diethylamine (95:2.5:2.5:0.1, v/v/v/v) at a flow rate of 1.2 mL/min. The limit of detection and limit of quantification of the S-enantiomer were found to be 0.45 and 1.5 μg/mL, respectively; the developed method was validated as per ICH guideline. The influence of column oven temperatures studied in the range of 20°C to 50°C on <span class="hlt">separation</span> was studied; from this, retention, <span class="hlt">separation</span>, and resolution were investigated. The thermodynamic parameters ΔH°, ΔS°, and ΔG° were evaluated from van't Hoff plots,(Ink' versus 1/T) and used to explain the strength of interaction between enantiomers and immobilized amylose-based chiral stationary <span class="hlt">phase</span>. © 2017 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5625912','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5625912"><span>Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on <span class="hlt">phase</span> <span class="hlt">separation</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Brady, Jacob P.; Farber, Patrick J.; Sekhar, Ashok; Lin, Yi-Hsuan; Huang, Rui; Bah, Alaji; Chan, Hue Sun; Forman-Kay, Julie D.; Kay, Lewis E.</p> <p>2017-01-01</p> <p>Membrane encapsulation is frequently used by the cell to sequester biomolecules and compartmentalize their function. Cells also concentrate molecules into <span class="hlt">phase-separated</span> protein or protein/nucleic acid “membraneless organelles” that regulate a host of biochemical processes. Here, we use solution NMR spectroscopy to study <span class="hlt">phase-separated</span> droplets formed from the intrinsically disordered N-terminal 236 residues of the germ-granule protein Ddx4. We show that the protein within the concentrated <span class="hlt">phase</span> of <span class="hlt">phase-separated</span> Ddx4, Ddx4cond, diffuses as a particle of 600-nm hydrodynamic radius dissolved in water. However, NMR spectra reveal sharp resonances with chemical shifts showing Ddx4cond to be intrinsically disordered. Spin relaxation measurements indicate that the backbone amides of Ddx4cond have significant mobility, explaining why high-resolution spectra are observed, but motion is reduced compared with an equivalently concentrated nonphase-<span class="hlt">separating</span> control. Observation of a network of interchain interactions, as established by NOE spectroscopy, shows the importance of Phe and Arg interactions in driving the <span class="hlt">phase</span> <span class="hlt">separation</span> of Ddx4, while the salt dependence of both low- and high-concentration regions of <span class="hlt">phase</span> diagrams establishes an important role for electrostatic interactions. The diffusion of a series of small probes and the compact but disordered 4E binding protein 2 (4E-BP2) protein in Ddx4cond are explained by an excluded volume effect, similar to that found for globular protein solvents. No changes in structural propensities of 4E-BP2 dissolved in Ddx4cond are observed, while changes to DNA and RNA molecules have been reported, highlighting the diverse roles that proteinaceous solvents play in dictating the properties of dissolved solutes. PMID:28894006</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920038371&hterms=food+evolution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dfood%2Bevolution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920038371&hterms=food+evolution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dfood%2Bevolution"><span>Evolution of a <span class="hlt">phase</span> <span class="hlt">separated</span> gravity independent bioreactor</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Villeneuve, Peter E.; Dunlop, Eric H.</p> <p>1992-01-01</p> <p>The evolution of a <span class="hlt">phase-separated</span> gravity-independent bioreactor is described. The initial prototype, a zero head-space manifold silicone membrane based reactor, maintained large diffusional resistances. Obtaining oxygen transfer rates needed to support carbon-recycling aerobic microbes is impossible if large resistances are maintained. Next generation designs (Mark I and II) mimic heat exchanger design to promote turbulence at the tubing-liquid interface, thereby reducing liquid and gas side diffusional resistances. While oxygen transfer rates increased by a factor of ten, liquid channeling prevented further increases. To overcome these problems, a Mark III reactor was developed which maintains inverted <span class="hlt">phases</span>, i.e., media flows inside the silicone tubing, oxygen gas is applied external to the tubing. This enhances design through changes in gas side driving force concentration and liquid side turbulence levels. Combining an applied external pressure of 4 atm with increased Reynolds numbers resulted in oxygen transfer intensities of 232 mmol O2/l per hr (1000 times greater than the first prototype and comparable to a conventional fermenter). A 1.0 liter Mark III reactor can potentially deliver oxygen supplies necessary to support cell cultures needed to recycle a 10-astronaut carbon load continuously.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23004740','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23004740"><span><span class="hlt">Nanoscale</span> simple-fluid behavior under steady shear.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yong, Xin; Zhang, Lucy T</p> <p>2012-05-01</p> <p>In this study, we use two nonequilibrium molecular dynamics algorithms, boundary-driven shear and homogeneous shear, to explore the rheology and flow properties of a simple fluid undergoing steady simple shear. The two distinct algorithms are designed to elucidate the influences of <span class="hlt">nanoscale</span> confinement. The results of rheological material functions, i.e., viscosity and normal pressure differences, show consistent Newtonian behaviors at low shear rates from both systems. The comparison validates that confinements of the order of 10 nm are not strong enough to deviate the simple fluid behaviors from the continuum hydrodynamics. The non-Newtonian phenomena of the simple fluid are further investigated by the homogeneous shear simulations with much higher shear rates. We observe the "string <span class="hlt">phase</span>" at high shear rates by applying both profile-biased and profile-unbiased thermostats. Contrary to other findings where the string <span class="hlt">phase</span> is found to be an artifact of the thermostats, we perform a thorough analysis of the fluid microstructures formed due to shear, which shows that it is possible to have a string <span class="hlt">phase</span> and second shear thinning for dense simple fluids.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21171177','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21171177"><span>A weak cation-exchange monolith as stationary <span class="hlt">phase</span> for the <span class="hlt">separation</span> of peptide diastereomers by CEC.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ludewig, Ronny; Nietzsche, Sandor; Scriba, Gerhard K E</p> <p>2011-01-01</p> <p>A CEC weak cation-exchange monolith has been prepared by in situ polymerization of acrylamide, methylenebisacrylamide and 4-acrylamidobutyric acid in a decanol-dimethylsulfoxide mixture as porogen. The columns were evaluated by SEM and characterized with regard to the <span class="hlt">separation</span> of diastereomers and α/β-isomers of aspartyl peptides. Column preparation was reproducible as evidenced by comparison of the analyte retention times of several columns prepared simultaneously. Analyte <span class="hlt">separation</span> was achieved using mobile <span class="hlt">phases</span> consisting of acidic phosphate buffer and ACN. Under these conditions the peptides migrated due to their electrophoretic mobility but the EOF also contributed as driving force as a function of the pH of the mobile <span class="hlt">phase</span> due to increasing dissociation of the carboxyl groups of the polymer. Raising the pH of the mobile <span class="hlt">phase</span> also resulted in deprotonation of the peptides reducing analyte mobility. Due to these mechanisms each pair of diastereomeric peptides displayed the highest resolution at a different pH of the buffer component of the mobile <span class="hlt">phase</span>. Comparing the weak-cation exchange monolith to an RP monolith and a strong cation-exchange monolith different elution order of some peptide diastereomers was observed, clearly illustrating that interactions with the stationary <span class="hlt">phase</span> contribute to the CEC <span class="hlt">separations</span>. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27329167','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27329167"><span>Recent development in liquid chromatography stationary <span class="hlt">phases</span> for <span class="hlt">separation</span> of Traditional Chinese Medicine components.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jin, Hongli; Liu, Yanfang; Guo, Zhimou; Wang, Jixia; Zhang, Xiuli; Wang, Chaoran; Liang, Xinmiao</p> <p>2016-10-25</p> <p>Traditional Chinese Medicine (TCM) is an ancient medical practice which has been used to prevent and cure diseases for thousands of years. TCMs are frequently multi-component systems with mainly unidentified constituents. The study of the chemical compositions of TCMs remains a hotspot of research. Different strategies have been developed to manage the significant complexity of TCMs, in an attempt to determine their constituents. Reversed-<span class="hlt">phase</span> liquid chromatography (RPLC) is still the method of choice for the <span class="hlt">separation</span> of TCMs, but has many problems related to limited selectivity. Recently, enormous efforts have been concentrated on the development of efficient liquid chromatography (LC) methods for TCMs, based on selective stationary <span class="hlt">phases</span>. This can improve the resolution and peak capacity considerably. In addition, high-efficiency stationary <span class="hlt">phases</span> have been applied in the analysis of TCMs since the invention of ultra high-performance liquid chromatography (UHPLC). This review describes the advances in LC methods in TCM research from 2010 to date, and focuses on novel stationary <span class="hlt">phases</span>. Their potential in the <span class="hlt">separation</span> of TCMs using relevant applications is also demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986JGR....9112842V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986JGR....9112842V"><span><span class="hlt">Separated</span> two-<span class="hlt">phase</span> flow and basaltic eruptions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vergniolle, Sylvie; Jaupart, Claude</p> <p>1986-11-01</p> <p>Fluid dynamical models of volcanic eruptions are usually made in the homogeneous approximation where gas and liquid are constrained to move at the same velocity. Basaltic eruptions exhibit the characteristics of <span class="hlt">separated</span> flows, including transitions in their flow regime, from bubbly to slug flow in Strombolian eruptions and from bubbly to annular flow in Hawaiian ones. These regimes can be characterized by a parameter called the melt superficial velocity, or volume flux per unit cross section, which takes values between 10-3 and 10-2 m/s for bubbly and slug flow, and about 1 m/s for annular flow. We use two-<span class="hlt">phase</span> flow equations to determine under which conditions the homogeneous approximation is not valid. In the bubbly regime, in which many bubbles rise through the moving liquid, there are large differences between the two-<span class="hlt">phase</span> and homogeneous models, especially in the predictions of gas content and pressure. The homogeneous model is valid for viscous lavas such as dacites because viscosity impedes bubble motion. It is not valid for basaltic lavas if bubble sizes are greater than 1 cm, which is the case. Accordingly, basaltic eruptions should be characterized by lower gas contents and lower values of the exit pressure, and they rarely erupt in the mist and froth regimes, which are a feature of more viscous lavas. The two-<span class="hlt">phase</span> flow framework allows for the treatment of different bubble populations, including vesicles due to exsolution by pressure release in the volcanic conduit and bubbles from the magma chamber. This yields information on poorly constrained parameters including the effective friction coefficient for the conduit, gas content, and bubble size in the chamber. We suggest that the observed flow transitions record changes in the amount and size of gas bubbles in the magma chamber at the conduit entry.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPCM...28j3003H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPCM...28j3003H"><span>Emerging ferroelectric transistors with <span class="hlt">nanoscale</span> channel materials: the possibilities, the limitations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hong, Xia</p> <p>2016-03-01</p> <p>Combining the nonvolatile, locally switchable polarization field of a ferroelectric thin film with a <span class="hlt">nanoscale</span> electronic material in a field effect transistor structure offers the opportunity to examine and control a rich variety of mesoscopic phenomena and interface coupling. It is also possible to introduce new <span class="hlt">phases</span> and functionalities into these hybrid systems through rational design. This paper reviews two rapidly progressing branches in the field of ferroelectric transistors, which employ two distinct classes of <span class="hlt">nanoscale</span> electronic materials as the conducting channel, the two-dimensional (2D) electron gas graphene and the strongly correlated transition metal oxide thin films. The topics covered include the basic device physics, novel phenomena emerging in the hybrid systems, critical mechanisms that control the magnitude and stability of the field effect modulation and the mobility of the channel material, potential device applications, and the performance limitations of these devices due to the complex interface interactions and challenges in achieving controlled materials properties. Possible future directions for this field are also outlined, including local ferroelectric gate control via <span class="hlt">nanoscale</span> domain patterning and incorporating other emergent materials in this device concept, such as the simple binary ferroelectrics, layered 2D transition metal dichalcogenides, and the 4d and 5d heavy metal compounds with strong spin-orbit coupling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22408995','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22408995"><span>The model of <span class="hlt">nano-scale</span> copper particle removal from silicon surface in high pressure CO2 + H2O and CO2 + H2O + IPA cleaning solutions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tan, Xin; Chai, Jiajue; Zhang, Xiaogang; Chen, Jiawei</p> <p>2011-12-01</p> <p>This study focuses on the description of the static forces in CO2-H2O and CO2-H2O-IPA cleaning solutions with a <span class="hlt">separate</span> fluid <span class="hlt">phase</span> entrapped between <span class="hlt">nano-scale</span> copper particles and a silicon surface. Calculations demonstrate that increasing the pressure of the cleaning system decreases net adhesion force (NAF) between the particle and silicon. The NAF of a particle for in CO2-H2O-IPA system is less than that in CO2-H2O system, suggesting that the particles enter into bulk layer more easily as the CO2-H2O cleaning system is added IPA.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3794783','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3794783"><span>Design of Phosphonium-Type Zwitterion as an Additive to Improve Saturated Water Content of <span class="hlt">Phase-Separated</span> Ionic Liquid from Aqueous <span class="hlt">Phase</span> toward Reversible Extraction of Proteins</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ito, Yoritsugu; Kohno, Yuki; Nakamura, Nobuhumi; Ohno, Hiroyuki</p> <p>2013-01-01</p> <p>We designed phosphonium-type zwitterion (ZI) to control the saturated water content of <span class="hlt">separated</span> ionic liquid (IL) <span class="hlt">phase</span> in the hydrophobic IL/water biphasic systems. The saturated water content of <span class="hlt">separated</span> IL <span class="hlt">phase</span>, 1-butyl-3-methyimidazolium bis(trifluoromethanesulfonyl)imide, was considerably improved from 0.4 wt% to 62.8 wt% by adding N,N,N-tripentyl-4-sulfonyl-1-butanephosphonium-type ZI (P555C4S). In addition, the maximum water content decreased from 62.8 wt% to 34.1 wt% by increasing KH2PO4/K2HPO4 salt content in upper aqueous phosphate buffer <span class="hlt">phase</span>. Horse heart cytochrome c (cyt.c) was dissolved selectively in IL <span class="hlt">phase</span> by improving the water content of IL <span class="hlt">phase</span>, and spectroscopic analysis revealed that the dissolved cyt.c retained its higher ordered structure. Furthermore, cyt. c dissolved in IL <span class="hlt">phase</span> was re-extracted again from IL <span class="hlt">phase</span> to aqueous <span class="hlt">phase</span> by increasing the concentration of inorganic salts of the buffer solution. PMID:24013379</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25541813','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25541813"><span>Glass-liquid <span class="hlt">phase</span> <span class="hlt">separation</span> in highly supersaturated aqueous solutions of telaprevir.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mosquera-Giraldo, Laura I; Taylor, Lynne S</p> <p>2015-02-02</p> <p>Amorphous solid dispersions are of great current interest because they can improve the delivery of poorly water-soluble compounds. It has been recently noted that the highly supersaturated solutions generated by dissolution of some ASDs can undergo a <span class="hlt">phase</span> transition to a colloidal, disordered, drug-rich <span class="hlt">phase</span> when the concentration exceeds the "amorphous solubility" of the drug. The purpose of this study was to investigate the <span class="hlt">phase</span> behavior of supersaturated solutions of telaprevir, which is formulated as an amorphous solid dispersion in the commercial product. Different analytical techniques including proton nuclear magnetic resonance spectroscopy (NMR), ultraviolet spectroscopy (UV), fluorescence spectroscopy and flux measurements were used to evaluate the properties of aqueous supersaturated solutions of telaprevir. It was found that highly supersaturated solutions of telaprevir underwent glass-liquid <span class="hlt">phase</span> <span class="hlt">separation</span> (GLPS) when the concentration exceeded 90 μg/mL, forming a water-saturated colloidal, amorphous drug-rich <span class="hlt">phase</span> with a glass transition temperature of 52 °C. From flux measurements, it was observed that the "free" drug concentration reached a maximum at the concentration where GLPS occurred, and did not increase further as the concentration was increased. This <span class="hlt">phase</span> behavior, which results in a precipitate and a metastable equilibrium between a supersaturated solution and a drug-rich <span class="hlt">phase</span>, is obviously important in the context of evaluating amorphous solid dispersion formulations and their crystallization routes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28449878','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28449878"><span>Silica aerogel coated on metallic wire by <span class="hlt">phase</span> <span class="hlt">separation</span> of polystyrene for in-tube solid <span class="hlt">phase</span> microextraction.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baktash, Mohammad Yahya; Bagheri, Habib</p> <p>2017-06-02</p> <p>In this research, an attempt was made toward synthesizing a sol-gel-based silica aerogel and its subsequent coating on a copper wire by <span class="hlt">phase</span> <span class="hlt">separation</span> of polystyrene. Adaption of this new approach enabled us to coat the metallic wire with powder materials. The use of this method for coating, led to the formation of a porous and thick structure of silica aerogel. The coated wire was placed in a needle and used as the sorbent for in-tube solid <span class="hlt">phase</span> microextraction of chlorobenzenes (CBs). The superhydrophobicity of sorbent on extraction efficiency was investigated by using different ratios of tetraethylorthosilicate/methyltrimethoxysilane. The surface coated with the prepared silica aerogel by the <span class="hlt">phase</span> <span class="hlt">separation</span> of polystyrene showed high contact angle, approving the desired superhydrophobic properties. Effects of major parameters influencing the extraction efficiency including the extraction temperature, extraction time, ionic strength, desorption time were investigated and optimized. The limits of detection and quantification of the method under the optimized condition were 0.1-1.2 and 0.4-4.1ngL -1 , respectively. The relative standard deviations (RSD%) at a concentration level of 10ngL -1 were between 4 and 10% (n=3). The calibration curves of CBs showed linearity from 1 to100ngL -1 . Eventually, the method was successfully applied to the extraction of model compounds from real water samples and relative recoveries varied from 88 to 115%. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27960507','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27960507"><span>Dielectric Metasurface as a Platform for Spatial Mode Conversion in <span class="hlt">Nanoscale</span> Waveguides.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ohana, David; Desiatov, Boris; Mazurski, Noa; Levy, Uriel</p> <p>2016-12-14</p> <p>We experimentally demonstrate a <span class="hlt">nanoscale</span> mode converter that performs coupling between the first two transverse electric-like modes of a silicon-on-insulator waveguide. The device operates by introducing a <span class="hlt">nanoscale</span> periodic perturbation in its effective refractive index along the propagation direction and a graded effective index profile along its transverse direction. The periodic perturbation provides <span class="hlt">phase</span> matching between the modes, while the graded index profile, which is realized by the implementation of <span class="hlt">nanoscale</span> dielectric metasurface consisting of silicon features that are etched into the waveguide taking advantage of the effective medium concept, provides the overlap between the modes. Following the device design and numerical analysis using three-dimensional finite difference time domain simulations, we have fabricated the device and characterized it by directly measuring the modal content using optical imaging microscopy. From these measurements, the mode purity is estimated to be 95% and the transmission relative to an unperturbed strip waveguide is as high as 88%. Finally, we extend this approach to accommodate for the coupling between photonic and plasmonic modes. Specifically, we design and numerically demonstrate photonic to plasmonic mode conversion in a hybrid waveguide in which photonic and surface plasmon polariton modes can be guided in the silicon core and in the silicon/metal interface, respectively. The same method can also be used for coupling between symmetric and antisymmetric plasmonic modes in metal-insulator-metal or insulator-metal-insulator structures. On the basis of the current demonstration, we believe that such <span class="hlt">nanoscale</span> dielectric metasurface-based mode converters can now be realized and become an important building block in future <span class="hlt">nanoscale</span> photonic and plasmonic devices. Furthermore, the demonstrated platform can be used for the implementation of other chip scale components such as splitters, combiners couplers, and more.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Nanos...5.5854L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Nanos...5.5854L"><span><span class="hlt">Nanoscale</span> effects of silica particle supports on the formation and properties of TiO2 nanocatalysts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Aize; Jin, Yuhui; Muggli, Darrin; Pierce, David T.; Aranwela, Hemantha; Marasinghe, Gaya K.; Knutson, Theodore; Brockman, Greg; Zhao, Julia Xiaojun</p> <p>2013-06-01</p> <p>Small TiO2 crystals in the anatase <span class="hlt">phase</span> are in high demand as photocatalysts. Stable TiO2 crystals in the anatase <span class="hlt">phase</span> were obtained using a silica nanoparticle as a support. The focus of this study was to investigate the <span class="hlt">nanoscale</span> effect of the silica support on the formation and properties of small anatase crystals. The experiments were carried out using powder X-ray diffraction, differential thermal analysis, transmission electron microscopy, and energy dispersion spectroscopy. The results showed that the size of the silica support played a crucial role in crystallization of TiO2 and regulation of TiO2 properties, including <span class="hlt">phase</span> transition, crystal size, thermodynamic property and catalytic activity. A <span class="hlt">nanoscale</span> curvature model of the spherical silica support was proposed to explain these size effects. Finally, the developed TiO2 catalysts were applied to the oxidation of methanol using a high-throughput photochemical reactor. The size effect of the silica supports on the TiO2 catalytic efficiency was demonstrated using this system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23032696','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23032696"><span>Intrinsic crystal <span class="hlt">phase</span> <span class="hlt">separation</span> in the antiferromagnetic superconductor Rb(y)Fe(2-x)Se2: a diffraction study.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu Pomjakushin, V; Krzton-Maziopa, A; Pomjakushina, E V; Conder, K; Chernyshov, D; Svitlyk, V; Bosak, A</p> <p>2012-10-31</p> <p>The crystal and magnetic structures of the superconducting iron-based chalcogenides Rb(y)Fe(2-x)Se(2) have been studied by means of single-crystal synchrotron x-ray and high-resolution neutron powder diffraction in the temperature range 2-570 K. The ground state of the crystal is an intrinsically <span class="hlt">phase-separated</span> state with two distinct-by-symmetry <span class="hlt">phases</span>. The main <span class="hlt">phase</span> has the iron vacancy ordered √5 × √5 superstructure (I4/m space group) with AFM ordered Fe spins. The minority <span class="hlt">phase</span> does not have √5 × √5-type of ordering and has a smaller in-plane lattice constant a and larger tetragonal c-axis and can be well described by assuming the parent average vacancy disordered structure (I4/mmm space group) with the refined stoichiometry Rb(0.60(5))(Fe(1.10(5))Se)(2). The minority <span class="hlt">phase</span> amounts to 8-10% mass fraction. The unit cell volume of the minority <span class="hlt">phase</span> is 3.2% smaller than the one of the main <span class="hlt">phase</span> at T = 2 K and has quite different temperature dependence. The minority <span class="hlt">phase</span> merges with the main vacancy ordered <span class="hlt">phase</span> on heating above the <span class="hlt">phase</span> <span class="hlt">separation</span> temperature T(P) = 475 K. The spatial dimensions of the <span class="hlt">phase</span> domains strongly increase above T(P) from 1000 to >2500 Å due to the integration of the regions of the main <span class="hlt">phase</span> that were <span class="hlt">separated</span> by the second <span class="hlt">phase</span> at low temperatures. Additional annealing of the crystals at a temperature T = 488 K, close to T(P), for a long time drastically reduces the amount of the minority <span class="hlt">phase</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJST.226.1997C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJST.226.1997C"><span>Destructive impact of molecular noise on <span class="hlt">nanoscale</span> electrochemical oscillators</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cosi, Filippo G.; Krischer, Katharina</p> <p>2017-06-01</p> <p>We study the loss of coherence of electrochemical oscillations on meso- and nanosized electrodes with numeric simulations of the electrochemical master equation for a prototypical electrochemical oscillator, the hydrogen peroxide reduction on Pt electrodes in the presence of halides. On nanoelectrodes, the electrode potential changes whenever a stochastic electron-transfer event takes place. Electrochemical reaction rate coefficients depend exponentially on the electrode potential and become thus fluctuating quantities as well. Therefore, also the transition rates between system states become time-dependent which constitutes a fundamental difference to purely chemical <span class="hlt">nanoscale</span> oscillators. Three implications are demonstrated: (a) oscillations and steady states shift in <span class="hlt">phase</span> space with decreasing system size, thereby also decreasing considerably the oscillating parameter regions; (b) the minimal number of molecules necessary to support correlated oscillations is more than 10 times as large as for <span class="hlt">nanoscale</span> chemical oscillators; (c) the relation between correlation time and variance of the period of the oscillations predicted for chemical oscillators in the weak noise limit is only fulfilled in a very restricted parameter range for the electrochemical nano-oscillator.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvE..96f2804K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvE..96f2804K"><span>Coarsening and pattern formation during true morphological <span class="hlt">phase</span> <span class="hlt">separation</span> in unstable thin films under gravity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Avanish; Narayanam, Chaitanya; Khanna, Rajesh; Puri, Sanjay</p> <p>2017-12-01</p> <p>We address in detail the problem of true morphological <span class="hlt">phase</span> <span class="hlt">separation</span> (MPS) in three-dimensional or (2 +1 )-dimensional unstable thin liquid films (>100 nm) under the influence of gravity. The free-energy functionals of these films are asymmetric and show two points of common tangency, which facilitates the formation of two equilibrium <span class="hlt">phases</span>. Three distinct patterns formed by relative preponderance of these <span class="hlt">phases</span> are clearly identified in "true MPS". Asymmetricity induces two different pathways of pattern formation, viz., defect and direct pathway for true MPS. The pattern formation and <span class="hlt">phase</span>-ordering dynamics have been studied using statistical measures such as structure factor, correlation function, and growth laws. In the late stage of coarsening, the system reaches into a scaling regime for both pathways, and the characteristic domain size follows the Lifshitz-Slyozov growth law [L (t ) ˜t1 /3] . However, for the defect pathway, there is a crossover of domain growth behavior from L (t ) ˜t1 /4→t1 /3 in the dynamical scaling regime. We also underline the analogies and differences behind the mechanisms of MPS and true MPS in thin liquid films and generic spinodal <span class="hlt">phase</span> <span class="hlt">separation</span> in binary mixtures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JChPh.135w4902J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JChPh.135w4902J"><span>Percolation, <span class="hlt">phase</span> <span class="hlt">separation</span>, and gelation in fluids and mixtures of spheres and rods</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jadrich, Ryan; Schweizer, Kenneth S.</p> <p>2011-12-01</p> <p>The relationship between kinetic arrest, connectivity percolation, structure and <span class="hlt">phase</span> <span class="hlt">separation</span> in protein, nanoparticle, and colloidal suspensions is a rich and complex problem. Using a combination of integral equation theory, connectivity percolation methods, naïve mode coupling theory, and the activated dynamics nonlinear Langevin equation approach, we study this problem for isotropic one-component fluids of spheres and variable aspect ratio rigid rods, and also percolation in rod-sphere mixtures. The key control parameters are interparticle attraction strength and its (short) spatial range, total packing fraction, and mixture composition. For spherical particles, formation of a homogeneous one-<span class="hlt">phase</span> kinetically stable and percolated physical gel is predicted to be possible, but depends on non-universal factors. On the other hand, the dynamic crossover to activated dynamics and physical bond formation, which signals discrete cluster formation below the percolation threshold, almost always occurs in the one <span class="hlt">phase</span> region. Rods more easily gel in the homogeneous isotropic regime, but whether a percolation or kinetic arrest boundary is reached first upon increasing interparticle attraction depends sensitively on packing fraction, rod aspect ratio and attraction range. Overall, the connectivity percolation threshold is much more sensitive to attraction range than either the kinetic arrest or <span class="hlt">phase</span> <span class="hlt">separation</span> boundaries. Our results appear to be qualitatively consistent with recent experiments on polymer-colloid depletion systems and brush mediated attractive nanoparticle suspensions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29849146','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29849146"><span><span class="hlt">Phase-separation</span> mechanism for C-terminal hyperphosphorylation of RNA polymerase II.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lu, Huasong; Yu, Dan; Hansen, Anders S; Ganguly, Sourav; Liu, Rongdiao; Heckert, Alec; Darzacq, Xavier; Zhou, Qiang</p> <p>2018-06-01</p> <p>Hyperphosphorylation of the C-terminal domain (CTD) of the RPB1 subunit of human RNA polymerase (Pol) II is essential for transcriptional elongation and mRNA processing 1-3 . The CTD contains 52 heptapeptide repeats of the consensus sequence YSPTSPS. The highly repetitive nature and abundant possible phosphorylation sites of the CTD exert special constraints on the kinases that catalyse its hyperphosphorylation. Positive transcription elongation factor b (P-TEFb)-which consists of CDK9 and cyclin T1-is known to hyperphosphorylate the CTD and negative elongation factors to stimulate Pol II elongation 1,4,5 . The sequence determinant on P-TEFb that facilitates this action is currently unknown. Here we identify a histidine-rich domain in cyclin T1 that promotes the hyperphosphorylation of the CTD and stimulation of transcription by CDK9. The histidine-rich domain markedly enhances the binding of P-TEFb to the CTD and functional engagement with target genes in cells. In addition to cyclin T1, at least one other kinase-DYRK1A 6 -also uses a histidine-rich domain to target and hyperphosphorylate the CTD. As a low-complexity domain, the histidine-rich domain also promotes the formation of <span class="hlt">phase-separated</span> liquid droplets in vitro, and the localization of P-TEFb to nuclear speckles that display dynamic liquid properties and are sensitive to the disruption of weak hydrophobic interactions. The CTD-which in isolation does not <span class="hlt">phase</span> <span class="hlt">separate</span>, despite being a low-complexity domain-is trapped within the cyclin T1 droplets, and this process is enhanced upon pre-phosphorylation by CDK7 of transcription initiation factor TFIIH 1-3 . By using multivalent interactions to create a <span class="hlt">phase-separated</span> functional compartment, the histidine-rich domain in kinases targets the CTD into this environment to ensure hyperphosphorylation and efficient elongation of Pol II.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860027182&hterms=equilibrium+liquid+vapors&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dequilibrium%2Bliquid%2Bvapors','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860027182&hterms=equilibrium+liquid+vapors&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dequilibrium%2Bliquid%2Bvapors"><span>Simplified thermodynamic functions for vapor-liquid <span class="hlt">phase</span> <span class="hlt">separation</span> and fountain effect pumps</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yuan, S. W. K.; Hepler, W. A.; Frederking, T. H. K.</p> <p>1984-01-01</p> <p>He-4 fluid handling devices near 2 K require novel components for non-Newtonian fluid transport in He II. Related sizing of devices has to be based on appropriate thermophysical property functions. The present paper presents simplified equilibrium state functions for porous media components which serve as vapor-liquid <span class="hlt">phase</span> <span class="hlt">separators</span> and fountain effect pumps.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JBO....21l6016F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JBO....21l6016F"><span>Digital holographic microscopy of <span class="hlt">phase</span> <span class="hlt">separation</span> in multicomponent lipid membranes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farzam Rad, Vahideh; Moradi, Ali-Reza; Darudi, Ahmad; Tayebi, Lobat</p> <p>2016-12-01</p> <p>Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered <span class="hlt">phases</span>. Coupling of two-dimensional intralayer <span class="hlt">phase</span> <span class="hlt">separations</span> and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of <span class="hlt">phase</span> objects. By deriving the associated <span class="hlt">phase</span> changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19580250','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19580250"><span>Freezing-induced <span class="hlt">phase</span> <span class="hlt">separation</span> and spatial microheterogeneity in protein solutions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dong, Jinping; Hubel, Allison; Bischof, John C; Aksan, Alptekin</p> <p>2009-07-30</p> <p>Amid decades of research, the basic mechanisms of lyo-/cryostabilization of proteins and more complex organisms have not yet been fully established. One major bottleneck is the inability to probe into and control the molecular level interactions. The molecular interactions are responsible for the significant differences in the outcome of the preservation processes. (1) In this communication, we have utilized confocal Raman microspectroscopy to quantify the freezing-induced microheterogeneity and <span class="hlt">phase</span> <span class="hlt">separation</span> (solid and liquid) in a frozen solution composed of a model protein (lysozyme) and a lyo-/cryoprotectant (trehalose), which experienced different degrees of supercooling. Detailed quantitative spectral analysis was performed across the ice, the freeze-concentrated liquid (FCL) <span class="hlt">phases</span>, and the interface region between them. It was established that the characteristics of the microstructures observed after freezing depended not only on the concentration of trehalose in the solution but also on the degree of supercooling. It was shown that, when samples were frozen after high supercooling, small amounts of lysozyme and trehalose were occluded in the ice <span class="hlt">phase</span>. Lysozyme preserved its native-like secondary structure in the FCL region but was denatured in the ice <span class="hlt">phase</span>. Also, it was observed that induction of freezing after a high degree of supercooling of high trehalose concentrations resulted in aggregation of the sugar and the protein.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000070859','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000070859"><span>Atomistic Design and Simulations of <span class="hlt">Nanoscale</span> Machines and Assembly</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goddard, William A., III; Cagin, Tahir; Walch, Stephen P.</p> <p>2000-01-01</p> <p>Over the three years of this project, we made significant progress on critical theoretical and computational issues in <span class="hlt">nanoscale</span> science and technology, particularly in:(1) Fullerenes and nanotubes, (2) Characterization of surfaces of diamond and silicon for NEMS applications, (3) <span class="hlt">Nanoscale</span> machine and assemblies, (4) Organic nanostructures and dendrimers, (5) <span class="hlt">Nanoscale</span> confinement and nanotribology, (6) Dynamic response of <span class="hlt">nanoscale</span> structures nanowires (metals, tubes, fullerenes), (7) Thermal transport in nanostructures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23872303','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23872303"><span>Detecting <span class="hlt">phase</span> <span class="hlt">separation</span> of freeze-dried binary amorphous systems using pair-wise distribution function and multivariate data analysis.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chieng, Norman; Trnka, Hjalte; Boetker, Johan; Pikal, Michael; Rantanen, Jukka; Grohganz, Holger</p> <p>2013-09-15</p> <p>The purpose of this study is to investigate the use of multivariate data analysis for powder X-ray diffraction-pair-wise distribution function (PXRD-PDF) data to detect <span class="hlt">phase</span> <span class="hlt">separation</span> in freeze-dried binary amorphous systems. Polymer-polymer and polymer-sugar binary systems at various ratios were freeze-dried. All samples were analyzed by PXRD, transformed to PDF and analyzed by principal component analysis (PCA). These results were validated by differential scanning calorimetry (DSC) through characterization of glass transition of the maximally freeze-concentrate solute (Tg'). Analysis of PXRD-PDF data using PCA provides a more clear 'miscible' or '<span class="hlt">phase</span> <span class="hlt">separated</span>' interpretation through the distribution pattern of samples on a score plot presentation compared to residual plot method. In a <span class="hlt">phase</span> <span class="hlt">separated</span> system, samples were found to be evenly distributed around the theoretical PDF profile. For systems that were miscible, a clear deviation of samples away from the theoretical PDF profile was observed. Moreover, PCA analysis allows simultaneous analysis of replicate samples. Comparatively, the <span class="hlt">phase</span> behavior analysis from PXRD-PDF-PCA method was in agreement with the DSC results. Overall, the combined PXRD-PDF-PCA approach improves the clarity of the PXRD-PDF results and can be used as an alternative explorative data analytical tool in detecting <span class="hlt">phase</span> <span class="hlt">separation</span> in freeze-dried binary amorphous systems. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16307875','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16307875"><span>Extraction of heavy metal ions from waste colored glass through <span class="hlt">phase</span> <span class="hlt">separation</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Danping; Masui, Hirotsugu; Miyoshi, Hiroshi; Akai, Tomoko; Yazawa, Tetsuo</p> <p>2006-01-01</p> <p>A new method utilizing <span class="hlt">phase</span> <span class="hlt">separation</span> phenomena for the extraction of heavy metal ions used as colorants in colored glass is proposed. Colored soda-lime-silica glass containing Co or Cr as a colorant was remelted with B2O3 to yield soda-lime-borosilicate glass. The soda-lime-borosilicate glass thus obtained was leached in 1M nitric acid at 90 degrees C to dissolve the borate <span class="hlt">phase</span>. All cations (Na, Ca, Cr and Co) concentrated in the borate <span class="hlt">phase</span> are successfully leached out with the dissolution of the borate <span class="hlt">phase</span>, when the amount of the B2O3 added to the glass and heat treatment conditions are properly chosen. Porous silicate glass powders with high SiO2 purity are obtained as the result of the leaching. Porous glass can also be formed as bulk material by controlling the composition of additives during the remelting.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22209545','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22209545"><span>Thin-layer chromatography with stationary <span class="hlt">phase</span> gradient as a method for <span class="hlt">separation</span> of water-soluble vitamins.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cimpoiu, Claudia; Hosu, Anamaria; Puscas, Anitta</p> <p>2012-02-03</p> <p>The group of hydrophilic vitamins play an important role in human health, and their lack or excess produces specific diseases. Therefore, the analysis of these compounds is indispensable for monitoring their content in pharmaceuticals and food in order to prevent some human diseases. TLC was successfully applied in the analysis of hydrophilic vitamins, but the most difficult problem in the simultaneous analysis of all these compounds is to find an optimum stationary <span class="hlt">phase</span>-mobile <span class="hlt">phase</span> system due to different chemical characteristics of analytes. Unfortunately structural analogues are difficult to <span class="hlt">separate</span> in one chromatographic run, and this is the case in hydrophilic vitamins investigations. TLC gives the possibility to perform two-dimensional <span class="hlt">separations</span> by using stationary <span class="hlt">phase</span> gradient achieving the highest resolution by combining two systems with different selectivity. The goal of this work was to develop a method of analysis enabling <span class="hlt">separation</span> of hydrophilic vitamins using TLC with adsorbent gradient. The developed method was used for identifying the water-soluble vitamins in alcoholic extracts of Hippophae rhamnoides and of Ribes nigrum. Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26636608','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26636608"><span>On-Chip Pressure Generation for Driving Liquid <span class="hlt">Phase</span> <span class="hlt">Separations</span> in Nanochannels.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xia, Ling; Choi, Chiwoong; Kothekar, Shrinivas C; Dutta, Debashis</p> <p>2016-01-05</p> <p>In this Article, we describe the generation of pressure gradients on-chip for driving liquid <span class="hlt">phase</span> <span class="hlt">separations</span> in submicrometer deep channels. The reported pressure-generation capability was realized by applying an electrical voltage across the interface of two glass channel segments with different depths. A mismatch in the electroosmotic flow rate at this junction led to the generation of pressure-driven flow in our device, a fraction of which was then directed to an analysis channel to carry out the desired <span class="hlt">separation</span>. Experiments showed the reported strategy to be particularly conducive for miniaturization of pressure-driven <span class="hlt">separations</span> yielding flow velocities in the <span class="hlt">separation</span> channel that were nearly unaffected upon scaling down the depth of the entire fluidic network. Moreover, the small dead volume in our system allowed for high dynamic control over this pressure gradient, which otherwise was challenging to accomplish during the sample injection process using external pumps. Pressure-driven velocities up to 3.1 mm/s were realized in <span class="hlt">separation</span> ducts as shallow as 300 nm using our current design for a maximum applied voltage of 3 kV. The functionality of this integrated device was demonstrated by implementing a pressure-driven ion chromatographic analysis that relied on analyte interaction with the nanochannel surface charges to yield a nonuniform solute concentration across the channel depth. Upon coupling such analyte distribution to the parabolic pressure-driven flow profile in the <span class="hlt">separation</span> duct, a mixture of amino acids could be resolved. The reported assay yielded a higher <span class="hlt">separation</span> resolution compared to its electrically driven counterpart in which sample migration was realized using electroosmosis/electrophoresis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DFD.E7003N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DFD.E7003N"><span>Dehydration induced <span class="hlt">phase</span> transitions in a microfluidic droplet array for the <span class="hlt">separation</span> of biomolecules</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nelson, Chris; Anna, Shelley</p> <p>2013-11-01</p> <p>Droplet-based strategies for fluid manipulation have seen significant application in microfluidics due to their ability to compartmentalize solutions and facilitate highly parallelized reactions. Functioning as micro-scale reaction vessels, droplets have been used to study protein crystallization, enzyme kinetics, and to encapsulate whole cells. Recently, the mass transport out of droplets has been used to concentrate solutions and induce <span class="hlt">phase</span> transitions. Here, we show that droplets trapped in a microfluidic array will spontaneously dehydrate over the course of several hours. By loading these devices with an initially dilute aqueous polymer solution, we use this slow dehydration to observe <span class="hlt">phase</span> transitions and the evolution of droplet morphology in hundreds of droplets simultaneously. As an example, we trap and dehydrate droplets of a model aqueous two-<span class="hlt">phase</span> system consisting of polyethylene glycol and dextran. Initially the drops are homogenous, then after some time the polymer concentration reaches a critical point and two <span class="hlt">phases</span> form. As water continues to leave the system, the drops transition from a microemulsion of DEX in PEG to a core-shell configuration. Eventually, changes in interfacial tension, driven by dehydration, cause the DEX core to completely de-wet from the PEG shell. Since aqueous two <span class="hlt">phase</span> systems are able to selectively <span class="hlt">separate</span> a variety of biomolecules, this core shedding behavior has the potential to provide selective, on-chip <span class="hlt">separation</span> and concentration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H53B1412N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H53B1412N"><span>Characterization of <span class="hlt">Nano-scale</span> Aluminum Oxide Transport through Porous Media</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Norwood, S.; Reynolds, M.; Miao, Z.; Brusseau, M. L.; Johnson, G. R.</p> <p>2011-12-01</p> <p>Colloidal material (including that in the nanoparticle size range) is naturally present in most subsurface environments. Mobilization of these colloidal materials via particle disaggregation may occur through abrupt changes in flow rate and/or via chemical perturbations, such as rapid changes in ionic strength or solution pH. While concentrations of natural colloidal materials in the subsurface are typically small, those concentrations may be greatly increased at contaminated sites such as following the application of metal oxides for groundwater remediation efforts. Additionally, while land application of biosolids has become common practice in the United States as an alternative to industrial fertilizers, biosolids have been shown to contain a significant fraction of organic and inorganic <span class="hlt">nano-scale</span> colloidal materials such as oxides of iron, titanium, and aluminum. Given their reactivity and small size, there are many questions concerning the potential migration of <span class="hlt">nano-scale</span> colloidal materials through the soil column and their potential participation in the facilitated transport of contaminants, such as heavy metals and emerging pollutants. The purpose of this study was to investigate the transport behavior of aluminum oxide (Al2O3) nanoparticles through porous media. The impacts of pH, ionic strength, pore-water velocity (i.e., residence time), and aqueous-<span class="hlt">phase</span> concentration on transport was investigated. All experiments were conducted with large injection pulses to fully characterize the impact of long-term retention and transport behavior relevant for natural systems wherein multiple retention processes may be operative. The results indicate that the observed nonideal transport behavior of the <span class="hlt">nano-scale</span> colloids is influenced by multiple retention mechanisms/processes. Given the ubiquitous nature of these <span class="hlt">nano-scale</span> colloids in the environment, a clear understanding of their transport and fate is necessary in further resolving the potential for</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23554360','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23554360"><span>Selectivity differences of water-soluble vitamins <span class="hlt">separated</span> on hydrophilic interaction stationary <span class="hlt">phases</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Yuanzhong; Boysen, Reinhard I; Hearn, Milton T W</p> <p>2013-06-01</p> <p>In this study, the retention behavior and selectivity differences of water-soluble vitamins were evaluated with three types of polar stationary <span class="hlt">phases</span> (i.e. an underivatized silica <span class="hlt">phase</span>, an amide <span class="hlt">phase</span>, and an amino <span class="hlt">phase</span>) operated in the hydrophilic interaction chromatographic mode with ESI mass spectrometric detection. The effects of mobile <span class="hlt">phase</span> composition, including buffer pH and concentration, on the retention and selectivity of the vitamins were investigated. In all stationary <span class="hlt">phases</span>, the neutral or weakly charged vitamins exhibited very weak retention under each of the pH conditions, while the acidic and more basic vitamins showed diverse retention behaviors. With the underivatized silica <span class="hlt">phase</span>, increasing the salt concentration of the mobile <span class="hlt">phase</span> resulted in enhanced retention of the acidic vitamins, but decreased retention of the basic vitamins. These observations thus signify the involvement of secondary mechanisms, such as electrostatic interaction in the retention of these analytes. Under optimized conditions, a baseline <span class="hlt">separation</span> of all vitamins was achieved with excellent peak efficiency. In addition, the effects of water content in the sample on retention and peak efficiency were examined, with sample stacking effects observed when the injected sample contained a high amount of water. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJD...71..339K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJD...71..339K"><span>Dynamics of systems on the <span class="hlt">nanoscale</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korol, Andrei V.; Solov'yov, Andrey V.</p> <p>2017-12-01</p> <p>Various aspects of the structure formation and dynamics of animate and inanimate matter on the <span class="hlt">nanoscale</span> is a highly interdisciplinary field of rapidly emerging research interest by both experimentalists and theorists. The International Conference on Dynamics of Systems on the <span class="hlt">Nanoscale</span> (DySoN) is the premier forum to present cutting-edge research in this field. It was established in 2010 and the most recent conference was held in Bad Ems, Germany in October of 2016. This Topical Issue presents original research results from some of the participants, who attended this conference. Contribution to the Topical Issue "Dynamics of Systems at the <span class="hlt">Nanoscale</span>", edited by Andrey Solov'yov and Andrei Korol.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1251071-phase-field-modeling-diffusional-phase-behaviors-solid-surfaces-case-study-phase-separating-lixfepo4-electrode-particles','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1251071-phase-field-modeling-diffusional-phase-behaviors-solid-surfaces-case-study-phase-separating-lixfepo4-electrode-particles"><span><span class="hlt">Phase</span>-field modeling of diffusional <span class="hlt">phase</span> behaviors of solid surfaces: A case study of <span class="hlt">phase-separating</span> Li XFePO 4 electrode particles</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Heo, Tae Wook; Chen, Long-Qing; Wood, Brandon C.</p> <p>2015-04-08</p> <p>In this paper, we present a comprehensive <span class="hlt">phase</span>-field model for simulating diffusion-mediated kinetic <span class="hlt">phase</span> behaviors near the surface of a solid particle. The model incorporates elastic inhomogeneity and anisotropy, diffusion mobility anisotropy, interfacial energy anisotropy, and Cahn–Hilliard diffusion kinetics. The free energy density function is formulated based on the regular solution model taking into account the possible solute-surface interaction near the surface. The coherency strain energy is computed using the Fourier-spectral iterative-perturbation method due to the strong elastic inhomogeneity with a zero surface traction boundary condition. Employing a <span class="hlt">phase-separating</span> Li XFePO 4 electrode particle for Li-ion batteries as a modelmore » system, we perform parametric three-dimensional computer simulations. The model permits the observation of surface <span class="hlt">phase</span> behaviors that are different from the bulk counterpart. For instance, it reproduces the theoretically well-established surface modes of spinodal decomposition of an unstable solid solution: the surface mode of coherent spinodal decomposition and the surface-directed spinodal decomposition mode. We systematically investigate the influences of major factors on the kinetic surface <span class="hlt">phase</span> behaviors during the diffusional process. Finally, our simulation study provides insights for tailoring the internal <span class="hlt">phase</span> microstructure of a particle by controlling the surface <span class="hlt">phase</span> morphology.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25619781','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25619781"><span>Contrast-enhanced ultrasound imaging and in vivo circulatory kinetics with low-boiling-point <span class="hlt">nanoscale</span> <span class="hlt">phase</span>-change perfluorocarbon agents.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sheeran, Paul S; Rojas, Juan D; Puett, Connor; Hjelmquist, Jordan; Arena, Christopher B; Dayton, Paul A</p> <p>2015-03-01</p> <p>Many studies have explored <span class="hlt">phase</span>-change contrast agents (PCCAs) that can be vaporized by an ultrasonic pulse to form microbubbles for ultrasound imaging and therapy. However, few investigations have been published on the utility and characteristics of PCCAs as contrast agents in vivo. In this study, we examine the properties of low-boiling-point <span class="hlt">nanoscale</span> PCCAs evaluated in vivo and compare data with those for conventional microbubbles with respect to contrast generation and circulation properties. To do this, we develop a custom pulse sequence to vaporize and image PCCAs using the Verasonics research platform and a clinical array transducer. Results indicate that droplets can produce contrast enhancement similar to that of microbubbles (7.29 to 18.24 dB over baseline, depending on formulation) and can be designed to circulate for as much as 3.3 times longer than microbubbles. This study also reports for the first time the ability to capture contrast washout kinetics of the target organ as a measure of vascular perfusion. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20688332','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20688332"><span>Comparison of high-performance liquid chromatography <span class="hlt">separation</span> of red wine anthocyanins on a mixed-mode ion-exchange reversed-<span class="hlt">phase</span> and on a reversed-<span class="hlt">phase</span> column.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vergara, Carola; Mardones, Claudia; Hermosín-Gutiérrez, Isidro; von Baer, Dietrich</p> <p>2010-09-03</p> <p>Anthocyanins, which confer the characteristic color to red wine, can be used as markers to classify wines according to the grape variety. It is a complex <span class="hlt">separation</span> that requires very high chromatographic efficiency, especially in the case of aged red wines, due to the formation of pyranoanthocyanins. A coelution between these kinds of compounds can affect the R(ac/coum) ratio of aged wines, and might lead to false results when classifying the wine variety. In 2007, the use of a novel mixed-mode ion-exchange reversed-<span class="hlt">phase</span> column was reported to <span class="hlt">separate</span> anthocyanins extracted from grapes of Vitis labrusca with different selectivity than C-18 columns. In the present work, the <span class="hlt">separation</span> of anthocyanins including pyranoanthocyanins in young and aged Cabernet Sauvignon wines and other varieties is evaluated. The most interesting contributions of this research are the different elution order and selectivity obtained for anthocyanins and pyranoanthocyanins (only formed in wine), compared with those observed in C-18 stationary <span class="hlt">phases</span>. Also interesting is the <span class="hlt">separation</span> of the polymeric fraction, which elutes as a clearly <span class="hlt">separated</span> peak at the chromatogram's end. However, a comparison with a high efficiency C-18 column with the same dimensions and particle size demonstrated that the tested mixed-mode column shows broader peaks with a theoretical plate number below 8000, for malvidin-3-glucoside peak, while it can be up to 10 times higher for a high efficiency C-18 column, depending on the column manufacturer. Under the tested conditions, in mixed-mode <span class="hlt">phase</span>, the analysis time is almost twice that of a C-18 column with the same dimensions and particle size. A mixed-mode <span class="hlt">phase</span> with increased efficiency should provide an interesting perspective for <span class="hlt">separation</span> of anthocyanins in wine, due to its improved selectivity, combined with a useful role in a second-dimension <span class="hlt">separation</span> in preparative anthocyanin chromatography. 2010 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29107047','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29107047"><span>Moisture-Induced Amorphous <span class="hlt">Phase</span> <span class="hlt">Separation</span> of Amorphous Solid Dispersions: Molecular Mechanism, Microstructure, and Its Impact on Dissolution Performance.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Huijun; Pui, Yipshu; Liu, Chengyu; Chen, Zhen; Su, Ching-Chiang; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Foster, Kimberly; Gudmundsson, Olafur; Qian, Feng</p> <p>2018-01-01</p> <p>Amorphous <span class="hlt">phase</span> <span class="hlt">separation</span> (APS) is commonly observed in amorphous solid dispersions (ASD) when exposed to moisture. The objective of this study was to investigate: (1) the <span class="hlt">phase</span> behavior of amorphous solid dispersions composed of a poorly water-soluble drug with extremely low crystallization propensity, BMS-817399, and PVP, following exposure to different relative humidity (RH), and (2) the impact of <span class="hlt">phase</span> <span class="hlt">separation</span> on the intrinsic dissolution rate of amorphous solid dispersion. Drug-polymer interaction was confirmed in ASDs at different drug loading using infrared (IR) spectroscopy and water vapor sorption analysis. It was found that the drug-polymer interaction could persist at low RH (≤75% RH) but was disrupted after exposure to high RH, with the advent of <span class="hlt">phase</span> <span class="hlt">separation</span>. Surface morphology and composition of 40/60 ASD at micro-/nano-scale before and after exposure to 95% RH were also compared. It was found that hydrophobic drug enriched on the surface of ASD after APS. However, for the 40/60 ASD system, the intrinsic dissolution rate of amorphous drug was hardly affected by the <span class="hlt">phase</span> behavior of ASD, which may be partially attributed to the low crystallization tendency of amorphous BMS-817399 and enriched drug amount on the surface of ASD. Intrinsic dissolution rate of PVP decreased resulting from APS, leading to a lower concentration in the dissolution medium, but supersaturation maintenance was not anticipated to be altered after <span class="hlt">phase</span> <span class="hlt">separation</span> due to the limited ability of PVP to inhibit drug precipitation and prolong the supersaturation of drug in solution. This study indicated that for compounds with low crystallization propensity and high hydrophobicity, the risk of moisture-induced APS is high but such <span class="hlt">phase</span> <span class="hlt">separation</span> may not have profound impact on the drug dissolution performance of ASDs. Therefore, application of ASD technology on slow crystallizers could incur low risks not only in physical stability but also in dissolution performance</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28411802','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28411802"><span>Protein <span class="hlt">separation</span> through preliminary experiments concerning pH and salt concentration by tube radial distribution chromatography based on <span class="hlt">phase</span> <span class="hlt">separation</span> multiphase flow using a polytetrafluoroethylene capillary tube.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kan, Hyo; Tsukagoshi, Kazuhiko</p> <p>2017-07-01</p> <p>Protein mixtures were <span class="hlt">separated</span> using tube radial distribution chromatography (TRDC) in a polytetrafluoroethylene (PTFE) capillary (internal diameter=100µm) <span class="hlt">separation</span> tube. <span class="hlt">Separation</span> by TRDC is based on the annular flow in <span class="hlt">phase</span> <span class="hlt">separation</span> multiphase flow and features an open-tube capillary without the use of specific packing agents or application of high voltages. Preliminary experiments were conducted to examine the effects of pH and salt concentration on the <span class="hlt">phase</span> diagram of the ternary mixed solvent solution of water-acetonitrile-ethyl acetate (8:2:1 volume ratio) and on the TRDC system using the ternary mixed solvent solution. A model protein mixture containing peroxidase, lysozyme, and bovine serum albumin was analyzed via TRDC with the ternary mixed solvent solution at various pH values, i.e., buffer-acetonitrile-ethyl acetate (8:2:1 volume ratio). Protein was <span class="hlt">separated</span> on the chromatograms by the TRDC system, where the elution order was determined by the relation between the isoelectric points of protein and the pH values of the solvent solution. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1352742-elucidating-phase-transformation-li4ti5o12-lithiation-nanoscale','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1352742-elucidating-phase-transformation-li4ti5o12-lithiation-nanoscale"><span>Elucidating the <span class="hlt">Phase</span> Transformation of Li 4Ti 5O 12 Lithiation at the <span class="hlt">Nanoscale</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Verde, Michael G.; Baggetto, Loïc; Balke, Nina; ...</p> <p>2016-03-15</p> <p>Here this work provides insight regarding the fundamental lithiation and delithiation mechanism of the popular lithium ion battery anode material, Li 4Ti 5O 12 (LTO). Our results quantify the extent of reaction between Li 4Ti 5O 12 and Li 7Ti 5O 12 at the <span class="hlt">nanoscale</span>, during the first cycle. Lithium titanate’s discharge (lithiation) and charge (delithiation) reactions are notoriously difficult to characterize due to the zero-strain transition occurring between the end members Li 4Ti 5O 12 and Li 7Ti 5O 12. Interestingly, however, the latter compound is electronically conductive, while the former is an insulator. We take advantage of thismore » critical property difference by using conductive atomic force microscopy (c-AFM) to locally monitor the <span class="hlt">phase</span> transition between the two structures at various states of charge. To do so, we perform ex situ characterization on electrochemically cycled LTO thin-films that are never exposed to air. We provide direct confirmation of the manner in which the reaction occurs, which proceeds via percolation channels within single grains. We complement scanning probe analyses with an X-ray photoelectron spectroscopy (XPS) study that identifies and explains changes in the LTO surface structure and composition. Additionally, we provide a computational analysis to describe the unique electronic differences between LTO and its lithiated form.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010069258','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010069258"><span>Normal Gravity Testing of a Microchannel <span class="hlt">Phase</span> <span class="hlt">Separator</span> for In Situ Resource Utilization</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>TeGrotenhuis, Ward E.; Stenkamp, Victoria S.; McQuillen, John (Technical Monitor)</p> <p>2001-01-01</p> <p>A microchannel <span class="hlt">separator</span>, with 2.7 millimeters as the smallest dimension, was tested, and a pore throat structure captured and removed liquid from a gas-liquid stream. The microchannel device was tested over a of gas and liquid flow rates ranging from 0.0005 up to 0. 14 volume fraction of liquid. Four liquids were tested with air. The biggest factor affecting the throughput is the capacity of liquid flow through the pore throat, which is dictated by permeability, liquid viscosity, flow area, pore throat thickness, and pressure difference across the pore throat. Typically, complete <span class="hlt">separation</span> of gas and liquid fractions was lost when the liquid flow rate reached about 40 to 60% of the pore throat capacity. However, this could occur over a range of 10 to 90% utilization of pore throat capacity. Breakthrough occurs in the microchannel <span class="hlt">phase</span> <span class="hlt">separator</span> at conditions similar to the annular to plug flow transition of two-<span class="hlt">phase</span> microgravity pipe flow implying that operating in the proper flow regime is crucial. Analysis indicates that the Bond number did not affect performance, supporting the premise that hydrodynamic, interfacial, and capillary forces are more important than gravity. However, the relative importance of gravity is better discerned through testing under reduced gravity conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28811101','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28811101"><span>Chiral stationary <span class="hlt">phase</span> optimized selectivity liquid chromatography: A strategy for the <span class="hlt">separation</span> of chiral isomers.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hegade, Ravindra Suryakant; De Beer, Maarten; Lynen, Frederic</p> <p>2017-09-15</p> <p>Chiral Stationary-<span class="hlt">Phase</span> Optimized Selectivity Liquid Chromatography (SOSLC) is proposed as a tool to optimally <span class="hlt">separate</span> mixtures of enantiomers on a set of commercially available coupled chiral columns. This approach allows for the prediction of the <span class="hlt">separation</span> profiles on any possible combination of the chiral stationary <span class="hlt">phases</span> based on a limited number of preliminary analyses, followed by automated selection of the optimal column combination. Both the isocratic and gradient SOSLC approach were implemented for prediction of the retention times for a mixture of 4 chiral pairs on all possible combinations of the 5 commercial chiral columns. Predictions in isocratic and gradient mode were performed with a commercially available and with an in-house developed Microsoft visual basic algorithm, respectively. Optimal predictions in the isocratic mode required the coupling of 4 columns whereby relative deviations between the predicted and experimental retention times ranged between 2 and 7%. Gradient predictions led to the coupling of 3 chiral columns allowing baseline <span class="hlt">separation</span> of all solutes, whereby differences between predictions and experiments ranged between 0 and 12%. The methodology is a novel tool allowing optimizing the <span class="hlt">separation</span> of mixtures of optical isomers. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1434311-investigating-phase-transition-temperatures-size-separated-gadolinium-silicide-magnetic-nanoparticles','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1434311-investigating-phase-transition-temperatures-size-separated-gadolinium-silicide-magnetic-nanoparticles"><span>Investigating <span class="hlt">phase</span> transition temperatures of size <span class="hlt">separated</span> gadolinium silicide magnetic nanoparticles</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hunagund, Shivakumar G.; Harstad, Shane M.; El-Gendy, Ahmed A.; ...</p> <p>2018-01-11</p> <p>Gadolinium silicide (Gd 5Si 4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd 5Si 4 ingot and size <span class="hlt">separated</span> into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd 5Si 4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd 5Si 3 impurity. Here as the particle sizes decrease, the volumemore » fraction of Gd 5Si 3 <span class="hlt">phase</span> increases at the expense of the Gd 5Si 4 <span class="hlt">phase</span>, and the ferromagnetic transition temperature of Gd 5Si 4 is reduced from 316 K to 310 K, while the ordering of the minor <span class="hlt">phase</span> is independent of the particle size, remaining at 110 K.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPA....8e6428H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPA....8e6428H"><span>Investigating <span class="hlt">phase</span> transition temperatures of size <span class="hlt">separated</span> gadolinium silicide magnetic nanoparticles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hunagund, Shivakumar G.; Harstad, Shane M.; El-Gendy, Ahmed A.; Gupta, Shalabh; Pecharsky, Vitalij K.; Hadimani, Ravi L.</p> <p>2018-05-01</p> <p>Gadolinium silicide (Gd5Si4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd5Si4 ingot and size <span class="hlt">separated</span> into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd5Si4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd5Si3 impurity. As the particle sizes decrease, the volume fraction of Gd5Si3 <span class="hlt">phase</span> increases at the expense of the Gd5Si4 <span class="hlt">phase</span>, and the ferromagnetic transition temperature of Gd5Si4 is reduced from 316 K to 310 K, while the ordering of the minor <span class="hlt">phase</span> is independent of the particle size, remaining at 110 K.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1434311','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1434311"><span>Investigating <span class="hlt">phase</span> transition temperatures of size <span class="hlt">separated</span> gadolinium silicide magnetic nanoparticles</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hunagund, Shivakumar G.; Harstad, Shane M.; El-Gendy, Ahmed A.</p> <p></p> <p>Gadolinium silicide (Gd 5Si 4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd 5Si 4 ingot and size <span class="hlt">separated</span> into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd 5Si 4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd 5Si 3 impurity. Here as the particle sizes decrease, the volumemore » fraction of Gd 5Si 3 <span class="hlt">phase</span> increases at the expense of the Gd 5Si 4 <span class="hlt">phase</span>, and the ferromagnetic transition temperature of Gd 5Si 4 is reduced from 316 K to 310 K, while the ordering of the minor <span class="hlt">phase</span> is independent of the particle size, remaining at 110 K.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29745542','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29745542"><span>[Smart drug delivery systems based on <span class="hlt">nanoscale</span> ZnO].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Xiao; Chen, Chun; Yi, Caixia; Zheng, Xi</p> <p>2018-04-01</p> <p>In view of the excellent biocompatibility as well as the low cost, <span class="hlt">nanoscale</span> ZnO shows great potential for drug delivery application. Moreover, The charming character enable <span class="hlt">nanoscale</span> ZnO some excellent features (e.g. dissolution in acid, ultrasonic permeability, microwave absorbing, hydrophobic/hydrophilic transition). All of that make <span class="hlt">nanoscale</span> ZnO reasonable choices for smart drug delivery. In the recent decade, more and more studies have focused on controlling the drug release behavior via smart drug delivery systems based on <span class="hlt">nanoscale</span> ZnO responsive to some certain stimuli. Herein, we review the recent exciting progress on the pH-responsive, ultrasound-responsive, microwave-responsive and UV-responsive <span class="hlt">nanoscale</span> ZnO-based drug delivery systems. A brief introduction of the drug controlled release behavior and its effect of the drug delivery systems is presented. The biocompatibility of <span class="hlt">nanoscale</span> ZnO is also discussed. Moreover, its development prospect is looked forward.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..MAR.P1216C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..MAR.P1216C"><span>Binding Affinity Effects on Physical Characteristics of a Model <span class="hlt">Phase-Separated</span> Protein Droplet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chuang, Sara; Banani, Salman; Rosen, Michael; Brangwynne, Clifford</p> <p>2015-03-01</p> <p>Non-membrane bound organelles are associated with a range of biological functions. Several of these structures exhibit liquid-like properties, and may represent droplets of <span class="hlt">phase-separated</span> RNA and/or proteins. These structures are often enriched in multi-valent molecules, however little is known about the interactions driving the assembly, properties, and function. Here, we address this question using a model multi-valent protein system consisting of repeats of Small Ubiquitin-like Modifier (SUMO) protein and a SUMO-interacting motif (SIM). These proteins undergo <span class="hlt">phase</span> <span class="hlt">separation</span> into liquid-like droplets. We combine microrheology and quantitative microscopy to determine affect of binding affinity on the viscosity, density and surface tension of these droplets. We also use fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS) and partitioning experiments to probe the structure and dynamics within these droplets. Our results shed light on how inter-molecular interactions manifests in droplet properties, and lay the groundwork for a comprehensive biophysical picture of intracellular RNA/protein organelles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012M%26PSA..75.5229S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012M%26PSA..75.5229S"><span>Aberration-Corrected Stem of Q-Rich <span class="hlt">Separates</span> from the Saratov (L4) Meteorite</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroud, R. M.; Chisholm, M. F.; Amari, A.; Matsuda, J.</p> <p>2012-09-01</p> <p>TEM and aberration-corrected STEM analysis of two nanodiamond- and SiC-free Saratov (L4) <span class="hlt">separates</span>, AJ (most Q-rich) and AI (Q-rich), show that the carrier is porous carbon consisting of <span class="hlt">nanoscale</span> graphene platelets.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23728727','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23728727"><span>Comparison of GC stationary <span class="hlt">phases</span> for the <span class="hlt">separation</span> of fatty acid methyl esters in biodiesel fuels.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goding, Julian C; Ragon, Dorisanne Y; O'Connor, Jack B; Boehm, Sarah J; Hupp, Amber M</p> <p>2013-07-01</p> <p>The fatty acid methyl ester (FAME) content of biodiesel fuels has traditionally been determined using gas chromatography with a polar stationary <span class="hlt">phase</span>. In this study, a direct comparison of the <span class="hlt">separation</span> of FAMEs present in various biodiesel samples on three polar stationary <span class="hlt">phases</span> and one moderately polar stationary <span class="hlt">phase</span> (with comparable column dimensions) was performed. Retention on each column was based on solubility in and polarity of the <span class="hlt">phase</span>. Quantitative metrics describing the resolution of important FAME pairs indicate high resolution on all polar columns, yet the best resolution, particularly of geometric isomers, is achieved on the cyanopropyl column. In addition, the <span class="hlt">separation</span> of four C18 monounsaturated isomers was optimized and the elution order determined on each column. FAME composition of various biodiesel fuel types was determined on each column to illustrate (1) chemical differences in biodiesels produced from different feedstocks and (2) chemical similarities in biodiesels of the same feedstock type produced in different locations and harvest seasons.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPS...387...33H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPS...387...33H"><span>Densely quaternized poly(arylene ether)s with distinct <span class="hlt">phase</span> <span class="hlt">separation</span> for highly anion-conductive membranes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Yuanfang; Wang, Bingxi; Li, Xiao; Chen, Dongyang; Zhang, Weiying</p> <p>2018-05-01</p> <p>To develop high performance anion exchange membranes (AEMs), a novel bisphenol monomer bearing eight benzylmethyl groups at the outer edge of the molecule was synthesized, which after condensation polymerization with various amounts of 4,4‧-dihydroxydiphenylsulfone and 4,4‧-difluorobenzophenone yielded novel poly(arylene ether)s with densely located benzylmethyl groups. These benzylmethyl groups were then converted to quaternary ammonium groups by radical-initiated bromination and quaternization in tandem, leading to the emergence of densely quaternized poly(arylene ether sulfone)s (QA-PAEs) with controlled ion exchange capacities (IECs) ranging from 1.61 to 2.32 mmol g-1. Both small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) studies revealed distinct <span class="hlt">phase</span> <span class="hlt">separation</span> in the QA-PAEs. The QA-PAE-40 with an IEC of 2.32 mmol g-1 exhibited a Br- conductivity of 9.2 mS cm-1 and a SO42- conductivity of 14.0 mS cm-1 at room temperature, much higher than those of a control membrane with a similar IEC but without obvious <span class="hlt">phase</span> <span class="hlt">separation</span>. Therefore, <span class="hlt">phase</span> <span class="hlt">separation</span> of AEMs was validated to be advantageous for the efficient conducting of anions. The experimental results also showed that the QA-PAEs were promising AEM materials, especially for non-alkaline applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26756795','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26756795"><span>Effect of Excipients on Liquid-Liquid <span class="hlt">Phase</span> <span class="hlt">Separation</span> and Aggregation in Dual Variable Domain Immunoglobulin Protein Solutions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Raut, Ashlesha S; Kalonia, Devendra S</p> <p>2016-03-07</p> <p>Liquid-liquid <span class="hlt">phase</span> <span class="hlt">separation</span> (LLPS) and aggregation can reduce the physical stability of therapeutic protein formulations. On undergoing LLPS, the protein-rich <span class="hlt">phase</span> can promote aggregation during storage due to high concentration of the protein. Effect of different excipients on aggregation in protein solution is well documented; however data on the effect of excipients on LLPS is scarce in the literature. In this study, the effect of four excipients (PEG 400, Tween 80, sucrose, and hydroxypropyl beta-cyclodextrin (HPβCD)) on liquid-liquid <span class="hlt">phase</span> <span class="hlt">separation</span> and aggregation in a dual variable domain immunoglobulin protein solution was investigated. Sucrose suppressed both LLPS and aggregation, Tween 80 had no effect on either, and PEG 400 increased LLPS and aggregation. Attractive protein-protein interactions and liquid-liquid <span class="hlt">phase</span> <span class="hlt">separation</span> decreased with increasing concentration of HPβCD, indicating its specific binding to the protein. However, HPβCD had no effect on the formation of soluble aggregates and fragments in this study. LLPS and aggregation are highly temperature dependent; at low temperature protein exhibits LLPS, at high temperature protein exhibits aggregation, and at an intermediate temperature both phenomena occur simultaneously depending on the solution conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29289458','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29289458"><span>Paraspeckles: Where Long Noncoding RNA Meets <span class="hlt">Phase</span> <span class="hlt">Separation</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fox, Archa H; Nakagawa, Shinichi; Hirose, Tetsuro; Bond, Charles S</p> <p>2018-02-01</p> <p>Long noncoding RNA (lncRNA) molecules are some of the newest and least understood players in gene regulation. Hence, we need good model systems with well-defined RNA and protein components. One such system is paraspeckles - protein-rich nuclear organelles built around a specific lncRNA scaffold. New discoveries show how paraspeckles are formed through multiple RNA-protein and protein-protein interactions, some of which involve extensive polymerization, and others with multivalent interactions driving <span class="hlt">phase</span> <span class="hlt">separation</span>. Once formed, paraspeckles influence gene regulation through sequestration of component proteins and RNAs, with subsequent depletion in other compartments. Here we focus on the dual aspects of paraspeckle structure and function, revealing an emerging role for these dynamic bodies in a multitude of cellular settings. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvB..96p1110G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvB..96p1110G"><span>Controlling <span class="hlt">phase</span> <span class="hlt">separation</span> in vanadium dioxide thin films via substrate engineering</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gilbert Corder, Stephanie N.; Jiang, Jianjuan; Chen, Xinzhong; Kittiwatanakul, Salinporn; Tung, I.-Cheng; Zhu, Yi; Zhang, Jiawei; Bechtel, Hans A.; Martin, Michael C.; Carr, G. Lawrence; Lu, Jiwei; Wolf, Stuart A.; Wen, Haidan; Tao, Tiger H.; Liu, Mengkun</p> <p>2017-10-01</p> <p>The strong electron-lattice interactions in correlated electron systems provide unique opportunities for altering the material properties with relative ease and flexibility. In this Rapid Communication, we use localized strain control via a focused-ion-beam patterning of Ti O2 substrates to demonstrate that one can selectively engineer the insulator-to-metal transition temperature, the fractional component of the insulating and metallic <span class="hlt">phases</span>, and the degree of optical anisotropy down to the length scales of the intrinsic <span class="hlt">phase</span> <span class="hlt">separation</span> in V O2 thin films without altering the quality of the films. The effects of localized strain control on the strongly correlated electron system are directly visualized by state-of-the-art IR near-field imaging and spectroscopy techniques and x-ray microdiffraction measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011MeScT..22i0101K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011MeScT..22i0101K"><span>EDITORIAL: <span class="hlt">Nanoscale</span> metrology <span class="hlt">Nanoscale</span> metrology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klapetek, P.; Koenders, L.</p> <p>2011-09-01</p> <p>This special issue of Measurement Science and Technology presents selected contributions from the <span class="hlt">NanoScale</span> 2010 seminar held in Brno, Czech Republic. It was the 5th Seminar on <span class="hlt">Nanoscale</span> Calibration Standards and Methods and the 9th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized with the Czech Metrology Institute (CMI) and the Nanometrology Group of the Technical Committee-Length of EURAMET. There were two workshops that were integrated into <span class="hlt">NanoScale</span> 2010: first a workshop presenting the results obtained in NANOTRACE, a European Metrology Research Project (EMRP) on displacement-measuring optical interferometers, and second a workshop about the European metrology landscape in nanometrology related to thin films, scanning probe microscopy and critical dimension. The aim of this workshop was to bring together developers, applicants and metrologists working in this field of nanometrology and to discuss future needs. For more information see www.co-nanomet.eu. The articles in this special issue of Measurement Science and Technology cover some novel scientific results. This issue can serve also as a representative selection of topics that are currently being investigated in the field of European and world-wide nanometrology. Besides traditional topics of dimensional metrology, like development of novel interferometers or laser stabilization techniques, some novel interesting trends in the field of nanometrology are observed. As metrology generally reflects the needs of scientific and industrial research, many research topics addressed refer to current trends in nanotechnology, too, focusing on traceability and improved measurement accuracy in this field. While historically the most studied standards in nanometrology were related to simple geometric structures like step heights or 1D or 2D gratings, now we are facing tasks to measure 3D structures and many unforeseen questions arising from interesting physical</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvB..95x5108M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvB..95x5108M"><span>Symmetry-protected topological <span class="hlt">phases</span> of one-dimensional interacting fermions with spin-charge <span class="hlt">separation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Montorsi, Arianna; Dolcini, Fabrizio; Iotti, Rita C.; Rossi, Fausto</p> <p>2017-06-01</p> <p>The low energy behavior of a huge variety of one-dimensional interacting spinful fermionic systems exhibits spin-charge <span class="hlt">separation</span>, described in the continuum limit by two sine-Gordon models decoupled in the charge and spin channels. Interaction is known to induce, besides the gapless Luttinger liquid <span class="hlt">phase</span>, eight possible gapped <span class="hlt">phases</span>, among which are the Mott, Haldane, charge-/spin-density, and bond-ordered wave insulators, and the Luther Emery liquid. Here we prove that some of these physically distinct <span class="hlt">phases</span> have nontrivial topological properties, notably the presence of degenerate protected edge modes with fractionalized charge/spin. Moreover, we show that the eight gapped <span class="hlt">phases</span> are in one-to-one correspondence with the symmetry-protected topological (SPT) <span class="hlt">phases</span> classified by group cohomology theory in the presence of particle-hole symmetry P. The latter result is also exploited to characterize SPT <span class="hlt">phases</span> by measurable nonlocal order parameters which follow the system evolution to the quantum <span class="hlt">phase</span> transition. The implications on the appearance of exotic orders in the class of microscopic Hubbard Hamiltonians, possibly without P symmetry at higher energies, are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21668029','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21668029"><span>Nanoelectronic programmable synapses based on <span class="hlt">phase</span> change materials for brain-inspired computing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kuzum, Duygu; Jeyasingh, Rakesh G D; Lee, Byoungil; Wong, H-S Philip</p> <p>2012-05-09</p> <p>Brain-inspired computing is an emerging field, which aims to extend the capabilities of information technology beyond digital logic. A compact <span class="hlt">nanoscale</span> device, emulating biological synapses, is needed as the building block for brain-like computational systems. Here, we report a new <span class="hlt">nanoscale</span> electronic synapse based on technologically mature <span class="hlt">phase</span> change materials employed in optical data storage and nonvolatile memory applications. We utilize continuous resistance transitions in <span class="hlt">phase</span> change materials to mimic the analog nature of biological synapses, enabling the implementation of a synaptic learning rule. We demonstrate different forms of spike-timing-dependent plasticity using the same <span class="hlt">nanoscale</span> synapse with picojoule level energy consumption.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21471207-exoplanet-albedo-spectra-colors-function-planet-phase-separation-metallicity','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21471207-exoplanet-albedo-spectra-colors-function-planet-phase-separation-metallicity"><span>EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET <span class="hlt">PHASE</span>, <span class="hlt">SEPARATION</span>, AND METALLICITY</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cahoy, Kerri L.; Marley, Mark S.; Fortney, Jonathan J., E-mail: kerri.l.cahoy@nasa.go</p> <p>2010-11-20</p> <p>First generation space-based optical coronagraphic telescopes will obtain images of cool gas- and ice-giant exoplanets around nearby stars. Exoplanets lying at planet-star <span class="hlt">separations</span> larger than about 1 AU-where an exoplanet can be resolved from its parent star-have spectra that are dominated by reflected light to beyond 1 {mu}m and punctuated by molecular absorption features. Here, we consider how exoplanet albedo spectra and colors vary as a function of planet-star <span class="hlt">separation</span>, metallicity, mass, and observed <span class="hlt">phase</span> for Jupiter and Neptune analogs from 0.35 to 1 {mu}m. We model Jupiter analogs with 1x and 3x the solar abundance of heavy elements, andmore » Neptune analogs with 10x and 30x the solar abundance of heavy elements. Our model planets orbit a solar analog parent star at <span class="hlt">separations</span> of 0.8 AU, 2 AU, 5 AU, and 10 AU. We use a radiative-convective model to compute temperature-pressure profiles. The giant exoplanets are found to be cloud-free at 0.8 AU, possess H{sub 2}O clouds at 2 AU, and have both NH{sub 3} and H{sub 2}O clouds at 5 AU and 10 AU. For each model planet we compute moderate resolution (R = {lambda}/{Delta}{lambda} {approx} 800) albedo spectra as a function of <span class="hlt">phase</span>. We also consider low-resolution spectra and colors that are more consistent with the capabilities of early direct imaging capabilities. As expected, the presence and vertical structure of clouds strongly influence the albedo spectra since cloud particles not only affect optical depth but also have highly directional scattering properties. Observations at different <span class="hlt">phases</span> also probe different volumes of atmosphere as the source-observer geometry changes. Because the images of the planets themselves will be unresolved, their <span class="hlt">phase</span> will not necessarily be immediately obvious, and multiple observations will be needed to discriminate between the effects of planet-star <span class="hlt">separation</span>, metallicity, and <span class="hlt">phase</span> on the observed albedo spectra. We consider the range of these combined effects</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhRvE..84d6715G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhRvE..84d6715G"><span><span class="hlt">Phase</span> <span class="hlt">separation</span> in thermal systems: A lattice Boltzmann study and morphological characterization</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gan, Yanbiao; Xu, Aiguo; Zhang, Guangcai; Li, Yingjun; Li, Hua</p> <p>2011-10-01</p> <p>We investigate thermal and isothermal symmetric liquid-vapor <span class="hlt">separations</span> via a fast Fourier transform thermal lattice Boltzmann (FFT-TLB) model. Structure factor, domain size, and Minkowski functionals are employed to characterize the density and velocity fields, as well as to understand the configurations and the kinetic processes. Compared with the isothermal <span class="hlt">phase</span> <span class="hlt">separation</span>, the freedom in temperature prolongs the spinodal decomposition (SD) stage and induces different rheological and morphological behaviors in the thermal system. After the transient procedure, both the thermal and isothermal <span class="hlt">separations</span> show power-law scalings in domain growth, while the exponent for thermal system is lower than that for isothermal system. With respect to the density field, the isothermal system presents more likely bicontinuous configurations with narrower interfaces, while the thermal system presents more likely configurations with scattered bubbles. Heat creation, conduction, and lower interfacial stresses are the main reasons for the differences in thermal system. Different from the isothermal case, the release of latent heat causes the changing of local temperature, which results in new local mechanical balance. When the Prandtl number becomes smaller, the system approaches thermodynamical equilibrium much more quickly. The increasing of mean temperature makes the interfacial stress lower in the following way: σ=σ0[(Tc-T)/(Tc-T0)]3/2, where Tc is the critical temperature and σ0 is the interfacial stress at a reference temperature T0, which is the main reason for the prolonged SD stage and the lower growth exponent in the thermal case. Besides thermodynamics, we probe how the local viscosities influence the morphology of the <span class="hlt">phase</span> <span class="hlt">separating</span> system. We find that, for both the isothermal and thermal cases, the growth exponents and local flow velocities are inversely proportional to the corresponding viscosities. Compared with the isothermal case, the local flow velocity</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22939132','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22939132"><span>Preparation of a novel dual-function strong cation exchange/hydrophobic interaction chromatography stationary <span class="hlt">phase</span> for protein <span class="hlt">separation</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Kailou; Yang, Li; Wang, Xuejiao; Bai, Quan; Yang, Fan; Wang, Fei</p> <p>2012-08-30</p> <p>We have explored a novel dual-function stationary <span class="hlt">phase</span> which combines both strong cation exchange (SCX) and hydrophobic interaction chromatography (HIC) characteristics. The novel dual-function stationary <span class="hlt">phase</span> is based on porous and spherical silica gel functionalized with ligand containing sulfonic and benzyl groups capable of electrostatic and hydrophobic interaction functionalities, which displays HIC character in a high salt concentration, and IEC character in a low salt concentration in mobile <span class="hlt">phase</span> employed. As a result, it can be employed to <span class="hlt">separate</span> proteins with SCX and HIC modes, respectively. The resolution and selectivity of the dual-function stationary <span class="hlt">phase</span> were evaluated under both HIC and SCX modes with standard proteins and can be comparable to that of conventional IEC and HIC columns. More than 96% of mass and bioactivity recoveries of proteins can be achieved in both HIC and SCX modes, respectively. The results indicated that the novel dual-function column could replace two individual SCX and HIC columns for protein <span class="hlt">separation</span>. Mixed retention mechanism of proteins on this dual-function column based on stoichiometric displacement theory (SDT) in LC was investigated to find the optimal balance of the magnitude of electrostatic and hydrophobic interactions between protein and the ligand on the silica surface in order to obtain high resolution and selectivity for protein <span class="hlt">separation</span>. In addition, the effects of the hydrophobicity of the ligand of the dual-function packings and pH of the mobile <span class="hlt">phase</span> used on protein <span class="hlt">separation</span> were also investigated in detail. The results show that the ligand with suitable hydrophobicity to match the electrostatic interaction is very important to prepare the dual-function stationary <span class="hlt">phase</span>, and a better resolution and selectivity can be obtained at pH 6.5 in SCX mode. Therefore, the dual-function column can replace two individual SCX and HIC columns for protein <span class="hlt">separation</span> and be used to set up two-dimensional liquid</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26572324','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26572324"><span>Lamellar, micro-<span class="hlt">phase</span> <span class="hlt">separated</span> blends of methyl cellulose and dendritic polyethylene glycol, POSS-PEG.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chinnam, Parameswara Rao; Mantravadi, Ramya; Jimenez, Jayvic C; Dikin, Dmitriy A; Wunder, Stephanie L</p> <p>2016-01-20</p> <p>Blends of methyl cellulose (MC) and liquid pegylated polyoctahedralsilsesquioxane (POSS-PEG) were prepared from non-gelled, aqueous solutions at room temperature (RT), which was below their gel temperatures (Tm). Lamellar, fibrillated films (pure MC) and increasingly micro-porous morphologies with increasing POSS-PEG content were formed, which had RT moduli between 1 and 5GPa. Evidence of distinct micro-<span class="hlt">phase</span> <span class="hlt">separated</span> MC and POSS-PEG domains was indicated by the persistence of the MC and POSS-PEG (at 77K) crystal structures in the X-ray diffraction data, and scanning transmission electron images. Mixing of MC and POSS-PEG in the interface region was indicated by suppression of crystallinity in the POSS-PEG, and increases/decreases in the glass transition temperatures (Tg) of POSS-PEG/MC in the blends compared with the pure components. These interface interactions may serve as cross-link sites between the micro-<span class="hlt">phase</span> <span class="hlt">separated</span> domains that permit incorporation of high amounts of POSS-PEG in the blends, prevent macro-<span class="hlt">phase</span> <span class="hlt">separation</span> and result in rubbery material properties (at high POSS-PEG content). Above Tg/Tm of POSS-PEG, the moduli of the blends increase with MC content as expected. However, below Tg/Tm of POSS-PEG, the moduli are greater for blends with high POSS-PEG content, suggesting that it behaves like semi-crystalline polyethylene oxide reinforced with silica (SiO1.5). Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060044193&hterms=ren&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dren','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060044193&hterms=ren&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dren"><span>New directions for <span class="hlt">nanoscale</span> thermoelectric materials research</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, F.; Fleurial, J. P.; Gogna, P.</p> <p>2005-01-01</p> <p>Many of the recent advances in enhancing the thermoelectric figure of merit are linked to <span class="hlt">nanoscale</span> phenomena with both bulk samples containing <span class="hlt">nanoscale</span> constituents and <span class="hlt">nanoscale</span> materials exhibiting enhanced thermoelectric performance in their own right. Prior theoretical and experimental proof of principle studies on isolated quantum well and quantum wire samples have now evolved into studies on bulk samples containing nanostructured constituents. In this review, nanostructural composites are shown to exhibit nanostructures and properties that show promise for thermoelectric applications. A review of some of the results obtained to date are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Nanos...511885Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Nanos...511885Z"><span><span class="hlt">Nanoscale</span> structural and functional mapping of nacre by scanning probe microscopy techniques</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Xilong; Miao, Hongchen; Li, Faxin</p> <p>2013-11-01</p> <p>Nacre has received great attention due to its <span class="hlt">nanoscale</span> hierarchical structure and extraordinary mechanical properties. Meanwhile, the <span class="hlt">nanoscale</span> piezoelectric properties of nacre have also been investigated but the structure-function relationship has never been addressed. In this work, firstly we realized quantitative nanomechanical mapping of nacre of a green abalone using atomic force acoustic microscopy (AFAM). The modulus of the mineral tablets is determined to be ~80 GPa and that of the organic biopolymer no more than 23 GPa, and the organic-inorganic interface width is determined to be about 34 +/- 9 nm. Then, we conducted both AFAM and piezoresponse force microscopy (PFM) mapping in the same scanning area to explore the correlations between the nanomechanical and piezoelectric properties. The PFM testing shows that the organic biopolymer exhibits a significantly stronger piezoresponse than the mineral tablets, and they permeate each other, which is very difficult to reproduce in artificial materials. Finally, the <span class="hlt">phase</span> hysteresis loops and amplitude butterfly loops were also observed using switching spectroscopy PFM, implying that nacre may also be a bio-ferroelectric material. The obtained <span class="hlt">nanoscale</span> structural and functional properties of nacre could be very helpful in understanding its deformation mechanism and designing biomimetic materials of extraordinary properties.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22070645','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22070645"><span>Heat transfer across the interface between <span class="hlt">nanoscale</span> solids and gas.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheng, Chun; Fan, Wen; Cao, Jinbo; Ryu, Sang-Gil; Ji, Jie; Grigoropoulos, Costas P; Wu, Junqiao</p> <p>2011-12-27</p> <p>When solid materials and devices scale down in size, heat transfer from the active region to the gas environment becomes increasingly significant. We show that the heat transfer coefficient across the solid-gas interface behaves very differently when the size of the solid is reduced to the <span class="hlt">nanoscale</span>, such as that of a single nanowire. Unlike for macroscopic solids, the coefficient is strongly pressure dependent above ∼10 Torr, and at lower pressures it is much higher than predictions of the kinetic gas theory. The heat transfer coefficient was measured between a single, free-standing VO(2) nanowire and surrounding air using laser thermography, where the temperature distribution along the VO(2) nanowire was determined by imaging its domain structure of metal-insulator <span class="hlt">phase</span> transition. The one-dimensional domain structure along the nanowire results from the balance between heat generation by the focused laser and heat dissipation to the substrate as well as to the surrounding gas, and thus serves as a <span class="hlt">nanoscale</span> power-meter and thermometer. We quantified the heat loss rate across the nanowire-air interface, and found that it dominates over all other heat dissipation channels for small-diameter nanowires near ambient pressure. As the heat transfer across the solid-gas interface is nearly independent of the chemical identity of the solid, the results reveal a general scaling relationship for gaseous heat dissipation from nanostructures of all solid materials, which is applicable to <span class="hlt">nanoscale</span> electronic and thermal devices exposed to gaseous environments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29926808','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29926808"><span>Theory of Electron, Phonon and Spin Transport in <span class="hlt">Nanoscale</span> Quantum Devices.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sadeghi, Hatef</p> <p>2018-06-21</p> <p>At the level of fundamental science, it was recently demonstrated that molecular wires can mediate long-range <span class="hlt">phase</span>-coherent tunnelling with remarkably low attenuation over a few nanometre even at room temperature. Furthermore, a large mean free path has been observed in graphene and other graphene-like two-dimensional materials. These create the possibility of using quantum and phonon interference to engineer electron and phonon transport for wide range of applications such as molecular switches, sensors, piezoelectricity, thermoelectricity and thermal management. To understand transport properties of such devices, it is crucial to calculate their electronic and phononic transmission coefficients. The aim of this tutorial article is to review the state-of-art theoretical and mathematical techniques to treat electron, phonon and spin transport in <span class="hlt">nanoscale</span> molecular junctions. This helps not only to explain new phenomenon observed experimentally but also provides a vital design tool to develop novel <span class="hlt">nanoscale</span> quantum devices. © 2018 IOP Publishing Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NJPh...19k5003L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NJPh...19k5003L"><span>Charge pattern matching as a ‘fuzzy’ mode of molecular recognition for the functional <span class="hlt">phase</span> <span class="hlt">separations</span> of intrinsically disordered proteins</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Yi-Hsuan; Brady, Jacob P.; Forman-Kay, Julie D.; Chan, Hue Sun</p> <p>2017-11-01</p> <p>Biologically functional liquid-liquid <span class="hlt">phase</span> <span class="hlt">separation</span> of intrinsically disordered proteins (IDPs) is driven by interactions encoded by their amino acid sequences. Little is currently known about the molecular recognition mechanisms for distributing different IDP sequences into various cellular membraneless compartments. Pertinent physics was addressed recently by applying random-<span class="hlt">phase</span>-approximation (RPA) polymer theory to electrostatics, which is a major energetic component governing IDP <span class="hlt">phase</span> properties. RPA accounts for charge patterns and thus has advantages over Flory-Huggins (FH) and Overbeek-Voorn mean-field theories. To make progress toward deciphering the <span class="hlt">phase</span> behaviors of multiple IDP sequences, the RPA formulation for one IDP species plus solvent is hereby extended to treat polyampholyte solutions containing two IDP species plus solvent. The new formulation generally allows for binary coexistence of two <span class="hlt">phases</span>, each containing a different set of volume fractions ({φ }1,{φ }2) for the two different IDP sequences. The asymmetry between the two predicted coexisting <span class="hlt">phases</span> with regard to their {φ }1/{φ }2 ratios for the two sequences increases with increasing mismatch between their charge patterns. This finding points to a multivalent, stochastic, ‘fuzzy’ mode of molecular recognition that helps populate various IDP sequences differentially into <span class="hlt">separate</span> <span class="hlt">phase</span> compartments. An intuitive illustration of this trend is provided by FH models, whereby a hypothetical case of ternary coexistence is also explored. Augmentations of the present RPA theory with a relative permittivity {ɛ }{{r}}(φ ) that depends on IDP volume fraction φ ={φ }1+{φ }2 lead to higher propensities to <span class="hlt">phase</span> <span class="hlt">separate</span>, in line with the case with one IDP species we studied previously. Notably, the cooperative, <span class="hlt">phase-separation</span>-enhancing effects predicted by the prescriptions for {ɛ }{{r}}(φ ) we deem physically plausible are much more prominent than that entailed by common</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5600379','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5600379"><span>Cooling induces <span class="hlt">phase</span> <span class="hlt">separation</span> in membranes derived from isolated CNS myelin</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pusterla, Julio M.; Schneck, Emanuel; Funari, Sérgio S.; Démé, Bruno; Tanaka, Motomu</p> <p>2017-01-01</p> <p>Purified myelin membranes (PMMs) are the starting material for biochemical analyses such as the isolation of detergent-insoluble glycosphingolipid-rich domains (DIGs), which are believed to be representatives of functional lipid rafts. The normal DIGs isolation protocol involves the extraction of lipids under moderate cooling. Here, we thus address the influence of cooling on the structure of PMMs and its sub-fractions. Thermodynamic and structural aspects of periodic, multilamellar PMMs are examined between 4°C and 45°C and in various biologically relevant aqueous solutions. The <span class="hlt">phase</span> behavior is investigated by small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC). Complementary neutron diffraction (ND) experiments with solid-supported myelin multilayers confirm that the <span class="hlt">phase</span> behavior is unaffected by planar confinement. SAXS and ND consistently show that multilamellar PMMs in pure water become heterogeneous when cooled by more than 10–15°C below physiological temperature, as during the DIGs isolation procedure. The heterogeneous state of PMMs is stabilized in physiological solution, where <span class="hlt">phase</span> coexistence persists up to near the physiological temperature. This result supports the general view that membranes under physiological conditions are close to critical points for <span class="hlt">phase</span> <span class="hlt">separation</span>. In presence of elevated Ca2+ concentrations (> 10 mM), <span class="hlt">phase</span> coexistence is found even far above physiological temperatures. The relative fractions of the two <span class="hlt">phases</span>, and thus presumably also their compositions, are found to vary with temperature. Depending on the conditions, an “expanded” <span class="hlt">phase</span> with larger lamellar period or a “compacted” <span class="hlt">phase</span> with smaller lamellar period coexists with the native <span class="hlt">phase</span>. Both expanded and compacted periods are also observed in DIGs under the respective conditions. The observed subtle temperature-dependence of the <span class="hlt">phase</span> behavior of PMMs suggests that the composition of DIGs is sensitive to the details of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850025972','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850025972"><span>The effect of liquid-liquid <span class="hlt">phase</span> <span class="hlt">separation</span> of glass on the properties and crystallization behavior</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Li, J. Z.</p> <p>1985-01-01</p> <p>A theoretical discussion is given of the <span class="hlt">phase</span> <span class="hlt">separation</span> mechanism of amorphous materials. This includes nucleus growth, spinoidal decomposition, and nuclei agglomeration and coarsening. Various types of glass are analyzed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21972792','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21972792"><span>Effects of ions on the solubility transition and the <span class="hlt">phase-separation</span> of N-isopropylacrylamide in water.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sasaki, Shigeo; Okabe, Satoshi</p> <p>2011-11-10</p> <p>The effects of NaCl, NaOH, and HCl on the solubility transition and the <span class="hlt">phase-separation</span> of N-isopropylacrylamide (NIPA) were investigated for the purpose of clarifying the physicochemical mechanism of salting-out and salting-in phenomena. The discrete change in the solubility of NIPA in the salt-free water at the solubility transition (reported in J. Phys. Chem. B 2010, 114, 14995-15002) decreased with the addition of HCl and disappeared in the HCl solutions at concentrations higher than 2 M, while it increased with additions of NaOH and NaCl. A difference in NIPA concentration between the <span class="hlt">phase-separated</span> solutions decreases with the addition of HCl and increases with additions of NaOH and NaCl. Partition coefficients of HCl in the <span class="hlt">phase-separated</span> NIPA-rich solutions are higher than those in the NIPA poor solutions, while partition coefficients of NaCl and NaOH between the NIPA-rich and -poor solutions have trends opposite to those of HCl. The present results clearly indicate that the HCl favors the dehydrated NIPA and stabilizes the H(2)O-poor state of the NIPA molecule more than NaCl.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>